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Abstract 
 

Compare CMOS Logic with Pass-Transistor Logic, 
a question was raised in our mind: “Does any rule exist 
that contains all good?” This paper reveals novel logic 
synthesis and optimization procedures for full swing 
arbitrary logic function. The novel procedures are called 
Prioritized Prime Implicant Patterns Puzzle (PPIPP). 
Following the proposed procedures, we can get a new 
hybrid high performance logic circuit family, which has 
low power consumption, low power-delay product, area 
efficiency and suitable for low supply voltage. It has full 
swing signal in all nodes and high robustness against 
transistor downsizing and voltage scaling. 
 

Index Term – Low power design, full-swing logic, hybrid 
logic, prime implicant, VLSI design. 
 
 

1. Introduction 

On logic circuit design level, a proper choice of a 
circuit style for implementing combinational logic is an 
important issue. For example, in the NOR gate 
implementation, as shown in Fig. 1, the static CMOS logic 
circuit structure seems the better logic circuit family than 
the DVL [5], DPL [7] or any other logic circuit families. 

But when it comes to 2-input XOR logic 
implementation, as shown in Fig. 1, the static CMOS logic 
circuit family becomes the worst choice. This result may 
confuse someone in logic circuit family selecting. 

In general, the static CMOS logic circuit structure 
can be seem as a special case of pass transistor logic 
network that the pass variables input signals are just “1” 
and “0”, and the input signals xi and iX  are connected to 
drive the gate of the MOS transistor as shown in Fig. 1(a). 

And shown in Fig. 1(b), the input signals xi and iX  
can be used as the control variables or pass variables of 
the pass-transistor network. The control variables are 
connected to drive the gate of the MOS transistors. The 
pass variables are connected to the sources/drains of the 
MOS transistors. 
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(a). CMOS Logic Structure Style. 
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       (b) Full Swing Pass-Transistor Logic Style.  

Fig. 1. Compare CMOS with PTL, a question was raised 
in our mind: “Does any rule exist that contains all good?” 
 

This paper is organized as follows. In Section 2, we 
show the fundamental circling concepts, as the 
background of the proposed method. Then in Section 3, 
the proposed method is shown and demonstrated by 
examples. In Section 4, process some comparison. Finally 
conclude the major findings and outline the future work. 
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2. Basic Circling Concepts 
The ideas are based upon the pass transistor logic 

circuit implementation. As shown in Fig. 3, we use 2-input 
XOR function as a circuit implementation example. The 
detail design flow of the circuit will be shown in the 
following. In order to describe the basic raw circling 
procedures clearly, some basic notations and circuit 
implementation procedures [3] -- Square, Modified K-map, 
Loop Circling, Selected Set, Implicate Loop and Circuit 
Implementation Methods are shown as the following: 

2.1. Square 
The Karnaugh map (K-map) of a function specifies 

the value of the function for every combination of values 
of the independent variables. The Square indicates a 
function output state on the K-map. As shown in Fig. 2(a), 
the output state of the Square for {A=B=0}, plotted in the 
upper left on the K-map, is “1”. 

2.2.  Modified Karnaugh map (K-map) 
The Modified K-map is almost the same with the K-

map, except that not only the power lines (“1”and “0”) but 
also the input variables (“Xi” and “ iX ”) are listed in the 
Square to represent the function result as shown in Fig. 
2(b). It is straightforward to implement the circuit based 
on the Static CMOS Logic according to the K-map. And 
the Modified K-map provides us the thoughts of 
implementation of the new logic synthesis and 
optimization procedures. 

2.3. Loop Circling  
The Loop Circling is the method to implement the 

PTL circuit. A loop contains one or more squares on the 
Modified K-map. For example, the Square {A=B=0} and 
Square {A=1, B=0} combine to form the Loop (i) by 
looping the corresponding A’s on the Modified K-map in 
Fig. 3(a). A loop may contains all squares that are never 
selected by other loops (Loop(iii) in Fig. 3(a)), or part 
squares are selected by other loop ( Square {A=B=0} in 
Loop(ii) in Fig. 3(a) is selected by Loop(i)).  

2.4. Selected Set 
We define a set of controlling and passing variables 

that ever used for circuit implementation, call Selected Set. 
Which means we can choose the variables in the Selected 
Set for implementing new circuit without extra inverters to 
generate the newly complementary signals. The initial 
values in the Selected Set are {0, 1, Xi}. For example, the 
initial variable in the Selected Set is {0, 1, A, B} in Fig. 
3(a). After every loop circling, we put the new selected 
passing and controlling variables in the Selected Set 
immediately. For example, the Selected Set is {0,1,A, 
B, B } after Loop (i) is circled. The select of variables in 
the Selected Set to implement new circuit is based on the 
choosing priority “0”>”1”>”Xi”>” iX ” (in the Selected Set) 
>” iX ” (not in the Selected Set). 
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Fig. 2. (a) The K-map of the XOR Function 
(b) The Modified K-map of the XOR Function. 
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Fig. 3. (a), (b) The original circling procedures of 
the 2-input XOR Modified K-map. 

 

2.5. Implicate Loop 
An Implicate Loop may include partial or all squares 

that are already chosen by a selected Loop. For example 
as in Fig. 3(a), the Loop (ii) can be seen as a Implicate 
Loop to the Loop (i), cause the Square {A=0, B=0} is 
circled again. And due to the Loop (iii) (the Square{A=1, 
B=1}) is not circled by any other selected loops, so it is a 
Non-Implicate Loop. 

2.6. Circuit Implementation Methods 
  For pass transistor circuit implementation, we will 

only concern those squares are newly choose in the 
current loop. If a loop contains newly outputs states has 
both 1’s and 0’s (Loop (i) in Fig. 3(b)), its pass-transistor 
circuit switch is implemented by both NMOS and PMOS 
(a transmission gate is used). The PMOS is used to 
implement all 1’s loop (Loop (ii) in Fig. 3(b), the A=0, 
B=1 Square is only concerned) and the NMOS is used to 
implement all 0’s loop (Loop (iii) in Fig. 3(b)). 
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3. The Prioritized Prime Implicant Patterns 
Puzzle (PPIPP) 

Thus, it is possible to develop a synthesis and 
optimization procedure of the pass transistor logic circuit 
for arbitrary logic function and high performance 
applications. Originally circling procedures are restricted 
by K-map, only works under four variables [3]. And the 
circles are difficulty to pin down. So the paper improve 
the previously work then proposed the Prioritized Prime 
Implicant Patterns Puzzle (PPIPP). It clearly handles the 
higher variables problem. 

 

The priorities of prime implicant patterns are 
constructed by electrical characteristics, as shown in the 
previous section, ex. NMOS logic is better than PMOS, 
and the fewer input/control signals, the higher priority the 
prime implicant. In Fig. 4, it just briefly shows some 
template patterns. The priority order is priority 1>2>…>8. 
The proposed PPIPP arrange the prime implicant priority 
following the physical consideration, so it is superior to 
any other symbolic logic optimization and/or logic 
minimization methods.  
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Fig. 4. The priorities of prime implicant patterns are constructed by electrical characteristics. 

Priority 1    Priority 2          Priority 3             Priority 4            Priority 5 

Priority 6       Priority 7    Priority 8 
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And notice the proposed PPIPP has no sneak path. It 

is either not like a binary decision diagram (BDD) tree. In 
Fig. 5, the priorities of rest other 3-input variable prime 
implicant patterns are shown. Notice the prime implicant 
patterns can be shown as in Fig. 6. If the proposed PPIPP 
needs to process n-input (n>4) signal function, the K-map 
is no more a limitation. 

In Fig. 7, it processes 2-input NAND function then 
gets pure CMOS logic style circuit. And in Fig. 8, it 
processes 2-input XOR function then gets pass-transistor 
logic style circuit. 

From Fig. 7, Fig. 8 and Fig. 9, it reveals the proposed 
PPIPP produce hybrid logic style circuit. It combines the 
advantage of CMOS logic and pass-transistor logic. It has 
full-swing signal in all nodes and high robustness against 
transistor downsizing and voltage scaling. 

 
 

 
In the proposed PPIPP method, many prime implicant 

patterns may need some memory space. As shown in Fig. 
10, using bit field structures reduce to one-eighth-memory 
space effectively. 

 

4. Comparisons
Comparisons of the DVL, DPL, CMOS and new 

logic family through 2-input XOR logic functions are 
listed in Table.1. The comparisons are based on 0.35µm 
CMOS technology and post layout simulation for supply 
voltage at 1.5V. Possible transition combinations are 
simulated, and the time taken of the worst-case signal 
transition from input (50% level) to output (50% level) 
worst-case gate delay is applied as delay value. Power-
delay product is calculated as a quality measure for power 
efficiency. 
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Fig. 10. Using bit field structure to reduce the 
memory requirement effectively.  
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Fig. 11. Full swing 2-input XOR functions: 
(a) The proposed logic style. (b) The DPL structure. 
(c) The DVL structure. (b) The static CMOS structure. 

 
 

 

Table.1. Various logical circuits comparison results of the 
full swing 2-input XOR function.  

 
 

Due to the pass transistor circuits using the passive 
MOS switches to implement a given logic function, in 
order to measure the average power dissipation of the 
original circuit, some inverters are added in front of the 
input of the original circuits. For a special 2-input XOR 
function in Fig.11, the new circuit shown in Fig. 11(a) and 
also proven in literature [8], has advantages over DVL, 
DPL and static CMOS logic families in power, power-
delay product and area.  

Hundreds of circuit experiments have ever been 
processed and found it has the best performance in almost 
all aspects.  

 

 

5. Conclusions
In this paper, a novel logic circuit synthesis and 
optimization procedure, Prioritized Prime Implicant 
Patterns Puzzle (PPIPP), for arbitrary full swing logic 
function is proposed. The new proposed logic family 
proves to be superior to DVL, DPL and CMOS in all 
aspects with only a few exceptions. The advantages of the 
propose logic family are low power consumption, low 
power-delay product and area efficiency. It can clearly 
handle higher variables, is not limited by Karnaugh map. 
It’s robustness against transistor downsizing and voltage 
scaling makes it good for deep sub-micron VLSI usage. 
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 Delay-time 
(ns) 

Power 
(ôW) 

Normalize 
power-delay 

product 

Global size 
of 

transistors. 
Fig. 11a 0.446 7.946 1.00 3P + 4N 
Fig. 11b 0.366 11.35 1.17 4P + 4N 
Fig. 11c 0.432 10.55 1.79 4P + 4N 
Fig. 11d 0.643 15.05 2.72 6P + 6N 

struct bitfield32 { 
   minterm32 :1; 
   minterm31 :1; 
   minterm30 :1; 
……. 
   minterm02 :1; 
   minterm01 :1; 
} PI_unit; 
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