
   ACCELERATED FATIGUE RELIABILITY 

ANALYSIS OF STIFFENED SECTIONS  

   USING DEEP LEARNING 

    

 

 

   By 

   HAIDER ALI 

   Bachelor of Science in Civil Engineering 

   National University of Sciences and Technology 

   Islamabad, Pakistan 

   2014 

 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE 

   December, 2018  



ii 
 

   ACCELERATED FATIGUE RELIABILITY 

   ANALYSIS OF STIFFENED SECTIONS 

   USING DEEP LEARNING 

 

 

   Thesis Approved: 

 

   Dr. Mohamed Soliman 

 Thesis Adviser 

   Dr. Bruce W. Russell 

 

   Dr. Julie A. Hartell 



iii 
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

ACKNOWLEDGEMENTS  

 

 

 
I would like to thank my academic advisor Dr. Mohamed Soliman, whose continuous guidance 

and support has led me to successfully complete my research and thesis. I am grateful for all the 

opportunities that Dr. Soliman has provided for me during my two years at Oklahoma State 

University. I want to thank my committee members Dr. Russell and Dr. Hartell, for taking the 

time to review my work and for providing valuable feedback. I would also like to thank the 

colleagues and friends, Christopher Waite, Ligang Sheng for their support and encouragement 

and Omid Khandel for helping me with my research work and providing feedback. I thank my 

loving parents whose unconditional love, support and constant reassurance has made me the 

person that I am today. I am unable to express in words my respect and love for them. I would 

like to also thank my uncle, Shahjahan Ali and his family for always being there and providing 

moral support. Last but not the least, I want to thank my beautiful and loving wife Anum, who 

always believed in me and encouraged and inspired me to aim higher. She has been extremely 

helpful throughout the course of my degree.   



iv 
 

Name: HAIDER ALI   

 

Date of Degree: DECEMBER, 2018 

  

Title of Study: ACCELERATED FATIGUE RELIABILITY OF STIFFENED 

SECTIONS USING DEEP LEARNING 

 

Major Field: CIVIL ENGINEERING 

 

Abstract: Fatigue is one of the main failure mechanisms in structures subjected to 

fluctuating loads such as bridges and ships. If inadequately designed for such loads, 

fatigue can be detrimental to the safety of the structure. When fatigue cracks reach a 

certain size, sudden fracture failure or yielding of the reduced section can occur. 

Accordingly, quantifying the critical crack size is essential for determining the reliability 

of fatigue critical structures under growing cracks. Failure Assessment Diagrams (FADs) 

can be used to determine the critical crack size or whether the state of the crack is 

acceptable or not at a particular instant in time. Due to the presence of uncertainties in 

loads, material properties and crack growth behavior, probabilistic analysis is essential to 

understand the fatigue performance of the structure over its service life. A time dependent 

reliability profile for the structure can be established to help schedule maintenance and 

repair activities. However, probabilistic analysis of crack growth under complex 

geometrical and loading conditions can be very expensive computationally. Deep 

learning is a useful tool that is used in this study to curtail this lengthy process by 

establishing multi-variate non-linear approximations for complex fatigue crack growth 

profiles. This study proposes a framework for establishing the fatigue reliability profiles 

of stiffened panels under uncertainty. Monte Carlo simulation is used to draw samples 

from relevant probabilistic parameters and establish the time dependent reliability profile 

of the structure under propagating cracks. Deep learning is adopted to improve the 

computational efficiency of the probabilistic analysis in establishing the probabilistic 

crack growth profiles. The proposed framework is illustrated on a bridge with stiffened 

tub girders subjected to fatigue loading.  
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CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

Overview 

Fatigue is one of the major factors governing the integrity of civil structures that are subjected to 

repetitive load cycles. Due to the presence of inherent discontinuities and flaws in the material, 

development of stress concentrations is imminent. These flaws can develop during manufacturing 

and fabrication or due to residual stresses induced during welding (Osgood, 1954). Although the 

loads experienced by structural members can be less than their yield strength, the stress 

concentrations at discontinuities and flaws may result in development of cracks. The repetitive 

stress cycles create plastic deformations at the crack tip causing crack growth to occur (Lu and 

Liu, 2010). If these growing cracks are not detected and repaired in a timely manner, sudden 

structure failure can occur (Han and Ramulu, 2005). The ASCE Committee on Fatigue Reliability 

determined that approximately 80% – 90% of the failures of steel structures are due to fracture 

and fatigue (ASCE Committee on Fatigue and Fracture Relibaility, 1982). Furthermore, the 

increase in the Average Daily Truck Traffic (ADTT) and truck loads over time (Nowak, 1993) 

results in an increase in the number and amplitude of stress cycles which can accelerate the crack 

growth. It is important to quantify the critical crack size at which structural failure can occur. The 

presence of uncertainties in traffic loads along with material properties and crack growth 

parameters necessitates the use of probabilistic approaches to better understand the structural 
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behavior under fatigue deterioration. Moreover, reliability and risk-based management techniques 

can be used to determine the safe service life of a structure and schedule timely maintenance and 

repair activities. In prior studies dealing with probabilistic fatigue analysis (Kwon et. al., 2012, 

Zhao et. al., 1994a, Cheung and Li, 2003), this crack size was assumed based on engineering 

judgement or taken as the maximum dimension available for the crack to grow into. In this study, 

Failure Assessment Diagram (FAD) is used to determine the critical crack size based on the 

loading conditions, geometry and material properties. Depending on the complexity of the 

geometry or loading conditions, traditional probabilistic analysis (such as Monte Carlo 

simulation) can be very expensive computationally. Deep learning is a promising supplementary 

tool that can aid in reducing the computational time associated with probabilistic analyses for 

complex geometries. In this study, deep learning is used to curb the computational expense and 

develop the probabilistic crack growth profiles. A performance function is defined to quantify the 

probability of failure under propagating fatigue cracks using Monte Carlo simulation. Finally, this 

probability of failure can be used to quantify the time variant reliability index. 

Objectives 

The main objective of this thesis is to develop a probabilistic framework for quantifying the 

reliability of stiffened panels under propagating cracks. This thesis employs an existing crack 

growth model to predict the fatigue crack growth in a panel with multiple welded longitudinal 

stiffeners and by assuming uncertainty in loads, material properties and crack growth parameters. 

In more detail, this study aims to: 

 Determine the crack growth in a stiffened panel considering the effects of stiffener 

restraint, severed stiffeners and residual stresses on crack growth rate. 

 Develop a probabilistic crack growth profile of a stiffened panel under fatigue loading 

using Monte Carlo simulation, considering uncertainties in material properties, loads and 
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crack growth model parameters. This will also serve as a training data set for the deep 

learning model. 

 Train a deep learning algorithm based on the probabilistic crack growth data available 

from Monte Carlo simulation to accelerate the probabilistic simulation process. 

 Utilize failure assessment diagrams to determine the probability distribution of the 

critical crack size at which the structure becomes unsafe for further use. 

 Determine the probability of the crack size exceeding the critical crack size over time by 

using Monte Carlo simulation and subsequently determine the time variant reliability 

index. 

Linear Elastic Fracture Mechanics (LEFM): A Brief Review 

For studying the fatigue reliability of a critical detail, the S-N or crack growth approaches can be 

used. The S-N (stress-life) curve approach outlined in the AASHTO LRFD Bridge Design 

Specifications (AASHTO, 2017) can be used to estimate the fatigue life of different groups of 

structural details. However, these generalized curves cannot help in determining the state of the 

crack at a certain time. Linear Elastic Fracture Mechanics (LEFM) can be used to solve this 

problem and determine the crack size at a point in time. Three types of fracture failures can occur 

as shown in Figure 1. Mode I is referred to as opening, where the load is applied perpendicular to 

the crack surface. Mode II is called sliding and is caused by in-plane shear loading and Mode III 

is called tearing caused by out-of-plane shear loading. Mode I fracture mode will be covered in 

this study. LEFM uses the stress concentration ahead of the crack tipto study the crack behavior. 

This concentration described by the stress intensity factor expressed as (Xiao et. al., 2006) 

𝐾 = 𝐹𝜎√𝜋𝑎     Eq. (1) 

where 𝜎 is the applied stress, 𝑎 is the crack size and 𝐹 is the geometry correction factor defined as 
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𝐹 = 𝐹𝑠𝐹𝑡𝐹𝑔𝐹𝑒     Eq. (2) 

where 𝐹𝑠 accounts for effects of free surface, 𝐹𝑡 accounts for finite thickness or width, 𝐹𝑔 accounts 

for non-uniform opening stress and 𝐹𝑒 accounts for elliptical crack fronts (Albrecht and Yamada, 

1977). 

 

Fig. 1 - Modes of fracture failure 

 

Fatigue crack growth occurs with fluctuating stress cycles. Paris and Erdogan (1963) established 

a relationship between the range of stress intensity factor, ∆𝐾, and the rate of crack growth, 

𝑑𝑎
𝑑𝑁⁄ , in logarithmic scale as shown in Figure 2. Based on experimental results it was observed 

that the crack growth rate can be divided into three regions. Slow crack growth takes place in 

region I when the range of stress intensity factor ∆𝐾 is smaller than a threshold value ∆𝐾𝑒𝑓𝑓. 

Performing a best fit of the plotted results, the crack growth rate was observed to vary linearly 

with the applied stress intensity factor range until the fracture toughness of the material was 

reached. In region III, the crack growth becomes unstable and results in sudden failure of the 

MODE I MODE II MODE III 
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specimen. The crack growth rate in region II is represented by the Paris law as (Paris and 

Erdogan, 1963) 

𝑑𝑎

𝑑𝑁
= 𝐶 ∙ ∆𝐾𝑚     Eq. (3) 

where 𝐶 and 𝑚 are material constants. 

 

Fig. 2 - Paris law 

 

Paris law provided a basic kernel for subsequent research in fatigue crack growth. Various 

formulations of ∆𝐾 exist in literature to determine the effect of applied loads on the crack growth 

and modify the crack growth model to account for variable amplitude loading. Under tensile 

loading, a plastic region develops ahead of the crack tip. When the tensile stress is removed, the 

plastic region remains deformed, and the surrounding material applies compressive forces on the 

plastic zone when unloaded elastically (Dexter and Pilarski, 2000). Elber (1971) determined that 

the compressive forces ahead of the plastically deformed zone can delay the crack opening up 

until a certain amount of tensile stress is reached. This phenomenon is called crack closure. Since 
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the crack will only grow if it is fully open, Elber proposed that an effective stress intensity factor 

∆𝐾𝑒𝑓𝑓 to be used instead of ∆𝐾, which can be defined as 

∆𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝    Eq. (4) 

where 𝐾𝑜𝑝 is stress intensity factor when the crack is fully open in the stress cycle. Figure 3 

shows the different stress intensity factors that occur in a stress cycle. 

 

Fig. 3 - Stress cycle showing the different stress intensity factors 

 

Fatigue Crack Growth Under Complex Loading 

Various research studies have used LEFM to understand the behavior of fatigue cracks in 

different metals with various geometric configurations. McMillian and Pelloux (1967) 

experimentally investigated crack growth in different classes of aluminum alloys under various 

load spectra. By means of electron fractography they observed the striation patterns under 

predefined variable amplitude loading with: (a) different stress range levels with a constant 

maximum stress, (b) constant stress range with different levels of maximum stress, (c) a 
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programmed pseudo-random variable amplitude loading spectrum, and (d) a uniform constant 

amplitude loading spectrum with single overloads and underloads. Tests were conducted on 

center notched specimens and the fatigue striations were observed. The results of this study 

concluded that growth of a fatigue crack occurs only during a stress rise potion in a cycle. It was 

also observed that under pseudo-random loads with variable maximum stress, the sequence of 

loads greatly influences the crack growth rate. Their experimental results have since served as a 

basis for comparison of crack growth models developed in literature.  

Lu and Liu (2010) developed a new formulation of crack growth which is principally different 

from classical reversal-based approaches. It is based on incremental crack growth at any time 

within a cycle. Based on their approach, fatigue analysis can be performed at various time and 

length scales without cycle counting. Since their method studies the instantaneous stress state, the 

stress ratio effect is inherently considered in the crack growth analysis. The authors adopt the 

reverse plastic zone concept to determine the lower integration limit for the time integral to 

calculate the crack length under both constant and variable amplitude loading. The model was 

validated with experimental data for different metallic materials under various loading spectra 

and showed good agreement with experimental results. 

Experimental Work on Fatigue Crack Growth in Stiffened Panels 

Nussbaumer et. al. (1999) studied the propagation of long fatigue cracks in complex welded box 

beams under constant-amplitude loading. The specimens were fabricated to simulate the cellular 

structure of a stiffened double ship hull. Ten specimens were tested under four-point bending 

employing a load control test setup. The specimens were tested under positive load ratio and it 

was observed that the crack growth followed a four-stage propagation scheme as outlined in 

Table 1 and Figure 4. 
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Table 1 - Four stage crack propagation scheme in box-beam specimens (Nussbaumer et. al., 

1999) 

Crack Growth 

Stage 

Observation 

Stage I Crack initiates and grows into a through-thickness crack 

Stage II Through-thickness crack grows into the adjacent cell 

Stage III Crack reaches the web and flange intersection, becoming a 

four-ended crack  

Stage IV Crack propagation through the remaining part of the flange 

 

                        

Figure 4 – Locations of the four stages of crack propagation (Nussbaumer et. al., 1999) 

The study concluded that the box specimens showed remarkable resistance to unstable crack 

growth owing to the inherent redundancy of the cellular structure and the high fracture toughness 

of the A710 steel. It was also observed that crack propagation rate depends greatly on the applied 

stress range and the residual stress field in the panel. Nussbaumer et. al. (1999) developed a finite 

element model which employed the modified crack closure concept (Rybicki and Kanninen, 

1977) and J-integral (Rice, 1968) to determine stress intensity factors.  

Dexter and Pilarski (2002) extended the work done by Nussbaumer et. al. and conducted 

experiments to study crack growth in welded stiffened panels, that were fabricated into large box-

beams. Ten specimens were tested under a four-point bending test setup, with varying material 

specifications, stiffener geometry and crack plane detail. The crack was initiated with a saw cut in 

STAGE I 

STAGE II STAGE III 

STAGE IV 
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the middle and allowed to propagate under cyclic loading. Table 2 shows the test matrix for the 

tested specimens. 

Table 2 - Test matrix for specimens tested under four-point bending 

 

The study concluded that the presence of compressive residual stresses between the stiffeners 

retards the crack propagation rate and that the type of steel has no significant impact of crack 

growth rate. Variations in stiffener geometry and stiffener cutouts were shown to have little effect 

on the crack growth rate. However, the presence of a transverse butt-weld eliminated the 

restraining effect of the longitudinal stiffeners and the crack propagation rate was similar to that 

in a plate with no stiffeners. Dexter et. al. (2003) used these test results to develop an analytical 

Specimen Type of steel 
Type of 

stiffener 

Stress range 

(MPa) 

Notch 

length (2a) 

(mm) 

Detail on 

crack plane 

Baseline 
ASTM A572 

Gr. 50 
No stiffener 33 204 None 

A-1 
ASTM A572 

Gr. 50 
3x4x3/8 angle 42 400 Solid stiffener 

A-2 
ASTM A572 

Gr. 50 
3x4x3/8 angle 42 280 Access hole 

A-3 
ASTM A572 

Gr. 50 
3x4x3/8 angle 42 350 

Raised drain 

hole 

A-4 
ASTM A572 

Gr. 50 
3x4x3/8 angle 42 200 

Butt 

weld/access 

hole 

A-2a 
ASTM A572 

Gr. 50 
3x4x3/8 angle 42 100 and 200 

Multiple 

notches access 

holes 

T-1 ASTM DH-36 4x4x5# tee 42 360 Solid stiffener 

T-2 ASTM DH-36 4x4x5# tee 42 200 
Butt/weld 

access hole 

T-3 ASTM DH-36 4x4x5# tee 46 460 Solid stiffener 

T-4 ASTM DH-36 4x4x5# tee 46 440 
Butt/weld 

access hole 
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model that predicts the crack growth in a panel with multiple welded stiffeners. Their model was 

based on the existing study proposed by Nussbaumer (1993). This model includes the effects of 

stiffener restraint, severed stiffeners and residual stresses to predict crack growth in a stiffened 

panel with a center through crack and multiple welded stiffeners. A finite element model was 

developed to determine the effective stress intensity factor. Residual stresses were incorporated 

into the model as thermal stresses. The finite element showed good agreement with the results of 

the analytical model. Crack growth curves were established for different conditions (e.g. no 

residual stresses, no geometry factors) to understand the effect of each factor. It was observed that 

residual stresses had the greatest impact on the rate of crack growth. 

In another expansion to the scope of the study, Mahmoud and Dexter (2005) studied the crack 

growth behavior in stiffened panels under axial tension loading. Five specimens with varying 

stiffener spacing, heat inputs for welding, stiffeners type and plate thickness were tested under a 

load controlled leveraging test setup. Measurements for residual stresses were made by 

employing the coupon sectioning method (Konda and Ostapenko, 1964) as it the most economical 

and accurate method available (Mahmoud and Dexter, 2005). The test matrix for their 

experimental work is shown in Table 3. 

Table 3 - Test matrix for specimens tested under tensile loading 

Specimen # 
Plate thickness 

(mm) 

Type of 

stiffener 

Stiffener 

spacing (mm) 
Heat input 

S1 13 Bulb tee 381 Medium 

S2 13 Bulb tee 381 High 

S3 13 Bulb tee 305 Medium 

S4 13 
101 x 76 x 8 

angle 
381 Medium 

S5 9 Bulb tee 381 Medium 
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It was observed that the crack growth remained stable throughout the testing procedure as 

observed in the previous studies. It was also concluded that the crack growth retardation occurred 

due to two main effects: the residual stresses and the stiffener restraint. As the stiffener spacing 

decreases, the magnitude of the compressive residual stress increases and thus retards crack 

growth. A finite element model was also developed and static analysis was conducted at various 

crack sizes to determine the J-integral values. Faulkner’s residual stress model (Faulkner, 1975) 

was used to incorporate residual stresses into the model. A parametric finite element analysis was 

performed to determine the best combination for the value of 𝐶 and residual stresses to match the 

actual crack growth behavior of the specimens. 

Probabilistic Fatigue Crack Growth Analysis 

Mahmoud et. al. (2014) conducted probabilistic crack growth analysis to determine the effect of 

randomness in material parameters 𝐶  and 𝑚 on the fatigue reliability of stiffened panels. The 

study concluded that crack growth parameter 𝐶 causes a large scatter in the crack growth profile 

and the corresponding number of cycles to failure. The crack growth rate was also observed to 

decrease in the regions between the stiffeners due to the presence of compressive residual forces. 

The threshold stress intensity factor of the material had the largest impact on the number of cycles 

to failure. It was observed that increasing the value of the threshold stress intensity factor by 50 

MPa resulted in an increase in the number of cycles to failure by over 5 times. However, this 

study did not include the critical crack size in formulating the probabilistic model.  

Xiao et. al. (2006) employed LEFM to study the fatigue life of the ribs in a steel orthotropic deck 

with different depths of weld penetration in butt welded joints of Kinuura Bridge. Using stress 

data from structural health monitoring and by incorporating relevant geometry factors, the fatigue 

life of longitudinal ribs was determined using LEFM for incomplete weld penetration depths 

ranging from 0.1 to 4 mm. The study concluded that large volume of truck traffic also contributed 
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to low fatigue life of longitudinal ribs. Furthermore, incomplete weld penetration depths above 3 

mm can significantly reduce fatigue life. The cores drilled across the cracked welds confirmed 

that fatigue cracks develop from incomplete penetration of 2 to 3 mm. Zhao et. al. (1994) 

compared the reliability over time of full penetration butt welds in a steel bridge subjected to 

fatigue loading using LEFM and AASHTO S-N approach. The study concluded that LEFM is a 

powerful alternative to the AASHTO S-N curve approach for determining reliability, since it can 

be updated with crack information as it becomes available through inspections. Cheung and Li 

(2003) performed probabilistic analysis of a steel girder bridge with flange cover plates using 

LEFM approach by incorporating finite strip analysis method. The study concluded that fatigue 

reliability of the bridge can be significantly improved by extending the cover plates to the full 

span of the bridge. Kim et. al. (2013) established optimum inspection and maintenance schedules 

based on LEFM of fatigue critical details in a ship structures by maximizing the service life and 

minimizing the expected life-cycle costs using a decision tree model approach. Finally, Soliman 

et. al. (2013) utilized stochastic LEFM as well to establish the optimum inspection schedules for 

bridges, with multiple fatigue critical details. 

Although the above studies determined the time variant reliability of structures with complex 

geometries considering loads and material properties as random parameters, the critical crack size 

was determined without performing detailed analysis. Furthermore, the nature of the failure was 

not determined (i.e. ductile or brittle). In this study, the critical crack size will be determined by 

using a failure assessment diagram analysis. Additionally, probabilistic fatigue analysis of 

complex geometries can be computationally expensive, and in some cases impractical, due to the 

large computational demand. Deep learning will be implemented in this thesis to reduce the 

computational time associated with probabilistic analysis. 
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CHAPTER II 
 

 

 METHODOLOGY 

Crack Propagation in Stiffened Panels 

In order to quantify the crack growth in a panel with welded longitudinal stiffeners, this study 

adopts the model proposed by Dexter et. al (2003). This model was developed to study the crack 

growth behavior in stiffened ship hulls considering the effect of longitudinal stiffeners and the 

residual stresses. For this type of structures, the ends of the member have to deform in a way that 

is compatible with the nearby members. Therefore, a cracked member surrounded by uncracked 

members will experience a decrease in the stress range. This phenomenon is called load shedding, 

which contributes to the decrease in crack growth rate. Dexter et. al. (2003) formulated an 

analytical model that can determine the modified stress intensity factor for a stiffened plate, 

calculated by superimposing the effects of stiffener restraint 𝐾1, effects of severed stiffeners 𝐾2 

and the residual stresses 𝐾𝑟𝑒𝑠 . Figure 5 shows the stress intensity factor components that are 

superimposed to establish the final value of 𝐾. Formulation of these components is explained in 

the subsequent sections. 
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Fig. 5 - Overview of components of superposition 

Effect of Stiffener Restraint 

Isida (1973) studied the effect of stiffeners on the crack growth and developed a stress intensity 

factor for a plate with stiffened edges. Nussbaumer (1994) examined Isida’s solution and noticed 

that it overestimates the restraining effects of the stiffeners. Nussbaumer then calibrated Isida’s 

solution to fit Poe’s results (Poe, 1971), who studied crack propagation in riveted plates, by 

calibrating model parameters 𝛼1 and 𝛼2. Nussbaumer (1994) formulated the solution for stiffener 

restraint as 

𝐾𝐶𝐶𝑇 = 𝜎√𝜋𝑎 

𝐾1 = 𝑓1𝜎√𝜋𝑎 
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𝑓1 = (1 −
1

𝑓𝑘,𝑖
) (

1

1+𝛽𝑖
)
𝛼1
+

1
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+
0.3𝜒𝑖

2

𝑓𝑘,𝑖
(

4

𝛽𝑖
2−2𝛽𝑖+4

− 1) − 1 − 𝛼2 (
𝜒𝑖
10+𝜒𝑖

30+𝜒𝑖
50

𝑓𝑘,𝑖
) (

4

𝛽𝑖
2−2𝛽+4

+ 1)  

for 𝜒 ≤ 0.95          Eq. (5) 

where 𝑎 is half the crack size, 𝜒𝑖 =
𝑎

𝑥𝑖
 , 𝛽𝑖 =

𝐴𝑠𝑡,𝑖

𝑡𝑝𝑙𝑥𝑖
 , 𝑥𝑖 is the distance from the center of the crack 

to the 𝑖𝑡ℎ stiffener, 𝐴𝑠𝑡,𝑖 is the cross-sectional area of the i’th stiffener, 𝛼1 = 1, 𝛼2 = 0.1 and 𝑓𝑘 =

1−0.5𝜒+0.326𝜒2

ඥ1−𝜒
, which is the finite width correction factor. The total stiffener restraint coefficient 

can then be found by summing the restraint effects for individual stiffeners. 

𝑓1 = Σ𝑓1,𝑖      Eq. (6) 

It should be noted that Eq. (5) is valid only for 𝜒𝑖 ≤ 0.95. It does not allow the crack to grow into 

the stiffener. Linear interpolation will be used to account for crack propagation through the 

stiffeners as explained in the next section. 

Effect of Severed Stiffeners 

The effect of severed stiffeners is addressed by incorporating the factor, 𝑓2, which models the 

stiffeners as point forces 𝐹 acting on the crack surface. These forces represent tension that the 

stiffener was carrying when it was intact. 

The splitting force 𝐹 is (Dexter and Pilarski, 2002): 

𝐹 = 𝜎 (
𝜇

1−𝜇
) ∙ (𝐴𝑝𝑙)     Eq. (7) 

  

where 𝜇 =
𝐴𝑠𝑡

𝐴𝑠𝑡+𝐴𝑝𝑙
 , 𝐴𝑠𝑡 is the area of the stiffener and 𝐴𝑝𝑙 is the area of the plate. 
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These forces cause an increase in the stress intensity factor, which is calculated as (Dexter and 

Pilarski, 2002) 

𝐾 =
2𝐹

𝑡𝑝𝑙√𝜋𝑎
∙

𝑎

√𝑎2−𝑠2
     Eq. (8) 

where 𝑡𝑝𝑙 is the thickness of the plate, 𝑎 is half crack size and 𝑠 is half stiffener spacing. 

Using the same crack length and the inclusion of the generic terms 𝜒𝑖 and 𝜇, Equation (8) can be 

converted into a correction factor 𝑓2 as (Dexter and Pilarski, 2002) 

𝑓2,𝑖 =
2𝜇

𝜋(1−𝜇)
∙
2𝑠

𝑥𝑖⁄

√𝜒𝑖
2−1

  for 𝜒𝑖 > 1                 Eq. (9) 

 

where 𝑥𝑖 is the distance to the 𝑖𝑡ℎ severed stiffener and 𝜒𝑖 is the normalized distance to the 𝑖𝑡ℎ 

severed stiffener. 

The Stiffened Panel Coefficient 

Now that the formulations of  𝑓1 and 𝑓2 have been established,  the stiffened panel coefficient can 

be formulated by superposition to obtain the complete coefficient for crack growth as (Dexter and 

Pilarski, 2002) 

𝑓𝑠𝑡 = 1 + Σ𝑓1,𝑖 + Σ𝑓2,𝑖                    Eq. (10) 

 

where 1 represents the unstiffened plate (i.e., 𝐾𝐶𝐶𝑇 in Figure 5). 

A sudden increase in the coefficient is observed at the location of the stiffeners due to the 

assumption that the stiffener is immediately severed as the crack reaches it. However, 

experimental results (Dexter and Pilarski, 2002) have shown that the crack grows through the 

stiffener in a manner similar to that of the plate. Therefore, linear interpolation between the un-
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severed and severed stiffener can be performed to obtain a more reasonable and realistic variation 

of the coefficient through the stiffener (Dexter et al., 2003). The first point of interpolation is the 

last accurate point that 𝑓1 is valid for. The second interpolation point can be located at a point 

equal to radius of the crack face from the centerline of the stiffener. This formulation was 

developed by Poe (Poe, 1971) and is shown schematically in Figure 6 (Dexter, 2003). 

 

Fig. 6 - Linear interpolation across severed stiffener (adapted from Nussbaumer, 1994) 

Residual Stresses and Residual Stress Intensity Factor 

Residual stresses have a considerable effect on the crack growth in welded structures (Mahmoud 

and Dexter, 2005). The presence of compressive residual stresses can reduce the crack growth 

rate considerably while high tensile residual stresses may not affect the crack growth rate 
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(Mahmoud and Dexter, 2005). Therefore, residual stresses need to be accounted for when 

calculating the stress intensity factor.  

Tests were conducted by Kondo and Ostapenko (1964) to measure the residual stresses in a 

stiffened panel, where they used a carefully refined coupon pattern to accurately capture the 

residual stress field along the panel (Kondo and Ostapenko, 1964). It was observed that the 

welding process results in high tensile residual stresses in the vicinity of the stiffener and 

compressive residual stresses in the region between stiffeners. 

However, it was observed by Dexter and Pilarski (2002), that the measured residual stresses do 

not satisfy equilibrium. This was attributed to errors in measurement and coupon cutting 

procedures (Dexter and Pilarski, 2002). The idealized distribution of the residual stress used 

herein is based on the model adopted by Dexter and Pilarski (2002). This model defines the 

tensile regions around the stiffeners as triangles with a base width proportional to the plate 

thickness. The half width of this triangular region can be taken as 3.5 times the thickness of the 

plate (Dexter and Pilarski, 2002). The maximum value of the tensile residual stress is assumed to 

be equal to the yield strength of the plate material at the location of the stiffener. Figure 7 shows 

the residual stress distribution in a stiffened panel adopted in this study. To quantify the residual 

stress intensity factor, Greene’s function is integrated over the crack length. Greene’s function 

(Rooke and Cartwright, 1976) models the stress intensity factor for symmetric splitting forces 

acting on the crack. This yields the residual stress intensity factor along the stiffened panel as  

𝐾𝑟𝑒𝑠 = √𝜋𝑎
2

𝜋


𝜎𝑟𝑒𝑠(𝑥)

√𝑎2−𝑥2
𝑑𝑥

𝑎

0
                 Eq. (11) 

To formulate the stiffened panel stress intensity factor, the effect of stiffener restraint, stiffener 

separation and the residual stresses will be superimposed as shown in Figure 5. Finally, the range 

of effective stress intensity factor is determined as illustrated in Figure 8 (Dexter and Pilarski, 

2000). 
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Fig. 7- Residual stress distribution along a stiffened panel 

 

The total stress intensity factor 𝐾𝑡𝑜𝑡𝑎𝑙 is a sum of applied stress intensity factor 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 and the 

residual stress intensity factor 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙. 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑 can be split into 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥, 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛, and 

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝, corresponding to the maximum and minimum applied stresses, and the crack opening 

stress. These components are added to 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  individually to determine the total stress 

intensity factor at the respective points in the load cycle. Under progressive loading, equilibrium 

is reached when the crack surfaces start to separate at the crack front. Therefore, it can be 

assumed that the sum of the stresses at this point is zero and the total stress intensity factor at this 

point, 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 = 0. The resulting expression is 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 = −𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 . If 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛  is 

less than the 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝, there will be crack closure and ∆𝐾𝑒𝑓𝑓 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥 − 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝. If 

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛  is greater than 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 , there will be no crack closure and ∆𝐾𝑒𝑓𝑓 =

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥 − 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛. 

Failure Assessment Diagrams 

As a crack grows through a member, it may eventually reach a critical size, after which sudden 

fracture failure may occur. In prior studies (Kwon et al., 2012, Zhao et al., 1994a, Cheung and Li, 
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2003), this crack size is assumed on basis of the engineering judgement or taken as the maximum 

dimension available for the crack to grow. Failure Assessment Diagram (FAD) is a type of 

interaction diagram which can be used to determine whether the structure is safe or not, given a 

certain crack size. The vertical axis in a FAD represents a measure of the applied stress 

conditions required to cause sudden fracture and the horizontal axis represents the applied load 

required to cause plastic collapse. An assessment line is plotted in accordance with type of failure 

diagram to represent the capacity. Finally, calculations for a given flaw will result in a set of 

coordinates on the FAD. The location of this point can be compared to the assessment line to 

determine whether the flaw is acceptable or not. A point that lies in the region bounded by the 

assessment line is considered acceptable and a point that lies outside the bounded region is 

considered unacceptable. 

Several studies in literature integrate the FAD with probabilistic fatigue analysis. Zhao et. al. 

(1997) considered the uncertainty in the stress intensity factor and conducted stochastic analysis 

covering the parameters in the FAD analysis. However, this study did not consider the uncertainty 

associated with assessment points. Wang et. al. (1999) used a similar approach and developed a 

probability density function of the safety factor 𝑛, by considering uncertainty in crack detection 

and material properties. Both approaches did not consider the uncertainty in the applied loads. In 

this thesis attempts are made to conduct the time variant flaw assessment considering uncertainty 

in the applied loads in addition to those associated with material properties to determine the 

Probability Distribution Function (PDF) of the critical crack size. This PDF is used in the 

performance function to determine the failure probability. 

FAD has three options for assessment outlined in the British Standard BS 7910 (BSI, 2013) 

namely Options 1, 2 and 3. Option 1 is suitable for cases where detailed stress-strain data is not 

available. Option 2 requires true uniaxial stress-strain data of the material while Option 3 requires 

detailed information on material, loading and geometry, and uses both elastic and elastic-plastic 
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analyses of the structure, which may require the use of detailed finite element modelling. In this 

study, Option 1 be used. 

Assessment Option 1 (BSI, 2013) 

This assessment option can be utilized when limited information on the material properties or the 

external forces is given. It does not require a detailed stress-strain data for the material. No 

inherent safety factors are included, resulting in a realistic assessment that is suitable for 

stochastic analysis. The assessment point has the coordinates (𝐿𝑟, 𝐾𝑟) where 𝐿𝑟 is the load ratio 

defined as 

𝐿𝑟 =
𝜎𝑟𝑒𝑓

𝜎𝑌
                 Eq. (12) 

in which 𝜎𝑟𝑒𝑓 is calculated using an appropriate reference stress solution from Annex P of BS 

7910 (2013) and 𝜎𝑌  is the yield strength of the material. 𝐾𝑟  is the fracture ratio defined by 

Equation (13) or Equation (14). 

𝐾𝑟 =
𝐾𝐼
𝑝
+𝑉𝐾𝐼

𝑠

𝐾𝑚𝑎𝑡
                 Eq. (13) 

𝐾𝑟 =
𝐾𝐼
𝑝
+𝐾𝐼

𝑠

𝐾𝑚𝑎𝑡
+ 𝜌                 Eq. (14) 

where 𝐾𝐼
𝑝

 is the primary applied stress intensity factor having the general form presented by 

Equation (1), 𝐾𝐼
𝑠  is the stress intensity factor developed due to secondary stresses, 𝑉  is the 

plasticity correction factor, 𝜌 is the plasticity interaction factor and 𝐾𝑚𝑎𝑡 is the fracture toughness 

of the material. 
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Fig. 8 - Procedure for determining the effective stress intensity factor range  

 

The plasticity effects can be ignored for this study since the applied loads and stress ranges are 

very low, resulting in negligible plasticity effects (Dexter and Pilarski, 2000). Hence, the equation 

can be reduced to 

𝐾𝑟 =
𝐾𝐼

𝐾𝑚𝑎𝑡
                 Eq. (15) 

where 𝐾𝐼 includes both primary and secondary applied stress intensity factors. 

The assessment line for Option 1 is defined as (BSI, 2013) 

𝐾𝑡𝑜𝑡𝑎𝑙 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑+ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝐾𝑡𝑜𝑡𝑎𝑙,𝑚𝑎𝑥 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥+ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝐾𝑡𝑜𝑡𝑎𝑙,𝑚𝑖𝑛 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛+ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝐾𝑡𝑜𝑡𝑎𝑙,𝑜𝑝 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝+ 𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 

At the onset of crack opening 𝐾𝑡𝑜𝑡𝑎𝑙,𝑜𝑝 = 0  

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 = −𝐾𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  

𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 > 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛 

Therefore 

No 

Yes 

∆𝐾𝑒𝑓𝑓 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥 − 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑖𝑛 

∆𝐾𝑒𝑓𝑓 = 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑚𝑎𝑥 − 𝐾𝑎𝑝𝑝𝑙𝑖𝑒𝑑,𝑜𝑝 
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𝑓(𝐿𝑟) =

{
 
 

 
 (1 +

1

2
𝐿𝑟
2)
−0.5

{0.3 + 0.7𝑒(−𝜇𝐿𝑟
6)} 𝑓𝑜𝑟 𝐿𝑟 ≤ 1

𝑓(1)𝐿𝑟

(𝑁−1)
2𝑁⁄
                                  𝑓𝑜𝑟 1 < 𝐿𝑟 < 𝐿𝑟,𝑚𝑎𝑥

0                                                         𝑓𝑜𝑟 𝐿𝑟 ≥ 𝐿𝑟,𝑚𝑎𝑥

               Eq. (16) 

where 𝜇 = 𝑚𝑖𝑛 (0.001
𝐸

𝜎𝑌
, 0.6), 𝑁 = 0.3 (1 −

𝜎𝑌

𝜎𝑢
) and 𝐿𝑟,𝑚𝑎𝑥 is the maximum cut-off value for 

𝐿𝑟 to prevent local plastic collapse and is calculated as 

𝐿𝑟,𝑚𝑎𝑥 =
𝜎𝑌+𝜎𝑢

2𝜎𝑌
                  Eq. (17) 

where 𝜎𝑌 is the yield strength and 𝜎𝑢 is the ultimate tensile strength of the material. 

Equation (17) is applicable to materials that do not exhibit yield discontinuity. For material that 

exhibit a yield discontinuity, the assessment line is described as (BSI, 2013) 

𝑓(𝐿𝑟) =

{
  
 

  
 (1 +

1

2
𝐿𝑟
2)
−0.5

                                    𝑓𝑜𝑟 𝐿𝑟 ≤ 1

(𝜆 +
1

2𝜆
)
−0.5

                                       𝐿𝑟 = 1

𝑓(1)𝐿𝑟

(𝑁−1)
2𝑁⁄
                                   𝑓𝑜𝑟 1 < 𝐿𝑟 < 𝐿𝑟,𝑚𝑎𝑥

0                                                                     𝑓𝑜𝑟 𝐿𝑟 ≥ 𝐿𝑟,𝑚𝑎𝑥     

               Eq. (18) 

where the quantity 𝜆 > 1 is defined as 

𝜆 = 1 +
𝐸Δ𝜀

𝑅𝑒𝐿
                  Eq. (19) 

in which 𝐸  is the modulus of elasticity, Δ𝜀  is the change in strain at yield stress without an 

increase in stress and 𝑅𝑒𝐿 is the yield strength of the material. 

If the assessment point lies in the region bounded by the assessment line and the axes, the flaw is 

considered acceptable. If it lies outside the bounded region, it is considered unacceptable. A 

typical Option 1 FAD is shown in Figure 9, where assessment point A represents an unacceptable 

flaw and point B represents an acceptable flaw. The area under the assessment line is divided into 

three zones as shown in Figure 8. If the assessment point lies in Zone 1, the failure tends to be 
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fracture controlled. If it lies in Zone 2, the failure tends to be a mixed mode failure. If the 

assessment point lies in Zone 3, the failure tends to be more ductile.  

 

Fig. 9 - Typical Option 1 FAD 

System Performance and Time Dependent Reliability Analysis 

Due to the uncertainties present in loads and material properties, probabilistic analysis is essential 

in understanding the fatigue performance of the structure over time. By modelling the uncertainty 

in loads and material properties, a probabilistic crack growth profile can be established using 

Monte Carlo simulation. The probabilistic distribution parameters of the crack size at an instant in 

time can then be determined using MATLAB distribution fitting toolbox. Propagating cracks 

eventually reach a critical size, which is determined using FAD analysis. Next, the probability of 

failure can be determined using the performance function 

𝑔(𝑋, 𝑡) = 𝑎𝑐𝑟(𝑋) − 𝑎(𝑋, 𝑡)                Eq. (20) 
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Where 𝑋 is the vector of random variables governing the problem, 𝑎𝑐𝑟 is the critical crack size 

and 𝑎(𝑡) is the crack size at time 𝑡. 

The probabilistic distribution of the critical crack size is established through probabilistic time 

variant FAD analysis. MATLAB Distribution fitting toolbox is used to determine the 

probabilistic descriptors of the critical crack size. Random samples of the critical crack size and 

the instantaneous crack size are drawn next using MATLAB random number generator and 

Monte Carlo simulation is performed to determine the time variant probability of failure as  

𝑃𝑓(𝑡) = 𝑃[𝑔(𝑋, 𝑡) ≤ 0]                 Eq. (21) 

where 𝑃𝑓(𝑡) is the probability of failure at time 𝑡. 

Next the time variant reliability index is determined as 

𝛽(𝑡) = Φ−1[1 − 𝑃𝑓(𝑡)]                 Eq. (22) 

where 𝛽(𝑡) is the reliability index at time 𝑡 and Φ is the cumulative density function (CDF) of the 

standard normal distribution. 

In this study, the applied stresses 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛, crack growth parameter 𝐶, the yield strength 𝜎𝑌 

and the ultimate tensile strength 𝜎𝑢  are considered as random variables. Figure 10 shows 

schematically, the probability distribution of the crack size at different times along the service life 

and the probability distribution of the critical crack size. 
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Fig. 10 – A schematic representing the probabilistic distributions of instantaneous crack size and 

critical crack size 

Machine Learning and Deep Learning 

Over the past few decades, the exponential progress in the development of higher performance 

Central Processing Units (CPUs) and Graphics Processing Units (GPUs) has paved the road to 

apply machine learning in solving complex computational tasks in various scientific fields. 

Machine learning and deep learning algorithms have the ability to recognize patterns, classify 

data, recognize images, sounds and make predictions. The exceptional ability of machine learning 

to develop nonlinear approximations, its multi-variate learning ability and its flexibility, have 

made it a useful tool for engineering applications. It employs a series of algorithms used in data 

driven systems, such as genetic algorithms, support vector machines, artificial neural networks 

and neural-fuzzy systems. Since machine learning is capable of modelling internal connections 

and tendencies in a complicated set of data, it can be used for fatigue assessment of deteriorating 

structures.  

Zio et. al. (2012) used a Bayesian-based relevance vector machine (RVM) to model the remaining 

useful life of a component or structure based on data collected under fatigue deterioration. The 
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RVM learning procedure utilized the sparse data available for degradation trajectory and 

extrapolated the results to determine the remaining useful life. The obtained results were proven 

satisfactory in terms of accuracy and computational run time. Mohanty et. al. (2015) adopted a 

genetic programming approach for predicting the fatigue crack growth on an aluminum specimen 

subjected to constant amplitude loading and demonstrated its superiority compared to an artificial 

neural network. Zhao et. al. (2106) used a radial based artificial neural network to predict the 

crack growth in a steel specimen with a center crack. The predictions of the neural network 

demonstrated good agreement with experimental results. Furthermore, Stern et. al. (2017) 

developed a machine learning based surrogate model by implementing a support vector machine 

and a logistic regression technique, to reduce the runtime required to perform Monte Carlo 

simulation on a gas distribution network after an earthquake. In this study a deep learning 

approach is proposed to reduce the time and computational cost encountered while performing 

Monte Carlo simulation.  

Deep learning is a branch of machine learning which can be used to employ various hidden layers 

of neural networks to interpret features and relationships directly from a large set of unlabeled 

data. A typical deep neural network is shown in Figure 11. Neural networks are composed of 

three types of layers, input, hidden, and output layers. Input layer is responsible for feeding the 

input parameters into hidden layers. Each hidden layer consists of several neurons, in each 

neuron, the input units are converted to nonlinear functions of linear combinations of assigned 

weights and bias values. Using the assigned weights and bias values, the neural network 

algorithm can optimize the results and train the network to minimize the bias values with respect 

to expected outputs. A deep learning neural network is trained by evaluating and minimizing the 

error between the predicted value and the actual value using back propagation or feed forward 

approaches. The training consists of three parts; (a) training, where the neural network is trained 

by fitting mathematical models to data, (b) testing, where the error is evaluated for the trained 



28 
 

model, and (c) verification, where the final best fit model is used to predict and compare the 

results based on the model selected during testing. Many deep learning frameworks such as Keras 

(Ketkar, 2017), Tensorflow (Abadi et. al., 2016), Theano (Al-Rfou et al., 2016) and Caffe (Jia et 

al., 2014), are available as open source software packages. For this study, tensorflow is used. 

 

Fig. 11 - A typical neural network employed in a deep learning framework 

 

Tensorflow is an open source deep learning engine developed by Google. Owing to its flexibility 

and versatility, it can be easily utilized for applications in engineering research. TensorFlow gives 

its users the ability to select the type of neural network that can be built into the deep learning 

dataflow graph. Some examples include Convolutional Neural Networks (LeCun et al., 2015), 

Recurrent Neural Network (LeCun et al., 2015) and Recursive Neural Network (Socher et al., 

2011). TensorFlow uses a single dataflow graph to perform computations throughout its 

algorithms. This graph contains several vertical nodes and edges. Each vertex represents a unit of 

local computation and each edge represent the input or output routs to or from the vertices. The 

computations at vertices and the multi-dimensional matrices of values flow along the edges are 

referred to as operations and tensors, respectively. A typical TensorFlow dataflow graph contains 

several subgraphs that are connected through shared variables and queues. The execution process 
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of the graph starts with one or more edges to feed the input tensors into the dataflow. The reader 

module then takes a reference handle (r) and produces the value of the variable (state[r]) as a 

dense tensor. Shuffle queue is then responsible for extracting randomized batch data from the 

reader and pass it to the preprocessing unit that transforms the input records (e.g., decodes images 

and applies random distortions) concurrently.  Next, the input queue is responsible for producing 

data batches and feeding the core training subgraph. Finally, the input batches and a set of model 

parameters are analyzed through many concurrent steps of the training subgraph. The training 

process also involves saving and restoring data into/from a distributed file system, applying 

gradient updates, and running periodic checkpoints for fault tolerance. A typical TensorFlow 

dataflow graph for training is presented in Figure 12 (Abadi et al., 2016). Raw unlabeled data is 

fed into the input layer which reads this data. It is then shuffled and organized into tensors and 

fed into the neural network for training, where weights and biases are initialized for each neuron. 

A cost function determines the amount of error after each iteration and an optimizer function 

computes the gradients which determine the calibration of the weights and biases. This process 

can be repeated until the MSE is minimized to the desired value. 

 

Fig. 12 - Dataflow graph for TensorFlow 
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Probabilistic Fatigue Assessment Framework 

A probabilistic framework for fatigue assessment of stiffened structures is established in this 

study. Figure 13 shows the different modules of the framework First, a finite element model is 

developed to determine stresses at the crack location under applied loads. Next, a crack growth 

model capable of quantifying the crack growth through a stiffened plate is used to model the 

crack growth behavior under cyclic loading. Considering uncertainties in the applied loads and 

the material properties, Monte Carlo simulation is conducted to determine the probabilistic crack 

growth. This data set for crack growth is then used to train a deep learning framework to generate 

a larger number of samples for probabilistic crack growth. Using the deep learning-based 

probabilistic crack growth, crack size distribution is determined at different times along the 

service life. Next, probabilistic failure assessment curve is plotted to determine the probabilistic 

distribution of the critical crack size considering uncertainties in loads and material properties. 

Finally, the time variant probability of failure and reliability index are determined through the 

results of simulating the performance function. 
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Figure 13 - Proposed probabilistic framework 
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CHAPTER III 
 

 

ILLUSTRATIVE EXAMPLE 

 

A three-lane bridge, adapted from the Federal Highway Administration Steel Bridge Design 

Handbook (FHA, 2012), is selected to illustrate the proposed fatigue reliability estimation 

framework. The superstructure of the selected bridge is a composite section with a 230 mm thick 

reinforced concrete deck on top of two trapezoid steel tub girders. It has a 13 meters wide 

roadway and a simply supported span of 40 meters. The cross-sectional dimensions are shown in 

Figure 14. The bottom flange of each of the girders has four longitudinal T stiffeners. Figure 15 

shows the details of the longitudinal stiffeners of the box girder. The deck reinforced concrete has 

a strength of 28 MPa and the girder steel is ASTM A572 Gr. 50. 

A finite element model of the bridge is constructed using SAP2000® v.19 (SAP2000, 2016) to 

determine the maximum and minimum stresses. The model was developed for one span of the 

bridge assuming pinned support conditions. It is constructed using a combination of shell and 

frame elements. The flanges and webs of the box girder are modelled as shell elements and the 

longitudinal stiffeners are modelled as frame elements. The finite element analysis provides the 

stresses experienced by the bridge under different configurations of live load. Figure 16 shows 

the finite element model developed. Figure 17 shows the AASHTO (AASHTO, 2017) fatigue 

truck loads, that are placed on the bridge to obtain the largest developed stress at mid-span.  This 
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was conducted for one lane loaded, two lanes loaded, and three lanes loaded along with their 

respective multi-presence factors as tabulated in Table 4. The two-truck configuration resulted in 

the highest developed stress and is thus used. The stress under dead load of the structure is taken 

as 𝜎𝑚𝑖𝑛 while 𝜎𝑚𝑎𝑥 is the sum of the stresses due to dead load and the AASHTO fatigue truck 

load. For this analysis, 𝜎𝑚𝑎𝑥 = 50.17 MPa and 𝜎𝑚𝑖𝑛 = 28.31 MPa. 

 

Fig. 14 - Bridge cross-section 

 

 

Fig. 15(a) - Stiffened bottom flange 

 

Fig. 15(b) - Stiffener detail 
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Table 4 - AASHTO multiple presence factors (AASHTO, 2017) 

Multiple Presence Factors 

Number of Design 

Lanes 

Multiple Presence 

Factor m 

1 1.20 

2 1.00 

3 0.85 

More than 3 0.65 

 

 

Fig. 16 - Finite element model 

 

Fig. 17 - AASHTO fatigue truck 
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Stiffened Panel Coefficient 

Equation (3) is used to model the crack growth through the bottom flange of the stiffened tub 

girder. The ∆𝐾𝑒𝑓𝑓  is determined in accordance with the steps outlined in Figure 8. First, the 

stiffener restraint coefficient 𝑓1 is determined using Equations (5-6) and severed stiffener effect, 

𝑓2 is determined using Equations (7-9). The stiffened panel coefficient is then assembled using 

Equation (10). Figure 18 shows 𝑓1, 𝑓2 and 𝑓𝑠𝑡  for the case under consideration. As discussed, 

linear interpolation is executed from 0.95𝜒 before the stiffener, to a point at a distance equal to 

the height of the stiffener ahead of it and is shown in Figure 19. 

 

Fig. 18 - Formulation of stiffened panel coefficient 
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Fig. 19 - Linear interpolation between broken and intact stiffener 

Residual Stress and Residual Stress Intensity Factor 

The residual stress distribution along the panel can be modeled based on recommendations in 

Dexter and Pilarski (2000) and is plotted in Figure 20. It is seen that the residual stress 

distribution at the location of the stiffener is a triangle with base width of 3.5 times the thickness 

of the plate and the maximum stress is equal to the yield strength of the material i.e. 345 MPa. 

Using Equation (11), the residual stress intensity factor is evaluated and is plotted in Figure 21. 

Next, the effective stress intensity factor range is evaluated and the result is plotted in Figure 22. 

The value of the crack growth constant 𝐶 is taken as 2.18 × 10−13 (Barsom and Rolfe, 1999) and 

material crack growth exponent 𝑚 is taken as 3 (Barsom and Rolfe, 1999). Finally, the effective 

stress intensity factor range is used in Equation (3) to establish the deterministic crack growth 

profile through the stiffened panel over time which is plotted in Figure 23. 
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Fig. 20 - Residual stress distribution in the panel 

 

Fig. 21 - Residual stress intensity factor 
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Fig. 22 - Effective stress intensity factor range 

 

Fig. 23 - Crack growth profile 
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Probabilistic Crack Growth 

To consider the effect of uncertainties in the applied loads, 𝜎𝑚𝑎𝑥 and 𝜎𝑚𝑖𝑛 are assumed to be 

normally distributed random variables with means of 50.17 MPa and 28.31 MPa respectively and 

coefficient of variance (COV) of 0.06 and 0.1 respectively. The material crack growth parameter 

𝐶 is assumed to follow a lognormal distribution with a mean of 2.18×10-13 and a coefficient of 

variance of 0.2 (Barsom and Rolfe, 1999). Random samples are generated for 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 and 𝐶 

using MATLAB 2018® random number generator, and Monte Carlo simulation is used to 

establish the crack growth for each sample and is shown in Figure 24. This simulation was 

performed on Dell OptiPlex 7050 workstation with Core i7-7700 CPU and 16 GB of RAM. It 

was observed that the computation time required to predict the crack growth associated with each 

sample was computationally expensive and time consuming. Only 1000 samples were generated 

in about 52 hours of computational run time. For Monte Carlo simulation, 1000 samples cannot 

accurately capture the sample space from all the regions in the probability distribution. Therefore, 

deep learning was used to reduce this time and generate larger number of samples. 

Deep Learning 

The crack size data generated from Monte Carlo simulation is used as an input data set for 

training the deep learning model. 20% of the data set is used as the training data and the 

remaining 80% is used for testing and verification. It is more efficient for neural networks to use 

scaled inputs as it takes fewer iterations to converge to a correct prediction (Heinz, 2017). Hence, 

the inputs are normalized with respect to the largest values in the data set, so that the training 

values remain between 0 and 1. For this study, the deep learning model is trained to find the time 

associated with different crack growth increments. The input parameters include stress intensity 

factor range ∆𝐾𝑒𝑓𝑓, crack growth constant 𝐶 and the crack size 𝑎. The output parameter is the 

number of cycles 𝑁. 
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Fig. 24 - Probabilistic crack growth using Monte Carlo simulation 

 

A session is created in TensorFlow to initiate and train a feed forward neural network. The 

network architecture consists of one input layer and 6 hidden layers and an output layer (Heinz, 

2017). For error evaluation, the cost function uses the Mean Squared Error (MSE) method. To 

adjust the weights and bias values for the respective nodes, an Adam Optimizer is used (Kingma 

and Ba, 2014). The optimizer generates the gradients that determine the direction in which the 

weights and biases need to be adjusted to minimize the error. The results of the training model are 

compared to those of the analytical model at a sample with input parameters 𝜎𝑚𝑎𝑥 = 54.68 MPa, 

𝜎𝑚𝑖𝑛 = 24.23 MPa and 𝐶 = 2.73 × 10−13 as shown in Figure 25. A good agreement between 

the results from deep learning and those based on analytical results is observed.  

Next, the trained model is used to generate a probabilistic crack growth profile using 100,000 

predicted samples, as shown in Figure 26 and the crack size distribution can now be determined 
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for each time step. Since this is not directly available from the probabilistic analysis, distribution 

fitting is performed at each time instant using MATLAB® Distribution Fitting Toolbox, to 

determine these probabilistic distributions. It is observed that the crack size follows a Generalized 

Extreme Value Distribution. Figure 27 shows the distribution fitting of the samples of crack size 

at a selected time instant. 

Probabilistic FAD Analysis and Time Variant Reliability Index 

The probabilistic distribution of the critical crack size is required to determine the time variant 

reliability index. Probabilistic FAD analysis is performed to determine the distribution of the 

critical crack size. The reference stress, 𝜎𝑟𝑒𝑓, used for calculation of the load ratio, depends on 

the geometry and the stress concentrations around the flaw. Since the presented case is a complex 

geometry case, formulae from Annex P of BSI 7910 may not provide accurate results. 

A crack is initiated in the FEM at the location of the highest stress in the lower flange of the tub 

girder by creating a fine mesh at that location and removing shell elements, simulating a crack. 

Static finite element analysis is then conducted to determine the stresses around the crack tip, 

which is taken to be the value of 𝜎𝑟𝑒𝑓 (Tipple and Thorwald, 2012). This process is performed for 

incremental crack sizes up to a crack size of 2432 mm. Next, 𝐿𝑟 is determined using Equation 

(13). Since A572 steel does not exhibit yield discontinuity, the assessment line will be determined 

using Equation (17). The fracture ratio 𝐾𝑟, is determined by employing applied stress intensity 

factor 𝐾𝐼, determined using the procedure described earlier (Dexter and Pilarski, 2003), which 

includes the effects of primary bending stresses and secondary stresses (i.e. applied forces and 

residual stresses). Assuming uncertainty in the yield strength and ultimate tensile strength of the 

material, multiple intersections between the assessment points and the assessment line will occur. 
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Fig. 25 - Verification of results using deep learning 

 

 

          Fig. 26 - Probabilistic crack growth using deep learning 
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           Fig. 27 - Distribution fit for instantaneous crack size at 35 million cycles 

The yield strength is assumed to follow a lognormal distribution with a mean of 370 MPa and a 

COV of 0.07 and the tensile strength follows a lognormal distribution with a mean of 690 MPa 

and a COV of 0.04 (JCSS, 2001). A summary of the random parameters is shown in Table 5. A 

positive correlation of 0.75 is also assumed to exist between the tensile and yield strength (JCSS, 

2001) Monte Carlo simulation is performed to plot the probabilistic Option 1 FAD as shown in 

Figure 28. It is observed that the assessment points lie in zone 3, indicating that the failure is 

dominated by plastic collapse. Next, a distribution fit can be performed to determine the 

distribution of the critical crack size using MATLAB® Distribution Fitting Toolbox. It was found 

that the critical crack size follows a normal distribution with a mean of 2.238 meters with a 

standard deviation of 0.036 meters. Figure 29 shows the distribution fit for the half critical crack 

size 𝑎𝑐𝑟. 
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 Table 5 - Summary of descriptors of random parameters 

Parameter Distribution Mean COV 

Maximum stress, 

𝜎𝑚𝑎𝑥 (MPa) 
Normal 50.17 0.06 

Minimum stress, 

𝜎𝑚𝑖𝑛 (MPa) 
Normal 28.31 0.1 

Crack growth 

constant, 

𝐶 

Lognormal 2.18×10-13 0.2 

Yield strength, 𝜎𝑌 

(MPa) 
Lognormal 370 0.07 

Ultimate tensile 

strength, 𝜎𝑢 (MPa) 
Lognormal 690 0.04 

 

Next, Monte Carlo simulation is used to determine the probability of failure using Equation (21). 

Assuming the Average Daily Truck Traffic (ADTT) to be 2000 (Cheung and Li, 2003), the time 

dependent probability of failure is plotted against time and is shown in Figure 30. The plot shows 

that the probability of failure is very small during approximately the first 40 years of service. 

Subsequently the time variant reliability index can be determined using Equation (22) and is 

shown in Figure 31. Assuming 3.5 as the target reliability index (AASHTO, 2017), it is observed 

that the girder falls short of this value after approximately 48 years of service life. Setting other 

values as threshold reliability values will result in different values of service life. Table 6 shows 

the reliability based service life associated with different reliability thresholds. 
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Fig. 28 - Probabilistic Option 1 FAD analysis showing scatter of critical points 
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Fig. 29 - Distribution fit for critical crack size 

 

 

Fig. 30 - Time variant probability of failure 
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Fig. 31 - Time variant reliability index 
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CHAPTER IV 
 

 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

This study presented a probabilistic framework to quantify the time variant reliability index of 

stiffened panels under growing fatigue cracks. This approach employs LEFM to determine 

probabilistic crack growth profile through the stiffened plates considering uncertainties in loads 

and material properties. To establish the time variant reliability profile, the critical crack size is 

required. In this work the critical crack size was determined using a probabilistic failure 

assessment diagram analysis, whose descriptors were quantified using Monte Carlo simulation. It 

was observed that this entire simulation process was computationally expensive to accurately 

capture the performance of the structure. A deep learning framework, TensorFlow, was trained 

and verified using the sparse data available from the analytical model. The results of the deep 

learning framework showed very good agreement with the analytical ones. The trained model 

enabled a large number of samples to be used to establish the probabilistic crack growth profile, 

using Monte Carlo simulation. A performance function was defined in terms of the time variant 

crack size and the critical crack size to quantify the probability of failure and reliability index. A 

stiffened bridge tub girder was used to illustrate the approach. The following conclusions can be 

drawn: 

 Failure assessment diagrams are a useful to determine critical crack size in probabilistic 
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fatigue analysis. For these types of cracks, the main failure mode was identified as ductile 

failure. These cracks can grow into a substantial length before failure. This can be 

attributed to the high material toughness and the inherent redundancy of the stiffened 

structures. 

 The Generalized Extreme Value (GEV) distribution was found to provide the best fit of 

crack size data at different tie instances. 

 It was observed that the structural reliability during the first 40 years was very high. 

Computing the reliability index during these years requires a larger number of 

simulations. 

 Deep learning can be effectively used to accelerate the stochastic analyses to determine 

probabilistic distribution of the instantaneous crack size over time. This process can be 

applied to other structural problems such as corrosion models. 

 For the analyzed case study, traditional Monte Carlo simulation would require 

approximately 5500 hours of computational run time whereas with deep learning this 

time is reduced to 43 hours. 

 The proposed approach that integrates deep learning algorithms in probabilistic analyses 

can be applied to other structural engineering applications such as fragility analysis, 

structural performance under environmental corrosion and seismic response of 

structures. 

Future Work 

The following suggestions are recommended for future studies to better utilize the proposed 

framework for evaluating structural performance under uncertainty: 
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 The FAD analysis for this study was performed using Option 1 analysis. More advanced 

options can be employed by collecting material properties such as true stress-strain data  

 The adopted analytical model considers the crack growth under constant amplitude 

loading. However, the stress cycles experienced by structures are highly variable. 

Modifications should be made to this model by incorporating the effects of overload and 

underload to predict crack growth under variable amplitude loading. 
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