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ABSTRACT 

In this paper, a dynamic-link rule base (DLRB) is introduced to 
the fuzzy inference systems for the purpose of speeding up and 
simplifying the fuzzy reasoning. Conventionally, a standard fuzzy 
inference system consists of a fuzzification interface, an inference 
engine, a fuzzy rule base and a defuzzification interface. The 
reasoning procedure of such an architecture always includes 
going through the entire rule base rule by rule, regardless of 
whether the rules are fired or not. It is therefore not very efficient. 
To overcome this shortcoming, this paper proposes a new 
reasoning mechanism by adding a dynamic-link rule base 
between the original rule base and the inference engine. The 
fuzzy inference system with a dynamic-link rule base is called a 
Dynamic-Link-Rule-Base-Fuzzy-Inference-System or DLRB-FIS 
in short. In the DLRB-FIS, only the fired rules, whose firing 
strengths are not equal to zero, are included for inference. The 
mathematical foundations, theorems and architecture of the 
DLRB-FIS are presented in this paper. A numeric example is also 
given for verifying the practicability of DLRB-FIS. The DLRB- 
FIS proposed in this paper has a general-purpose architecture. 
Therefore, it can be applied to many kinds of fields, such as fuzzy 
control, fuzzy image processing, fuzzy decision making, and 
fuzzy pattern recognition . . . etc. 

procedure in Figure 1 can be summarized as follows: First, the 
fuzzification interface converts the crisp input values to fuzzy 
values and feeds these fuzzified information into the inference 
engine. In where, secondly, the fuzzified information is compared 
with the premise parts of rules in the fuzzy rule base for 
computing the firing strength of each rule. Thirdly, inference 
engine uses the firing strength to determine the corresponding 
output fuzzy set. Finally, the fuzzy information inferred by the 
inference engine is sent to the defuzzification interface and 
converted to crisp output value. 

In most situations, the reasoning procedure progresses by going 
through the entire rule base and taking fuzzy implication on every 
rule regardless of whether the rules being dealt with are fired or 
not. Clearly, it takes a tremendous amount of computation time 
and reduces the efficiency of a fuzzy inference system. Especially, 
in the case of large-scale systems with large number of rules, the 
reasoning time may grow exponentially with a significant 
increase in the size of the rule base. Consequently, the fuzzy 
inference system may become unrealizable. In this paper, a new 
architecture of the fuzzy inference system was proposed. A 
dynamic-link rule base (DLRB) was introduced into the 
conventional fuzzy inference system for the purpose of 
dynamically skipping the unfired rules and linking the fired rules 
during the reasoning procedure. 

Keywords: f i z y  inference system, DLRB-FIS, dynamic-link rule 
base. 

1. INTRODUCTION 

In the real world, imprecision is one of the important contributing 
factors to human thinking and intelligence. For instance, consider 
a man-car-driving system. A driver does know how to handle a 
car by his hands and legs, but his brain does not precisely 
calculate the angle of the steering wheel, the speed of the car ... 
and so on. In fact, the control actions of human operators simply 
follow certain linguistic rules such as "IF something happens 
THEN do some actions". Since L. A. Zadeh introduced the fuzzy 
set in 1965 [ I ]  and approximated reasoning in 1972 [2], there had 
been a fundamental theory to deal with the linguistic information 
of human thinking mathematically. Nowadays, fuzzy inference 
systems based on the fuzzy set theory have been applied to a wide 
range of fields such as industrial process control [3], pattern 
recognition [4], management [ 5 ] ,  expert systems [6],  medical 
sciences [7] ... etc. Most of these applications use the fuzzy 
inference systems that have a standard architecture [8]. That is, 
they are organized by four main components: 1) fuzzy rule base, 
2) fuzzification interface, 3) fuzzy inference engine, 4) 
defuzzification interface. This standard architecture of fuzzy 
inference systems is shown in Figure 1. The fuzzy reasoning 
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Fig. 1. Conventional fuzzy inference system 

This paper is organized as follows: after the introduction, Section 
I1 describes the mathematical foundations of DLRB. Section 111 
presents two main theorems of DLRB, which constitute the basic 
principles for creating a DLRB-FIS. The architecture of DLRB- 
FIS and a dynamic-link algorithm for implementing the DLRB 
are given in Section IV. Section V presents some numeric 
examples and related discussions. Conclusions are drawn in 
Section VI. 

2. MATHEMATICAL FOUNDATIONS 

This section briefly describes the principles and definitions of 
fuzzy inference systems [1][2][8]. According to the results 
reported by Wang [9], a multi-input-multi-output (MIMO) fuzzy 
inference system can always be separated into a group of multi- 
input-single-output (MISO) fuzzy inference systems. The scope 
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of this paper is limited to the multi-input-single-output fuzzy 
inference system. 

Consider a fuzzy inference system that has n input variables 
x, E U ,  , i = 1, 2, ..., n, and one output variable y E V . Then the 
system can be denoted as a mapping f :  U + V , where 
U = U , x U , x  ... X U ,  c R "  istheinputspaceand V c R  isthe 
output space. 

Definition I :  Fuzzy Rule Base: A fuzzy rule base, RB = U R ' "  , 

is a union of N fuzzy rules. Each rule R'" can be expressed as 

R'I) : IF xI is X : l )  and x2 is XP) and . . . and x, is X:) 

N 

J = I  

(1) 
THEN y is Y o )  

where the fuzzy sets X:) in U, and Y o )  in V are called input 
and output linguistic labels (or linguistic values), and 
characterized by the membership functions X,(')(x,), and Y ' " ( y ) ,  

respectively. 

Definition 2: Firing Strength: The firing strength of the j-th rule 
is defined as 

Y E V  

R ( J ) ( ~ )  = n X , q x , )  
,= I  

where x = [x, x2 . . . xnIT denotes the input vector, n denotes 
the "and" operators such as min, algebra product or any T-norm 

Definition 3: Completeness: A fuzzy rule base, R, is said to be 
complete if for any value of x E U , there at least exists a fuzzy 
rule R") such that its firing strength is not equal to zero. i.e. 
Vx E U ,  3j, s.t. R'"(x) # 0 . 

Definition 4: Consistency: A fuzzy rule base is said to be 
consistent if for a certain value of x, E U , there exists a fuzzy 

rule R'k) with R ( A ) ( x o )  = 1 , then for all j # k ,  R'')(x0) = 0 .  

Definition 5: Pseudo Trapezoid-Shaped (PTS) Function [ I  OJ and 
PTS Fuzzy Set: Define the continuous function 

P I .  

{&I), B'*', . . .,P 

as PTS function, where a 5 b < c 5 d , h is the height of F, I(x) 
is a strictly monotone increasing function in [a, b), D(x) is a 
strictly monotone decreasing function in (c, 4. If a fuzzy set F 
has a PTS membership function, denoted by 
F(x)  = F(x;a, b , c , d , h ) ,  it is called the PTS fuzzy set. When h = 

1, i.e. the PTS fuzzy set F is normal, the membership function of 
F can be simplified as F(x)  = F ( x ; a , b , c , d ) .  Obviously, the 
fuzzy sets with S-shape, Z-shape, PI-shape, triangular shape and 
trapezoidal shape membership functions are all PTS fuzzy sets. 

Definition 6: Complete partition: The linguistic label set 
{A"), A'", .. . , A'"} is said to be a complete partition on U if for 
any x E U , there at least exists A"', 1 5 I I L ,  such that 
A'"(x) # 0 .  

Definition 7: Consistent partition: The linguistic label set 
{A"), A'", . . . , A'L)}  is said to be a consistent partition on U if for 

some value of x, E U ,  there exists A'"&) = I ,  then for all 

l # k ,  I < I < L ,  A ' " = O  

3. MAIN THEORY 

In reality, the first step of designing a fuzzy inference system is to 
determine how to partition the input and output space, and define 
the corresponding linguistic labels. In this paper, the input space 
U ,  ( i  = 1, 2, ..., n) and the output space V are partitioned into L, 
and Lo fuzzy regions, respectively. The corresponding input and 
output linguistic labels are defined in the following table: 

Variables Linguistic labels 

with j = I ,  + ( I ,  - 1)n L, and 1, = 1.(j) . 
,=I " [ ,:+I 1 

According to the results of Zeng and Singh's work (Lemma 1 and 
Lemma 2 in [IO]), we can obtain the following lemma directly. 

Lemma I :  Let the fuzzy sets A:"' ( I ,  =I ,  2 ,..., L,)  in 
U ,  = [u,,ii;] ( i  = 1, 2, ..., n )  be normal, complete and consistent 
partitions with Pseudo Trapezoid-Shaped (PTS) membership 
functions 

where I ,  = I, 2, ..., L, and A,"' < A,'" < . . . < A,'"),Vi, then 

1) _ I  = a,"), U, = d,",' 

2) a,"' < a,") < ... < a,(&) and d,") < d,") < ... < d,@') 

3)  c,(l,-l) - < a,'4) < d , ( k l )  5 b,'lo c,(r,) 

Proof Omitted. 

Before introducing the DLRE! into the fuzzy inference system, we 
first present some important results. 
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Theorem I :  Let input linguistic labels of i-th input variable x, , 
i.e. (I, =1,2 ,..., 4 )  in U, =k,,ii,] (i = 1, 2, ..., n), be normal, 
complete, consistent partitions with PTS membership functions 

A,(/#)(x,) = A,('l)(x .a ( I ! )  b,(/l),c,(',),d,(/l)) 
i '  I 

where I, =1,2 ,..., L, .  Then for any x, E U ,  , the membership 
grades are given as 

1) ifx, E [~ , ( '~ ) ,d , ( '~ - ' ) ] , l ,  E {I, 2, ..., L , } ,  then 

D,'"(x, ), k = I i  - 1  
A,yX,) = p ( X i ) ,  k = I ,  1 0, k E { l ,  ..., 1 , -2 , l ,+ l ,  ..., L,}  

2) ifx, E (d,("-'),b,(')],l ,  E {I, 2 ,..., L,} , then 

3)ifx, ~(b , ( ' ) , c , ( ' ) ] , l ,  ~ { 1 , 2  ,..., L,},then 

1, k = 1, 
0, k # I, 

Ai (k) (~ i )  = 

4) ifx, E (c,"), ~ ~ ( " + ~ ) ] , l ,  E {I, 2, ..., L,}  , then 

5 )  ifx, E (a,""", d,'"'],l, E {I, 2, ..., L,} , then 

D,(k)(x, 1, k = I, 
A,'"(x,) = p ( X , ) ,  k = I , + l  

0, k E { 1 ,  ...) 1,-2,1,+1, ..., L,} 1 
where d,(k) = U,"), Ai(k)(x,) = D,'"(x,) = 0 ,  for k < 1, and 

a,'" =d,(&),  Ay)(x,)=I:(x,)=O, f o r k > L i .  

Proof Since the proof of 4) is similar to the proof of 2), and the 
proof of 5 )  is similar to the proof of I), only the proof of I), 2) 
and 3) is given in the following. 

1) if x, E [a,'"',d,'"-l'],I, E {1,2 ,..., L,} , according to Lamma 1(1), 

(2) and the definition of A,""(x,;a,'"',b,'"',c,'"',d,".') we have 

&-2' 5 5 ,(I,) 5 < d"'-" (1 , )  < c( I , )  < a",+l' 
, - I  < b , - , - - ,  

that is 

i)c,'"-') <x, <d,('#-'), it impliesA,'"(x,)= D,'"(x,)fork=l, - 1  

ii) a y )  < x, 

iii) ,,(I) < ... < d,"'-" < x, < a:+') < ... < a,(&) , it implies 

Ay)(x,) = 0,for k E (1 , . . . , I ,  -2,I, + I  ,..., L,} 

Similarly, the proof of 5 )  can be given in the same way. 

b y ) ,  it implies A,@)(x,) = Iy)(x,)  for k = I ,  

2) if x, E (d?-'),b>)], I, E {I, 2, ..., L,} , we have 

c,'"-l) 5 5 dy1) < x i  5 5 < q + I )  

therefore 

i) U?) < x, < b y ) ,  this implies Ay)(x,) = Zy)(x,)for k = I ,  

ii) ,,(I) < .. . < d,('f-l) < x, < a,('!+') < .. . < a,('-(), it 

implies A,")(x,) = 0, for k # I, . 

Similarly, the proof of 4) can be given in the same way. 

3) if x, E (b,'"', c,'"], I, E {1,2, ..., L,}  , then we have 

dp-1' <,,(',) < x, < q,) 5 - < 

hence 

i) b,'") 5 x, 5 c y ) ,  this implies A,'")(x,) = 1 fork = I,  

ii) ,,(I) < .. . < dy-1) < x, < a,'"+" < . .. < a#('() , it 

implies A,'X'(x,) = 0, fork f I, . 

Based on theorem 1, we have the following theorem. 

Theorem 2: Let the input linguistic labels A y )  in U, (i = 1,2, ..., 
n, I ,  = 1, 2, ..., L, ) be PTS, normal, consistent and complete, 
then 

1) The fuzzy rule base 

is complete. Where N = n L, and j = I ,  + ( I ,  - I ) n L h  
,=I ,=I " [ ,:+I ] 

2) For any input value of X E U  , there are at most 2" rules 
which have nonzero firing strength. 

Proof: 

1) If n linguistic label sets {A,'"' I i = 1,2, ..., L,} , i = 1,  2, ..., n, 
are all complete partitions, then for any value of inputsx, E U, , 
there at least exists a label, say A:) , such that A:' f 0 . That is, 

there at least exists a rule R ( / ) ,  j = 1. + (k, - I ) n L h  , whose 
,= I  " [ h l + l  ] 

firing strength R("(x)  = n A , y x , )  f 0 ,  i.e., R is complete. 

2) Since A,'")'s are PTS, complete and consistent, from Lemma 1, 

the input space U, = [E# ,  C,] = [a,'", d,'Li'], which can be rewritten 
as a union of (4L, + 1) sub-interval, i.e. 

,=I 

Lj 

/,=I 

U, = U { [a,'" ) , d,"" ] [ d y ) ,  by '1 [b,'"' ,.,'" ' 1  [ay'+'), d,'k ' 1  

where = d:) . According to Theorem 1, we can see that 
for any input variable xi E U, , there are at most 2 membership 

functions whose membership grades, A,'")(x,), are not equal to 
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zero. This implies that in the complete fuzzy rule base, R, there 
are at most 2" rules have been fired. 

4. ARCHITECTURE OF DLRB-FIS 

Figure 1 shows the basic configuration of the conventional fuzzy 
inference system. Based on Theorem 2, if the input linguistic 

of fired rules is significantly less than that of original rules. For 
example, let a complete and consistent PTS-FIS with n =  2 and 

Clearly, we can use only the index of each linguistic label to 
represent an individual rule, i.e. 

R(') : { Z l , 1 2 , - ~ ~ , I " } + I o ( j )  

Then, the whole fuzzy rule base be represented as 

labels are PTS, normal, consistent and complete, then the number R : I l  X I ,  x . . .x I"  +I, 

where4 ={1,2 , . . . ,L , } , i=l ,2 , . . . ,n , I~  ={C(1),1,(2);..,I,(N)}. 
L, = L, = 5 ,  then the number of rules in this FIS should be 
N = L, x L, = 2 5  . But according to Theorem 2, the number of 
fired rules, say N ,  , should be N ,  I 4 ,  it is consequently less 
than N. Therefore, it is reasonable to replace the original rules by 
the fired rules during the inference procedure for achieving higher 
efficiency. In this section, a new architecture of fuzzy inference 
system called Dynamic-Link-Rule-Base Fuzzy Inference System 
(DLRB-FIS) is proposed. The DLRB-FIS has six components: 1) 
original rule base, 2 )  rule selector, 3 )  dynamic-link rule base, 4) 
fuzzifier, 5 )  fuzzy inference engine, 6) defuzzifier. 

The configuration of DLRB-FIS is shown in Figure 2. The details 
of each component are described in the following. 

Rule Base 

I Selector 

Dynamic- 

Rule Base 

1 
4 4 

Fuzzy 
inference 
Engine 

Fuuification 
Interface f u n m i  ' 

information fuzzy input 
value information value 

Fig. 2. The architecture of a fuzzy inference system with DLRB 

A. Original Rule Base 

The original rule base, R, consists of a collection of fuzzy IF- 
THEN rules R""s, which is in the form of equation (2). In 
general, R can be expressed in the following form: 

N n L, R := U R ( 1 )  = UUR(/B.'2. 
,=I ,-I /,=I 

where lo =/,,(j)and j = l , + c  ( I ,  - l ) n L h  , N = n L ,  . In 
, = I  " [ ,,+I ] ,:I 

Figure 1, the (original) fuzzy rule base is the heart of the 
conventional FIS in the sense that the other three components are 
used to interpret these rules. However, in the proposed DLRB-FIS 
only the rules that have nonzero firing strength are inferred. 
Before introducing the DLRB into fuzzy inference systems, we 
propose an index oriented representation method for a fuzzy rule 
base. 

Based on the fuzzy theory [8], the fuzzy rule R(') described in 
equation ( 2 )  can be viewed as a fuzzy implication of 

B. Rule Selector 

The purpose of rule selector is to pick out the fired rules and 
reject the non-fired rules. The criteria of rule selection are 
summarized as the following crisp rules: 

IF X, E[u,"",~,('-"] THEN [, '={I, - l , I ,}  

IF X, E (d,('r-l),u,('+l)] THEN I, '= {I,} 

IF x, E (U!'"), U'?'] THEN I,'= {Z,, I, + 1) 

where I, ' form a set of dynamic input index. 

C. Dynamic-Link Rule Base 

The dynamic-link rule base, R', consists of a collection of fired 
fuzzy IF-THEN rules, which have nonzero firing strength. The 
index representation of R' can be expressed in the following 
form: 

R': I , 'x I, 'x ... x In'+ Io' 

where Z,,'= I , ( j )  j=I,'+c ( I , ' - l ) n L h  , I , ' E I , '  { 1 #:I [ ,,+I ] } 
According to Theorem 2, without the loss of generality, it is 
assumed that L, = L for alli . Then the number of rules in a 

conventional FIS is given by N = L", provided that it has PTS 
membership functions and a complete rule base. On the other 
hand, in the DLRB-FE, the number of rules is given by N I2" . 
Some values of N and the factor pairs {n. L }  are listed in Table 2. 
One can see that in the DLRB-FIS, the value of N is not related to 
changes in the value of L. However, in the conventional FIS, N 
increases exponentially along with the increase in n and L. 

Table 2. The number of rules 

The above description presents an interesting fact: In the 
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< 

The membership functions of x,  

= F ( x 2 ;  PI 7 PI, b2, p3) 
A : 2 ’ ( x 2 )  = F ( x Z ;  p29 p3. p 4 9  p5) 

= F ( x 2 ;  p49 p5, p 6 9  p7) 

) = F ( x 2 ;  p6 9 pl1 p8 3 p9) 

, A : 5 ’ ( x 2 )  = F ( x 2 ; p 8 , ~ 9 9 ~ 1 0 ~ ~ 1 0 )  

< 

I The membership functions of x, 

A,(”(x,  1 = FG,; a,, a,, a2, a3 1 
A,(’’(x,) = F(x,;a,,a3,a4,a5) 

= F(x,;a4,a5,a6,a7) 
A?’(x, 1 = F(xI;a,,a7, a,, a,) 

(XI 1 = 4% ; a,, a9 9 a,, 9 a,,, 1 

IYI Y2 Y3 Y4 YS 7 6  Y7 Y S  YY Y l O  YII Y12 YI3 Y14 

Fig. 5. The membership functions of the output 

By definition, the input and the output space are completely and 
consistently partitioned by the input and the output linguistic 
labels, respectively. Suppose that the IF-parts of the original 
fuzzy rule base consist of all possible combinations of input 
linguistic labels, and the THEN-parts are created by certain 
expertise. Then the original fuzzy rule base is complete and 
consistent. Table 1 shows the rule base in the form of a lookup 
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A,('' 8 ' 2 )  B(1) B(1) B(1) B(') 

Table 5 The DLRB at t, 

Moreover, if xI = k , ( t 2 )  = a2 andx, = k,( t , )  E (P7,p,) at time 
instance t ,  , then we have I l l =  (l}, Iz'= {4}and Io'= (7) .  
Therefore, the dynamic-link rule base at time instance t ,  has 
only one rule, as shown in Table 6: 

(1, 1 } + 7  { 1 , 2 } + 7  { l , 3 } + 7  

(2, 1) + 6 (2 ,2}  + 6 {2,3}  + 6 

{ 3 , l } + 5  ( 3 , 2 } + 4  { 3 , 3 } + 4  

{4,1}  + 3 (4,2}  + 3 {4,3}  + 2 

{ 5 , 1 } - + 2  ( 5 , 2 } + 1  { 5 , 3 } + 1  

Since at most 2 linguistic labels for each input variable are 
triggered, in this example, there are at most 2' = 4 rules are 
linked to DLRB for inferring. On the other hand, the conventional 
FIS has to process 25 rules. As a result, the computation load of 
the fuzzy inference engine of DLRB-FIS is much lighter than that 
of a conventional FIS. 

6. CONCLUSIONS 

The theory and the architecture of the fuzzy inference system 
with a dynamic-link rule base (DLRB) were proposed. In the 
conventional FIS, the number of fuzzy rules increases 
exponentially along with an increase in the number of input 
linguistic labels. However, in the DLRB-FIS, the number of fuzzy 
rules is independent from the number of input linguistic labels. 
Consequently, the rule base can be simplified and fuzzy reasoning 
speeded up. In a lot of systems, such as fuzzy control, hzzy 
decision making, fuzzy image processing . . . and so on, real-time 
implementation is one of the most significant factors in design 
requirements. Undoubtedly, for the purpose of minimizing the 
inference load in real-time implementation, the DLRB-FIS should 
be more effective than the conventional FIS. 

{ 1 , 4 } + 7  ( 1 , 5 } + 6  

(2 ,4}  + 5 {2,5}  + 5 

{ 3 , 4 } - + 4  { 3 , 5 } + 3  

(4 ,4}  + 2 {4,5}  -+ 2 

{5 ,4}+1  { 5 , 5 } + 1  
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