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Abstract 

    Region filling is a fundamental operation in computer graphics 
and image processing. There are broadly two classes of region filling: 
polygon based and pixel based. The conventional polygon based 
region filling algorithm typically uses data structures of records and 
fields. Using these data structures, the region filling process slows 
down because of the time-consuming operations of records and fields. 
This paper proposes a new polygon based region filling algorithm by 
using the proposed data structures of triples. This results in use of 
more efficient triple operations involving arrays and elements to fill a 
region. Using data structures of triples, the y-coordinate modification 
problem that occurs in the conventional algorithm simply disappears. 
In addition, contrary to the conventional approach, which uses 
troublesome geometrical considerations in deciding the even number 
of elements in each linked list, the proposed triple model uses a 
simple criterion to meet the even number requirement. Most 
important of all is the fact that the proposed criterion is independent 
of the polygon geometry. The experimental results strongly support 
superiority of the proposed algorithm. It is verified that the proposed 
algorithm is both theoretically and experimentally better than the 
conventional algorithm. 

Key Words: Region filling, Y-modification test, Active edge 
table, Edge table, Liu's criterion 

1.  Introduction 
 

     To fill the interior of a region is important 
in many applications such as computer 
cartography, pattern recognition, scene analysis, 
and computer graphics [6]. Filling the interior of 
a region with a given color can be classified into 
two broad classes: polygon based and pixel 
based [6]. The polygon based technique is also 
known variously as an "ordered edge list ", a 
"scan conversion", or a "rasterization" technique 
and is applicable whenever the contour is given 
as a polygon. The sides or edges of a polygon 
are sorted according to their coordinates, and 
then the sorted list is scanned [5]. 
     In general, two data structures, the Active 
Edge Table (AET) and the Edge Table (ET) [1, 2, 

3] are used for the scan conversion algorithm of 
filling polygons (regions). To fill a polygon 
correctly, the number of edges in the AET must 
always be even. To meet this condition, the y 
coordinates of many polygon vertices under 
certain conditions must be properly modified. To 
test this y-modification of each vertex, the 
relations of each pair of adjacent edges and 
sometimes the relations of two consecutive pairs 
of adjacent edges should be carefully examined. 
Is it possible to design a new scan conversion 
approach for filling polygons without modifying 
the y coordinates? Our approach in this paper 
will answer this question in the affirmative. At 
the same time, the terms of the proposed data 
structures xL and xR (refer to K2 in Section 
3.1) have the same merit as the terms, the left 
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terminal pixel and the right terminal pixel used in 
Nakashima et al. [4]. Moreover, the proposed 
approach here is also an improvement on Watt's 
polygon rasterization method [7] which only uses one 
pixel, the x coordinate, to construct its data structures. 
However, the proposed algorithm uses triples to 
construct necessary data structures. The extra element 
is useful in processing boundary conditions and in 
saving processing time. Moreover, Liu's criterion for 
constructing data structures is a general-purpose 
mechanism in helping implement the proposed 
algorithm. 
     The rest of this paper is organized as follows. 
Section Ⅱ describes the conventional algorithm and 
its data structures. Section Ⅲ presents the proposed 
data structures and the region filling process. Section 
Ⅳ  explicates the experimental results and 
discussions. Finally, a set of short conclusions which 
summarize our contributions are provided in Section 
Ⅴ. 
 

2.A Conventional Polygon-Filling Algorithm 
 and its Data Structures 

 
     Some assumptions are introduced in this 
section. A brief review of the conventional algorithm 

of region filling and its data structures is also 
presented. For clarity and convenience, region and 
polygon are sometimes used interchangeably. The 
polygon (region) to be filled is called the input 
polygon. 
 
2.1 Preliminary Assumptions 
 
     Vertices of the input polygon to be filled are 
presented as an array of integers. Each pair of integers 
represents a vertex, the first and second integers of an 
integer pair represent the x and y coordinates of a 
vertex, respectively. The first pair is the first vertex, 
the second pair is the second vertex, and so on, as 
shown in Fig. 1.  
     Also, our new method can properly handle 
multiple polygons with possible holes and 
self-intersecting edges.  
     A region-filling algorithm consists of two 
phases: constructing the data structures and 
processing it (filling). Two tables related to the 
algorithm, the Active Edge Table (AET) and the Edge 
Table (ET), are presented for later references and 
comparisons, as shown in Fig. 2 and Fig. 3, 
respectively [3]. 
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Figure 1. An input polygon with the geometrical relations of its boundary pixels. 
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2.2 Constructing the data structures 
 
    Geometrically, the AET represents a 
horizontal scan line and is a list of edges. The 
ET is initially formed as a list of edges and is 
bucket-sorted into a list of lists. For convenience, 
we shall refer to these lists as buckets (following 
the bucket sort). Buckets are indexed by their 
corresponding y values. The minimum indexed y 
value ymin is the minimum y coordinate of the 
polygon vertices, and the maximum indexed y 
value ymax is the maximum y coordinate of the 
polygon vertices. Each edge in any list is a node 
having four fields, as shown in Fig. 2. The above 
data structures are explained as follows: 
 
B1. A ytop field filled with the highest y 

coordinate value of the edge (a 
non-horizontal line segment). 

B2. A xval field initially filled with the lowest x 
coordinate value of the edge, and this xval 
value may be changed during later 
processing. 

B3. An increment field 1/m used in stepping from 
one scan line to the next, where m is the 
slope of the edge. Note that no horizontal 
line edge is included, and 1/m is always 
finite.  

B4. A link field links the next edge in the bucket. 
In general, singly linked list should be 
enough. However, for programming 
convenience, doubly linked list is a better 
choice because insertions and deletions may  

 
  occur frequently. Note also that if doubly 

linked structure is chosen, then two link 
fields should be used. 

     When an edge with y coordinate value ybot 
of lower vertex is inserted into a bucket indexed 
by ybot , the edges which include the edge newly 
inserted into in the bucket, are sorted by using 
bubble sort from bucket head to bucket tail. It 
follows that edges of smaller xval values precede 
those of larger xval values and for edges of equal 
xval values, the edge with smaller 1/m value is 
preceding. 
 
2.3 The Processing Phase: Filling the region 

based on the above constructed data 
structures  

 
     Once the ET has been constructed, 
steps for filling the region are as follows: 
F1. Initialize the AET to be empty.  
F2. Set the index value y to the smallest y 

coordinate ymin of all polygon vertices, 
this y corresponds to the first nonempty 
bucket. 

F3. Repeat the following steps until both the 
AET and ET are empty. 

F3.1 Move all edges of the ET bucket 
indexed by y to the AET, then sort the 
AET on values of the xval  fields, and if 
there is a tie, use the 1/m fields for 
sorting. 

F3.2 Fill in desired pixel colors of all line 

AET pointer 

Figure 2. The Edge Table (ET) of Figure.1 
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segments on scan line y, if any, by using 
pairs of the xvals from the AET's edges 
(nodes). 

F3.3 Remove from the AET (delete nodes from 
the list) those edges for which y = ytop 
(edges not involved in the next scan line). 

F3.4 Increment y by 1 (to the coordinate of the 
next scan line). 

F3.5 For each nonvertical edge remaining in the 
AET, update the value of the xval  field for 
the new y. 

 
  From Sections 2.2~2.3 presented above, it is 
not clear why the y coordinates of some 
polygon's vertices need be modified. We shall 
investigate this y-modification mechanism by 
filling an example polygon using both Section 
2.2 and Section 2.3 in the following. 
 
2.4 The Necessity of Modifying Some Y 

Coordinates for Correctly Filling an 
Example Polygon in the Conventional 
Algorithm 
 

     As an aid to understanding, Fig. 1 
describes schematically the geometrical relations 
of an example input polygon's boundary pixels. 
Fig. 2 and Fig. 3 describe the corresponding ET 
and AET, respectively. Capital letters A, B, C, D, 
E and F represent both the labels of the vertices, 
the x coordinates of the corresponding vertices, 
and terms AB1, AB2, AB3, AB4, CD1, EF1, 
EF2, EF3, FA1, and FA2 represent the x 
coordinates on the various corresponding 
boundary edges. The corresponding y 
coordinates are labeled from ymin-1, through ymin, 
ymin +1, …, ymin +6, ymin +7= ymax , to ymax +1, 
where ymin=1 and  ymax =8. 
     Using Figs. 1~2, carefully tracing the first 
three loops step by step of the above filling 
phase, it is seen that 
 

  Loop 1: Draw the pixel A (y= ymin), 
Loop 2: Draw the (horizontal) line segment 
from FA2 to AB1 (y = ymin +1), and 
Loop 3: Draw the line segment from FA1 to 
AB2  
(y= ymin +2). 

 
        Note that at the moment loop 3 is just 

finished, the AET still has two edges, edge AB 
and edge FA, and the y index of the AET has 
been changed to ymin +3, and the new x values of 
the two edges have been obtained. With respect 

to loop 4, steps are as follows.  
     The first step of loop 4, F3.1, is to move 
new bucket indexed by y= ymin +3. There is one 
edge EF in it, we move it from the ymin +3 
bucket to the AET, and the AET now has "three" 
edges. Note that "three" is not an even number. 

     Now when step 2 of loop 4, step F3.2, is 
executed, there will be an error. To avoid the 
above type of errors, a heuristic trick is to 
shorten the value of the ytop field of the edge FA 
in the bucket ymin by 1 (this is what we call the 
y-modification). The trick is very easy to 
understand and it succeeds.  
     The only problem with this trick is that it 
is tedious and troublesome to implement. For 
example, the vertices have to be classified as 
singular points or normal points. Moreover, for 
self-intersecting edges, extra sorting of the 
AET's edges has to be performed to determine 
the inside or outside problem. Suppose that the 
average number of edges in the AET is k, it 
follows that the best sorting takes k*ln(k) times. 
Note also that the y-coordinate modification 
itself wastes no time. However, to determine 
which y coordinate should be modified takes 
time.  
     Thus, we aim to design new data 
structures and propose a new scan conversion 
polygon filling algorithm without the 
y-modification, and for the case of 
self-intersecting edges, no extra sorting is 
required. 

 
3. The Proposed Data Structures and 

the Filling Process 
 

In this section, we will first state the 
proposed new data structures of arrays and 
elements, then explicate the proposed filling 
process based on the proposed data structures. 
 
3.1 The Proposed Data Structures  
 
K1. An input polygon with vertices a = (x0,y0), b 

= (x1,y1), c = (x2,y2), d = (x3,y3),…, g = (x6,y6), 
h = (x7,y7) and (x8,y8) = (x0,y0) is shown in 
Fig. 4.  

K2. A Horizontal Short Line Segment (HSLS ) is 
a triple (y, xL, xR ) which consists of an 
index y and two extreme x values xL and xR. 
Where xL is the leftmost x coordinate and xR 
the rightmost x coordinate of the HSLS, 
respectively. In particular, when xL = xR, 
then the HSLS is the single point (xL, y) = 
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(xR, y). A single point is a shortest HSLS. 
    For example, the single point c = (x2, y2) is 
the shortest HSLS (y2, x2, x2 ). The line segment 
from  
e = (x4 , y4) to d = (x3 , y3 ) is also a HSLS. For 
this HSLS, y = 6, xL = x4 = 9, and xR = x3 = 13, 
in this case, xL < xR, so this HSLS is not the 
shortest HSLS. 
 
K3. The discrete pixel polygon is the input 

polygon whose boundary edges are now 
represented as discrete pixels which are 
calculated from the original edges by 
Bresenham's method. 

K4. The HSLS polygon, the Hpolygon for short, 
is the input polygon whose boundary is 
composed of HSLSs, which are calculated 
and collected from the discrete pixels of the 
discrete pixel polygon. 

 
     The input polygon is also a Hpolygon. 
Two HSLS elements of this Hpolygon are the 
two HSLSs as mentioned and explained in K2. It 
follows that the other elements of the Hpolygon 
should be obvious in Fig. 4. Hence, there is no 
need to mention them one by one. It is found 
that there are actually eighteen HSLS elements 
in Fig. 4, as shown in Fig. 5. 
 
K5. The new ET, the NET for short, similar to 

the conventional ET of Sections 1~ 2, is a 
list of new type of buckets called Nbuckets. 
Note that each node of the Nbucket consists 
of three fields: the xL, the xR, and the link 
field whose meanings can be referenced 
from K2 and B4 of Section 2, respectively. 

 
Note also that nodes in every Nbucket are sorted 
according to the values of the xL fields. 

 
3.2 The Proposed Filling Process 
 
   Once the NET is formed, the proposed filling 
process is as follows: 

 
  NF1. Using Bresenham's method [3], calculate 

all the discrete pixels of all the input 
polygon's edges one by one, and save the 
discrete pixels into the discrete pixel 
polygon. The discrete pixel polygon can 
be implemented as an array of integers. 

 NF2. Starting from the first pixel of the pixel 
polygon till the last, test all pixels 
sequentially, find groups of consecutive  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The vertices of the input polygon IP are a = 

(x0,y0), b = (x1,y1), c = (x2,y2), d = (x3,y3), e = 
(x4,y4), f = (x5,y5), g = (x6,y6), h = (x7,y7), and i = 
(x8,y8), whose coordinates values are (8,1), 
(10,3), (12,1), (13,6), (9,6), (9,8), (6,8), and (1,4), 
respectively, where (x0,y0) = (x8,y8). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. There are eighteen HSLS elements in 

Figure 4. 
 

pixels having the same y coordinate. For 
each group of pixels,find the left-most x 
valued pixel, xL, and the rightmost x 
valued pixel, xR. Having found xL and xR, 
adding the common y, the three form a 
triple which is what we call a HSLS. 
Append this newly found HSLS to the 
Hpolygon, which is initially empty, and 
which can be considered as an array of 
HSLSs. We refer to it as Harray. 

NF3. Assume that there are h HSLSs in the 
Hpolygon and let Hel denote a HSLS 
element of the Hpolygon. To use any Hel 
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of the Hpolygon, by the conventional 
usage of array subscripts, any valid 
subscript value must be an integer 
between 0 and h-1. We will use Hi as the 
i'th Hel, and say that for all integers i,  
0< i < h-1,  if Hi is the current Hel, then 
Hi+1 is the next Hel, and Hi-1 is the 
previous Hel.  

 
    If H0 is the current Hel, then H1 is the next 
Hel, and Hh-1 is the previous Hel. If Hh-1 is the 
current Hel, then H0 is the next Hel, and Hh-2 is 
the previous Hel. Carefully studying these current, 
next, and previous relations, it is seen that a 
modulus mathematics dividing by h for handling 
subscripts will easily solve the above relational 
problem. 
 
  NF4. Using modulus mathematics (dividing by h) 

for processing subscripts, we now propose 
a criterion for constructing the NET, 
which is a list of Nbuckets as mentioned in 
K5. The NET is initially empty, and all its 
Nbuckets are indexed from ymin to ymax (ymin 
=1,  ymax =8, as shown in Fig. 1) as the 
ET in Section 2.  

 
     Starting from the first Hel of the Harray, 
for each current Hel, we can use its y index to 
find its previous Hel and next Hel. For simplicity, 
we will use Cy, Py, and Ny to denote the y 
indices of the current Hel, the previous Hel, and 
the next Hel, respectively, we also denote xL and 
xR as the xL and xR values of the current Hel.  
     The proposed criterion for constructing 
NET is easy to implement and it is also 
independent of input polygons. Note also that 
the proposed criterion is powerful enough to 
cope with concave, convex polygon with 
self-intersecting edges, or holes. We refer to it as 
the Liu's Criterion for even number decision 
which consists of the following two conditions: 
 
Condition one: 
     If ( Py > Cy && Ny < Cy || Py < Cy && 
Ny > Cy ) then sort and insert a node (a triple, 
details in NF2) with field values xL and xR of Cy 
into a proper position(indexed by y) in the y 
Nbucket. 
Condition two: 
     If ( Py > Cy && Ny > Cy || Py < Cy && 
Ny < Cy ) then sort and insert a pair of identical 
nodes with field values xL and xR of Cy into two 
proper consecutive positions in the y Nbucket 
respectively. 

 
    For each current Hel, in turn, find and 
compare the three corresponding y values Cy, Py, 
and Ny. For example, in Fig. 4, let Cy=6, then 
Py=5, Ny=7. These three Hels meet Condition 
one. Also, in Fig. 4, let Cy=8, then Py=7, Ny=7. 
These three Hels obviously meet Condition two. 
     Note that the number of edges in the AET 
of the conventional algorithm must always be 
even as mentioned in Section 1. Similarly, for a 
new data structures and algorithm, the number 
of elements of our analogous HSLS AET should 
also always be even, then the region (the input 
polygon) can be correctly filled.  
     Observing Fig. 4, the HSLS AET 
identified by y =8, there is only one HSLS. To 
make it is even, this HSLS should be doubled, 
and this explains why Condition Two is to be 
processed in this way. By contrary, the HSLS 
AET identified by y =4, has two HSLSs, so that 
Condition One is applicable, i.e., each HSLS of 
the two is counted only once. 
     As an aid to understanding, Fig. 6 applies 
schematically the Liu's criterion to a polygon. 
Note that Fig. 6 is only designed for explanation 
purpose. Actually, implementation of this 
structure doesn't adopt conventional edge-list 
approach. Instead, a more efficient and faster 
array-based approach is used.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Apply schematically the Liu's criterion to a 

polygon. 
 
     Section 2.4 explains that to suitably 
modify many y coordinates is to make the 
number of edges in the AET of the conventional 
algorithm always even. It follows that the 
number of elements of the proposed analogous 
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HSLS AET should also always be even. 
However, the problem is easily resolved if the 
above-mentioned two Conditions are followed. 
     To complete the proposed algorithm, 
perform the following filling operations: 
 
NF5. Once all the Nbuckets in the NET are 

formed, fill the interior of the original 
input polygon with a given pixel color by 
the following loop. 

     For y = ymin to y = ymax do 
 {while there is still a pair of nodes in the y 
bucket,  
       do { 
    for the first node of the pair, using the value  
        of xL, 
 for the second node of the pair, using 

the value of xR, and using the value of 
y,  draw a horizontal line segment 
from  
(xL,y) to (xR,y) with the given pixel 
color. 

    } 
   } 
 
     From the data-structure point of view, 
each of the steps, from F3.1 to F3.5 in Section 
2.3, involves the time-consuming operations of 
records and their fields. In comparison, each step 
of the proposed algorithm involves more 
efficient (faster) operations of arrays and their 
elements. 
     The time superiority of our new algorithm 
is really based on the proposed data structures in 
Section 3. In other words, the slow execution 
time of the conventional algorithm comes from 
the data structures in Section 2. It is seen that 
different data structures state different time 
efficiency. Hence, the superiority of new 
algorithm is largely based on the superiority of 
its data structures. The following experimental 
results will justify the claim. 
 

4.  Experimental Results 
 
     This section compares the processing 
times of conventional algorithm and the 
proposed algorithm. Our experimental results 
include both the case of drawing no line (F3.2 
and NF5 are skipped) and the case of drawing all 
lines (F3.2 and NF5 are performed). Fig. 7 
describes the input convex polygon with 4, 6, 17, 
and 68 edges, respectively. Fig. 8 describes the 
input polygon with self-intersecting edges of 4, 
6, 17, and 68, respectively. Fig. 9 presents the 

cases of drawing all lines. 
The case of drawing no line is reported in Fig. 
10, Table 1, and Fig. 11 and Table 2. The 
line-drawing case is reported in Fig. 12, Table 3, 
and Fig. 13 and Table 4.  
     Both cases include two types of 
comparison. Type 1 presents those polygons 
without self-intersection, as shown in Fig. 7. 
Type 2 presents those polygons with 
self-intersection, as shown in Fig. 8. The 
experimental results for Type 1 comparison of 
both cases are shown in Fig. 10, Table1, and Fig. 
12 and Table 3. While that for Type 2 are shown 
in Fig. 11, Table 2, and Fig. 13, and Table 4. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. The input convex polygon with 4, 6, 17, and 

68 edges, respectively. 
 
All algorithms are implemented on a Pentium-Ⅱ 
Intel CPU running Microsoft Visual Basic V.5 
under the MS Windows 98 operating system.  
     Here, "execution times" or "times" mean 
the total times in which the program executes. 
This is because filling regions only takes a few 
milliseconds, however, the time unit of display 
function in Visual Basic supports only 
measurement in terms of second. To get the 
obvious execution time, the experiment uses 
same program to repeat the execution more than 
once such as 10, 20, 30 times, and so on, for 
purpose of comparison. 
     The term "second" in Figs. 10~13 means 
that different algorithms take time in seconds for 
processing various input polygons. 
     Under each experimental sample, the units 
of execution time are in seconds. Since Visual 
Basic supports no millisecond display function. 
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Consequently, the "0" value of execution time in 
Table 1 comes from rounding function when the 
execution time is less than 0.5 seconds.  
     All figures give comparison results in 
graphic form, and all tables give comparison 
results in tabular form. Sample (4), sample (6), 
sample (17) and sample (68) correspond to 
polygons' edges 4, 6, 17, and 68, respectively. 
The first column of Tables 1~4 gives a total 
times of program execution. For example, if the 
number of program execution times is ten, such 
as Tables 1~4, this means that the same program 
has run a total of 10 times. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. The input polygons with self-intersecting      

edges of 4, 6, 17, and 68, respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. The cases of drawing lines. 
 

Figure 10. Comparison results for Liu's algorithm and 
the conventional algorithm of drawing no 
line in graphical form. 

 
Table 1.  Comparison of execution time for Liu's algorithm and the conventional algorithm using different edges as 

input polygon, and execution times in Seconds of drawing no Line in tabular form. 
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Figure 11. Comparison results of drawing no line using polygons with self-intersection edges in graphical form. 
 
Table 2. Comparison results of drawing no line using polygons with self-intersection edges in tabular form. 
 

 Sample(4) Sample(6) Sample(17) Sample(68) 
Execution 
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Figure 12. Comparison results of drawing lines using polygons with no self-intersection edge in graphical form. 
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Table 3.Comparison results of drawing lines using polygons with no self-intersection edge in tabular form. 
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Figure 13. Comparison results of drawing lines using polygon with self-intersection edges in graphical form  
 
 
Table 4. Comparison results of drawing lines using polygon with self-intersection edges in tabular form. 
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     From the above experimental results (Figs. 
10 ~ 13 and Tables 1~ 4), it is verified that the 
proposed scan conversion algorithm is better 
than the conventional scan conversion algorithm 
for filling polygons under the given comparison 
types.  

 

5.  Conclusion 
 

    The y-modification problem arises from 
considering the geometrical boundary problem 
of adjacent polygon edges. To meet the criterion 
of having an even number of nodes in each list 
(even number criterion, for short) during the 
filling process, the conventional record-based 
approach has to consider the geometrical 
relations of adjacent polygon edges. This implies 
that to meet the even number requirement, the 
conventional approach in solving the 
y-modification is totally dependent on polygon 
geometry. In comparison, the proposed 
array-based triple approach uses the simpler 
Liu's criterion to solve the even number problem. 
Note also that Liu's criterion is wholly 
independent of polygon geometry. This is also 
one of main contributions in this paper. 
     From the graphical representation of 
record-based data structures of the conventional 
region-filling algorithm shown in Fig. 1 ~ Fig. 3, 
it is obvious that operations of records and fields 
are very time-consuming. For example, to find 
the next element of any Edge Table of Fig. 1, the 
time-consuming linked field operations of 
finding the next element would have to be 
adopted. By contrast, to find the next element of 
our data structures of arrays and elements 
represented in Fig. 4, the faster increment 
operations of array subscripts can be employed. 
     From the above discussion on the time 
efficiency of finding next elements, the 
implication is that there is a time superiority for 
array-based data structures relative to 
record-based data structures. This is applicable 
to other operations of region filling algorithms. 
This explains why our array-based region filling 
algorithm is time superior to the conventional 
record-based region filling algorithms. 
     Contrary to the conventional 
scan-conversion algorithm that is based on data 
structures of fields and records, the proposed 
conversion algorithm is based on data structures 
of triples involving arrays and elements for 
filling polygons. The proposed algorithm has 
faster execution time and uses no y-modification 

and no extra sorting, at all. It is seen that these 
advantages come from data structures of triples.  
     It follows that more efficient data 
structures can usually result in more efficient 
algorithms. Experimental results of the 
proposed region-filling algorithm provide 
strong justification for our claim.  
     This paper has made some contributions 
in this regard. First, using data structures of 
triples, the proposed array-based algorithm 
effectively solves the y-coordinate 
modification problem of the conventional 
record-based counterpart. Next, the proposed 
algorithm is easy to implement because it uses 
more efficient triple operations involving 
arrays and elements to fill a region. Finally, it 
is verified that the proposed region filling 
algorithm is time superior to conventional 
region filling algorithms. Experiments were 
developed on MS Windows 98 to illustrate the 
validity of the proposed algorithm. Moreover, 
in solving any particular problem, the decision 
to adopt an array-based or a record-based data 
structure is of great importance. For the region 
filling algorithm, the experimental results 
strongly show that an array-based approach is 
far more efficient than the conventional 
record-based approach. Finding the 
appropriate approach to improve execution 
time is also one of the contributions of this 
paper. 
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