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Abstract: This paper illustrates a martingale method of constructing repeated sig-

nificance tests for a multi-dimensional parameter in survival analysis by reducing it

to tests for one-dimensional parameters. This illustration is made with parametric

survival data with staggered entry. A simulation study is included to indicate its

numerical performance.
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1. Introduction

The purpose of this paper is to illustrate a martingale method of constructing
repeated significance tests for a multi-dimensional parameter in survival analysis
by reducing it to tests for one-dimensional parameters. We will make the illus-
tration by considering parametric survival data with staggered entry times. The
parameter space is assumed to be two-dimensional for simplicity, although it can
be extended to higher dimensions without difficulty.

For parametric survival data with staggered entry, we know the likelihood
score process is a martingale relative to the calendar time filtration. In case
the parameter space is one-dimensional, we can make a random time change to
obtain a Brownian motion approximation to the likelihood score process, which
paves the way to proposing repeated significance tests of the parameter. (cf.
Andersen, Borgan, Gill and Keiding (1993), p.397).

The situation is different in the multi-dimensional case. Although compo-
nents of the likelihood score process are martingales, they are not orthogonal.
The operating characteristics of sequential tests defined in terms of these like-
lihood processes would be difficult to calculate. We will consider martingale
transforms of these components so as to get orthogonal martingale estimating
functions and then apply the strong representation theorem to obtain the stan-
dard R2-valued Brownian motion approximation to them. With this preparation,
we propose repeated significance tests and study their asymptotic properties.

We would like to remark here that, although the model of Tsiatis, Boucher
and Kim (1995) involves a multi-dimensional parameter, the hypothesis they
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considered concerns only the value of a one-dimensional parameter. In fact, their
work can be extended with the method presented in this paper.

This paper is organized as follows. Section 2 contains the theoretical develop-
ments of the repeated significance tests and Section 3 presents a numerical study.
The numerical study indicates that our theory is satisfactory. We would like to
note that this method may also be useful in other models when the hypothesis
of interest is multi-dimensional. One example is the case of paired survival data
with staggered entry (cf. Chang, Hsiung and Chuang (1997)). Another is the
case of Cox regression model with simultaneous entry.

2. Repeated Significance Tests for Parametric Survival Data

Let (Yj , Zj ,Xj , Cj) be an i.i.d. sequence of random vectors with Yj denoting
the entry time, Zj the covariate, Xj the survival time and Cj the censoring time
of the jth person in a clinical trial. Assume that Yj and Xj are independent; con-
ditional on Yj and Zj, Xj and Cj are independent. Assume the hazard function
of Xj given Zj is of the form

{λ(·, Zj , θ) | θ ∈ Θ} (2.1)

for some open set Θ ⊂ R2.
We are interested in proposing repeated significance tests for the true pa-

rameter p in the situation that the data available at calendar time t is

{Yj ∧ s, Zj, (Yj + Xj ∧Cj)∧ s, 1[(Yj+Xj)∧s≤(Yj+Cj)∧s] | s ≤ t, j = 1, . . . , J}. (2.2)

Let

Mj(t, θ) = 1[Yj+Xj ,∞)(t∧(Yj+Cj))−
∫ t

0
λ(s−Yj, Zj , θ)1(Yj ,Yj+Xj∧Cj ](s) ds. (2.3)

The assumption (2.1) implies that Mj(t, θ) is a calendar time martingale relative
to the probability for θ.

In order to write down the log-likelihood for (2.2), we introdue the stochastic
processes

N t
j(u) = 1[Xj ,∞)(u ∧ Cj ∧ (t − Yj)+),

Ht
j(u) = 1(0,Xj∧Cj∧(t−Yj)+](u).

We note that N t
j(u) − ∫ u

0 λ(s, Zj , θ)Ht
j(s) ds is a martingale in u for each t > 0.

Then, according to Chang and Hsiung (1988), the log-likelihood of the data (2.2)
at time t is

LJ(t, θ) =
J∑

j=1

∫ t

0
log λ(u,Zj , θ) dN t

j (u) −
J∑

j=1

∫ t

0
λ(u,Zj , θ)Ht

j(u) du. (2.4)



MULTI-PARAMETER REPEATED SIGNIFICANCE TESTS 915

Assume that λ(t, Zj , θ) has bounded third derivatives in θ and is bounded
away from 0. Then, the likelihood score process

UJ,l(t, θ) ≡ ∂

∂θl
LJ(t, θ)

=
J∑

j=1

∫ t

0

∂λ
∂θl

(u − Yj, Zj , θ)

λ(u − Yj, Zj , θ)
1(Yj ,∞)(u) dMj(u, θ) (2.5)

is a calendar time martingale relative to the probability for θ. (cf. Chang and
Hsiung (1988), Tsiatis, Boucher and Kim (1995)). Here l = 1, 2.

Let
ŨJ,1(t, θ) = UJ,1(t, θ),

ŨJ,2(t, θ) = UJ,2(t, θ) −
J∑

j=1

∫ t

0
aJ(u, θ)

∂λ
∂θ1

(u − Yj, Zj , θ)
λ(u − Yj, Zj , θ)

1(Yj ,∞)(u) dMj(u, θ).

(2.6)
Here

aJ(u, θ) =
( J∑

j=1

( ∂λ
∂θ1

(u − Yj, Zj , θ))( ∂λ
∂θ2

(u − Yj, Zj , θ))
λ(u − Yj , Zj , θ)

1(Yj ,Yj+Xj∧Cj ](u)
)

·
( J∑

j=1

( ∂λ
∂θ1

(u − Yj, Zj , θ))2

λ(u − Yj, Zj , θ)
1(Yj ,Yj+Xj∧Cj ](u)

)−1
. (2.7)

In this paper, we adopt the convention that 0
0 = 0. We note that aJ is well-

defined because of the Schwartz inequality for a mutual variation process. (cf.
Elliott (1982), p.101). Let a(u, θ) be the limit of aJ(u, θ) as J tends to infinity,
whose existence is implied by the Law of Large Numbers.

It follows from (2.6) and (2.7) that, relative to the probability for θ, the
mutual predictable variation process

< ŨJ,1(·, θ), ŨJ,2(·, θ) >t

=
J∑

j=1

∫ t

0

∂λ
∂θ1

(u − Yj , Zj , θ)( ∂λ
∂θ2

(u − Yj, Zj , θ) − aJ(u, θ) ∂λ
∂θ1

(u − Yj, Zj , θ))
λ(u − Yj, Zj , θ)

·1(Yj ,Yj+Xj∧Cj ](u) du

= 0,

which says that ŨJ,1(·, θ) and ŨJ,2(·, θ) are orthogonal martingales relative to the
probability for θ.

Let P J(φ) denote the probability for the parameter θ = p + φ√
J
. Applying

the Martingale Central Limit Theorem, we get
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Proposition 2.1. Under P J(φ), 1√
J

( ŨJ,1(t, p + φ√
J
)

ŨJ,2(t, p + φ√
J
)

)
converges to

(G1(t)
G2(t)

)
as

J goes to infinity, where G1(·) and G2(·) are two continuous independent mean
0 Gaussian martingales with variances

g1(t) = Ep

∫ t

0

( ∂λ
∂θ1

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du, (2.8)

g2(t) = Ep

∫ t

0

(( ∂λ
∂θ2

(u − Y1, Z1, p))
λ(u − Y1, Z1, p)

− a(u, p)
( ∂λ

∂θ1
(u − Y1, Z1, p))

λ(u − Y1, Z1, p)

)2

·λ(u − Y1, Z1, p)1(Y1,Y1+X1∧C1](u) du, (2.9)

respectively.

Straight-forward calculations (cf. Chang and Hsiung (1988)) lead to

Proposition 2.2. Under P J(φ), as J goes to infinity,
i) 1

J
∂

∂θ1
ŨJ,1(t, p) converges to −g1(t),

ii) 1
J

∂
∂θ2

ŨJ,1(t, p) converges to −g12(t),
iii) 1

J
∂

∂θ1
ŨJ,2(t, p) converges to 0,

iv) 1
J

∂
∂θ2

ŨJ,2(t, p) converges to −g22(t),
where

g12(t) = Ep

∫ t

0

∂λ
∂θ1

(u − Y1, Z1, p) ∂λ
∂θ2

(u − Y1, Z1, p)
λ(u − Y1, Z1, p)

1(Y1,Y1+X1∧C1](u) du,

g22(t) = Ep

∫ t

0

( ∂λ
∂θ2

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du

+Ep

∫ t

0
a(u, p)

∂λ
∂θ1

(u − Y1, Z1, p) ∂λ
∂θ2

(u − Y1, Z1, p)
λ(u − Y1, Z1, p)

1(Y1,Y1+X1∧C1](u) du.

We note that g22(t) also equals

Ep

∫ t

0

( ∂λ
∂θ2

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du

+Ep

∫ t

0
a2(u, p)

( ∂λ
∂θ1

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du,

and g2(t) also equals

Ep

∫ t

0

( ∂λ
∂θ2

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du

−Ep

∫ t

0
a2(u, p)

( ∂λ
∂θ1

(u − Y1, Z1, p))2

λ(u − Y1, Z1, p)
1(Y1,Y1+X1∧C1](u) du.
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Applying the Mean-Value Theorem, we get

1√
J

( ŨJ,1(t, p)
ŨJ,2(t, p)

)
=

1√
J

( ŨJ,1(t, p + φ√
J
)

ŨJ,2(t, p + φ√
J
)

)

− 1
J

( ∂
∂θ1

ŨJ,1(t, θ∗) ∂
∂θ2

ŨJ,1(t, θ∗)
∂

∂θ1
ŨJ,2(t, θ∗∗) ∂

∂θ2
ŨJ,2(t, θ∗∗)

)
φ, (2.10)

for some θ∗ and θ∗∗ lying between p and p + φ√
J
.

It follows from (2.10), Proposition 2.1 and Proposition 2.2 that we have

Theorem 2.1. Under P J(φ), 1√
J

( ŨJ,1(t, p)
ŨJ,2(t, p)

)
converges weakly to Gφ(t)=

(Gφ
1 (t)

Gφ
2 (t)

)
,

where Gφ
1 (t) − φ1g1(t) − φ2g12(t) and Gφ

2 (t) − φ2g22(t) are two continuous inde-
pendent mean 0 Gaussian martingales with variances g1(t) and g2(t) respectively.

It follows from (2.6) that predictable variation processes are

<
1√
J

ŨJ,1(·, p) >t =
1
J

J∑
j=1

∫ t

0

( ∂λ
∂θ1

(u − Yj, Zj , p))2

λ(u − Yj, Zj , p)
1(Yj ,Yj+Xj∧Cj ](u) du, (2.11)

<
1√
J

ŨJ,2(·, p) >t =
1
J

J∑
j=1

∫ t

0

( ∂λ
∂θ2

(u − Yj, Zj , p) − aJ(u, p) ∂λ
∂θ1

(u − Yj, Zj , p))2

λ(u − Yj, Zj , p)

·1(Yj ,Yj+Xj∧Cj ](u) du. (2.12)

Let

τ̃J,i(s) = inf{t ≥ 0 |< 1√
J

ŨJ,i(·, p) >t> s}. (2.13)

Because < 1√
J
ŨJ,i(·, p) >t converges almost surely to gi(t), we know τ̃J,i(s) con-

verges almost surely to g−1
i (s). From this together with Theorem 2.1 and the

strong representation theorem (cf. Pollard (1984), p.71), we get

Theorem 2.2. Under P J(φ), 1√
J

( ŨJ,1(τ̃J,1(t), p)
ŨJ,2(τ̃J,2(t), p)

)
converges weakly to Bφ(t) =

(Bφ
1 (t)

Bφ
2 (t)

)
, where Bφ

1 (t) − φ1t − φ2g12(g−1
1 (t)) and Bφ

2 (t) − φ2g22(g−1
2 (t)) are two

independent standard Brownian motions.

Theorem 2.2 is useful in providing repeated significance tests for the param-
eter θ. For example, for the hypothesis

H0 : θ = p,
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we introduce the stopping time

Ti=inf
{
t≥0 |< 1√

J
ŨJ,i(·, p)>t ≥m0, | 1√

J
ŨJ,i(t, p)|≥di

√
<

1√
J

ŨJ,i(·, p)>t

}
,

(2.14)

truncated as soon as < 1√
J
ŨJ,i(·, p) >t ≥ m for some m > m0. The repeated

significance test is to stop sampling at (T1 ∧ η1) ∧ (T2 ∧ η2) and reject H0 if and
only if T1 < η1 or T2 < η2, where

ηi = inf{t ≥ 0 |< 1√
J

ŨJ,i(·, p) >t ≥ m}. (2.15)

Here m0,m and di are given constants. Because of the independence guaranteed
by Theorem 2.2, the significance level and some of the powers can be approxi-
mated by the related results for one-dimensional Brownian motions. (cf. Sieg-
mund (1985), pp.73-81). In Section 3, some of the detailed computation will be
illustrated.

3. Numerical Studies

3.1. Complete sequential tests

The distributions of Yj, Zj, Xj and Cj for this simulation study are described
as follows. Let Yj be uniformly distributed in the interval [0, b], Cj = ∞, the
covariate Zj = (Zj1, Zj2) and Zji be i.i.d. with P (Zji = 0) = P (Zji = 1) = 1

2 .
Conditional on Zj , Xj has intensity exp(θ1Zj1 + θ2Zj2). The simulation results
presented in the following are based on sample size J = 100.

Let T
′
(d) = inf{t ≥ m0 | |Wµ(t)| ≥ d

√
t}, where Wµ is a Brownian motion

with drift µ. From Corollary 4.19 and Theorem 4.21 of Siegmund (1985), we
know

P0(T
′
(d) < m) = (d − d−1)φ(d) log(

m

m0
) + 4d−1φ(d) + o(d−1φ(d)), (3.1)

Pµ(T
′
(d) < m) = 1 − Φ[m

1
2 (dm− 1

2 − µ)] + {φ[m
1
2 (dm− 1

2 − µ)]/(µm
1
2 )}

·(1 + o(1)), (3.2)

where Pµ is the probability corresponding to Wµ, φ and Φ are respectively the
density function and distribution function of a standard normal variable.

We now consider the hypothesis H0 : θ = p = (0, 0). Let m0 = 0.05 and m =
0.3, di be specified by (3.1) so as to make P0(T

′
(di)

< m) approximately αi, for
i=1, 2. Here α1, α2 are non-negative numbers and satisfy α1 +α2−α1α2 = 0.05.
With these constants, we will consider the tests defined in (2.14) and (2.15).
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Straightforward calculations give a(u, p) = 1
2 , g12(t) = 1

2g1(t) and g22(t) =
5
3g2(t). Let µ1 =

√
J(θ1 + θ2

2 ), µ2 = 5
3

√
Jθ2. Theorem 2.2 indicates that

P (θ1,θ2)(T1 < η1 or T2 < η2) (3.3)

= P (θ1,θ2)(T1 < η1) + P (θ1,θ2)(T2 < η2) − P (θ1,θ2)(T1 < η1, T2 < η2)

is approximately

Pµ1(T
′
(d1) < m) + Pµ2(T

′
(d2) < m) − Pµ1(T

′
(d1) < m)Pµ2(T

′
(d2) < m), (3.4)

where P (θ1,θ2) is the probability corresponding to the parameter (θ1, θ2).
When θ1 = θ2 = 0, (3.4) shows that the nominal significance level of the

test is 0.05. For other values of θ1, θ2, we can use (3.1), (3.2) and (3.4) to find
asymptotic power, denoted by β. We denote the empirical power (3.3) by β(0)

for b = 0 and β(1) for b = 1. We recall that b = 0 is the simultaneous entry case.
Tables 1-4 present, for different values of θ1 and θ2, the empirical powers β(0)

and β(1) by calculating the proportion of 10,000 replicates for which T1 < η1 or
T2 < η2.

Table 1. Significance levels, empirical and asymptotic powers β(0) and β for
α1 = α2 = 0.02532 and for various values of (θ1, θ2) and 	t.

(θ1, θ2) \ 	t 1 0.1 0.01 0.001 0.0001 β

(0.0,0.0) 0.0078 0.0284 0.0473 0.0472 0.0438 0.0500
(0.1,0.0) 0.0233 0.0532 0.0787 0.0914 0.0858 0.0648
(0.0,0.1) 0.0257 0.0578 0.0850 0.0924 0.0922 0.0982
(0.1,0.1) 0.0552 0.1074 0.1341 0.1477 0.1460 0.1175

Table 2. Significance levels, empirical and asymptotic powers β(1) and β for
α1 = α2 = 0.02532 and for various values of (θ1, θ2) and 	t.

(θ1, θ2) \ 	t 1 0.1 0.01 0.001 0.0001 β

(0.0,0.0) 0.0106 0.0294 0.0418 0.0461 0.0509 0.0500
(0.1,0.0) 0.0248 0.0617 0.0810 0.0879 0.0897 0.0648
(0.0,0.1) 0.0229 0.0536 0.0757 0.0848 0.0799 0.0982
(0.1,0.1) 0.0523 0.1028 0.1327 0.1389 0.1369 0.1175

To simulate empirical power β(0) and β(1), we need to simulate the score
process and then check whether it has crossed the boundary from information
time m0 to m. Since the score process changes its value continuously, we consider
t ∈ [0, 3] and divide the interval [0, 3] into equal spaced subintervals and only
check whether it has crossed the boundary at the endpoints of these subintervals.
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Table 3. Significance levels, empirical and asymptotic powers β(0) and β for
α1 = 0.005, α2 = 0.04523 and for various values of (θ1, θ2) and 	t.

(θ1, θ2) \ 	t 1 0.1 0.01 0.001 0.0001 β

(0.0,0.0) 0.0093 0.0299 0.0428 0.0470 0.0473 0.0500
(0.1,0.0) 0.0161 0.0391 0.0621 0.0692 0.0642 0.0540
(0.0,0.1) 0.0313 0.0653 0.0826 0.0902 0.0919 0.1084
(0.1,0.1) 0.0444 0.0833 0.1153 0.1211 0.1223 0.1151

Table 4. Significance levels, empirical and asymptotic powers β(1) and β for
α1 = 0.005, α2 = 0.04523 and for various values of (θ1, θ2) and 	t.

(θ1, θ2) \ 	t 1 0.1 0.01 0.001 0.0001 β

(0.0,0.0) 0.0100 0.0303 0.0451 0.0486 0.0449 0.0500
(0.1,0.0) 0.0199 0.0427 0.0666 0.0638 0.0683 0.0540
(0.0,0.1) 0.0267 0.0572 0.0750 0.0791 0.0825 0.1084
(0.1,0.1) 0.0428 0.0855 0.1005 0.1128 0.1109 0.1151

In Tables 1-4, 	t is the length of the subintervals. The first column is the
value of the parameter (θ1, θ2), the 2nd, 3rd, 4th and 5th columns display the
empirical powers β(0) or β(1) when 	t = 1, 0.1, 0.01, 0.001, 0.0001 respectively,
and the last column is the asymptotic power β. These tables indicate that the
empirical powers get close to the asymptotic powers as the subintervals 	t gets
smaller, and (3.4) provides quite good approximation to the power of the test.

Remark. With the previous discussion, we now indicate an additional advantage
of our approach as follows.

Given the significance level α, and parameter values θ1, θ2 satisfying θ2
1+θ2

2 =
1, for example, we can use (3.1) and (3.2) to choose α1, α2 and d1, d2 so that
the test has a large power in the direction (θ1, θ2).

3.2. Group sequential tests

Since one typically performs group sequential tests in medical applications,
we present a simulation study for such tests based on the work in Section 2 and
Subsection 3.1. In particular, the data in this simulation study is the same as
described in the first paragraph of Subsection 3.1.

For given d1, d2,	t and K, we define

T̄i = inf{t ≥ 0|t = k · 	t, k = 1, . . . ,K, | 1√
J

ŨJ,i(τ̃J,i(t), p)| ≥ di

√
t}. (3.5)

Let

T̄
′
(d) = inf{t ≥ 0|t = k · 	t, k = 1, . . . ,K, |Wµ(t)| ≥ d

√
t}. (3.6)
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It follows from Theorem 2.2 that the significance level and power of the group
sequential test

P (θ1,θ2)(T̄1 ≤ K or T̄2 ≤ K) (3.7)

is approximately

Pµ1(T̄
′
(d1) ≤ K) + Pµ2(T̄

′
(d2) ≤ K) − Pµ1(T̄

′
(d1) ≤ K)Pµ2(T̄

′
(d2) ≤ K), (3.8)

where P (θ1,θ2), Pµ1 and Pµ2 are the same as described in Subsection 3.1.
Let β̄(0) and β̄(1) denote respectively the empirical significance levels and

empirical powers of (3.7) for b = 0 and b = 1. Let β̄ denote the empirical
significance levels and empirical powers of (3.8).

Tables 5-6 present β̄(0), β̄(1) and β̄ for K = 5, d1 = d2 = 2.68 and 	t =
0.05 and for different sample sizes. Both β̄(0) and β̄(1) are the proportion of
10,000 replicates for which T̄1 ≤ K or T̄2 ≤ K. Since (3.6) involves really only
multivariate normal distributions, β̄ is the proportion of 10,000 replicates for
which T̄

′
(d1) ≤ K or T̄

′
(d2) ≤ K. These simulation results indicate that (3.8)

approximates (3.7) reasonably well.

Table 5. Significance levels and empirical powers β̄(0) and β̄(1) for J = 100
and β̄ for various values of (θ1, θ2).

(θ1, θ2) β̄(0) β̄(1) β̄

(0.0,0.0) 0.0485 0.0465 0.0491
(0.1,0.0) 0.0813 0.0847 0.0614
(0.0,0.1) 0.0862 0.0726 0.0870
(0.1,0.1) 0.1340 0.1287 0.1135

Table 6. Significance levels and empirical powers β̄(0) and β̄(1) for J = 200
and β̄ for various values of (θ1, θ2).

(θ1, θ2) β̄(0) β̄(1) β̄

(0.0,0.0) 0.0499 0.0505 0.0506
(0.1,0.0) 0.1053 0.1026 0.0771
(0.0,0.1) 0.1095 0.0949 0.1333
(0.1,0.1) 0.1971 0.1866 0.1898
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