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SUMMARY
Many asset prices, including exchange rates, exhibit periods of stability punctuated by infrequent, substantial,
often one-sided adjustments. Statistically, this generates empirical distributions of exchange rate changes
that exhibit high peaks, long tails, and skewness. This paper introduces a GARCH model, with a flexible
parametric error distribution based on the exponential generalized beta (EGB) family of distributions. Applied
to daily US dollar exchange rate data for six major currencies, evidence based on a comparison of actual
and predicted higher-order moments and goodness-of-fit tests favours the GARCH-EGB2 model over more
conventional GARCH-t and EGARCH-t model alternatives, particularly for exchange rate data characterized
by skewness. Copyright  2001 John Wiley & Sons, Ltd.

1. INTRODUCTION

Contemporary modelling of exchange rate time series makes widespread use of generalized
autoregressive conditional heteroskedastic (GARCH) models.1 GARCH models have been shown
not only to capture volatility clustering but also to accommodate some of the leptokurtosis
(i.e. thick tails) commonly found in exchange rate time series. However, GARCH models with
conditionally normal errors generally fail to sufficiently capture the leptokurtosis evident in asset
returns (Bollerslev, 1987; Baillie and Bollerslev, 1989; Hsieh, 1989; Baillie and DeGennaro, 1990;
Wang et al., 1996). The increased attention focused on distributional properties (particularly tail
thickness), when estimating exchange rates models (Boothe and Glassman, 1987; Koedijk et al.,
1992; Loretan and Phillips, 1994; Huisman et al., 1998), has led to the widespread adoption of non-
normal conditional error distributions, most commonly the Student-t (Bollerslev, 1987; Bollerslev
et al., 1994). The Student-t distribution models thicker tails than the normal, but does not permit
skewness. With more than $1.5 trillion traded daily in global currency markets, specification issues
that affect estimates of potentially time-varying, higher-order central moments have significant
practical implications for exchange rate risk management.

Economic theories of exchange rate determination offer two likely explanations for the empirical
regularity of fat-tailed exchange rate returns.2 The first is the overshooting of floating nominal

* Correspondence to: Kai-Li Wang, Department of International Trade, Tam-Kang University, Taiwan.
E-mail: kalwang@mail.tku.edu.tw
1 Bollerslev et al. (1992) offer a good survey.
2 See Taylor (1995) and Obstfeld and Rogoff (1996) for excellent, formal treatments of exchange rate determination
models.
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exchange rates associated with monetary or fiscal shocks in the presence of sticky prices
(Dornbusch, 1976). The other is speculative attacks against fixed exchange rates (Krugman, 1979).
Both models imply infrequent, extraordinarily sharp movements in exchange rates that are likely
to appear as long tails in a distribution of differenced exchange rates. In addition, sticky prices
in floating rate regimes, and especially fixed exchange rates, also generate modal daily exchange
rate changes near zero (Obstfeld and Rogoff, 1996). The implication is that exchange rate changes
are concentrated near the mean (high peakedness) but are likely to have long tails.3 As such, the
choice of a conditional distribution should accomodate both long tails and high peakedness in
the exchange rate series. Commonly used leptokurtic distributions, such as the Student-t, are not
sufficiently flexible to capture both the high peakedness and the fat-tailed properties of exchange
rate returns.

Moreover, skewness might also be important in exchange rate return series that exhibit episodes
of sharp depreciation (appreciation) not offset by subsequent sharp appreciation (depreciation).
Two reasons for skewness are: first, permanent shocks that lead to changes in the equilibrium
exchange rate may be asymmetric; rapid improvements in Japanese productivity over the past
thirty years is such an example; and second, speculative attacks against a currency tend to be one-
sided. The 1992–3 European, 1994 Mexican, and 1997–8 East Asian currency crises are recent
examples of such episodes. Since significant skewness is observed in exchange rate series that
have experienced speculative attacks or other adverse shocks (Boothe and Glassman, 1987; Hsieh,
1988; Peruga, 1988; Huisman et al., 1998), estimation methods that accommodate skewness are
needed.4

Given the problems associated with quasi-maximum likelihood GARCH estimation (Pagan and
Sabau, 1987; Lee and Hansen, 1994; Deb, 1996), incomplete accommodation of the statistical
characteristics of exchange rates may yield inaccurate estimates of exchange rate dynamics.
Common stylized facts associated with exchange rate distributions include: clustering, possible
skewness, thick tails, and peakedness. The linear GARCH model can model clustering and as,
noted above, combined with a Student-t distribution can also capture some kurtosis characteristics,
but not any skewness in the data. This paper introduces a GARCH-EGB2 model, based on the
exponential generalized beta distribution of the second kind (EGB2), which can accommodate all
four of these features. The GARCH-EGB2 model is then applied to six different data sets and
performs very well.

2. THE GARCH-EGB2 MODEL

McDonald (1984, 1991) introduced the exponential generalized beta distribution of the second kind
(EGB2); a flexible distribution that is able to accommodate not only thick tails but also asymmetry.
The EGB2 distribution includes many other well-known distributions as special or limiting cases
and has been useful in applications characterized by nonnormal errors (McDonald, 1984; 1993). Of

3 An alternative perspective, provided by Friedman (1953), is to recognize that profit-maximizing speculators stabilize
transitory shocks to the exchange rate and accelerate movement in response to permanent shocks. Thus, if transitory shocks
are far more common than permanent shocks, the empirical distribution of exchange rate changes will be high-peaked
and long-tailed.
4 Hansen (1994) uses a modified Student-t distribution to accommodate skewness but is unable to simultaneously
accommodate high peakedness. Moreover, Hansen’s model depends on appropriate ex ante lag selection. Huisman et al.
(1998) demonstrate that the GARCH-t model does an adequate job of capturing the leptokurtosis inherent in exchange
rate returns but they do not explore its ability to satisfactorily capture the high peakedness or asymmetry.
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particular interest, the four parameter EGB2 distribution is sufficiently flexible to model peakedness
and skewness commonly observed in high-frequency data. The EGB2 distribution is defined by
the probability density function (pdf):

EGB2�z; υ, �, p, q
 D e
p�z�υ

�

j�jB�p, q

(

1 C e
z�υ
�

)pCq

where υ is a location parameter that affects the mean of the distribution, � reflects the scale of
the density function, and p and q are shape parameters that together determine the skewness
and kurtosis of the distribution. The EGB2 converges in distribution to the normal when
p D q approaches infinity. It is symmetric for p D q and is positively (negatively) skewed for
p > q�p < q
 for � > 0; the skewness results reverse for � < 0. The EGB2 can accommodate
coefficient of skewness values between �2 and 2 and coefficient of kurtosis values up to 9
(McDonald, 1991). These constraints are sufficiently flexible for most data series and will not
constrain our investigation of exchange rate return data in this paper. Although McDonald and
Xu (1995) introduce another more general EGB distribution, which contains the EGB2 as a
special case, preliminary results of estimating the EGB distribution suggest most financial data
are adequately modelled by the EGB2 distribution. Indeed, in this spirit, McDonald and Xu
(1995, p. 134) found that the exponential generalized beta distribution of the second kind (EGB2)
accommodates possibly thick-tailed and skewed error distributions and provides a systematic basis
for partially adaptive estimation in regression and time-series models. Therefore, we employ the
EGB2 specification in our study.

Quasi-maximum likelihood GARCH estimation has been shown to have poor finite sample
properties if the data-generating process is not correctly specified (Pagan and Sabau, 1987; Lee
and Hansen, 1994; Deb 1996). To address this potential shortcoming, we propose a general
autoregressive integrated moving average [ARIMA(m,d, n)] specification with GARCH(1,1)
conditional variance based on the EGB2 distribution.5 This approach allows us to account
for most of the characteristics observed in empirical financial distributions, including first-
order serial correlation, time-varying conditional variance, asymmetry, thick tails, and high
peakedness. Denoting a time-series dependent variable as yt, the general form of this model
is given by:

�m�L
yt D �C �n�L
 2t
2t D ht

0.5 zt

E�22
tj t�1
 D ht D w C ˛22

t�1 C ˇht�1

2t j t�1 ¾ D�0, ht, �


where the �m�L
 and �n�L
 are polynomials in the lag operator (L) of order m and n, respectively,
and w, ˛, ˇ > 0 to ensure strictly positive conditional variance. The errors, 2t, follow the assumed
zero mean conditional density function (D) with variance ht, and the parameter vector �. The
latter are shape parameters, � D fp, qg under EGB2, � D f�g under the Student-t distribution, and

5 The GARCH(1,1) specification we employ is generally excellent for a wide range of financial data (Bollerslev et al.,
1992).
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� is the empty set under the normal distribution. fztg should have zero mean and unit variance
and be i.i.d. if the model is correctly specified. To achieve efficiency, we jointly estimate the
conditional mean and conditional variance equations with the conditional distribution by full
information maximum-likelihood (FIML) estimation using the GAUSS Constrained Maximum-
Likelihood (CML) module.

For the standardized EGB2 distribution with shape parameters p and q, the GARCH-EGB2
log-likelihood function is:
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and  �p
 and  0�p
 represent digamma and trigamma functions, respectively. We show the detailed
parameterization of the GARCH-EGB2 model in the Appendix.

For the Student-t distribution with $ degrees of freedom, the GARCH-t log-likelihood function
(as presented by Bollerslev, 1987) is:
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where  denotes the gamma function.
Of particular concern are potential skewness and high peakedness that international finance

theory suggests are regular features of exchange rate return series. The Student-t is symmetric
and so cannot accommodate skewness in the underlying series, while the EGB2 distribution
readily captures skewness. The EGB2 also achieves higher peaks than the Student-t. Consider
the Student-t and symmetric EGB2�p D q
, both with unit variance and zero mean. Thus, with
p D q in the EGB2, each distribution has only one free parameter: $ for the t and p for the
EGB2. The kurtosis parameter for the t distribution is then given by 3[�$ � 2
/�$ � 4
] for $ ½ 4
while the same parameter for the EGB2 is given by [ 000�p
/�2� 0�p

2
] C 3. Simple plots of
the two density functions, selecting $ and p to equalize kurtosis between the two distributions,
shows that increasing kurtosis makes the EGB2 more peaked than the Student-t distribution. For
kurtosis values equal to three, the reference value for the normal, the two densities are essentially
indistinguishable. Once kurtosis exceeds 4, the higher peak of the EGB2 becomes evident and the
differences increase with kurtosis.6 Since exchange rate series typically exhibit kurtosis in the 4–6

6 Density plots showing this difference are available on the Journal of Applied Econometrics Data Archive (http://www.
econ.queensu.ca/jae).
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range (see Section 3, below), the peakedness difference applies and seems relevant to specification
decisions.

The linear GARCH model does not capture the asymmetric second moment (a so-called leverage
effect) since the conditional variance is only linked to past conditional variance and squared
innovations, and hence prohibits an asymmetric response in the conditional variance to positive
and negative errors (Black, 1976; Christie, 1982; French et al., 1987). This limitation led to the
introduction of a non-linear Exponential GARCH (EGARCH) specification by Nelson (1991) in
which the asymmetrical behaviour of exchange rate returns is modelled as an asymmetric, non-
linear specification of the conditional variance process and a symmetric distribution (such as the
Student-t) for the conditional error. To provide a more complete assessment of the relative strength
of the GARCH-EGB2 model, we also consider the EGARCH-t specification that accommodates
a leverage effect (asymmetry), volatility clustering, and leptokurtosis while still relying on a
symmetric distribution.7 Our findings suggest that where asymmetry exists in the underlying
returns, as distinct from asymmetry in their conditional variance, a linear GARCH model based
on the more flexible EGB2 distribution clearly outperforms the non-linear EGARCH model based
on the symmetric t distribution. Refining the conditional variance specification is advantageous
only when it does not come at the cost of sacrificing important features of the conditional mean
distribution. Put bluntly, accommodating skewness in the conditional first moment seems more
important than accommodating it in the conditional second moment.

The log-likelihood function for the EGARCH-t model is the same as that for the GARCH-t
model with the exception that the conditional variance ht is specified as:

log�ht
 D w C
a∑
iD1

˛ig�zt�i
C
p∑
iD1

ˇi log�ht�i


where

g�zt
 D �zt C +[jztj � Ejztj]
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v[0.5�v � 1
]/[
p
&�0.5v
]

Since we are estimating an EGARCH(1,1) model, the parameter ˛1 can be set equal to one.
When estimating the GARCH-t, EGARCH-t, and GARCH-EGB2 models, all parameters were

jointly estimated using the constrained maximum likelihood routine in Gauss and were found
to be invariant to starting points and algorithm adopted.8 The main difference between the
estimations was the number of iterations required for convergence, with the Gaussian GARCH
model converging most rapidly followed by the GARCH-t, the GARCH-EGB2 and then the
non-linear EGARCH-t model.

In addition to non-negativity constraints on the parameter space to ensure positive conditional
variance in linear GARCH models, regardless of the underlying distributional assumption, the
shape parameters, �, also need to be constrained. In the case of the EGB2 distribution, p and
q must be positive, while in estimation based on the Student-t distribution, � must be greater
than two, which is necessary for the standardized t distribution to be defined. In practice, these
constraints are easy to impose.

7 This suggestion was made by one of the referees.
8 The tolerance level in estimation was set at 0.00001.
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The GARCH-t, EGARCH-t, and GARCH-EGB2 are non-nested models, thus comparisons are
difficult. The GARCH-EGB2 maintains an identical specification relative to the GARCH-t up to
the non-nested choice of distribution. So, although one cannot make formal comparisons based on
likelihood values, model performance across multiple indicators nonetheless provides reasonably
direct evidence on the benefits of moving to the more flexible distributional specification. By
adding just one extra shape parameter, relative to the GARCH-t model, the GARCH-EGB2 model
is able to account not only for the first, second, and fourth moments of the conditional distribution
of the dependent variable, as do popular Gaussian GARCH and GARCH-t models, it is also able
to accommodate flexibility in the third moment and peakedness. As we will show, this enables
the GARCH-EGB2 model to consistently outperform the GARCH-t model.

Comparisons between the EGARCH-t and GARCH-EGB2 models are somewhat more difficult
because of different specifications for both the error distribution and for the conditional variance.
However, some insights can still be gained by comparing these two models’ performance across
multiple indicators as well.

3. DATA

We use daily noon spot US dollar exchange rate data ($/local currency) for the German deutsche
mark (DM), British pound, Japanese yen (¥), French franc (FF), Belgian franc (BF), and Italian
lira (IL) over the period 1 January 1985 to 21 November 1996 (3016 observations per series)
to demonstrate the properties of the GARCH-EGB2 estimators. Data were obtained from the
Exchange Rate Service of the Pacific Data Center at the University of British Columbia. To
achieve stationarity, we transform the nominal exchange rate data by taking the first-difference of
the logarithm for each exchange rate series:9

Ri,t D ln[Si,t/Si,t�1]Ł 100

where Si,t equals the nominal spot foreign exchange rate of currency i at period t, expressed as
US $/currencyi, Ri,t equals the percentage change in the nominal exchange rate of currency i at
period t, and Ri,t > 0�Ri,t < 0
 indicates currency appreciation (depreciation).10

Table I presents descriptive statistics for each exchange rate series �Ri,t
. All six currencies
exhibit leptokurtosis, a coefficient of kurtosis (KUR) significantly in excess of the normal
distribution’s reference value of three, and the yen, pound, and lira all show significant skewness.
The observed skewness may be attributable to permanent structural shocks that led to the yen’s
dramatic appreciation over the sample period and to the autumn 1992 speculative attacks that
knocked the pound and lira of the European monetary system’s exchange rate mechanism (ERM).11

9 The data and unit root test results are reported in Appendix 2 on the Journal of Applied Econometrics Data
Archive(http://www.econ.queensu ca/jae.).
10 Since we do not adjust for weekends or holidays, Ri,t reflects exchange rate changes between two successive trading
days.
11 The existence of significant structural shocks raises the possibility that one might be able to fit the data better using
multiple models over sample subperiods. The strategy of looking for break points, however, implies either the use of a
flexible distribution through a mixture model with endogenous switching points—thereby reinforcing our core point that
more flexible distributions are necessary for modeling exchange rate dynamics—or the use of multiple models absent
explicitly transition dynamics, in which case parameter stability is sacrificed for fit.
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A FLEXIBLE PARAMETRIC GARCH MODEL 527

Table I. Descriptive statistics for percentage change in the ($/currency) nominal exchange rate for the
German deutsche mark (DM), British pound, Japanese yen (¥), French franc (FF), Belgian franc (BF),

and Italian lira (IL) over the period 1 January 1985 to 21 November 1996

SK KUR f0.75 � f0.25 f0.6 � f0.4 JB Q(30) Q2�30


DM �0.037 5.1 1.13 0.41 566.73Ł 30.03 391.36
(0.045) (0.09) [0.00] [0.46] [0.00]

£ �0.12 5.2 1.08 0.40 604.92Ł 37.98 451.30
(0.045) (0.09) [0.00] [0.15] [0.00]

¥ 0.286 6.1 1.02 0.38 1282.9Ł 37.80 233.98
(0.045) (0.09) [0.00] [0.16] [0.00]

FF 0.02 6.0 1.14 0.39 511.89Ł 41.16 391.67
(0.045) (0.09) [0.00] [0.08] [0.00]

BF 0.024 5.0 1.12 0.41 521.53Ł 41.69 370.85
(0.045) (0.09) [0.00] [0.08] [0.00]

IL �0.616 8.8 1.14 0.41 4377.65Ł 33.39 641.75
(0.045) (0.09) [0.00] [0.31] [0.00]

Notes: SK D coefficient of skewness. E�Ri,t � �
3/�3, where � is the mean and � is the standard deviation.)
KUR denotes the kurtosis coefficient. (E�Ri,t � �
4/�4, where � is the mean and � is the standard deviation.)
The asymptotic standard errors of SK and KUR are reported in parentheses and computed as �6/T
0.5 and �24/T
0.5,
respectively.
f˛1 � f˛2 denotes the inter-percentile range. Thus, f0.75 � f0.25 represents the distance between the values of the
random variable at which the cumulative distribution function equals 0.75 and the value at which the cumulative
distribution equals 0.25. Hence, 50% of the observations lie within this range around the median. The lower the
value of f˛1 � f˛2, the higher the peakedness of a unimodal distribution.
JB denotes the Jarque–Bera Test for normality defined by T[SK2/6 C �KURT � 3
2/24] which is asymptotically
distributed as /2 (2). As a benchmark, the 1% critical value equals 9.21.
Q and Q2 represent the Ljung–Box test statistics for up to 30th-order serial correlation for each exchange rate series
and its square, respectively. Similar results are obtained for different orders. P-values against the null hypothesis of
white noise are reported in brackets.
Łdenotes statistical significance at the 1% level. P-values are reported in brackets.

As we will see in Section 4, the GARCH-EGB2 model is especially appealing for currencies such
as these three, which exhibit significantly skewed percentage change distributions.

Let f˛1 � f˛2 denote the inter-percentile range corresponding to the cumulative probabilities
˛1 and ˛2 (f0.75 � f0.25 is represents the distance between the values at which the cumulative
distribution function equals 0.75 and the value at which the cumulative distribution equals 0.25)
Given ˛1 and ˛2, on opposites sides of the median, the lower the value of f˛1 � f˛2, the higher
the peakedness of a unimodal distribution. Across all six standardized exchange rates, the value
f0.75 � f0.25 is uniformly less than 1.36, the reference range corresponding to the standard normal
distribution. The unconditional distributions of these exchange rates have higher peaks than does
a normal distribution around the central 50% of probability mass. The high peakedness is corrob-
orated as well over the narrower interval f0.6 � f0.4, for which all exchange rates’ ranges are less
than 0.5, the inter-percentile value of the standard normal over its central 20% of probability mass.

Given skewness, fat tails, and high peakedness, it is not surprising that the null hypothesis of
normality is strongly rejected by the Jarque–Bera (JB) asymptotic test for each exchange rate.
Table I also presents Ljung–Box test statistics indicating significant autocorrelation in Ri,t at a
lag of 30 trading days (Q(30)), and significant volatility clustering at the same lag �Q2�30

. In
summary, the series’ descriptive statistics suggest the unconditional distributions of daily exchange
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rate changes deviate considerably from the traditional Gaussian assumption. These results are
consistent with previous empirical findings and economic theory (Boothe and Glassman, 1987;
Hsieh, 1988; Wang et al., 1996; Husiman et al., 1998).

4. EMPIRICAL RESULTS

We began estimation by identifying and estimating a common ARMA process for the stationary
Ri,t. First, Box–Jenkins techniques were used to reduce the set of prospective ARMA specifica-
tions. Next, we further narrowed the pool of possible models to those having a p-value for the
Ljung–Box portmanteau Q(30) statistic of greater than 0.3, a significance level selected to support
a reasonable assumption of white noise. Finally, we chose the ARMA specification having the
lowest Schwarz Bayesian criterion (SBC) value from among the candidate models having passed
the Box–Jenkins and Q(30) screens. In other words, the Ljung–Box Q statistic was used to iden-
tify a few possible models and then the information criterion (SBC) selected the final ARMA
specification for the conditional mean equation.

Five different models were considered: homoscedastic normal (HN), Gaussian GARCH
(GARCH), Student-t GARCH (GARCH-t), exponential Student-t GARCH (EGARCH-t), and a
GARCH-EGB2 model. In each specification, the parameters in the ARIMA model were jointly
estimated with the GARCH conditional variance and distributional parameters for each currency
using maximum likelihood procedures. Table II reports the Ljung–Box Portmanteau statistics of
squared standardized residuals �zt
 for all currencies for each of the five estimated models and
clearly indicates the elimination of serial correlation in the conditional variance.

Parameter estimates and associated standard errors of each model fit to each exchange rate
series are reported in Appendix 3 on the JAE Data Archive. White (1982) showed that if the
model is correctly specified, conventional standard errors and White robust standard errors will
be stochastically the same. Our results for the GARCH-EGB2 specification routinely yield nearly
identical standard error estimates by either method, providing informal evidence that the GARCH-
EGB2 captures important stylized facts.

Table II. Ljung–Box Q2�30
 tests for serially correlated conditional variance for homoscedas-
tic normal (HN), Gaussian GARCH (GARCH), GARCH-t, and GARCH-EGB2 model

specifications

DM £ ¥ FF BF IL

HN 403.20 447.50 239.53 404.10 370.75 620.03
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

GARCH 29.28 24.36 28.72 25.50 35.82 23.67
[0.50] [0.76] [0.53] [0.70] [0.21] [0.79]

GARCH-t 28.71 24.46 29.06 25.41 34.73 26.22
[0.53] [0.75] [0.52] [0.71] [0.25] [0.66]

EGARCH-t 28.35 23.24 30.03 23.95 32.08 31.19
[0.55] [0.81] [0.46] [0.77] [0.36] [0.41]

GARCH-EGB2 28.96 24.64 29.52 25.50 35.01 25.03
[0.52] [0.74] [0.49] [0.70] [0.24] [0.72]

Notes: The figure in brackets is the p-value of the Ljung–Box Q2�30
 test against the null hypothesis of
no serial correlation.

Copyright  2001 John Wiley & Sons, Ltd. J. Appl. Econ. 16: 521–536 (2001)
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The estimated parameters of the conditional variance, between the GARCH-EGB2 and GARCH-
t, are close to each other for the non-skewed distributions, the German mark, French franc,
and Belgian franc. However, the results exhibit greater differences for currencies associated with
skewed distributions, the British pound, Japanese yen, and Italian lira. This fact is not surprising
and emphasizes the importance of being able to specify a distribution which accommodates the
underlying data characteristics.

While all the GARCH models appear to successfully model second-order serial correlation,
the issue of non-normality remains. To assess the relative descriptive power of the GARCH-
EGB2 model over competing models we utilize two diagnostics: (1) a comparison of actual and
predicted higher-order moments; and (2) a comparison of goodness of fit statistics across model
specifications.12

4.1. A Comparison of Actual and Predicted Higher-order Moments

Table III reports estimated sample skewness and kurtosis coefficients and corresponding predicted
moments of standardized residuals, along with estimated standard errors, for each data series and
estimated model. A comparison of the results for the homoscedastic normal (HN) and the Gaussian
GARCH model (GARCH) suggests that skewness and excess kurtosis of the standardized residuals
persist for most currencies in the Gaussian GARCH models. For all currencies except the Japanese
yen, the Gaussian GARCH leptokurtic characteristics �m4

Gaussian-GARCH
 are smaller than those
for the homoscedastic model �m4

HN
 and they both remain greater than the theoretical kurtosis
coefficient of a normal distribution.13 This result confirms the finding that the Gaussian assumption
is not sufficiently flexible to fully account for leptokurtosis in exchange rate data and is consistent
with previously referenced literature that employs the Student-t conditional error distribution to
account for leptokurtosis.

Predicted and observed conditional kurtosis values for the non-Gaussian models are reported
in Table III in the sections labelled GARCH-t, EGARCH-t, and GARCH-EGB2.14 In contrast
with the Gaussian model results, the predicted kurtosis coefficients (�4

GARCH-t and �4
EGARCH-t) of

the Student-t distribution models are all greater than the coefficients (m4
GARCH-t and m4

EGARCH-t)
calculated from the standardized residuals. The implication is that GARCH modelling based on
the leptokurtic Student-t distribution tends to overestimate the fourth moment.

A comparison of the predicted ��4
GARCH-EGB2
 and observed kurtosis coefficient�m4

GARCH-EGB2

for the GARCH-EGB2 model suggests a much closer correspondence, with absolute differences

12 In all diagnostics, the predicted values are constructed from the estimates of distribution parameters which are jointly
estimated with the conditional mean and variance equations.
13 Milh�j (1987), MaCurdy and Morgan (1987), and Hsieh (1989) also found the Gaussian GARCH model can reduce
some degree of leptokurtosis compared to the Gaussian homoscedasticity model. The ‘theoretical’ or predicted skewness
and kurtosis in these models are given by 0 and 3, respectively with traditional sample estimates of standard errors,
calculated by �6/T
0.5 D 0.045 and �24/T
0.5 D 0.089 for T D 3016, being reported in parentheses in Table III. The strict
validity of the standard errors is conditional on independent and identically distributed observations.
14 Predicted skewness and kurtosis coefficients (�4

GARCH-t in the case of GARCH-t �4
EGARCH-t for EGARCH-t and

�4
GARCH-EGB2 for GARCH-EGB2) are calculated from estimated values for the shape parameters ($ in the case of

GARCH-t and EGARCH-t, p and q for GARCH-EGB2). These formulas are given as follows: the kurtosis for the Student-t
and EGB2, respectively, are given by 3�� � 2
/�� � 4
 for � > 4 and f[ 000�p
C  000�q
] C 3[ 0�p
C  0�q
]2g/� 0�p
C
 0�q

2; and the predicted skewness coefficient of EGB2 distribution is [ 00�p
�  00�q
]/[ 0�p
C  0�q
]1.5. Two different
standard errors are reported for the non-Gaussian models: (1) the traditional standard errors defined in footnote 14 and
(2) standard errors obtained using delta methods, denoted by ( )delta. The details of the derivations are contained in
Appendix 4 on the JAE Data Archive. Observed kurtosis coefficients (m4

GARCH-t, m4
EGARCH-t, and m4

GARCH-EGB2) for
all series are calculated directly from each model’s standardized residuals.
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Table III. Skewness and kurtosis statistics of sample standardized residuals and predicted values

DM £ ¥ FF BF IL

HN
m3

HN �0.034 �0.100 0.281 0.026 0.036 �0.586
h0.034i h0.100i h0.281i h0.026i h0.036i h0.586i
(0.045) (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł

m4
HN 5.054 5.053 6.099 4.943 4.966 8.550

h2.054i h2.053i h3.099i h1.943i h1.966i h5.550i
(0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł

GARCH
m3

Gaussian-GARCH 0.075 �0.110 0.464 0.094 0.114 �0.118
h0.075i h0.110i h0.464i h0.094i h0.114i h0.118i
(0.045) (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł

m4
Gaussian-GARCH 4.419 4.365 6.154 4.350 4.402 4.745

h1.419i h1.365i h3.154i h1.350i h1.402i h1.745i
(0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł

GARCH-t
m3

GARCH-t 0.083 �0.108 0.502 0.103 0.127 �0.160
h0.083i h0.108i h0.502i h0.103i h0.127i h0.160i
(0.045) (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł

m4
GARCH-t 4.451 4.345 6.373 4.398 4.462 5.172

ϕ4
GARCH-t 5.867 6.304 28 5.715 5.892 6.361∣∣m4

GARCH-t� h1.416i h1.959i h21.627i h1.317i h1.430i h1.189i
ϕ4

GARCH-t
∣∣ (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł

(0.921)delta (1.155)delta (36.563)delta (0.857)delta (0.948)delta (1.211)delta

EGARCH-t
m3

EGARCH-t 0.080 �0.114 0.455 0.114 0.127 �0.161
h0.080i h0.114i h0.455i h0.114i h0.127i h0.161i
(0.045) (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł (0.045)Ł

m4
EGARCH-t 4.374 4.347 6.316 4.364 4.412 5.265

ϕ4
EGARCH-t 5.773 6.482 26.62 5.637 5.765 6.909∣∣m4

EGARCH-t� h1.399i h2.108i h20.304i h1.273i h1.353i h1.644i
ϕ4

EGARCH-t
∣∣ (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł (0.089)Ł

(0.883)delta (1.249)delta (32.736)delta (0.825)delta (0.888)delta (1.535)delta

GARCH-EGB2
m3

EGARCH-EGB2 0.083 �0.115 0.502 0.102 0.125 �0.148
ϕ3

EGARCH-EGB2 0.088 �0.071 0.326 0.087 0.076 �0.025∣∣m3
GARCH-EGB2� h0.005i h0.044i h0.176i h0.015i h0.049i h0.123i
ϕ3

GARCH-EGB2
∣∣ (0.045) (0.045) (0.045)Ł (0.045) (0.045) (0.045)Ł

(0.419)delta (0.475)delta (0.584)delta (0.414)delta (0.433)delta (0.608)delta

m4
EGARCH-EGB2 4.451 4.395 6.355 4.394 4.457 5.065

ϕ4
EGARCH-EGB2 4.584 4.778 5.356 4.541 4.601 4.909∣∣m4

GARCH-EGB2� h0.133i h0.383i h0.999i h0.147i h0.144i h0.156i
ϕ4

GARCH-EGB2
∣∣ (0.089) (0.089)Ł (0.089)Ł (0.089) (0.089) (0.089)

(0.189)delta (0.195)delta (0.575)delta (0.190)delta (0.193)delta (0.227)delta

Notes: m3is the coefficient of skewness of the standardized residuals from the estimated model.
m4 is the coefficient of kurtosis of the standardized residuals from the estimated model.
The predicted skewness coefficient for the Gaussian and student-t is 0(i.e. �3

OLS D �3
Gaussian-GARCH D �3

GARCH-t D
�3

EGARCH-t D 0), and the predicted kurtosis coefficient for the Gaussian is 3.0 (i.e. �4
OLS D �4

Gaussian-GARCH D 3).
The asymptotic standard error of the coefficients of skewness and kurtosis are reported in parentheses and computed
as �6/T
0.5 D 0.045 and �24/T
0.5 D 0.089, respectively; �
delta indicates the standard error of skewness and kurtosis
calculated by standard delta approach.
�4

t is the predicted kurtosis coefficient of Student-t distribution D 3���2
/���4
, � > 4.
�3

EGB2 is predicted skewness coefficient of EGB2 distribution D [ 00�p
�  00�q
]/[ 0�p
C  0�q
]1.5.
�4

EGB2 is predicted kurtosis coefficient of EGB2 distribution D f[ 00�p
C  00�q
] C 3[ 0�p
C  0�q
]2g/f 0�p
C
 0�q

g2.
The hi reports the absolute difference between observed and predicted coefficients andŁ denotes the absolute difference
is more than two times the standard errors of the skewness and kurtosis coefficients.
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being smaller (sometimes considerably smaller) than for other models for every currency. Based
on the traditional estimate of the standard error of the sample kurtosis, the observed differences
between the sample and predicted kurtosis are statistically significant for all currencies for the
GARCH-t and EGARCH-t models and for the pound and yen for the GARCH-EGB2. However,
because of the non-linear relationship between the distributional parameters and predicted kurtosis,
corresponding standard errors of predicted kurtosis, based on the delta method, are also calculated
and reported for the (E)GARCH-t and GARCH-EGB2 models. The delta-standard errors for the
(E)GARCH-t and EGB2 models tend to increase by a factor of at least ten and two, respectively,
with none of observed differences between the observed and predicted kurtosis coefficients being
statistically significant. However, regardless of the statistical significance, the close agreement
between the EGB2 observed and predicted kurtosis estimates is impressive. For example, the
absolute difference between the predicted and observed kurtosis coefficients for the British pound
and Japanese yen are (0.383 for pound, 0.999 for yen) for the EGB2 specification and (1.959 for
pound, 21.67 for yen) for the GARCH-t and (2.108 for pound, 20.304 for yen) for the EGARCH-t
model.

Evidence of asymmetry in the distribution of standardized residuals is also explored through a
comparison of observed and predicted coefficients of skewness, reported in Table III. The Student-
t is symmetric with a predicted skewness coefficient of zero. The standard error of the EGB2
predicted skewness is calculated by the delta method and is reported in Table III. The observed
coefficients of skewness (m3

Gaussian-GARCH, m3
GARCH-t, and m3

EGARCH-t) for Gaussian GARCH,
GARCH-t, and EGARCH-t models, across all currencies except the German DM, are statistically
significant as judged by the traditional standard error. According to the delta standard error, the
null hypothesis of no difference between the observed and predicted skewness coefficient can’t
be rejected for any currencies for GARCH-EGB2 models. However, based on traditional standard
errors, the hypothesis of no difference between observed and predicted skewness coefficients is
rejected for the Japanese yen and the Italian lira for all models. However, the difference (0.176 for
yen, 0.123 for lira) GARCH-EGB2 model is far less than for competing symmetric distribution
models (0.502 for yen, 0.160 for lira in the GARCH-t model and 0.455 for yen and 0.161 for
lira in the EGARCH-t model). The yen case reinforces the relative strength of the GARCH-EGB2
approach. In particular, the highly skewed distribution of yen standardized residuals highlights the
potential that estimated parameters are likely to be distorted under an inappropriate distribution
assumption and reinforces the value of a model specification having sufficient flexibility to adapt
to the distributional properties of the data. In general, the more flexible EGB2 distribution appears
to be more adept at capturing properties of the higher order moments of exchange rate series
while the traditional GARCH model, under Gaussian and Student-t assumptions, appears to yield
systematic under or overestimation of third and fourth moments.

4.2. Goodness of Fit Statistics

Boothe and Glassman (1987) presented empirical evidence suggesting that nonnested distribution
comparisons based on log-likelihood values frequently lead to spurious conclusions. Greene (1997,
p. 162) also cautions against the inappropriate use of likelihood function comparisons when
distributional assumptions differ across the models. Consequently, we use the /2 goodness of
fit (GoF) statistic to compare differences between observed frequencies of standardized residuals
and theoretically predicted frequencies based upon estimated distribution shape parameters. The
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chi-square goodness of fit statistic is calculated by:

GoF D
k∑
iD1

�fi � Fi
2

Fi

where fi is the observed count frequency of actual standardized residuals in the ith data class
(interval), Fi is the predicted count frequency derived from the estimated values for the distribution
shape parameters, and k is the number of data intervals used in the distributional comparisons.
GoF has an asymptotic chi-squared distribution with degrees of freedom equal to the number of
intervals minus the number of estimated (distribution) parameters minus one. The null hypothesis
tested by the GoF statistic is that the observed and predicted distribution functions are identical.

Results for the /2-test for goodness of fit test, using 40 (equal probability) intervals are reported
in Table IV. Given the large sample size used in estimation (3016 observations), it is not surprising
that test statistics suggest rejection of the hypothesis that the residuals are drawn from the assumed
distribution at conventional levels of significance. This result is consistent with other large sample
applications (Kloek and Van Dijk, 1978; McDonald, 1984).

However, if one looks at the relative magnitude of calculated statistics across model specifica-
tions, the evidence clearly favors the GARCH-EGB2 specification over the alternative GARCH-t
for all cases, and particularly so for the case of skewed data series (£, ¥, IL). The GARCH-EGB2
has a smaller GoF statistic than the EGARCH-t for the skewed series. Direct accommodation
of skewness in the series seems to dominate accommodation of potential asymmetry in series’
conditional variance. For the DM, FF, and BF, with approximately symmetric distributions, the
EGARCH-t has a smaller GoF statistic than both the GARCH-t and GARCH-EGB2 models. So
the more flexible conditional variance specification of the EGARCH model only appears of value
when the underlying series is reasonably symmetric. Indeed in two of the three skewed series,
the EGARCH-t performs even more poorly than the GARCH-t, which is always dominated by
the GARCH-EGB2 model. Further analysis of goodness of fit tests under different interval size
assumptions reveals that our results are very robust to the number of intervals chosen.

Table V reports log-likelihood values for each model specification and data series. The best
model based on a GoF criterion agrees with the best model obtained for a log-likelihood criterion
except for the case of the model for the Japanese yen where a GARCH-t is the worst, based on
log-likelihood and the EGARCH-t is worst based on GoF. The Schwarz criterion (SC) and Akaike
information criterion (AIC), which take account of the number of parameters, yield rankings
identical to those based on the GoF criterion.

Table IV. /2 goodness of fit test statistics for GARCH-t,
EGARCH-t, and GARCH-EGB2 model specifications

Currency GARCH-t GARCH-EGB2 EGARCH-t

DM 116.8 115.3 95.8
£ 94.4 83.4 88.4
¥ 111.0 87.0 118.2
FF 94.4 93.6 92.8
BF 100.3 99.9 93.9
IL 113.7 99.8 114.1
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Table V. Log-likelihood values for the GARCH-t,
EGARCH-t, and GARCH-EGB2 model specifications

Currency GARCH-t GARCH-EGB2 EGARCH-t

DM �3163.5 �3161.3 �3158.2
£ �2991.0 �2987.8 �2989.0
¥ �2970.2 �2963.7 �2969.5
FF �3024.2 �3022.1 �3018.8
BF �3137.1 �3134.8 �3132.0
IL �3005.8 �3002.0 �3006.7

5. CONCLUSIONS

Although GARCH modelling based on normal or Student-t conditional distributions has proved
useful in capturing the volatility clustering and leptokurtosis commonly present in asset price
series, we have demonstrated the difficulty these models have in accommodating other commonly
observed characteristics of high-frequency exchange rate data, notably high peakedness and
skewness. Since economic theory suggests these are potentially important statistical characteristics
of the underlying series, we have proposed a GARCH model based on the more flexible
EGB2 distribution. The GARCH-EGB2 specification can model thick-tailed, high-peaked, and
asymmetrically distributed data as well as volatility clustering. These attractive properties make
it useful in empirical estimation of financial markets in which the specification of the distribution
is vitally important. An application to daily logarithmic changes in six major exchange rates over
ten years shows that the GARCH-EGB2 model consistently outperforms the commonly employed
GARCH-t specifications. With skewed data series, the GARCH-EGB2 also outperformed the
EGARCH-t, in spite of the latter’s more flexible conditional variance specification. The GARCH-
EGB2 appears to be a promising specification to accommodate high peakedness and thick tails in
data series characterized by skewness and volatility clustering.

APPENDIX: PARAMETERIZATION OF THE STANDARDIZED EGB2

Following the traditional definition of a GARCH process, suppose that:

εt D h0.5
t Zt �A1


where fεtg is the error term sequence from the conditional mean equation and fZtg is an i.i.d.
sequence with zero mean and unit variance. Let ht evolve according to a GARCH(1,1) process:

ht D ˛0 C ˛1ht�1Cˇ1ε
2
t �A2


The error εt from an EGB2 density is given by:

EGB2�ε; υ, �, p, q
 D exp
n�ε�υ

�

j�jB�p, q

(

1 C e
ε�υ
�

)pCq �A3
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The standardized residual, Zt, follows an EGB2 distribution with zero mean and unit variance,
therefore:

Var�z
 D �2� 0�p
C  0�q

 D 1 �A4


E�z
 D υC �[ �p
�  �q
] D 0 �A5


where  (),  0() are digamma and trigamma functions, respectively (Davis, 1935).
Solving for � and υ in terms of  and ! where:

 D  �p
�  �q
 �A6


and
! D  0�p
C  0�q
 �A7


results in:

� D
√

1

 0�p
C  0�q

D
√

1

!
�A8


υ D ��[ �p
�  �q
] D �
√

1

!
�A9


Substituting the expressions for υ and � back into the EGB2 distribution yields an EGB2 density
function with zero mean and unit variance as:

EGB2�z;p, q
 D
p
! exp

(
p

(
z C p

!

)p
!

)

B�p, q


(
1 C exp

((
z C p

!

)p
!

))pCq �A10


According to assumption (A1):

zt D εtp
ht

�A11


Changing the variable from z to ε as follows �dz D dε/h0.5
:

EGB2�ε; h, p, q
 D
p
! exp

(
p

(
εp
h

C p
!

)p
!

)
p
hB�p, q


(
1 C exp

((
εp
h

C p
!

)p
!

))pCq �A12


Algebraic manipulation then yields:

EGB2�ε; h, p, q
 D

p
! exp

(
p

(p
!p
h
εC

))

p
hB�p, q


(
1 C exp

(p
!p
h
εC

))pCq �A13
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