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1 Introduction

Optimal route planning based on transport demands is an intensively investigated topic in engineering
fields. Depending on the applied model and assumptions, the computational complexity of such task
moves on a wide scale. Route planning problems are commonly modeled as optimization problems,
which can indeed give us an optimal solution, but scale badly as the size of the map or the number
of agents increases. Based on this, the aim of our research is the investigation and improvement of
algorithms, which can eventually give a suboptimal solution, but are computationally more efficient than
single-step optimization approaches.

Vehicle routing problems have been extensively studied recently in the past years. There are several
works dicussing routing in large networks, where the size of the vehicles is relatively small, and thus
relation between them is not taken into account. These papers mainly consider dispatching the trans-
portation requests to vehicles, and does not focus on the route computation itself.

In this paper, we investigate optimal route planning for multiple type of automated guided vehicles in
a microscopic routing environment, where the size of the vehicles in the system is comparable to the
size of the undelying network. For this reason, the route planning algorithm should be prepared to
avoid collisions and handle congestion and even deadlock problems. This type of vehicle routing has
extensive literature, starting from optimization approaches reaching optimal solution in certain cases to
suboptimal systems giving real-time solutions.

The authors of [4] model the problem as a mixed integer optimization, and present a system capable
to calculate a set of truely optimal routes. Moreover, they introduce a new Lagrangian coordination
and decomposition technique, resolving the problem through disrtibuted calculation and repetitive data
exchange between the agents. This way, they use a simple Dijkstra algorithm for individual route plan-
ning for the agents, but introduce a more complicated cost function to take into consideration vehicle
interdependencies.

In our work, we follow the concept introduced in [1, 2, 3], for resolving conflict between vehicles at
the time of route planning. First mentioned in [3], this approach uses time windows and resource
reservation to ensure, that all routes planned are conflict-free by design. The idea is continued in [2],
where computational complexity of such solution is examined. It turns out, that this system can resolve
route planning for individual agents in polynomial time (regarding the number of time windows), and
thus, it is capable of online, real time planning. Moreover, in [1], the system is compared to the results
achieved by a static routing algorithm (ie. planning routes without care to vehicle relations, and resolving
conflicts as they arise), and turns out to be more efficient than traditional approaches.

As for the optimization, we are trying to find a solution for two common optimization tasks: the Online
Shortest Dynamic Disjoint Path Problem (OSDDPP), and the Online Quickest Disjoint Path Problem
(OQDPP). Basically, in the OSDDPP we are trying to minimize the sum of the time of the vehicles
moving along the paths, while in case of OQDPP the algoritm should find the set of dynamic routes
resulting in the shortest overall makespan. In practice however, the same suboptimal algorithm turns
out to be suitable for both cases.

The research is motivated by its possible applications in Automated Giuded Vehicle (AGV) routing
systems. The doctoral thesis, from which this paper starts, has the underlying method implemented in
HHLA Container Terminal Altenwerder ©, while this work is mostly aimed for industrial application in a
factory cell in Gyor.

In the first part of the paper overview of the related literature is presented, with emphasis on their
suboptimal solutions to online route planning. Next, we give a formal, rigorous problem statement,
mainly based on the work of Björn Stenzel [1], followed by a detailed analysis of his solution to the
problem.

In the second part, we present the simulation framework used for testing and validating our results. De-
sign and implementation of such system, capable of simultaneously handling computation for multiple
vehicle types and three dimensional visualization was an important part of our research, as is planned
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to be used in our future works as well.

Finally, in the last part we present our test results regarding the performance of the whole route planning
system.

2 Detailed task description

To reach the aims we set in the previos section, completition of the following tasks was needed.

1. Literature overview:

• Overview of literature related to dynamic route planning

• Overview of literature related to optimalization-based planning

2. Implementation of a simple simulation framework in MATLAB

• Modeling of factory floorplans as a graph

• Creating a simple model of the AGV’s using movement primitives

• Simulating the AGVs’ behavior

• Visualization of the simulated space and vehicles

3. Implementation and performance analysis of the algorithms chosen from literature

• Thorough examination of Stenzel’s algorithm

• Modeling time windows and resource allocations

• Implementation of the route planning algorithm

4. Extension of the simulation framework to handle multiple AGV types

• Introduction of aerial vehicles (modeling new movement primitives)

5. Extension of the model to three dimensional graphs

6. Extension of the simulation framework to support three-dimensional visualization

• Loading and presenting 3D AGV models from .stl files

• Designing factory layouts for demonstration purposes

7. Performance analysis of the algorithms in the 3D environment

8. Documentation and presentation of this work
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3 Dynamic routing

3.1 Formal problem statement

To present the problem in a formal, mathematically precise form, following the author of [1], we model
the routing environment with a graph G = (V ,E ) with nodes V = {1, 2, ...,N} and edges E = {(v1, v2, l)|1 ≤
v1, v2 ≤ N, l ∈ R}. The graph is directed, and has no multiple or loop edges. The weight of the edges
(representing length of this edge) is denoted by l . Agents can have different traversal time, based on
their maximal speeds.

Transportation tasks are continuously arriving for the agents, and are assigned to the vehicles by a
higher level dispatching system. Although modeling this system is not part of the route planning prob-
lem, in the implementation part we present two rather simple solutions for testing purposes. Formally,
we define these requests as follows:

Definition. A request is a tuple r = (s, t, θ), where s is the source node (from where the agent should
start), t is the target node, and θ is the earliest time, when execution of the requests can begin.

During this work, without loss of generality, we assume, that this request is assigned to a vehicle
already in s by the dispathcing system (in real conditions, traversal of the vehicle to the source node
of a transportation task can be viewed as a separate request). For this reason, route planning is done
between nodes s and t, by using free time windows after time point θ.

Now, when an agent in s is assigned a request, the aim of the route planning algorithm is finding a
dynamic route for it, which fulfills the criterias stated (see definitions below).

Definition. A dynamic path in a graph G is defined as a sequence

P = (θ0, (v1, θ1), ..., (vk , θk))

of v1, ...vk nodes and θ1, ..., θk timestamps, timestamp θi representing the earliest time when node vi
can be entered.

It can be clearly seen, that an agent can follow such path by travelling through the edges between
the respective nodes, and waiting on the edge, when they would reach the next node earlier than the
timestamp belonging to it. It must be noted, that agents are allowed to wait on edges only (or practically,
travel them with lower speed than possible), but they must leave nodes of the graph immediately as they
arrive.

The key point behind this concept is, that collision and deadlock avoidance can be realised centrally, by
giving disjoint routes to the different agents, while the task of our algorithm boils down to the computa-
tion of a set of such routes.

Definition. Considering a dynamic path P in a graph G , the timestamp θi is called a reservation of
node vi , and the interval (θi−1θi ) is called a reservation of the edge between vi−1 and vi .

Definition. Two dynamic paths are considered disjoint if there are no overlapping time intervals be-
tween reservation times of the contained edges. Mathematically,

P1 = (θ
(1)
0 , (v

(1)
1 , θ

(1)
1 ), ..., (v

(1)
k , θk)

(1)) P2 = (θ
(2)
0 , (v

(2)
1 , θ

(2)
1 ), ..., (v

(2)
l , θl)

(2))

P1 and P2 are disjoint iff ∀i < k, j < l : vi = vjandvi+1 = vj+1 ⇒ [θi , θi+1] ∩ [θi , θi+1] = ∅

Now, that the proper operation is ensured by creating disjoint routes, defining optimisation objectives
follows.

Definition. The duration of a dynamic path is defined as ∆p = θk − θ0.
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The first problem focuses on efficiency of utilizing the agents in the system, that is, minimizing the time
they spend (or, the route, they travel) during the completition of a given set of requests. While for a
set of requests known prior to the route planning this can be modeled and solved as a mixed integer
problem, for requests arriving continuously, it can not be guaranteed, that any algorithm can produce
an optimal set of dynamic routes.

Definition. The Online Shortest Dynamic Disjoint Path Problem is defined as follows:
Being given a sequence of requests (si , ti , θi ), i = 1..k find a sequence of disjoint paths P1, ...,Pn, for
which

∑
∆pi is minimal.

The second one focuses mainly on the time efficiency of the routing system, having the aim to complete
as soon as possible all known requests.

Definition. The Online Quickest Disjoint Path Problem is defined as follows:
Being given a sequence of requests (si , ti , θi ), i = 1..k find a sequence of disjoint paths P1, ...,Pn with
minimal maximum completition time over all paths (so that max

i=1...n
θi is minimal)

Again, this optimisation goal cannot be achieved for the continuously arrived requests, but the algo-
rithms discussed are able to find a solution close to optimal.

3.2 Stenzel’s routing algorithm

The algorithm itself is kind of a greedy approach. While the task - both in case of OQDPP and OSDDPP
- is minimizing the overall cost of the system, the algorithm focuses on minimizing route completition
time for the individual agents. As a result, the algorithm boils down to having a number of agents,
looking separately for routes optimal for them.

It can be easily seen, that this selfish behavior could potentially lead to countless problems, like dead-
locks forming, or agents trying to use the same route at the same time, resulting in time-consuming
waiting. To overcome this issue, the algorithm introduces the concept of time windows, aka reservation
of nodes and edges of the graph for given time periods. From this point on, every agent planning a
route is obliged to respect former reservations, and calculate their route in a manner that it does not
disturb the already calculated routes of fellow agents.

This route planning happens iteratively, an order being determined between the agents. This order can
consider priority differences between the requests, might be based on how much time is given for the
completition of the requests mapped to the agents, or can be chosen simply the order in which the
requests arrived. Whichever strategy is chosed is the responsibility of the higher level management
system, the route planning ensuring just collision avoidance and optimal solution for the individual
agents.

These individual optomalisation goal can be formulated as follows:

Definition. The Quickest Path Problem with Time Windows is defined as follows: Being given a graph
G = (V ,E ), a set of time windows for the edges, a request r = (s, t, θ) and an agent in s, compute
a dynamic path with minimal completition time p that uses the edged of the graphs in the free time
windows.

The original work also defined the Shortest Path Problem with Time Windows, that is, finding a route
with the above conditions that has minimal length (sum of the edge costs) and respects the time win-
dows already set. However, as this problem is proven to be NP-hard, it is computationally infeasible for
our application. For this reason, both when trying to solve the OQDPP and the OSDDPP, we compute
routes that are solution to the Quickest Path Problem.
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As formulated by Stenzel, the iterative algorithm works as follows:

Algorithm 1: Iterative routing scheme
Data: Graph G = (V ,E ), set of requests R = (si , ti , θi ) dispatched to agents
Result: Set of dynamic paths Pi serving the requests

1 begin
2 foreach request ri ∈ R do
3 Compute a dynamic path resolving the Quickest Path with Time Windows problem;

/* Execute Algorithm 2 */

4 Modify time windows to include the new reservations /* Execute Algorithm 3 for the

given dynamic path */

5 end
6 end

While not giving an optimal solution, this concept has several advantages. First of all, it is computa-
tionally feasible, even for large graphs and numerous agents - for details, see derivation of complexity
theorems presented in [1]. Moreover, this ensures continuous online computation - transportation re-
quests for agents can arrive continuously, in a realistic manner - each agent getting a new task when
the previous one is finished.

Apart from the time window concept, the algorithm is basically a modified Dijkstra route planning for the
individual participants.

3.3 Resource allocation using time windows

To formally describe the algorithm, we define the concept of resources, time windows and labels.

Definition. A resource is part of the graph, which can be used simultaneously by only a single agent.
This can be a node, an edge, or even a set of both.

Since the graph is directed, a resource typically consists of two edges (back and forth) between the
same two nodes. By the introduction of the planner graph in 3.5 part to consider the time required by
vehicles to turn in the respective graph nodes, this concept becomes even more complex (for instance,
the vitrual edges representing rotation in the same physical node are being treated as a single resource)
(detailed description on this follows in 3.5)

Definition. A time window on a given resource is defined as a pair of time values (ai , bi ), between
which the resource can be freely used by an agent.

It can be easily seen, that a set of time windows completely describes the availability of a resource, while
finding whether the resource is free for a particular time interval has logarithmic complexity regarding
the number of windows on it. More precisely, we define the reservations of a resource as follows:

Definition. The reservation of a resource is given by a set of consecutive time windows:

F = {(ai , bi )|i ∈ N},where ∀ i < j : bi < aj

Note. The bi element of the last time window in the set is always equal to +∞, except the case when
an edge is permanently reserved due to operation failure, eg. vehicle breakdown completely blocking
the edge.

Now, following this concept, making a new reservation on an edge can be defined:

Definition. Making a reservation on a resource for an interval (a, b) means finding a time window
(ai , bi ) ∈ F , for which ai ≤ a and b ≤ bi , and modifying it by substracting (a, b):

(ai , bi ) −→ (ai , a) ∪ (b, bi )
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As the F can contain time intervals only, the new interval is added to the end:

F = {(a1, b1), ..., (ai , a), (ai+1, bi+1), ..., (aN , bN), (b, bi )}

To keep finding an interval computationally easy, in the implementation the elements of the set are
rearranged.

As we already stated, the base algorithm itself resembles Dijkstra’s algorithm, which operates by as-
signing distace values to the edges (the distance from the source node, known at a certain stage of the
algorithm), and updating these values based on that stored in the neighbour nodes. Now, to implement
this behavior, but taking in consideration the arrival time rather than distance, we introduce the concept
of labels.

Definition. A label is defined as a tuple L = (s, t, a, b, p), and means, that the agent for which route
planning is done, can reach the tail of edge between nodes s and t in the time interval (a, b). The p
value is the identifier of the edge, from where the agent arrives.

First of all, we should note, that the reason why the t head of the edge is part of the label is, that due to
the construction of the algorithm, these labels are assigned to edges instead of nodes. Secondly, the
presence of b as last possible time of arrival is necessary, as the agent might be obliged to leave the
previous edge from where it would arrive due to a reservation made formerly by another agent to an
interval after b.

Another important modification to the Dijkstra algorithm is, that an edge might be assigned not only
a single label, but multiple labels as well. This construction is necessary, as contrary to the simple
static route planning, when always the route with lowest distance is certainly the best, and discarding
the higher values can be done without problem, here we can not define an obvious order between the
labels to choose which one to keep. For instance, due to reservations on the edges, it can happen, that
a label with highest arrival value will result in a quicker route after reaching the target.

Finally, we define a relation between labels, so that we can discard those, that certainly result in worse
routes than an another label already present.

Definition. Label L1 = (s1, t1, a1, b1) dominates a label L2 = (s2, t2, a2, b2), if it is a subset of it: a1 ≤ a2
and b2 ≤ b1.

Below, in the discussion of the route calculation, ww explain in details how and why this domination can
be used to get rid of unnecessary cases.

3.4 Route computation

In this part, we describe the operation of the route-planning algorithm.

The algorithm consists of four important parts: initialization, the main loop iterating over edges and
labels, the label actualication step (which is part of the loop), and finally, the computation of a dynamic
route from the labels and reserving the resources used in it.

Similarly to Dijkstra, or almost any other path-search algorithm, we use a priority queue to keep track
of elements (nodes, or labels in this case), that need to be processed. In the initialization step, we push
labels related to the source node in the queue, so that the algorithm can begin. Second, in the main
loop, in every iteration, we select and pop one of the elements from this queue, and expand it, which
means we update the stored values in the nodes or edges connected to it. The algorithm terminates,
when the queue becomes empty, or when we can decide from the currently expanded element, that the
optimal solution is reached - when expanding this element involves label updates based on the label
having the target node as its head. Finally, based on the values assigned to the edges of the graph, we
calculate a dynamic route and make the reservations needed.
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Algorithm 2: Dynamic Route Calculation
Data: Directed graph G = (V ,E ), source node s, target node t, release time θ, function τ(e) which

gives the time required by the respective AGV to travel the edge e, and a set of time windows
F(e) for the edges

Result: A dynamic route P with θk ≥ θ and solving the Quickest Path Problem with Time Windows
1 begin
2 H = ∅;
3 foreach e ∈ E do
4 L(e) = ∅
5 end
6 foreach e : e.tai l = s do
7 L = (e.tai l , e.head , θ,∞, ni l);
8 H.insert(L);
9 L(e).insert(L);

10 end
11 while H 6= ∅ do
12 L = H.pop();
13 if L.s = t then
14 break;
15 end
16 foreach F = [a, b] ∈ F(e) do
17 if L.b < a then
18 break;
19 end
20 if b < L.a then
21 continue
22 end
23 tin = max{a, L.a} ; // If L.a < a, the agent must wait until a
24 tout = tin + τ(e) ; // First possible arrival to the end of the edge

25 if tout ¡ L.b then
26 foreach f : f .tai l = L.t do
27 L′ = (f .tai l , f .head , tout , b, L) ; // This would be the new label

28 foreach L̂ ∈ L(f ) do
29 if L′ dominates L̂ then
30 H.erase(L̂);
31 L(f ).erase(L̂);
32 else if L̂ dominates L′ then
33 continue
34 end
35 H.insert(L′);
36 L(f ).insert(L′);
37 end
38 end
39 end
40 end
41 Calculate dynamic route based on labels (Algorithm 4).
42 end
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De algorithm can be described by the following pseudo-code, explained below in details.

For the next parts, lets assume we want to plan an optimal route for an agent from node s to node t,
respecting the already present resource reservations.

Initialization
First, we initialize the priority queue H as an empty queue of labels, the ordering relation being the
comparision between the a values of the elements. Similarly, we assign an empty list of labels to all
edges, noted by L(e).

Then, we look for edges e having the source node as their tail, and insert label L = (e.tai l , e.head , θ,∞, ni l)
into H and into L(e) (θ is the earliest time the agent can start execution of the request, while ni l repre-
sents, that these edges have no predecessor, from where the agent arrived).

Main loop
Now, in every iteration of the main loop, the label L with minimal arrival time a is popped from the queue.
The algorithm checks, whether the target is reached (that is, L.s = t), and moves to the computation of
the dynamic route if it is (lines 13-15).

If not, similarly to the Dijkstra algorithm, actualization of the consequtive edges takes place. With
the loop in lines 16-38, for each empty time window on edge e = (L.s, L.t), traversal possibilities are
checked.

If the last possible arrival time to the tail of the edge (L.b) is earlier than the beginning of the time window
(a), the agent can not pass the edge using this time window. As time windows are ordered in F(e), no
further iteration is required, the algorithm continues by chosing the next label from H. (lines 17-19).

If the first possible arrival time is later than the end of the time window, the agent can not travel the edge
using this window. The algorithm is continued with the next time window from F(e). (line 20-22).

If neither of the above conditions broke the execution of this loop, the agent might be able to travel the
edge. Based on the current time window and the traversal speed of the agent, first and last possible
arrival times to the end are calculated. The first time the agent can begin traversal of the edge is
tin = max{a, L.a}: if beginning of the time window L.a is later than the first possible arrival time a, the
agent waits on the previous edge, and enters at L.a only. Consequently, the first possible arrival time to
the head of the edge (or, the tail of the next one) is tout = tin + τ(e). If the agent can travel the edge
until the end of the time window (meaning that tout < b), labels on all edges f going out from node L.t
are actualized based on domination rules (line 25-37).

Label actualization
Actualization of the labels happens by creating the new label based on first and last possible arrival
times (L′ = (f .tai l , f .head , tout , b, L)), then whether it is dominated by other labels or contrary, it domi-
nates some others. It can be clearly seen, that if a label is dominated by any other label, we should not
take it into consideration any more, as using the label dominant label completely covers the possibilities
introduced by the another one.

For this reason, all labels of all successor edges are checked (nested foreach loop pair in lines 26-36.
If the new label is dominated by any of the already present ones, it is not inserted in the queue, and no
further checks are done: the algorithm continues by examining the next successor edge. Otherwise,
the new label is inserted in H and in L(f ) as well. During this process, one more check is done: if the
new label dominates any of the already present ones, that label is removed from H, and from L(f ) is
well, as the new label will completely take its role.

Route calculation
When the algorithm pops a label from H with its tail being equal to the goal node, the algorithm stops.
Now, by stepping backwards based on the label, a dynamic route is generated.
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Algorithm 4: Calculate dynamic route from labels
Data: Directed graph G = (V ,E ), starting label L = (s, t, a, b, p), L.s = t
Result: Dynamic path P

1 begin
2 k = 1;

/* Compute dynamic route backwards */

3 while L 6= ni l do
4 vk = L.t;
5 θk = L.a;
6 L = L.p; k = k + 1;
7 end
8 reverse(P);
9 θ0 = θ1 − τ(s, v1);

10 end

Modifying time windows according to new reservations
Modification of the time windows to include new reservation is quite straightforward, if a properly con-
structed dynamic path is given. Assuming that if a wait operation during a path required, agents are
instructed to wait as late as possible, the time slots for which an agent occupies the edge (vi , vi+1) is
exactly [θi , θi+1].

A more interesting question is, however, which set of time windows to modify to avoid collisions indeed.
While reservation of the resource belonging to the edge (vi , vi+1) comes naturally, some neghbouring
edges might also be affected. To prevent any issue coming from this (like agents arriving from different
direction to a node with ε time difference colliding), we define the concept of conflicting edges. Now,
these edges should not be checked to be free in the step of dynamic route calculation, they should be
reserved when adjusting the time windows according to the dynamic path though. In our model, when
reserving an edge, the set of conflicting edges we reserve are all those connected to vi or vi+1.

Based on this, the implementation of the algorithm can be described by the following pseudo-code:

Algorithm 3: Modifying time windows according to new reservations
Data: Directed graph G = (V ,E ), dynamic path P = (θ0, (v1, θ1), ..., (vl , θl))}, a set of time windows

F(e) for the edges, set of conflicting edges confl(e)∀e ∈ P
Result: A new set of time windows F(e) including the reservations for P

1 begin
2 foreach e = (vk , vk + 1) ∈ P do
3 foreach f ∈ confl(e) do
4 foreach Fi = [ai , bi ] ∈ F(f ) do
5 if θk+1 <≤ ai then
6 continue
7 end
8 if ai ≤ θk and θk+1 ≤ θk+1 then
9 for m = end(F(f ));m >= i + 1;m = m − 1 do

10 Fm = Fm−1;
11 end
12 Fi = [ai , θk ];
13 Fi+1 = [θk+1, bi ];
14 end
15 end
16 end
17 end
18 end
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In this code, the algorithm iterates through all edges in the dynamic path (loop between lines 2-17),
and makes a reservation for all conflicting edges (foreach loop in lines 3-16). The reservation is made
by finding the time window in which the agent travels the edge (line 8) and splitting the respective time
window in two parts. To keep the set F(f ) ordered, elements of the set are shifted (lines 9-11), and the
new window is inserted right after the one being splitted (lines 12-13).

3.5 Modeling AGV movements and the routing environment

As the last part of the dynamic routing algorithm, a model of AGV movements, and the corresponding
representation of the environment is presented.

First of all, the factory floorplan is handled a a simple directed graph, with edges representing the paths
an agent can follow, and nodes being the intersections between such paths. In the further discussions,
this graph is called the factory graph.

However, as real life agents are not capable of arbitrary movements (for instance, can not change their
direction in zero time), we use some predifened movement primitives to decribe their behavior. These
primitives are GO STRAIGHT, TURN and WAIT, and we assume, that all agents in the system can execute
any of them.

Basically, the GO STRAIGHT stands for straight, horizontal movement, in the main travelling direction of
an agent. If no such direction exists (for instance, a quadcopter can travel equally in all four directions),
one is chosen at the beginning of the simulation. The primitive has one parameter, the distance the
agent is supposed to travel. To be able to handle aerial vehicles as simple AGVs, an optional second
parameter, the vertical movement can be added. This value means, that the AGV (provided it is an
aerial vehicle capable to do so) will rise/sink this distance during the forward movement.

The another movement primitive TURN is rotation in place, i.e changing the forward direction with position
of the mass point remaining unchanged. This primitive requires a single parameter, an angle (positive or
negative value representing left and right turn respectively), that describes how much the agent should
turn. We assume, that the agent can not change its height during a TURN operation.

The third movement primitive represents waiting in-place, without changing position or orientation.

Now, while the factory graph would be enough to compute routes including GO STRAIGHT and WAIT

operations, time required for the turning must be somehow included in the weight of the paths. To be
able to use the algorithm without modification, a virtual graph called planner graph was introduced.
For every physical node in the factory graph, we generate a virtual node for every possible direction in
which the agent can arrive to or depart from the node. Edges representing rotation are added between
neighbouring directions (see fig. 1), edges representing transition are preserved between the virtual
nodes having the same direction value.

Figure 1: Contruction of a simple 2D planner graph
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From this point, running the route planning algorithm on the planner graph would result in dynamic
routes, which can be translated directly to a list of movement primitives.

4 Implementation

In this part we present the implementation of the upmentioned algorithms, created for testing and
validating their performance. The simulation was realised entirely in MATLAB, and is formed by two
main components. First, a general framework was created for simulating AGV movement in a three
dimensional coordinate system, where all AGVs act based on predefined task-list, given by the user.
This framework provides a simple model for dealing with multiple type of AGV vehicles through the class
called AGV, and features a simulation loop, which iteratively computes and shows the AGV movements
in our system (the Simulation class). As there is a possibility to throw and handle events during the
simulation (like an AGV reaching its destination and waiting for new tasks to be added), it is completely
fesible to simulate route planning algoritms in general.

Next, we moved on to impementation of Stenzel’s algorithm. A MATLAB model of the graphs (class
FGraph for the factory, class PGraph for the pllanner) and time windows (Resources class) was intro-
duced, followed by the implementation of the time-window based route planning (algorithm 2) and
route reservation (algorithm 3)algorithms. As all route-planning algorithms investigated assume a
high-level dispatching system giving route sources and destinations to the agents, in the test scripts we
also created a simple dispatching model (demo gyor.m). We already mentioned, that the algorithm can-
not deal with idle AGVs waiting for a new order (for them, without reservations, these agents disappear
from the network), so introduction of so-called parking places was necessary for the simulations. This
way, not sending multiple agents to the same parking place (or workstation) becomes the responsability
of the dispatching system.

Finally, we present the upcoming implementation challenges, caused by transition to three dimensional
modeling.

4.1 The MATLAB framework

AGV modeling (AGV.m)
In this framework, all moving AGV agents are modeled as mass points, moving in a coordinate system,
and are displayed as 3D CAD models loaded from .stl files. They all belong to the same AGV.m base
class, having the following important properties and functions:

• position and rotation: a three-element double vector, position of the mass point in the coordi-
nate system and a three by three rotation matrix, describing rotation of the initial 3D model.

• modelVertices: n by three matrix, containing the initial position of the vertices of the loaded 3D
CAD model. This is centered to the origin of the coordinate system and normalized (all AGV
having size 1 along their longest dimension). Multiplied elementwise with the rotation matrix, and
added to the position vector, this results in a 3D AGV model in the coordinate system with the
right position and orientation.

• velocity and angularVelocity: velocity of the agents during straight movement and rotation.
As all AGVs modelled are capable of waiting in place, this is assumed to be constant without loss
of generality.

• tasklist: LIFO list of movement primitives, with reqiured parameters (discussed above).

• update(dt): calculates the next state of the agent after a dt timestep, based on the properties
described above

Now, by modifying the tasklists using the addTasks helper function, users of the framework can assign
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tasks to the AGVs, identical to the movement primitives assumed above. This way, any route to be
followed can be easily described as a list of these tasks, and simulated by the system.

The most significant part of this modeling being the update function, we discuss that more in details.
This function is called periodically by the main simulation loop, and does the following: first, it checks
whether the current task (that on the top of the task list) is finished. If not, execution of that is continued,
else it pops the next task from the list and begins the execution. As for the execution, the algorithm
calculates the next position based on the respective movement primitive, modifies the parameters of
the task (to keep track of how much of it is done), and recalculates the position of the model vertices
displayed.

For more implementation details, see documentation of the MATLAB code in Appendix 1.1

Main simulation loop (Simulation.m)
The simulation is run by the class named Simulation. This has a list AGVs containing the handles of
all agents in the system, and a time variable, which contains the time elapsed since the beginning of
the simulation. New agents can be added using the function addAGV. The simulaiton can be started by
calling the simulation function, which contains the main simulation loop.

The simulation loop is an infinite loop, which first deretmines the next timestep, and calls the update
function of all agents whith that value afterwards. The timestep is obtained by iterating thorugh all
agents, and checking how much time their need in order to complete their current task (on the top of
their command list). The algorithm chooses the minimum from the set of these values and the default
timestep value of 0.04 seconds. This approach ensures, that all AGVs will complete their tasks exactly
at the end of a simulation cycle, while also preserving a minimum of 25 updates per second.

All AGVs have the possibility not to return anything, or to throw an event, as the return value of their
update function. If such an event is returned, the main simulation loop terminates (all state variables
being preserved), and returns control to the caller script. This way, when for instance an agent finishes
all of its tasks, it can request new task from the dispatching system. The simulation can be resumed by
calling the simulate function again.

For documentation and visualization purposes, this funciton also handles how graphics is displayed.
It takes in consideration the time required for computation, as well as for the draw operations, when
choosing the amount of idle time required to provide a constant frame rate for the viewer. The class can
also be used for video construction, by simply passing a recorder object to it in the constructor. This
way, all frames are put after another in .avi format.

For more implementation details, see documentation of the MATLAB code in Appendix 1.2

4.2 Routing algortithm

Factory graph
The first step to implement the routing algorithm was finding the right representation for the environment,
in which the routing takes place. As it does not has an effect on the efficiency of the algorithm, we chose
to model our factory floorplan as a simple directed graph, and store the position of the nodes and an
adjacency matric.

In the implemented code, this appears as the FGraph object. The class has two attributes: the vertices

vector and the adjmat adjacency matrix. The vertices has size N×3 matrix, in which each row contains
the (x , y , z) coordinates of a node - thus, the nodes are identified by their index in the row (1, 2, ...,N).
The adjacency matrix is a N × N boolean, and ai j has value true if there is an edge between the i-th
and j-th node. As the graph is assumed to be directed, this matrix is not necessarily simmetric. It
was considered to store the weight of the edges in the adjacency matrix as well, however, due to the
construction of the planner graph (see below) it is not required.

The matlab class has four methods to support construction of arbitrary graphs, called add vertices,
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delete vertices, add edges, delete edges, all being able to perform the insert and delete operation
without breaking the structure already set. The add vertices and delete vertices change the number
of nodes, and thus shifts the identifier of some nodes, though.

For more implementation details, see documentation of the MATLAB code in Appendix 2.1

Planner graph
The planner graph is represented by the class PGraph, and it is constructed according to the description
above (see 3.5). The class has two attributes: the vertices vector and the adjmat adjacency matrix.
The vertices has size N ′×3 matrix (N ′ being the number of virtual nodes), in which each row contains
the number of the corresponding phisical node in the planner graph, and an angle value φ ∈ (−pi , pi ]
containing the direction which the virtual node stands for.

The adjacency matrix is a N ′ × N ′ (positive) double matrix, and ai j contains the weight of the edge
between virtual nodes i and j . If these nodes belong to the same physical node, this weight is the
amound of degrees (in radian) the agent has to turn from one to the another; otherwise, the weight is
the length of the physical edge.

While using this representation, turning behavior and the time required for an AGV to turn into the
required direction is covered for arbitary graphs without additional computations, it introduces difficulties
in resource allocation. It must be noted, that these virtual edges, as well as the virtual nodes represent
the same physical resource, and must be treated accordingly when reserving a node or an edge for the
algorithm.

For more implementation details, see documentation of the MATLAB code in Appendix 2.2

Resource allogation
As already described above, the route planning algoritms avoids collisions and deadlocks using the
concept of resource allocation using time windows, which means, that all physical resource (like a node
or an edge) can be reserved by an agent for a given interval of time. Moreover, these phisical resources
need to be mapped to the elements of the planner graph, so an algorithm working on that can access
resercation data for a virtual edge or node.

To keep the implementation simple, a Resources class was created to store this data. The class has
a property called timeWindows, which is a cell array containing the free time intervals for all resources,
and a property resource ids (Nplanner ×Nplanner , where Np lanner is the number of nodes in the planner
graph), in which resource idsi ,jcontains the index of the resource belonging to the edge from the i-th
node to the j-th node (when i 6= j) or to the node i (when i = j). If there is no such resource (there
exists no edge between i and j , value 0 is stored).

Generation of the resources happens in the following way: first, we assign values from 1 to Nplanner

to the main diagonal of the resource ids matrix. Next, we iterate through all edges in the graph, and
calculate how many resources are needed (for instance, bidirectional edges, and edges representing
rotations share a common one), and insert the values into the matrix.

Finally, we create the timeWindows cell array with R elements (R is the number of resources needed),
and initiate timeW indows i as a 1× 2 matrix having values 0 and∞ (which means, that all resources
are completely free).

Reservation of resources happens the following way: when the route planning algorithm has to reserve
a node or edge, it first looks up the resource id in the resource ids matrix. Next, it iterates through
the rows of the matrix stored in the cell timeW indowsid , and checks whether the interval for which the
reservation is needed is the subset of one of the stored interval. Finally, if it is, reservation happens by
cutting the interval in two parts. The second interval is inserted right after the first one, shifting the rows
of the matrix.

The Resources class is also able to create a human readable plot of resource reservation, so working
of the algorithm can be visualized in real time. As we can see in figure 2, the resources are represented
by horizontal bars, green segments marking the free time windows (the intervals stored in the matrix),
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and red segments marking the reservations. It can be clearly seen, that red marks align obliqely, as an
agent moves along a path, and reserves consequtive resources for consequtive time intervals.
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Figure 2: Reservation of resources

Route calculation
Following the route planning method described above, the algorithms for route planning and for reserva-
tion of the route found are implemented as functions algo2 and algo3 respectively (the naming follows
the original names given by Stenzel, the algorithms being almots identical to that described in his pa-
per).

In the initialization part, all edges in the (planner) graph are listed, and a priority queue is created
for them, capable of storing labels. For practical reasons, in fact the algorithm creates an array of
structures, which contain head and tail info of an edge, as well as the priority queue belonging to it. In
the same iteration, if the edges have the starting node as head, a label is added to them, stating that
the agent can begin travelling on them at any time beginning with the relase time θ.

For more implementation details, see documentation of the MATLAB code in Appendix 2.4,2.5,2.6.

Parking places
As the route planning algorithms see the agents only through the reservations made by them, it was
necessary to remove the AGVs from the graph when not executing a task. To resolve this, parking
places were introduced, as nodes aligned at the side of the graph. We assumed, that those parking
places are big enough to provide space for any number of agents, or that the dispatching system takes
care of not sending too many of them to that particular place.

Now, with this assumption, the only requierment from the dispatching system is, that only routes from
one parking place to the another should be planned. This way, during normal operation (without delay
or for instance vehicle breakdown) no agent can remain in the graph without the respective resource it
uses being reserved for it.

Regarding the implementation, the introduction of these places does not influence at all remaining part
of the route planning system.
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Dispatching
Although design and implementation of a complex dispatching system was well beyond the scope of
this project, creation of a rather simple one for testing purposes was inevitable. For this reason, at first
a zero-logic system was created, which for any AGV finishing its task assigned a random target node
from the graph.

However, as described above, proper testing of the algorithm required a system capable of handling
the parking places. This system was implemented as well, by keeping a list of parking places, and
choosing one randomly based on their status. We decided to use two possible states for the parking
place: free or occupied. At first, all places from where agents start are set to occupied, the others are
set to free. Next, when route planning for agents begin, a parking place is set to occupied as soon as
an agent gets a route planned to there. The place, from where the agent starts is set free at the same
time, even though the agent might not be able to leave at that moment. The system assigns only free
places as destination (choosing randomly), behavior which ensures, that two agents cannot be routed
to the same place, colliding there (outside of the graph).

It has to be noted, that the concept presented is far from being efficient, this is not among its purposes
though. In real application, where agents have a specific goal, waiting at the other side of the graph
just because an another agent is heading to the same destination, is inacceptable waste of time. For
testing the route planning, choosing another random target in such situation is perfectly enough.

Extension to 3D models
Due to practical demands, the next step in our project consisted of extending our model and imple-
mentation to support multiple types of vehicles, including quadrotors capable of aerial transport. The
modification includes several challenges, starting from three dimensional planner graph generation to
providing different weights, and even completely different graphs for the individual AGVs in the system.
Moreover, the differences between these graphs (inevitable because not all vehicles are designed to
travel along air edges) impose the re-implementation of the resource allocation system. Finally, the
presence of AGV’s with different behavior cannot be simulated without slight modifications to the main
simulation class, and the graphical interface either.

Three dimensional planner graph
As discussed above, the planner graph - generated based on the factory floorplan - is a virtual graph,
where a node represents the actual position of an intersection and the direction of the vehicle as well.
Consequently, rotation time of the vehicles can be taken into account as the weight of the virtual edges,
connecting these nodes.

During the creation of our three dimensional model, at first usage of solid angles and an even more
complex virtual node generation formula was considered. Later, to keep it simple as possible, we came
up with a more natural extension, assuming more simple movement primitives for the aerial vehicles
(discussed below in details).

In the process of planner graph generation, we project our three dimensional graph to a plane, resulting
in a regular floorplan. In the next step, we generate out planner as discussed above, finally, we assign
the same height value to the virtual nodes, as the corresponding physical node had. Now, the only
problem remaining are the completely vertical edges: as the projection of the two nodes fall to the
same two-dimensional point, it is unclear to which virtual node (which direction value) should these
edges connect.

This case was handled in the following way: every node connected to such an edge was assigned a
virtual node with direction value 0, and these nodes were connected by the preserved edge. Naturally,
if the two physical nodes had another common directions (which is mostly the case in the graphs used),
those were connected as well.

The approach discussed completely fits out applied aerial AGV model, which - compared to the regular
AGV - features one more movement primitive: during a straight transition, it can increase/decrease its
height value as needed. While real-world quadrotors are capable of rotation during a rise/sink operation
as well, this behavior was omitted from out system.
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Different graphs for vehicles
Introduction of quadrotors in out system was a major modification, as handling of different types of
vehicles (with edge travelling capabilities moving on a wide scale) became necessary. To address the
issue, the AGV model and the route planning algorithm was modified as follows.

First, the AGV model was changed to include the planner graph, on which the respective AGV can
travel. This planner graph can be a clone of the original planner generated from the floorplan (which
is the case when an AGV can travel along all edges), or a subgraph of it (edges/nodes unreachable
for the AGV are omitted, and weights of the preserved edges can be changed based on the vehicle’s
properties). Addition of new nodes or graphs is prohibited to ensure consistent resource allocation. As
the resources are common for all AGVs, these are generated based on the original planner graph.

The route-planning algorithms undergone a single modification: when expansing an edge label, neigh-
bouring edges and traversal times are queried using the planner model of the AGV, for which the route
planning happens. Nevertheless, resource allocation is done based on the original planner graph.

Simulation class and graphics
While changes to the simulation and graphical system are more an implementation issue than research
task, these modifications were inevitable to effectively test and validate the algorithm itself in the new
situation.

To visualize the AGVs in a three dimensional environment, MATLAB’s built-in graphical tools were used.
The vehicle shown is a patch object, loaded from an .stl file, containing a well-designed representation
of the physical AGV’s and quadrotors used by the MTA-SZTAKI. Moreover, the graph and the factory
outlook was also adopted from the institute, so the vehicles are simulated in real conditions.

The simulation cycle was redesigned in an object-oriented approach, using the features offered by
MATLAB. This means, that every AGV object (belonging to the AGV base class) can have its very own
3D model, speed, and behavior, while new typed can be added without touching the already present
ones.

Figure 3: Demonstration of 3D graphics environment
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5 Test cases

To extensively test the implemented framework system, and verify the usability of the implemented
algorithm in the scenarios needed, an exact model of the factory cell from Gyor was realised in the sim-
ulation system. This process involved loading and transforming the data acquired from measurements
of the place, so that a three dimensional representation of walls and objects would appear. Next, a
directed graph respecting the loaded floorplan was created, followed by the generation of nodes and
edges in the air, suitable for quadrocopters only. Finally, after generating a planner graph and nominat-
ing some parking places / workstations (nodes, from which and to which transportation requests are
arriving), two ground AGVs and two quadcopters were loaded and launched.

In this section we present and explain the simulation results only. For implementation details, see
Appendix 3.1.

Loading factory floorplan
As a result of measurements and some preporcessing of data, the following layout was obtained in
.csv format (figure 4). The file contained a true or a false value for each coordinate pair (x , y) ∈
[−66;+80]× [−74;+55], indicating whether an AGV can go to that place or not.

Figure 4: Floorplan of the factory cell located in Gyor

The file was loaded in MATLAB, and the following representation (a surface in a three dimensional
space), including walls and blocking objects (figure 5) was created.

In the next step, we realised the factory graph containing 18 nodes on the ground, and another 11 ones
in the air. By connecting the adjacent noded, a graph with a total of 50 edges was obtained. There
were five workstations added, to physical nodes 1, 9, 16, 18, 20 (marked by the green squares on the
floor). The graph can be seen on figure 6.

Finally, the planner graph (PGraph object) and the resources (Resources object) were generated. The
planner graph resulting from the above factory graph had 158 vertices and 506 edgeswhile the re-
sources object contains 79 resources (set of time windows).

Loading AGVs and generating requests
The AGVs were loaded to the following positions: two groud AGVs to nodes 9 and 18, and two quadro-
tors to nodes 1 and 16. In this order, the agents had the targets 18, 16, 9, 20. The route planning took
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(a) Layout from above (b) Layout in perspective

Figure 5: Layout generated by matlab based on the floorplan

Figure 6: FGraph object of the factory cell
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place in order 16, 18, 9, 1 (the numbers being the nodes the agents started from). The routes calcu-
lated and followed by the agents can be seen in figure 7. It can be easyly observed, that agent starting
from 18 chose route {18, 13, 17, 14, 16} instead of the spatially shorter one {18, 13, 12, 14, 16} to aviod
interference with the route starting from 16 planned before. As for the performance of the algorithm, all
route planning operations took place in time less than 0.1 seconds, which could be further reduced by
optimalization of the implementation.

Figure 7: Routes planned using the algorithm

Videos showing the operation of the route planning system, as well as the simulation framework in the
factory cell from Gyor, and in a much bigger factory cell containing over a hundred of physical nodes,
200 edges and as much as 10 agents, are available at [6]. The algorithm had a decent performance on
those graphs as well (computation times remaining under 1 second in any circumstances).
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6 Summary

In this work, we have presented the operating principle and implementation of an algorithm, capable
of providing online disjoint autonomous vehicle route planning for multiple type of AGVs moving in a
microscopic routing environment.

First of all, thesis of Stenzel [1] was read and carefully examined regarding the operation and implemen-
tation of the algorithms, including investigation of how realistic the requirements are. Next, modeling of
the agent behaviors took places, by introducing the movement primitives, that each type of AGV is able
to execute. By this step, we could create a routing system capable of handling together all agents, and
providing route planning for ground and aerial vehicles at the same time. A comprehensive environ-
ment model was also created by the definition of planner graphs, which allowed the algorithm to take in
consideration time required for all movement primitives, including turning behavior.

Second, the initial MATLAB framework provided at the beginning of this work was extended, to include
all the features required. Handling of resource allocation, illustration of time windows, and new AGV
movement primitives were implemented. The framework was added a completely new 3D visualization
system, and the ability to load and simulate three dimensonal AGV models. Generation of planner
graph was reimplemented to include three dimensional factory graphs as well.

In the third step, the algorithm was completely implemented as described in the original paper, and its
operation was tested on some factory configurations. To simulate as realistic conditions as possible, a
three dimensional model of the factory cell in Gyor was created and loaded, and some test runs were
carried out. The algorithm showed excellent performance in all of the scenarios.

Summing up, the problem of online disjoint route planning for this factory cell was solved, but this
algorithm hides even more interesting possibilities for the future. Our plans include more subtle resource
management and introducing more realistic and efficient algorithms for exceptional cases (like vehicle
breakdown). To provide an even more general and formal way for handling these tasks, we are looking
forward to the introduction of time-window based temporal logic in the near future.
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1 Matlab framework

1.1 AGV.m

c lassde f AGV < handle

% / / / / / / / / / / / / / / / / / / / / / / / / / / PROPERTIES / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

% Prope r t i es requ i red f o r graphics
p r o p e r t i e s ( GetAccess = pub l i c , SetAccess = p r i v a t e )

patch % the 3D patch belonding to the ob jec t
modelVert ices % i n i t i a l v e r t i c e s o f the ob jec t

end

% s ta te va r i a b l e s o f the AGV
p r o p e r t i e s ( GetAccess = pub l i c , SetAccess = p r i v a t e )

% t h i s must be a v a i l a b l e somehow , as graphics r e l i e s on i t
p o s i t i o n % p o s i t i o n o f the ob jec t
r o t a t i o n % r o t a t i o n o f the ob jec t

% These p r o p e r t i e s are used j u s t by the p r i m i t i v e model , and can be
% replaced i f a more complex one i s inc luded .
% The t imeToFinishTask ( ) and update ( ) f u n c t i o n s must be
% adjusted accord ing ly though .
forwardVector % d i r e c t i o n o f the robot i n i t s own coord ina te

system , t y p i c a l l y [1 0 0 ]
v e l o c i t y % speed of movement dur ing GO STRAIGHT opera t ion
angu la rVe loc i t y % speed of movement dur ing TURN opera t ion

end

% Proper t i es f o r task execut ion −− used by d ispa tch ing and r o u t i n g
% a lgo r i t hm .
p r o p e r t i e s ( GetAccess = pub l i c , SetAccess = p r i v a t e )

currentTask
t a s k l i s t

p lanner

source
d e s t i n a t i o n
works ta t ions

end

% / / / / / / / / / / / / / / / / / / / / / / / / / / / METHODS / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

% cons t ruc to rs , copy cons t ruc to r , e tc .
methods

f u n c t i o n t h i s = AGV( f i lename , pos i t i on , r o t a t i o n , planner ,
works ta t ions )
% load the s t l model from f i l e

model = s t l r e a d ( f i lename ) ;
model = reducepatch ( model , 0 . 0 5 ) ;
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t h i s . patch = patch ( model , ' FaceColor ' , [253 , 106 , 2 ] /255 , ...
' EdgeColor ' , ' none ' , ...
' FaceLight ing ' , ' gouraud ' , ...
' AmbientStrength ' , 0 .15) ;

ma te r i a l ( ' metal ' ) ;

% center and normal ize the model
o f f s e t = (max( t h i s . patch . Ve r t i ces ) + min ( t h i s . patch . Ve r t i ces ) )

/ 2 ;
t h i s . patch . Ve r t i ces = t h i s . patch . Ve r t i ces − repmat ( o f f s e t , [

s i ze ( t h i s . patch . Ver t i ces , 1) 1 ] ) ;
t h i s . patch . Ve r t i ces = t h i s . patch . Ve r t i ces . / max(max( abs ( t h i s .

patch . Ve r t i ces ) ) ) / 2 ;

% save i n i t i a l v e r t i c e s f o r graphics
t h i s . modelVert ices = t h i s . patch . Ve r t i ces ;

% set i n i t i a l s t a t e va r i a b l e s o f the AGV
t h i s . p o s i t i o n = p o s i t i o n ;
t h i s . r o t a t i o n = r o t a t i o n ;

t h i s . forwardVector = [1 0 0 ] ;
t h i s . v e l o c i t y = 1 . 5 ;
t h i s . angu la rVe loc i t y = 1 . 2 ;

% place patch to i t s i n i t i a l p o s i t i o n
t h i s . re f reshPatch ( ) ;

% i n i t i a l i z e tasks
t h i s . currentTask = {AGVTask . IDLE , 0 , 0} ;
t h i s . t a s k l i s t = Stack ( ) ;

% s to re planner handle (own graph , w i th the same nodes but
d i f f e r e n t adjmat ! ! )

t h i s . p lanner = planner ;

t h i s . works ta t ions = works ta t ions ;
end

end

% methods requ i red by the s imu la t i on framework −−−−−−−−−−−−−−−−−−−−−−−
methods

% Returns the ( est imated ) t ime requ i red f o r the cu r ren t task to
% complete . I f there i s no such t ime ( eg . IDLE ) , i n f i s re tu rned .
% This i s used by framework to ensure c o m p l e t i t i o n o f tasks t h a t
% requ i re less than the standard s imu la t i on t imestep .
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f u n c t i o n t ime = t imeToFinishTask ( t h i s )
swi tch t h i s . currentTask {1}

case AGVTask .GO STRAIGHT
time = norm ( [ t h i s . currentTask {2} , t h i s . currentTask {3} ] )

/ t h i s . v e l o c i t y ;

case AGVTask .TURN
time = abs ( t h i s . currentTask {2} / t h i s . angu la rVe loc i t y ) ;

case AGVTask . WAIT
t ime = abs ( t h i s . currentTask {2} ) ;

o therwise
t ime = i n f ;

end
end

% Makes a dt t imestep i n the s imu la t i on
% − executes the AGV' s cu r ren t task
% − i f task i s completed , pops the next from the stack
% − i f the stack i s empty , IDLE task i s assigned

f u n c t i o n [ event ] = update ( t h i s , d t )
event = [ ] ;

% executes the cu r ren t task

taskCompleted = f a l s e ;
swi tch t h i s . currentTask {1}

case AGVTask .GO STRAIGHT

t h i s . forwardVector = [ t h i s . currentTask {2} , 0 , t h i s .
currentTask {3} ] / norm ( [ t h i s . currentTask {2} , 0 ,
t h i s . currentTask {3} ] ) ;

dr = t h i s . v e l o c i t y * d t * ( t h i s . r o t a t i o n * t h i s .
forwardVector ' ) ' ;

t h i s . p o s i t i o n = t h i s . p o s i t i o n + dr ;

t h i s . re f reshPatch ( ) ;

t h i s . currentTask {2} = t h i s . currentTask {2} − t h i s .
v e l o c i t y * d t * t h i s . forwardVector (1 ,1 ) ;

t h i s . currentTask {3} = t h i s . currentTask {3} − t h i s .
v e l o c i t y * d t * t h i s . forwardVector (1 ,3 ) ;

taskCompleted = norm ( [ t h i s . currentTask {2} , t h i s .
currentTask {3} ] ) < eps ;

case AGVTask .TURN

angle = s ign ( t h i s . currentTask {2} ) * t h i s .
angu la rVe loc i t y * d t ;

t h i s . r o t a t i o n = t h i s . r o t a t i o n * angle2dcm ( angle , 0 , 0) ;

t h i s . re f reshPatch ( ) ;
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t h i s . currentTask {2} = t h i s . currentTask {2} − angle ;
taskCompleted = abs ( t h i s . currentTask {2} ) < eps ;

case AGVTask . WAIT
t h i s . currentTask {2} = t h i s . currentTask {2} − dt ;
taskCompleted = abs ( t h i s . currentTask {2} ) < eps ;

case AGVTask . IDLE
taskCompleted = f a l s e ;

end

% pops next task i f the prev ious one completed
i f taskCompleted

task = t h i s . t a s k l i s t . pop ( ) ;
i f ˜ isempty ( task )

t h i s . currentTask = task ;
e lse

t h i s . currentTask = {AGVTask . IDLE , 0 , 0} ;
event = s t r u c t ( ' agv ' , t h i s , ' message ' , ' stopped ' ) ;

end
end

end
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% methods f o r AGV manipu la t ion by c o n t r o l system −−−−−−−−−−−−−−−−−−−−
methods

% Adds task to the AGV' s t a s k l i s t .
% The tasks are added to the top of the AGV' s task stack i n normal
% order ( the f i r s t task i n the l i s t i s executed f i r s t ) . Adding new
% tasks immediate ly abor ts the AGV' s cu r ren t task , and the
% execut ion begins . This requ i res spec ia l a t t e n t i o n when adding
% m u l t i p l e tasks one a f t e r another − instead , use a t a s k l i s t !

f u n c t i o n [ ] = addTasks ( t h i s , t a s k l i s t )
i f isempty ( t a s k l i s t )

r e t u r n ;
end

t h i s . t a s k l i s t . push ( t a s k l i s t ) ;
t h i s . currentTask = t h i s . t a s k l i s t . pop ( ) ;

end

% Given 2 adjacent p lanner graph nodes , re tu rns the t ime requ i red
% by t h i s AGV to t r a v e l the respec t i ve edge

f u n c t i o n [ t ime ] = t raversa lT ime ( t h i s , source , d e s t i n a t i o n )

i f t h i s . p lanner . v e r t i c e s ( source , 1) == t h i s . p lanner . v e r t i c e s (
des t i na t i on , 1) % r o t a t i o n
t ime = abs ( t h i s . p lanner . adjmat ( source , d e s t i n a t i o n ) / t h i s .

angu la rVe loc i t y ) ;
e lse
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t ime = abs ( t h i s . p lanner . adjmat ( source , d e s t i n a t i o n ) / t h i s .
v e l o c i t y ) ;

end
end

f u n c t i o n [ ] = setRoute ( t h i s , source , d e s t i n a t i o n )
t h i s . source = source ;
t h i s . d e s t i n a t i o n = d e s t i n a t i o n ;

end

end
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% methods f o r graphics s e t t i n g s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

methods ( Access = p u b l i c )
f u n c t i o n [ ] = rotateModel ( t h i s , angle )

t h i s . modelVert ices = ( angle2dcm ( angle ( 1 ) , angle ( 2 ) , angle ( 3 ) ) *
t h i s . modelVert ices ' ) ' ;

t h i s . re f reshPatch ( ) ;
end

end

methods ( Access = p u b l i c )
f u n c t i o n [ ] = resizeModel ( t h i s , r a t i o )

t h i s . modelVert ices = r a t i o * t h i s . modelVert ices ;
t h i s . re f reshPatch ( ) ;

end

end

methods ( Access = p u b l i c )
f u n c t i o n [ ] = t rans la teMode l ( t h i s , o f f s e t )

t h i s . modelVert ices = t h i s . modelVert ices + repmat ( o f f s e t , [ s i ze (
t h i s . modelVert ices , 1) , 1 ] ) ;

t h i s . re f reshPatch ( ) ;
end

end
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

% helper methods f o r AGV movement and manipu la t ion
methods ( Access = p r i v a t e )

f u n c t i o n [ ] = re f reshPatch ( t h i s )
t h i s . patch . Ve r t i ces = ( t h i s . r o t a t i o n * t h i s . modelVert ices ' ) ' +

repmat ( t h i s . pos i t i on , [ s i ze ( t h i s . modelVert ices , 1) , 1 ] ) ;
end

end

end
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1.2 Simulation.m

c lassde f S imu la t ion < handle

p r o p e r t i e s
f igureHand le % handle o f f i g u r e f o r the opera t ions
agvs % t h i s i s a vec to r o f a l l veh i c les i n the system
event % the l a s t event occured dur ing the s imu la t i on
t ime % g loba l s imu la i t on t ime
v ideoWr i te r % o p t i o n a l v ideo w r i t e r ob jec t to save the s imu la t i on

end

methods

% Const ruc tor f o r the S imula t ion ob jec t
f u n c t i o n [ t h i s ] = S imula t ion ( f igureHandle , v ideoWr i te r )

% i n i t i a l i z a t i o n o f graphics environment , on which the
% s imu la t i on i s d isp layed
t h i s . f igureHand le = t h i s . i n i t i a l i z e G r a p h i c s ( f igureHand le ) ;

% i n i t i a l i z a t i o n o f an empty vec to r o f AGV handles
t h i s . agvs = AGV. empty (1 ,0 ) ;

t h i s . event = [ ] ;
t h i s . t ime = 0;

% i f a video w r i t e r argument i s passed , i t i s saved to capture
% the whole s imu la t i on
i f narg in == 2

t h i s . v ideoWr i te r = v ideoWr i te r ;
e lse

t h i s . v ideoWr i te r = [ ] ;
end

end

% Being passed an AGV handle , adds the agent to the l i s t o f
% simulated AGVs
f u n c t i o n [ ] = addAGV( t h i s , agv )

i f isempty ( t h i s . agvs )
t h i s . agvs ( 1 ) = agv ;

e lse
t h i s . agvs ( end+1) = agv ;

end
end

f u n c t i o n [ event ] = s imula te ( t h i s )
Tsim = 0 .04 ; % speed of s imu la t i on 25 FPS

% at the beginning , there i s no event set
event = [ ] ;
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t i c
wh i le ishand le ( t h i s . f igureHandle ) && isempty ( event )

t1 = toc ;

% t h i s loop computes the t ime requ i red f o r each agent to
% f i n i s h the execut ion o f i t s cu r ren t movement p r i m i t i v e
Treq = zeros ( s ize ( t h i s . agvs ) ) ;
f o r k = 1 : leng th ( t h i s . agvs )

Treq ( k ) = t h i s . agvs ( k ) . t imeToFinishTask ( ) ;
end

% the l e a s t t ime computed above or the d e f a u l t d imu la t i on
% t imestep i s chosen
Tstep = min ( min ( Treq ) , Tsim ) ;

% f o r a l l agents , t h e i r update f u n c t i o n i s c a l l e d w i th the
% chosen t imestep . This computes the next s t a te based on
% t h e i r cu r ren t s t a t e and the task being executed
f o r k = 1: leng th ( t h i s . agvs )

% o p t i o n a l l y , an event can be re turned
event = t h i s . agvs ( k ) . update ( Tstep ) ;

% i f such re turned event ex i s t s , c o n t r o l i s re tu rned to
% the c a l l e r f u n c t i o n ( f o r eg . to l e t a h igher l e v e l
% d ispa tch ing system assign tasks to an agent en te r i ng
% i d l e s ta te ) . The event i s re tu rned as we l l .
i f ˜ isempty ( event )

break ;
end

end

% to ensure constant f ramerate , MATLAB i s forced to d i sp lay
% the cu r ren t s t a t e o f a l l agents i n the system
drawnow ;

% g loba l s imu la t i on t ime i s increased wi th the t imestep
% value
t h i s . t ime = t h i s . t ime + Tstep ;

% i f a v ideoWr i te r ob jec t i s present , the cu r ren t frame i s
% added to the video
i f ˜ isempty ( t h i s . v ideoWr i te r )

t h i s . v ideoWr i te r . wr i teV ideo ( getframe ( t h i s . f igureHand le ) )
;

end

% sleep t ime ensur ing constant f ramerate i s ca lcu la ted , and
% app l ied
t2 = toc ;
t = t2 − t1 ;
i f Tstep − t > 0

pause ( Tstep − t ) ;
end

end
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end

% This f u c t i o n i n i t i a l i z e s the d e f a u l t graph ics environment
% Elements l i k e camera p o s i t i o n and t a r g e t can be changed l a t e r
f u n c t i o n [ f igureHandle ] = i n i t i a l i z e G r a p h i c s ( t h i s , f igureHand le )

% i f no a l ready created f i g u r e i s given , the a lgo r i t hm creates
% a new one
i f narg in < 2 , f igureHand le = f i g u r e ( ) ; end
f i g u r e ( f igureHand le ) ;

hold on ;

f igureHand le . Pos i t i on = [100 100 800 600 ] ;
% sets axes and g r i d v i s i b i l i t y
f igureHand le . Ch i ld ren . V i s i b l e = ' on ' ;
% d isab le c l i p p i n g o f ob jec ts not i n the v i s i b l e area
f igureHand le . Ch i ld ren . C l i pp ing = ' o f f ' ;

g r i d on ;
ax is (15*[−1 1 −1 1 −1 1 ] ) ;

% Camera s e t t i n g s
caml igh t ( ' head l i gh t ' ) ; % l i g h t s e t t i n g s
camva(90) ; % view angle

campos ( [ 0 7 7 ] ) ; % camera p o s i t i o n
camtarget ( [ 2 . 5 2.5 1 . 5 ] ) ; % camera t a r g e t

hold o f f ;

end

end

end
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2 Route planning algorithm

2.1 FGraph.m

c lassde f FGraph < handle

p r o p e r t i e s ( GetAccess = pub l i c , SetAccess = p u b l i c )
v e r t i c e s
adjmat

end

methods

% Factory graph cons t ruc to r , t h a t creates a rows x columns x he igh t
% s ize 3 dimension g r i d graph , w i th nodes e q u i d i s t a n t l y placed
f u n c t i o n [ t h i s ] = FGraph ( rows , columns , he igh t )

N = rows * columns * he igh t ; % the number o f nodes i n the g r i d
d is tance = 2; % dis tance between the nodes

% c a l c u l a t i o n o f node coord inated wi th e q u i d i s t a n t spacing
x = 0: d is tance : ( rows −1) * d is tance ;
y = 0: d is tance : ( columns−1) * d is tance ;
z = 0: d is tance : ( he ight −1) * d is tance ;
[ x , y , z ] = meshgrid ( x , y , z ) ;
v e r t i c e s = [ y ( : ) x ( : ) z ( : ) ] ;

R = rows ;
C = columns ;
H = he igh t ;

% connect ing nodes at ad jacent g r i d po in t s
adjmat= f a l s e (N,N) ;
f o r i =1:N

i f i−1>=1 && mod( i −1,C) ˜=0 , adjmat ( i , i −1)= t rue ; end ;
i f i +1<=N && mod( i ,C) ˜=0 , adjmat ( i , i +1)= t rue ; end ;
i f i−C>=1 && mod( i−C+(C−1) , R*C)>=C, adjmat ( i , i−C) = t rue ;

end ;
i f i +C<=N && mod( i +(C−1) , R*C)>=C, adjmat ( i , i +C) = t rue ; end ;
i f i−R*C>=1, adjmat ( i , i−R*C) = t rue ; end
i f i +R*C<=N, adjmat ( i , i +R*C) = t rue ; end

end ;

% saving the computed values as s ta te v a r i a b l e s
t h i s . v e r t i c e s = v e r t i c e s ;
t h i s . adjmat=adjmat ;

end

% This f u n c t i o n p l o t s the three dimension f a c t o r y graph to the
% f i g u r e given .

f u n c t i o n p l o t ( t h i s , f i g )
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% i f no f i g u r e i s given , a new one i s created
i f narg in ==1 , f i g = f i g u r e ; end
f i g u r e ( f i g ) ;

% Generat ing xy data f o r the edges . A l l edges are p l o t t e d i n
% one step as ONE l i n e ob jec t . This makes the drawing very
% e f f i c i e n t .
[ i , j ]= f i n d ( t h i s . adjmat ) ;
i dx =[ i ' ; j ' ; ones (1 , leng th ( i ) ) ] ;
i dx= idx ( : ) ;

vxy= t h i s . v e r t i c e s ;
l x y =vxy ( idx , : ) ;
l x y ( 3 : 3 : end , : ) =NaN;

l i n e ( l x y ( : , 1 ) , l x y ( : , 2 ) , l x y ( : , 3 ) , ' Marker ' , ' o ' , ' MarkerFaceColor '
, ' b lack ' ) ;

% Generat ing xy data f o r a l l arrowheads . The arrowheads are
% p l o t t e d i n one step as ONE patch ob jec t . This makes the
% p l o t t i n g process very e f f i c i e n t and f a s t .
axy = l x y ;
f o r k =1 :3 : s ize ( axy , 1 )

d= l x y ( k +1 , : )− l x y ( k , : ) ;
dn=0.2*d / norm ( d ) ;
axy ( k , : ) = l x y ( k , : ) +0.8*d+dn ;

r o t v = [ dn ( 3 ) *dn ( 1 ) dn ( 3 ) *dn ( 2 ) −dn ( 1 ) ˆ2−dn ( 2 ) ˆ 2 ] ;

i f norm ( r o t v ) < eps
r o t v = 0.05 * [1 1 0 ] / s q r t ( 2 ) ;

e lse
r o t v = 0.05 * r o t v / norm ( r o t v ) ;

end

axy ( k +1 , : ) = l x y ( k , : ) +0.8*d+ r o t v ; %r o t a t i o n by 90 deg
axy ( k +2 , : ) = l x y ( k , : ) +0.8*d−r o t v ; %r o t a t i o n by −90 deg

end
fac=reshape ( 1 : s i ze ( axy , 1 ) ,3 , s ize ( axy , 1 ) / 3 ) ' ;
patch ( ' Ve r t i ces ' , axy , ' Faces ' , fac , ' FaceColor ' , ' b ' , ' L ineSty le ' , '

none ' ) ;

% Label ing o f nodes
f o r i =1: s ize ( vxy , 1 )

t e x t ( vxy ( i , 1 ) +0.2 , vxy ( i , 2 ) +0.2 , vxy ( i , 3 ) +0.2 , num2str ( i ) ) ;
end

end

f u n c t i o n add edges ( t h i s , edges )
f o r k =1: s ize ( edges , 1 )

t =edges ( k , 1 ) ;
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h=edges ( k , 2 ) ;
t h i s . adjmat ( t , h ) = t rue ;

end ;
end

f u n c t i o n delete edges ( t h i s , edges )
f o r k =1: s ize ( edges , 1 )

t =edges ( k , 1 ) ;
h=edges ( k , 2 ) ;
t h i s . adjmat ( t , h ) = f a l s e ;

end ;
end

f u n c t i o n add ve r t i ces ( t h i s , xydata )
t h i s . v e r t i c e s =[ t h i s . v e r t i c e s ; xydata ] ;
n=s ize ( t h i s . adjmat , 1 ) ;
m=s ize ( xydata , 1 ) ;
t h i s . adjmat =[ t h i s . adjmat f a l s e ( n ,m) ; f a l s e (m, n+m) ] ;

end

f u n c t i o n d e l e t e v e r t i c e s ( t h i s , v )
t h i s . v e r t i c e s ( v , : ) = [ ] ;
t h i s . adjmat ( v , : ) = [ ] ;
t h i s . adjmat ( : , v ) = [ ] ;

end

end

end
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2.2 PGraph.m

c lassde f PGraph < handle
% Class f o r c rea t i ng and using the planning graph
p r o p e r t i e s

v e r t i c e s % l i s t o f the v e r t i c e s o f the p lanning graph
adjmat % the adjacency mat r i x
f a c t o r y % the f a c t o r y matr ix , from which the planner was generated

end
methods

f u n c t i o n t h i s = PGraph ( f a c t o r y )
% Generat ing the v e r t i c e s . For each f a c t o r y ver tex p , we com−
% pute a l l poss ib le o r i e n t a t i o n s t h a t the AGV can take at t h a t
% ver tex . The new v e r t i c e s are s tored i n the v e r t i c e s ar ray .
% Each row i s o f leng th 2 and s to res the l a b e l [ p , a ] o f the
% ver tex : p i s the index of the f a c t o r y ver tex and a i s the
% o r i e n t a t i o n i n rad ian .
angle=@(v ) atan2 ( v ( 2 ) , v ( 1 ) ) ;
l =1; v e r t = [ ] ;
f o r k =1: s ize ( f a c t o r y . ve r t i ces , 1 )

i e = f i n d ( f a c t o r y . adjmat ( : , k ) ) ;
oe= f i n d ( f a c t o r y . adjmat ( k , : ) ) ;
a=zeros (1 , leng th ( i e ) + leng th ( oe ) ) ;
j =1;
f o r i =1: leng th ( i e )

a ( j ) =angle ( f a c t o r y . v e r t i c e s ( k , : )− f a c t o r y . v e r t i c e s ( i e ( i )
, : ) ) ;

j = j +1;
end
f o r i =1: leng th ( oe )

a ( j ) =angle ( f a c t o r y . v e r t i c e s ( oe ( i ) , : )− f a c t o r y . v e r t i c e s ( k
, : ) ) ;

j = j +1;
end
a=unique ( a ) ;
na= leng th ( a ) ;
v e r t ( l : l +na−1 , : ) = [ repmat ( k , na , 1 ) a ' ] ;
l = l +na ;

end

nv=s ize ( ver t , 1 ) ;
adjmat=zeros ( nv , nv ) ;

% Adding edge between every ver tex p a i r belonging to the same
% f a c t o r y ver tex . These edges represent r o t a t i o n s whi le the agv
% i s s i t t i n g a t the ver tex po in t . Techn ica l l y , an edge i s

created
% between ( p , a ) and ( q , b ) i f p==q .
angle = @(a , b ) atan2(− s in ( a ) . * cos ( b ) +cos ( a ) . * s in ( b ) , cos ( a ) . * cos

( b ) +s in ( a ) * s in ( b ) ) ;
f o r k =1: s ize ( f a c t o r y . ve r t i ces , 1 )

I = f i n d ( v e r t ( : , 1 ) ==k ) ;
i f s i ze ( I , 1) == 1

cont inue ;
end
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J=nchoosek ( I , 2 ) ;
f o r i =1: s ize ( J , 1 )

adjmat ( J ( i , 1 ) , J ( i , 2 ) ) =angle ( v e r t ( J ( i , 1 ) ,2 ) , v e r t ( J ( i , 2 )
,2 ) ) ;

adjmat ( J ( i , 2 ) , J ( i , 1 ) ) =angle ( v e r t ( J ( i , 2 ) ,2 ) , v e r t ( J ( i , 1 )
,2 ) ) ;

end
end

% Adding edges represen t ing t r a n s l a t i o n . Adding edge between
% v e r t i c e s ( p , a ) and ( q , b ) i f a==b and there i s an edge between
% p and q i n the f a c t o r y graph .
angle=@(v ) atan2 ( v ( 2 ) , v ( 1 ) ) ;
[ t , h ]= f i n d ( f a c t o r y . adjmat ) ;
f o r k =1: leng th ( t )

t k = f a c t o r y . v e r t i c e s ( t ( k ) , : ) ;
hk= f a c t o r y . v e r t i c e s ( h ( k ) , : ) ;
d i f f = hk−t k ;
i f norm ( d i f f ( 1 : 2 ) ) > eps % i f the two edges are not

v e r t i c a l l y a l igned
a=angle ( d i f f ) ;
i = ( v e r t ( : , 1 ) == t ( k ) ) & abs ( v e r t ( : , 2 )−a )<1e−14 ;
j = ( v e r t ( : , 1 ) ==h ( k ) ) & abs ( v e r t ( : , 2 )−a )<1e−14 ;
adjmat ( i , j ) =norm ( hk−t k ) ;

e lse % one of the edges i s exac t l y above the another one
i = f i n d ( v e r t ( : , 1 ) == t ( k ) ) ;
a = v e r t ( i , 2) ;
f o r m = 1: leng th ( i )

j = ( v e r t ( : , 1 ) ==h ( k ) ) & abs ( v e r t ( : , 2 )−a (m) )<1e−14;
adjmat ( i (m) , j ) = norm ( d i f f ) ;

end
end

end
t h i s . v e r t i c e s = v e r t ;
t h i s . adjmat=adjmat ;
t h i s . f a c t o r y = f a c t o r y ;

end

% Disp lays the edges of the graph
% This f u n c t i o n i s not d i r e c t l y used i n the s imu la t ion , but i s
% w r i t t e n f o r t e s t i n g purposes
f u n c t i o n d isp ( t h i s )

[ I , J ]= f i n d ( t h i s . adjmat ) ;
f p r i n t f ( ' \ nTota l number o f edges : %2d ' , l eng th ( I ) ) ;
f p r i n t f ( ' \n [ fv , o r i ] −−−> [ fv , o r i ] : cost \n ' ) ;
f o r k =1: leng th ( I )

i = I ( k ) ; j =J ( k ) ;
i f t h i s . v e r t i c e s ( i , 1 ) == t h i s . v e r t i c e s ( j , 1 )

i f t h i s . adjmat ( i , j )>0
r o t d i r = ' ( l e f t ) ' ;

e lse
r o t d i r = ' ( r i g h t ) ' ;

end ;
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else
i f norm ( t h i s . f a c t o r y . v e r t i c e s ( t h i s . v e r t i c e s ( i , 1 ) , 1 : 2 ) −

t h i s . f a c t o r y . v e r t i c e s ( t h i s . v e r t i c e s ( j , 1 ) , 1 : 2 ) )<eps
r o t d i r = ' ( v e r t ) ' ;

e lse
r o t d i r = ' ' ;

end
end
f p r i n t f ( ' [%2d , %+5.2 f ] −−−> [%2d , %+5.2 f ] : %5.2 f %s\n ' ,

t h i s . v e r t i c e s ( i , 1 ) , t h i s . v e r t i c e s ( i , 2 ) , ...
t h i s . v e r t i c e s ( j , 1 ) , t h i s . v e r t i c e s ( j , 2 ) , t h i s . adjmat ( i , j ) ,

r o t d i r ) ;
end
f p r i n t f ( ' [ fv , o r i ] −−−> [ fv , o r i ] : cost \n ' ) ;

end

% Floyd−Warshal l a lgo r i thm . Output sp tab le i s a c e l l array ,
% s . t . sp tab le { i , j } gives the sho r t es t path ( l i s t o f
% pgraph v e r t i c e s ) between ver tex i and j . The cost o f the
% pathes i s s tored i n mat r i x d i s t . This i s not used i n the r o u t i n g
% algor i thm , and was implemented f o r t e s t i n g purpose only ( s t a t i c
% route c rea t i on )
f u n c t i o n [ sptable , d i s t ]= f l o y d w a r s h a l l ( t h i s )

V= leng th ( t h i s . v e r t i c e s ) ;
d i s t =zeros (V,V) + I n f ;
next=zeros (V,V) ;
f o r i =1:V

f o r j =1:V
i f i == j , d i s t ( i , j ) =0;
e l s e i f abs ( t h i s . adjmat ( i , j ) )>0

d i s t ( i , j ) =abs ( t h i s . adjmat ( i , j ) ) ;
next ( i , j ) = j ;

end ;
end ;

end

f o r k =1:V
f o r i =1:V

f o r j =1:V
i f d i s t ( i , j )>d i s t ( i , k ) + d i s t ( k , j )

d i s t ( i , j ) = d i s t ( i , k ) + d i s t ( k , j ) ;
next ( i , j ) =next ( i , k ) ;

end
end

end
end

sptab le= c e l l (V ,V) ;
f o r i =1:V

f o r j =1:V
i f next ( i , j ) ==0 , cont inue ; end ;
sp tab le { i , j }= i ; k= i ;
wh i le k ˜= j

k=next ( k , j ) ;
sp tab le { i , j } ( end+1)=k ;
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end ;
end

end
end

% This he lper f u n c t i o n creates a clone of the PGraph handle ob jec t .
% I t i s used to create d i f f e r e n t graphs f o r d i f f e r e n t veh ic les ,
% based on t h e i r s i ze and c a p a b i l i t i e s
f u n c t i o n [ ob j ] = copy ( t h i s )

ob j = PGraph ( t h i s . f a c t o r y ) ;
ob j . v e r t i c e s = 1* t h i s . v e r t i c e s ;
ob j . adjmat = 1* t h i s . adjmat ;
ob j . f a c t o r y = t h i s . f a c t o r y ;

end

end
end
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2.3 Resources.m

c lassde f Resources < handle
% RESOURCES
% Class f o r s t o r i n g t ime windows f o r p lanner graph edges
% Planner graph edges belonging to the same phys i ca l pa r t o f the
% f a c t o r y ( the two d i r e c t i o n s o f an edge , or the edges represen t ing
% r o t a t i o n i n the same node ) are assoc iated wi th a common resource .
% This can be e a s i l y changed i f needed , due to the h i g h l y f l e x i b l e
% s t r u c t u r e o f the c lass

p r o p e r t i e s
% timeWindows i s a c e l l array , w i th one c e l l f o r each resource . In
% a c e l l , an n*2 mat r i x i s stored , con ta in ing the beginning and
% ending of a t ime window ( assuming there are n t ime windows f o r
% the given resource )
timeWindows

% resource ids i s a PlannerNodes * PlannerNodes matr ix , con ta in ing
% the assoc iated resource i d f o r every poss ib le edge i n the planner
% graph . Bas i ca l l y , i t i s a copy of the adjacency matr ix , but
% ins tead of the path cost , the resource i d i s s tored .
resource ids

end

methods

f u n c t i o n t h i s = Resources ( fac to ry , p lanner )
% RESOURCES − c lass cons t ruc to r
% Based on the given f a c t o r y and planner ob jec t , i t generates
% and assigns the resource ids f o r any edge i n the planner
% graph , based on the ru l es d e t a i l e d i n the c lass d e s c r i p t i o n .

% In the a l l o c m a t r i x , we generate a resource id f o r every
% phys i ca l resource ( aka node and edge ) i n the f a c t o r y
a l l o c m a t r i x = 1 . * f a c t o r y . adjmat ;
counter = 1 ;

% f o r s t f o r the nodes
f o r m = 1 : s ize ( a l l o c m a t r i x , 2)

a l l o c m a t r i x (m, m) = counter ;
counter = counter + 1 ;

end

% now f o r the edges
f o r m = 1 : s ize ( a l l o c m a t r i x , 1)

f o r n = m+1 : s ize ( a l l o c m a t r i x , 2)

% i f there i s a b i d i r e c t i o n a l edge , we need a common i d
% f o r the two d i r e c t i o n s
i f a l l o c m a t r i x (m, n ) ˜=0

a l l o c m a t r i x (m, n ) = counter ;
end

i f a l l o c m a t r i x ( n , m) ˜= 0
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a l l o c m a t r i x ( n , m) = counter ;
end

i f a l l o c m a t r i x (m, n ) ˜= 0 | | a l l o c m a t r i x ( n , m) ˜=0
counter = counter + 1 ;

end
end

end

% now , we assign the id−s to the planner edges
t h i s . resource ids = 1 . * p lanner . adjmat ;

f o r m = 1 : s ize ( t h i s . resource ids , 1)
f o r n = 1 : s ize ( t h i s . resource ids , 2)

t h i s . resource ids (m, n ) = a l l o c m a t r i x ( p lanner . v e r t i c e s
(m, 1) , p lanner . v e r t i c e s ( n , 1) ) ;

end
end

% f o r every resource , an a l l−f r ee t ime window i s generated
t h i s . timeWindows = c e l l ( counter−1, 1) ;
f o r k = 1 : counter − 1

t h i s . timeWindows{k} = [0 , i n f ] ;
end

end

f u n c t i o n y = draw ( t h i s )
% DRAW − creates a b a r p l o t showing empty and reserved t ime
% i n t e r v a l s ( green and red r e s p e c t i v e l y ) . Time i n t e r a l s not
% disp layed ( above max . t ime ) are considered green .

y = zeros (1 ,1 ) ;
max so far = 0 ;
f o r k = 1 : s ize ( t h i s . timeWindows , 1)

c = 0;
f o r m = 1 : s ize ( t h i s . timeWindows{k } , 1)

i f m > 1 & t h i s . timeWindows{k } (m, 1) ˜= t h i s .
timeWindows{k } (m−1, end )
c = c +1;
y ( k , c ) = t h i s . timeWindows{k } (m, 1) − t h i s .

timeWindows{k } (m−1, end ) ;
end
c = c +1;
y ( k , c ) = t h i s . timeWindows{k } (m, 2) − t h i s . timeWindows{

k } (m, 1) ;

end

i f max so far < t h i s . timeWindows{k } ( end , 1)
max so far = t h i s . timeWindows{k } ( end , 1) ;

end

y ( k , c ) = max so far − t h i s . timeWindows{k } ( end , 1) ;

end
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b = bar ( y , ' stacked ' , ' r ' ) ;

f o r k = 1 : s ize ( t h i s . timeWindows , 1)
c = 0;
f o r m = 1 : s ize ( t h i s . timeWindows{k } , 1)

i f m > 1 & t h i s . timeWindows{k } (m, 1) ˜= t h i s .
timeWindows{k } (m−1, end )
c = c +1;

end
c = c +1;
b ( c ) . FaceColor = ' f l a t ' ;
b ( c ) . CData ( k , : ) = [0 1 0 ] ;

end
end

end

end
end
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2.4 algo2.m

f u n c t i o n dynamic route = algo2 ( sourceNode , targetNode , releaseTime , planner
, resources , agv )

% This f u n c t i o n implements the route p lann ing a lgo r i thm of Stenzel . Being
% given a request R = ( sourceNode , targetNode , releaseTime ) , and the common
% resource handles , i t computes the qu ickes t dynamic rou te respec t ing t ime
% windows .

% Parameters :
% sourceNode − The plannerGraph i d o f the s t a r t i n g node
% targetNode − The plannerGraph i d o f the d e s t i n a t i o n
% planner − PlannerGraph ob jec t con ta in ing a l l nodes and ad j mat r i x
% resources − Resources ob jec t con ta in ing f ree t ime windows f o r resources
% note : resources are i d e n t i f i e d by a unique resource id , not
% equ iva len t w i th node or edge ids . For d e t a i l s , see Resources .m

% Return value :
% Dynamic rou te from source to t a r g e t node , or empty ar ray i f no rou te
% e x i s t s . Dynamic rou te i s an n*3 matr ix , every row con ta in ing an edge ,
% descr ibed by ( t a i l , head , the ta ) parameters . Head and t a i l are planner
% graph nodes , the ta i s the e a r l i e s t t ime the edge can be entered .

%% I n i t i a l i z a t i o n of the algorithm

% i n t h i s ar ray w i l l be the route l a b e l s re tu rned
% i f no route ex i s t s , f u n c t i o n re tu rns the empty ar ray
dynamic route = zeros (0 , 3) ;

% The minimum− f i r s t p r i o r i t y queue used by the a lgo r i t hm
H = Pr io r i t yQueue ( f a l s e ) ;

% This double f o r loop creates a l a b e l f o r a l l edges ( noted by c a l i g r a p h i c
% L i n the t h e s i s ) . For the sake of s i m p l i c i t y , i t i s nor j u s t an arrow
% L ( e ) , but an arrow of s t ruc tu res , con ta in ing L ( e ) , p lus the t a i l and head
% of the respec t i ve edge e .
% Moreover , t h i s loop does the i n i t i a l i z a t i o n step descr ibed i n l i n e s 3−6
% i n the t h e s i s

k = 1;
% f o r every node−node p a i t i n the planner graph
f o r m = 1 : s ize ( p lanner . ve r t i ces , 1)

f o r n = 1 : s ize ( p lanner . ve r t i ces , 1)
% i f there i s an edge between them
i f p lanner . adjmat (m, n ) ˜= 0

% we cons t ruc t the L ( e ) p r i o r i t y queue , p lus s to re head− t a i l
i n f o

edge ( k ) . t a i l = m;
edge ( k ) . head = n ;
edge ( k ) . l a b e l s = Pr io r i t yQueue ( f a l s e ) ;
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% i n i t i a l i z a t i o n step :
% i f the t a i l o f an edge i s our source node , we add a l a b e l to
% H and to L ( e ) as we l l
i f m == sourceNode

L = Label ( k , releaseTime , i n f , [ ] ) ;
H. i n s e r t ( releaseTime , L ) ;
edge ( k ) . l a b e l s . i n s e r t ( releaseTime , L ) ;

end
k = k + 1;

end
end

end

%% Route computation

% whi le H not empty ( there are unexpanded l a b e l s )
wh i le H. s ize ( ) > 0

% we pop l a b e l w i th minimal c o m p l e t i t i o n t ime from the heap
[ p r i , L ] = H. pop ( ) ;

% t h i s i s j u s t f o r s i m p l i c i t y
k = L . edgeId ;
t a i l = edge ( k ) . t a i l ;
head = edge ( k ) . head ;
r s i d = resources . resource ids ( t a i l , head ) ;

% i f we popped an edge s t a r t i n g from the targetNode , i t means , t h a t
% we have al ready found the f a s t e s t rou te to i t . In t h i s case , the
% a lgo r i t hm cons t ruc t s the path moving backwards along the l a b e l s
% From t h i s func t i on , on ly the l a b e l s are r e t u r n . Cons t ruc t ion o f the
% path , respec t ing the t ime windows , i s the c a l l e r−s ides r e s p o n s i b i l i t y
i f t a i l == targetNode

whi le isempty ( L ) == f a l s e
%disp ( L ) ;
dynamic route ( end+1 , : ) = [ edge ( L . edgeId ) . t a i l , edge ( L . edgeId ) .

head , L .A ] ;
L = L . pred ;

end
dynamic route = dynamic route ( end :−1:1 , : ) ;

dynamic route (1 , 3) = dynamic route (2 , 3) − agv . t raversa lT ime (
dynamic route (1 ,1 ) , dynamic route (1 ,2 ) ) ;%abs ( p lanner . adjmat (
dynamic route (2 ,2 ) , dynamic route (2 ,1 ) ) ) ;

break ;
end

% I f we have not reached the goal yet , we expand our l a b e l

% foreach empty t ime window on the edge examinated
f o r t = 1 : s ize ( resources . timeWindows{ r s i d } , 1)

% I f the l a s t poss ib le a r r i v a l i s sooner than f i r s t t ime window , we
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% cannot go f u r t h e r on t h i s way . The a lgo r i t hm moves on to the next
% poss ib le l a b e l i n H.
i f L .B < resources . timeWindows{ r s i d } ( t , 1)

break ;
end

% I f the t ime window closes before the f i r s t poss ib le a r r i v a l t ime ,
% the a lgo r i t hm moves on to the next window . Note , windows are
% stored sor ted .
i f L .A > resources . timeWindows{ r s i d } ( t , 2)

cont inue ;
end

% The next 3 l i n e s compute f i r s t poss ib le t ime of en te r i ng and
% leav ing the edge
% F i r s t poss ib le enter t ime : determined by a r r i v a l t ime and s t a r t
% of the window
t imeIn = max( L .A, resources . timeWindows{ r s i d } ( t , 1) ) ;
% F i r s t poss ib le leave t ime : determined by f i r s t poss ib le enter
% time + t r a v e r s a l t ime of the edge . Traversa l t ime i s computed
% base on the AVG.
t raversa lT ime = agv . t raversa lT ime ( t a i l , head ) ;
t imeOut = t imeIn + t raversa lT ime ;

% The a lgo r i t hm checks whether the edge t r a v e r s a l f i t s i n t o the
% time window . I f not , moves to the next poss ib le window .
i f t imeOut < resources . timeWindows{ r s i d } ( t , 2)

% The a lgo r i t hm examines a l l outgoing edges , and creates a
% l a b e l where necessary
f o r r = 1 : s ize ( edge , 2) % f o r a l l edges . . .

i f edge ( r ) . t a i l == head % . . . s t a r t i n g from the head of the
cu r ren t edge

% The new l a b e l i s created
% F i r s t poss ib le a r r i v a l to the node : t imeOut
% Last poss ib le a r r i v a l t ime : when the t ime window
% closes
Lnew = Label ( r , t imeOut , resources . timeWindows{ r s i d } ( t ,

2) , L ) ;

% This i s used to determine , whether the new l a b e l
% should be added , or i t i s i n f e r i o r to one al ready
% added .
dominated = f a l s e ;

v a l L i s t = edge ( r ) . l a b e l s . v a l u e L i s t ;
toBeDeleted = Label . empty (0 ,1 ) ;

% foreach l a b e l o f the edge
f o r q = 1 : edge ( r ) . l a b e l s . numElements ;

Lk = v a l L i s t {q } ;

i f isempty ( Lk )
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cont inue ;
end

i f Lnew .A <= Lk .A && Lk .B <= Lnew .B % <−− Lnew .B
toBeDeleted ( end+1) = Lk ;

end

% i f an a l ready present dominates the new one , no
% f u r t h e r checks should be done , we move on to the

next
% outgoing edge
i f Lk .A <= Lnew .A && Lnew .B <= Lk .B

dominated = t rue ;
break ;

end
% end foreach l a b e l

end

% i f the new l a b e l was not dominated by an al ready
% present one , i t i s i nse r t ed
i f dominated == f a l s e

% de le te the dominated o ld l a b e l s

f o r i t t = 1 : s ize ( toBeDeleted , 1)
H. erase ( toBeDeleted ( i t t ) ) ;
edge ( r ) . l a b e l s . erase ( toBeDeleted ( i t t ) ) ;

end

H. i n s e r t ( Lnew .A, Lnew) ;
edge ( r ) . l a b e l s . i n s e r t ( Lnew .A, Lnew) ;

end
% end of outgoing edges

end
end
% end i f we f i t i n t ime window

end
% end foreach empty windows

end
% end H not empty

end

i f isempty ( dynamic route )
d isp ( ' no rou te to d e s t i n a t i o n ' ) ;

end

% end of f u n c t i o n
end
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2.5 algo3.m

% This i s respons ib le f o r rese rv ing t ime windows . . .
f u n c t i o n [ ] = algo3 ( dynamic route , planner , resources )

% f o r every edge i n the dynamic path
f o r k =1: s ize ( dynamic route , 1)−1

v1=planner . v e r t i c e s ( dynamic route ( k , 1) ) ; % t a i l o f edge
v2=planner . v e r t i c e s ( dynamic route ( k , 2) ) ; % head of edge

c o n f l = zeros (0 , 2) ;

% l i s t a l l c o n f l i c t i n g edges , t h a t must be reserved
f o r m = 1 : s ize ( p lanner . ve r t i ces , 1)

f o r n = 1 : s ize ( p lanner . ve r t i ces , 1)
i f p lanner . adjmat (m, n ) ˜= 0

v3 = planner . v e r t i c e s (m, 1) ;
v4 = planner . v e r t i c e s ( n , 1) ;
i f v1 == v3 | | v1 == v4 | | v2 == v3 | | v2 == v4

c o n f l ( end+1 , : ) = [m, n ] ;
end

end
end

end

t imeIn = dynamic route ( k , 3) ;
t imeOut = dynamic route ( k+1 , 3) ;

% foeach c o n f l i c t i n g edge , a rese rva t i on i s done
f o r r = 1 : s ize ( con f l , 1)

r s i d = resources . resource ids ( c o n f l ( r , 1) , c o n f l ( r , 2) ) ;

f o r q = 1 : s ize ( resources . timeWindows{ r s i d } , 1)
i f t imeOut <= resources . timeWindows{ r s i d } ( q , 1)

cont inue ;
end

% when the t ime window to s p l i t i s found , the new windows are
% ca l cu la ted as descr ibed i n resource a l l o c a t i o n
i f t ime In >= resources . timeWindows{ r s i d } ( q , 1) && timeOut <=

resources . timeWindows{ r s i d } ( q , 2)
resources . timeWindows{ r s i d } ( q+1:end+1 , : ) = resources .

timeWindows{ r s i d } ( q : end , : ) ;
resources . timeWindows{ r s i d } ( q , 2) = t imeIn ;
resources . timeWindows{ r s i d } ( q+1 , 1) = timeOut ;

end

end
end

end
end
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2.6 dyn route2task.m

f u n c t i o n t a s k l i s t = dyn route2task ( dynamic route , releaseTime , planner ,
f ac to ry , agv )

% Being given a dynamic route , t h i s f u n c t i o n creates a l i s t o f movement
% p r i m i t i v e s f o r an agent .

t a s k l i s t = c e l l (10 ,3 ) ;
l =1;

% i f the rou te i s empty , no l i s t can be ca l cu la ted
asser t ( s i ze ( dynamic route , 1) > 0) ;

f p r i n t f ( ' ReleaseTime : %d\n ' , releaseTime ) ;
f p r i n t f ( ' s ta r tT ime : %d\n ' , dynamic route (1 ,3 ) ) ;

% i f the re lease t ime i s smal le r than the f i r s t the ta value i n the route ,
% the agent must wa i t t i l l i t can leave the node i t res ides i n
i f releaseTime < dynamic route (1 , 3)

t a s k l i s t ( l , : ) = {AGVTask . WAIT , dynamic route (1 , 3) − releaseTime , 0} ;
l = l +1;

end

f o r k =1: s ize ( dynamic route , 1)−1

v1=planner . v e r t i c e s ( dynamic route ( k , 1) ) ; % t a i l o f edge
v2=planner . v e r t i c e s ( dynamic route ( k , 2) ) ; % head of edge
a=planner . adjmat ( dynamic route ( k , 1 ) , dynamic route ( k , 2) ) ; % weight o f

the edge

% t r a v e r s a l t ime of the AGV on the edge , depending on i t s speed
t raversa lT ime = agv . t raversa lT ime ( dynamic route ( k , 1) , dynamic route ( k

, 2) ) ;

i f v1 ( 1 ) ==v2 ( 1 ) % i f two v i r t u a l nodes belong to the same p h i s i c a l one ,
a TURN opera t ion takes place
i f dynamic route ( k+1 , 3) > dynamic route ( k , 3) + t raversa lT ime

t a s k l i s t ( l , : ) = {AGVTask . WAIT , dynamic route ( k+1 , 3) −
dynamic route ( k , 3) − t raversa lT ime , 0} ;

l = l +1;
end

task ={AGVTask .TURN, −a , 0} ;
t a s k l i s t ( l , : ) = task ;
l = l +1;

e lse %else , f o r edge t r a v e r s a l , a GO STRAIGHT i s needed

s t a r t = f a c t o r y . v e r t i c e s ( v1 , : ) ;
stop = f a c t o r y . v e r t i c e s ( v2 , : ) ;
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ah = norm ( stop ( 1 : 2 ) − s t a r t ( 1 : 2 ) ) ; % h o r i z o n t a l d is tance
av = ( stop ( 3 )−s t a r t ( 3 ) ) ; % v e r t i c a l d is tance

i f dynamic route ( k+1 , 3) > dynamic route ( k , 3) + t raversa lT ime

% i f the t r a v e r s a l t ime added to the t ime of entrance i s less
% than the the ta value o f the next edge , the agv i s ob l iged to
% wai t i n the middle the edge

% go to the middle
t a s k l i s t ( l , : ) = {AGVTask .GO STRAIGHT, ah /2 , av / 2 } ;
l = l +1;

% wai t
t a s k l i s t ( l , : ) = {AGVTask . WAIT , dynamic route ( k+1 , 3) −

dynamic route ( k , 3) − t raversa lT ime , 0 } ;
l = l +1;

% go to the end
t a s k l i s t ( l , : ) = {AGVTask .GO STRAIGHT, ah /2 , av / 2 } ;
l = l +1;

e lse
% i f no wa i t i s requ i red
task = {AGVTask .GO STRAIGHT, ah , av } ;
t a s k l i s t ( l , : ) = task ;
l = l +1;

end
end

end
t a s k l i s t ( l : end , : ) = [ ] ;

end
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3 Test scripts

3.1 demo gyor.m

%% I n i t i a l i z i n g environment and graphics
c l ea r
c lose
c l c

addpath ( genpath ( ' . . / framework / ' ) ) ;
addpath ( genpath ( ' . . / u t i l / ' ) ) ;
addpath ( genpath ( ' . . / s tenze l / ' ) ) ;

quadPath = ' models / quadcop te r t f . s t l ' ;
agvPath = ' models / t e l j e s . s t l ' ;

f a c t o r y F i g u r e = f i g u r e ( 1 ) ;
f i g u r e ( f a c t o r y F i g u r e ) ;

s imu la t i on = Simula t ion ( f a c t o r y F i g u r e ) ;

cp = [3.0561 −0.1886 2 .1911 ] ;
c t = [4 4 0 . 2 ] ;

% a l t e r n a t i v e camera p o s i t i o n
% cp = [6 6 6 ] ;
% c t = [6 6 0 ] ;

campos ( cp ) ;
camtarget ( c t ) ;
camva(90) ;

%% Creating the environment

% Create the f a c t o r y graph
f a c t o r y = FGraph (1 ,1 ,1 ) ;
f a c t o r y . v e r t i c e s ( : , 3) = f a c t o r y . v e r t i c e s ( : , 3) ;

% These nodes are added manually , to match the loaded f l o o r p l a n
f a c t o r y . add ve r t i ces ( [ 2 . 1 0.8 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 2 . 6 6 2.66 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 3 . 7 5 3.75 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 4 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 4 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 5.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 3 5.25 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 5.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 8 1.9 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 7.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 7.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 9.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 9.5 0 ] ) ;
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f a c t o r y . add ve r t i ces ( [ 3 . 5 10.5 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 2 . 2 5 9.7 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 2 . 2 5 11.7 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 6 11 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 9 . 3 10.8 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 9 . 5 9.4 0 ] ) ;
f a c t o r y . add ve r t i ces ( [ 9 . 1 5.3 0 ] ) ;
f a c t o r y . d e l e t e v e r t i c e s ( 1 ) ;

% b i d i r e c t i o n a l edges between adjacent nodes are added
edges to add = [1 2;2 3;3 4;4 5;5 6;3 7;4 8;6 8;7 8;4 9;5 9;8 10;6 11;10

12;11 13;10 11;12 13;12 14;14 15;14 16;15 16;12 17;13 17;14 17;13 18;18
19;13 19;11 19;6 2 0 ; ] ;

edges to add = [ edges to add ; edges to add ( : , [2 1 ] ) ] ;
f a c t o r y . add edges ( edges to add ) ;

% nodes i n the a i r are added seppara te ly
f a c t o r y . add ve r t i ces ( [ 3 . 7 5 3.75 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 4 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 4 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 5.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 5.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 7.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 7.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 7 . 5 9.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 5 . 5 9.5 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 6 11 1 ] ) ;
f a c t o r y . add ve r t i ces ( [ 3 . 5 10.5 1 ] ) ;

% f i n a l l y , b i d i r e c t i o n a l edges connect ing a e r i a l and ground nodes are added
edges to add = [14 31; 17 30; 15 31; 16 31; 30 31;12 29; 29 30; 29 31; 28

13; 27 11;28 27; 28 30; 28 29;26 10; 26 29; 8 25; 6 24;25 26; 24 27; 3
21; 25 2 1 ] ;

edges to add = [ edges to add ; edges to add ( : , [2 1 ] ) ] ;

f a c t o r y . add edges ( edges to add ) ;
f a c t o r y . d e l e t e v e r t i c e s ( [ 22 23 ] ) ;

% the graph i s p l o t t e d
hold on ;
f a c t o r y . p l o t ( f a c t o r y F i g u r e ) ;
hold o f f ;

% Outlook o f the f a c t o r y c e l l i n gyor i s loaded ( g raph i ca l elements )
load ( ' gyar . mat ' ) ;
ccp = zeros ( s ize ( cc ) + [2 2 ] ) ;
ccp ( 2 : end−1, 2 : end−1) = cc ;
cc = ccp ;
[mx, my] = meshgrid ( 1 : s ize ( cc , 2) , 1 : s i ze ( cc , 1 ) ) ;
mx = mx / 12;
my = my / 12;
cc = cc / max(max( cc ) ) ;
colormapR = zeros ( [ s i ze ( cc , 1 ) , s i ze ( cc , 2) ] ) ;
colormapG = zeros ( s ize ( colormapR ) ) ;
colormapR ( cc>=1) = 1;
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colormapG ( cc<=eps ) = 1 ;
colormap = zeros ( s ize ( cc , 1 ) , s i ze ( cc , 2 ) , 3) ;
colormap ( : , : , 1) = colormapR ;
colormap ( : , : , 2) = colormapG ;
colormap ( : , [1 end ] , 1) = 1 ;
colormap ( : , [1 end ] , 2) = 0 ;
colormap ( [ 1 end ] , : , 1) = 1 ;
colormap ( [ 1 end ] , : , 2) = 0 ;

hold on ;
s = s u r f (mx, my, cc , colormap , ' FaceAlpha ' , 0 .5 ) ;
s . EdgeColor = ' none ' ;
hold o f f ;

% works ta t ions are drawn
drawWorkstat ions ( fac to ry , [1 9 16 18 20 ] ) ;

% draws annota t ion box to show dispatched d e s t i n a t i o n s i n the top l e f t
% conrner
hold on ;
dim = [0 .05 0.65 0.3 0 . 3 ] ;
s t r = { ' ' , ' ' , ' ' , ' ' , ' ' } ;
an = annota t ion ( ' tex tbox ' , dim , ' S t r i n g ' , s t r , ' Fi tBoxToText ' , ' on ' , ' FontSize ' ,

14) ;
hold o f f ;

%% I n i t i a l i z i n g Stenzel ' s algorithm

% The planner graph i s created
planner = PGraph ( f a c t o r y ) ;

% The Resources ob jec t ( con ta in ing t ime windows ) i s created
resources = Resources ( fac to ry , p lanner ) ;

% Place of the s t a t i o n s i s def ined
groundStat ions = [2 91 102 45 110 ] ;
a i r S t a t i o n s = [ ] ;
a l l S t a t i o n s = [ a i r S t a t i o n s , groundStat ions ] ;

% Planner graph exc lud ing a e r i a l edges i s added f o r ground−bound veh ic les
plannerAGV = planner . copy ( ) ;
plannerAGV . adjmat ( f a c t o r y . v e r t i c e s ( p lanner . v e r t i c e s ( : , 1 ) , 3) > 0 , : ) = i n f ;
plannerAGV . adjmat ( : , f a c t o r y . v e r t i c e s ( p lanner . v e r t i c e s ( : , 1 ) , 3) > 0) = i n f ;

% load ing the AGVs to some predef ined p o s i t i o n s
pposToCoord = @(x ) f a c t o r y . v e r t i c e s ( p lanner . v e r t i c e s ( x , 1) , : ) ;
pposToAngle = @(x ) p lanner . v e r t i c e s ( x , 2) ;

agv1 = AGV( quadPath , pposToCoord ( 2 ) , angle2dcm(−pposToAngle ( 2 ) , 0 , 0) ,
planner , a l l S t a t i o n s ) ;

agv1 . setRoute (2 , 2) ;
agv1 . resizeModel ( 0 . 7 )
agv1 . t rans la teMode l ( [ 0 0 0 . 1 ] ) ;
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agv2 = AGV( quadPath , pposToCoord (91) , angle2dcm(−pposToAngle (91) ,0 , 0) ,
planner , a l l S t a t i o n s ) ;

agv2 . setRoute (91 , 91) ;
agv2 . resizeModel ( 0 . 7 ) ;
agv2 . t rans la teMode l ( [ 0 0 0 . 1 ] ) ;

agv3 = AGV( agvPath , pposToCoord (102) , angle2dcm(−pposToAngle (102) ,0 , 0) ,
plannerAGV , groundStat ions ) ;

agv3 . rotateModel ( [ p i / 2 , p i / 2 , 0 ] ) ;
agv3 . t rans la teMode l ( [ 0 0 0 . 5 ] ) ;
agv3 . setRoute (102 , 102) ;

agv4 = AGV( agvPath , pposToCoord (45) , angle2dcm(−pposToAngle (45) ,0 , 0) ,
plannerAGV , groundStat ions ) ;

agv4 . rotateModel ( [ p i / 2 , p i / 2 , 0 ] ) ;
agv4 . t rans la teMode l ( [ 0 0 0 . 5 ] ) ;
agv4 . setRoute (45 , 45) ;

reserved = zeros ( s ize ( p lanner . ve r t i ces , 1) ) ;
reserved ( [ 2 91 102 45 ] ) = 1 ;

% ass ign ing random requests and routes to the AGVs, expect the f i r s t one
% task to t h a t w i l l be assigned l a t e r

releaseTime = 0;
reserved = randomRouteToAGV ( agv2 , releaseTime , planner , resources , reserved

, an ) ;
reserved = randomRouteToAGV ( agv3 , releaseTime , planner , resources , reserved

, an ) ;
reserved = randomRouteToAGV ( agv4 , releaseTime , planner , resources , reserved

, an ) ;

% adding a l l AGVs to the s imu la t i on system
s imu la t i on .addAGV( agv1 ) ;
s imu la t i on .addAGV( agv2 ) ;
s imu la t i on .addAGV( agv3 ) ;
s imu la t i on .addAGV( agv4 ) ;

% As i n i t i a l i z a t i o n , an i d l e AGV ( agv1 ) i s chosen
counter = 1 ;
event = [ ] ;
agv = agv1 ;

%% Main simulation cycle

whi le ishand le ( f a c t o r y F i g u r e ) && counter < 10

% new random request i s dispatched to the i d l e AGV
% the route i s ca lcu la ted , rese rva t i ons are made
releaseTime = s imu la t i on . t ime ;
reserved = randomRouteToAGV ( agv , releaseTime , planner , resources ,

reserved , an ) ;

% s imu la t i on i s resumed u n t i l the next agv enters i d l e s ta te
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event = s imu la t i on . s imu la te ( ) ;
% the i d l e agv w i l l be the one i n the event s t r uc tu re , so next t h i s one
% i s assigned a random request
agv = event . agv ;

end

%% −−−−−−−−−−−HELPER FUNCTIONS−−−−−−−−−−−−−−−−−−−−−−−−−−

f u n c t i o n drawWorkstat ions ( fac to ry , v e r t i c e s )
% This f u n c t i o n draws a 0.6 x 0.6 s ize green square to the map,
% represen t ing worksplaces / park ing places

parkplacev = @(x ) ( [ x + [−0.6 −0.6 −0.1] ; x + [ 0 . 6 −0.6 −0.1] ; x + [−0.6 0.6
−0.1] ; x + [ 0 . 6 0.6 −0 .1 ] ] ) ;

f o r k = 1 : leng th ( v e r t i c e s )
v e r t = parkplacev ( f a c t o r y . v e r t i c e s ( v e r t i c e s ( k ) , : ) ) ;
fac = [1 2 3; 2 3 4 ] ;
patch ( ' Ve r t i ces ' , ve r t , ' Faces ' , fac , ' FaceColor ' , ' g ' , ' L ineSty le ' , ' none ' ) ;

end

end

% This f u n c t i o n p icks a random f ree park ing place , c a l c u l a t e s a route to
% the t a r g e t using the route p lann ing a lgo r i t hm and makes the requ iered
% rese rva t i on o f resources , so t h a t c o l l i s i o n w i th another veh i c les i s
% prevented
f u n c t i o n [ reserved ] = randomRouteToAGV ( agv , releaseTime , planner , resources

, reserved , an )
source = agv . d e s t i n a t i o n ;
d e s t i n a t i o n = source ;

% random d e s t i n a t i o n i s generated , u n t i l a f r ee park ing place i s found
whi le source == d e s t i n a t i o n | | reserved ( d e s t i n a t i o n )

d e s t i n a t i o n = agv . works ta t ions ( f l o o r ( rand ( ) * leng th ( agv . works ta t ions ) )
+1) ;

end

% rese rva t i on o f park ing places i s set acco rd ing ly
reserved ( source ) = 0 ;
reserved ( d e s t i n a t i o n ) = 1 ;

% the dynamic rou te i s ca l cu la ted
dyn route = algo2 ( source , des t i na t i on , releaseTime , planner , resources , agv

) ;

% the l i s t o f movement p r i m i t i v e s i s generated from the dynamic rou te
t a s k l i s t = dyn route2task ( dyn route , releaseTime , planner , p lanner . f ac to ry ,

agv ) ;

% rese rva t i ons o f t ime windows are made
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algo3 ( dyn route , planner , resources ) ;

% the AGV i s given the new l i s t o f tasks to f o l l o w the rou te
agv . addTasks ( t a s k l i s t ) ;
agv . setRoute ( source , d e s t i n a t i o n ) ;

% the r e s u l t o f the rou te p lann ing ( source−−>d e s t i n a t i o n ) i s d ispa lyed
s t r = {an . S t r i n g {2: end} , s p r i n t f ( '%d , %.2 f −−> %d , %.2 f ' , p lanner . v e r t i c e s (

source , 1) , p lanner . v e r t i c e s ( source , 2) , p lanner . v e r t i c e s ( des t i na t i on ,
1) , p lanner . v e r t i c e s ( des t i na t i on , 2) ) } ;

an . S t r i n g = s t r ;

end
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