
Tamkang Journal of Science and Engineering, Vol. 2, No. 4, pp. 175-186 (2000)

175

A New Polygon Based Algorithm for Filling Regions
Hoo-Cheng Liu*, Mu-Hwa Chen*, Shou-Yiing Hsu**,

Chaoyin Chien*, Tsu-Feng Kuo* and Yih-Farn Wang*

* Department of Computer Science and Information Engineering,
Tamkang University, Tamsui, Taiwan, R. O. C.

**Department of Information Management,
National Defense Management College,

Taipei, Taiwan, R. O. C.

Abstract

 Region filling is a fundamental operation in computer graphics
and image processing. There are broadly two classes of region filling:
polygon based and pixel based. The conventional polygon based
region filling algorithm typically uses data structures of records and
fields. Using these data structures, the region filling process slows
down because of the time-consuming operations of records and fields.
This paper proposes a new polygon based region filling algorithm by
using the proposed data structures of triples. This results in use of
more efficient triple operations involving arrays and elements to fill a
region. Using data structures of triples, the y-coordinate modification
problem that occurs in the conventional algorithm simply disappears.
In addition, contrary to the conventional approach, which uses
troublesome geometrical considerations in deciding the even number
of elements in each linked list, the proposed triple model uses a
simple criterion to meet the even number requirement. Most
important of all is the fact that the proposed criterion is independent
of the polygon geometry. The experimental results strongly support
superiority of the proposed algorithm. It is verified that the proposed
algorithm is both theoretically and experimentally better than the
conventional algorithm.

Key Words: Region filling, Y-modification test, Active edge
table, Edge table, Liu's criterion

1. Introduction

 To fill the interior of a region is important
in many applications such as computer
cartography, pattern recognition, scene analysis,
and computer graphics [6]. Filling the interior of
a region with a given color can be classified into
two broad classes: polygon based and pixel
based [6]. The polygon based technique is also
known variously as an "ordered edge list ", a
"scan conversion", or a "rasterization" technique
and is applicable whenever the contour is given
as a polygon. The sides or edges of a polygon
are sorted according to their coordinates, and
then the sorted list is scanned [5].
 In general, two data structures, the Active
Edge Table (AET) and the Edge Table (ET) [1, 2,

3] are used for the scan conversion algorithm of
filling polygons (regions). To fill a polygon
correctly, the number of edges in the AET must
always be even. To meet this condition, the y
coordinates of many polygon vertices under
certain conditions must be properly modified. To
test this y-modification of each vertex, the
relations of each pair of adjacent edges and
sometimes the relations of two consecutive pairs
of adjacent edges should be carefully examined.
Is it possible to design a new scan conversion
approach for filling polygons without modifying
the y coordinates? Our approach in this paper
will answer this question in the affirmative. At
the same time, the terms of the proposed data
structures xL and xR (refer to K2 in Section
3.1) have the same merit as the terms, the left

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

https://core.ac.uk/display/225190432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

176

terminal pixel and the right terminal pixel used in
Nakashima et al. [4]. Moreover, the proposed
approach here is also an improvement on Watt's
polygon rasterization method [7] which only uses one
pixel, the x coordinate, to construct its data structures.
However, the proposed algorithm uses triples to
construct necessary data structures. The extra element
is useful in processing boundary conditions and in
saving processing time. Moreover, Liu's criterion for
constructing data structures is a general-purpose
mechanism in helping implement the proposed
algorithm.
 The rest of this paper is organized as follows.
Section Ⅱ describes the conventional algorithm and
its data structures. Section Ⅲ presents the proposed
data structures and the region filling process. Section
Ⅳ explicates the experimental results and
discussions. Finally, a set of short conclusions which
summarize our contributions are provided in Section
Ⅴ.

2.A Conventional Polygon-Filling Algorithm
 and its Data Structures

 Some assumptions are introduced in this
section. A brief review of the conventional algorithm

of region filling and its data structures is also
presented. For clarity and convenience, region and
polygon are sometimes used interchangeably. The
polygon (region) to be filled is called the input
polygon.

2.1 Preliminary Assumptions

 Vertices of the input polygon to be filled are
presented as an array of integers. Each pair of integers
represents a vertex, the first and second integers of an
integer pair represent the x and y coordinates of a
vertex, respectively. The first pair is the first vertex,
the second pair is the second vertex, and so on, as
shown in Fig. 1.
 Also, our new method can properly handle
multiple polygons with possible holes and
self-intersecting edges.
 A region-filling algorithm consists of two
phases: constructing the data structures and
processing it (filling). Two tables related to the
algorithm, the Active Edge Table (AET) and the Edge
Table (ET), are presented for later references and
comparisons, as shown in Fig. 2 and Fig. 3,
respectively [3].

C

F

CD1

EF2

EF3

A

E

FA1

FA2 AB1

AB2

AB4

AB3

EF1

(6,8)
(9,8)

(9,6) (13,6)

(8,1)

(2,4)

 y axis

8 +

7 +

6 +

5 +

4 +

3 +

2 +

1 +
 + + + + + + + + + + + + + +

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B

D
ymax + 1

ymin +7 = ymax = 8

ymin +6

ymin +5

ymin +4

ymin +3

ymin +2

ymin +1

ymin = 1

Figure 1. An input polygon with the geometrical relations of its boundary pixels.

Hoo-Cheng Liu, Mu-Hwa Chen, Shou-Yiing Hsu, Chaoyin Chien, Tsu-Feng Kuo and Yih-Farn Wang:
A New Polygon Based Algorithm for Filling Regions

177

AET pointer

AB

Scan line 1

Scan line 2

FA
AB

AET pointer

Scan line3

AET poniter

Scan line4

AB

FA AB

Figure 3. Different states of the Active Edge Table
for different y-coordinates of Figure. 1.

FA

2.2 Constructing the data structures

 Geometrically, the AET represents a
horizontal scan line and is a list of edges. The
ET is initially formed as a list of edges and is
bucket-sorted into a list of lists. For convenience,
we shall refer to these lists as buckets (following
the bucket sort). Buckets are indexed by their
corresponding y values. The minimum indexed y
value ymin is the minimum y coordinate of the
polygon vertices, and the maximum indexed y
value ymax is the maximum y coordinate of the
polygon vertices. Each edge in any list is a node
having four fields, as shown in Fig. 2. The above
data structures are explained as follows:

B1. A ytop field filled with the highest y

coordinate value of the edge (a
non-horizontal line segment).

B2. A xval field initially filled with the lowest x
coordinate value of the edge, and this xval
value may be changed during later
processing.

B3. An increment field 1/m used in stepping from
one scan line to the next, where m is the
slope of the edge. Note that no horizontal
line edge is included, and 1/m is always
finite.

B4. A link field links the next edge in the bucket.
In general, singly linked list should be
enough. However, for programming
convenience, doubly linked list is a better
choice because insertions and deletions may

 occur frequently. Note also that if doubly

linked structure is chosen, then two link
fields should be used.

 When an edge with y coordinate value ybot
of lower vertex is inserted into a bucket indexed
by ybot , the edges which include the edge newly
inserted into in the bucket, are sorted by using
bubble sort from bucket head to bucket tail. It
follows that edges of smaller xval values precede
those of larger xval values and for edges of equal
xval values, the edge with smaller 1/m value is
preceding.

2.3 The Processing Phase: Filling the region

based on the above constructed data
structures

 Once the ET has been constructed,
steps for filling the region are as follows:
F1. Initialize the AET to be empty.
F2. Set the index value y to the smallest y

coordinate ymin of all polygon vertices,
this y corresponds to the first nonempty
bucket.

F3. Repeat the following steps until both the
AET and ET are empty.

F3.1 Move all edges of the ET bucket
indexed by y to the AET, then sort the
AET on values of the xval fields, and if
there is a tie, use the 1/m fields for
sorting.

F3.2 Fill in desired pixel colors of all line

AET pointer

Figure 2. The Edge Table (ET) of Figure.1

EF

FA AB

CD

8 2 1 λ

8 9 0 λ

9

7
6

5 λ

4

3 λ

2 λ

1 6 8 1 λ4 8 -2

λ
λ

FA

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

178

segments on scan line y, if any, by using
pairs of the xvals from the AET's edges
(nodes).

F3.3 Remove from the AET (delete nodes from
the list) those edges for which y = ytop
(edges not involved in the next scan line).

F3.4 Increment y by 1 (to the coordinate of the
next scan line).

F3.5 For each nonvertical edge remaining in the
AET, update the value of the xval field for
the new y.

 From Sections 2.2~2.3 presented above, it is
not clear why the y coordinates of some
polygon's vertices need be modified. We shall
investigate this y-modification mechanism by
filling an example polygon using both Section
2.2 and Section 2.3 in the following.

2.4 The Necessity of Modifying Some Y

Coordinates for Correctly Filling an
Example Polygon in the Conventional
Algorithm

 As an aid to understanding, Fig. 1
describes schematically the geometrical relations
of an example input polygon's boundary pixels.
Fig. 2 and Fig. 3 describe the corresponding ET
and AET, respectively. Capital letters A, B, C, D,
E and F represent both the labels of the vertices,
the x coordinates of the corresponding vertices,
and terms AB1, AB2, AB3, AB4, CD1, EF1,
EF2, EF3, FA1, and FA2 represent the x
coordinates on the various corresponding
boundary edges. The corresponding y
coordinates are labeled from ymin-1, through ymin,
ymin +1, …, ymin +6, ymin +7= ymax , to ymax +1,
where ymin=1 and ymax =8.
 Using Figs. 1~2, carefully tracing the first
three loops step by step of the above filling
phase, it is seen that

 Loop 1: Draw the pixel A (y= ymin),
Loop 2: Draw the (horizontal) line segment
from FA2 to AB1 (y = ymin +1), and
Loop 3: Draw the line segment from FA1 to
AB2
(y= ymin +2).

 Note that at the moment loop 3 is just

finished, the AET still has two edges, edge AB
and edge FA, and the y index of the AET has
been changed to ymin +3, and the new x values of
the two edges have been obtained. With respect

to loop 4, steps are as follows.
 The first step of loop 4, F3.1, is to move
new bucket indexed by y= ymin +3. There is one
edge EF in it, we move it from the ymin +3
bucket to the AET, and the AET now has "three"
edges. Note that "three" is not an even number.

 Now when step 2 of loop 4, step F3.2, is
executed, there will be an error. To avoid the
above type of errors, a heuristic trick is to
shorten the value of the ytop field of the edge FA
in the bucket ymin by 1 (this is what we call the
y-modification). The trick is very easy to
understand and it succeeds.
 The only problem with this trick is that it
is tedious and troublesome to implement. For
example, the vertices have to be classified as
singular points or normal points. Moreover, for
self-intersecting edges, extra sorting of the
AET's edges has to be performed to determine
the inside or outside problem. Suppose that the
average number of edges in the AET is k, it
follows that the best sorting takes k*ln(k) times.
Note also that the y-coordinate modification
itself wastes no time. However, to determine
which y coordinate should be modified takes
time.
 Thus, we aim to design new data
structures and propose a new scan conversion
polygon filling algorithm without the
y-modification, and for the case of
self-intersecting edges, no extra sorting is
required.

3. The Proposed Data Structures and

the Filling Process

In this section, we will first state the
proposed new data structures of arrays and
elements, then explicate the proposed filling
process based on the proposed data structures.

3.1 The Proposed Data Structures

K1. An input polygon with vertices a = (x0,y0), b

= (x1,y1), c = (x2,y2), d = (x3,y3),…, g = (x6,y6),
h = (x7,y7) and (x8,y8) = (x0,y0) is shown in
Fig. 4.

K2. A Horizontal Short Line Segment (HSLS) is
a triple (y, xL, xR) which consists of an
index y and two extreme x values xL and xR.
Where xL is the leftmost x coordinate and xR
the rightmost x coordinate of the HSLS,
respectively. In particular, when xL = xR,
then the HSLS is the single point (xL, y) =

Hoo-Cheng Liu, Mu-Hwa Chen, Shou-Yiing Hsu, Chaoyin Chien, Tsu-Feng Kuo and Yih-Farn Wang:
A New Polygon Based Algorithm for Filling Regions

179

(xR, y). A single point is a shortest HSLS.
 For example, the single point c = (x2, y2) is
the shortest HSLS (y2, x2, x2). The line segment
from
e = (x4 , y4) to d = (x3 , y3) is also a HSLS. For
this HSLS, y = 6, xL = x4 = 9, and xR = x3 = 13,
in this case, xL < xR, so this HSLS is not the
shortest HSLS.

K3. The discrete pixel polygon is the input

polygon whose boundary edges are now
represented as discrete pixels which are
calculated from the original edges by
Bresenham's method.

K4. The HSLS polygon, the Hpolygon for short,
is the input polygon whose boundary is
composed of HSLSs, which are calculated
and collected from the discrete pixels of the
discrete pixel polygon.

 The input polygon is also a Hpolygon.
Two HSLS elements of this Hpolygon are the
two HSLSs as mentioned and explained in K2. It
follows that the other elements of the Hpolygon
should be obvious in Fig. 4. Hence, there is no
need to mention them one by one. It is found
that there are actually eighteen HSLS elements
in Fig. 4, as shown in Fig. 5.

K5. The new ET, the NET for short, similar to

the conventional ET of Sections 1~ 2, is a
list of new type of buckets called Nbuckets.
Note that each node of the Nbucket consists
of three fields: the xL, the xR, and the link
field whose meanings can be referenced
from K2 and B4 of Section 2, respectively.

Note also that nodes in every Nbucket are sorted
according to the values of the xL fields.

3.2 The Proposed Filling Process

 Once the NET is formed, the proposed filling
process is as follows:

 NF1. Using Bresenham's method [3], calculate

all the discrete pixels of all the input
polygon's edges one by one, and save the
discrete pixels into the discrete pixel
polygon. The discrete pixel polygon can
be implemented as an array of integers.

 NF2. Starting from the first pixel of the pixel
polygon till the last, test all pixels
sequentially, find groups of consecutive

Figure 4. The vertices of the input polygon IP are a =

(x0,y0), b = (x1,y1), c = (x2,y2), d = (x3,y3), e =
(x4,y4), f = (x5,y5), g = (x6,y6), h = (x7,y7), and i =
(x8,y8), whose coordinates values are (8,1),
(10,3), (12,1), (13,6), (9,6), (9,8), (6,8), and (1,4),
respectively, where (x0,y0) = (x8,y8).

Figure 5. There are eighteen HSLS elements in

Figure 4.

pixels having the same y coordinate. For
each group of pixels,find the left-most x
valued pixel, xL, and the rightmost x
valued pixel, xR. Having found xL and xR,
adding the common y, the three form a
triple which is what we call a HSLS.
Append this newly found HSLS to the
Hpolygon, which is initially empty, and
which can be considered as an array of
HSLSs. We refer to it as Harray.

NF3. Assume that there are h HSLSs in the
Hpolygon and let Hel denote a HSLS
element of the Hpolygon. To use any Hel

0 1 2 3 4 5 6 7 8 9 10 11 12 13

9

8

7
6

5

4

3

2

1

0

14

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13

9

8

7

6

5

4

3

2

1

0

14

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

180

of the Hpolygon, by the conventional
usage of array subscripts, any valid
subscript value must be an integer
between 0 and h-1. We will use Hi as the
i'th Hel, and say that for all integers i,
0< i < h-1, if Hi is the current Hel, then
Hi+1 is the next Hel, and Hi-1 is the
previous Hel.

 If H0 is the current Hel, then H1 is the next
Hel, and Hh-1 is the previous Hel. If Hh-1 is the
current Hel, then H0 is the next Hel, and Hh-2 is
the previous Hel. Carefully studying these current,
next, and previous relations, it is seen that a
modulus mathematics dividing by h for handling
subscripts will easily solve the above relational
problem.

 NF4. Using modulus mathematics (dividing by h)

for processing subscripts, we now propose
a criterion for constructing the NET,
which is a list of Nbuckets as mentioned in
K5. The NET is initially empty, and all its
Nbuckets are indexed from ymin to ymax (ymin
=1, ymax =8, as shown in Fig. 1) as the
ET in Section 2.

 Starting from the first Hel of the Harray,
for each current Hel, we can use its y index to
find its previous Hel and next Hel. For simplicity,
we will use Cy, Py, and Ny to denote the y
indices of the current Hel, the previous Hel, and
the next Hel, respectively, we also denote xL and
xR as the xL and xR values of the current Hel.
 The proposed criterion for constructing
NET is easy to implement and it is also
independent of input polygons. Note also that
the proposed criterion is powerful enough to
cope with concave, convex polygon with
self-intersecting edges, or holes. We refer to it as
the Liu's Criterion for even number decision
which consists of the following two conditions:

Condition one:
 If (Py > Cy && Ny < Cy || Py < Cy &&
Ny > Cy) then sort and insert a node (a triple,
details in NF2) with field values xL and xR of Cy
into a proper position(indexed by y) in the y
Nbucket.
Condition two:
 If (Py > Cy && Ny > Cy || Py < Cy &&
Ny < Cy) then sort and insert a pair of identical
nodes with field values xL and xR of Cy into two
proper consecutive positions in the y Nbucket
respectively.

 For each current Hel, in turn, find and
compare the three corresponding y values Cy, Py,
and Ny. For example, in Fig. 4, let Cy=6, then
Py=5, Ny=7. These three Hels meet Condition
one. Also, in Fig. 4, let Cy=8, then Py=7, Ny=7.
These three Hels obviously meet Condition two.
 Note that the number of edges in the AET
of the conventional algorithm must always be
even as mentioned in Section 1. Similarly, for a
new data structures and algorithm, the number
of elements of our analogous HSLS AET should
also always be even, then the region (the input
polygon) can be correctly filled.
 Observing Fig. 4, the HSLS AET
identified by y =8, there is only one HSLS. To
make it is even, this HSLS should be doubled,
and this explains why Condition Two is to be
processed in this way. By contrary, the HSLS
AET identified by y =4, has two HSLSs, so that
Condition One is applicable, i.e., each HSLS of
the two is counted only once.
 As an aid to understanding, Fig. 6 applies
schematically the Liu's criterion to a polygon.
Note that Fig. 6 is only designed for explanation
purpose. Actually, implementation of this
structure doesn't adopt conventional edge-list
approach. Instead, a more efficient and faster
array-based approach is used.

Figure 6. Apply schematically the Liu's criterion to a

polygon.

 Section 2.4 explains that to suitably
modify many y coordinates is to make the
number of edges in the AET of the conventional
algorithm always even. It follows that the
number of elements of the proposed analogous

4

3

2

1

0

4

0

0

4

0

0

0 0

0 0

4

1

2

4

1

2

4 4

4 4

3

2

3

2

4 4

4 4

0 1 2 3 4

4

3

2

1

Hoo-Cheng Liu, Mu-Hwa Chen, Shou-Yiing Hsu, Chaoyin Chien, Tsu-Feng Kuo and Yih-Farn Wang:
A New Polygon Based Algorithm for Filling Regions

181

HSLS AET should also always be even.
However, the problem is easily resolved if the
above-mentioned two Conditions are followed.
 To complete the proposed algorithm,
perform the following filling operations:

NF5. Once all the Nbuckets in the NET are

formed, fill the interior of the original
input polygon with a given pixel color by
the following loop.

 For y = ymin to y = ymax do
 {while there is still a pair of nodes in the y
bucket,
 do {
 for the first node of the pair, using the value
 of xL,
 for the second node of the pair, using

the value of xR, and using the value of
y, draw a horizontal line segment
from
(xL,y) to (xR,y) with the given pixel
color.

 }
 }

 From the data-structure point of view,
each of the steps, from F3.1 to F3.5 in Section
2.3, involves the time-consuming operations of
records and their fields. In comparison, each step
of the proposed algorithm involves more
efficient (faster) operations of arrays and their
elements.
 The time superiority of our new algorithm
is really based on the proposed data structures in
Section 3. In other words, the slow execution
time of the conventional algorithm comes from
the data structures in Section 2. It is seen that
different data structures state different time
efficiency. Hence, the superiority of new
algorithm is largely based on the superiority of
its data structures. The following experimental
results will justify the claim.

4. Experimental Results

 This section compares the processing
times of conventional algorithm and the
proposed algorithm. Our experimental results
include both the case of drawing no line (F3.2
and NF5 are skipped) and the case of drawing all
lines (F3.2 and NF5 are performed). Fig. 7
describes the input convex polygon with 4, 6, 17,
and 68 edges, respectively. Fig. 8 describes the
input polygon with self-intersecting edges of 4,
6, 17, and 68, respectively. Fig. 9 presents the

cases of drawing all lines.
The case of drawing no line is reported in Fig.
10, Table 1, and Fig. 11 and Table 2. The
line-drawing case is reported in Fig. 12, Table 3,
and Fig. 13 and Table 4.
 Both cases include two types of
comparison. Type 1 presents those polygons
without self-intersection, as shown in Fig. 7.
Type 2 presents those polygons with
self-intersection, as shown in Fig. 8. The
experimental results for Type 1 comparison of
both cases are shown in Fig. 10, Table1, and Fig.
12 and Table 3. While that for Type 2 are shown
in Fig. 11, Table 2, and Fig. 13, and Table 4.

Figure 7. The input convex polygon with 4, 6, 17, and

68 edges, respectively.

All algorithms are implemented on a Pentium-Ⅱ
Intel CPU running Microsoft Visual Basic V.5
under the MS Windows 98 operating system.
 Here, "execution times" or "times" mean
the total times in which the program executes.
This is because filling regions only takes a few
milliseconds, however, the time unit of display
function in Visual Basic supports only
measurement in terms of second. To get the
obvious execution time, the experiment uses
same program to repeat the execution more than
once such as 10, 20, 30 times, and so on, for
purpose of comparison.
 The term "second" in Figs. 10~13 means
that different algorithms take time in seconds for
processing various input polygons.
 Under each experimental sample, the units
of execution time are in seconds. Since Visual
Basic supports no millisecond display function.

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

182

Consequently, the "0" value of execution time in
Table 1 comes from rounding function when the
execution time is less than 0.5 seconds.
 All figures give comparison results in
graphic form, and all tables give comparison
results in tabular form. Sample (4), sample (6),
sample (17) and sample (68) correspond to
polygons' edges 4, 6, 17, and 68, respectively.
The first column of Tables 1~4 gives a total
times of program execution. For example, if the
number of program execution times is ten, such
as Tables 1~4, this means that the same program
has run a total of 10 times.

Figure 8. The input polygons with self-intersecting

edges of 4, 6, 17, and 68, respectively.

Figure 9. The cases of drawing lines.

Figure 10. Comparison results for Liu's algorithm and
the conventional algorithm of drawing no
line in graphical form.

Table 1. Comparison of execution time for Liu's algorithm and the conventional algorithm using different edges as

input polygon, and execution times in Seconds of drawing no Line in tabular form.
 Sample(4) Sample(6) Sample(17) Sample(68)

Execution

Times

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

10 0 3 1 2 1 2 1 3

20 1 5 1 6 2 5 1 5

30 2 8 1 9 2 8 3 8

40 2 11 2 11 3 10 3 10

50 2 13 3 13 4 13 4 14

60 4 15 4 16 4 16 4 16

70 4 19 4 18 4 19 5 19

80 4 21 5 21 5 22 6 22

90 5 24 6 24 6 24 6 25

100 5 26 6 26 6 27 7 27

0

20

40

60

80

10 30 50 70 90

Times

S
ec

on
ds

Sample(4) Liu

Sample(4) Classical

Sample(6) Liu

Sample(6) Classical

Sample(17) Liu

Sample(17) Classical

Sample(68) Liu

Sample(68) Classical

Hoo-Cheng Liu, Mu-Hwa Chen, Shou-Yiing Hsu, Chaoyin Chien, Tsu-Feng Kuo and Yih-Farn Wang:
A New Polygon Based Algorithm for Filling Regions

183

Figure 11. Comparison results of drawing no line using polygons with self-intersection edges in graphical form.

Table 2. Comparison results of drawing no line using polygons with self-intersection edges in tabular form.

 Sample(4) Sample(6) Sample(17) Sample(68)
Execution

Times

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

10 1 3 1 2 1 3 6 7

20 1 5 2 5 3 6 11 15

30 2 8 2 9 4 10 16 23

40 2 11 2 11 5 13 22 29

50 2 14 4 14 6 16 28 37

60 3 16 4 16 8 19 33 45

70 4 18 5 20 9 22 38 52

80 5 21 5 22 10 26 44 60

90 5 24 6 25 12 29 49 67

100 6 26 7 28 12 33 55 74

Figure 12. Comparison results of drawing lines using polygons with no self-intersection edge in graphical form.

0

10

20

30

40

10 30 50 70 90

Times

S
ec

on
ds

Sample(4) Liu

Sample(4) Classical

Sample(6) Liu

Sample(6) Classical

Sample(17) Liu

Sample(17) Classical

Sample(68) Liu

Sample(68) Classical

0

20

40

60

80

10 30 50 70 90

Times

S
ec

on
ds

S a m p le (4) L iu

S a m p le (4) C la ssic a l

S a m p le (6) L iu

S a m p le (6) C la ssic a l

S a m p le (1 7) L iu

S a m p le (1 7) C la ssic a l

S a m p le (6 8) L iu

S a m p le (6 8) C la ssic a l

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

184

Table 3.Comparison results of drawing lines using polygons with no self-intersection edge in tabular form.

 Sample(4) Sample(6) Sample(17) Sample(68)
Execution

Times

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

10 1 3 1 3 1 4 1 4

20 2 7 3 7 2 7 2 7

30 4 10 3 11 4 11 5 10

40 4 14 5 13 5 14 5 14

50 6 16 6 17 7 17 6 18

60 7 20 8 20 8 21 8 21

70 8 24 9 24 10 24 10 24

80 9 27 10 27 11 28 11 28

90 11 30 11 31 12 32 12 32

100 11 33 12 34 13 35 13 35

Figure 13. Comparison results of drawing lines using polygon with self-intersection edges in graphical form

Table 4. Comparison results of drawing lines using polygon with self-intersection edges in tabular form.

 Sample(4) Sample(6) Sample(17) Sample(68)
Execution

Times

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

Liu

[sec.]

Conventional

[sec.]

10 1 4 2 3 3 5 12 16

20 2 7 4 7 7 11 24 31

30 4 10 5 11 9 16 36 46

40 4 14 7 15 13 21 49 61

50 6 17 8 19 16 27 61 76

60 7 20 10 22 19 32 73 91

70 9 24 11 27 22 38 85 106

80 10 27 12 31 25 43 97 121

90 11 30 14 34 29 48 110 136

100 12 34 16 38 32 54 122 151

0

50

100

150

200

10 30 50 70 90

Times

S
ec

on
ds

S am p le (4) L iu

Sam p le (4) C la ssic a l

Sam p le (6) L iu

Sam p le (6) C la ssic a l

Sam p le (17) L iu

Sam p le (17) Cla ssic a l

Sam p le (68) L iu

Sam p le (68) Cla ssic a l

Hoo-Cheng Liu, Mu-Hwa Chen, Shou-Yiing Hsu, Chaoyin Chien, Tsu-Feng Kuo and Yih-Farn Wang:
A New Polygon Based Algorithm for Filling Regions

185

 From the above experimental results (Figs.
10 ~ 13 and Tables 1~ 4), it is verified that the
proposed scan conversion algorithm is better
than the conventional scan conversion algorithm
for filling polygons under the given comparison
types.

5. Conclusion

 The y-modification problem arises from
considering the geometrical boundary problem
of adjacent polygon edges. To meet the criterion
of having an even number of nodes in each list
(even number criterion, for short) during the
filling process, the conventional record-based
approach has to consider the geometrical
relations of adjacent polygon edges. This implies
that to meet the even number requirement, the
conventional approach in solving the
y-modification is totally dependent on polygon
geometry. In comparison, the proposed
array-based triple approach uses the simpler
Liu's criterion to solve the even number problem.
Note also that Liu's criterion is wholly
independent of polygon geometry. This is also
one of main contributions in this paper.
 From the graphical representation of
record-based data structures of the conventional
region-filling algorithm shown in Fig. 1 ~ Fig. 3,
it is obvious that operations of records and fields
are very time-consuming. For example, to find
the next element of any Edge Table of Fig. 1, the
time-consuming linked field operations of
finding the next element would have to be
adopted. By contrast, to find the next element of
our data structures of arrays and elements
represented in Fig. 4, the faster increment
operations of array subscripts can be employed.
 From the above discussion on the time
efficiency of finding next elements, the
implication is that there is a time superiority for
array-based data structures relative to
record-based data structures. This is applicable
to other operations of region filling algorithms.
This explains why our array-based region filling
algorithm is time superior to the conventional
record-based region filling algorithms.
 Contrary to the conventional
scan-conversion algorithm that is based on data
structures of fields and records, the proposed
conversion algorithm is based on data structures
of triples involving arrays and elements for
filling polygons. The proposed algorithm has
faster execution time and uses no y-modification

and no extra sorting, at all. It is seen that these
advantages come from data structures of triples.
 It follows that more efficient data
structures can usually result in more efficient
algorithms. Experimental results of the
proposed region-filling algorithm provide
strong justification for our claim.
 This paper has made some contributions
in this regard. First, using data structures of
triples, the proposed array-based algorithm
effectively solves the y-coordinate
modification problem of the conventional
record-based counterpart. Next, the proposed
algorithm is easy to implement because it uses
more efficient triple operations involving
arrays and elements to fill a region. Finally, it
is verified that the proposed region filling
algorithm is time superior to conventional
region filling algorithms. Experiments were
developed on MS Windows 98 to illustrate the
validity of the proposed algorithm. Moreover,
in solving any particular problem, the decision
to adopt an array-based or a record-based data
structure is of great importance. For the region
filling algorithm, the experimental results
strongly show that an array-based approach is
far more efficient than the conventional
record-based approach. Finding the
appropriate approach to improve execution
time is also one of the contributions of this
paper.

Acknowledgement
 Many individuals deserve mention where
this manuscript is concerned. First of all, Dr.
David Kleykamp, who revises the English
writing in this manuscript many times; next, Dr.
Timothy K. Shih, for helping research on this
paper.

Reference

[1] Ackland, B. D. and Weste, N. H., "The

edge flag algorithm-A fill method for raster
scan displays," IEEE Transactions on
Computers, Vol. C-30 No. 1, pp. 41-47
(1981).

[2] Distante A. and Veneziani, N., "A Two-Pass
Algorithm for Raster Graphics," Computer
Graphics and Image Processing 20, pp.
288-295 (1982).

[3] Foley, J. D., Andries, V. D., Feiner, S. K.
and Hughes, J. F., Computer Graphics

Tamkang Journal of Science and Engineering, Vol. 2, No. 4 (2000)

186

Principles and Practice, Second Ed.,
Addison-Wesley, Reading, MA. (1990).

[4] Nakashima, K., Massashi, K., Katsumi, M.,
Yoshihiro, S., and Yasuaki, N., "A contour
fill method for alpha-numeric character
image generation," Proceedings of the
Second International Conference on
Document Analysis and Recognition, pp.
722-725 (1993).

[5] Pavlidis, T., "Contour filling in raster
graphics," ACM computer Graphics, Vol.
15, No. 3., pp. 29-36 (1981).

[6] Pavlidis, T., "Filling algorithms for raster
graphics," Computer Graphics and Image
Processing 10, pp.126-141 (1979).

[7] Watt, A., 3D computer graphics, 2nd Ed.,
Addison-Wesley, Reading, MA. (1993).

Manuscript Received: Aug. 26, 1999

Revision Received: Oct. 22, 1999
And Accepted: Dec. 06, 1999

