P4
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Tamkang University Institutional Repository

The Design and Implementation of a

Distributed Web Document Database *

Timothy K. Shih
Dept. of Computer Science and
Information Engineering
Tamkang University

Tamsui, Taiwan 251, R.O.C.
email: TSHIHOCS.TKU.EDU.TW

Abstract

Distance learning has become a very important mecha-
nism for virtual university operation. In order to realize such
an operation smoothly, it is necessary to consider distance
learning from three perspectives: administration, aware-
ness, and assessment. We are currently implementing
a virtual university environment according to these guide-
lines. In this paper, we propose a new Web documentation
database as a supporting environment of the Multimedia
Micro-University project '. The design of this database fa-
cilitates a Web documentation development paradigm that
we have proposed earlier. From a script description, to its
implementation as well as testing records, the database and
its interface allow the user to design Web documents as vir-
tual courses to be used in a Web-savvy virtual library. The
database supports object reuse and sharing, as well as ref-
erential integrity and concurrence. In order to allow real-
time course demonstration, we also propose a simple course
distribution mechanism, which allows the pre-broadcast of
course materials. The system is implemented as a three-
tier architecture which runs under MS Windows and other
platforms.

Key words: Multimedia Database, WWW, Virtual
University, Information Retrieval, Virtual Library,
Distance Learning

1 Introduction

Distance learning is a possible revolution of future ed-
ucation. With the growing amount of users of In-
ternet, Web documentation based course delivery be-
comes widely available. Distance learning is thus a

I Multimedia Micro-University is a joint research project with
the participation of researchers from the University of Pittsburgh,
USA, Tamkang University, Taiwan and the University of Aizu,
Japan.

Jianhua Ma and Runhe Huang
Dept. of Computer Software
The University of Aizu
Aizu-Wakamatsu City
965-8580 Japan

jianhua@u-aizu.ac.jp

trend toward future university. In order to facilitate
the teaching and learning environment, Web browsers,
audio/vedio communication tools, and data conferenc-
ing tools are widely developed. We have surveyed a
number of such systems and come out with a sugges-
tion guideline of the integration of virtual university
tools. We believe that, a well-considered virtual uni-
versity supporting system needs to meet the following
three criteria:

e Administration Criterion: Unlike Web document
based course delivery, a virtual university environment
needs to have administration facilities to keep admis-
sion records, transcripts, and so on. These adminis-
tration tools should be available to administrators, in-
structors, and students (e.g., checking transcript infor-
mation).

e Awareness Criterion: Distance learning is different
from traditional education. Since instructors and stu-
dents are separated spatially, they are sometimes hard
to “feel” the existence of each other. A virtual univer-
sity supporting environment needs to provide reason-
able communication tools such that awareness is real-
ized.

e Assessment Criterion: Assessment is the most im-
portant and difficult part of distance education. Tools
to support the evaluation of student learning should be
sophisticated enough to avoid unbiassed assessment.

These criteria are difficult to achieve. However, it 1s
possible to design such a virtual university environment
upto a certain degree of satisfaction. Multimedia Micro-
University (MMU) is a joint research project with the
participation of researchers from around the world. The
primary goal of the MMU consortium is to develop tech-
nologies and systems for the use of virtual university.
In this paper, we propose a software architecture for a
multimedia-based virtual course system. The architec-
ture supports multi-platform due to the availability of
Web browsers and the Java virtual machine. We aim
to provide a system on the Internet for instructors to
design and demonstrate lectures. This system serves
as a step toward our research goal - virtual university
over the Internet. The primary directive of our MMU
systems has four goals:


https://core.ac.uk/display/225184411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e Adaptive to changing network conditions: The
system adapts to QoS requirements and network con-
ditions to deliver different levels of service.

e Adaptive to changing user needs: Users are using
the system from different perspectives. Types of users
include students, instructors, and administrators. The
system supports the demand of various kinds of infor-
mation delivery from time to time.

o Adaptive to Web-based environment: The sys-
tem is Web-savvy. That is, a standard Web browser is
the only software required to students and administra-
tors. The instructors will use our system running on
a Web browser in conjunction with some commercial
available software.

o Adaptive to open architecture: A minimal com-
patibility is defined as the requirement for the open
architecture. Compatibility requirements include pre-
sentation standard, network standard, and database
standard.

On the instruction design side, we encourage instruc-
tors to use the Microsoft FrontPage editor, or an equiv-
alent on a Sun workstation, to design virtual courses.
Virtual courses may also be provided via some Java ap-
plication programs, which are embedded into HTML
documents. Since HTML and Java are portable lan-
guages, multi-platform courses are thus feasible. An
instruction annotation editor, written as a Java-based
daemon, is also running under the Java virtual machine
(which is supported by Web browsers). This annotation
daemon allows an individual instructor to draw lines,
text, and simple graphic objects on the top of a Web
page. Different instructors can use the same virtual
course but different annotations. These annotations,
as well as virtual courses, are stored as software con-
figuration items (SCIs) in the virtual course database
management system. A SCI can be a page shows a
piece of lecture, an annotation to the piece of lecture,
or a compound object containing the above. A class
administrator performs book keeping of course registra-
tion and network information, which serves as the front
end of the virtual course DBMS. The implementation of
the virtual course DBMS uses JDBC (or ODBC) as the
open database connection to some commercial available
database systems, such as the MS SQL server, Sybase,
Informix, or Oracle servers. Currently, our system uses

the MS SQL server.

On the other side of the system architecture, a stu-
dent can use an ordinary Web browser to traverse vir-
tual lectures. However, some underlying sub-systems
are transmitted to a student workstation to allow group
discussions, annotation playback, and virtual course as-
sessment. We also provide an interface to the virtual
course library. The interface allows object searching
and browsing. These sub-systems, again, are written
as Java-based daemons running under the Internet Ex-
plorer or the Netscape Navigator. Help facilities are
provided.

This research project, besides providing a prototype
system for virtual university realization, also focuses on
some research issues in multimedia computing and net-
working. From the perspective of software engineering,

several paradigms were used in software development
(e.g., water-fall model, spiral model, object-oriented
model, etc.). Can these models be applied to multi-
media course development? Or, can we refine these
models to be used? On the other hand, how do we esti-
mate the complexity of a course and how do we perform
a white box or black box testing of a multimedia presen-
tation are research issues that we have solved partially.
From the perspective of CSCW| the virtual course sys-
tem maintains the smooth collaboration and consis-
tency of distributed course designs. A software config-
uration management system allows checking in/out of
course components and maintain versions of a course.
All instruction systems require assessment. The vir-
tual course system has methodologies which support
the evaluation of student progress and achievement.

In this paper, we focus our discussion on a virtual
course database management system. We have pro-
posed a Web document development paradigm earlier.
The objective of this new course database is to support
such a paradigm and its application tools. The paper
is organized as the following. In section 2, we present
some issues of multimedia databases which were devel-
oped by others. We then propose our database design
in section 3. The implementation techniques, which
include mechanisms for object reuse, distribution and
sharing are given in section 4. We propose a Web-based
virtual library in section 5. And a short conclusion is
given in section 6.

2 Related Works

Multimedia database management system design is an
important and interesting research topic in the com-
munity of multimedia computing and networking. In
order to support the production of multimedia appli-
cations, the management of multimedia resources (e.g.,
video clips, pictures, sound files) is essential. For in-
stance, multimedia presentations can be designed as
building blocks which can be reused. To facilitate mul-
timedia application design, many articles indicate the
need of a multimedia database [1, 5, 7]. A multime-
dia database is different from a traditional relational
database in that the former is object-oriented while the
latter relies on entity relations. Moreover, a multime-
dia database needs to support continuous resource types
of large and variable sizes. Due to the amount of bi-
nary information that need to be processed, the perfor-
mance requirement of a multimedia database is high.
Clustering and indexing mechanisms support multime-
dia databases are thus important. The discussion of re-
search issues in multimedia database management sys-
tems can be found in [5]. A distributed database sup-
porting the development of multimedia applications is
introduced in [1]. A mechanism for formal specifica-
tion and modeling of multimedia object composition is
found in [4]. The work discussed in [4] also consid-
ers the temporal properties of multimedia resources. A
database system for video objects is discussed in [3].
A content-based querying mechanism for retrieving im-
ages is given in [7]. Layered multimedia data mod-



eling [6] suggests a mechanism to manage multimedia
data. In addition to the general discussion on multime-
dia database management systems (MDBMSs), there
are other articles take a similar approach to ours. The
work discussed in [2] proposes a multimedia data model
and a database to support hypermedia presentations
and the management of video objects. Its specialized
video server with an incremental retrieval method sup-
ports VCR like functions for heterogeneous video clips.
The design of multimedia DBMS is from the scratch,
which is similar to our approach. The system also sup-
ports object composition/decomposition. However, no
specific reuse mechanism is emphasized in the discus-
sion. Only an object-oriented data model was proposed.
The system also provides a global data sharing mech-
anism, including a video and an image collaboration
tools, which are integrated with a distributed environ-
ment.

3 Specification of the Web
Document Database

To support the storage requirement of our Web docu-
ment development paradigm, we have designed a Web
document database. We use an off-the-rack relational
database system as the underlying supporting system.
In this section, we discuss the design considerations of
our database system.

We design the database based on three objectives:
object reuse, object distribution, and resource sharing.
The mechanisms to achieve these goals are discussed
in section 4. In this section, a three-layered database
hierarchy is proposed. In the Web document DBMS,
multiple Web document databases are allowed. Each
database can have a number of documents. Each doc-
ument is identified by a unique script name. A script,
similar to a software system specification, can describe a
course material, or a quiz. With respect to a script, the
instructor can have different tries of implementation.
Each implementation contains at lease one HTML file,
and some optional program files, which may use some
multimedia resources. A course implementation can be
used by different instructors. An instructor can use our
annotation tool to draw lines and text to add notes
to a course implementation. Thus, an implementation
may have different annotations created by different in-
structors. To test the implementation, test records are
generated for each implementation. And, bug reports
are created for each test record. The database has three
layers. Objects in the three layers contain the following
attributes:

¢ Database Layer

— Database name: a unique name of the database.

— Keywords: one or more keywords are used to de-
scribe the database.

— Author: author name and copyright information
of the creator.

— Version: the version of this database.

— Date/time: the date and time this database was
created.

— Script names: pointers to script tables belong to
the database.

¢ Document layer

— Script Table: content of a script object.

— Implementation Table: content of an implemen-
tation object.

— TestRecord Table: content of a test record.
— BugReport Table: content of a bug report.
— Annotation Table: content of an annotation.

— HTML files: standard HTML files used in the

implementation

— Program files: add-on control program files used
in the implementation

— Annotation files: Annotation files which store
document annotations

¢ BLOB layer

— Multmedia sources: multimedia files in standard
formats (i.e., video, audio, still image, animation,
and MIDI files). Objects in this layer are shared

by instances and classes.

In the database hierarchy, each object may be linked
to other relative objects. A link in the hierarchy is as-
sociated with a label, which has a reference multiplicity
indicated in its superscript. A “+” sign means the use
of one or more objects. And a “*” sign represents the
use of zero or more references. Database objects can be
reused. A number of database objects are grouped into
a reusable component. The component can be dupli-
cated to another compound object with modifications.
However, the duplication process invloves objects of rel-
atively smaller sizes, such as HTML files. BLOBs in
large sizes are shared by different compound objects,
including different scripts and implementations. How-
ever, BLOB resource sharing is limited to a worksta-
tion. Upon demand, BLOB objects may be duplicated
in other workstations in order to realize real-time course
demonstration.

The document layer contains the most important
items of a Web document. Since we use a relational
database management system to implement our object
hierarchy, we summarize some of the major tables here.

e Script Table

— Script name: a unique name of the document

script.
— Keywords: kewords of the script.
— Author: the author of the document.
— Version: the version of the document.

— Date/time: the creation date and time.



Description: the content of the script, which is
described in text. However, the author may have
a verbal description which is stored in a multime-
dia resource file.

Expected date/time of completion: a tentative

date of completion.

Percentage of completion: the status of current
work.

Multimedia resources:
multimedia files.

file descriptors point to

Starting URLs: foreign key to the implementa-
tion table.

Test record names: foreign key to the test record
table.

Bug report names: foreign key to the bug report
table.

Annotation names: foreign key to the annotation
table.

e Implementation Table

Starting URL: a unique starting URL of the Web
document implementation.

HTMIL files: implementation objects such as
HTML or XML files.

Program files: implementation objects such as
Java applets or ASP programs.

Multimedia resources:
such as audio files.

implementation objects

Script name: foreign key to the script table.

Test record names: foreign key to the test record
table.

Bug report names: foreign key to the bug report
table.

Annotation names: foreign key to the annotation
table.

o TestRecord Table

Test record name:
record.

a unique name of the test

Testing scope: local or global.

Web traversal messages: windowing messages
which control a Web document traversal.

Script name: foreign key to the script table.

Starting URL: foreign key to the implementation
table.

Bug report names: foreign key to the bug report
table.

¢ BugReport Table

Bug report name: a unique name of the bug re-
port.

Quality assurance engineer: name of the QA per-
son.

Test procedure: a simple description of the test
procedure.

Bug description: the test result.

— Bad URLs: a number of URLs which can not be

reached.

— Missing objects: multimedia or HTML files miss-
ing from the implementation.

— Inconsistency: a text description of inconsistency.
— Redundant objects: a list of redundant files.

— Test record name: foreign key to the test record
table.

¢ Annotation Table

— Annotation name: a unique name of the annota-
tion.

— Author: the author of the annotation.
— Version: the version of the annotation.
— Date/time: the creation date and time.

— Annotation file: a file descriptor to an annotation

file.
— Script name: foreign key to the script table.

— Starting URL: foreign key to the implementation
table.

The Web document database, when updated, should
be proceeded in a consistent way. Each Web document
SCT has a number of references. We use these references
to maintain the referential integrity of the database.
We maintain a referential integrity diagram. Each link
in the diagram connects two objects. If the source ob-
ject is updated, the system will trigger a message which
alerts the user to update the destination object. Each
link in the diagram is associated with a label, with var-
ious number of possible alert messages. For instance,
if a seript SCI is updated, its corresponding implemen-
tations should be updated, which further triggers the
changes of one or more HTML programs, zero or more
multimedia resources, and some control programs.

Due to the locking mechanism used in object-
oriented database systems, we have defined an object
locking compatibility table. In general, if a container
has a read lock by a user, its components (and itself)
can have the read access by another user, but not the
write access. However, the parent objects of the con-
tainer can have both read and write access by another
user. Of course, the accesses are prohibited in the cur-
rent container object. Locking tables are implemented
in the instructor workstation. With the table, the sys-
tem can control which instructor is changing a Web
document. Therefore, collaborative work is feasible.

4 Implementation of the Web
Document Database

Web documents are reusable. Among many object
reuse paradigms, classification and prototyping are the
most common ones. Object classification allows object
properties or methods at a higher position of the hier-
archy to be inheritanced by another object at a lower



position. The properties and methods are reused. Ob-
ject prototyping allows reusable objects to be declared
as templates (or classes), which can be instantiated to
new instances. A Web document in our system con-
tains SCIs for script, implementation and testing. As
a collection of these three phrases of objects, a Web
document is a prototype-based reusable object. Ob-
ject reuse is essentially important to the design of Web
documents. However, the demonstration of Web doc-
uments may take a different consideration due to the
size and the continuous property of BLOB.

Web documents may contain BLOB objects which
is infeasible to be demonstrated in real-time when the
BLOB objects are located in a remote station due to
the current Internet bandwidth. However, if some of
the BLOB objects are preloaded before their presenta-
tion, even the process involves the use of some extra
disk space, the Web document can be demonstrated in
real-time. However, BLOB objects in the same station
should be shared as much as possible among different
documents. We aim to provide a system to make dis-
tributed Web documents to be reused in a reasonable
efficient manner.

The design goal is to provide a transparent access
mechanism for the database users. From different per-
spectives, all database users look at the same database,
which is stored across many networked stations. Some
Web documents can be stored with duplicated copies in
different machines for the ease of real-time information
retrieval. A Web document may exist in the database
at different physical locations in one of the following
three forms:

o Web Document class
o Web Document instance

o Web Document reference to instance

A document class is a reusable object which is de-
clared from a document instance. A document instance
may contain the physical multimedia data, if the in-
stance 1s newly created. After the declaration of the
document instance, the instance creates a new docu-
ment class. The newly created class contains the struc-
ture of the document instance and all multimedia data,
such as BLOBs. The original document instance main-
tains its structure. But, pointers to multimedia data in
the class 1s used instead of storing the original BLOBs.
When a new document instance is instentiated from
a document class, structure of the document class is
copied to the the new document instance and pointers
to multimedia data are created. This design allows the
BLOBs to be stored in a class. The BLOBs are shared
by different instances instantiated from the class.

A document instance is a physical element of a Web
document. When a database user looks at the Web doc-
ument from different network locations, the user can
access the Web document in two ways. The first is
to access the document directly. The second mecha-
nism looks at the document via document reference. A
document reference to instance is a mirror of the in-
stance. When a document instance is created, it exists

as a physical data element of a Web document in the
creation station. References to the instance are broad-
casted and stored in many remote stations.

When a document instance is retrieved from a re-
mote station more than a certain amount of iterations
(or more than a watermark frequency), physical mul-
timedia data are copied to the remote station. The
duplication process may include the duplication of doc-
ument classes, which contain the physical BLOBs.

The duplication process is proceeded according to
a hierarchy distribution strategy. Assuming that, N
networked stations join the database system in a linear
order. We can arrange the N stations in a full m-ary
tree according to a breadth first order. A full m-ary tree
is a tree with each node contains exactly m children,
except the trailing nodes. The n-th station, where 1 <
n < N, in the linear joining sequerence has its ¢-th
child, where 1 < ¢ < m at the following position in the
linear order:

m*(n—1)+i+1

In a Web document system which utilizes a listance
learning system, an instructor can broadcast lectures to
student work stations. Essentially, the broadcast pro-
cess 1s a multi-casting activity. With the appropriate
selection of m, the propogation of physical data can
be proceeded in an efficient manner, starting from the
instructor station as the root of the m-ary tree. The im-
plementation of this multi-casting system has a broad-
cast vector contains a linear sequence of woakstation IP
addresses. The system maintains the sizes of m’s, based
on the number of workstations and the physical network
bandwidth for different types of multimedia data. This
design achieve one of our project goals: adaptive to
changing network conditions.

On the other hand, a student can look at an off-line
lecture presentation prepared by the instructor. In this
case, the instructor station serves as a lecture server.
Lecture presentations are transmitted to student work
stations upon demands. The broadcast route can use
an inverse function of equation 4. The k-th station,
where 1 < k£ < N, in the linear joining sequerence has
its unique parent at the following position in the linear
order:

(k—i—=1)/m+1,
where i = (k— 1) mod m, if i | m;
1 = m, otherwise

The duplication of lecture presentations are upon de-
mand. A child node in the m-ary tree copies informa-
tion from its parent node. However, if a workstation
(and its child workstations) does not review a lecture,
it 1s not necessary to duplicate the lecture. The station
only keeps a document reference in this case. Since
the duplication process may involve extra disk space,
one may argue that disk spaces are wasted. However,
the duplicated document instances live only within a
duration of time. After a lecture is presented, dupli-



cated document instances migrate to document refer-
ences. Essentially, buffer spaces are used only. How-
ever, the instructor workstation has document instances
and classes as persistence objects. The above equations
are proved by mathematical induction and double in-
duction techniques. They are also implemented in our
system.

Another issue of object propagation is that objects in
the BLOB layer of the database are shared by objects
at a higher level in the hierarchy. That 1s, in both
the instructor station and the student station, BLOBs
are shared among different lecture presentations. Since
an individual multimedia resource is used only by a
presentation in a workstation with respect to a time
duration, concurrent access 1s not a consideration. This
strategy avoid the abuse of disk storage.

5 A Web Document Virtual
Library

As discussed in section 4, the database has three sorts of
objects: classes, instances, and references. Document
classes support object reuse. Instances are physical ob-
jects of a Web document, which are referred by doc-
ument references. In the proposed virtual university
architecture, in order to support off-line learning, we
encourage students to “check out” lecture notes from
a virtual library. Web Document instance are stored
in the virtual library. An instructor has a privilege
to add or delete document instances, which contain
lecture notes as Web pages. Students can check out
and check in these Web pages. However, in general,
there is no limitation of the number of Web pages to
be checked out. The check in/out procedure serves as
an assessment criteria to the study performance of a
student. We provide a browsing interface which al-
lows students to retrieve course materials accoring to
matching keywords, instructor names, and course num-
bers/titles. This virtual library is Web-savvy. That
is, the searching and retrieve processes are running un-
der a standard Web browser. The library is updated
as needed. The mechanism follows another guidance of
our project goals: adaptive to changing user needs. We
are developing three Web courses based on the virtual
library system: introduction to computer engineering,
introduction to multimedia computing, and introduc-
tion to engineering drawing.

6 Conclusions

Distance learning, virtual university, or remote class
room projects change the manner of education. With
the tremendous growing amount of Internet users, vir-
tual university is a step toward the trend of future uni-
versity. However, most development of distance learn-
ing systems rely on the high bandwidth of a network in-
frastructure. As it is not happening everywhere on the

Internet to meet such a high requirement, it is worth-
while to investigate mechanisms to cope with the real
situation. Even in the recent future, with the next gen-
eration of Internet, the increasing amount of users con-
sume an even higher network bandwidth. The primary
directive of Multimedia Micro-University Consortium is
looking for solutions to realize virtual university. Some
of our research results, as pointed out in this paper,
adapt to changing network conditions. Using an off-line
multi-casting mechanism, we implemented a distributed
virtual course database with a number of on-line com-
munication facilities to fit the limitation of current In-
ternet environment. The proposed database architec-
ture and database system serve as an important role in
our virtual university environment. We are currently
using the Web document development environment to
design undergraduate courses including introduction to
computer science and others.

References

[1] Te-Chih Chen, Wei-Po Lin Chin-An Wu, and Chih-
Shen Shen, “A Client-Server Database Enviornment
for Supporting Multimedia Applications,” in proceed-
ings of the 18th IEEE annual international computer
software and application conference (COMPSAC’94),
Taipei, Taiwan, 1994, pp 215-220.

[2] C.Y. Roger Chen and Dikran S. Meliksetian and Mar-
tin Cheng-Sheng Chang and Larry J. Liu, “Design of a
multimedia object-oriented DBMS,” Multimedia Sys-
tems, Vol. 3, 1995, Springer-Verlag, pp 217-227.

[3] Keh-Feng Lin, Chueh-Wei Chang, and Suh-Yin Lee,
“Design of an Interactive Video Database,” in proceed-
ings of the 1994 HD-Media Tech. and Application work-
shop, Taipei, Taiwan, pp PO2-17-P0O2-22.

[4] Thomas D. C. Little and Arif Ghafoor, “Synchro-
nization and Storage Models for Multimedia Objects,”
IEEE Journal on Selected Areas in Communications,
Vol. 8, No. 3, April, 1990, pp 413-427.

[5] Raymond Paul, M. Farrukh Khan, Ashfaq Khokhar,
and Arif Ghafoor, “Issues in Database Management of
Multimedia Information,” in proceedings of the 18th
IEEE annual international computer software and ap-
plication conference (COMPSAC’94), Taipei, Taiwan,
1994, pp 209 — 214.

[6] Gerhard A. Schloss and Michael J. Wynblatt, “Pre-
sentation Layer Primitives for the Layered Multimedia
Data Model,” in Proceedings of the IEEE 1995 Interna-
tional Conference on Multimedia Computing and Sys-
tems, May 15-18, Washington DC, 1995, pp 231 — 238.

[7] Atsuo Yoshitaka, Setsuko Kishida, Masahito Hirakawa,
and Tadao Ichikawa, “Knowledge-Assisted Content-
Based Retrieval for Multimedia Database,” IEEE Mul-
timedia Magazine, Winter 1994, pp 12 — 21.



