Numerical Schubert Calculus by the Pieri Homotopy Algorithm
Author(s): T. Y. Li, Xiaoshen Wang, Mengnien Wu
Source: SIAM Journal on Numerical Analysis, Vol. 40, No. 2 (2003), pp. 578-600
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/4100969

Accessed: 21/01/2010 20:52

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Journal on Numerical Analysis.

NUMERICAL SCHUBERT CALCULUS BY THE PIERI HOMOTOPY ALGORITHM*

T. Y. LI ${ }^{\dagger}$, XIAOSHEN WANG ${ }^{\ddagger}$, AND MENGNIEN WU ${ }^{\S}$

Abstract

Based on Pieri's formula on Schubert varieties, the Pieri homotopy algorithm was first proposed by Huber, Sottile, and Sturmfels [J. Symbolic Comput., 26 (1998), pp. 767-788] for numerical Schubert calculus to enumerate all p-planes in \mathbb{C}^{m+p} that meet n given planes in general position. The algorithm has been improved by Huber and Verschelde [SIAM J. Control Optim., 38 (2000), pp. 1265-1287] to be more intuitive and more suitable for computer implementations.

A different approach of employing the Pieri homotopy algorithm for numerical Schubert calculus is presented in this paper. A major advantage of our method is that the polynomial equations in the process are all square systems admitting the same number of equations and unknowns. Moreover, the degree of each polynomial equation is always 2 , which warrants much better numerical stability when the solutions are being solved. Numerical results for a big variety of examples illustrate that a considerable advance in speed as well as much smaller storage requirements have been achieved by the resulting algorithm.

Key words. enumerative geometry, Schubert variety, Pieri formula, Pieri homotopy algorithm, Pieri poset

AMS subject classifications. $14 \mathrm{~N} 10,14 \mathrm{M} 15,65 \mathrm{H} 10,68 \mathrm{Q} 40$

PII. S003614290139175X

1. Introduction. With " l-planes" representing l dimensional linear subspaces, a general problem in enumerative geometry is

Enumerate all p-planes in \mathbb{C}^{m+p} that meet n given planes L_{1}, \ldots, L_{n} in
(\star) general position of dimension $m+1-k_{i}$ for $i=1, \ldots, n$, with $k_{1}+\cdots+$ $k_{n}=m p$.
The condition that $k_{1}+\cdots+k_{n}=m p$ guarantees a finite number of p-planes meeting those given planes.

Based on Pieri's formula, and following the new geometric proof of Pieri's formula established by Sottile [9], Huber, Sottile, and Sturmfels [3] proposed the Pieri homotopy algorithm to deal with this problem numerically. The homotopies in the algorithm have then been simplified by Huber and Verschelde [4] via the poset of localization patterns, making the algorithm more suitable for computer implementations.

In both of those works, each given plane L_{i} for $i=1, \ldots, n$ with dimension $d_{i}=m+1-k_{i}$ is represented, as they were traditionally, by an $(m+p) \times d_{i}$ matrix consisting of d_{i} linearly independent vectors in \mathbb{C}^{m+p}. Let X be a p-plane that intersects all those given planes. Without loss, one may represent X by the $(m+p) \times p$

[^0]matrix
\[

\left[$$
\begin{array}{ccc}
1 & & 0 \\
x_{11} & \ddots & \\
\vdots & \ddots & 1 \\
x_{m 1} & & x_{1 p} \\
& \ddots & \vdots \\
0 & & x_{m p}
\end{array}
$$\right]
\]

For $i=1, \ldots, n$, let $[\alpha]_{i}(x)$, where $x=\left(x_{11}, \ldots, x_{m p}\right)$, denote the maximal minor of the $(m+p) \times\left(p+d_{i}\right)$ matrix $\left[X \mid L_{i}\right]$ with row indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{p+d_{i}}\right)$. Then the intersection conditions in problem (\star) become, for each $i=1, \ldots, n$,

$$
X \text { meets } L_{i} \Longleftrightarrow[\alpha]_{i}(x)=0 \quad \forall \text { possible row indices } \alpha=\left(\alpha_{1}, \ldots, \alpha_{p+d_{i}}\right)
$$

The backbone of the Pieri homotopy algorithm [3, 4] is to solve k_{i} more variables in $x=\left(x_{11}, \ldots, x_{m p}\right)$ one at a time for $i=1, \ldots, n$ successively to satisfy the intersection conditions with L_{1}, \ldots, L_{i} :

$$
\begin{equation*}
[\alpha]_{l}(x)=0 \forall \text { possible row indices } \alpha=\left(\alpha_{1}, \ldots, \alpha_{p+d_{l}}\right) \text {, for } l=1, \ldots, i \tag{1}
\end{equation*}
$$

To solve the above systems successively for $i=1, \ldots, n$, different homotopies based on Pieri's formula on Schubert varieties are constructed at each stage where the solutions of the system at the current stage taken as the solutions of the target system of the current homotopy are the solutions of the start system of the homotopy at the next stage. In the process, if $k_{i}=1$, then $d_{i}=m+1-1=m$, making [$X \mid L_{i}$] a square matrix and resulting in the increment of one more equation in one more unknown in (1) from $(i-1)$ th stage to i th stage. However, when $k_{i}>1$, then $d_{i}=m+1-k_{i}<m$, and consequently the number of all possible maximal minors in the $(m+p) \times\left(p+d_{i}\right)$ matrix $\left[X \mid L_{i}\right]$ equals

$$
\binom{p+m}{p+d_{i}}=\binom{p+m}{p+m+1-k_{i}}=\binom{p+m}{k_{i}-1}>k_{i}
$$

since $k_{i}=m+1-d_{i}<m$. When this occurs, the system in (1) admits more equations than unknowns and constitutes an overdetermined system.

Solving an overdetermined system by the homotopy continuation method as proposed in [8], a square system is constructed by using random linear combinations of all equations in (1). This reduction to a square system destroys the geometric structure and creates many excess solution paths to follow, which may lead to a considerable inefficiency of the algorithm since the solution sets of the new square system may properly contain the original ones.

In this paper, we present a different approach. Most importantly, we will represent each given plane $L_{i}, i=1, \ldots, n$, in general position by a set of $m+p-d_{i}=p+k_{i}-1$ linear equations which defines L_{i}. The collection of the normals of those equations forms a $\left(p+k_{i}-1\right) \times(m+p)$ matrix, denoted by K_{i}, and X meets L_{i} if and only if

$$
K_{i} X \Lambda_{i}=0 \quad \text { for some } \Lambda_{i} \in \mathbb{P}^{p-1}
$$

Employing the same strategy as in [3, 4], we will solve k_{i} more variables in $x=$ $\left(x_{11}, \ldots, x_{m p}\right)$ one at a time from $i=1$ to $i=n$ by solving for each i the system

$$
\begin{equation*}
K_{l} X \Lambda_{l}=0 \quad \Lambda_{l} \in \mathbb{P}^{p-1} \quad \text { for } l=1, \ldots, i \tag{2}
\end{equation*}
$$

And different homotopies are constructed, also based on Pieri's formula, at different stages to connect the solutions of the systems in (2) for consecutive i 's. For each fixed i, the system in (2) has $\left(p+k_{1}-1\right)+\cdots+\left(p+k_{i}-1\right)=(p-1) i+k_{1}+\cdots+k_{i}$ equations. On the other hand, since $\Lambda_{l} \in \mathbb{P}^{p-1}$, it admits only $p-1$ variables for each l; together with $k_{1}+\cdots+k_{i}$ variables in $x=\left(x_{11}, \ldots, x_{m p}\right)$, the system has $\left(p+k_{1}-1\right)+\cdots+\left(p+k_{i}-1\right)=(p-1) i+k_{1}+\cdots+k_{i}$ variables. We therefore deal with square systems throughout the process even when $k_{i}>1$ occurs and never have to undertake the disadvantages of solving overdetermined systems. Moreover, another important advantage of our approach is that the degree of each polynomial equation in (2) is always 2 while polynomial equations in the previous approaches in $[3,4]$ may reach quite higher degrees in many situations, which may severely affect the numerical stability when solutions of the systems are being solved.

The computational experiences of the resulting algorithm are listed at the end of the paper to illustrate the remarkable speed up of our method has achieved over the existing algorithm in [4] for a big variety of examples, and our algorithm is particularly valuable for general cases when $k_{i}>1$ appears.

While, in this paper, we only deal with given planes in general position, the input data of planes for applications may not be so general. An approach common to practitioners of homotopies to solve a given problem is to deform the solutions of the general problem to those of the special problem by applying cheater's homotopy [5] or coefficient-parameter polynomial continuation [6, 7].

In [4], new homotopies were presented to compute p-plane producing curves intersecting m-planes at prescribed interpolation points. A future project would be to investigate whether the improvements proposed in this paper also apply to those new homotopies developed in [4].

2. Preliminaries.

Definition 1. Let $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{p}$ be a set of planes in \mathbb{C}^{m+p} with $\operatorname{dim}\left(A_{i}\right)=a_{i}$. The set

$$
\Omega\left(A_{1}, \ldots, A_{p}\right):=\left\{p \text {-planes } X \text { in } \mathbb{C}^{m+p} \mid \operatorname{dim}\left(X \bigcap A_{i}\right) \geq i, i=1, \ldots, p\right\}
$$

is called a Schubert variety.
For planes $A_{1} \subsetneq \cdots \subsetneq A_{p}$ and $B_{1} \subsetneq \cdots \subsetneq B_{p}$ with $\operatorname{dim}\left(B_{i}\right)=\operatorname{dim}\left(A_{i}\right)=a_{i}$, for $i=1, \ldots, p$, a nonsingular linear transformation in \mathbb{C}^{m+p} can be constructed to transform A_{i} to B_{i} for $i=1, \ldots, p$, and the induced transformation transforms $\Omega\left(A_{1}, \ldots, A_{p}\right)$ onto $\Omega\left(B_{1}, \ldots, B_{p}\right)$. For this reason, the notation $\Omega\left(a_{1}, \ldots, a_{p}\right)$ is frequently used without specifying the planes A_{i} where $\operatorname{dim}\left(A_{i}\right)=a_{i}, i=1, \ldots, p$.

Now consider planes $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{p}$ and $B_{1} \subsetneq \cdots \subsetneq B_{p}$ with $\operatorname{dim}\left(A_{i}\right)=a_{i}$ and $\operatorname{dim}\left(B_{i}\right)=b_{i}, i=1, \ldots, p$. When they are all in general position, we may assume

$$
A_{i}=\left\langle e_{1}, \ldots, e_{a_{i}}\right\rangle \text { and } B_{i}=\left\langle e_{m+p+1-b_{i}}, \ldots, e_{m+p}\right\rangle, \quad i=1, \ldots, p,
$$

where e_{j} is the unit vector in \mathbb{C}^{m+p} with unit at the j th entry. Here, and from here on, $\left\langle v_{1}, \ldots, v_{l}\right\rangle$ denotes the plane spanned by v_{1}, \ldots, v_{l}. If $X \in \Omega\left(A_{1}, \ldots, A_{p}\right)$ $\bigcap \Omega\left(B_{1}, \ldots, B_{p}\right)$, then $\operatorname{dim}\left(X \bigcap A_{p+1-i}\right) \geq p+1-i$ and $\operatorname{dim}\left(X \bigcap B_{i}\right) \geq i$. Thus, since $\operatorname{dim}(X)=p$ and both $X \bigcap A_{p+1-i}$ and $X \bigcap B_{i}$ are planes in X,

$$
\begin{aligned}
\operatorname{dim}\left(A_{p+1-i} \bigcap B_{i}\right) & \geq \operatorname{dim}\left(\left(X \bigcap A_{p+1-i}\right) \bigcap\left(X \bigcap B_{i}\right)\right) \\
& \geq \operatorname{dim}\left(X \bigcap A_{p+1-i}\right)+\operatorname{dim}\left(X \bigcap B_{i}\right)-\operatorname{dim}(X) \\
& \geq p+1-i+i-p=1
\end{aligned}
$$

So, $a_{p+1-i}+b_{i} \geq m+p+1$. Conversely, if $a_{p+1-i}+b_{i} \geq m+p+1$, then $a_{p+1-i} \geq$ $m+p+1-b_{i}$. Thus $e_{m+p+1-b_{i}} \in B_{i} \bigcap A_{p+1-i}$. Let $X=\left\langle e_{m+p+1-b_{p}}, e_{m+p+1-b_{p-1}}\right.$, $\left.\ldots, e_{m+p+1-b_{1}}\right\rangle$. Obviously, $X \bigcap B_{i}=\left\langle e_{m+p+1-b_{1}}, e_{m+p+1-b_{2}}, \ldots, e_{m+p+1-b_{i}}\right\rangle$ and $\operatorname{dim}\left(X \bigcap B_{i}\right)=i$. Furthermore, $X \bigcap A_{p+1-i} \supseteq\left\langle e_{m+p+1-b_{p}}, \ldots, e_{m+p+1-b_{i}}\right\rangle$ and hence $\operatorname{dim}\left(X \bigcap A_{p+1-i}\right) \geq p+1-i$. Thus $X \in \Omega\left(A_{1}, \ldots, A_{p}\right) \bigcap \Omega\left(B_{1}, \ldots, B_{p}\right)$. Therefore, we have the following proposition.

PROPOSITION 1 (Theorem I, p. 327 [1]). When $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{p}$ and $B_{1} \subsetneq \cdots \subsetneq B_{p}$ are planes in general position in \mathbb{C}^{m+p} with $\operatorname{dim}\left(A_{i}\right)=a_{i}$ and $\operatorname{dim}\left(B_{i}\right)=b_{i}$ for $i=1, \ldots, p$, then $\Omega\left(a_{1}, \ldots, a_{p}\right)$ and $\Omega\left(b_{1}, \ldots, b_{p}\right)$ intersect if and only if

$$
a_{p+1-i}+b_{i} \geq m+p+1 \quad \text { for } \quad i=1, \ldots, p
$$

As a corollary, we have the following proposition.
PROPOSITION 2 (Corollary, p. 328 [1]). $\Omega\left(a_{1}, \ldots, a_{p}\right) \bigcap \Omega\left(m+p+1-a_{p}, \ldots, m+\right.$ $p+1-a_{1}$) consists of a unique p-plane for given $1 \leq a_{1}<\cdots<a_{p} \leq m+p$.

EXAMPLE 1. Let $m=p=2, A_{1}=\left\langle e_{1}, e_{2}\right\rangle, A_{2}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, B_{1}=\left\langle e_{3}, e_{4}\right\rangle$, and $B_{2}=\left\langle e_{2}, e_{3}, e_{4}\right\rangle$. Then $\Omega\left(A_{1}, A_{2}\right) \bigcap \Omega\left(B_{1}, B_{2}\right)=\left\langle e_{2}, e_{3}\right\rangle$.

In the rest of the paper, when we write $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$, those coordinates will satisfy $1 \leq a_{1}<\cdots<a_{p} \leq m+p$. Because of the importance of Proposition 2, $\mathbf{a}^{*}=\left(m+p+1-a_{p}, \ldots, m+p+1-a_{1}\right)$ is called the dual of $\mathbf{a}=\left(a_{1}, \cdots, a_{p}\right)$.

For $0 \leq h \leq m$, let $\sigma_{h}:=\Omega(m+1-h, m+2, \ldots, m+p)$, the set of p-planes that meet a given $(m+1-h)$-plane. Since every p-plane will meet any $(m+1)$-plane, σ_{0} is the collection of all p-planes.

For (a_{1}, \ldots, a_{p}) and (b_{1}, \ldots, b_{p}) with $a_{p+1-i} \geq m+p+1-b_{i}$, for $i=1, \ldots, p$, let $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{p}$ and $B_{1} \subsetneq \cdots \subsetneq B_{p}$ be planes in \mathbb{C}^{m+p} with $\operatorname{dim}\left(A_{i}\right)=a_{i}$ and $\operatorname{dim}\left(B_{i}\right)=b_{i}$. If $X \in \Omega\left(a_{1}, \ldots, a_{p}\right) \cap \Omega\left(b_{1}, \ldots, b_{p}\right)$, then X meets $A_{p+1-i} \bigcap B_{i}$ for $i=1, \ldots, p$. Let D be the smallest plane containing $A_{p} \bigcap B_{1}, \ldots, A_{1} \bigcap B_{p}$. Then $X \subset D$ and

$$
\begin{aligned}
\operatorname{dim}(D) & \leq \operatorname{dim}\left(A_{p} \bigcap B_{1}\right)+\cdots+\operatorname{dim}\left(A_{1} \bigcap B_{p}\right) \\
& =a_{p}+b_{1}-(m+p)+\cdots+a+1+b_{p}-(m+p) \\
& =\sum_{i=1}^{p}\left(a_{i}+b_{i}\right)-(m+p) p .
\end{aligned}
$$

Let $h=\sum a_{i}+\sum b_{i}-(m+p+1) p$. Clearly,

$$
\operatorname{dim}(D)=h+p \Longleftrightarrow a_{p-i}<m+p+1-b_{i} \leq a_{p-i+1} \quad \forall i=1, \ldots, p
$$

When $\operatorname{dim}(D)=h+p$, let G_{h} be a generic $(m+1-h)$-plane. Representing D and G_{h} by matrices consisting of independent vectors in \mathbb{C}^{m+p}, the rank of the $(m+p) \times(m+p+1)$ matrix $\left[D \mid G_{h}\right.$] is $m+p$. Thus, up to a scalar factor, there is a unique nonzero vector $g \in G_{h}$, where $g=v_{1}+\cdots+v_{p}$ with $v_{i} \in A_{p+1-i} \cap B_{i}$ for $i=1, \ldots, p$. Let $X=\left\langle v_{1}, \ldots, v_{p}\right\rangle$; then $X \in \Omega\left(A_{1}, \ldots, A_{p}\right) \bigcap \Omega\left(B_{1}, \ldots, B_{p}\right)$ and meets G_{h}.

Proposition 3 (Theorem III, p. 333 [1]). Let $1 \leq h \leq m$. For (a_{1}, \ldots, a_{p}) and $\left(b_{1}, \ldots, b_{p}\right)$ satisfying

$$
\begin{equation*}
a_{p-i}<m+p+1-b_{i} \leq a_{p+1-i}, \quad h=\sum a_{i}+\sum b_{i}-(m+p+1) p \tag{3}
\end{equation*}
$$

the intersection $\Omega\left(a_{1}, \ldots, a_{p}\right) \cap \Omega\left(b_{1}, \ldots, b_{p}\right) \bigcap \sigma_{h}$ consists of a unique p-plane.
Example 2. Let $m=p=2, A_{1}=\left\langle e_{1}, e_{2}\right\rangle, A_{2}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle, B_{1}=\left\langle e_{3}, e_{4}\right\rangle$, $B_{2}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$, and $\sigma_{1}=\Omega\left(D_{1}, D_{2}\right)$, where D_{1} is a generic 2 -plane and $D_{2}=\mathbb{C}^{4}$. Then $A_{1} \cap B_{2}=A_{1}$ and $A_{2} \bigcap B_{1}=\left\langle e_{3}\right\rangle$. Denote the 1-plane $D_{1} \bigcap\left\langle A_{1}, e_{3}\right\rangle$ by D_{1}^{\prime}.

Let $u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in D_{1}^{\prime}$ and $f_{1}=\left(u_{1}, u_{2}, 0,0\right)$. Then $\Omega(2,3) \bigcap \Omega(2,4) \bigcap \sigma_{1}=$ $\left\langle f_{1}, e_{3}\right\rangle$.

For $\Omega\left(a_{1}, \ldots, a_{p}\right)$ and $\Omega\left(b_{1}, \ldots, b_{p}\right), \Omega\left(a_{1}, \ldots, a_{p}\right)+\Omega\left(b_{1}, \ldots, b_{p}\right)$ denotes the class of p-planes X, where for planes $A_{1} \subsetneq A_{2} \subsetneq \cdots \subsetneq A_{p}$ and $B_{1} \subsetneq \cdots \subsetneq B_{p}$ with $\operatorname{dim}\left(A_{i}\right)=a_{i}$ and $\operatorname{dim}\left(B_{i}\right)=b_{i}$ for $i=1, \ldots, p, \operatorname{dim}\left(X \bigcap A_{i}\right) \geq i\left(\right.$ or $\operatorname{dim}\left(X \bigcap B_{i}\right) \geq$ i) for all $i=1, \ldots, p$. We abbreviate $\Omega\left(a_{1}, \ldots, a_{p}\right)+\Omega\left(a_{1}, \ldots, a_{p}\right)$ by $2 \Omega\left(a_{1}, \ldots, a_{p}\right)$ and in general

$$
\sum_{i=1}^{d} \Omega\left(a_{1}, \ldots, a_{p}\right):=d \Omega\left(a_{1}, \ldots, a_{p}\right)
$$

Furthermore, $\Omega\left(a_{1}, \ldots, a_{p}\right) \bullet \Omega\left(b_{1}, \ldots, b_{p}\right)$ represents the class of p-planes X, where $\operatorname{dim}\left(X \bigcap A_{i}\right) \geq i$ and $\operatorname{dim}\left(X \bigcap B_{i}\right) \geq i$ for all $i=1, \ldots, p$.

For sets of p-planes A and B, we write $A \bullet B$ for $A \cap B$. We say A is equivalent to B, denoted by $A \sim B$, if whenever

$$
A \bullet \Omega(\mathbf{c})=k \Omega(1, \ldots, p)
$$

for some $\mathbf{c}=\left(c_{1}, \ldots, c_{p}\right)$, we also have

$$
B \bullet \Omega(\mathbf{c})=k \Omega(1, \ldots, p)
$$

Note that $\Omega(1, \ldots, p)$ represents a general p-plane. The following property [1, 2, 3] will be used repeatedly for the establishment of our algorithm:

$$
A \sim B \Longrightarrow A \bullet \sigma_{h} \sim B \bullet \sigma_{h}
$$

Following Proposition 3, for fixed a_{1}, \ldots, a_{p} and h, any $\mathbf{b}=\left(b_{1}, \ldots, b_{p}\right)$ satisfying (3) yields

$$
\Omega\left(a_{1}, \ldots, a_{p}\right) \bullet \sigma_{h} \bullet \Omega\left(b_{1}, \ldots, b_{p}\right)=\Omega(1, \ldots, p)
$$

On the other hand, for the dual $\mathbf{b}^{*}=\left(b_{1}^{*}, \ldots, b_{p}^{*}\right)=\left(m+p+1-b_{p}, \ldots, m+p+1-b_{1}\right)$ of \mathbf{b}, by Proposition 2,

$$
\Omega\left(b_{1}^{*}, \ldots, b_{p}^{*}\right) \bullet \Omega\left(b_{1}, \ldots, b_{p}\right)=\Omega(1, \ldots, p)
$$

Moreover, for $\overline{\mathbf{b}}=\left(\bar{b}_{1}, \ldots, \bar{b}_{p}\right)$ satisfying (3), but $\overline{\mathbf{b}} \neq \mathbf{b}^{*}$,

$$
\Omega\left(\bar{b}_{1}, \ldots, \bar{b}_{p}\right) \bullet \Omega\left(b_{1}, \ldots, b_{p}\right)=\emptyset
$$

These observations lead to the following important formula.
Proposition 4 (Pieri's formula, p. 354 [1]).

$$
\Omega\left(a_{1}, \ldots, a_{p}\right) \bullet \sigma_{h} \sim \sum_{\mathbf{b}=\left(b_{1}, \ldots, b_{p}\right)} \Omega\left(b_{1}, \ldots, b_{p}\right), \text { where }
$$

$$
\begin{equation*}
0<b_{1} \leq a_{1}<b_{2} \leq a_{2}<\cdots \leq a_{p-1}<b_{p} \leq a_{p} \text { with } \sum b_{j}=\sum a_{j}-h \tag{4}
\end{equation*}
$$

When we fix $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ and h, those $\mathbf{b}=\left(b_{1}, \ldots, b_{p}\right)$ satisfying (4) together with a are called the Pieri nodes; the nodes \mathbf{b} are induced Pieri nodes of node a.

From here on, we will use $\left[a_{1}, \ldots, a_{p}\right]$ to denote a Pieri node or its dual. Recall that for $i=1, \ldots, n$, p-planes that meet plane L_{i} with $\operatorname{dim}\left(L_{i}\right)=m+1-k_{i}$ belong to $\Omega\left(m+1-k_{i}, m+2, \ldots, m+p\right)=\sigma_{k_{i}}$, and the condition $k_{1}+\cdots+k_{n}=m p$ warrants

$$
\begin{equation*}
\sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \cdots \bullet \sigma_{k_{n}}=d \Omega(1, \ldots, p) \tag{5}
\end{equation*}
$$

Thus problem (\star) introduced in section 1 can now be interpreted as follows: finding all d specific p-planes in $\sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \cdots \bullet \sigma_{k_{n}}$ for given planes L_{1}, \ldots, L_{n} in general position. To calculate $\sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \cdots \bullet \sigma_{k_{n}}$ in (5), Pieri's formula in Proposition 4 will be used as a main tool. The Pieri nodes derived in the process constitute a Pieri poset, and the number d is called the Pieri root count.

Example 3. For $m=2, p=2$ and given planes $L_{1}, L_{2}, L_{3}, L_{4}$ in general position with $\operatorname{dim}\left(L_{i}\right)=2$ and $k_{i}=m+1-d_{i}=1$ for all $i=1, \ldots, 4$,

$$
\begin{aligned}
& \sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \sigma_{k_{3}} \bullet \sigma_{k_{4}} \\
= & \Omega(2,4) \bullet \sigma_{k_{2}} \bullet \sigma_{k_{3}} \bullet \sigma_{k_{4}} \\
\sim & (\Omega(1,4)+\Omega(2,3)) \bullet \sigma_{k_{3}} \bullet \sigma_{k_{4}} \\
\sim & 2 \Omega(1,3) \bullet \sigma_{k_{4}} \\
\sim & 2 \Omega(1,2) .
\end{aligned}
$$

The Pieri poset of all the Pieri nodes and the poset that consists of their duals are shown in Figure 1.

Fig. 1.
Now, any 2-plane X that meets L_{1} must be in $\Omega(3,4) \bullet \sigma_{1} \sim \Omega(2,4)$. Since $[2,4]^{*}=[1,3]$, there is a unique 2-plane in $\Omega(2,4) \bullet \Omega(1,3)$. So, if we let $A_{1}=\left\langle e_{1}\right\rangle$ and $A_{2}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$, there is a unique 2-plane in $\Omega\left(A_{1}, A_{2}\right)$ consisting of 2-planes of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & u \\
0 & 0
\end{array}\right]:=X_{[1,3]}
$$

that meet L_{1}. We may determine this unique $X_{[1,3]}$ by finding u via its intersection condition with L_{1}.

Similarly, any 2-plane X that meets both L_{1} and L_{2} must lie in $\Omega(3,4) \bullet \sigma_{1} \bullet \sigma_{1} \sim$ $\Omega(1,4)+\Omega(2,3)$ by Proposition 4. Since $[1,4]^{*}=[1,4]$ and $\Omega(2,3) \bullet \Omega(1,4)=\emptyset$, by
letting $A_{1}=\left\langle e_{1}\right\rangle$ and $A_{2}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$, there is a unique 2-plane in $\Omega\left(A_{1}, A_{2}\right)$ consisting of 2-planes of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & v_{1} \\
0 & v_{2}
\end{array}\right]:=X_{[1,4]}
$$

that meet both L_{1} and L_{2}. We may determine this unique $X_{[1,4]}$ by finding v_{1} and v_{2} via the intersection conditions of meeting L_{1} and L_{2}. On the other hand, since $[2,3]^{*}=[2,3]$ and $\Omega(1,4) \bullet \Omega(2,3)=\emptyset$, there is a unique 2-plane in $\Omega\left(A_{1}, A_{2}\right)$ with $A_{1}=\left\langle e_{1}, e_{2}\right\rangle$ and $A_{2}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ consisting of 2-planes of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
v_{1}^{\prime} & 1 \\
0 & v_{2}^{\prime} \\
0 & 0
\end{array}\right]:=X_{[2,3]}
$$

that meet L_{1} and L_{2}. This $X_{[2,3]}$ is decided when v_{1}^{\prime} and v_{2}^{\prime} are found.
Continuing the same pattern, since $\Omega(3,4) \bullet \sigma_{1} \bullet \sigma_{1} \bullet \sigma_{1} \sim 2 \Omega(1,3)$ and $[1,3]^{*}=$ [2,4], there are two 2-planes in $\Omega\left(A_{1}, A_{2}\right)$, with $A_{1}=\left\langle e_{1}, e_{2}\right\rangle$ and $A_{2}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$, consisting of 2-planes of the form

$$
\left[\begin{array}{ll}
1 & 0 \\
w_{1} & 1 \\
0 & w_{2} \\
0 & w_{3}
\end{array}\right]:=X_{[2,4]}
$$

that meet L_{1}, L_{2}, and L_{3}. And, $\Omega(3,4) \bullet \sigma_{1} \bullet \sigma_{1} \bullet \sigma_{1} \bullet \sigma_{1} \sim 2 \Omega(1,2)$ as well as $[1,2]^{*}=[3,4]$ imply that the two 2-planes that meet all L_{1}, \ldots, L_{4} can be found by solving two set of y 's of

$$
\left[\begin{array}{ll}
1 & 0 \\
y_{1} & 1 \\
y_{3} & y_{2} \\
0 & y_{4}
\end{array}\right]:=X_{[3,4]}
$$

in $\Omega\left(A_{1}, A_{2}\right)$ with $A_{1}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ and $\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$.
The theme of the so-called Pieri homotopy algorithm is as follows:

1. Finding u in $X_{[1,3]}$ by the criteria of meeting L_{1}.
2. (a) Solving $\left\{v_{1}, v_{2}\right\}$ in $X_{[1,4]}$ by a homotopy with a starting point containing $\left\{v_{1}=u, v_{2}=0\right\}$.
(b) Solving $\left\{v_{1}, v_{2}\right\}$ in $X_{[2,3]}$ by a different homotopy with a starting point containing $\left\{v_{1}^{\prime}=0, v_{2}^{\prime}=u\right\}$.
3. Solving two sets of $\left\{w_{1}, w_{2}, w_{3}\right\}$ in $X_{[2,4]}$ by a homotopy with two starting points containing $\left\{w_{1}=0, w_{2}=v_{1}, w_{3}=v_{2}\right\}$ and $\left\{w_{1}=v_{1}^{\prime}, w_{2}=v_{2}^{\prime} w_{3}=0\right\}$, respectively.
4. Solving two sets of $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ in $X_{[3,4]}$ by a homotopy with two starting points containing $\left\{y_{1}=w_{1}, y_{2}=w_{2}, y_{3}=w_{3}, y_{4}=0\right\}$ with two sets of values of $\left\{w_{1}, w_{2}, w_{3}\right\}$ obtained at the last step.
The details of those homotopies of our approach will be elaborated in the next section.

From the process in the above example, we solve the ultimate solutions in $X_{[3,4]}$ by following the cascade of solving
(6)

For $\mathbf{a}=\left[a_{1}, \ldots, a_{p}\right]$, write

$$
X_{\mathbf{a}}=X_{\left[a_{1}, \ldots, a_{p}\right]}:=\left[\begin{array}{ccc}
1 & & 0 \\
x_{1,1} & \ddots & \\
\vdots & \ddots & 1 \\
x_{\left(a_{1}-1\right), 1} & & x_{1, p} \\
& \ddots & \vdots \\
& & x_{\left(a_{p}-p\right), p} \\
0 & & \vdots \\
0 & & 0
\end{array}\right] .
$$

Those a's in (6) actually follow the duals of the Pieri poset in Figure 1. For nodes a and \mathbf{b},

$$
\mathbf{a} \rightarrow \cdots \rightarrow \cdots \rightarrow \mathbf{b}
$$

is called a chain joining \mathbf{a} and \mathbf{b}. A chain joining $\mathbf{a}=[m+1, m+2, \ldots, m+p]$ and $\mathbf{b}=[1, \ldots, p]$ is called a complete chain. The Pieri homotopy algorithms in general are constructed based on the duals of the Pieri poset consisting of all the derived Pieri nodes.
3. Algorithms. For given planes L_{1}, \ldots, L_{n} in \mathbb{C}^{m+p} in general position with $\operatorname{dim}\left(L_{i}\right)=m+1-k_{i}$ for $i=1, \ldots, n$, all derived Pieri nodes in

$$
\sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \cdots \bullet \sigma_{k_{n}}
$$

form a poset. Unless otherwise indicated, we shall use the term "Pieri poset" for the poset of duals of all those Pieri nodes. As mentioned in the introduction, we shall represent each L_{i} by a $\left(p+k_{i}-1\right) \times(m+p)$ matrix K_{i} whose rows consist of all the normals of the linear equations that define L_{i}.
(a) Hypersurface intersection conditions, where $k_{i}=1$ for all $i=$ $1, \ldots, n$. Letting $\mathbf{a}^{0}=[1,2, \ldots, p]$ sit on top of the Pieri poset, we may write

$$
\begin{equation*}
\mathbf{a}^{0} \rightarrow \mathbf{a}^{1} \rightarrow \cdots \rightarrow \mathbf{a}^{n} \tag{7}
\end{equation*}
$$

for a complete chain in the poset, and it is obvious that the coordinates of consecutive nodes \mathbf{a}^{j} and \mathbf{a}^{j+1} in the chain can differ by 1 on only one component. We shall use

$$
\mathbf{a}^{j} \xrightarrow{\mu_{j+1}} \mathbf{a}^{j+1}
$$

to denote that the μ_{j+1} th component of \mathbf{a}^{j} is increased by 1 to reach \mathbf{a}^{j+1}. We may therefore write

$$
\mathbf{a}^{0} \xrightarrow{\mu_{1}} \mathbf{a}^{1} \xrightarrow{\mu_{2}} \cdots \xrightarrow{\mu_{n}} \mathbf{a}^{n}
$$

for a complete chain. Recall that for $\mathbf{a}=\left[a_{1}, \ldots, a_{p}\right]$

$$
X_{\mathbf{a}}=\left[\begin{array}{ccc}
1 & & 0 \\
x_{1,1} & \ddots & \\
\vdots & \ddots & 1 \\
x_{\left(a_{1}-1\right), 1} & & x_{1, p} \\
& \ddots & \vdots \\
& & x_{\left(a_{p}-p\right), p} \\
0 & & \vdots \\
& & 0
\end{array}\right]
$$

For $\mathbf{a}^{0} \xrightarrow{\mu_{1}} \mathbf{a}^{1}$, the only unknown in $X_{\mathbf{a}^{1}}$ can be determined by

$$
K_{1} X_{\mathbf{a}^{1}} \Lambda_{1}^{1}=0
$$

where $\Lambda_{1}^{1}=e_{\mu_{1}} \in \mathbb{C}^{p}$. Now, suppose we have proceeded up to

$$
\mathbf{a}^{0} \xrightarrow{\mu_{1}} \mathbf{a}^{1} \xrightarrow{\mu_{2}} \cdots \xrightarrow{\mu_{j}} \mathbf{a}^{j}
$$

in the chain. This means that we have solved all the variables in $X_{\mathbf{a}^{j}}$ and found $\Lambda_{1}^{j}, \ldots, \Lambda_{j}^{j} \in \mathbb{P}^{p-1}$ such that

$$
K_{l} X_{\mathbf{a}} \Lambda_{l}^{j}=0 \text { for } l=1, \ldots, j
$$

Namely, a p-plane in the form $X_{\mathbf{a}^{j}}$ that meets planes L_{1}, \ldots, L_{j} has been determined. To proceed one step further in the chain, for

$$
\mathbf{a}^{j} \xrightarrow{\mu_{j+1}} \mathbf{a}^{j+1}, \quad \text { where } \mathbf{a}^{j+1}=\left[a_{1}^{(j+1)}, \ldots, a_{p}^{(j+1)}\right],
$$

consider the homotopy

$$
H\left(t, X_{\mathbf{a}^{j+1}}, \Lambda^{j+1}\right)=\left\{\begin{array}{ccc}
K_{1} X_{\mathbf{a}^{j+1}} \Lambda_{1}^{j+1} & = & 0 \tag{8}\\
\vdots & & 0 \\
K_{j} X_{\mathbf{a}^{j+1}} \Lambda_{j}^{j+1} & \\
{\left[(1-t) \hat{K}_{\mathbf{a}^{j+1}}+t K_{j+1}\right] X_{\mathbf{a}^{j+1}} \Lambda_{j+1}^{j+1}} & = & 0
\end{array}\right.
$$

where the μ_{l} th component of Λ_{l}^{j+1} is 1 for $l=1, \ldots, j+1$, and $\widehat{K}_{\mathbf{a}^{j+1}}$ is the matrix $\left[e_{a_{1}^{(j+1)}}, \ldots, e_{a_{p}^{(j+1)}}\right]^{T}$. For each $t \in[0,1]$, the system admits $p-1$ variables in Λ_{l}^{j+1} for each $l=1, \ldots, j+1$ and $j+1$ variables in $X_{\mathbf{a}^{j+1}}$; it admits, in total, $(p-1)(j+$ $1)+(j+1)=p(j+1)$ variables. It is clear that the total number of equations is also $p(j+1)$, making the system a square system. When $t=0$,

$$
\begin{aligned}
& X_{\mathbf{a}^{j+1}}=X_{\mathbf{a}^{j}}, \\
& \Lambda_{l}^{j+1}=\Lambda_{l}^{j}, \quad l=1, \ldots, j, \\
& \Lambda_{j+1}^{j+1}=e_{\mu_{j+1}}\left(\in \mathbb{C}^{p}\right)
\end{aligned}
$$

is a solution of the system $H\left(0, X_{\mathbf{a}^{j+1}}, \Lambda^{j+1}\right)=0$ in (8). Following the homotopy path of $H\left(t, X_{\mathbf{a}^{j+1}}, \Lambda^{j+1}\right)=0$ emanating from this solution, we obtain a solution of $X_{\mathbf{a}^{j+1}}$ and Λ_{l}^{j+1} for $l=1, \ldots, j+1$ at $t=1$ that satisfies

$$
K_{l} X_{\mathbf{a}^{j+1}} \Lambda_{l}^{j+1}=0 \text { for } l=1, \ldots, j+1 .
$$

A p-plane that meets L_{1}, \ldots, L_{j+1} in the form of $X_{\mathbf{a}^{j+1}}$ is then found and the chain has been extended one step further; namely, we have proceeded along the chain up to

$$
\mathbf{a}^{0} \xrightarrow{\mu_{1}} \mathbf{a}^{1} \xrightarrow{\mu_{2}} \cdots \xrightarrow{\mu_{j+1}} \mathbf{a}^{j+1} .
$$

When we proceed further along the chain and arrive at \mathbf{a}^{n}, a p-plane that meets all $L_{i}, i=1, \ldots, n$, becomes available.

Example 4. In Example 3, there are two chains in the dual poset:

$$
\begin{aligned}
& \text { chain } 1:[12] \xrightarrow{2}[13] \xrightarrow{2}[14] \xrightarrow[\longrightarrow]{1}[24] \xrightarrow{1}[34], \\
& \text { chain } 2:[12] \xrightarrow{2}[13] \xrightarrow{1}[23] \xrightarrow{2}[24] \xrightarrow{1}[34],
\end{aligned}
$$

and the corresponding homotopies are
[12]
$\left.\begin{array}{l}\downarrow \\ {[13]:}\end{array}\right]\left[\begin{array}{l}K_{1} X_{[13]} \Lambda_{1}^{1}=0, \Lambda_{1}^{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \\ \downarrow \\ {[14]:}\end{array} \quad \begin{array}{r}K_{1} X_{[14]} \Lambda_{1}^{2}=0 \\ \left\{(1-t) \underline{\left[e_{1}, e_{4}\right]^{T}}+t K_{2}\right\} X_{[14]} \Lambda_{2}^{2}=0\end{array}\right.$
[12]

\downarrow
$\stackrel{[24]}{:}\left[\begin{array}{rl}K_{1} X_{[24]} \Lambda_{1}^{3} & =0 \\ K_{2} X_{[24} \Lambda_{2}^{3} & =0 \\ \left\{(1-t)\left[e_{2}, e_{4}\right]^{T}+t K_{3}\right\} X_{[24]} \Lambda_{3}^{3} & =0\end{array}\right.$
\downarrow

For chain $1, \Lambda_{k}^{l}=\left[\begin{array}{l}* \\ 1\end{array}\right], k=1,2, l=1, \ldots, k, \Lambda_{k}^{l}=\left[\begin{array}{l}1 \\ *\end{array}\right], k=3,4, l=1, \ldots, k$; for chain $2, \Lambda_{k}^{l}=\left[\begin{array}{l}* \\ 1\end{array}\right], k=1,3, l=1, \ldots, k, \Lambda_{k}^{l}=\left[\begin{array}{l}1 \\ *\end{array}\right], k=2,4, l=1, \ldots, k$. Between chain 1 and 2, the only distinct homotopies are $[13] \xrightarrow{2}[14]$ in chain 1 and $[13] \xrightarrow{1}[23]$ in chain 2 .

Example 5. For $m=3, p=2$, let L_{1}, \ldots, L_{6} be planes with $\operatorname{dim}\left(L_{i}\right)=3$ for $i=1, \ldots, 6$. The Pieri poset is shown in Figure 2. For the complete chain

$$
[12] \xrightarrow{2}[13] \xrightarrow{2}[14] \xrightarrow{1}[24] \xrightarrow{2}[25] \xrightarrow{1}[35] \xrightarrow{1}[45],
$$

Fig. 2.
the homotopies are
\downarrow
[13] : $\left[K_{1} X_{[13]} \Lambda_{1}^{1},=0, \Lambda_{1}^{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right.$
[14] : $\left[\begin{array}{rl}K_{1} X_{[14]} \Lambda_{1}^{2} & =0, \\ \left\{(1-t)\left[e_{1}, e_{4}\right]^{T}+t K_{2}\right\} X_{[14]} \Lambda_{2}^{2} & =0,\end{array}\right.$
\downarrow
[24]
\downarrow
\downarrow $:\left[\begin{array}{rl}K_{l} X_{[35} \Lambda_{l}^{5} & =0, \quad l=1,2,3,4, \\ \left\{(1-t)\left[e_{3}, e_{5}\right]^{T}+t K_{5}\right\} X_{[35]} \Lambda_{5}^{5} & =0,\end{array}\right.$
\downarrow
[45]

$$
:\left[\begin{array}{r}
K_{l} X_{[24]} \Lambda_{l}^{3}=0, \quad l=1,2, \\
\left\{(1-t)\left[e_{2}, e_{4}\right]^{T}+t K_{3}\right\} X_{[24]} \Lambda_{3}^{3}=0,
\end{array}\right.
$$

$$
:\left[\begin{array}{rl}
K_{l} X_{[25]} \Lambda_{l}^{4}=0, & l=1,2,3, \\
\left\{(1-t)\left[e_{2}, e_{5}\right]^{T}+t K_{4}\right\} X_{[25]} \Lambda_{4}^{4}=0,
\end{array}\right.
$$

\downarrow

$$
:\left[\begin{array}{rl}
K_{l} X_{[45]} \Lambda_{l}^{6}=0, & l=1,2,3,4,5, \\
\left\{(1-t)\left[e_{4}, e_{5}\right]^{T}+t K_{6}\right\} X_{[45]} \Lambda_{6}^{6}=0,
\end{array}\right.
$$

where $\Lambda_{1}^{l}=\left[\begin{array}{l}* \\ 1\end{array}\right], \Lambda_{2}^{l}=\left[\begin{array}{l}* \\ 1\end{array}\right], \Lambda_{3}^{l}=\left[\begin{array}{l}1 \\ *\end{array}\right], \Lambda_{4}^{l}=\left[\begin{array}{l}* \\ 1\end{array}\right], \Lambda_{5}^{l}=\left[\begin{array}{l}1 \\ *\end{array}\right]$, and $\Lambda_{6}^{l}=\left[\begin{array}{l}1 \\ *\end{array}\right]$.
Remark 1. Let a be a node shared by k different complete chains

$$
\mathbf{a}_{l}^{0} \xrightarrow{\mu_{1 l}} \mathbf{a}_{l}^{1} \xrightarrow{\mu_{2 l}} \cdots \xrightarrow{\mu_{n l}} \mathbf{a}_{l}^{n}, \quad l=1, \ldots, k .
$$

Say $\mathbf{a}_{l}^{j+1}=\mathbf{a}$, for $l=1, \ldots, k$. This means $\sigma_{k_{1}} \bullet \sigma_{k_{2}} \bullet \ldots \bullet \sigma_{k_{j}} \bullet \Omega(\mathbf{a})=k \Omega(1, \ldots, p)$, where $k_{i}=1$ for $i=1, \ldots, j$. In this situation, the homotopies for the extensions $\mathbf{a}_{l}^{j} \xrightarrow{\mu_{(j+1) l}} \mathbf{a}_{l}^{j+1}=\mathbf{a}$ in (8) are the same for all l. It is critically important that those
k paths that emanate from k different starting points

$$
X_{\mathbf{a}}=X_{\mathbf{a}_{l}^{j}}, \quad \Lambda_{i l}^{j+1}=\Lambda_{i l}^{j} \text { for } i=1, \ldots, j, \quad \Lambda_{(j+1) l}^{j+1}=\left[\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right] \leftarrow \mu_{(j+1) l} \text { th }
$$

will reach different solutions at $t=1$. This assertion is warranted by the following observations. Since for each $t \in[0,1],(1-t) \widehat{K}_{\mathbf{a}}+t K_{j+1}$ represents an m-plane $L_{j+1}(t)$, and those m-planes $L_{j+1}(t)$ are in general position for $0<t \leq 1$, it follows that for each $t \in(0,1]$ the system

$$
\begin{array}{lll}
K_{1} X_{\mathbf{a}} \Lambda_{1}^{j+1} & = & 0 \\
& \vdots \\
K_{j} X_{\mathbf{a}} \Lambda_{j}^{j+1} & =0 \\
{\left[(1-t) \widehat{K}_{\mathbf{a}}+t K_{j+1}\right] X_{\mathbf{a}} \Lambda_{j+1}^{j+1}} & =0
\end{array}
$$

has k solutions and all of them are nonsingular. Since at $t=0$ those k solutions are also nonsingular, those k different paths of the same homotopy will lead to k different solutions at $t=1$.
(b) General intersection conditions, where $\boldsymbol{k}_{\boldsymbol{i}}>1$ for certain $1 \leq \boldsymbol{i} \leq \boldsymbol{n}$. The Pieri poset in this case is somewhat more complicated. For $k_{i}>1$, let \mathbf{a}^{i} be a derived node of \mathbf{a}^{i-1}. The coordinates of nodes \mathbf{a}^{i-1} and \mathbf{a}^{i} may have several different components and their differences may not simply differ by just 1 . Moreover, as the following example shows, not all the nodes can be proceeded to reach final node \mathbf{a}^{n} to be part of a complete chain.

Example 6. For $m=5, p=3$, and given planes L_{1}, \ldots, L_{5} in general position with $\operatorname{dim}\left(L_{i}\right)=3$, for all $i=1, \ldots, 5, \sum_{i=1}^{5} k_{i}=15=m p$. Furthermore,

$$
\begin{aligned}
& \sigma_{0} \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} \\
\sim & {\left[\Omega(6,7,8) \bullet \sigma_{3}\right] \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} } \\
\sim & {\left[\Omega(3,7,8) \bullet \sigma_{3}\right] \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} } \\
\sim & {[\Omega(1,6,8)+\Omega(2,5,8)+\Omega(3,4,8)] \bullet \sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} } \\
\sim & {[2 \Omega(1,3,8)+3 \Omega(1,4,7)+2 \Omega(2,4,6)+\Omega(1,5,6)+\Omega(3,4,5)] \bullet \sigma_{3} \bullet \sigma_{3} } \\
\sim & {[7 \Omega(1,3,5)+6 \Omega(1,2,6)] \bullet \sigma_{3} } \\
\sim & 6 \Omega(1,2,3) .
\end{aligned}
$$

The Pieri poset in this case is shown in Figure 3, and the poset consisting of complete chains is shown in Figure 4.

Of course, only complete chains in the Pieri poset are meaningful in computing our solutions. For $\mathbf{a}^{0}=(1, \ldots, p)$, let

$$
\mathbf{a}^{0} \longrightarrow \mathbf{a}^{1} \longrightarrow \cdots \longrightarrow \mathbf{a}^{n}
$$

be a complete chain, where \mathbf{a}^{j+1} is derived from \mathbf{a}^{j} via $\sigma_{k_{j+1}}$ for $j=1, \ldots, n-1$. Namely, $\Omega\left(\mathbf{a}^{j}\right) \subset \sigma_{0} \bullet \sigma_{k_{1}} \bullet \cdots \sigma_{k_{j}}$ and $\Omega\left(\mathbf{a}^{j+1}\right) \subset \sigma_{0} \bullet \sigma_{k_{1}} \bullet \cdots \sigma_{k_{j+1}}$. When $k_{i}>1$ for certain $i \in\{1, \ldots, n\}$, we will insert artificial intermediate nodes between nodes \mathbf{a}^{i-1} and \mathbf{a}^{i} for our algorithm as follows:

Fig. 3.

Writing

$$
\mathbf{a}^{i-1}=\left[a_{1}^{(i-1)}, \ldots, a_{p}^{(i-1)}\right] \quad \text { and } \quad \mathbf{a}^{i}=\left[a_{1}^{(i)}, \ldots, a_{p}^{(i)}\right]
$$

we let $l_{1}=\min \left\{j \mid a_{j}^{(i-1)}<a_{j}^{(i)}\right\}$ and $\mathbf{b}^{1}=\left(b_{1}^{(1)}, \ldots, b_{p}^{(1)}\right)$, where

$$
b_{j}^{(1)}= \begin{cases}a_{j}^{(i-1)} & \text { for } j=1, \ldots, l_{1}-1 \\ a_{l_{1}}^{(i-1)}+1 & \text { for } j=l_{1} \\ a_{j}^{(i)} & \text { for } j=l_{1}+1, \ldots, p\end{cases}
$$

Inductively, when $\mathbf{b}^{s}=\left(b_{1}^{(s)}, \ldots, b_{p}^{(s)}\right)$ is defined for $s<k_{i}-1$, let $l_{s+1}=$ $\min \left\{j \mid b_{j}^{(s)}<a_{j}^{(i)}\right\}$ and $\mathbf{b}^{s+1}=\left(b_{1}^{(s+1)}, \ldots, b_{p}^{(s+1)}\right)$, where

$$
b_{j}^{(s+1)}= \begin{cases}b_{j}^{(s)} & \text { for } j=1, \ldots, l_{s+1}-1 \\ b_{l_{s+1}}^{(s)}+1 & \text { for } j=l_{s+1} \\ a_{j}^{(i)} & \text { for } j=l_{s+1}+1, \ldots, p\end{cases}
$$

Fig. 4.

We insert those nodes $\mathbf{b}^{1}, \ldots, \mathbf{b}^{k_{i}-1}$ defined above between \mathbf{a}^{i-1} and \mathbf{a}^{i}. Obviously, the coordinates of any two consecutive nodes among them can differ by 1 on only one coordinate. Therefore, we may write

$$
\mathbf{a}^{i-1}:=\mathbf{b}^{0} \xrightarrow{\mu_{1}} \mathbf{b}^{1} \xrightarrow{\mu_{2}} \cdots \xrightarrow{\mu_{k_{i}-1}} \mathbf{b}^{k_{i}}:=\mathbf{a}^{i},
$$

where μ_{j} in $\mathbf{b}^{j-1} \xrightarrow{\mu_{j}} \mathbf{b}^{j}$ represents the coordinate where \mathbf{b}^{j-1} and \mathbf{b}^{j} differ.
Example 7. For instance, the node insertion between $\left[\begin{array}{ll}1 & 4\end{array}\right]$ and $\left[\begin{array}{lll}1 & 6 & 8\end{array}\right]$ on Figure 4 of Example 6 is

$$
\left[\begin{array}{ll}
1 & 4
\end{array}\right] \xrightarrow{2}(157) \xrightarrow{2}(167) \xrightarrow{3}\left[\begin{array}{lll}
1 & 6
\end{array}\right],
$$

and when all intermediate nodes are inserted the poset with complete chains is shown in Figure 5.

For consecutive nodes \mathbf{a}^{i-1} and \mathbf{a}^{i} with $k_{i}>1$ and the chain joining the intermediate nodes between them,

$$
\begin{equation*}
\mathbf{a}^{i-1}=\mathbf{b}^{0} \xrightarrow{\mu_{1}} \mathbf{b}^{1} \xrightarrow{\mu_{2}} \ldots \xrightarrow{\mu_{k_{i}-1}} \mathbf{b}^{k_{i}}=\mathbf{a}^{i}, \tag{9}
\end{equation*}
$$

suppose we have solved all the variables in $X_{\mathbf{a}^{i-1}}$ as well as $\Lambda_{l}^{i-1} \in \mathbb{P}^{p-1}$ for $l=$ $1, \ldots, i-1$ for which

$$
\begin{equation*}
K_{l} X_{\mathbf{a}^{i-1}} \Lambda_{l}^{i-1}=0 \quad \text { for } \quad l=1, \ldots, i-1 \tag{10}
\end{equation*}
$$

Fig. 5.

Recall that the $\left(p+k_{j}-1\right) \times(m+p)$ matrix K_{l} is a representation of the plane L_{l}. Let $K_{i}=\left[v_{1}, \ldots, v_{p+k_{i}-1}\right]^{T}$, where v_{s} for $s=1, \ldots, p+k_{i}-1$ are linearly independent vectors in \mathbb{C}^{m+p}. For

$$
\mathbf{a}^{i-1}=\mathbf{b}^{0} \xrightarrow{\mu_{1}} \mathbf{b}^{1}
$$

consider the homotopy

$$
\begin{array}{cc}
K_{1} X_{\mathbf{b}^{1}} \Lambda_{1}^{i+k_{i}-1} & =0 \\
\vdots & =0 \tag{11}\\
K_{i-1} X_{\mathbf{b}^{1}} \Lambda_{i-1}^{i+k_{i}-1} & 0 \\
{\left[(1-t) \hat{K}_{1}^{0}+t \hat{K}_{1}^{1}\right] X_{\mathbf{b}^{1}} \Lambda_{i+k_{i}-1}^{i+k_{i}-1}} & =0
\end{array}
$$

where for $\mathbf{b}^{1}=\left(b_{1}^{(1)}, \ldots, b_{p}^{(1)}\right)$

$$
\begin{aligned}
\hat{K}_{1}^{0} & :=\left[e_{b_{1}^{(1)}}, \ldots, e_{b_{p}^{(1)}}\right]^{T} \\
\text { and } \quad \hat{K}_{1}^{1} & :=\left[e_{b_{1}^{(1)}}, \ldots, e_{b_{\mu_{1}-1}^{(1)}}, v_{1}, e_{b_{\mu_{1}+1}^{(1)}}, \ldots, e_{b_{p}^{(1)}}\right]^{T} .
\end{aligned}
$$

Moreover, the μ_{1} th coordinate of $\Lambda_{i+k_{i}-1}^{i+k_{i}-1} \in \mathbb{P}^{p-1}$ is set to be 1 , and for $l=1, \ldots, i-1$ the coordinate of $\Lambda_{l}^{i+k_{i}-1} \in \mathbb{P}^{p-1}$ is set to be 1 if the same coordinate of $\Lambda_{l}^{i-1} \in \mathbb{P}^{p-1}$ is 1 .

This homotopy is a deformation of square systems of size

$$
p+\sum_{l=1}^{i-1}\left(p+k_{l}-1\right)
$$

Clearly, when $t=0$ any solution $X_{\mathbf{a}^{i-1}}, \Lambda_{l}^{i+k_{i}-1}$ for $l=1, \ldots, i-1$ of (10) coupled with $\Lambda_{i+k_{i}-1}^{i+k_{i}-1}=e_{\mu_{1}}$ is a solution of (11). The solutions we obtain at $t=1$ by following the paths of the homotopy in (11) emanating from those solutions will be established as solutions of the start system of the homotopy constructed for the next step.

Inductively, write $\mathbf{b}^{l}=\left(b_{1}^{(l)}, \ldots, b_{p}^{(l)}\right)$ for $l=0, \ldots, k_{i}$ and suppose for $2 \leq j \leq k_{i}$ the system

$$
\begin{gather*}
K_{1} X_{\mathbf{b}^{j-1}} \Lambda_{1}^{i+k_{i}-(j-1)}=0 \\
\vdots \tag{12}\\
K_{i-1} X_{\mathbf{b}^{j-1}} \Lambda_{i-1}^{i+k_{i}-(j-1)}=0 \\
\hat{K}_{j-1}^{1} X_{\mathbf{b}^{j-1}} \Lambda_{i+k_{i}-(j-1)}^{i+k_{i}-(j-1)}=0
\end{gather*}
$$

where

$$
\hat{K}_{j-1}^{1}:=\left[e_{b_{1}^{(j-1)}}, \ldots, e_{b_{\mu_{j-1}-1}^{(j-1)}}, v_{j-1}, e_{b_{\mu_{j-1}+1}^{(j-1)}}, \ldots, e_{b_{p}^{(j-1)}}, v_{1}, \ldots, v_{j-2}\right]^{T}
$$

has been solved. For

$$
\mathbf{b}^{j-1} \xrightarrow{\mu_{j}} \mathbf{b}^{j}
$$

consider the homotopy

$$
\begin{array}{ccc}
K_{1} X_{\mathbf{b}^{j}} \Lambda_{1}^{i+k_{i}-j} & =0 \\
\vdots & = & 0 \tag{13}\\
K_{i-1} X_{\mathbf{b}^{j}} \Lambda_{i-1}^{i+k_{i}-j} & \\
{\left[(1-t) \hat{K}_{j}^{0}+t \hat{K}_{j}^{1}\right] X_{\mathbf{b}^{j}} \Lambda_{i+k_{i}-j}^{i+k_{i}-j}} & = & 0,
\end{array}
$$

where

$$
\begin{aligned}
\hat{K}_{1}^{0} & =\left[e_{b_{1}^{(j)}}, \ldots, e_{b_{p}^{(j)}}, v_{1}, \ldots, v_{j-1}\right]^{T} \\
\text { and } \quad \hat{K}_{j}^{1} & =\left[e_{b_{1}^{(j)}}, \ldots, e_{b_{\mu_{j}-1}^{(j)}}, v_{j}, e_{b_{\mu_{j}+1}^{(j)}}, \ldots, e_{b_{p}^{(j)}}, v_{1}, \ldots, v_{j-1}\right]^{T} .
\end{aligned}
$$

And, as in (11), the μ_{j} th coordinate of $\Lambda_{i+k_{i}-j}^{i+k_{i}-j} \in \mathbb{P}^{p-1}$ is set to be 1 , and for $l=$ $1, \ldots, i-1$, the coordinate of $\Lambda_{l}^{i+k_{i}-j}$ is set to be 1 if the same coordinate of $\Lambda_{l}^{i+k_{i}-(j-1)}$ is 1 .

This homotopy is a deformation of square system of size

$$
p+j-1+\sum_{l=1}^{i-1}\left(p+k_{l}-1\right)
$$

and it is straightforward that any solution of the system in (12) induces a solution of (13) when $t=0$. Those paths of the homotopy in (13) emanating from those solutions lead to, at $t=1$, a set of solutions of

$$
\begin{array}{cc}
K_{1} X_{\mathbf{b}^{j}} \Lambda_{1}^{i+k_{i}-j} & =0 \\
\vdots & \tag{14}\\
K_{i-1} X_{\mathbf{b}^{j}} \Lambda_{i-1}^{i+k_{i}-j} & =0 \\
\hat{K}_{j}^{1} X_{\mathbf{b}^{j}} \Lambda_{i+k_{i}-j}^{i+k_{i}-j} & =0
\end{array}
$$

Continuing those steps successively from $j=2$, when we reach $j=k_{i}$, the solutions at $t=1$ provide a set of p-planes in the form $X_{\mathbf{a}^{i}}$ that meet L_{1}, \ldots, L_{i}.

Example 8. In Example 7, the homotopies of the chain

$$
\begin{aligned}
& {[123] } \underbrace{\stackrel{3}{\longrightarrow}(124)}_{\text {level } 1} \xrightarrow{3}(125) \xrightarrow{3}[126] \\
& \underbrace{\stackrel{2}{\longrightarrow}(136) \xrightarrow{2}(146) \xrightarrow{3}[147]}_{\text {level } 2} \\
& \underbrace{\stackrel{1}{\longrightarrow}(247) \xrightarrow{2}(257) \xrightarrow[\longrightarrow]{3}}_{\text {level } 3}[258]
\end{aligned} \cdots, \cdots
$$

at the third level with $K_{3}:=\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]^{T}$ are

[147]	
\downarrow	
(247)	$\left[\begin{array}{r} K_{1} X_{(2,4,7)} \Lambda_{1}^{5}=0 \\ K_{2} X_{(2,4,7)} \Lambda_{2}^{5}=0 \\ \left\{(1-t)\left[e_{2}, e_{4}, e_{7}\right]^{T}+t\left[e_{2}, v_{5}, e_{7}\right]^{T}\right\} X_{(2,4,7)} \Lambda_{5}^{5}=0 \end{array}\right.$
(257)	$\left[\begin{array}{r} K_{1} X_{(2,5,7)} \Lambda_{1}^{4}=0, \\ K_{2} X_{(2,5,7)} \Lambda_{2}^{4}=0 \\ \left\{(1-t)\left[e_{2}, e_{5}, e_{7}, v_{5}\right]^{T}+t\left[e_{2}, e_{5}, v_{4}, v_{5}\right]^{T}\right\} X_{(2,5,7)} \Lambda_{4}^{4}=0, \end{array}\right.$
$\stackrel{\downarrow}{\stackrel{\downarrow}{2}} \times$	$\left[\begin{array}{r}K_{1} X_{[2,5,8]} \Lambda_{1}^{3}=0, \\ K_{2} X_{[2,5,8]} \Lambda_{2}^{3}=0, \\ \left\{(1-t)\left[e_{2}, e_{5}, e_{8}, v_{4}, v_{5}\right]+t\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]\right\} X_{[2,5,8]} \Lambda_{3}^{3}=0,\end{array}\right.$

where

$$
\Lambda_{1}^{5}, \Lambda_{1}^{4}, \Lambda_{1}^{3}=\left[\begin{array}{l}
* \\
* \\
1
\end{array}\right], \quad \Lambda_{2}^{5}, \Lambda_{2}^{4}, \Lambda_{2}^{3}=\left[\begin{array}{l}
* \\
* \\
1
\end{array}\right],
$$

and $\quad \Lambda_{5}^{5}=\left[\begin{array}{c}1 \\ * \\ *\end{array}\right], \quad \Lambda_{4}^{4}=\left[\begin{array}{c}* \\ 1 \\ *\end{array}\right], \quad \Lambda_{3}^{3}=\left[\begin{array}{c}* \\ * \\ 1\end{array}\right]$.

Write $\widehat{K}_{1}^{t}=(1-t)\left[e_{2}, e_{4}, e_{7}\right]^{T}+t\left[e_{2}, v_{5}, e_{7}\right]^{T}$. Then,

$$
\begin{aligned}
\widehat{K}_{1}^{t} X_{(247)} \Lambda_{5}^{5} & =\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
* & * & * & * & * & * & * & * \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{1} & 1 & 0 \\
& x_{2} & 1 \\
& x_{3} & x_{4} \\
& x_{5} \\
0 & & x_{6} \\
x_{7} \\
& & 0
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
x_{1} & 1 & 0 \\
\star & \star & \star \\
0 & 0 & x_{7}
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Obviously, $\lambda_{3}=0$ for all $t \in[0,1]$, and, as assigned, $\lambda_{1}=1$ for all $t \in[0,1]$. Let $x_{1}^{(1)}, \ldots, x_{7}^{(1)}, \lambda_{1}^{(1)}(=1), \lambda_{2}^{(1)}, \lambda_{3}^{(1)}(=0)$ be a solution of $\widehat{K}_{1}^{1} X_{(247)} \Lambda_{5}^{5}=0$. Now, for $\widehat{K}_{2}^{t}:=(1-t)\left[e_{2}, e_{5}, e_{7}, v_{5}\right]^{T}+t\left[e_{2}, e_{5}, v_{4}, v_{5}\right]$ at $t=0$,

$$
\left.\begin{array}{rl}
\widehat{K}_{2}^{0} X_{(257)} \Lambda_{4}^{4} & =\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
* & * & * & * & * & * & * & *
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{1} & 1 & 0 \\
& x_{2} & 1 \\
& x_{3} & x_{4} \\
y & x_{5} \\
0 & & x_{6} \\
x_{7} \\
& & \\
& =\left[\begin{array}{ccc}
x_{1} & 1 & 0 \\
0 & y & x_{5} \\
0 & 0 & x_{7} \\
\star & \star & \star
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]
\end{array}\right] \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

As assigned, $\lambda_{2}=1$ and obviously $\lambda_{3}=0$, and the new variable y must be zero. And, since

$$
x_{1} \lambda_{1}+1=0
$$

$x_{l}=x_{l}^{(1)}$ for $l=1, \ldots, 7$, along with $\lambda_{1}=-\frac{1}{x_{1}^{(1)}}, \lambda_{2}=1, \lambda_{3}=0$, is a solution of $\widehat{K}_{2}^{0} X_{(257)} \Lambda_{4}^{4}=0$. Similarly, with $\widehat{K}_{2}^{1}=\left[e_{2}, e_{5}, v_{4}, v_{5}\right]^{T}$, let $x_{1}^{(2)}, \ldots, x_{7}^{(2)}, y^{(2)}, \lambda_{1}^{(2)}$,
$\lambda_{2}^{(2)}(=1), \lambda_{3}^{(2)}$ be a solution of

$$
\begin{aligned}
\widehat{K}_{2}^{1} X_{(257)} \Lambda_{4}^{4} & =\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & *
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{1} & 1 & 0 \\
& x_{2} & 1 \\
& x_{3} & x_{4} \\
y & x_{5} \\
0 & & x_{6} \\
x_{7} \\
& & \\
& =\left[\begin{array}{ccc}
x_{1} & 1 & 0 \\
0 & y & x_{5} \\
\star & \star & \star \\
\star & \star & \star
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right] \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Then for $\widehat{K}_{3}^{t}:=(1-t)\left[e_{2}, e_{5}, e_{8}, v_{4}, v_{5}\right]^{T}+t\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]$ at $t=0$,

$$
\begin{aligned}
\widehat{K}_{3}^{0} X_{[258]} \Lambda_{3}^{3} & =\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
* & * & * & * & * & * & * & * \\
* & * & * & * & * & * & * & *
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
x_{1} & 1 & 0 \\
& x_{2} & 1 \\
& x_{3} & x_{4} \\
y & x_{5} \\
0 & & x_{6} \\
& & x_{7} \\
z
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
x_{1} & 1 & 0 \\
0 & y & x_{5} \\
0 & 0 & z \\
\star & \star & \star \\
\star & \star & \star
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\lambda_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

Then $\lambda_{3}=1$, as assigned, implies $z=0$. On the other hand, since

$$
y \lambda_{2}+x_{5}=0 \text { and } x_{1} \lambda_{1}+\lambda_{2}=0
$$

$x_{l}=x_{l}^{(2)}$ for $l=1, \ldots, 7, y=y^{(2)}, \lambda_{2}=-\frac{x_{5}^{(2)}}{y^{(2)}}$, and $\lambda_{1}=-\frac{\lambda_{2}}{x_{1}^{(2)}}$ is a solution of $\widehat{K}_{3}^{0} X_{[258]} \Lambda_{3}^{3}=0$.

Remark 2. In Example 8, \widehat{K}_{1}^{1} defines a 5 -plane L_{3}^{1} containing $L_{3}, \widehat{K}_{2}^{1}$ defines a 4 -plane L_{3}^{2} containing L_{3}, and $\widehat{K}_{3}^{1}=K_{3}$ represents L_{3}. So the strategy behind the homotopies we construct between intermediate nodes is the following. To find the 3 -planes in the form of $X_{[258]}$ which meet L_{1}, L_{2}, L_{3} (those $X_{[258]}$ are in $\sigma_{3} \bullet \sigma_{3} \bullet \sigma_{3} \bullet$ $\Omega(2,5,8)$), we first find the 3 -planes $X_{(247)}$ which meet L_{1}, L_{2}, L_{3}^{1} (those $X_{(247)}$ are in $\left.\sigma_{3} \bullet \sigma_{3} \bullet \sigma_{1} \bullet \Omega(2,4,7)\right)$. Then we find the 3-planes $X_{(257)}$ which meet L_{1}, L_{2}, L_{3}^{2} (those X 's are in $\left.\sigma_{3} \bullet \sigma_{3} \bullet \sigma_{2} \bullet \Omega(2,5,7)\right)$. Ultimately, we find the 3-planes $X_{[258]}$ which meet L_{1}, L_{2}, L_{3}.
4. Numerical results. An implementation of a previous version of the Pieri homotopy algorithm for numerical Schubert calculus [4] exists in the module of the extended version of PHCpack in [10] that also provides the SAGBI homotopy proposed in [3] for solving general problems in enumerative geometry numerically. In general, as reported in [4], the Pieri homotopy algorithms are much superior in speed as well as the range of applications than the SAGBI homotopies. We therefore compare only the results of the implementation of our algorithm with those of the code in PHCpack. All computations were carried out on a 400 MHz Intel Pentium II CPU with 256 MB of RAM, running on SunOS 5.6. In all the tables below \#hty represents the total number of homotopies we followed in the corresponding cases, and $\mathbf{W u}$ is the symbol representing our code.

1. $k_{i}=1$ for all i, as shown in Table 1.

Table 1

m	p	\#soln	\#hty	Wu	PHC
3	2	$\mathbf{5}$	21	220 ms	720 ms
4	2	$\mathbf{1 4}$	63	1 s 270 ms	5 s 50 ms
3	3	$\mathbf{4 2}$	183	13 s 420 ms	41 s 480 ms
5	2	$\mathbf{4 2}$	195	8 s 870 ms	39 s 870 ms
6	2	$\mathbf{1 3 2}$	360	13 s 330 ms	1 m 13 s
7	2	$\mathbf{4 2 9}$	1196	1 m 16 s	8 m 14 s
4	3	$\mathbf{4 6 2}$	1110	1 m 58 s	8 m 59 s
8	2	$\mathbf{1 , 4 3 0}$	4,056	7 m 44 s	53 m 2 s
9	2	$\mathbf{4 , 8 6 2}$	13,988	38 m 11 s	6 h 29 m 1 s
5	3	$\mathbf{6 , 0 0 6}$	14,683	57 m 59 s	7 h 53 m 28 s
6	3	$\mathbf{8 7 , 5 1 6}$	217,276	28 h 44 m 13 s	-

The code in PHCpack requires a much bigger RAM than our code in all of the cases. For instance, for $(m, p)=(4,3)$ above, PHC needs more than $7,044 \mathrm{~KB}$ whereas $\mathbf{W u}$ only needs 996 KB .
2. $\boldsymbol{k}_{\boldsymbol{i}}>1$ for certain \boldsymbol{i} 's, as shown in Tables $\mathbf{2 - 1 0}$. The first column of each table shows the numbers of all those k_{i} 's.

Table 2

$$
(m, p)=(3,2)
$$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
321	$\mathbf{1}$	6	40 ms	470 ms
222	$\mathbf{1}$	6	60 ms	550 ms
2211	$\mathbf{2}$	9	80 ms	1530 ms
21111	$\mathbf{3}$	13	130 ms	2 s 290 ms

Table 3
$(m, p)=(3,3)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
333	$\mathbf{1}$	9	160 ms	2 s 250 ms
3222	$\mathbf{1}$	9	250 ms	5 s 70 ms
33111	$\mathbf{1}$	9	200 ms	4 s 420 ms
32211	$\mathbf{2}$	13	490 ms	8 s 120 ms
22221	$\mathbf{3}$	21	870 ms	10 s 480 ms
222111	$\mathbf{6}$	32	1 s 160 ms	20 s 670 ms
2211111	$\mathbf{1 1}$	50	3 s 310 ms	42 s 190 ms
21111111	$\mathbf{2 1}$	92	7 s 80 ms	1 m 10 s 830 ms

Table 4
$(m, p)=(4,2)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
2222	$\mathbf{3}$	20	220 ms	6 s 750 ms
3311	$\mathbf{2}$	12	150 ms	4 s 730 ms
4211	$\mathbf{1}$	8	60 ms	3 s 70 ms
32111	$\mathbf{3}$	16	240 ms	6 s 850 ms
41111	$\mathbf{1}$	8	80 ms	2 m 510 ms
221111	$\mathbf{6}$	30	680 ms	14 s 240 ms
311111	$\mathbf{4}$	20	380 ms	8 s 970 ms
2111111	$\mathbf{9}$	41	910 ms	16 s 460 ms

Table 5
$(m, p)=(4,3)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
44211	$\mathbf{1}$	12	330 ms	25 s 550 ms
43311	$\mathbf{2}$	16	750 ms	53 s 700 ms
43221	$\mathbf{2}$	17	730 ms	1 m 9 s 320 ms
33222	$\mathbf{4}$	29	1 s 730 ms	1 m 39 s 800 ms
222222	$\mathbf{1 6}$	120	7 s 340 ms	3 m 57 s 880 ms
2222211	$\mathbf{2 6}$	166	15 s 510 ms	9 m 26 s 530 ms
22221111	$\mathbf{4 5}$	226	25 s 300 ms	15 m 20 s 820 ms
22211111	$\mathbf{7 9}$	360	49 s 840 ms	25 m 8 s 680 ms
2211111111	$\mathbf{1 4 0}$	622	1 m 35 s 740 ms	41 m 42 s 700 ms
21111111111	$\mathbf{2 5 2}$	1,112	3 m 34 s 200 ms	1 h 16 m 48 s 270 ms

Table 6

$$
(m, p)=(5,3)
$$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
54321	$\mathbf{2}$	20	1 s 240 ms	6 m 0 s 660 ms
44421	$\mathbf{3}$	30	2 s 50 ms	8 m 12 s 730 ms
44322	$\mathbf{4}$	37	3 s 340 ms	9 m 23 s 770 ms
43332	$\mathbf{5}$	49	4 s 230 ms	11 m 30 s 110 ms
33333	$\mathbf{6}$	65	5 s 80 ms	10 m 21 s 130 ms
543111	$\mathbf{3}$	23	1 s 660 ms	6 m 46 s 850 ms
5421111	$\mathbf{4}$	28	1 s 970 ms	9 m 55 s 900 ms
333321	$\mathbf{1 4}$	118	12 s 540 ms	24 m 29 s 30 ms
3222222	$\mathbf{6 0}$	451	1 m 2 s 180 ms	1 h 14 m 22 s 370 ms

Table 7
$(m, p)=(5,2)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
4222	$\mathbf{2}$	16	270 ms	24 s 560 ms
5311	$\mathbf{1}$	10	210 ms	10 s 280 ms
3322	$\mathbf{3}$	23	360 ms	35 s 40 ms
22222	$\mathbf{6}$	44	1 s 20 ms	1 m 14 s 520 ms

Table 8
$(m, p)=(5,4)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
44444	$\mathbf{1}$	20	2 s 490 ms	49 m 2 s 760 ms
553322	$\mathbf{3}$	33	6 s 480 ms	1 h 48 m 10 s 470 ms
443333	$\mathbf{9}$	102	22 s 170 ms	2 h 50 m 18 s 640 ms
544322	$\mathbf{4}$	42	7 s 950 ms	2 h 14 m 59 s 90 ms
4443221	$\mathbf{1 8}$	145	45 s 710 ms	-
4433222	$\mathbf{3 2}$	261	1 m 25 s 430 ms	-
2222222222	$\mathbf{3 , 3 9 6}$	25,938	5 h 4 m 39 s 444 ms	-

Table 9
$(m, p)=(6,3)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
333333	$\mathbf{4 0}$	413	1 m 6 s 560 ms	3 h 22 m 45 s 430 ms
443322	$\mathbf{2 4}$	208	30 s 920 ms	-
433332	$\mathbf{3 0}$	286	40 s 650 ms	-
3333222	$\mathbf{1 0 4}$	830	2 m 20 s 260 ms	-
222222222	$\mathbf{8 7 6}$	6,547	30 m 22 s 470 ms	-

Table 10
$(m, p)=(6,4)$

$\left[k_{1}, \ldots, k_{n}\right]$	\#soln	\#hty	Wu	PHC
664422	$\mathbf{3}$	37	10 s 0 ms	-
654333	$\mathbf{6}$	70	22 s 850 ms	-
554433	$\mathbf{1 0}$	123	45 s 870 ms	-
444444	$\mathbf{1 5}$	220	1 m 10 s 440 ms	22 h 58 m 54 s 70 ms
33333333	$\mathbf{7 9 0}$	8,413	1 h 15 m 45 s 778 ms	$>148.5 \mathrm{~h}$

As we can see from the results above, our novel approach of employing the Pieri homotopy algorithm for the numerical Schubert calculus has made a considerable advance in speed. And, in all the cases we have tried, the storage requirement for our code is much smaller than that of the existing code. The algorithm is particularly valuable when $k_{i}>1$ appears.

REFERENCES

[1] W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry, Vol. II., Cambridge University Press, Cambridge, UK, 1968.
\rightarrow S. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly, 79 (1974), pp. 10611082.
[3] B. Huber, F. Sottile, and B. Sturmfels, Numerical Schubert calculus, J. Symbolic Comput., 26 (1998), pp. 767-788.
[4] B. Huber and J. Verschelde, Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control, SIAM J. Control Optim., 38 (2000), pp. 12651287.
\rightarrow T. Y. Li, T. Sauer, and J. A. Yorke, The cheater's homotopy: An efficient procedure for solving systems of polynomial equations, SIAM J. Numer. Anal., 26 (1989), pp. 1241-1251.
[6] A. P. Morgan and A. J. Sommese, Coefficient-parameter polynomial continuation, Appl. Math. Comput., 29 (1989), pp. 123-160.
[7] A. P. Morgan and A. J. Sommese, Errata: "Coefficient-parameter polynomial continuation" [Appl. Math. Comput. 29 (1989), no. 2, part II, 123-160], Appl. Math. Comput., 51 (1992), p. 207.
[8] A. J. Sommese and C. W. Wampler, Numerical algebraic geometry, in The Mathematics
of Numerical Analysis, Park City, Utah, 1995, J. Renegar, M. Shub, and S. Smale, eds., Lectures in Appl. Math. 32, AMS, Providence, RI, 1996, pp. 749-763.
[9] F. Sottile, Pieri's formula via explicit rational equivalence, Canad. J. Math., 49 (1997), pp. 1281-1298.
[10] J. Verschelde, Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software, 25 (1999), pp. 251-276.

[^0]: *Received by the editors July 2, 2001; accepted for publication (in revised form) January 17, 2002; published electronically June 12, 2002.
 http://www.siam.org/journals/sinum/40-2/39175.html
 ${ }^{\dagger}$ Department of Mathematics, Michigan Sate University, East Lansing, MI 48824 (li@math.msu. edu). The research of this author was supported in part by NSF under grant DMS-0104009.
 \ddagger Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR 72204 (xxwang@ualr.edu). The research of this author was supported in part by the Visiting Scholar Foundation of Ministry of Education of China. Part of this author's work was done during a stay at the Key Laboratory for Symbolic Computation and Knowledge Engineering in China.
 ${ }^{\S}$ Department of Mathematics, Tamkang University, Taipei, Taiwan (wu@math.tku.edu.tw).

