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Abstract
A general-purpose no-reference video quality assessment algorithm based on a long short-term memory (LSTM) network
and a pretrained convolutional neural network (CNN) is introduced. Considering video sequences as a time series of deep
features extracted with the help of a CNN, an LSTM network is trained to predict subjective quality scores. In contrast to
previous methods, the resulting algorithm was trained on the recently published Konstanz Natural Video Quality Database
(KoNViD-1k), which is the only publicly available database that contains sequences with authentic distortions. The results of
experiments onKoNViD-1kdemonstrate that the proposedmethod outperforms other state-of-the-art algorithms. Furthermore,
these results are also confirmed using tests on the LIVE Video Quality Assessment Database, which consists of artificially
distorted videos.
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1 Introduction

In recent years, we have witnessed an explosive growth in the
spread of multimedia technologies and digital visual content.
With the increasing popularity of smart phones, socialmedia,
and video-sharing applications, digital videos are increas-
ingly captured, transmitted, stored, shared, compressed, or
edited.However, these transformations usually affect the per-
ceived visual quality of videos. Furthermore, humans are
the end consumers of digital video content whose quality
requirements have to be satisfied. This has motivated video
service providers and the research community to devise qual-
ity assessment methods for digital videos.

Apparently, perceived video quality relates to the visual
stimuli received by the human visual system (HVS). Altho-
ugh huge amounts of research have been conducted to reveal
the psychological and physiologicalmechanisms of theHVS,
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it is not yet understood from all aspects. Thus, machine learn-
ing techniques have been employed extensively in this field.
The most accurate and reliable method of assessing the qual-
ity of digital videos is through subjective evaluation [1].
Several international standards such as ITU P913 [22] for
performing subjective video quality assessment (VQA) have
been published. The main objective of subjective VQA is
to collect subjective quality scores from users for each dig-
ital video from a given set. Finally, the mean opinion score
(MOS) of each video is determined by averaging the individ-
ual quality ratings. However, subjective VQA has apparent
drawbacks that restrict its application in real-world services.
First, they are time-consuming and expensive because sub-
jective results are obtained through experiments with many
observers. Consequently, they cannot be part of real-time
applications such as video transmission systems. Second,
their results depend on the observers’ physical conditions,
personality, and emotional state [26]. Therefore, the devel-
opment of objective VQA methods that are able to predict
the perceptual quality of visual signals is essential.

The goal of objective VQA is to design mathemati-
cal models that are able to predict the quality of a video
assessed by humans. According to the availability of ref-
erence videos, VQA methods can be divided into three
groups: full-reference (FR-VQA), reduced-reference (RR-
VQA), and no-reference (NR-VQA) algorithms.
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Artificial intelligence and machine learning methods and
algorithms are widely used in NR-VQA methods. Recently,
deep learning techniques have become standard tools for
many image processing and computer vision tasks. Further-
more, features extracted from pretrained deep convolutional
neural networks (CNNs) haveprovedvery effective in a broad
range of applications, ranging from content-based image
retrieval [2] to medical image analysis [13]. In this paper,
we make the following contributions. In our proposed NR-
VQA framework, we model a digital video sequence as
a sequence of data of frame-level deep features extracted
via pretrained CNNs. These sequence data are fed into a
long short-termmemory (LSTM) network containing LSTM
layers and a fully connected (FC) layer to perform sequence-
to-one regression. In other words, the main novelty of the
presented architecture is that video sequences are considered
as time series of deep features that are utilized by an LSTM
network [8] to learn long-term dependencies for perceptual
quality prediction. Owing to the memory cells applied in
an LSTM, long-range temporal relationships that may also
be useful in NR-VQA can be discovered effectively. LSTM
networks are widely used to classify [7], process [31], or
make predictions [34] using time series or sequential data.
Unlike other LSTM applying NR-VQA methods [3,21], we
model video sequences as sequential data of frame-level
deep features and not employing image quality-related met-
rics at all. Consequently, the dimension of the sequence
data used to train the LSTM network is many times larger,
allowing us to exploit the effectiveness of CNN-extracted
features. In contrast to previous deep-learning-based archi-
tectures [15,36,40], we rely only on features extracted from
a pretrained CNN. Furthermore, to the best of the authors’
knowledge, this is the first deep architecture that was trained
on a natural video quality database. Previous works were
trained on databases containing artificially distorted video
sequences derived from 6–45 pristine videos, which limited
their applications in authentic environments. On the other
hand, our approach was trained on the recently published
Konstanz Natural Video Quality Database (KoNViD-1k) [9],
which contains 1200 unique video sequences with authentic
distortions.

2 Related and previous work

NR-VQA methods can be classified into two groups.
Distortion-specificNR-VQAalgorithms employ specific dis-
tortionmodels to predict the subjective quality; however, they
can measure only a few distortions such as blurriness [5],
H.264 compression [41], MPEG-2 compression [27], and
jerkiness [4], whereas general-purpose (or non-distortion-
specific)methods perform across various types of distortions.
The performance of NR-VQAmethods is rapidly advancing,

and there is a proliferation of NR-VQAmetrics. Soundarara-
jan and Bovik [30] gave a systematic review of visual quality
metrics, whereas Shadid et al. [29] presented an overview
of NR visual quality assessment algorithms. Xu et al. [16]
covered the role of machine learning in visual quality assess-
ment.

A popular feature extraction method originates from nat-
ural scene statistics (NSS), which relies on the premise that
HVShas evolvedvia natural selection and, as a result, it inher-
ently contains knowledge regarding the regularities of the
physical reality surrounding us. Consequently, the statisti-
cal regularities of visual signals are apparently influenced by
quality degradation. Saad et al. [23] devised a spatiotempo-
ral model that combined the discrete cosine transform (DCT)
model with a motion model. As a result, it was possible to
quantify motion coherency to predict perceptual video qual-
ity. Later, this approach was extended to the 3DDCT domain
by Xuelong et al. [14] using spatial and temporal informa-
tion. Similarly, Konuk et al. [11] presented a spatiotemporal
model, but they utilized bit rate and packet loss as features.

Motivatedby the success ofCORNIA[39]NR imagequal-
ity assessment method, Xu et al. [37] presented an opinion-
unaware architecture for NR-VQA, the so-called Video
CORNIA. In particular, frame-level features are extracted via
unsupervised feature learning and applied a support vector
regressor (SVR) to map these onto subjective quality scores.
Similarly, Video Intrinsic Integrity and Distortion Evalua-
tion Oracle (VIIDEO) [20] does not require human ratings
on video quality. Namely, it has been assumed that pristine
video sequences possess intrinsic statistical regularities and
the deviation from them can be used to predict perceptual
quality scores. Themain ideawas that local statistics of frame
differences derived usingmean removal and divisive contrast
normalization should follow a generalizedGaussian distribu-
tion in the case of good video quality.

In contrast to previous work, Men et al. [17] introduced
an NR-VQA method that was trained using a natural video
quality database, KoNViD-1k [9], which consists of 1200
unique video sequences with authentic distortions. In partic-
ular, a video-level feature vector was compiled by combining
multiple features, such as blurriness, colorfulness, contrast,
and spatial and temporal information. The video-level fea-
ture vectors were mapped to subjective quality scores with
an SVR. Later, this model was developed significantly [18]
by combining spatial and temporal information more inten-
sively.

Another line of methods focuses on the use of deep learn-
ing techniques. The method of Li et al. [15] divided the input
video sequence into blocks and with the help of 3D shear-
let transform features were extracted. Based on these feature
vectors, CNN and logistic regression were applied to pre-
dict video quality. Similarly, the algorithm of Zhang et al.
[40] also divided the input video into blocks, but the corre-
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Fig. 1 High-level overview of the proposed NR-VQA algorithm. A
pretrained CNN is run through all consecutive video frames to create
d×N sequence data where d stands for the length of the video sequence

and N is the length of the frame-level deep feature vector. Subsequently,
an LSTM network is utilized to predict subjective quality scores

sponding weak labels were derived by an FR-VQA metric.
Subsequently, a CNNwas trainedwith theweak labeled data.
Furthermore, a resampling strategy was applied to generate
a regression function that mapped deep features onto quality
scores. In contrast, Torres Vega et al. [36] trained a restricted
Boltzmann machine (RBM) with lightweight NR metrics,
such as the noise ratio and motion intensity. The experimen-
tal results were presented on live video streams.

3 Methods

In this paper, we propose a CNN- and LSTM-network-based
NR-VQA algorithm. The high-level overview of the algo-
rithm is depicted in Fig. 1. For a given video sequence to be
evaluated, frame-level deep features are extracted from all
consecutive resized and center-cropped video frames with
the help of a pretrained CNN. In this study, we report on the
results of three different pretrained CNNs, i.e.,AlexNet [12],
Inception-V3 [33], and Inception-ResNet-V2 [32]. Owing
to the fixed input size, the consecutive video frames were
resized to 338 × 338 and 299 × 299 center patches were
cropped, when Inception-V3 or Inception-ResNet-V2 was
applied. On the other hand, the frames were resized to
256×256 and 227×227 center patches were cropped, when
AlexNetwas applied.As anLSTMnetwork accepts sequence
data as input, the chosen pretrained CNN is run through each
resized and center-cropped video frame. The corresponding
frame-level feature vector is obtained by removing the last
softmax and the last fully connected layer. The length of the
feature vector is 4096 for AlexNet, 2048 for Inception-V3,
and 1536 for Inception-ResNet-V2. Consequently, this pro-
cess results in a d×N matrix of features where d is the length
of the video sequence and N is the length of the correspond-
ing deep feature vector. Subsequently, this feature matrix is
transferred to anLSTMnetwork to predict perceptual quality.

The remainder of this section is organized as follows.
Section 3.1 presents the compilation of the training and test

database. Section 3.2 deals with transfer learning, which is
conducted on the pretrained CNN. Section 3.3 presents the
training of the LSTM network.

3.1 Database compilation

In our work, we chose KoNViD-1k [9] from publicly avail-
able video quality databases to train and test our architecture.
In contrast to other publicly available datasets, KoNViD-
1k consists of 1200 video sequences—more than any other.
The large number of video sequences allowed us to train
an LSTM network directly with deep features. Furthermore,
the sequences have authentic distortions and were sampled
from Yahoo Flickr Creative Commons 100 Million [35]
(YFCC100m) and the quality scores were collected online
[24] using CrowdFlower platform. The spatial resolution is
960×540 in this database, while the length of the sequences
is approximately 9 s with 30 fps.

A total of 960 sequences were selected randomly for train-
ing purposes, while the remaining videos were kept only
for testing. The training videos were split into frames, and
then 20% of them were taken randomly. In order to fit to the
Inception-V3’s [33] and Inception-ResNet-V2’s [32] input
size, the randomly selected video frames were resized to
338 × 338 and 299 × 299 center patches were cropped. As
already mentioned, for AlexNet [12] base architecture these
values were 256 × 256 and 227 × 227. The resulting train-
ing images inherited the MOS values of their source videos.
Consequently,wemade the assumption that the visual quality
perception of individual frames is somehow related to those
of the complete video sequence. On the whole, the resulting
image database consists of 43,320 images which were used
to carry out transfer learning on the chosen pretrained CNN.
To this end, as already mentioned different pretrained CNNs
were applied in this paper.

For the sake of completeness, we selected LIVE VQA
database [28] as an additional test set in order to analyze the
generalization capability of the proposed algorithm. LIVE
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Fig. 2 MOS distribution in KoNViD-1k [9]

VQA contains 15 reference videos and 150 artificially dis-
torted video sequences derived from the reference videos
using four different distortion types: simulated transmission
of H.264 compressed videos through error-prone wireless
networks and through error-prone IP networks, H.264 com-
pression, and MPEG-2 compression. The videos’ spatial
resolution in LIVE VQA is 768 × 432.

3.2 Transfer learning

In general, transfer learning is applied to transfer stored
knowledge gained by a model trained on a previous task
to a new task. It is typically used if the amount of labeled
training data is insufficient to train a CNN from scratch or
a pretrained CNN exists for a similar task. In our work, the
common practice was applied to transfer learning. First, the
last 1000-way softmax layer was cut and it was replaced
by a 5-way softmax layer relevant to our problem. Five
classes in our training set were defined: class A for excel-
lent image quality (MOS ∈ [4.2, 5.0]), class B for good
image quality (MOS ∈ [3.4, 4.2[), class C for fair image
quality (MOS ∈ [2.6, 3.4[), class D for poor image quality
(MOS ∈ [1.8, 2.6[), and class E for very poor image qual-
ity (MOS ∈ [1.0, 1.8[). The initial learning rate was 0.0001,
and it was divided by 10 when the validation error stopped
improving. Moreover, the batch size was set to 32 and the
momentum was adjusted to 0.9. During transfer learning the
last, new layer is trained from scratch utilizing Xavier initial-
ization [6], while the initial weights of the other layers come
from the corresponding layers of the pretrained networks and
all layers are updated using the back-propagation algorithm
[25]. As shown in Fig. 2, the MOS distribution in KoNViD-
1k [9] is imbalanced. This could cause problems in transfer
learning. That is why each instance is sampled in the batch by

the inverse frequency of the class. In consequence, instances
in larger classes have smaller probability to be selected. Due
to population differences of the classes, the final batch will
be equally distributed. Figure 3 plots the training process of
transfer learning on training database described above.

3.3 Training of LSTM layers and quality regression

As already mentioned, an LSTM network accepts sequence
data as input and the dimension of a feature matrix is d × N
where d is the length of the corresponding video sequence
and N stands for the length of the frame-level deep feature
vector (4096 for AlexNet, 2048 for Inception-V3, and 1536
for Inception-ResNet-V2). During training, the training data
are split into mini-batches and we pad the sequences in order
to have the same length. However, too much padding dete-
riorates the performance of an LSTM network. To reduce
the amount of padding, the training data are sorted by the
video sequence length and the mini-batch size was set to
27. In consequence, sequences in a mini-batch have simi-
lar length. Furthermore, the LSTM network consists of two
LSTM layers with 1024 and 128 hidden units, respectively.
Finally, a fully connected layer of size one terminates the
structure to predict MOS values. Furthermore, ADAM [10]
solver was applied and the gradient threshold was set to 0.5
during training. Mean square error was utilized as regression
loss function. Figure 4 depicts the training progress of the
LSTM network.

4 Experimental results and analysis

The evaluation of objective video quality assessment is based
on the correlation between the predicted and the ground-truth
quality scores [16]. Pearson’s linear correlation coefficient
(PLCC) and Spearman’s rank order correlation coefficient
(SROCC) are widely applied to this end. The PLCC between
data set A and B is defined as

PLCC(A, B) =
∑n

i=1(Ai − A)(Bi − B)
√∑n

i=1(Ai − A)2
√∑n

i=1(Bi − B)2
, (1)

where A and B stand for the average of set A and B, Ai and
Bi denote the i th element of set A and B, respectively. For
two ranked sets A and B, SROCC is defined as

SROCC(A, B) =
∑n

i=1(Ai − Â)(Bi − B̂)
√∑n

i=1(Ai − Â)2
√∑n

i=1(Bi − B̂)2
,

(2)

where Â and B̂ are the middle ranks of set A and B.
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Fig. 3 Training progress of Inception-V3 [33] during transfer learning.
This figure plots the smoothed training accuracy with dark blue line,
the training accuracy with light blue line, the smoothed training loss

with orange line, and the training loss with light orange line. Further-
more, the validation accuracy and validation loss are also depicted with
dashed lines (color figure online)

4.1 Parameter study

First, we evaluated the design choices of our proposed
method on KoNViD-1k [9], before comparing it with other
state-of-the-art NR-VQA techniques.We evaluated our algo-
rithm using fivefold cross-validation and report on median
PLCC and SROCC values like Men et al. [18] and Yan et al.
[38]. First of all, the effects of the applied pretrained CNNs
and transfer learning were evaluated. Figure 5 summarizes
the results of the parameter study. Specifically, the results
showed that Inception-V3’s [33] features gave slightly better
results than Inception-ResNet-V2’s [32] features. Further-
more, AlexNet’s [12] features performed significantly poorer
than the previous two CNNs. Our analysis also demon-
strated that fine-tuning on the target database enormously
improves the prediction’s quality. In the following,we denote
by CNN+LSTM our best model.

4.2 Comparison with the state of the art

Eight state-of-the-art NR-VQA methods are compared with
our proposed algorithm. All methods were evaluated using

fivefold cross-validation with 10 random train–validation–
test split, and median PLCC and SROCC values are reported
as proposed in [17] and [18]. The median PLCC and SROCC
values of five baseline methods (Video BLIINDS [23],
VIIDEO [20], Video CORNIA [37], FC Model [17], and
STFC Model [18]) were measured by Men et al. in [17]
and [18]. On the other hand, the results of STS-MLP [38]
and STS-SVR [38] were taken from their original publica-
tion because their authors also report on median PLCC and
SROCC values using fivefold cross-validation with 10 ran-
dom train–validation–test split. Furthermore, we retrained
the NVIE method [19] on KoNViD-1k (80% of videos for
training and20%for testing) and evaluated it using the above-
mentioned methodology. As a consequence, the fairness
of comparison is assured because the evaluation method-
ology is exactly the same. The proposed architecture was
also assessed on all videos of LIVE VQA [28] without
any cross-validation because it was trained on KoNViD-1k
[9]. State-of-the-art methods’ PLCC and SROCC values for
LIVE VQA were taken from their original publications.

The results are summarized in Table 1. From these results,
it can be concluded that the proposed method is able to
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Fig. 4 Training progress of the LSTM network. This figure plots the smoothed root-mean-square error (RMSE) with dark blue line, the RMSE
with light blue line, the smoothed training loss with orange line, and the training loss with light orange line (color figure online)

Fig. 5 Parameter study. Trained and tested on KoNViD-1k [9] using AlexNet [12], Inception-V3 [33], and Inception-ResNet-V2 [32] as base
architectures

achieve state-of-the-art results without transfer learning as
well. On the other hand, with transfer learning our algorithm
significantly outperforms the state of the art on KoNViD-1k
[9]. Specifically, we could improve both PLCC and SROCC
by approximately 0.1 compared to the best proposal in the
literature. A scatter plot of the ground-truth MOS against
the predicted MOS is depicted in Fig. 6. As regards LIVE

VQA, our method was outperformed by approximately 0.05
in PLCC and SROCC by the best algorithm. Please note that
previousmethods except for FCModel [17] andSTFCModel
[18] were trained on or optimized for artificially distorted
video sequences. That is why the results on the two differ-
ent databases can be radically different. In spite of this, the
proposed method is able to achieve state-of-the-art results on
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Table 1 Comparison to state-of-the-art NR-VQA algorithms applied
on KoNViD-1k [9] and LIVE VQA [28] databases

KoNViD-1k [9] LIVE VQA [28]

PLCC SROCC PLCC SROCC

V. BLIINDS [23] 0.565 0.572 0.752 0.737

VIIDEO [20] − 0.015 0.031 0.651 0.624

V. CORNIA [37] 0.747 0.765 0.768 0.740

NVIE [19] 0.403 0.332 0.693 0.629

FC Model [17] 0.492 0.472 – –

STFC Model [18] 0.639 0.606 – –

STS-MLP [38] 0.407 0.420 – –

STS-SVR [38] 0.680 0.673 – –

CNN(*) + LSTM 0.513 0.545 0.347 0.365

CNN + LSTM 0.867 0.849 0.691 0.703

We indicated by ‘–’ if the data are not available. The (*)marking denotes
that transfer learning was not carried out. The best value is typed bold

Fig. 6 Scatter plot of the ground-truthMOS against the predictedMOS
on KoNViD-1k [9] test set

LIVE VQA [28] as well. Therefore, the experimental results
confirmed the effectiveness and generalization capability of
the proposed approach for NR-VQA.

5 Conclusions

In this paper, we have introduced a novel architecture for
NR-VQA utilizing deep features extracted from a pretrained
CNN and LSTM network for sequence-to-one regression.
The main novelty was that video sequences were considered
as time series of deep features and an LSTM network was
applied to learn long-term dependencies for perceptual qual-
ity prediction. Unlike previous methods, our work relies only
on deep features and does not use handcrafted features at all.

The large number of videos with authentic distortions found
in KoNViD-1k [9] allowed us to build a purely data-driven
model. The presented algorithm outperformed the best solu-
tion in the state of the art by approximately 0.1 in terms of
both PLCC and SROCC on KoNViD-1k [9]. Our method
was further tested on LIVE VQA [28] where it achieved the
state-of-the-art results and was slightly outperformed by the
best method in the state of the art.
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