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Optimal Portfolio Choice over the Life Cycle with Social Security

Abstract
This paper examines how households should optimally allocate their portfolio choices between risky stocks
and risk-free bonds over their lifetime. Traditional lifecycle models in previous work suggest that the
allocation toward stocks should start high (near 100%) early in life and decline over a person’s age as human
capital depreciates. These models also suggest that, with homothetic utility, the allocation should be roughly
independent of a household’s permanent income. The actual empirical evidence, however, indicates more of a
“hump” shape allocation over the lifecycle; the lifetime poor also hold a smaller percentage of their portfolio
in stocks relative to higher income groups. Households, therefore, appear to be making considerable
“mistakes” in their portfolio allocation. Target date funds, which have grown enormously during the past five
years, aim to simplify the investment process in a manner consistent with the predictions of this traditional
model. We reconsider the portfolio choice allocation in a computationally-demanding lifecycle model in
which households face uninsurable wage shocks, uncertain lifetime as well as a progressive and wage-indexed
social security system. Social security benefits, therefore, are correlated with stock returns at a low frequency
that is more relevant for lifecycle retirement planning. We show that this model is able to more closely
replicate the key stylized facts of portfolio choice. In fact, when calibrated to the age-based income-wealth
ratios found in the Survey of Consumer Finances, we demonstrate that the portfolio allocation “mistakes”
being made by the vast majority of households actually lead to larger levels of welfare relative to the traditional
advice incorporated in target date funds.
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This paper examines how households should optimally allocate their portfolio choices between 
risky stocks and risk-free bonds over their lifetime. Traditional lifecycle models in previous work 
suggest that the allocation toward stocks should start high (near 100%) early in life and decline 
over a person’s age as human capital depreciates. These models also suggest that, with 
homothetic utility, the allocation should be roughly independent of a household’s permanent 
income. The actual empirical evidence, however, indicates more of a “hump” shape allocation 
over the lifecycle; the lifetime poor also hold a smaller percentage of their portfolio in stocks 
relative to higher income groups. Households, therefore, appear to be making considerable 
“mistakes” in their portfolio allocation. Target date funds, which have grown enormously during 
the past five years, aim to simplify the investment process in a manner consistent with the 
predictions of this traditional model. We reconsider the portfolio choice allocation in a 
computationally-demanding lifecycle model in which households face uninsurable wage shocks, 
uncertain lifetime as well as a progressive and wage-indexed social security system. Social 
security benefits, therefore, are correlated with stock returns at a low frequency that is more 
relevant for lifecycle retirement planning. We show that this model is able to more closely 
replicate the key stylized facts of portfolio choice. In fact, when calibrated to the age-based 
income-wealth ratios found in the Survey of Consumer Finances, we demonstrate that the 
portfolio allocation “mistakes” being made by the vast majority of households actually lead to 
larger levels of welfare relative to the traditional advice incorporated in target date funds. 



1 Introduction

A considerable literature has examined how households should optimally allocate their sav-

ings between stocks and bonds over their lifecycle. Samuelson (1969) and Merton (1969)

first addressed this problem in discrete and continuous time, respectively, assuming complete

markets without labor income. Merton (1971) then introduced deterministic labor income

into the continuous time framework while Bodie, Merton and Samuelson (1992) allowed

for it to be elastically supplied. In more recent years, attention has shifted toward examin-

ing how uninsurable labor income risk and uncertain lifespans impact savings and portfolio

allocations over the life cycle.1

It is well known, however, that the standard expected-utility model does not appear to

closely match the empirical evidence on portfolio choice.2 The actual empirical evidence

suggests three “stylized facts:” (I) the share of a household’s portfolio invested in equities is

much less than 100% for most households; (II) the lifetime poor invest in fewer equities than

richer households; and (III) the share of portfolio invested in risky assets tend to be “hump

shape” (∩) in age.(Ameriks and Zeldes 2000; Heaton and Lucas 2000; Poterba and Samwick,

2002).In contrast, the standard model with homothetic preferences tends to generate a very

high stock allocation across all income classes (near 100%) that declines with age as human

capital depreciates; in many portfolio choice models, the allocation is counterfactually “U

shaped” in age.

Several modifications to the standard model have been proposed in the past to deal with

at least one of these empirical observations: liquidity constraints (Brown 1990; Ameriks

and Zeldes 2000); saving for illiquid assets such as a house (Faig and Shum 2002); habit

persistence (Polkovnichenko, 2007); and, incomplete trading markets between generations

in a real business cycle economy where wages and stock returns are perfectly correlated
1See Bertaut and Haliassos (1997); Gakidis (1998); Storesletten, Telmer, and Yaron (2000, 2007); Viceira

(2001); Bodie, Detemple, and Walter (2004); Benzoni, Collin-Dufresne and Goldstein (2004); Cocco, Gomes and
Maenhout (2005) and Gomes and Michaelides (2005). Related papers by Balduzzi and Lynch (1997), Brennan
and Xia (1998), Campbell and Viceira (1999), and Kim and Omberg (1996) study the effects caused by the
changes of riskfree interest rate or equity premium over the time. Carroll (2002) and Campbell and Cochrane
(1999) propose models in which risk aversion varies with wealth.

2Of course, a plausible model should also match key stylized facts regarding consumption profiles and wealth-
income ratios over the lifecycle, which we discuss later. Previous models, however, have been more successful
at generating these features.
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(Storesletten, Telmer, and Yaron, 2007). In contrast, the current paper preserves the standard

lifecycle expected utility model with homothetic utility but simply considers the importance

of a more detailed fiscal setting: a wage-indexed and progressive social security system.

In the United States, a retiree’s initial Social Security benefit level is calculated by first

multiplying each previous wage earned by the participant with a wage-indexed factor. This

factor tracks the average wage growth experienced across the entire economy since the time

that particular wage was earned. For example, suppose that you retired today and you earned

$30,000 twenty years ago. Also suppose that wages, averaged across the entire economy,

grew on average of 5% (nominal) per year during the past 20 years. Your recorded wage

of $30,000 would, therefore, be adjusted upward by a factor of 1.0520 = 2.65, or equal

$79,598.93. A similarly constructed wage factor would be applied to each of your other pre-

vious wages as well. Your individual Average Indexed Yearly Earnings (AIYE) would then

be determined by taking the average of your adjusted wages.3 Progressivity is then intro-

duced by calculating your Primary Insurance Amount (PIA) using a nonlinear (progressive)

function of your AIYE. Your PIA forms the basis of your Social Security benefit amount

before some additional adjustments are made (e.g., a spousal benefit).4

Empirically, in the United States, Social Security wage index factors that are used to

adjust previous earnings are highly correlated with stock returns. At first glance, this fact

might be surprising since it is well known that average wages and stock returns are not

highly correlated at “high” (annual) frequency even at the sectorial level (e.g., Davis and Paul

2000). However, there are two distinct differences. First, “idiosyncratic” (including sector-

specific) risks tend to cancel inside of the economy-wide average index wage factor that is

used to adjust previous wages for calculating U.S. Social Security benefits. Second, and

more importantly, this indexation is calculated at a “low frequency,” especially for previous

wages earned early in the lifecycle. The economy-wide average wage and stock returns are
3Technically speaking, in the United States, this calculation is done at monthly (not yearly) frequency to

calculuate the Average Indexed Monthly Earnings (AIME). Moreover, only the best “best 35” years of earnings
– those with the larged adjusted wages – are included in the AIME. We ignore these finer details in order to keep
the state space more manageable. The U.S. system also has a cap on yearly wages subject to the payroll tax, and
the AIME is, therefore, calculated over capped wages. Our calculations include this cap.

4Individuals with a larger AIYE receive a larger PIA, thereby recognizing that they paid more into the system.
However, the PIA / AIYE ratio – the “replacement rate” – is a declining function of the AIYE so that the lifetime
poor receives a relatively larger replacement rate of their previous earnings.
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much more highly correlated at this lower frequency (Jermann, 1999).5

Wage indexation has not been considered in the previous literature, and its inclusion

adds considerable computational complexity. We show, however, that a wage-indexed so-

cial security system can potentially play an important role in reconciling all three stylized

facts noted above. First, a wage-indexed social security system provides a retirement as-

set that is highly correlated with stock returns, thereby reducing the demand for stocks by

most households (stylized fact (I)). Second, this effect is especially strong for lower-income

households who derive most of their retirement income from social security due to its pro-

gressive benefit structure (stylized fact (II)). For poor households (many of whom don’t have

access to employer-based defined-contribution retirement plans), we also investigate how a

realistic minimum investment account requirement in stocks reinforces the pattern observed

in our model. Third, the correlation between social security and equity returns is larger at

younger ages, reducing the demand for equity. As benefits begin to accrue at higher ages

and the horizon toward retirement becomes shorter, social security benefits begin to become

more substitutable with bonds, thereby increasing the demand for equities. Closer to retire-

ment, enough human capital has depreciated, making stocks less attractive again (stylized

fact (III)).

One might object to our positive findings by arguing that few people actually understand

the complexities of how their social security benefits are calculated. We tend to agree. Unlike

positive analysis, we have not made a substantial effort to “rig” our model to produce the

observable pattern of portfolio allocation over the lifecycle. Instead, our results, like many

previous analyses, are likely best interpreted as normative. We simply calibrate our model

to generate the observable wealth-income ratio across the lifecycle by education class, and

we report the corresponding portfolio allocation. For some parameter sets, our simulated

post-retirement asset portfolios, however, sometimes diverges from the empirical data: the

optimal portfolio actually reverses direction (creating a "M" like shape) as social security,

which is a safe annuity, becomes a larger fraction of post-retirement wealth. These results

suggest that traditional portfolio advice – suggesting that young people hold lots of equities

while the old hold fewer – might be completely wrong on both sides of the age spectrum.
5This result is consistent with a neoclassical model with shocks to productivity and depreciation.
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Our model indicates that younger people should devote a smaller percentage of their wealth

to equities while, in many cases, retirees should actually increase their equity holdings post-

retirement.

Just how off the mark is traditional portfolio advice? To be sure, relative to our model,

any advice that is not consistent with our model would, by definition, appear to be inferior.

So, instead, we ask a bolder question that is testable: are households potentially better off

with their current observable portfolio allocations relative to the lifecycle allocation that

is recommended by the traditional lifecycle model without wage-indexed social security?

This comparison is particularly important in light of the enormous growth during the past

five years in so-called “target date” mutual funds that automatically rebalance a household’s

investment according to the allocation suggested by traditional lifecycle models. Our results

suggest that observable current household behavior actually produces a larger welfare than

the allocations created by target date funds.

2 Empirical Evidence

It’s helpful to first start with an overview of the actual decisionmaking of households. The

Survey of Consumer Finances (SCF) is generally considered the best data source for report-

ing the financial wealth of U.S. families. It provides comprehensive coverage of different

measures of wealth as well as key characteristics (age, education, etc.) that tend to be corre-

lated with wealth. The SCF is conducted every three years with different families; we report

evidence from the most recent sample from the year 2004.6 However, as Ameriks and Zeldes

(2000) warn, the exact magnitude of these estimates should be taken with a “grain of salt”

due to data definitions and other issues. Appendix A describes the definitions and variables

from SCF 2004 that we use in our empirical estimation.

Figure 1 reports the average (mean) percent of a household’s portfolio invested in risky

stocks by age for families in which the “household head” (primary earner) falls into one of

three different education groups: “No High School” education; with “High School” educa-
6The SCF is a non-panel data dataset that uses a dual-frame sample design. One part is selected to obtain a

sufficiently large and unbiased sample. The other part is designed to disproportionately select wealthier families.
We use the provided weights to adjust the unequal probabilities of selection in the survey and for nonresponse.
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tion only; with “College” education. Households are grouped into five-year “age buckets” in

order to increase the sample size per cell. Figure 1 reveals the three key stylized facts that

motivate this paper: (I) the share of a household’s portfolio invested in equities is much less

than 100% for most households; (II) the lifetime poor (those with less education) invest in

fewer equities than richer households; and (III) the share of portfolio invested in risky assets

tend to be “hump shaped” (or “inverse U”) in age.

Figure 2 reports the average of total wealth relative to total (labor) income for these

same education groups, respectively. Overall, wealth-income ratios increase with age and

education. The age-shape of the accumulation profiles also suggest a significant bequest

motive that is increasing in the education class. However, the exact steepness post-retirement

should also be taken with a “grain of salt” due to potential survivor bias where wealthier

households tend to live longer on average. We calibrate our model using the data presented in

Figure 2 and we then report how our simulated portfolio allocations compare with the reuslts

shown in Figure 1. This approach reduces our ability to pick the model’s deep structural
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parameters in order to try to simply match Figure 1; it also means that our simulations are

consistent with several aspects of lifecycle optimization rather than just our reported target.

3 Specification of the Model

This section presents a lifecycle portfolio choice model with standard preferences where

households face uncertain and uninsurable wage earnings as well as an uncertain length

of life.7 Individuals make their consumption, saving and portfolio decisions over risk-free

bonds and risky stocks at the beginning of each period during their working years. Their

savings and portfolio choices are motivated by three main factors: to buffer uncertainty in

the presence of incomplete insurance markets (precautionary savings); consumption needs

after retirement; and, a joy-of-giving desire to leave a bequest. Individuals also pay a so-

cial security tax during their working years in exchange for a social security benefit during
7While wages are typically uninsurable in the private sector, private annuities directly hedge against an uncer-

tain length of life, although these instruments are uncommonly used for this purpose (rather than tax benefits). In
our baseline simulations, we assume that households do not annuitize, although our model could be easily solved
allowing for perfect annuities.
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retirement that augments their private savings.

3.1 Preferences

Each individual i works from age t0 to retirement age M . The maximum length of life is T

and pt is the probability that the individual is still alive at age t+1 conditional on being alive

at age t. Preferences take the standard Constant Relative Risk Aversion (CRRA) form and are

additively separable over time..The household’s maximum expected utility at t0, therefore,

is

maxEt0

TX
t=t0

βt−t0

⎛⎝ t−2Y
j=t0−1

pj

⎞⎠Ãpt−1C1−γi,t

1− γ
+ b(1− pt−1)

W 1−γ
i,t

1− γ

!
(1)

where β < 1 is the weight placed on future utility; Ci,t is i’s consumption at age t; γ is the

coefficient of relative risk aversion. Wi,t is the wealth (bequest) left at the time of the death

where b identifies the intensity of the bequest motive.

3.2 Financial Assets

Investors have access to two investment instruments: risk-free bonds and risky stocks. The

riskless bonds pay a constant gross real return Rf , while the risky asset pays a gross real

return RS
t :

RS
t = Rf + μ+ ηt (2)

where μ is the deterministic equity premium and ηt is the innovation to this excess returns

of time t. ηt is independently and identically distributed (i.i.d.) over time and normally

distributed N(0, ση).

3.3 Labor Income

Following Carroll (1997), Gourinchas and Parker (2002), Cocco, Gomes and Maenhout

(2005), and several other papers, exogenous labor income for agent i at time t is modeled as

Yi,t = exp(yi,t) (3)
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Before retirement, log income is composed of three terms:

yi,t = g(t, Fi,t) + ωi,t + zi,t (4)

where g(t, Fi,t) is a deterministic function of age t and other individualistic characteristics

Fi,t; ωi,t is an (idiosyncratic) i.i.d. normally distributed shock N(0, σω); and, zi,t.is a first-

order (permanent) autoregressive shock

zi,t = θzi,t−1 + ξt + φi,t (5)

with an autocorrelation coefficient equal to θ; and, an aggregate (economy-wide) component

ξt and idiosyncratic component φi,t that are distributed i.i.d. as N(0, σξ) and N(0, σφ), re-

spectively. We also allow the correlation between the innovation to excess stock returns ηt
and the aggregate labor income shock ξt to equal ρξη so that ηt and ξt are jointly bivari-

ate distributed (see the Appendix). Assuming rational expectations, while individuals don’t

know their income and stock returns in the next period, they are aware of the underlying

distributions.

Individuals pay a flat social security tax rate of τSS through their working years and

a nonlinear labor income tax rate τw calibrated below. The (net of tax) disposable labor

income at time t for individual i, therefore, is:

Y d
i,t = (1− τSS)(1− τw [Yi,t])Yi,t for t < M (6)

= 0 for t ≥M

3.4 Wage-Indexed Social Security

Social security benefits received at the point of retirement at age M are based, in part, on

the individual’s Average Indexed Yearly Earnings (AIYE) during their working years. The

AIYE is calculated by adjusting upward each wage earned by individual i during the previous

year t by the growth in the aggregate (economy-wide) average wage between year t and

the retirement year, M . Denote Y A
t as the aggregate average wage level at time t. The

appropriate wage index adjustment factor for wages earned in year t, therefore, equals Y A
M

Y A
t

,

which is the cumulative growth in aggregate wages between times t and M . Individual i’s

8



AIYE at the point of retirement, therefore, is equal to the sum of all previous wages adjusted

upward by their respective wage index factors, divided by the number of working years:8

Y i,M =
Yi,t0

Y A
M

Y A
t0

+ Yi,t0+1
Y A
M

Y A
t0+1

+ · · ·+ Yi,M−1
Y A
M

Y A
M−1

M − t0
(7)

=

µµ
Yi,t0

Y A
t0+1

Y A
t0

+ Yi,t0+1

¶
Y A
t0+2

Y A
t0+1

+ Yi,t0+2

¶
· · ·

M − t0

The aggregate wage level is modeled as a first-order autoregressive process with a unit-

root in logs:

Y A
t+1 = Y A

t · exp ξt+1 (8)

which we can rewrite as:

Y A
t+1

Y A
t

= exp ξt+1 (9)

We can then track individual i’s AIYE at each age based on his AIYE in the previous

age:9

Y i,t+1 =
(t− t0)Y i,t · exp ξt+1 + Yi,t+1

t− t0 + 1
(10)

Social security benefits at retirement, therefore, are a function of individual i’s AIYE:

SSi,t = Q
¡
Y i,M

¢
for t ≥M

= 0 for t < M

whereQ() is a nonlinear function calibrated to the U.S. Social Security system (discussed

below).
8Technically, in the United States, only the “best 35 years” are actually counted in the computation of the

average wage. Tracking that decomposition, however, would require several more state variables, and would not
materially alter our conclusions.

9This “rolling average” approach allows us to track the individual’s AWIE with the additional of just one state
variable.
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The correlation between the aggregate average wage and stock returns, therefore, is

ρξη =
cov(ξt,ηt)
σξ·ση . However, the correlation between individual i’s (log) wage and stock

returns is approximately one-fourth of the size due to additional idiosyncratic risk that is

present in the individuals wage:

ρyη =
cov (ξt, ηt)

ση ·
q
σ2ξ + σ2

φ
+ σ2

ω

≈ cov (ξt, ηt)

ση ·
q
16 · σ2

ω

=
cov (ξt, ηt)

4 · σξ · ση

The distinction between these correlations allows us to increase the aggregate average wage

correlation with stocks (without the idiosyncratic terms) to a larger generational-level fre-

quency value while preserving a much smaller correlation value that households individually

face at high frequency (with idiosyncratic terms).10

3.5 Optimization Problem

As in several previous papers, we treat the share of income spent on housing, ht, as an

“above-the-line” expense that exogenously reduces pre-retirement disposable income. In

each period t, individual i has “cash on hand” denoted as Xi,t, which is composed of the

following resources: wealth Wi,t at the beginning of each period (which is equal to the

bequest in the case of death); plus, disposable income net of housing expenditures received

before retirement; plus, social security benefits (after retirement):

Xi,t =Wi,t + (1− ht)Y
d
i,t + SSi,t (11)

Given the cash on hand at time t, individual i then jointly decides how much to consume Ci,t

and the share of the residual savings, Xi,t − Ci,t, that is invested into risky equities versus

risk-free bonds. Denote αi,t as the proportion invested into the risky asset; hence, 1 − αi,t

is the share invested into risk-free bonds. We assume αi,t ∈ [0, 1], so that the allocation into

bonds and stocks has to be positive at any period; in our actual simulations, these constraints
10To be sure, the aggregate average wage correlation with stocks will also be large even at a high frequency un-

der this approach. (Distinguishing explicitly between low and high frequency values for the aggregate correlation
would require additional state variables.) However, individual households never observe this particular correla-
tion. Instead, they only see the high-frequency small correlation with their own wages and the low-frequency
large correlation through eventual wage indexation of their future social security benefits.
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are not binding.11

For calibration purposes, we allow the investment return to be taxed at a rate τd. Ri,t

denotes the total gross real return on the portfolio at time t. When the net stock return is

positive RS
i,t > 1, the investor is taxed on both asset classes; otherwise, only the risk-free

asset is taxed:12

Ri,t =
£
αi,t ·RS

i,t + (1− αi,t) ·Rf − 1
¤
· (1− τd) + 1 for RS

i,t > 1 (12)

= αi,t ·RS
i,t + (1− αi,t) · [(Rf − 1) · (1− τd) + 1] for RS

i,t ≤ 1

The amount of wealth the following period, t+ 1, therefore, equals

Wi,t+1 = Ri,t(Xi,t − Ci,t) . (13)

The model, therefore, has four state variables,
©
t,Xi,t, zi,t, Y i,t+1

ª
, along with two time-

vectored control variables: {Ci,t, αi,t}Tt=t0 .
13 In some of our simulations, we also require the

total amount of saving invested into the risky asset, αi,t(Xi,t − Ci,t) to exceed a minimum

threshold m in each period of life. This requirement is especially relevant for households

without access to employer-based defined-contribution plans. Thus, in general, individual

i’s maximization problem can be restated recursively as follows

Vi,t(Xi,t, zi,t) = max
Ci,t,αi,t

(
(Ci,t)

1−γ

1− γ
+ βEt

"
pt · Vi,t+1 (Xi,t+1, zi,t+1) + b(1− pt) ·

Ã
(Wi,t+1)

1−γ

1− γ

!#)
(14)

11Intuitively, a short position in equities (α < 0) would expose agent i to potentially unbounded losses, a
risk that would never be taken under the Inada conditions satisfied by CRRA utility. However, a short position
in bonds (α > 1) is certainly plausible with a low CRRA parameter γ and a large equity premium η if the
present value of “safe” future labor income (the deterministic component minus the upper support on the risky
components) is large enough. This outcome has occurred in some previous papers but does not appear herein
under our calibrations and modeling of social security.

12Thus, we take a somewhat conservative view on the value of carry forward provisions for loss offsets avail-
able in US tax law.

13Our state space, therefore, is about 100 times larger than most existing portfolio choice models due to our
added complexities. Despite our choice of homothetic utility, our model is not homogenous of degree 1 due to
the presence of nonlinear fiscal policies. We, therefore, cannot employ the standard technique of dropping the
current state of income. We must also track the household’s average wage.
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subject to14

αi,t ∈ [0, 1] (15)

Xi,t+1 = Ri,t(Xi,t − Ci,t) + (1− ht+1)Y
d
i,t+1 + SSi,t (16)

0 ≤ αi,t(Xi,t −Ci,t) /∈ (0,m) (17)

where m ≥ 0 is set exogenously.

3.6 Numerical Solution

This maximization problem cannot be solved analytically. So numerical dynamic program-

ming methods are used. While discussions of numerical methods are often relegated to

technical appendices, special attention must be paid to methodology used in our model, due

to the constraints and need to preserve shape of the value function. Indeed, the vast majority

of our effort was spent on investigating a large range of different numerical algorithms in

order to produce verifiable and accurate results.

The model is solved using backward iteration over the time dimension in order to derive

the policy functions Ci,t(Xi,t, zi,t, Y i,t+1) and αi,t(Xi,t, zi,t, Y i,t+1).The continuous state

space is approximated using a power-spaced discrete grid. The value of the function Vi,t+1

must be approximated between grid points across the three non-time dimensions: Schumaker

shape-preserving quadratic splines are used inside the state variable exhibiting the most cur-

vature (cash-on-hand) along with bilinear interpolation inside the other two dimensions.15

There exist three labor income shocks (ωi,t, ξt and φi,t) as well as uncertainty to the in-

novation of excess stock returns ηt. Gauss-Hermite quadrature is used to discretize these
14The additional constraint, Ci,t > 0, never binds in our model under the Inada conditions consistent with

CRRA utility.
We also formally require that total savings at time t be positive (i.e., (Xi,t − Ci,t) > 0) to prevent any

attempt to borrow against the “safe” portion of future labor income or social security benefits. Theoretically,
this constraint should also never bind under the Inada conditions since, under our distributional assumptions, the
individual i’s labor income in any year could be zero, as could the aggregate wage index factor. (In other words,
there is actually no positive levels of “safe” labor or social security income.) In actual simulations, however, both
of these terms must be bounded above zero when using standard numerical integration approximation methods.
Still, the minimum integrated node is small enough to prevent negative savings.

15We thanks Ken Judd for this suggestion. Consistent with suggestions in Judd (1998), we found several other
approximation methods to be very inaccurate, including Chebyshev polynomials. Schumaker splines does not
generalize easily to more than one dimension.
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shocks into several nodes for the numerical integration that is required to compute expec-

tations. However, since the innovations to stock returns are assumed to be correlated with

an aggregate permanent income shock, a transformation to the Gauss-Hermite quadrature is

required in order to implement the bivariate normal distribution, as shown in Appendix B.

Maximization at each grid point is performed using a combination of simplex optimization

(the Nelder-Mead method) and Brent’s method (when feasible). While slower than gradient-

based methods, they are more reliable.16

Correctly imposing the minimum threshold constraint (17) requires some care. The opti-

mization problem is first solved (using simplex optimization) at the given grid point without

the constraint (17) imposed. If the constraint (17) is not violated then that solution is ob-

viously used. Otherwise, two additional conditional optimization problems are solved (now

using Brent’s method): whereαi,t(Xi,t−Ci,t) = 0 and whereαi,t(Xi,t−Ci,t) = m. The best

solution (highest value function) of those two optimizations is then chosen, which under our

convexity assumptions, must be be larger than any interior point whereαi,t(Xi,t−Ci,t) > m.

Solving individual i’s lifetime maximization problem, therefore, requires up to 600,000,000

optimization subproblems to be solved, which requires about 250 CPU hours using a high-

end processor and FORTRAN 90.17 The simulation is solved with FORTRAN 90 MPI using

a grid network where parallelization is conducted along the age (time) dimension.

However, to prevent us from simply picking parameter combinations that attempt to pro-

duce the empirical stock allocation over the lifecycle, we instead calibrate our model to pro-

duce the empirically observable wealth-to-income ratios over the lifecycle (Figure 2). This

overidentifying restriction effectively creates an additional “outer loop” that requires testing

many additional cases. Because each simulation, though, is very costly to compute, we in-

stead manually “hunt and peck” at these parameters to generate wealth-income ratios that are

“close enough” (as reported below).

Following Judd (1992, 1998), the accuracy of any simulation is likely best judged from
16Several other maximization methods and approaches were examined, including derivative-based methods

as well as state-of-the-art quasi-Newton methods modified to ensure a correctly signed inverse Hessian matrix.
Even a high-end commerical package was tested. However, none of them performed either as accurate (based
on Euler Equation errors) or, in some cases (due to many interations), as fast as the approaches we eventually
settled upon.

17We reject any simulation (and, hence, try another approach) if any of the subproblems fail to solve. Hence,
we are forced to use methods that are very stable and perform well globally.
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the Euler equation errors produced by the approximation. Appendix C describes how we

calculate the Euler errors for our model as a fraction of consumption at the closest grid point,

thereby giving a meaningful (scale independent) interpretation to the errors. Except at corner

constraints (where the Euler equation does not hold), the optimizations are required to satisfy

a small sup norm error (Appendix C).

4 Calibration

Our model is calibrated to the United States economy in 2004. We group individuals by their

maximum amount of education obtained: i ∈ {“No High School”,“High School”, “Col-

lege”}. Specifically, individuals with “No High School” do not have a high school diploma;

individuals with “high school” have a high school diploma but not college; individuals with

“College” have obtained a college degree.

4.1 Preferences

Individual iwithout a college degree starts working at age 20 while individuals with a college

degree begin working at age 22. All households retire at age 65 and can live up to age

100. The mortality data for the whole population follow the National Vital Statistics Reports

from National Center for Health Statistics (Elizabeth Arias 2004). The benchmark bequest

intensity parameter b is set equal to 5 to help best calibrate the model.

4.2 Asset Properties

The riskfree return Rf is set equal to 2.00% while the average equity premium μ is equal to

4.00% per year. The standard deviation of the innovation to excess returns ση is set to be

the historical value 0.157.18 When a minimum investment amount in stocks m is required

to be positive, it is set equal to $3000; this amount is fairly typical for no-load funds which

are not connected to an employer-based retirement account. Empirically, the correlation of

stocks and individual i’s wages at an annual frequency ρyη is fairly small; we will consider a

value of 0.20 as an upper bound. The value of the correlation between the aggregate average

wage and stock returns ρξη, however, is quite large at a low (30-year) frequency, although it

18This value has been used in a couple previous papers; most of the literature uses a value between 0.15 - 0.20.
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Table 1: Common Parameters in All Simulations
Description Parameter Value
Start working age (t0) 20/22
Retirement age (M ) 65
Discount factor (β) see text
Coefficient of relative risk aversion (γ) see text
Riskless returns (Rf ) 1.02
Mean risky returns (Rf + μ) 1.06
Variance of transitory income shocks (σ2ω) 0.01
Variance of permanent income shocks (σ2u) 0.01
Standard deviation of stock returns (ση) 0.157
Correlation between stock returns and income shocks (ρξη) see text
Social security tax rate (τSS) 0.124
Investment return tax rate (τSS) 0.20
Bequest intensity (b) 5
Minimum investment required in stock account (m) $3000 (when on)
Marital status single
Family size 1

is measured with considerable uncertainty. Specifically; a point estimate of 0.80 is consistent

with Jermann (1999) and with our own estimates; however, the concomitant 95% confidence

interval is quite large in light of the small number of unique, non-overlapping data points.

As a result, we consider a wide range of values for ρξη, from 0.15 to 0.80.

4.3 Labor Income and Housing Expenditures

Our labor income process follows the careful empirical analysis of Cocco, Gomes and Maen-

hout (CGM) (2005), who used the Panel Study of Income Dynamics (PSID) to estimate the

deterministic function of labor income g(t, Fi,t), which they interpret broadly to include

labor income, unemployment compensation, workers compensation, social security, sup-

plemental social security, other welfare, child support, and total transfers from relatives.

g(t, Fi,t) is assumed to be additively separable in t and Fi,t, where age t is estimate as a

third-order polynomial estimated to fit the age-wage profiles. They adopt the variances of

transitory shocks and permanent shocks on labor income from Carroll (1997). The corre-

lation coefficient between stock returns shocks and labor income shocks follows Campbell
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Table 2: Labor Income Process
Coefficient of characteristic variables for labor income No high school High school College
Constant 2.6275 2.7004 2.3831
Marital status 0.4008 0.4437 0.4831
Family size -0.0176 -0.0236 -0.0228
Coefficient of age dummies for labor income
Constant -2.1361 -2.1700 -4.3148
Age 0.1684 0.1682 0.3194
Age2/10 -0.0353 -0.0323 -0.0577
Age3/100 0.0023 0.0020 0.0033

Table 3: 2004 Progressive Federal Personal Income Tax Rates
Tax Rate Single Filers

10% Up to $7,150
15% $7,151 - $29,050
25% $29,051 - $70,350
28% $70,351 - $146,750
33% $146,751 - $319,100
35% $319,101 or more

et al. (2001).19 The share of expenditures spent on housing ht is taken from Gomes and

Michaelides (2005), which they estimate using PSID data between 1976 and 1993 as a func-

tion of age. Table 1 reports all the parameter values and coefficients. Table 2 illustrates the

income process coefficients for different education groups.

4.4 Progressive Federal Tax and Social Security Benefit Formula

We adopt the 2004 federal personal income tax rates (shown in Table 3 for single filers).

Taxes on both risky and riskless asset returns τd are set at proportional rate of 20%.The

social security tax rate τSS is 12.4%. After calculating the AIYE, we calculate the annual

social security benefit using the following three-region “bend point” formula used by the

U.S. Social Security system in 2004: 90 percent of the first $7,344 of AIYE, plus 32 percent

of the AIYE over $7,344 through 44,268, plus 15 percent of the AIYE above 44,268.

16



Table 4: Labor Income Process
No Minimum Investment m = $0 Minimum Investment m = $3000

ρξη = 0.15 (i): β = 0.76, γ = 6 (ii): β = 0.76, γ = 6
ρξη = 0.80 (iii): β = 0.86, γ = 4 (iv): β = 0.86, γ = 4

5 Results for High School Education

After obtaining the optimal policy functions for each grid point on the state, we generate an

initial distribution of random variables for labor income shocks and portfolio return shocks

then simulate over 10,000 households. This section reports the average (mean) outcomes by

age for those individuals in the middle education group: those people with a high school de-

gree. We consider for four different calibrations for this education group: (i) a small value of

aggregate average wage-stock correlation ρξη equal to 0.15 combined with no minimum con-

straint on investment returns m = $0; (ii) again, ρξη = 0.15 but with a minimum constraint

on investment returns m = $3000; (iii) a larger correlation ρξη = 0.80 with no minimum

investment m = $0; and (iv) a larger correlation ρξη = 0.80 with a minimum investment

m = $3000. In each case, the value of risk aversion γ and discount rate β are chosen to

create the closest possible match to the wealth–to-income ratio shown in Figure 2.20 The

resulting parameter values are shown for in Table 4.

Figure 3 shows the average labor (plus social security) income and consumption pro-

files by age for the high school group both pre- and post-retirement for case (i) in Table 4

(the results for the other cases are qualitatitively similar). Average labor income takes the

standard “hump shape” (∩) and drops to zero at retirement when Social Security benefits

become positive. Consumption is also hump shaped, which is not standard in a deterministic

lifecycle model where consumption should be monotonic in age. Intuitively, in the presence

of income uncertainty and CRRA utility (where the third derivative in consumption is pos-

itive), individuals save for precautionary reasons in addition to standard retirement reasons.

Hump-shaped consumption profiles emerge as a combination of precautionary savings and
19Since the underlying data was in 1992 dollars while the fiscal policy part of our model is scaled to 2004

dollars, we use the change in the Consumer Price Index 34.11% as the inflation rate from 1992 to 2004.
20We fix the bequest weight b = 5 for all simulations to limit the search criterion and since this parameter is

the least sensitive.
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impatience, producing an optimal consumption path that tracks income (Zeldes 1989; Deaton

1991; Carroll 1992; Hubbard, Skinner and Zeldes 1994).

Figure 4 shows that the model’s simulated wealth-income ratios appears to match the data

fairly closely for our four different calibrations. One obvious exception is oldest age group

where survivor bias might play a role in the data. In particular, according to our simulations,

wealthier households will hold a larger portion of the portfolio in equities. Empirically, these

households tend to live longer than poorer households. Our simulations, however, do not

correct for this wealth-longevity correlation.21

Figure 5 shows the share of savings allocated to stocks versus bonds for each of these

cases as well as the empirical allocation in the SCF from Figure 1. Notice that the simulated

stock allocation is much less than 100%, fair closer to the actual empirical data. This result

is in contrast to the traditional lifecycle model where the stock allocation is near 100% when
21While allowing for a wealth-longevity correlation would not require an additional state variable, it is actually

fairly complicated when γ > 1, due to negative utility. In particular, longer longevity would actually reduce
utility. In effect, allowing for longer longevity changes the preference parameters (the augmented utility weight)
of an individual, making it difficult to compare.
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young and decreases to about 60% nearer retirement. Moreover, in each case, the stock

allocation profile is fairly reasonable to the “hump shape” (∩) pattern in empirical data. Of

course, the results are not a perfect fit by any means. Our model is clearly stylized and the

data itself likely also contains a fair amount of “noise.” Instead, we are more interested in

observing general portfolio “patterns” in the presence of realistic wealth-income restrictions.

The hump shape is produced by the model in presence of several competing factors that

vary by age. First, risky stocks and social security are highly substitutable at a young age

where aggregate wage-indexed social security benefits are still quite uncertain. However,

as a person ages, stocks and bonds become substitutable as social security benefits accrue

and the potential risk in the wage-indexed factor reduces. The net effect is to cause the

allocation in stocks to start relatively small at a young age and then increase in age. Second,

similar to previous models, agent i’s specific human capital depreciates over the lifecycle.

Since stock returns and individual wages are not highly correlated, this effect produces a

larger stock allocation in middle age that then decreases with additional age. Third, the

background risk caused by non-insurability of human capital returns interacting with the

utility function’s Inada condition diminishes over the lifecycle, which can increase the share

allocated toward risky stocks. Putting these competing factors together produces a “hump”

shaped stock allocation.

In fact, in some cases, a “second hump” (creating a “M” like pattern) also emerges as

households approach retirement. This results occurs in cases (iii) and (iv) where a larger

amount of weight is placed on future utility. After retirement – that is, once the initial ben-

efit amount is calculated – Social Security benefits are not adjusted for wage growth and

only keep pace with inflation. As households approach retirement and more of the Social

Security benefit is safe, households with longer horizons (more weight on future utility) will

shift their allocation again toward stocks.This result appears to be counterfactual. From a

normative perspective, however, they suggest just the opposite advice relative to conven-

tional wisdom: the share of the portfolio devoted to equities should, if anything, increase as

people approach retirement when social security benefits become safer. Indeed, the existing

empirical evidence might reflect this faulty conventional wisdom.
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Table 5: College Educated
No Minimum Investment m = $0 Minimum Investment m = $3000

ρξη = 0.15 (i): β = 0.60, γ = 6 (ii): β = 0.60, γ = 6
ρξη = 0.80 (iii): β = 0.74, γ = 4 (iv): β = 0.74, γ = 4

The plausibility of the needed the underlying parameters varies between the simulations.

Table 4 shows that the relatively smaller value of aggregate average wage-stock correlation

ρξη = 0.15 (Cases (i) and (ii)) requires β = 0.76 and γ = 6 to properly calibrate with the

wealth-income ratio found in the data. In contrast, the relatively larger value of aggregate

average wage-stock correlation ρξη = 0.80 (Cases (iii) and (iv)) requires only β = 0.86

and γ = 4 to properly calibrate. These differences imply substantially different tolerances

toward risk as well as the discounting of future utility. Together, they suggest that waged-

indexed social security can play an important role in creating a plausible model of portfolio

choice. Indeed, older households, with more assets at risk, are potentially more sensitive to

conventional financial planning advice than younger households, who have fewer assets at

risk.

Notice that the presence of the minimum constraint m tends, if anything, to decrease

the amount invested in stocks too much. This outcome is especially important under our

more plausible parameter cases when ρξη = 0.80. In Cases (iv), with the constraint, the

portfolio share in equities at a young age is too low. In Case (iii), without the constraint,

however, the portfolio share in equities early in life is very close to the reported empirical

value. This result suggests that a minimum account balance is not very important, at least for

this education group.

6 No High School and College

We also ran the model for the two other education groups: those with “College” and with

"No High School." The corresponding calibrating parameters are shown in Tables 5 and 6.

The results for households with college eduction (Figures 6 and 7) are similar except

that they tend to hold more equities, at the same age, relative to the middle group considered

above who only have a High School diploma. Similarly, on the opposite extreme, households
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Table 6: No High School Education: Parameters
No Minimum Investment m = $0 Minimum Investment m = $3000

ρξη = 0.15 (i): β = 0.86, γ = 6 (ii): β = 0.86, γ = 6
ρξη = 0.80 (iii): β = 0.94, γ = 4 (iv): β = 0.94, γ = 4
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Without High School (Figures 8 and 9) tend to hold fewer equities, at the same age, relative

to the High School group.

These results are generated by the progressive nature of the U.S. Social Security system:

the Social Security replacement ratio for poorer households is substantially larger than for

richer households. Although future income is stochastic, households still make rational ex-

pectations based on the moments of the underlying processes. As a result, Social Security

benefits tend to crowd out the savings for younger households that are poorer, which is a

conventional result. However, for poor households, Social Security will also crowd out more

of the amount of their savings that is devoted to stocks due to the correlation with Social

Security at low frequency. As before, the most plausible values of β and γ occur at a larger

value of ρξη.
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7 Without Social Security

To understand the importance of the role of Social Security, Figure 10 shows the stock allo-

cation when Social Security is completely turned off. The results are shown for two cases:

with and without bequests. The results are very similar to those found in previous papers.

The stock allocation starts near 100% for younger households and declines over time. More-

over, in the case without any bequest motive (b = 0), the stock allocation produces the “U”

shape, which has been shown in previous papers. This shape is produced by the increasing

mortality rate near the end of life that effectively reduces the marginal utility of consump-

tion, effectively making a person feel richer. In the presence of a bequest motive, the the “U”

shape, while still somewhat present, is somewhat mitigated because the likelihood of making

a “bequest consumption” now increases with mortality.
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8 Target Date Funds

So-called “target date” (or “lifecycle”) funds have grown enormously during the past five

years in the United States. Their main purpose is to essentially simplify the portfolio alloca-

tion process along the lines consistent with the traditional lifecycle model, thereby reducing

“mistakes.” The Pension Protection Act of 2006 increased the popularity of target date funds

by allowing employers to make them the "default option" in their 401(k) plans. Of the 380

target-date funds currently in existence, more than 300 are less than five years old.22

Of course, relative to our model, any lifecycle allocation rule would, by definition, pro-

duce a lower level of welfare than the age-based allocation produced by our model itself.

So, we instead ask a more meaningful question: do target date funds actually produce a

higher level of welfare relative to what households were achieving on their own before they

these funds were introduced? In particular, do target date funds potentially introduce more

mistakes than they supposedly cure?

Figure 11 shows the age-indexed stock allocation corresponding to a standard target date
22http://money.cnn.com/2009/04/27/news/companies/kimes_targetfunds.fortune/index.htm?postversion=2009042713
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fund (“advisory alpha”), which starts at 90% and declines over to about 20% at age 99. This

allocation is informally recommended by the U.S. Securities and Exchange Commission.23

It is also very similar to allocations offered by commercial providers. For comparison, Fig-

ure 11 also shows the actual empirical allocation for our middle “High School” education

class (“data alpha”) from Figure ; the optimal allocation produced by case (iii) our model

is repeated (“model alpha”). Notice that above age 55, the target date fund already closely

tracks the empirical allocation. As a result, the target date fund provides very little opportu-

nity to increase welfare for older households relative to their existing behavior; indeed, older

households with more assets are likely already sensitive to traditional allocation advice that

underlies the target date funds. For households younger than age 55, however, notice that

the optimal allocation typically falls in-between the target date path and the actual path. This

result suggest that the adoption of a target date fund might be welfare decreasing; households

are better off with their current allocations.

To formally measure the change in welfare from adopting a target date fund, we solve
23http://www.sec.gov/investor/pubs/assetallocation.htm
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a constrained version of our model where the asset allocation is taken as exogenous. The

constrained optimal solution is calculated under the target date fund allocation shown in

Figure 11. The constrained optimal solution is also calculated under the SCF-based empirical

allocation shown in Figure 11. LetΩ =
R
X

R
z Vi,20(Xi,20, zi,20)dX20dz20 denote the ex-ante

expected utility at age 20, across the different sources of uncertainty upon entering age 20.

The corresponding compensating variation (welfare change) associated with adopting the

target date fund at age 20 is then defined as
h
ΩAdvisory

V Data

i 1
1−γ , where ΩAdvisory

¡
ΩData

¢
is the

expected utility from the target date fund (actual empirical) allocation. The compensating

variation is negative (at about -1%), indicating a welfare loss from adopting the target date

fund.

However, this particular experiment assumes that the portfolio allocation choice must

be made before (ex ante) age 20. Instead, suppose households make their lifetime portfolio

allocation choice after the uncertainty upon entering age 20 is resolved in order to calculate

their so-called “interim” welfare. Now, the corresponding compensating variation is a mani-

fold (i.e., a matrix of values upon discretization). Even then, nearly all of the compensating

variation values are negative.

9 Conclusion

This paper examined how households should optimally allocate their portfolio choices be-

tween stocks and bonds in a lifecycle model where they face uninsurable wage shocks and an

uncertain lifetime. We demonstrated that a progressive wage indexed social security system

can fundamentally alter the optimal allocation between stocks and bonds over the lifecycle.

Nonetheless, our model made numerous simplifying assumptions that could be extended in

future work. Probably the most important assumption is that stock returns are normally dis-

tributed. Recent work by Barro (2006), using a representative-agent model, examines how

demand for risky stocks decline in the presence of rare events. We plan to consider the role

of non-normally distributed shocks in a simplified version of the lifecycle model herein.
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Appendix A
To construct the the household income, we include wages and salaries (X5702), prac-

tice/business/partnership/farm income (X5704), rent/trusts/royolties (X5714), unemployment
or worker’s compensation (X5716), child support or alimony (X5718), food stamps and wel-
fare income (X5720) and other income (X5724).

Bonds and stocks are constructed as follows. All the acronym-variables are defined in
the SAS program supplied by the SCF, which creates summary variables for SCF. Bonds
consist of SAVING and MMA (savings and money market accounts), CDS (cerfiticates of
deposit), TFBMUTF (tax free bond mutual funds), GBMUTF (government bond mutual
funds), OBMUTF (other bond mutual funds), BOND (state, US government and corporate
bonds), SAVBND (saving bonds) and COMUTF (combination and other mutual funds), for
which we assume that half is invested to bonds. We also add ANNUIT (annuities) and
TRUSTS (trusts), for which we count the full value if the individuals invest all in interest
earning assets, while the percentage other than stock allocation if the individuals split the
investment. Other bond investment includes bonds in IRA/KEOGH plans, bonds in account-
type retirement plans and FUTPEN (other future pension benefits). We also subtract CCBAL
(revolving credit card debt), OTHLOC (unsecured loans and loans secured by pensions)
and other debt, which includes loans against pensions (X11027, X11127, X11327, X11427,
X11527), loans against life insurance (X4010) and loans against margin loans (X3932).

Stocks are made up of STOCKS (directly held stocks), STMUTF (stock mutual funds),
half of COMUTF (combination and other mutual funds), OMUTF (other non-bond mutual
funds), PENEQ (thrift amounts invested in stock), ANNUIT (annuities) and TRUSTS (trusts)
that are invested in stocks. Other stock investment includes stocks in IRA/KEOGH plans,
stocks in account-type retirement plans and FUTPEN (other future pension benefits).

The total financial wealth is defined as the total of bonds, stocks, CHECKING (checking
accounts) and CALL (call accounts).
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Appendix B
f(·) denotes the p.d.f. of the variables. I, J,K,L are the numbers of interpolation nodes

for labor income shocks and stock returns shocks η, ξ, ω, φ, respectively. The distributions
of the shocks are summarized as,

ω
d−→ N(μω, σ

2
ω) (18)

φ
d−→ N(μφ, σ

2
φ) (19)

µ
η

ξ

¶
d−→ N

µ
μη
μξ

,
σ2η ρξησξση

ρξησξση σ2ξ

¶
(20)

For each individual i, at any time t and any state point (Xi,t, zi,t), the expectation of the
value function can be expressed as follows.

EξηωφVt(ξ, η, ω, φ,Xt, zt) =

∞Z
−∞

∞Z
−∞

∞Z
−∞

∞Z
−∞

Vt(ξ, η, ω, φ,Xt, zt)f(ξ, η, ω, φ)dξdηdωdφ (21)

=

∞Z
−∞

∞Z
−∞

∞Z
−∞

∞Z
−∞

Vt(ξ, η, ω, φ,Xt, zt)f(η|ξ)dη · f(ξ)dξ · f(ω)dω · f(φ)dφ

For the bivariate normal distribution, the conditional distribution for one of the variables,
given the value for the other variable, is normally distributed. Therefore,

η|ξ d−→ N(μη|ξ, σ
2
η|ξ) (22)

where

μη|ξ = μη +
ρξηση

σξ
(ξ − μξ) (23)

σ2η|ξ = σ2η(1− ρ2ξη) (24)

Following P.262 of Kenneth Judd, if a normal random variableX is distributedN(μ, σ2),
then the general Gauss-Hermite quadrature rule for expectation of X is as follows,
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E(X) = π−1/2
nX
i=1

wi · (
√
2σxi + μ)

where wi are the Gauss-Hermite quadrature weights, and xi are the quadrature nodes,
i = 1, 2, ..., n.

So, the functional approximation of Gauss-Hermite quadrature to η is

EξηωφVt(ξ, η, ω, φ,Xt, zt) = π−
1
2
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IX
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ρξηση
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(ξ − μξ), ω, φ,Xt, zt) · f(ξ)dξ · f(ω)dω · f(φ)dφ

where wi,η is the weights, ηi is the nodes over [−∞,∞].The procedure of discretizing ξ
is to substitute

√
2σξξj + μξ for ξ, which yields the following,

EξηωφVt(ξ, η, ω, φ,Xt, zt) (26)

= π−1
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JX
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IX
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2ση(
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Again wj,ξ and ξj are the Gauss-Hermite quadrature weights and nodes, respetively. Pro-
ceeding with the integral over ω and φ,

EξηωφVt(ξ, η, ω, φ,Xt, zt) (27)

= π−2
LX
l=1

KX
k=1

JX
j=1

IX
i=1

wi,ηwj,ξwk,ωwl,φ · Vt(
√
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q
1− ρ2ξηηj + ρξηξj) + μη,

√
2σωωk

+ uw,
√
2σφφl + uφ;Xt, zt)

This model is expensive to compute. The number of nodes in the dynamic programming
tree is I×J×K×L×T×S1×S2×S3×2, where I, J,K,L are the nodes for different shocks
as described above, T is the maximum age that individual can live up to, S1, S2 and S3 are
the numbers of nodes for three state variables separately. Taking 80 as the total life periods
and 5 nodes for each shock, the number of nodes for cash on hand is 60, while the number of
nodes for income and indexed wage is 10, separately. A non-uniform power function is used
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to map grid points into state values (details available from the authors). When the minimum
stock investment threshold, m, is imposed we have two optimization problems at each state:
one with bond investment only, the other with both bonds and stocks. Altogether, there are
I × J ×K × L× T × Smax1 × Smax2 × Smax3 × 2 = 600, 000, 000 optimization problems.
If any single optimization problem fails to converge, the entire program is repeated.
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Appendix C
Take the first-order condtion of Bellman equation

Vi,t(Xi,t, zi,t) = max
Ci,t,αi,t

{U(Ci,t) + β [pt ·EtVi,t+1 (Xi,t+1, zi,t+1) + b(1− pt) ·EtU(Wi,t+1)]}

(28)

Subject to

Xi,t+1 = Ri,t(Xi,t − Ci,t) + (1− ht+1)Y
d
i,t+1 (29)

Xi,t =Wi,t + (1− ht)Y
d
i,t (30)

We have

∂Vi,t(Xi,t, zi,t)

∂Ci,t
(31)

= U 0(Ci,t) + β {pt ·Et [Vi,t+10 (Xi,t+1, zi,t+1) · (−Ri,t)] + b(1− pt) ·Et [U 0(Wi,t+1) · (−Ri,t)]}(32)
= 0 (33)

Change the equation, we have

U 0(Ci,t) = β {pt ·Et[Vi,t+10 (Xi,t+1, zi,t+1) ·Ri,t] + b(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}
(34)

According to the Envelope Therorem, the partial derivative with respect to Xi,t is

∂Vi,t(Xi,t, zi,t)

∂Xi,t
= β {pt ·Et [Vi,t+10 (Xi,t+1, zi,t+1) ·Ri,t] + b(1− pt) ·Et[U 0(Wi,t+1) ·Ri,t]}

(35)

The right hand sides of Equations (34) and (35) are equal, which gives us

U 0(Ci,t) = Vi,t0 (Xi,t, zi,t) (36)

Thus, we rewrite Equation (34) as follows,

U 0(Ci,t) = βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t] (37)
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Ci,t = U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]} (38)

We define the Euler error as

Ci,t·(1+error) = U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}
(39)

error =
U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}− Ci,t

Ci,t

(40)

We then take a log10 of the error, the acceptable range is around -3 or smaller.
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