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Abstract: Determination of the site-specific dosimetry and clearance of deposited
aerosols in the human airways is critical in health risk assessment studies such as tox-
icant exposure evaluation and inhaled medication delivery with pulmonary topical or
systemic actions. However, comprehensive evaluation still lacks informative data, i.e.,
high-resolution local dosimetry of inhaled aerosols in airways and systemic regions,
due to the limited imaging resolutions, restricted operational flexibilities, and invasive
nature of experimental and clinical examinations. Computational simulations, on the
other hand, can provide a detailed explanation for the chemical dynamics in the res-
piratory system, intrapulmonary and extrapulmonary tissues, and systemic regions
using multiscale platforms. In this study, two experimentally validated multiscale nu-
merical analyses were developed for the post-deposition calculation of the respirable
aerosols, which expands the application of mathematical models in the respiratory
system to the health endpoint. First, computational fluid-particle dynamics (CFPD)
is coupled with a physiologically based toxicokinetic (PBTK) model to predict the
in tissue translocation and systemic disposition of inhaled volatile organic compound
and toxicant constituents in an electronic cigarette (EC). The proposed framework
can be used as a benchmark to identify drug or toxicant dynamics in the human body,
significantly applicable in the fields of pharmacokinetics and toxicokinetics. Second,
an epidemiological computational approach was programmed and optimized by con-
necting CFPD and host cell dynamics (HCD) models to simulate the transport and
deposition of low-strain influenza A virus (IAV)-laden droplets in subject-specific hu-
man lung airways and to predict the regional responses of targeted host cells to IAV
infection. Furthermore, the hygroscopic growth and shrinkage of multicomponent
droplets were considered by examining the thermodynamic equilibrium between the
phases. These frameworks overcome the limitation of the experimental studies by
connecting levels of biological dynamics that are not measurable using clinical stud-
ies. The influence of repetitive exposure incidents on the post-deposition dynamics
was determined, which is valuable for assessing the chronic health effects of inhaled
airborne particles.
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Computational Analysis of Deposition and Translocation of Inhaled 

Nicotine and Acrolein in the Human Body with E-cigarette Puffing 

Topographies

1.1 Introduction

Electronic cigarettes (ECs), perceived as the safer alternatives to conventional 

cigarettes, are manufactured in a wide variety of designs with different nicotine con-

centrations and added flavors. Other components such as glycerol (VG) and propy-

lene glycol (PG) exist in EC to imitate smoke via vaporization instead of combus-

tion (Allen et al., 2016). Although studies showed that some e-cigarette products 

have immediate adverse physiological effects after short-term uses (e.g., an increase 

in impedance, peripheral airway flow resistance, and oxidative stress among healthy 

smokers who used an EC for 5 minutes (Alfi and Talbot, 2013)), the long-term health 

effects are still unknown and needed for further investigations. Recently, toxicants 

such as formaldehyde, acetaldehyde, acrolein, diacetyl, benzaldehyde, and vanillin 

were also detected in e-cigarette aerosols (Goniewicz et al., 2014; Allen et al., 2016). 

These toxicants are either generated by the low-level thermal degradation or exist in 

flavorings. Because of the potential health impact of the newly discovered chemical 

compounds listed above (Alarcon, 1976; De Woskin et al., 2003; Wang et al., 2008; 

Mishra et al., 2015; Morris et al., 2015; Abraham et al., 2011), it is imperative to 

conduct research and provide sufficient quantitative evidence to address the potential 

health risks for the optimization of e-cigarette product design or facilitate regula-

tory approval. Thus, it is critical to define reliable biomarkers and understand how
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those chemical compounds transport, translocate and accumulate in the human body.

However, it is still a lack of informative data, i.e., high-resolution local dosimetry of

inhaled aerosols in lung airways and other systemic regions. The knowledge and data

gap are mainly due to the limited imaging resolutions, restricted operational flexibili-

ties, and invasive nature of experimental and clinical studies. Indeed, since ECs have

not been in widespread use sufficiently long, the human exposure studies until now

are limited to very short-term health responses. Meanwhile, although animal studies

were performed to investigate the health effects on mice and rats due to the exposure

to EC aerosols, observations are very restrictive regarding imaging resolution and

operational flexibility (Morris et al., 2015).

As an alternative, in silico study using high-fidelity numerical methods, i.e., Com-

putational Fluid-Particle Dynamics (CFPD) plus Physiologically Based Toxicokinetic

(PBTK) model (see Figure 1.1), are capable of providing valuable dosimetry data of

multicomponent EC aerosols in subject-specific respiratory tracts (Chen et al., 2017;

Haghnegahdar and Feng, 2017; Kleinstreuer and Feng, 2013). Furthermore, a high-

quality CFPD-PBTK model is also a promising whole-body dosimetry prediction tool,

which is noninvasive, cost-effective, and time-saving compared toin vitro and in vivo

investigations. Compared to those lumped parameter approaches and semi-empirical

models, the CFPD-PBTK model is developed based on the natural law of physics and

chemistry with fewer assumptions and simplifications. Thus, an advanced noninva-

sive, reliable, and generalized engineering tool based on the multiscale CFPD-PBTK

framework is developed and employed in this study to analyze the comparative health

risk reductions of EC aerosol components, i.e., nicotine and acrolein, with different

puffing topographies. This in silico study has relevance to public health because it

will enable a major health question to be answered by simulations in a short period,

i.e., what is the relationship between the chronic passive e-cigarette vaping of adoles-

cents and their health risks. The integration of multiple disciplinary types of research
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will bridge the gap of EC aerosol exposure and cardiopulmonary health effect assess-

ments, leading ultimately to a better understanding of the complexity and dynamics

of EC aerosol transport, deposition and translocation in human bodies.

Efforts have been made towards the development of numerical models to predict

the fates of inhaled tobacco products. The fundamental approaches to have a reliable

model that can represent the essential governing physics are presented in the review

by Kleinstreuer and Feng (2013). Simulations of the EC generated aerosol with the

multipath particle deposition model (MMPD) approach developed by Manigrasso

et al. (2015). The connection of the CFPD and the PBTK demands additional

description that can present the rule of the interconnecting tissue layer. Kimbell

et al. (1993) has completed the single-phase formaldehyde transport in Fisher rat

nasal cavity. In this work, the complete water solubility of the formaldehyde led them

to consider the zero concentration condition at the airway walls, and consequently,

the diffusion process was uncoupled from those in the surrounding tissues. Deposition

and mucosa layer translocation of vapor in the nasal cavity with hybrid CFD-PBTK

simulations were studied by Morris et al. (1993). Bush et al. (1998) simulated non-

reactive vapors uptake in the rat nasal cavity by including compartmental designs

for respired air, the mucus layer, the epithelial cell layer, and the sub-epithelial layer

containing blood vessels. Corley et al. (2015, 2012) have reported the connected CFD

and PBTK model for a single vapor phase deposition of the cigarette constituent in

the respiratory system of rat, monkey, and human considering mucus, epithelial, and

submucosal layers with diffusion and associated reactions.

In this study, the new multiscale CFPD-PBTK model is developed and employed

to predict the local fates of nicotine and acrolein from entering the human upper

airways to the systemic regions. Since generated EC aerosol composition varies due

to different puffing behaviors and EC products (Lisko et al., 2015). Hence, the para-

metric analysis of puff pattern influence on transport and translocation dynamics is

3



Figure 1.1: Framework of the CFPD-PBTK model.
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performed for individualized health risk assessments. EC Puffing topographies were

selected as inlet conditions based on existing investigations and standards (Cobb et al.,

2010; Goniewicz et al., 2014, 2017; Shahab et al., 2017). Simulations of multiple puffs

with holdings are enabled and performed for the first time using the CFPD-PBTK

model.

The layout of this chapter is as follow: Section 1.2 introduces the framework of

the multiscale CFPD-PBTK model followed by the numerical setup, mesh indepen-

dence tests, and model validations. Section 1.6 contains the numerical results of

multi-component EC aerosol transport, deposition, and translocation with insightful

discussion and parametric analysis. Section 1.7 summarizes the findings of the present

study. Section 1.9 proposes future work to improve the generalized feasibility of the

CFPD-PBTK modeling framework.

1.2 Methodology

Governed by the conservation laws of nature, the Computational Fluid-Particle

Dynamics (CFPD) and Physiologically Based Toxicokinetic (PBTK) model is a promis-

ing tool to assess the chronic exposure risks of EC aerosols and provide informative

and high-resolution data promptly. The schematic of the CFPD-PBTK modeling

framework is shown in Figure 1.1. Integrating the multiscale model validations and

optimizations, the CFPD-PBTK model provides local information about how differ-

ent levels of puffing may affect the deposition and translocation of toxicants in both

lung and systemic regions. The CFPD model is developed based on Euler-Lagrange

scheme (Feng et al., 2016) specifically for multi-component EC aerosol dynamics in

an idealized human upper airway model from mouth to Generation 3 (G3). The ex-

istence of the dominant chemicals of the nicotine, acrolein, formaldehyde, vegetable

glycerin (VG), and propylene glycol (PG) are tracked both in the particle and vapor

forms. Also, the wall of the respiratory system is considered as a sink with fractional
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to complete absorption for the uptake of the chemicals into the systemic regions.

The PBTK model for inhaled toxicants is developed and validated. It is assumed

that the toxicant‘s distribution through blood flow with the biological structure of

tissues which are homogeneous rate-limited diffusion (Robinson et al., 1992). The im-

portant mechanisms including absorption, distribution, metabolism, and excretion in

each organ for each toxicant are considered. Physiologic parameters (cardiac output,

ventilation rate, blood flow rate to the organs and organ volumes) are obtained and

optimized accordingly. The system of governing equations and boundary conditions

are evaluated based on the literature review and are provided in the following.

1.3 Governing Equations

1.3.1 Computational Fluid-Particle Dynamics (CFPD)

1.3.1.1 Air-Vapor Mixture

Assuming EC vapor species are diluted suspensions in the air, the air-vapor mix-

ture can be modeled as a single continuous phase. Neglecting the evaporation effects

of EC droplets, the governing equations of the air-aerosol mixture can be given as

∂ui
∂xi

= 0 (1.1)

in which ui represents the i-th component of the continuous phase velocity.

ρ(
∂ui
∂t

+ uj
∂ui
∂xj

) = − ∂p

∂xi
+

∂

∂xj

[
(µ+ µt)

∂ui
∂xj

∂uj
∂xi

]
+ ρgi (1.2)

where ρ and µ are the air-vapor mixture density and viscosity respectively. At typical

puffing flow rates, airflow through the oral airway region and first few generations is

incipient turbulent, becoming laminar again from G1 to G3. Therefore, the shear

stress transport (SST) transition model (Menter et al., 2006a,b; Langtry and Menter,
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2009) is adapted in this study, based on its overall good performance on the prediction

of laminar-to-turbulent transition onset, computational efficiency, and reasonable ac-

curacy when compared to large eddy simulation (LES). Based on the k − ω model,

the SST transition model can be described as follows

∂

∂t
(ρκ) +

∂

∂xi
(ρuiκ) =

∂

∂xi
((µ+ µt/σκ)

∂κ

∂xi
) + G̃κ − Yκ (1.3)

∂

∂t
(ρω) +

∂

∂xi
(ρuiω) =

∂

∂xi
((µ+ µt/σω)

∂ω

∂xi
) +Gω − Yω + Cdω (1.4)

∂

∂t
(ργ) +

∂

∂xi
(ρuiγ) =

∂

∂xi
((µ+ µt/σf )

∂γ

∂xi
) +Gγ − Yγ (1.5)

∂

∂t
(ρR̃eθt) +

∂

∂xi
(ρuiR̃eθt) =

∂

∂xi
(σθt(µ+ µt)

∂R̃eθt
∂xi

) +Gθt (1.6)

In Eqs. (1.3-1.6), G and Y represent generation and dissipation of the turbulence

kinetic energy (κ) and the specific rate of the dissipation (ω). Cd parameter shows

the cross-diffusion term, and σ is the Prandtl number. Also, the µt is the turbulent

viscosity. The transported Reynolds number (R̃eθt) in Eq. (1.6) is used to find the

intermittency generation term in Eq. (1.5).

1.3.1.2 Multi-component EC Particles

In this study, the one-way coupled Euler-Lagrange method is employed to predict

the transport of inhaled EC particles (Feng et al., 2016). Due to the relatively small

size of the particles, rotational motions are neglected. Particle diameter changes due

to condensation, evaporation, or coagulation are not considered. The translation
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equation of particles can be given as

mp
dup,i
dt

= FD
p,i + FL

p,i + FBM
p,i + FG

p,i (1.7)

where FD
p,i, F

L
p,i, F

BM
p,i and FG

p,i are drag force, Saffman lift force, Brownian motion

induced force, and gravity. Basset force is neglected due to negligible size of particles

compared to the fluid flow domain. Specifically, the drag force can be given as

~FD
p,i =

1

8
πρ(ui − up,i) |ui − up,i| d2

pCD/CC (1.8)

CD =
24

Rep
(1 + 0.15Re0.687

p ) (1.9)

in which dp is the particle diameter. In Eq. (1.9), CD is the drag force coefficient.

CC is the Cunningham correction factor (Allen and Raabe, 1985) which is defined as

CC = 1 =
2λ

dp
(1.257 + 0.4e−1.1

dp
2λ ) (1.10)

where λ = 65 nm represents the air mean free path. As long as the particle’s diameter

compared to the characteristic length of the continuous phase domain is significantly

small, the particle Reynolds number Rep based on the difference between the particle

and the airflow velocity is small enough, and the Saffman lift force can be calculated

by expression given by Li and Ahmadi (1992)

~FL
p,i =

2Kdeijnu
1/2

(ρp/ρ)dp(delkdekl)1/4
(~u− ~up) (1.11)

In Eq. (1.11), deij is the deformation rate tensor (Drew, 1976). K is the constant

coefficient of Saffman‘s lift force equal to 2.594.

Employing the Gaussian white noise process model provided by Li and Ahmadi

8



(1992), The Brownian motion induced force is expressed as

~FBM
p,i = ~G

√
πS0

∆t
(1.12)

S0 =
216νkBTp

π2ρd5
p(
ρp
ρ

)2CC
(1.13)

In Eq. (1.12), ~G is a three dimensional vector consisting of three independent

zero-mean, unit-variance Gaussian random numbers ranging from 0 to 1. In Eq.

(1.13), S0 is the spectral intensity, kB is Boltzmann constant (1.38× 10−23 J/K) and

Tp is temperature which is equal to constant value of 310.15 K in this study.

For the simulation process, as suggested by Gupta and Peters (1985) the parti-

cle time step ∆tp should be larger than the time step needed for the particle and

fluid molecules collision and smaller than relaxation time for interaction and external

forces. Thus, ∆tp can be estimated using the following equation

∆tp = (
3πµdp
CCmp

)−1 (1.14)

The regional deposition of particles in human airways can be quantified using

deposition fraction (DF) and deposition efficiency (DE), which are defined as

DF =
Number of regional deposited particles

Number of particles entering the mouth
(1.15)

DE =
Number of regional deposited particles

Number of particles entering the region
(1.16)

The deposition on the lung airway walls was considered to happen when the

distance between the particle centroid and the airway wall is less than dp/2.
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1.3.1.3 Convection-Diffusion Equations for EC Vapor Species

The convection-diffusion equations are introduced for those EC chemical com-

pounds in vapor forms to describe the transport dynamics by tracking the material

mass fractions in human respiratory systems. The generalized equation can be given

as

∂Ys
∂t

+
∂(uiYs)

∂xi
=

∂

∂xi
(Da,s

∂Ys
∂xi

) (1.17)

where Ys is the mass fraction of species s and Da,s is the binary diffusivity of species

s in the air. The mixed boundary condition is developed for a more realistic vapor

absorption boundary condition at airway walls, i.e.,

∫

f

∂Ys,c
∂xi

dSf =

∫

f

ψs(Ys,f − Ys,∞) dSf (1.18)

in which Ys,c and Ys,f are the mass fraction of the species s on the local mesh cell and

face centroid respectively and Sf is the control volume face surface (see Figure 1.2).

Ys,∞ is the mass fraction of the species in the systemic region which is assumed to

be zero at initial condition as long as the reaction of the acrolein and formaldehyde

are suggested to be high at the first contacting site (ATSDR, 2007). The absorption

coefficient ψs is defined as

ψs =
Dw,s

Da,sHc,szm
(1.19)
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Figure 1.2: Implementation of the third-type boundary condition for species
absorption at airway walls.

where Dw,s and Hc,s denote the diffusivity of the species in mucus layers and the

Henry’s constant respectively. For defining Henry’s constants, the vapor phase has

been considered as air and the mucus layer tissue site was considered as water. In

this way, the vapor liquid thermodynamic equilibrium for the air-water system was

examined. This equation represents the air-mucus interphase mass balance based on

the equality of the species chemical potential and is defined based on two assumptions,

i.e., (1) the rate of transport is instantaneous and equilibrium prevails at all times at

the interface, (2) the rate of transport is controlled by the rates of diffusion through

the phases. Besides, zm is the mucus layer thickness which is assumed to be constantly

equal to the average value of 10 µm covering all around the geometry domain wall

boundaries (ICRP, 1994).

Eq. (1.19) was further simplified using the midpoint rule of the Riemann sum-

mation. For transient simulations, the differential term on the left-hand side (LHS)

of Eq. (1.19) was defined using the implicit gradient (at the current time step) and

explicit gradient (at the previous time step) predictions, i.e.,

∂Ys,c
∂xi

≈ (Ys,f − Ys,c)A2
i

rcfAiei
+

(
∂Y

(t−1)
s,c

∂xi
Ai −

∂Y
(t−1)
s,c

∂xi
ei
A2
i

Aiei

)
(1.20)

where Af and Ai are the surface area and the normal vector of the mesh element face.

rcf and ei are the cell-to-face centroid distance and unit normal vector respectively.
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ξi = ∂Y t−1
s,c /(∂xi) is the average face-cell centroid gradient obtained from the previous

time step. Eq. (1.20) can be further expanded as

Ys,f =

{
A2
i

Aiei

Ys,c
rcf
−
(
ξiAi − ξiei

A2
i

Aiei
+ sYs,∞Af

)}
/

{
A2
i

Aiei
r−1
cf − ψsAf

}
(1.21)

Eq. (1.21) implement the face value of the species transport as a function of cell

value at the current and the previous time steps as it encloses the first and second

terms of the Eq. (1.20), respectively. Also, Ys,∞ is the species mass fraction at the

tissue compartment as it can be eliminated by the rapid removal of vapor chemicals

via blood circulation.

1.3.2 Boundary Conditions

1.3.2.1 Airflow Inlet Conditions with Realistic Puffing Topography

To implement the most representative and realistic puffing topographies, puffing

waveforms are proposed and employed based on experimental measurements in pre-

vious papers. Three standards available both for CCs and ECs for smoking machine

setup are studied. Specifically, the pattern proposed by the world health organiza-

tion ((WHO), 2012) is a square waveform with the flow rate of 35 ml per 2 seconds

and the 60-second interval between two consecutive puffs, i.e., (35:2:60). The sec-

ond CC puffing topography proposed by ISO and the Health Canada Intense (ISO,

2015) is 55 ml per 2 seconds with a 30-second interval between two consecutive puffs

(55:2:30). Additionally, the third puffing standard for EC related research is 55 ml per

3 seconds with 30-second intervals between consecutive puffs (55:3:30) (CORESTA,

2014). Other efforts seeking EC puffing topography standards are summarized as

follows. Goniewicz et al. (2013) claimed an average puff volume of 70 ml for EC puff-

ing, while (Robinson et al., 2015) tested the puffing pattern of and reported that the

mean puff duration is 3.5 seconds with a mean puff volume of 133 ml. Using the same
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experimental setup, Behar and Talbot (2015) provided the statistical results based

on a 20-subject cohort. Their investigation shows that the average interval between

two puffs is 179 seconds for puffs with an average duration of 2.65 seconds and a

volume of 51 ml. Furthermore, Dautzenberg and Bricard (2015) discovered that the

puff duration increases slightly from 3.79 seconds to 4.11 seconds with the increase of

the familiarity to EC consumption. Arguments exist on whether the observed longer

puff duration is realistic or not. Longer puff duration and shorter puff interval will

cause the formation of an unpleasant taste known as “dry puffs”, which prevents the

users to inhale EC aerosols too long to avoid the uncomfortableness. (McAuley et al.,

2012; Farsalinos et al., 2015). On the other hand, CC users intend to puff longer and

milder to inhale more nicotine in their lung (Feng et al., 2016).

Based on the statistical data obtained from the open literature, three different

inlet conditions are considered in this study. Specifically, two puffing volumes are

considered, i.e., 55 and 80 ml, which are both with a 3-second puff duration. Moreover,

the puffing interval (i.e., the holding and rest duration) also varies (see Table 1.1 for

details). Poiseuille flow is assumed at the mouth inlet. Furthermore, constant body

temperature T = 310.15 K is considered in the human respiratory upper airway model.

Simulation of the transient, 3-second puffing duration followed by up to 7.0 s holding

time is performed by discretizing the continuous particle injection. To find the best

time interval between two consecutive particle injections, different time steps have

been set up for the simulation, and the cumulative particle depositions in different

regions were compared. Figures 1.3 (a) and (b) depict the simulated cumulative

deposition data at outlets and mouth to trachea walls respectively. The difference

of the depositions for time step sizes of 0.02 s and 0.05 s are within 1.0%, hence for

better computational performance, 0.05 s is selected as the final particle injection

interval.
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Figure 1.3: Cumulative particle deposition and escape numbers in the idealized
human upper airway model for particle injection independence test: (a) particle

escaping number at outlets (b) particle deposition number from mouth to trachea
(c) particle deposition patterns at t = 2.4 s.

1.3.2.2 Particle and Vapor Inlet Conditions

Since the evaporation/condensation effects are neglected, the multi-component EC

particles have the same composition as the e-liquid employed (Margham et al., 2016).

Constant physical and chemical properties of EC chemical compounds are assumed.

E-liquid composition provided by Margham et al. (2016) was used in this study. The

EC aerosol mixture consists of 48.14% vegetable glycerin (VG), 25% of propylene

glycol (PG), 25% water, 1.86% nicotine, and flavorings. The monodispersed particle

diameter is assumed to be 410 nm, and the number concentration peak of 4.39e+9
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particles per cm3 is used. The choice of particle diameter and concentration are based

on realistic EC aerosol measurements (Belka et al., 2017; Margham et al., 2016). The

number concentration of EC particles is scaled down to enhance the computational

efficiency. As long as the evaporation and condensation effect is considered to be

negligible, the reduced total number of particles injected will have no impact on

the accuracy of simulation results. A random-parabolic particle distribution was

generated at the inlet, by an in-house MATLAB code.

For EC vapor species, the puffing topography presented by CORESTA (2014) has

been used in the experiment by Margham et al. (2016). Data are also provided for

the lab environment air known as a blank aerosol. In this study, the composition of

the aerosol vapor is determined by the subtraction of the existing chemicals in the air.

Moreover, the change in composition caused by different puff volumes (55 and 80 ml)

was reported in the same work. The data are not provided for the volatile organics and

nicotine. By considering the constant density for unavailable chemicals, the generated

vapor composition is calculated. As long as the mass fraction of the formaldehyde and

acrolein in the generated aerosol is much lower than other components, the influence

of the puff volume on the aerosol composition is negligible. Additional data are

provided in Table 1.1.

Nonslip boundary conditions are applied for airflow at the airway walls. The

deposition of the chemicals is happening in two forms of vapor phase and the particle

phase. For discrete particles, 100% trapped wall is implemented due to the presence

of mucus layers. Since it is difficult to measure the flow or pressure at each airway

outlets the uniform pressure outlet boundary condition with gauge pressure equal to

zero is employed.
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Particle diameter (nm) 410
Temperature (K) 310

Gas mean free path (nm) 65
Puffing topography (ml, s, s) 55:3:30

EC Cartridge component (wt/wt)
Acrolein Formaldheyde Nicotine Glycerol (VG) Propylene Glycol (PG) Water

0 0 1.86 48.14 25 25
Liquid mixture density (Kg/m3) 1238.96

Liquid mixture dynamic viscosity (Kg/m.s) 0.00278

Generated vapor component per puff (wt/wt)
Acrolein Formaldheyde Nicotine Glycerol (VG) Propylene Glycol (PG) Water
9.04E-05 7.89E-05 4.59E-02 2.29E+00 1.02E+00 N/A

Vapor mixture density (Kg/m3) 1.25E+00
Vapor mixture dynamic viscosity (Kg/m.s) 1.81E-05

Puffing topography (ml, s, s) 80:3:30

Generated vapor component per puff (wt/wt)
Acrolein Formaldheyde Nicotine Glycerol (VG) Propylene Glycol (PG) Water
1.10E-04 1.07E-04 4.59E-02 2.29E+00 1.02E+00 N/A

Vapor mixture density (Kg/m3) 1.25E+00
Vapor mixture dynamic viscosity (Kg/m.s) 1.81E-05

Table 1.1: Properties of the inhaled multicomponent EC aerosols (Margham et al., 2016).
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1.3.3 Physiologically Based Toxicokinetic (PBTK) Model

The biological sketch of the compartments being considered in the present PBTK

model is shown in Figure 1.1. There are two major types of PBTK models, i.e.,

perfusion-limited and diffusion-limited (Rosenbaum, 2016). Based on the lipophilic

(hydrophobic) characteristics of nicotine and acrolein, perfusion-limited transport is

dominant through all the compartments in the systemic region (Robinson et al.,

1992). Furthermore, the division of compartments depends on the focus and goal of

different studies. Since the PBTK model is designed to be combined with the CFPD

model, the inputs of the nicotine and acrolein uptakes will be obtained from the lung

deposition data. In the following equations, subscripts T and M represent tissue and

metabolizing sites, respectively, of hepatic and renal compartments. The generalized

time-dependent ordinary differential equation (ODE) for the perfusion-limited model

can be given as

VT
d

dt
CT = QT (CT,in −

Ct
KT

)− ICM
CT
PT

(1.22)

where VT , QT , and PT are the compartment volume, flow rate, and partition coeffi-

cient, respectively. CT,in and CT are the species concentration in the compartment

inlet and outlet, respectively. For eliminations in the systemic regions, the intrinsic

hepatic clearance (ICH) and intrinsic renal clearance (ICR) are considered for liver

and kidney, respectively. The elimination term is equal to zero for the non-eliminating

organs. For tissues other than the venous pool, arterial pool, lung, and liver the input

concentrations are equal to arterial pool concentrations. Moreover, the input concen-

tration for the venous pool is the average amalgamation of interconnected organs,

which can be given by

CT,in =
1

Qvenous

∑

T

QT (CT/PT ) (1.23)
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where for the venous pool, QT is the cardiac output that represents total blood

circulation flow rate and is identical for venous, arterial, and lung. For the liver, the

same procedure as venous inlet can be used by combining gastrointestinal tract and

arterial pool concentrations.

The accuracy of a PBTK model relies on the determination of parameters of each

compartment including tissue volume, flow rate, blood-tissue partition coefficient,

and alveolar flow rate at rest. Parameter values used in this study are listed in Table

1.2 (Ramsey and Andersen, 1984; Robinson et al., 1992). The optimized values for

the renal and hepatic clearances are obtained from the validation that are tabulated

in Table 1.7. To provide reliable predictions of toxicant translocations, we have

optimized and validated the PBTK model by comparing our numerical predictions

with the toxicant-plasma concentration data acquired from benchmark open literature

(please see model validation).

Table 1.2: Physiochemical parameters of tissues for nicotine translocation (Robinson
et al., 1992).

Compartment Name VT [L] QT [L/min] PT

Arterial Pool 1.4 6.1 1
Venous Pool 4.0 6.1 1
Muscle Group 34.4 1.65 2.5
Fat Group 10 0.3 1

Vessel-Reach Group 1.55 1.35 3
Gastrointestinal Tract 2.4 1.25 2

Liver 1.5 0.3 9
Kidney 0.3 1.25 15
Lung 0.6 6.1 2

1

On the other hand, for formaldehyde and diacetyl the diffusion-limited PBTK

model (Corley et al., 2015; Gloede et al., 2011) is adopted at the airway wall bound-

aries consisting of two layers: (a) epithelium plus mucus layer and (b) subepithelium

(blood) layer (see Figure 1.1). The tissue-air partition coefficient (Pta) provides the

concentration balance between the mixture flow and the species concentration evolu-
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tion profile in the epithelium plus mucus layer. The species transport in the epithelium

layer is governed by

∂Cs,t
∂t

= −(Vs,max1/Vs,tCs,t)

Ks,m1 + Cs,t
− (Vs,max2/Vs,tCs,t)

Ks,m2 + Cs,t
− ks,f Cs,t − ks,bCs,t +Ds,t

∂2Cs,t
∂x2

(1.24)

where Cs,t is the tissue concentration for species s, Vs,max1, Ks,m1, Vs,max2, and Ks,m2

are saturable metabolism constants. ks,f and ks,b are the first order reaction constants,

and Ds,t is the species diffusion coefficient in the tissue layer. Subsequently, the tissue-

blood partition coefficient provides the concentration balance between the transferred

species to the subepithelium layer, and the governing equation is given as

∂Cs,b
∂t

= −ks,f Cs,b − ks,bCs,b − (Qs,b/Vs,b)Cs,b +Ds,b
∂2Cs,b
∂x2

(1.25)

In Eq. (1.25), (Qs,b/Vs,b) is the blood perfusion term andDs,b represents the species

diffusion coefficient in the subepithelium (blood) layer. To solve Eqs. (1.24 and 1.25)

implicitly, the central difference scheme is used for discretization, and tridiagonal

matrices are generated at each time step (see Appendix A). Constants and coefficients

of the CFPD-PBPK model were obtained from Corley et al. (2015) for formaldehyde,

and from Gloede et al. (2011) for diacetyl (see Table 1.3).

1.3.4 Interconnection Model between CFPD and PBTK

Mucus, epithelial, and subepithelial layers are the barriers between lung and blood

circulation. The interconnection model between CFPD and PBTK models presented

in this study is addressed in the following. One-way exchange from the lung to blood is

assumed due to the negligible amount of toxicants reentering the lung from the blood

circulation. Bush et al. (1998), Corley et al. (2015), and Corley et al. (2012) used the

physiological configuration concept of the mucosa bed including the mucus, epithelial,

19



Description Parameters Formaldehyde Diacetyl
Diffusivity in Blood Db (cm2/s) 1.62E-05 4.33E-06

Partition coefficients
Pta 101.5 50
Pbt 1 1

Metabolism (high affinity)
Km1 (g/l) 201 8.60

Vmax1 (g/l/s) 1.96E+04 5.59E-02

Metabolism (low affinity)
Km2 (g/l) N/A 5.59E+02

Vmax2 (g/l/s) N/A 0.158
Intrinsic binding with tissue Kf (1/s) 1.80E-02 5.00E-03

Non-specific binding Kb (1/s) 1.07E-07 N/A
Mass transfer coefficients for non-mucus coated squamous epithelium Ks (cm/s) 4.10E-01 N/A

Site-specific adjustment factor of Vmax1

Nose 1.00E+00 1
Mouth to primary Bronchi 2.50E-01 1.41

Bronchioles 5.00E-01 1.051

Site-specific adjustment factor of V max2
Nose N/A 1

Mouth to primary Bronchi N/A 3.81
Bronchioles N/A 0.65

Table 1.3: Physiochemical parameters used for formaldehyde and diacetyl translocation in tissues (Corley et al., 2015; Gloede
et al., 2011).
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and subepithelial layers. Considering no reaction in the layers makes it possible to

use Henry’s law of vapor-liquid equilibria for estimating the uptake magnitude due

to vapor phase deposition (Smith et al., 1996). The air and mucus phase diffusivity

and Henry’s law constant for the chemicals presented in this study are listed in Table

1.4.

Table 1.4: Properties of nicotine and acrolein in vapor forms.

Species (s) Da,s[cm
2/s] Dw,s[cm

2/s] Hc,s ψs[cm
-1]

Acrolein 0.105 1.12e-05 4.99e-03 2.14e+03
Formaldehyde 0.180 2.00e-05 1.38e-05 8.07e+05

Diacetyl 0.100 Dt,s = 4.33e-06 1.33e-05 3.26e+06
Nicotine 0.065 Dt,s = 8.60e-06 5.60e-08 2.36e+08

VG 0.088 9.30e-06 7.07e-07 1.506e+07
PG 0.106 1.23e-05 5.31e-07 2.18e+07

1

To estimate the available vapor species concentration entering the systemic region

based on the absorption rate predicted by the CFPD model and boundary conditions,

the regional area weighted average mass fraction Ys,R can be given as:

Ys,R =

∑
cells YsAc∑
cellsAc

(1.26)

In Eq. (1.26), subscript R represents “Region”. For calculation of the vapor

species uptake concentration (CV,u,s), the following equation is utilized

CV,u,s =
∑

R

fR,V,s
0.05ρYS,RVP

3ARzm
(1.27)

where 0.05 denotes to the selected CFPD simulation time step, AR is the region

surface area, and fR,V,s is the regional bioavailability factor provided in Table 1.5.

The lymph vein compartment connecting with the lung is assumed as a layer with a

constant thickness (zm). The surface area of the regions are provided in Table 1.5.
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Table 1.5: The surface area of the regional sections and bioavailability factors of the
idealized human upper airway.

Region
Number

Name Area [cm2]
Bioavailability Factors

EC Particles Nicotine in Vapor Acrolein in Vapor

Region 1
Oral Cavity

Oropharynx/Larynx
0.3545
0.4151

9
9

0.39
0.39

0.14
0.14

Region 2 Trachea 0.4240 12 0.79 0.29

Region 3
G1
G2
G3

0.2984
0.5209
0.4666

17
17
17

1.99
1.99
1.99

0.49
0.49
0.49

1

For the diffusion of the chemical compounds due to particle depositions, the tran-

sient regional number of deposited particles are recorded by considering the wall

boundaries as 100% trapped wall. The species uptake concentration Cp,u,s due to

particle deposition is calculated by

Cp,u,s =
∑

R

fR,p,sSC
nDRρp,sπd

3
p

6ARzm
(1.28)

where SC = 1.0e+7 is the scaling factor selected to enhance the computational effi-

ciency without losing precision. Specifically, particle numbers injected per time step

are multiplied by SC, so that the regional particle number deposition (nDR) reflects

the actual number of particles carried by the generated aerosol. The bioavailability

factors for the particle phase are provided in Table 1.5. It should be noted that

these fractions will justify the influence of the lymph vein distribution concentration,

diffusion, and reaction of the species.

Therefore, adding Eqs. (1.27-1.28) yields the total uptake concentration of the

chemical compound (Cuptake = Cp,u,s + CV,u,s). An example of concentration time

course is shown in Figures 1.12 (a) and (b). To quantify the toxicant’s average

uptake, the area under the curve (AUC) and the time step size need to be known.

The average uptake concentration can be calculated by

AUC =

∫ t2
t1
CT,inlet

t2 − t1
(1.29)
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In this study, the only input source of toxicants is from the EC aerosol inhalation

via the pulmonary route. Dermatological absorption can be neglected. Additionally,

by assuming that the equilibrium will always hold between inhaled air and the pul-

monary blood circulation, the material mass balance equation for toxicants can be

given as

Carterial =
Q̇lungCuptake + Q̇venousCvenous

Q̇venous + Q̇lung

(1.30)

where is the deposition concentration predicted by the CFPD model.

1.4 Geometry and Mesh Independence Test

1.4.1 Idealized Human Upper Airway Model

In this study, an idealized upper human respiratory airway from the oral cavity

to G3 with eight outlets is selected. The structure dimensions are based on the sizes

presented by Cheng et al. (1999) with a revised 8-mm mouth opening (see Figure

1.1). Despite the simplification of the geometry, it contains the most important

anatomical features of the human upper airway that is essential in the study of the

EC aerosol deposition and mass exchange at airway walls. Based on the physiological

characteristics of the respiratory system, the current geometry has been divided into

three sections based on the thickness of the mucus layer in different regions and also

the existence of the lymph veins after the sub-epithelium layer. Region 1 includes

the oral cavity and the pharynx with the thickest mucus layer and lowest lymph vein

concentration. Region 2 is the trachea with lower thickness and the higher existence

of the lymph vein connected to the tissue. Region 3 consists of the tracheobronchial

tree from G1 to G3 with the lowest mucus layer thickness and the highest lymph vein

concentration (see Table 1.5).
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1.4.2 Hexahedral Mesh Generation and Mesh Independence Test

Computational meshes were generated, using the commercial software ICEM CFD

v. 18.0 (ANSYS Inc., Canonsburg, PA). The structured, multi-block mesh developed

with the feature of hexahedral elements and refinement at the wall boundaries. The

final mesh has the total elements number of 2,374,679, with 2,319,768 nodes. The

mesh independence test has been performed by Feng et al. (2016) with the inlet

volumetric flow rate of 27.5 ml/s. The mesh topology was determined by refining the

mesh until grid independence of the flow field solution was achieved.

1.4.3 Numerical Setup

The numerical solution of the governing equations with appropriate boundary

conditions was achieved by using a user-enhanced, commercial finite-volume based

program, i.e., ANSYS Fluent and CFX 18.0 (ANSYS Inc., Canonsburg, PA). All

variables, including velocity components, pressure, turbulence variables, and parti-

cle trajectories and deposition data are calculated and located at the centroids of

the discretized mesh cells. Numerical simulations were performed on a local 64-bit

Dell Precision T7910 workstation with 256 GB RAM and sixteen 3.1GHZ CPUs and

the supercomputers in High Performance Computing Center at Oklahoma State Uni-

versity (e.g., Cowboy cluster machine with 252 standards compute nodes with dual

Intel Xeon E5-2620 “Sandy Bridge” hex core 2.0 GHz CPUs, with 32 GB of 1333

MHz RAM). A second-order upwind scheme was used for the momentum equation

calculation. For the calculation of the species transport, the first order upwind was

employed, and for the pressure and velocity coupling in the finite volume solver, the

semi-implicit method for pressure-linked equations (SIMPLE algorithm) has been se-

lected. The system of ODEs of the PBTK model was solved using the 4th order

Runge-Kutta method. The PBTK model has been written in C language in the form

of user-defined functions (UDFs) and was attached to the CFPD model in ANSYS
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Fluent 18.0. As a result at each puff, the translocation of the current toxicants has

been tracked in systemic regions. The time delay of the translocation was neglected.

1.5 Model Validations

1.5.1 CFPD Model Validations

For particle dynamics model validations, regional deposition efficiencies (RDEs)

were compared with benchmark experimental data in the idealized upper airway ge-

ometry (see Figures 1.4 (a) - (c)) with 1-cm mouth inlet (Cheng et al., 1999). The

inlet conditions with uniform velocity condition and the volumetric flow rates of 15,

30, and 60 L/min are applied for the polystyrene latex fluorescent particles. As shown

in Figure 1.4 (a), the extrathoracic RDE is a function of impaction parameter d2
pQ

[µm2Lmin-1]. The empirical curve and the numerical results show good agreement

in mouth-to-throat RDE. The total DE of the present model sufficiently reaches an

agreement with the published literature. Additionally, comparisons with experimen-

tal deposition data at various flow rates are plotted in Figure 1.4 (b). The numerical

data also show the same trend for the particles in the same range. For the micro-

particles, DF increases with the increased particle diameter due to the enhanced

inertial impaction. In contrast, higher RDEs are observed for nanoparticles com-

pared to submicron particles due to the enhanced Brownian motion. Furthermore,

Figure 1.4 (c) shows additional deposition data comparisons with good agreements.

In summary, the CFPD model is well validated.

25



Impaction Parameter [m2L min-1]

D
ep
os
ito

n
Ef
fic
ie
nc
y
(D
E)

101 102 103 104 1050

0.2

0.4

0.6

0.8

1
In-house CFPD model (Q=60 L/min)
In-house CFPD model (Q=30 L/min)
In-house CFPD model (Q=15 L/min)
Chen et al., 1999 (mean in-vivo deposition data)

(a)

Figure 1.4: CFPD model validations: (a) deposition efficiency comparisons in the
oral cavity with different mean impaction parameters (b) deposition efficiency

comparisons in the oral cavity for different particle sizes (c) deposition efficiency
comparisons in the oral cavity with different Stokes numbers.
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1.5.2 PBTK Model Optimizations and Validations

1.5.2.1 Nicotine

For nicotine PBTK model validation, plasma concentration vs. total volume is

compared and presented in Figure 1.3. The details of this experiment are provided

in Table 1.6. Benchmark experimental data of nicotine plasma concentrations due to

CC smoking scenarios (Benowitz et al., 1982; Kyerematen et al., 1990) were employed

first and used for two independent model validations for nicotine PBTK. Two different

mass flow rates of nicotine infusion were employed, i.e., 40 µg/min for 30 minutes and
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95 µg/min for 2 minutes. The PBTK model was also compared with nicotine plasma

concentration data of an EC study by Dawkins et al. (2016). Specifically, E-liquid

with 6-24 ng/ml nicotine has been used on 11 volunteers for 60 minutes, who were

abstained from smoking for 6 hours before the clinical test. Additionally, numerical

results generated by another PBTK model (Robinson et al., 1992) is also included in

Figure 1.3. Employing the parameters provided by Dawkins et al. (2016), our nicotine

PBTK predictions show good matches with experiments.
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Medians of Experimental data by Kyerematen et al., 1990 (CC - 95 g/min for 2 minutes)

Figure 1.3: Nicotine PBTK model optimization and validations.

29



Volunteers EC device Nicotine solution Study design Uptake results Puffing topography Reference

11 (11
male)

eVicTM

supreme, with
Nautilus

Aspire tank,
3.9 V (8.5 W)

6-24
mg/mL

60 min
ad libitum

nicotine concentrations
of 8.59, 16.99,

and 22.03 ng/ml
at 10, 30 and 60 min

Mean number of
puff: 70.73;

Puff duration: 5.20 s

Dawkins et al. (2016)nicotine concentrations
of 33.77, 35.48,

and 43.57 ng/ml
at 10, 30 and 60 min

Mean number of
puff: 48.26;

Puff duration: 3.84 s

16 (15
male)

cartomizer, 3.3 V;
1.5 (7.26 W)

8 mg/ml

2 bouts with
duration of

10 min;
10 puff;

puff restriction
on users

Bout 1: peak nicotine
concentration 17.8 ng/ml

Bout 1: Mean puff volume:
208.4 ml;

Puff duration: 6.1 s;
Bout 2: Mean puff volume:

176 ml;
Puff duration: 5.5 s

Ramoa et al. (2015)

Bout 2: peak nicotine
concentration 16.9 ng/ml

18 mg/ml

Bout 1: peak nicotine
concentration 25.9 ng/ml

Bout 1: Mean puff volume:
124.2 ml;

Puff duration: 5.35 s;
Bout 2: Mean puff volume:

114.7 ml;
Puff duration: 4.97 s

Bout 2: peak nicotine
concentration 23.6 ng/ml

36 mg/ml

Bout 1: peak nicotine
concentration 36 ng/ml

Bout 1: Mean puff volume:
84.3 ml;

Puff duration: 4.17 s

Bout 2: peak nicotine
concentration 24.7 ng/ml

Bout 2: Mean puff volume:
78.5 ml;

Puff duration: 3.98 s

Table 1.6: Benchmark experimental data on nicotine translocations for the nicotine PBTK model optimization and validation.
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1.5.2.2 Acrolein

Exposure to acrolein in the human body has not been investigated due to the

invasive nature of the test methodology (ATSDR, 2007). Animal studies (F-344 rat,

mice) are employed in this study. There is a need to employ a scale-up factor from

animal to human based on the body weight (BW) differences. The time scaling-up

equation proposed and validated by Bailey et al. (1989) and Kreyling et al. (1998)

are used to convert the animal data to human organ volume size.

Timehuman
Timeanimal

=

(
BWhuman

BWanimal

)0.275

(1.31)

For the comparison, data of creatinine with a density of 0.0024 mg/ml and 3-

HPMA for 1 and 0.5 ppm inhalation of the pure acrolein by Conklin et al. (2017)

in mice is introduced. To scale up between species, the weight comparison of 73 kg

(human)/0.23 kg (mice) are quoted in the clearance phase. The optimized values of

the hepatic and renal clearances are investigated for the case of the 1.0-ppm exposure,

and the same values are employed for the comparison of the case with the 0.5-ppm

exposure. As it is shown in Figure 1.4, the increase in intake amount shift the con-

centration profile to higher maximum uptake, and the clearance process of the higher

concentration of the intake concentration is higher than the lower intake exposure.

The experience as the relative definition and influencing factor of acrolein uptake

have been investigated in the study by Struve et al. (2008). Two groups of pre-exposed

and näıve F344 rats are exposed to acrolein through inhalation and the influence of

the parameters of acrolein concentration (0.6, 1.8 and 3.6 ppm) and constant velocity

unidirectional inspiratory flow rate (100 and 300 ml/min) for 80 min exposure on the

acrolein and glutathione uptake efficiency on upper respiratory are investigated. The

experienced rats were previously exposed to acrolein for 6 hrs/day, 5 days/week in 14

days duration.
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Figure 1.4: Acrolein PBTK model optimization and validations by the comparisons
of 3-HPMA concentration in rats.

Studies on acrolein inhalation exposure using animals show no significant change

in the hepatic and renal processes. It was proposed that liver weight will relatively

increase in rats in the long-term exposure of 60-180 days (Kutzman et al., 1984). A

similar pattern was investigated for an increase in kidney size in rats and hamsters

exposed to 4-5 ppm for 60-90 days (Kutzman et al., 1985). All in all, the assumption

for constant renal and hepatic clearance function seems reasonable. The optimized

values of the renal and hepatic clearances of acrolein and nicotine are provided in

Table 1.7.
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Table 1.7: Optimized parameter values of hepatic and renal clearances.

Chemical (Objective Case)
Renal intrinsic

clearance (ICR) [L/min]
Hepatic intrinsic

clearance (ICH) [L/min]

Nicotine (Robinson et al., 1992) 0.170 1.090
Acrolein (Conklin et al., 2017) 0.226 0.946

1

1.5.2.3 Diacetyl and Formaldehyde

Understanding the dose response of the respiratory tissue to the exposed irritant

aerosols is crucial to recognize the inspired vapor toxicity. Flavor chemicals such as

diacetyl of EC that can be toxic presents high percentage of refilling and concentrated

sample fluids (Allen et al., 2015). Inhaling butter flavoring vapors is expected to cause

morphologic changes, e.g., air trapping, bronchial wall inflammation, and constrictive

bronchiolitis (Akpinar-Elci et al., 2004). Inflammation of bronchioles and constric-

tive bronchiolitis are expected at high-concentration exposure incidents of diacetyl

(Akpinar-Elci et al., 2004). Farsalinos et al. (2014) investigated 159 different EC

samples (concentrated and refill samples), in which 78 has contained diacetyl with a

median concentration of 20 µg/ml. Klager et al. (2017) investigated 24 EC flavors

from four different brands in the U.S. and results showed the existence of diacetyl in

62% of products. Allen et al. (2015) examined 51 unique flavors and claimed a max-

imum mass of 238.0 µg/e-cigarette for Peach Schnapps flavor, which is significantly

higher than the National Institute for Occupational Safety and Health (NIOSH) limit

for occupational exposure to diacetyl, i.e., 65 µg/day, estimated by Farsalinos et al.

(2014). Formaldehyde was found in the emitted vapor as 19.8 µg/10 puffs at 4.0

V, which is 32% lower than the CC daily exposure (Farsalinos et al., 2017). Higher

voltage of EC device resulted in significantly higher formaldehyde concentration due

to the formation of dry puff.

Corley et al. (2015) investigated the in tissue translocation of the formaldehyde

generated from the CC smoke using a steady-state hybrid CFD-PBPK approach and
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compared the site-specific dosimetry in airways between rat and human. Gloede

et al. (2011) performed a PBPK model for inspired vapor diacetyl dosimetry based

on the Morris et al. (1993) model. In the absence of CFD simulation, the respiratory

tract was modeled as a series of compartments, i.e., nose, trachea, main bronchi,

large and small bronchi, bronchioles, and alveoli, and the subsequent tissue layers.

Molecular diffusivity, reaction, and metabolism were employed for the simulation and

the parameters were obtained from in vitro studies. The results showed 24% of the

inspired chemical penetrates through the small bronchi and to the bronchioles during

a lightly exercising human nasal breathing. However, the delivery dose to lower

airways for both mouth and nasal breathing is less than 10% of the delivery to the

upper airway and the trachea.

To validate the formaldehyde absorption by the airway tissues, the nasal extrac-

tion data of rat exposed to the unidirectional flow rate of 135 ml/min is compared

at two formaldehyde concentrations of 6 and 15 ppm (Kimbell et al., 2001). The

subject-specific human respiratory system with the nasal cavity (see Section 2.4.1

and Figure 2.1) is used and the absorption data are scaled by comparing the ratio of

nasal cavity surface areas of F344 rat and human (Sharma and McNeill, 2009). For

both inlet conditions, the difference between the in-house model prediction and the

experimental data is less than 4.7% (see Figure 1.5). Using the same approach, the

diacetyl absorption is validated by comparing F344 rat and human whole respiratory

fractional uptake (Gloede et al., 2011) with the estimated uptake in the upper hu-

man airway model provided in Section 2.4.1. A realistic mouth breathing condition

with a duration of 4.02 s is considered (see Section 2.4.3.1). Numerical results are

compared with the experimental data at two diacetyl doses of 5 and 25 ppm, and

the predicted values demonstrate the model’s capability to simulate the non-linear

relationship between the uptake efficiency and the inhaled diacetyl concentration (see

Figure 1.5).
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Figure 1.5: CFPD-PBTK model validation: (a) formaldehyde administration with
unidirectional flow rate estimates by Kimbell and Subramaniam (2001) (b) diacetyl

spontaneously breathing and nasal extraction data by Gloede et al. (2011).

1.6 Results and Discussion

1.6.1 EC Particle Transport and Deposition

The translocation of the EC toxicants including acrolein and nicotine are numeri-

cally investigated in the idealized human upper airway model. Three realistic puffing

inlet conditions are applied (see Section 1.3.2.2 for details). As shown in Figures 1.6

to 1.10, the local EC particle deposition patterns are significantly influenced by the

airflow regime determined by the average puff flow rate. Moreover, after the puffing

duration, the holding time will result in increased deposition due to Brownian mo-

tion and the gravity sedimentation effects. The transient local airflow patterns with

secondary flows and recirculation regions are shown in Figures 1.6 and 1.7.
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Figure 1.6: Transient airflow patterns in the idealized human upper airway model
(Qin = 55 ml per 3.0 s): (a) t = 0.05 s; (b) t = 0.10 s; (c) t = 0.20 s; (d) t = 0.30 s;
(e) t = 0.40 s; (f) t = 0.50 s; (g) t = 0.75 s; (h) t = 1.00 s; (i) t = 2.00 s; (j) t = 3.00

s.

Specifically, Figures 1.6 (a)-(j) show the airflow pattern transition at the sagittal

plane and frontal plane by visualizing velocity magnitudes at different time steps.
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It can be observed from Figures 1.6 (a)-(d) that a jet flow is evolved from the EC

mouthpiece at the beginning of the puff. At t = 0.3 s, the high-velocity jet impacts

the lower palate forms the recirculation region in the oral cavity, and deviate the

path towards pharynx and trachea. At t = 0.40 s the inlet jet is completely formed

in the oral cavity and the pharynx (see Figure 1.6 (e)) and the second recirculation

region at the front side of the pharynx is formed due to the centrifugal effects of the

mainstream flow. At t = 0.50 s, the high-velocity jet reaches the trachea region. The

third recirculation is formed at the back of the trachea due to the pressure variations

induced by the glottis. Due to the small particle size, most particles will follow the

high-velocity jet and have small chance to enter the recirculation regions. However,

there is a small portion of the particles, which can enter the recirculation region.

Those particles will have longer residence time and higher change to deposit induced

by Brownian motion effects. It should be noted that the backflow will increase the

residence time of particles entering the recirculating regions while reducing the local

deposition avoid direct impaction of the particles carried by the mainstream flow (see

Figure 1.7).

Additionally, Figures 1.7 (a)-(e) show the transient local deposition patterns of

EC particles. The deposition of the particles at t =1.0 s, 2.0 s, and 3.0 s followed by

1.0 s and 2.0 s holdings are provided. Low deposition efficiencies (DEs) at the airway

walls covered by recirculation regions. Enhanced local deposition efficiencies (LDEs)

are found at the lower palate, pharynx, and bifurcating points because of inertial

impaction and gravitational sedimentation. Figures 1.7 (d) and (e) demonstrate that

particles continue to deposit at lung airways during the holding phase. Increased

holding time will result in higher depositions. Therefore, it is necessary to simulate

the holding duration to obtain accurate particle deposition patterns for EC vaping

and passive exposure.

37



(a)   Time = 1.00s (c)   Time = 3.00s (d)   Time = 4.00s (e)   Time = 5.00s(b)   Time = 2.00s

Figure 1.7: Local deposition patterns of EC particles (Qin = 55 ml per 3.0 s with
2-sec holding): (a) t = 1.0 s; (b) t = 2.0 s; (c) t = 3.0 s; (d) t = 4.0 s; (e) t = 5.0 s.

1.6.2 EC Vapor Species Transport and Absorption

As an example, Figures 1.8 and 1.9 show the mass fraction contour evolution of

acrolein and nicotine vapors at the sagittal plane for puff volume of 55 ml. After

being inhaled, acrolein and nicotine vapors follow the airflow well to transport from

the oral cavity to the tracheobronchial region gradually. Due to the high diffusion

rates of both vapors into the airway tissues, most of the acrolein (99%) and nicotine

(99%) in vapor forms are absorbed before reaching the glottis (see Table 1.4 for the

binary diffusivities). Therefore, the translocation of both vapor species into the blood

circulation happens at human upper airways.
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(g)   Time = 0.75s (h)   Time = 1.00s (i)   Time = 2.00s (j)   Time = 3.00s(f)   Time = 0.50s

(a)   Time = 0.05s (c)   Time = 0.20s (d)   Time = 0.30s (e)   Time = 0.40s(b)   Time = 0.10s

Acrolein Mass 

Fraction [wt/wt]

Figure 1.8: Mass fraction distribution of acrolein vapor at different (Qin = 55 ml
per 3.0 s): (a) t = 0.05 s; (b) t = 0.10 s; (c) t = 0.20 s; (d) t = 0.30 s; (e) t = 0.40 s;

(f) t = 0.50 s; (g) t = 0.75 s; (h) t = 1.00 s; (i) t = 2.00 s; (j) t = 3.00 s.

1.6.3 Puff Topography Influence on EC Aerosol Transport Dynamics

The impact of puff topography on EC aerosol transport and deposition were in-

vestigated and shown in Figures 1.10 and 1.11. As shown in Figure 1.10 for two puff

volumes, most particles deposit on the mouth to glottis region for both inlet puffing

volumes. Higher puffing flow rate induces longer residence time of particles in G1

to G3, leading to higher deposition due to inertial impaction. “Hot spots” of parti-

cle deposition include lower palate, pharynx, glottis, and bifurcating points of each

generation.
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(g) Time = 0.75s (h) Time = 1.00s (i) Time = 2.00s (j) Time = 3.00s(f) Time = 0.50s

(a) Time = 0.05s (c) Time = 0.20s (d) Time = 0.30s (e)  Time = 0.40s(b) Time = 0.10s

Nicotine Mass

Fraction [wt/wt]

Figure 1.9: Mass fraction distribution of nicotine vapor at different (Qin = 55 ml
per 3.0 s): (a) t = 0.05 s; (b) t = 0.10 s; (c) t = 0.20 s; (d) t = 0.30 s; (e) t = 0.40 s;

(f) t = 0.50 s; (g) t = 0.75 s; (h) t = 1.00 s; (i) t = 2.00 s; (j) t = 3.00 s.
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Figure 1.10: Comparison of the EC particle deposition patterns at t = 3.0 s between
two puffing volumes.

Additionally, comparisons of regional deposition fractions (RDFs) for all cases

with different inlet conditions are shown in Figure 1.11. The histogram indicates that

high puff flow rate leads to enhanced RDFs due to the stronger inertial impaction

effect and less EC particles will be able to transport into deeper airways. Increased

holding time will also increase RDFs because of the increased particle residence time.

The subsequent holdings to active puffs increase the residence time of the EC par-

ticles, which were still suspending in the lung. Hence, the regional deposition will

continuously occur with the progress of holding time.
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Figure 1.11: Comparisons of EC particle deposition fractions in the idealized human
upper airway model.

1.6.4 Translocations of EC Toxicants in Systemic Regions

As the lung input to the PBTK model, total toxicant deposition was calculated by

adding depositions of both particulate and vapor phases. Optimized values of bioavail-

ability factors were determined for the simplified CFPD-PBTK connection model, by

matching plasma concentration profiles from benchmark experiments (Ramôa et al.,

2015; Shahab et al., 2017; Goniewicz et al., 2017). Since CFPD results indicate that

the existence of the acrolein and nicotine in the region after trachea is negligible (see

Section 1.6.2), it can be concluded that the total uptake of both nicotine and acrolein

are mostly dependent on their absorption in human upper airways. Distribution and

translocation of the toxicants are discussed separately in the following sections.

1.6.5 Nicotine Translocation

The concentration input profile in both vapor phase and particulate phase for

nicotine are provided for all simulation cases with different puff topographies, i.e.,
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two puffing volumes (55 and 80 ml per 3.0 s) and three holding times (0.0 s, 2.0 s,

and 7.0 s). Figures 1.12 (a) and (b) show the concentration profiles for 10 seconds

including 3 second puffing time followed by 2 and 7 seconds holding time for nicotine

at two puffing volumes of 55 and 80 ml. The AUC over 30-second puffing duration

for each case is also provided which shows the average uptake value of each puff. Par-

ticle depositions are scaled up based on the realistic particle number concentrations.

Subsequently, nicotine input concentration due to particle deposition and vapor ab-

sorption are considered, and the correlation is generated using nonlinear regression

by the least square method.

The AUCs show that for the case of 55 ml puffing volume the average uptake

concentration per puff can be significantly higher for 2.0 s holding time (67.13 %

increase) and for 7 seconds holding time (112.49% increase). Also for the case with

80 ml puffing volume, the increases are 57.52% and 95.57% respectively for 2 and

7-sec holding times. Moreover, increasing puff volume will increase vapor absorption.

However, it has little influence on particle deposition. As a result, the total deposition

of the nicotine and respectively its uptake has increased by 21.61% for the case without

holding time. This difference between different puffing volumes is simulated as 14.62%

and 11.93% for 2 and 7-sec holding times respectively in the course of 30.0 s puff

duration. In this study, the influence of the exhalation has not been considered, and

the deposition concentration after the holding time is set to zero. This assumption is

reasonable since most deposition of nicotine in both vapor and particle forms occur

before t=10.0 s (see Figures 1.12 (a) and (b)).
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Figure 1.12: Time courses of nicotine uptake concentration after 3-sec puffing
duration followed by 7 seconds holding time: (a) 55 ml puffing volume, (b) 80 ml

puffing volume for 10 seconds of the total puffing duration (30 seconds).
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The predicted nicotine plasma concentrations under different puff volumes are

provided in Figures 1.13 (a) and (b). 10 puffs with 30.0 s puffing duration are con-

sidered. The first puff results in a sudden increase in nicotine concentration. The

subsequent 9 puffs increase the concentration gradually at a slower rate. The peak

plasma concentrations after 10 puffs for the case of 55 and 80 ml puffing volumes are

15.58 ng/ml and 18.88 ng/ml without considering holding time. It can also be ob-

served that due to the higher absorption and deposition, the increase in holding time

generates higher plasma concentrations. At the same time, the realistic holding time

will result in a change of the exhalation time. Overall, the increase in holding times

will contribute to the exponential increase of the nicotine bioavailability. Changing

puffing volume only has a slight effect on nicotine plasma concentration compared to

changing holding time.
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Figure 1.13: Time courses of nicotine plasma concentration: (a) 55 ml puffing
volume, (b) 80 ml puffing volume (the nicotine uptake concentration has been scaled

down for better visualization).
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1.6.6 Acrolein Translocation

Acrolein exists only in the vapor phase based on the initial condition applied in

this study. As a result, the uptake concentration will be induced by the vapor phase

absorption, which is shown in Figure 1.14 for the two cases with 55 and 80 ml puff

volumes. It is obvious that the increase in puff volume results in the increase of the

peak value of the uptake concentration from 0.508 to 0.792 ng/ml. The average AUC

for 30 seconds for different cases with different holding times are also provided. For

the cases with of 55 ml and 80 ml puffing volumes, increases of AUC as representative

of per puff exposure after considering two holding times of 2.0 s and 7.0 s are 45.51%,

83.27%, 44.45%, and 134.53 respectively.

Figures 1.15 (a) and (b) present the acrolein plasma concentration within 10 puffs.

The puff by puff increase of the acrolein concentration can be observed. The first

puff has resulted in a major increase in the concentration. After 10 puffs, peak

concentrations of acrolein with different holding times from 0.0 s to 7.0 s are 0.001221,

0.001648, 0.001803 ng/ml for 55 ml puffing volume case and 0.001947, 0.002614,

0.002864 ng/ml for 80 ml puffing volume case. For better visualization effect, the

acrolein uptakes were scaled down by 4e-3 for better visualization. The reason for

the difference is that the difference of the considered lymph vein volume compared to

the plasma volume.
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Figure 1.14: Time course of acrolein uptake concentration after 3-sec puffing
duration followed by 7 seconds holding time at two puffing volumes of 55 and 80 ml

for 10 seconds of the total puffing duration (30 seconds).
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Figure 1.15: Time courses of acrolein plasma concentration: (a) 55 ml puffing
volume, (b) 80 ml puffing volume (the acrolein uptake concentration has been scaled

down for better visualization).
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The formation of 3-HPMA produced by the binding between acrolein and glu-

tathione has been identified in the urinary sample of rats (Alarcon, 1976). As a

result, 3-HPMA is considered as the primary metabolite and possible biomarker of

acrolein bioavailability. 3-HPMA concentration at the kidney is shown in Figure 1.16.

It should be noted that in this study the regional bioavailability factors are considered

as representative of reactions taking place to form the metabolites of the species. In

this way, complete conversion of acrolein to 3-HPMA has been initiated to the PBTK

model for the acrolein. It is worth mentioning that acrolein itself has lipophilic char-

acteristic and the perfusion-limited models can be reliable prediction based on our

simulation. However, it is also essential for future studies to investigate the fate of

transport in the tissue for its main metabolites. In Figure 12, the puff-by-puff increase

of the concentration in the kidney can be observed. Damped concentration profile in

the kidney can be attributed to the configuration of the compartments. The peak

concentration in excretion for 55 ml puffing volume are 110.74, 160.40, and 201.58

ng/mg creatinine for the three cases with 0.0, 2.0, and 7.0-sec holdings after the 3.0 s

puff duration. Also, for cases with 80 ml puffing volume, the peak values are 176.78,

245.35, and 321.15 ng/mg creatinine respectively.
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Figure 1.16: Time courses of the ratio between excreted 3-HPMA and creatinine in
the kidney with different puff topographies

Based on the simulation the excretion profile shows a peak value that is suggested

by the experiments (Shahab et al., 2017; Goniewicz et al., 2017). The increase in

puff volume from 55 to 80 ml for a case without holding time has contributed to

59.63% increase. However, by increasing the holding time for the case with 55 ml

puffing volume, the peak value increase is approximately 82.03%. This difference

can depict the importance of the holding time that can contribute to a significant

change in translocation magnitude in the human body. Existing standards of the

puffing machines have focused mostly on three parameters: puff volume, duration

and interval time. Therefore, the importance of the additional parameter that must
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also be investigated in the futural experiments. Other parameters may include EC

product type (McNeill et al., 2015), and interaction between EC chemicals (Kane and

Alarie, 1978).

1.7 Conclusions

In this study, a multiscale CFPD-PBTK model is developed and applied to ac-

curately predict multicomponent EC aerosol transport, deposition, and translocation

from the human respiratory system to systemic regions. Specifically, aerosol dynamics

was modeled by the CFPD model established based on the Euler-Lagrange scheme.

A 9-compartment PBTK framework subsequently simulates the translocation of nico-

tine and acrolein in systemic regions. Also, a diffusion-limited model was utilized to

simulate the in tissue translocation of formaldehyde and acrolein at the epithelial and

subepithelial layers. Employing the CFPD-PBTK model, it is the first time that in

silico investigations can reflect realistic EC vaping scenarios, i.e., multiple puffs with

real EC user behaviors. The model advances the field of aerosol exposure science to

pave the way to a valuable computational simulation tool for assessing the long-term

health effects of inhaled e-cigarette toxicants in the human respiratory pathway and

systemic regions. Quantitative data of EC toxicant fates to the health endpoints

are generated and discussed. Based on the numerical results, conclusions and novel

insight are summarized as follows:

1. Most of the vaporized nicotine and acrolein are absorbed in the upper airway

from mouth to G1. In contrast, EC aerosol particle deposition occurs in all

regions from mouth to G3.

2. Both particulate and vapor forms of nicotine and acrolein contribute to the

deposition and translocation in the human body.

3. The increase from 55 to 80 ml puffing volume results in a significant increase in
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the peak nicotine and acrolein plasma concentration as 21.2% and 59.45% for

the cases without holding.

4. With fixed puffing volume, increasing holding time will result in the increase of

peak plasma concentration for both nicotine and acrolein.

5. Holding time between consecutive puffs has significant impacts on the EC

aerosol deposition and translocation. Therefore, it is necessary to include hold-

ing time in both experimental and numerical studies to provide accurate pre-

dictions.

1.8 Limitations of the Study

Due to the complexity of the realistic EC aerosol dynamics in the human body,

limitations exist for the current CFPD-PBTK simulations. The assumptions em-

ployed are:

1. Spherical particle with constant diameter is assumed

2. The effect of evaporation/ condensation is neglected.

3. The deposition and uptake due to exhalation cycle are not simulated.

4. The complete conversion of the acrolein to 3-HPMA is not modeled.

5. The Cotinine as the main metabolite of the nicotine is not modeled in PBTK

simulation.

6. The bioavailability factors have been used to connect the CFPD to PBTK

models. This fraction was hypothesized to combine the influence of the reaction,

diffusion and the lymph vein concentration at regional contact with the lung

tissue.

7. Square waveforms are selected as puffing inlet conditions.
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8. The time delay effect of the closed loop system of the human body organs

configuration is not considered.

1.9 Future Work

Future work will focus on the improvement of the CFPD-PBTK model consider-

ing more complex aerosol dynamics. The next generation CFPD-PBTK model will

include the coagulation, condensation, and evaporation among phases. The inter-

connection model will be developed for different pulmonary regions, to reflect the

different diffusion and reaction characteristics. Additionally, subject-specific human

airway configurations will be used for vulnerable subpopulation groups to EC prod-

ucts, e.g., adolescents, and COPD patients. To improve the current PBTK model,

the couplings among compartments will be considered to simulate the realistic time

delay effects in different organs.
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Deposition and Replication of Low-Strain Influenza A Virus in the 

Epithelium of a Subject-Specific Virtual Human Upper Airway Model

2.1 Introduction

Influenza virus (IV) can cause respiratory infection and fatal incidences among 

many species including humans, birds, swine, and horses. Fever, rhinorrhea, sore 

throat, and muscle aches are some of the common symptoms among IV infections 

(Boianelli et al., 2015). The airborne transmission and pulmonary deposition of 

virus-carrying droplets impose a warning sign to the preexisting cellular immune 

system, which is a complex and nonlinear interaction of the host cells and antigen 

structure. Meanwhile, the underlying principles of how various IV strains cause dif-

ferent pathogenic profiles is still unknown. Therefore, prediction of the anatomical 

compartments and the respiratory epithelium regional behaviors of IV replication is 

necessary for virus characterization and vaccine cultivation.

IV uses RNA as a genetic blueprint to synthesize DNA from other organisms. 

Its RNA protein structure defines the type of virus (Type A, B, C, and D). Type 

A transmits between species and has recorded severest diseases (Klenk et al., 2008). 

The subtypes of influenza A virus (IAV) depend on the response of the host antibody 

to the antigens hemagglutinin (HA) for binding the virus to the infected cell and 

neuraminidase (NA) for dispersing the virus progeny from the infected cell. Because 

of the variety of zoonosis and wildlife intermingling, it is complicated to study the 

origin of IAV and eliminate the chance for virus to transmit to human (Cox and 

Subbarao, 2000). Furthermore, binding of the virus replicase to the host cell, and
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the morphing of the virus strains can result in the synthesize of a novel generation.

In addition, antigenic drifts and shifts influence the IAV replication (Carrat and

Flahault, 2007). The IAV pandemic outbreaks in the last century showed that when

a novel strain of virus transmits from animal to humans, it is resistant to the known

antibody medications. Therefore, a severe and fatal infection can happen.

Among the IAV subtypes, the combinations of HA (1, 2, 3, 5, 7, 9) and NA

(1, 2) proteins can construct different strains of IAV that infect human (Thompson

et al., 2009; Zens, 2017). The U.S. Center for Disease Control and Prevention (CDC)

recently examined a number of infected species with different subtypes of IV in a

two-month period and indicated that IAV H3N2 and H1N1 caused noticeably higher

infection rate (Dugan et al., 2017). The IAV subtype determines the infection site

at the airway tissues, and its protein structure determines the proteases that cleave

to the virus HA protein to activate the fusion precursors of IAV (Steinhauer, 1999).

For lower strains IAV subtypes, cleavage happens in the upper airways, especially

in the epithelial lining cells of pharynx and trachea. For highly virulent pathogenic

strains, e.g., avian influenza H5N1, the HA protein can be cleaved by a wide variety

of proteases and the virus can reach the distal sections of the respiratory system

and subsequently spread to post-epithelial tissues (Korteweg and Gu, 2008; Van Riel

et al., 2006). Assessing the infection site is essential to determine the tendency of the

virus resuspension and transmission through an infected subject’s cough or sneeze

(Shinya et al., 2006; van Riel et al., 2007). For example, IAV subtypes with lower

strains are distinguished by having the ability to pass among humans through the air

in the droplet form targeting the upper airways as infection “hotspots”. In contrast,

negligible virus migration is expected for higher strain IAV subtypes.

The airborne transmission of IAV is possible, as long as the virus-laden droplets

remain suspended in the air (Eames et al., 2009). Once the droplets deposit on the

mucosa lining of the pulmonary tracts, they bind to the surface of targeted epithelial

56



cells. The endocytosis of the virions inside the epithelial cell occurs after 20 minutes

post-infection (Oguin et al., 2014). At this stage known as the incubation period,

the virus binds to the epithelial cell for cloning and reproducing copies of RNA and

viral proteins. The Eclipse phase (Pinilla et al., 2012) is the period between post-

infection and reproducing stage, when the viral progenies leave the infected cell. The

duration of this phase is predicted from 5 to 12 hours post-infection (Beauchemin

and Handel, 2011) and can reach its peak value after 2 to 3 days post-infection (dpi)

(Boianelli et al., 2015). Afterward, two different immune subsystems, i.e., innate and

adaptive immune systems (IIS and AIS, respectively), will activate and interfere with

the antigen replication.

Lymphoid tissues and leukocytes are responsible for the immune response. The

main form of cellular immunity includes lymphocytes (e.g., natural killer (NK) cells)

and phagocytes (e.g., macrophage and mast cells) (Male et al., 2006). The IIS has

a fast response with non-specific antigens without selectivity. Physical and chemical

barriers such as cellular defense and leukocytes are in the IIS group. The AIS is

selective to the specific virus types and with antibody-mediated humoral, and cell-

mediated immune response that is cytotoxic lymphocytes. The most critical factor

in the IIS is the type I interferon (IFN)-I production (Baccam et al., 2006) by the

invaded cells to hinder the viral replication. The released (IFN)-I works as a signal

(De Andrea et al., 2002) to increase antiviral enzymes in the neighboring healthy

cells. Likewise, interferon (IFN) indirectly helps the phagocyte and enhances the

functionality of NK cells and cytotoxic T cells. NK cells are responsible for killing

the infected cells and stop the virus reproduction. NK cells and cytotoxic T cells

share similar functionality and performance that makes it possible to represent the

effects of both cells using the same factor. The cytotoxic proteins bind to the infected

cell membrane and degranulated to lysis the infected cells. Inactive AIS cells are

available in peripheral lymphoid tissues. Bursal-equivalent lymphocyte (B cell) and
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thymus-derived lymphocyte (T cell) receptors bind to the antigen (through produc-

ing antibodies) and the infected cells, respectively (Miller and Mitchell, 1969). The

receptor binding process needs T cells to detect the selected major histocompatibility

complex (MHC) molecules for responding to the infection site. This process makes

the selectivity of the T cells recognizable. There are three major types of T cells: T

helper cells with surface protein CD4+, cytotoxic T cells that mostly contain CD8+

surface protein, and regulatory T cells. The surface protein CD4+ from T helper

cells secrete cytokines that directly enhance the functionality of the macrophage and

NK cells. Meanwhile, CD8+ cells directly lyse infected cells as NK cells by releasing

perforin and granzymes. The regulatory T cells are responsible for deactivating AIS

after IAV infection at the end of the viral life cycle. Altogether, (IFN)-I, NK cells,

pathogen-specific antibodies due to B cells functionality (Abs), and cytotoxic CD8+

T cells are the most noticeable components in the immune system that control the

IAV infection (Baccam et al., 2006). Immune subsystem responses and processes are

in a collocative multi-directional state compared to each other that any changes in a

factor would influence the enhancement or suppression of the others.

Mathematical models for the viral dynamics within the host were developed with

various considerations for the interactions between the targeted cell, immune system,

and viral agents (Beauchemin and Handel, 2011; Smith and Perelson, 2011). The first

attempt to numerically represent the host cell dynamics (HCD) was done by Larson

et al. (1976) after fitting the data from IAV H3N2 infected Swiss-ICR mice. The viral

doses in the lung, trachea, and nasopharynx were investigated with five associated

rate parameters. Formulating the HCD using target cell models (Nowak and May,

2000) was used for the IV infection study. Baccam et al. (2006) adopted target cell

models by including susceptible cell, infected cell, and virus to fit a model with the

in vivo data of the virus A/Hong Kong/123/77 (H1N1) infected human. Specifically,

eclipse phase was included by considering a latent phase for the infected cell before
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becoming productive. Their numerical results indicate that the virus reproduction

started at 6 hours post-infection, and the infected cells lifetime was 11 hours. Holder

and Beauchemin (2011) investigated the same mathematical model for validation of in

vitro study and suggested a more complex parameter for the infected cells in delayed

phase. Petrie et al. (2013) developed a double target cell model for human infections

with avian strain by differentiating target cells into two fractions, i.e., default and

secondary cells. The response from the immune system by proposing the effect of

antibodies (Abs) and CD8+ T cells was first introduced into the model by Bocharov

and Romanyukha (1994). Baccam et al. (2006) included the (IFN)-I dynamics, and

their results show double peaks in viral titer data. Moreover, the additional factor of

NK cells was introduced to the target cell models by Canini and Carrat (2011), where

the NK activation is induced by (IFN)-I. Specifically, the virus kinetics and symptom

dynamics population have been utilized to estimate infection parameters. Including

the AIS with CD8+ T cells and Abs into the cell population models were modeled by

Lee et al. (2009). Specifically, a lymphatic compartment was considered to represent

the activation of T and B cells. In this regard, 10 equations for the kinetic of AIS

components at different stages were added to the target model, and the optimum

time of antiviral drug administration was proposed to be at 2 dpi.

In vitro studies reduce the complexity of the biological system and help to develop

mathematical models to fully represent the biological functions. However, validity and

comparability of 2D and 3D cell culture systems with the realistic cell growth media is

controversial. Furthermore, Baccam et al. (2006) identified interspecies variabilities

of the IAV transmission and replication. The in vitro study on the primary IAV

infection of mice showed the peak response and release of (IFN)-I after 7 dpi, and

the peak population of CD8+ T cells were observed at 10 dpi (Tamura and Kurata,

2004; Hufford et al., 2012). For pig, the peak population of both CD8+ and CD4+

T cells were indicated at 5 dpi (Lange et al., 2009). In the nasal wash of H1N1 and
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H3N2 infected ferret, with the closest similarity to human IAV infection, the peak

viral population was determined at 2 dpi. In this regard, it is imperative to consider

human in vivo studies for validation and parametric optimization. Previously in silico

studies were developed for IIS (Beauchemin and Handel, 2011; Hancioglu et al., 2007;

Le et al., 2015), and AIS (Antia et al., 2003; Bocharov and Romanyukha, 1994), and

both sub immune systems by Handel et al. (2007) and Lee et al. (2009) that can be

modified with care for the human infection studies.

Airborne transmission of the IAV-laden droplets occurs when the viral load mi-

grates through nasal and mouth breathing or paranasal sinuses (ocular route) to the

airways. The airborne transmission of infectious substances expelled by an infected

subject is commonly known to be the decisive contagion mechanism. The respirable

fomites carrying IAV are reported to be 1 to 100 µm in diameter (Blumenkrantz,

2014). Lambert et al. (2011) performed a multiphase computational fluid particle

dynamics (CFPD) model for spherical rigid and pure water droplets, with a diameter

of 2.5 µm. Exposure through mouth breathing showed a higher deposition at the up-

per airway and the primary bifurcation. The CFPD models determined the particles

greater than 6 µm deposited in the upper respiratory tract. Those particles between

2 to 6 µm mostly deposited in the 2nd generation (G2), and smaller particles would

reach lower lobes (Darquenne, 2012; Ou et al., 2017).

The hygroscopic growth and shrinkage of particles in humid air have been investi-

gated thoroughly in climate science (Kreidenweis et al., 2005; Mikhailov et al., 2004).

Aerosol size change dynamics were studied in an idealized upper airway geometry up

to G3 (Feng et al., 2016; Zhang et al., 2006), in the subject-specific human upper

airway geometry excluding the nasal cavity (Worth Longest and Xi, 2008), and the

nasal cavity only (Schroeter et al., 2016). The results showed the evaporation and

condensation of droplets were dependent on the droplets composition and the ambi-

ent relative humidity (RH), temperature, and pressure. Droplet trajectory depends

60



on the airflow patterns. In detail, breathing through mouth or nose changes the local

airflow, and consequently, the droplet heat and mass transfer. To our knowledge,

this study is the first in silico IAV transmission study integrating CFPD, HCD, the

droplet size change dynamics due to evaporation and condensation.

2.2 Methodology

Here, we develop and validate a multiscale model using CFPD and HCD to sim-

ulate the transport of the respirable IAV-laden droplets and to predict the immune

system response at a time span of 12 dpi. The proposed multiscale model contains two

simulation layers connected at the airway mucosa lining as the viral replications start

from the deposition of inhaled fomites on the epithelial cells. The virus deposits on

the mucosa lining to bind to the targeted epithelial cells surface. Since the infection

replication is significantly dependent on the host cell population and immune system

agents at each region, a CFPD model with the Euler-Lagrange scheme is adopted

to simulate the virus-laden droplets transportation and deposition. The deposition

“hotspots” are calculated and coupled with the HCD model to determine the regional

host dynamic information.

Figure 2.1 provides the context of the multiscale model. The polyhedral-core

mesh is developed and compared with the tetrahedral-core mesh. The final mesh has

18,453,311 polyhedral-core plus prism layers elements. The inhaled number concen-

tration of droplets after exposure to sneezing event by the infected subject is estimated

based on a separation distance of 3 feet for a successful infection transfer (Hamborsky

et al., 2015; Liu et al., 2017). The indoor condition with artificial heating at the win-

ter time is set up for the inhalation condition (Knight, 1980). The unimodal virus

carrying respiratory droplets number concentration and mean diameter are defined as

6 bins with average values reported by Duguid (1946). Two routes of inhalation, i.e.,

mouth and nasal breathings, are simulated using realistic human breathing patterns
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Figure 2.1: The framework of the multiscale CFPD-HCD model for the human-to-human IAV infection with a subject-specific
airway geometry. The description of the HCD model is given in Section 2.3.2. The detail of the final polyhedral-core mesh is
provided at the right nostril and a lobar outlet (RUL: right upper lobe, RML: right middle lobe, RLL: right lower lobe, LUL:

left upper lobe, LLL: left lower lobe).
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consist of a complete inhalation-exhalation cycle. Moreover, the mass and energy

transfer between the respiratory droplet, i.e., the discrete phase, and the continuous

humid air phase are considered to govern the droplets hygroscopicity. This consider-

ation is made possible by applying the principles of cloud physics to the transported

nanoscale sneezing event droplets. As the interphase transfer of droplets is exten-

sively dependent on their compositions, three different concentrations were selected

for NaCl and water, as major components of the coughing or sneezing droplets (Effros

et al., 2002). The list of cases with different droplet compositions in mass fractions

is as follows:

• Realistic nasal breathing (NB) exposed to a sneezing event:

– Case 1: 100.0% water - 0.0% NaCl,

– Case 2: 93.2% water - 6.8% NaCl (Schaffer et al., 1976),

– Case 3: 89.6% water - 10.4% NaCl (Yang and Marr, 2011),

• Realistic mouth breathing (MB) exposed to a sneezing event:

– Case 4: 100.0% water - 0.0% NaCl,

– Case 5: 93.2% water - 6.8% NaCl,

– Case 6: 89.6% water - 10.4% NaCl.

2.3 Governing Equations

2.3.1 Computational Fluid-Particle Dynamics (CFPD)

The transport of IAV-laden droplets from human-to-human is carried out by the

airstream of an infected person’s sneeze. Due to a low volume fraction of the droplets

in the airstream, a Euler-Lagrange scheme is adapted. Moreover, the interaction of

the phases is implemented by considering the hygroscopic growth (condensation) and

shrinkage (evaporation) of droplets traveling through the pulmonary route. These
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effects append to the conservation equations of each phase as the mass and energy

source terms.

2.3.1.1 Euler Phase: Airflow

The flow pattern in the subject-specific human respiratory system reconstructed

from the computer tomography (CT) scans showed transitional flow patterns between

turbulence and laminar, at the nasopharynx and the onset of the epiglottis (Feng

et al., 2018). Accurate predictions of the airflow field is important to analyze the

deposition patterns at the subglottal regions (Ma and Lutchen, 2009).

In this study, transition shear stress transport (SST) model (Menter, 1994) is

employed that takes the ability of the k − ω model in representing the near-wall

boundary layers and is combined with the k− ε model to solve the freestream airflow

(Langtry and Menter, 2009). The 4-equation SST model is based on the transport

equations for kinetic energy(k) and dissipation(ω). The governing equations for the

momentum balance are provided in Section 1.3.1.1.

At the ambient temperature and pressure, governing equations for the mass con-

servation of the gas mixture are defined by the advection-diffusion equation:

∂ρYs
∂t

+
∂ρuiYs
∂xj

= −∂Js
∂xj

+ Sms (2.1)

in which Ys is the species mass fraction. ρ is density of the Euler phase mixture,

ui is the mixture stream velocity components, and xj is the direction components.

The mixture is a combination of air, water vapor, and an insignificant amount of

NaCl in vapor form, i.e., negligible detachment of NaCl molecules from the surface of

the aqueous droplet. Js shows the mass diffusion flux of species due to concentration

gradient, and to calculate Js, Fick’s law in turbulent flow for the dilute vapor mixture
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can be written as

Js = −
(
ρDm

s +
µt
Sct

)
∂Ys
∂xj

(2.2)

where Dm
s is the molecular diffusivity of the species in the Euler phase. Sct = µt

ρDt

is the turbulent Schmidt number, and Dt is the turbulent diffusivity and µt is the

turbulent viscosity. In this study, Sct is defined as a constant value of 0.9 (Zhang

et al., 2012a). In Eq. (2.1) Sms [kg/m3/s] is the mass source term, i.e., the rate of

species mass transfer between the phases.

The conservation of energy for the air-vapor mixture is given by

∂ρcpT

∂t
+
∂ρuicpT

∂xj
=

∂

∂xj

(
(kc + kc,t)

∂T

∂xj
−
∑

s

hsJs

)
+ Φvd + ST (2.3)

where cp, T , Φvd, kc, and kc,t are the gas mixture specific heat, cell center temperature,

viscous dissipation, gas mixture conductivity, and turbulent thermal conductivity,

respectively. Moreover, kc,t = ρcpµt/Prt, in which the turbulent Prandtl number is

Prt = cpµ/kc. hi is the sensible enthalpy of the species calculated by considering

298.15 K as the reference temperature. µ is the gas mixture molecular dynamic

viscosity.

With the unsteady particle tracking in a local control volume (dV ), two different

time steps are defined. tf is the continuous fluid time step at the current iteration of

the implicit solver, and td is the unsteady discrete phase (DP) tracking time iteration.

Transient calculation of the interphase source terms using implicit solver is performed

by advancing the DP at the beginning of the continuous phase time step. For the

mass source term

Sms =
∑

parcels

(
(
ṁ0
d/m

0
d

)
Nd/parcel

∫ t0f+∆td

t0f

dmd

dtd
dtd

)
/dV (2.4)
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where Nd/parcel is the number of droplets at each “parcel”, i.e., a combination of

droplets with the same diameter existing in the same volume control. Also, ṁ0
d and

m0
d are initial mass flow rate and mass of the injected DP. dmd/dtd shows the rate

of mass transfer between the continuous phase and the DP (dmd/dtd is negative for

condensation and positive for evaporation).

The energy source term ST [W/m3], i.e., the volumetric energy source, is calcu-

lated by defining the latent heat of evaporation and condensation between the phases:

ST =
∑

parcels

(
(
ṁ0
d/m

0
d

)
Nd/parcel

[
Hlat

∫ t0f+∆td

t0f

dmd + Ein−out

])
/dV (2.5)

Ein−out = m
t0f
d

∫ T
t0f
d

298.15

cpdTd −m
t0f+∆td

d

∫ T
t0f+∆td
d

298.15

cpdTd (2.6)

where Hlat is the latent heat of energy exchange between the phases. The subscripts

of t0f and t0f + ∆td show the flow time step at the inlet and outlet of the control

volume. In addition, to distribute the effect of the mass and energy source terms of

the parcel to neighboring mesh nodes, the nodes-per-cell averaging was performed for

the continuous phase by dividing Smi and ST by the number of mesh nodes at each

control volume. The advanced averaging technique results in better stability in the

calculation of mass and energy equations.

2.3.1.2 Lagrange Phase: IAV-laden Droplets Transport

At the ambient condition, with the dilute suspension of droplets in the airflow

phase and negligible droplet rotation, the multicomponent unsteady DP tracking is

performed by calculating a series of equations: translational equation, recovery of tur-

bulent fluctuations as encountered by the DP, and the mass and energy conservation
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equations. Translational equation of DP is given as

d

dtd
(mdud,p) = FD

p + FL
p + FBM

p + FG
p (2.7)

where subscripts of d and p are related to the DP and each droplet (or parcel),

respectively. The superscripts of D, L, BM, and G represent the drag force, lift force,

Brownian motion force, and gravity, respectively. The detail of each force acting on

the spherical droplet is provided in Chapter I.

Calculation of forces on the droplets was accurately calculated by recovering the

fluctuation velocity (Feng and Kleinstreuer, 2013). The so-called “eddy lifetime”

model that assumes the interaction of particles with turbulence eddies is identified

by the Gaussian probability distribution of fluctuation velocity (u′i = Gu′

√
ū′i

2
) and

the lifetime of the turbulence eddies given as (Daly and Harlow, 1970):

τE−L = Cµ
κ

(0.09κω)
≈ 0.30

(0.09ω)
(2.8)

However, one should take caution when calculating the acting forces on the DP

forces and subsequently, the DP deposition near the walls as the fluctuating velocity

normals to the wall can be overestimated. This error is due to the assumption of

turbulence isotropy, and the near-wall correction is required to be added to the “eddy

lifetime” model for the accurate DP trajectory prediction. This correction is suggested

by introducing a damping function to the u′i components for cell elements that rely

on y+ < 10 (Wang et al., 1999).

Mass balance equation for droplets is

dmd

dtd
= ρKmcAd ln

(
1− Ys,∞
1− Ys,S

)
(2.9)

where Ys,S and Ys,∞ are the mass fraction of species s at the droplet surface and at the
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surrounding continuous phase, i.e., the center of the cell where the droplet is residing.

Ad is the droplet surface, and Kmc is the mass transfer coefficient [m/s] given as

Kmc =

[
1 +Kn

1 + ( 4
3αm

+ 0.377)Kn+ 4
3αm

Kn2

]
Dm
s

dVd
Sh (2.10)

In this equation, the first parameter shows the non-continuum effect for the sub-

micron droplets, where αm = 1 is the mass accommodation coefficient (Hinds, 2012)

and the Knudsen number is defined as Kn = 2λ/dVd , in which, λ is the mean free path

of the continuous phase gas mixture, and dVd is the mass equivalent droplet diameter

calculated from the volume of the droplet (volume of the droplet is derived by having

the mass and density of the droplet).

In addition, Sherwood number, Sh, is specified as (Whitaker, 1972)

Sh = 2.0 +
(

0.4Re
1/2
d + 0.006Re

2/3
d

)
Sc0.4 (µ/µd,S)1/4 (2.11)

where Red is the droplet Reynolds number (Red = ρd
∣∣ui − udi

∣∣ dVd /µ) in which ρd is

the droplet density and udi is the droplet velocity components. Also, µ and µd,S are

the gas mixture viscosity at the temperature of the cell center where the droplet is

residing and at the droplet surface temperature, respectively. In Eq. (2.9), Ys,S needs

to be calculated by specifying the thermodynamic equilibrium state between phases.

The threshold between the evaporation and condensation processes is defined by

the thermodynamic properties of the droplet, i.e., equilibrium partial vapor pressures,

the temperature at the dew point, and mass fraction of droplet components. Any

droplet that falls under dVd =0.01 nm, i.e., 0.05% of the IAV minimum diameter, is

considered to be entirely evaporated and the stochastic tracking calculation is halted

for the droplet.

At the continuous phase cell temperature, the equilibrium of partial vapor pressure

over the spherical droplet is governed by two factors. The Kelvin effect, i.e., to include
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the impact of the curved liquid-vapor interface (droplet) over the vapor pressure, and

the solute effects. Based on the cloud physics for the multicomponent droplet with an

ionic solute the Köhler theory is given as (Mikhailov et al., 2004; Kreidenweis et al.,

2005):

Hygroscopic growth and shrinkage dynamics of droplets is goverend by

Ys,S =
Ps,S
P 0(T )

= γs exp

(
4σdVs
RTddVd

)
(2.12)

where Ps,S and P 0(T ) are the vapor pressure at the droplet surface and the saturation

vapor pressure of the transferred species at the temperature of the control volume

where the droplet is located. σd is the surface tension of the droplet solution, R is the

universal gas constant. Also, γs is the species activity coefficient and Vs is the partial

molar volume of solute, i.e., NaCl, and is estimated by the following equations:

Vs =
MWs

ρsol

(
1 +

Yd,NaCl
ρsol

dρsol
dYd,NaCl

)
(2.13)

γs = exp (ϑd,sΦd,sMWd,waterm̃d,NaCl) (2.14)

In Eqs. (2.13 and 2.14), MWs represents the species molecular weight, ρsol is the

droplet solution density, ϑd,s is the stoichiometric dissociation number of the solute

(ϑd,s=2 for NaCl), and Φd,s is the molal osmotic coefficient of the solute in solution.

Also, m̃d,NaCl = Yd,NaCl/(MWd,NaCl(1− Yd,NaCl)) is the molality (m) of the solution.

The solute effect is represented in the formulation of activity coefficient, and the

Kelvin effect is shown in Eq. (2.12). For a dilute solution, Eqs. (2.13 and 2.14) can

be simplified as

Vs =
MWs

ρsol
(2.15)
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γwater = (1− % Yd,NaClMWd,water

xd,waterMWd,NaCl

)/xd,water (2.16)

where % is the van’t Hoff factor and xd,water is the mole fraction of water given as

xd,water = Yd,water/(MWd,water

∑

(d,s)

(Yd,sMWd,s)) (2.17)

In Eqs. (2.12 to 2.15), parameters are dependent on the temperature and composi-

tion of the droplet. In this order, the previously proposed correlations or experimental

data are utilized to calculate these parameters (see Table 2.4).

Droplets energy balance is calculated as

dTd
dtd

=

(
KhcAd(T − Td)−

dmd

dtd
Hlat

)
/mdcp,d (2.18)

where Khc is the heat transfer coefficient. Assuming a unity Lewis number and a

negligible influence of the evaporated/condensed species in DP on the gas mixture

specific heat results in

Khc = Kmc
Nukc
ShDm

s

(2.19)

In Eq. (2.19), Nu is the Nusselt number given as

Nu = 2.0 +
(

0.4Re
1/2
d + 0.006Re

2/3
d

)
Pr0.4 (µ/µd,S)1/4 (2.20)

Eq. (2.18) is based on the assumptions that the droplet is at a uniform temper-

ature and that DP has a negligible internal resistance to the heat transfer. Also,

detailed derivation and validation of Eqs. (2.9 and 2.18) are provided by Miller et al.

(1998).
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2.3.2 Host Cell Dynamics (HCD) Model

The epithelium cell, as the target cell, is the first contacting site of the IAV-laden

droplets, and the AIS activation occurs in the lymphoid structure of the pulmonary

system carried by the extra-pulmonary lymphatic vessels. Handel et al. (2007) studied

the in silico IAV infection in humans and provided a model with seven variables for the

virus, cell, and the combination of IIS and AIS. The parameter tuning was performed

by fitting the virus titer experiments. In Handel et al. (2007) model, the uninfected

cells were controlled by the infection rate and were decreased by a death rate, i.e., a

factor of the lag time and the initial immune response. The inclusion of the IIS in the

HCD model was proposed by Pawelek et al. (2012). The conversion of target cells to

the refractory state, wherein cells are refractory to infection was represented by the

infection decreasing frequency and the rate of antiviral release. The production of

infected cells were presented by the rate of infection subtracted from the response from

the NK cells. A constant AIS response rate was assumed before the emergence of AIS

agents and then was exponentially increased to the maximum response. The virus

growth rate was determined by the rate of change from the susceptible phase to the

infected state, i.e., interfered by an increase in the population of (IFN)-I cytokines.

Moreover, a simplified action of infected cell cytolysis by NK was introduced by

considering a mass action term. The model proposed by Lee et al. (2009) showed the

effect of AIS with considering dendritic cells as the intermediate agent between IIS

and AIS. The similarity and incongruity of the three models are expressed in Figure

2.2.

In this study, the features of HCD models by Handel et al. (2007), Pawelek et al.

(2012), and Lee et al. (2009) are combined (see Figure 2.2 for the underlying pro-

cesses). The current HCD model variables and parameters are stated with an un-

derbar to differentiate them from the CFPD-related parameters. The schematic of

interactions between the host cells and the infectious agents is shown in Figure 2.1.
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Figure 2.2: Comparison of selected IAV infection HCD models (Handel et al., 2007; Pawelek et al., 2012; Lee et al., 2009).
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After the inhalation of the flu virus-load and contact with the epithelial cells

(T T ), viral reproduction starts. By the secretion of interferons (F ), the neighboring

epithelial cells become refractory (R) to the infection. The virus titer (V ) and the

infected cell (I) count are connected with the rate of virus replication (βE). T T are

infected at the rate of βT TV and are converted to two states of R and susceptible

(T T ) which is controlled by the production of F , represented as πFT T . In addition, to

enhance the reverse action, a rate is introduced for conversion back to the susceptible

phase (ζRR).

dT T
dtH

= −β
T
T TV − φFT T + ζ

R
R (2.21)

dR

dtH
= φFT T − ζRR (2.22)

dI

dtH
= β

T
T TV − κF IF − κEIγTC − δXI (2.23)





δX = δI tH − τA
δX = δIe

σ(tH−τA) tH − τA
(2.24)

The effect of NK cells is incorporated into the interfering action of F as κF IF . The

influence of cytotoxic CD8+ T cells is represented by defining the time of emergence

(τA) and the migration factor (γ). Other unknown sources of IIS and AIS responses

are added to the infected cell equation (δXI) with a constant value (δI) for IIS and

a transient parameter with the growth rate of σ for the AIS.

dV

dtH
= β

E
I − δV V − κV V A (2.25)
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The V production rate is represented as βE and the death rate of infection is

defined by δV . Also, the effect of the antibodies (A), i.e., produced by the mature B

cells, on the virus reproduction deactivation is represented by the rate of (κV ).

Subsequently, the DM processes antigen and present it on the AIS components.

dDM

dtH
= β

D
DM

(
1− DM

KD

)
V − δDDM (2.26)

dTH
dtH

=
πH1DM

πH2 +DM

(
1− TH

KH

)
−
(

δH1DM

δH2 +DM

)
TH (2.27)

dTC
dtH

=
πC1DM

πC2 +DM

(
1− TC

KC

)
−
(

δC1DM

δC2 +DM

)
TH (2.28)

dB

dtH
=

πB1[DM + h(V + TH)]

πB2 +DM + h(V + TH)

(
1− B

KB

)
− δBB − δAB (2.29)

The critical agents simplify the AIS action, i.e., CD8+ T cell (TC), CD4+ T

cell (TH), and B cell (B). The activation of the AIS components is considered as

a function of the dendritic cell (DM) count (Lee et al., 2009). The CD8+ T cell

starts the apoptosis of infected cells and B cell generates the antibodies to stop the

functionality of the virus with T helper cells. Logistic growth is selected for the

operation of AIS components and the maximum values for the logistic profiles are

adapted from the study by Lee et al. (2009) and compared with the predicted profile

for the human infection by Handel et al. (2007).

dA

dtH
= πAB − δAA (2.30)
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dF

dtH
= β

F
I − κAF (2.31)

Finally, the antibody and interferon population balance are presented by consider-

ing a growth rate (πA and δA, respectively) and death rate (βF and κA, respectively)

for each of them.

The optimized parameters with detailed description and the reported data from

previous works have been provided in Table 2.1. Some of the parameters lack the

physical meaning and the optimization variables were set up with the range of 1e-2

to 1e+3 compared to the data reported by the previous studies. A genetic algo-

rithm (GA) is used to optimize the HCD mathematical system with a vast number

of constraints. GA is classified as a probabilistic optimization algorithm, which is

characterized by methods that encounter with the complicated relation between a

solution and its fitness (Weise, 2009). The evolution usually starts from a population

of randomly generated individuals. The fitness of every individual is evaluated, and

the best individuals are selected from the current population. Next, each genome

is modified by replacing one or more individuals with new solutions, which are cre-

ated either by combining two individuals (crossover) or by changing an individual

(mutation) to form a new generation (Edgar et al., 2001). Practically, by consid-

ering the appropriate generation, the population explorer of the possible domain of

an optimal solution is obtained. In this research, non-sorting genetic algorithm II

(NSGA-II) is selected to solve the developed optimization problem. Based on the re-

sults of the non-sorting genetic algorithm, Pareto-front is developed, and a single set

of parameters is selected based on developed Pareto-front and the technique for order

of preference by similarity to ideal solution (TOPSIS) as an efficient decision-making

method. The objectives are the absolute error between the experimental data and

the HCD model for the viral titer and the IFN count (see 2.5.2). Optimized param-

eters, i.e., at the biologically feasible range, are changed regarding each other and
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the data probing has been investigated on the global domain. The optimization and

decision-making processes are executed using MATLAB (“optimtool”) and in-house

4th order Runge-Kutta method ODE solver.

Table 2.1: The description of optimized HCD model parameters and the reported
values by previous studies.

Parameter Definition Reference Values Optimized Value

βT Infection rate
9.9e-2† ml (day.TCID50)−1

4.7e-5‡∗ (RNA copy)−1ml NS day−1

7e-5§ day−1(EID50/ml)−1
9.89e-3

φ IFN-induced antiviral efficacy 3.3e-1‡∗ (IFN fold change)−1day−1 5.01e-1
ζR Reversion rate from refractory 2.6‡∗ day−1 1.15

κF Killing rate of infected cells by NK cells 4.2‡∗ (IFN fold change)−1day−1 1.24e-2
κE Killing rate of infected cells by CD8+ T cells 1.19e-3§ day−1 1.29e-2
γ CD8+ T cells migration factor 0.15§ 0.925

δI Infected cell death rate
5.0e-1† day−1

2‡ day−1

1.2§ day−1
5.02e-1

σ Death rate increases factor 0.99‡∗ 0.98
τA Time at which AIS become fully functional 4.87‡∗ day 1.5

βE Virus production rate
1.2e-5† TCID50day−1ml−1

5.3e-3‡∗ RNA copies (ml NS)−1day−1cell−1

1.9 EID50day−1ml−1
1.80e-5

δV Clearance rate of free virions
8.1e-2† day−1

15‡∗ day−1

1§ day−1
9.85e-1

κV
Rate of IAV neutralization by
unit anti-IAV antibody

4e-3§ day−1titer−1 6e-3

βD Infection rate of Dendritic cells by unit IAV 1e-2§ day−1(EID50/ml)−1 1.04e-2
KD Max. value of the Dendritic cells 1e+5§ 1e+5
δD Death rate of mature dendritic cells 5e-1§ day−1 10e-1

πH1 Max. activation rate of näıve CD4+ T cells 1.5§ day−1 1.85

πH2
No. of Dendritic cells for half-maximal
activation of näıve CD4+ T cells

1e+2§ 1e+2

KH Max. value of the activated CD4+ T cells 1e+5§ 1.1e+5
δH1 Max. clearance rate of effector CD4+ T cells 4e-1§ day−1 0.48

δH2
No. of Dendritic cells for half-maximal
clearance of effector CD4+ T cells

1§ 1

πC1 Max. activation rate of näıve CD8+ T cells 3§ day−1 2.94

πC2
No. of Dendritic cells for half-maximal
activation of näıve CD8+ T cells

1e+2§ 9e+2

KC Max. value of the activated CD8+ T cells 1e+5§ 1e+5
δC1 Max. clearance rate of effector CD8+ T cells 75e-2§ day−1 0.95

δC2
No. of Dendritic cells for half-maximal
clearance of effector CD8+ T cells

1§ 1

πB1 Max. activation rate of näıve B cells 3§ day−1 3.02

πB2
No. of Dendritic cells for half-maximal
activation of näıve B cells

1e+4§ 1e+4

KB Max. value of the activated B cells 1e+5§ 1e+5
δB Clearance rate of activated B cells 9e-1§ day−1 0.9

πA
Secretion rate of antibody titer
by unit short-lived plasma cell

6e-2§ day−1 0.9

δA Clearance rate of antibody 4e-2§ day−1 4e-3
βF Production rate of IFN 9.6e-10‡∗ (IFN fold change) day−1cell−1 6.20e-7
κA Decay rate of IFN 1.9‡∗ day−1 4.6e-1

† Handel et al., 2007
‡ Pawelek et al., 2012
§ Lee et al., 2009
∗ Avg values reported by Pawelek et al., 2012

1

ml (day TCID50)−1

TCID50 (day ml)-1
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2.4 Numerical Setup

2.4.1 Geometry

The subject-specific upper airway geometry has reconstructed from the mag-

netic resonance imaging (MRI) scan (Zhang et al., 2012b) and the nasal cavity con-

taining two passages, separated by the nasal septum and merged at the posterior

nasal aperture, which was gathered from the MRI scan data set by Guilmette et al.

(1989). These two geometries were connected at the soft palate between nasopharynx

and oropharynx. For the smooth surface reconstruction, the Marching Cubes algo-

rithm (Lorensen and Cline, 1987) was utilized with the volume-conserving smoothing

method. Therefore, the upper airway, starting from the nares to the first six bronchial

tree generations (G6) was modeled as a single domain. To have a fully developed flow

and to prevent the reversed flow at the outlets, extending cylindrical tubes with

36-mm length are connected to the lobar outlets.

2.4.2 Mesh Independence Study: Comparison of Polyhedral and Tetra-

hedral Elements on the Computational Efficiency

An accurate estimation of transportation and deposition of respired aerosols de-

pend on two major factors, i.e., the accuracy of the reconstructed patient-specific

model and the realistic consideration of the computational model parameters and

boundary conditions. However, enhancing the computational efficiency while preserv-

ing the accuracy of the numerical prediction depends extensively on the discretized

domain element’s type and size. In this study, the sensitivity of simulation results on

mesh elements is evaluated for a patient-specific upper airway model. The tetrahe-

dral mesh elements were widely used previously, however, discretizing patient-specific

nasal cavity with the realistic transient inlet velocity profile requires a higher resolu-

tion, as NB at rest results in turbulent flow at the epiglottis and nasal meatuses.
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The 3D image reconstructed respiratory system exhibits a volume of 173.5 ml and

stored as a stereolithographic file for the input of Fluent Meshing V.19.1 (ANSYS

Inc., Canonsburg, PA, USA). Several surface mesh resolutions were generated using

curvature and proximity size functions with the local mesh refining at the expected

regions with turbulent flow, i.e., nasal cavity and epiglottis. The curvature function

limits the outward surface normal angle between adjacent elements and it leads to

a denser mesh resolution at regions that have a higher degree of curvature such as

superior and middle nasal concha and nasopharynx. In contrast, the proximity setting

controls the number of elements at the volumetric region between faces that constitute

gaps. To resolve the viscous sublayer, quadrilateral prism layers were created through

two algorithms, i.e., uniform (defined the height of the first layer) and aspect ratio.

Because of the gaps in the nasal cavity, the proximity handling with the preserved

control on the first offset height was utilized to prevent the mesh elements collision at

these regions. Overall, 19 meshes (7 tetrahedral and 12 polyhedral) were created and

summarized (see Table 2.2). Mesh independence tests were performed using a steady

airflow rate of 15 m/s at both nostrils, and the Langtry-Menter 4-equation transitional

SST model was employed to resolve the laminar-to-turbulent flow transition regime.

The final mesh with tetrahedral-core elements had 48.6 m meshing cells. How-

ever, polyhedral-core elements had 18.4 million meshing cells, which showed a 62%

reduction in the volume meshing elements. In addition, the elapsed time per iter-

ation had decreased by 54% for the final polyhedral mesh compared to tetrahedral

mesh with the same setup and computational resources. The quality of the mesh

was measured through average inverse orthogonality and the average aspect ratio.

The average orthogonality of the polyhedral meshes is 10 order lower in magnitude

compared to tetrahedral meshes, which represent a higher quality and consequently

higher accuracy. It was observed that by increasing the mesh resolution, the volume

cell aspect-ratio quality between the last prism layer and the first layer of polyhedral
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elements increased. As a result, the aspect ratio algorithm was utilized with a higher

number of layers to control the quality (see Table 2.2 meshes P7 and P6). This study

demonstrated that polyhedral mesh is offering an enhanced computation efficiency,

i.e., reduction of the volume cells and computational time, higher quality by having a

smaller inverse orthogonal quality, and improved stability of the iterative solver due

to higher accuracy and increased cell connectivity. Figure 2.3 represents the veloc-

ity magnitude field at the final mesh (P7) and the dimensionless velocity magnitude

(by the maximum velocity in the field) at different planes. Plane DD’ shows the

most substantial difference between the velocity magnitude of different meshes, that

is because this plane is located at the region with maximum flow disturbance.

For all cases, the simulation was performed on a local 64-bit Dell Precision T7910

workstation with 256 GB RAM and 2x16 3.1GHZ CPUs. The processor affinity was

set to maximum using Fluent “TUI” commands to utilize all processing units on

both CPUs in the Microsoft Windows system. Double precision and the second-

order upwind scheme was defined for the solver, i.e., ANSYS Fluent V.19.1 (ANSYS

Inc., Canonsburg, PA), with customized user-defined functions for the discrete phase

forces, heat and mass source terms, and deposition and trajectory post-processing in

C++.
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Table 2.2: The description of the generated meshes. The final mesh with tetrahedral-core (T2) and polyhedral-core (P7)
elements are highlighted.
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2.4.3 Initial and Boundary Conditions

2.4.3.1 CFPD Model

Two routes of inhalation were considered, i.e., mouth breathing and nasal breath-

ing. The realistic breathing patterns were defined by regressing the volumetric flow

rate per time data set provided by Scheinherr et al. (2015) for MB and Rennie et al.

(2011) for NB. Both profiles represent healthy human breathing patterns when at

rest. For the MB, 8-term Fourier series was used to fit the experimental data (see

Figure 2.4 (b) and Table 2.3 (a)). For the NB, the summation of sines with 7-term

was used to perform the best fit to the average data of the volumetric flow rate per

time at each nostril (see Figure 2.4 (a) and Table 2.3 (b)).

Table 2.3: Fitted equations for the realistic breathing patterns (MB and NB).

(b) Nasal Breathing

Sum of Sines with 7 Terms

Q =
∑7

i=1 aisin(bix+ ci)
i ai bi ci
1 263.7 0.6369 3.015
2 330.7 0.1254 -3.727
3 73.19 4.86 -0.7755
4 48.58 7.822 -0.7588
5 16.06 13.33 0.03013
6 253.6 2.011 -0.4039
7 43.69 10.85 -1.085

(a) Mouth Breathing

Fourier Series with 8 Terms

Q = a0 +
∑8

i=1 aicos(iwx) + bisin(iwx)
i ai bi
0 -1.462 N/A
1 19.55 60.38
2 -10.90 -0.9638
3 -1.6 7.435
4 -2.737 1.096
5 -2.057 -0.4919
6 -0.4734 0.7077
7 -0.4042 -0.8452
8 0.08115 0.6936

w =1.561

At the sneezing event, the dispersed droplets number and diameter in the expelled

sneezing event were gathered from the experimental dataset proposed by Duguid

(1946). The droplet size distribution was separated into 6 bins that encompass

droplets between 1 to 100 µm in diameter. The duration (texp) and volumetric flow

rate (Qexp) of expelled aerosol, i.e., air stream plus sneezed respiratory droplets, were
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Figure 2.3: The comparision of the generated mesh at five different cross-sections and the velocity magnitude field at the final
mesh (polyhedral-core 7).
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Figure 2.4: Subject-specific nasal and mouth breathing patterns. (a) NB at each
nostril: the average data is collected and is fitted with the summation of sines with

7-term; (b) MB is fitted with 8-term Fourier series.

defined as 0.7 s (Han et al., 2013) and 21.5 m3/s (Scharfman et al., 2016), respectively.

To find the distance volume (Vdis) between the subjects, a truncated cone with 3 feet

height was considered. The properties of the aqueous droplet and the initial values

for the CFPD model is given in Table 2.4.

2.4.3.2 HCD Model

For the HCD model, the initial values gathered from the previous studies were

used (see Table 2.5). For the calculation of the epithelium cell population at each

region, the mean cell size of 2.5e-7 cm2 reported by Farmer (1991) is considered. The

post-deposition analysis of the CFPD model was decided by calculating the number

of inhaled droplets that represent one tissue culture 50% infectious dose (TCID50) of

the IAV virus. Also, the biological decay of the IAV-laden droplet is considered in

the experimental studies and is utilized in the model. Tellier (2009) showed 150-650

RNA copies of IAV represent 1 TCID50. Yang et al. (2011) had estimated 2.1e+3

and 452 genome copies per TCID50 of A/PR/8/34 (H1N1) and A/California/04/2009

(H1N1) strains, respectively. On average, the results showed the 1-hour exposure to

1.6e+4 genome copies per m3 represents 35.4 ± 21.0 TCID50 per m3. In this study,
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Table 2.4: The sneezing event droplet properties and the initial values for the CFPD
model.

Distribution Bins
(Duguid, 1946)

Droplet Diameter (dd)[µm]
Number of Expelled

1-2 26,000
2-4 160,000

4-10 420,000
10-25 26,000
25-50 58,375
50-100 14,500
+100 fall to the ground

texp [s] 0.3-0.7 Han et al. (2013)

Qexp [m3/s] 21.5
Scharfman et al. (2016)
(from Reynolds number)

Droplet Density f (Td, YNaCl) Correlation Simion et al. (2015)

Diffusivity f (T) Correlation Treybal (1980)

Surface Tension f(Td, YNaCl) Correlation
Weissenborn et al.

Mean Free Path [m] 9.85E-08 water vapor - air
Inlet Temperature [K] 310.15

RH% inlet airflow: 40 airway walls: 99.5
Oral Cavity 4.61E-03
Nasal Cavity 1.37E-02
Oropharynx 2.21E-03
Nasopharynx 1.56E-03

Glottis 5.00E-03
Trachea 6.66E-03

Lobes (B1-G6) 4.25E-02

              
Droplets

(1996)
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the experimental data by Ward et al. (2004) is used where it showed that one TCID50

ml3 holds 1000 copies of the viral genome and also each viral particulate (d0
d < 1 µm)

was expected to hold one viral agent (Knight, 1980).

2.5 Model Validations

2.5.1 CFPD model

The CFPD model was previously validated by analyzing the particle trajectory

and deposition on the wall boundaries (Haghnegahdar et al., 2018; Feng et al., 2018).

In this study, the influence of additional mass and energy source terms on the DP is

validated. The validation is performed by evaluating two different scenarios of dilute

aqueous droplet evaporation and a dry NaCl particle condensation.

For the droplet evaporation, the in-house simulation is compared with the ex-

perimental data by El Golli et al. (1977). The experimental setup used a duct with

concurrent airflow stream (at specified T and RH) and aqueous droplet injection with

direction parallel to the gravity. Figure 2.5 shows the influence of the droplets initial

molality on its evaporation and the comparison between the CFPD model with the

experimental data points. The droplets were injected with the initial diameter of 16

µm to the airflow stream with RH=70%. Also, the CFPD model for two cases of pure

water and 0.17 molality (m) are visualized. The droplet diameter was scaled-up for

the visualization with the factor of 10e+4. For pure water, the onset of evaporation

is predicted at t=737.2 ms but, for the cases with a substantial NaCl composition,

the evaporation happened majorly for the water component (with a significantly low

mass transfer for the salt contents). In this regard, diameter-time profiles show an

exponential decrease between the evaporating region and the equilibrium stage. Ne-

glecting the small amount of salt evaporation results in a sudden elimination of the

evaporation, i.e., the equilibrium stage for the droplet. The increases in the initial

molality at the injection point resulted in faster evaporation of the water contents
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(as the water component has a lower mass fraction in the solution) and the droplet

reached the equilibrium stage in a shorter time.

0 500 1000 1500
Time [ms]

0

2

4

6

8

10

12

14

16

18

d
V d
 [

m
]

Csalt
d,ini=0.0 molality (m)

Csalt
d,ini=0.00856 m 

Csalt
d,ini=0.03422 m 

Csalt
d,ini=0.08556 m 

Csalt
d,ini=0.17111 m 

Csalt
d,ini=0.25667 m 

Csalt
d,ini=0.34223 m

In-house simulation (evaporating water-NaCl droplets)
dd,ini=16 m, Td=296.15 K, RH=70%

Exp. data with similar conditions (El Golli et al., 1974)
(symbols)=0.17 mCsalt

d,ini
=0.0 mCsalt

t=737.2 ms

d,ini

 [m]  [m]

Figure 2.5: Validation of droplet dynamics containing water and NaCl with different
molality (m). The CFPD model was performed on a simple rectangular duct, i.e.,

the experimental setup (El Golli et al., 1977).

Figure 2.6 shows the influence of the airstream RH, i.e., due to changes in the mass

fraction of the vapor water, the initial diameter of the droplet, and the difference in

the molality of the injected droplet on the droplets evaporation. As it was discussed

previously, total evaporation of droplet has happened for the pure water droplets.

The influence of the change in RH can be observed by comparing the cases 1 and

3 with a significant difference in RH as 29% and 70%. The increase in airstream
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RH results in the lower partial pressure gradient, i.e., the driving force of the mass

transfer between the phases. In this regard, the longer time is expected for the droplet

to reach the equilibrium stage at airflow with higher RH.
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Figure 2.6: Droplet dynamic validation at different molality (m), RH, and T
(El Golli et al., 1977).

For the droplet condensation, the in-house simulation is compared with the ex-

perimental data by Li et al. (1992). A concurrent airflow stream and the dry NaCl

particle injection in the direction parallel to the gravity was considered for the CFPD

model. Based on the experimental setup, the particle injection happens through a

nozzle located at the upper part of the cylindrical duct (Li et al., 1992) bt the de-
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tailed measurement is not provided. As a result, the nozzle is located at the duct

inlet for the CFPD model. Figure 2.7 shows the comparison of the particle growth

rate versus the initial diameter of the injected droplets into the domain with different

airflow RH and temperature. A small increase in RH (from 99% to 99.5%) resulted

in a substantial increase in the particle growth. The conversion stage of a dry particle

to a supersaturated aqueous droplet can be observed in the CFPD model visualiza-

tion. The condensation happens in a faster manner compared to the evaporation

process because the partial pressure gradient between the dry particle exposed to an

airstream with close to saturation condition is significantly higher compared to an

aqueous droplet exposed to an airstream with RH=70%.

2.5.2 HCD Model

Figure 2.8 (a) shows the predicted HCD for the target and refractory cells. The

validation of the HCD model was performed by comparing the viral titer of the IAV

H1N1 infection by Fritz et al. (1999); Hayden et al. (1998) and the average IAV H3N2

viral titer data provided by Hayden et al. (1996) (Figure 2.8 (b)). Also, the IFN data

by Fritz et al. (1999) was used for the validation of the interferon profile (Figure

2.8 (c)). Figure 2.8 (b) shows the viral titer data for TCID50/ml of nasal wash. One

TCID50 corresponds to a single infectious virion (Handel et al., 2007). However, more

than one virion is needed for infection distribution. As a result the initial value of

the virus titer is considered as 5 (Lee et al., 2009) (see Table 2.5).

2.6 Results and Discussion

2.6.1 Airflow Velocity Field

In this study, the momentum transfer is neglected between the DP and continuous

phase due to the small diameter of the sneezing event droplets, i.e., the occupying vol-

ume fraction. As a result, a one-way coupled scheme holds for the momentum balance,
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Table 2.5: The HCD model initial values and the definition of the simulated
variables.

Variable Definition Initial Value [unit]

TT Uninfected epithelial cells 4E+8† [cells]
R Epithelial cells in the refractory state 0‡ [cells]
I Infected epithelial cells 0† [cells]

V Virus titer
Regional Deposition form the CFPD model

5 [TCID50 ml−1]
DM Mature Dendritic cells 1E+3§ [cells]
TH Effector CD4+ T cells 0§ [cells]
TC Effector CD8+ T cells 0§ [cells]
B Activated B cells 0§ [cells]
A Antiviral antibody titer 110.2§ [titers]
F Interferon 10∗ [IFN fold change]

† Handel et al. (2007)
‡ Pawelek et al. (2012)
§ Lee et al. (2009)
∗ Fritz et al. (1999)
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Figure 2.8: The HCD model: (a) the predicted profile for the targeted cell, infected
cell, and refractory cell, (b) comparison and validation with mean viral titer

[TCID50ml-1], and (c) comparision with IFN data provided by Fritz et al. (1999),
Hayden et al. (1998), and Hayden et al. (1996).
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i.e., the DP was influenced by the airflow but not vice versa. However, the two-way

coupled scheme stands for species mass transfer and energy transfer between humid

air and droplets. Figures 2.9 and 2.10 show the volume rendering of the normalized

velocity magnitude (
∥∥∥~V
∥∥∥) field and

∥∥∥~V
∥∥∥ contours at the specified cross-sections. For

the MB, the normalization is based on
∥∥∥~Vmax

∥∥∥=14.5 m/s generated at t=0.56 s on

the onset of the epiglottis and the laryngeal jet core. The NB normalizations were

calculated by having
∥∥∥~Vmax

∥∥∥=23.5 m/s at the time of peak exhalation velocity profile

(t=2.35 s) at the inferior nasal aperture both in the left and right nasal passages.
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Figure 2.9: Local airflow velocity profile and the volume rendering of the velocity
field in a subject-specific upper airway during the nasal breathing at t=0.35 s (peak

inhalation velocity) and t=2.35 s (peak exhalation velocity).
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For the NB case, the mainstream
∥∥∥~V
∥∥∥ distributions are visualized at six cross-

sections and the secondary flows are shown by in-plane streamlines and tangential

vectors (see Figure 2.9). The upper row shows the results at the peak velocity during

the inhalation period (t=0.35 s), and the lower row shows the results at the peak ex-

halation period (t=2.35 s). The nasal inlet jet is hitting the superior conchae and the

lower pressure induced next to the inferior conchae resulted in the flow disruption and

clockwise (CW) vortices were visible at cross-section A (Figure 2.9 (a)-A). At t=0.35

s the Reynolds number (Re) at right nostril is 3,695 and recirculations are formed at

the cavity between the inferior turbinate and the nasal septum. Moving forward in the

nasal passages, the middle turbinate appears which changed L-shaped passage (see

Figure 11 (a)-A) to Y-shaped (see Figure 11 (a)-B) spacing. The flow was separated

into three fissures. The pressure drop at the cavity next to the bifurcating point of

the Y-shaped opening caused the recirculations to form, i.e., CW in the left passage

and counter-clockwise (CCW) in the right passage (Figure 2.9 (a)-B). Towards the

posterior nasal apertures, the two passages deform to ξ-shaped passage when superior

turbinate appears and the recirculation intensities were dissipated (Figure 2.9 (a)-C).

These two passages merge into the nasopharynx. The velocity vectors showed the

backward direction as the merged flow from the nasal cavity hits the posterior wall

of the oropharynx (Figure 2.9 (a)-D). The same patterns exist until the mainstream

airflow entered the trachea. At the glottis, due to the pressure drop at the dead vol-

umes of the laryngopharynx (piriform recesses) a CCW recirculation region is formed

(Figure 2.9 (a)-E), being accompanied by the laryngeal jet. Trachea, i.e., a straight

cylindrical duct protected with cartridges, helped the flow to retain its laminar pro-

file as Re changes from 2628 at the glottis to 1,760 at the beginning of the primary

bifurcation (Figure 2.9 (a)-D and F).

At the peak of nasal exhalation, the flow develops from airstream discharges from

the lung and Re is 3,871 at cross-section F (Figure 2.9 (b)-F). As a result, incipient
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turbulence is expectable. The vortices formed, and the flow deviated to the anterior

wall of the trachea (Figure 2.9 (b)-F). As the expiratory flow reached the glottis,

the turbulence intensity is reduced and Re is 3,520. In the nasopharynx, the stream

separated into two parts by uvula and headed toward the nasal and oral cavity. As

the mouth is closed, static pressure differences near the lips provide resistance to

the airflow entered the oral cavity, leading to the recirculating flow patterns shown

by the volume rendering graph at t=2.35 s. Following the flow in the nasal cavity,

the superior section of the nasopharynx, i.e., where the pharyngeal tonsil is located,

directed the airflow into the nasal passages. Figure 2.9 (b)-C demonstrated the stream

deviated to the inferior meatuses, unlike the airflow patterns observed during the

inhalation when the air stream the superior meatuses. The different airflow patterns

between nasal inhalation and exhalation significantly influence the IAV-laden droplet

transport and deposition in the breathing cycle (Figure 2.9).

Figure 2.10 represents the velocity field at the time stations with the peak in-

halation and exhalation flow rates, of the MB profile, i.e., t=0.56 s and t=2.48 s.

The uniform velocity inlet was adapted at the mouth during the peak of mouth in-

halation that forms a flow with Re=2,450. Because of the relatively low position of

the mouth opening, the high-velocity core of the airflow stream stays concentrated

near the lower palate, i.e., the space above the tongue. At t=0.56 s, due to low static

pressure near the central part of the lower palate induced by the high-velocity airflow,

two counter-rotating vertices appear near the upper palate representing the secondary

flow patterns at cross-section A (Figure 2.10 (a)-A). Transiting to cross-section B near

the 90-degree bend between the oral cavity and pharynx, the triangular lower wall

was deformed to a symmetrical geometry with a flat lower wall (Figure 2.10 (a)-B).

As a result, the recirculation on the left side of cross-section B was pushed upward

leading to the shift of the vortex core on the right side further from the centerline.

This flow field created a CW airflow movement in the oropharynx and the flow has
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Figure 2.10: Local airflow velocity profile and the volume rendering of the velocity
field in a subject-specific upper airway during the mouth breathing at t=0.56 s

(peak inhalation velocity) and t=2.48 s (peak exhalation velocity).
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deviated to the right upper corner of cross-section C. Entering the trachea, the jet

impacts the posterior side and the momentum of the jet core is dissipated accordingly.

During the mouth exhalation phase shown in Figure 2.10 at t=2.48 s, the expi-

ratory laryngeal jet touched the larynx and created a maximum velocity at the con-

striction of the oropharynx (Figure 2.10 (b)-C). A portion of the flow was discharged

into the nasal cavity and resisted in the posterior nasal cavity. Such a phenomenon is

due to the momentum loss of the airflow which failed to overcome the static pressure

resistance in the nasal cavity. In contrast to the fact that the high-velocity airflow is

close to the lower palate during the mouth inhalation phase, the portion of airstream

that enters the oral cavity during the exhalation phase strikes the upper palate.

Comparisons between NB and MB cases indicate that the nasal passage can sig-

nificantly reduce the airflow momentum at the post-nasal region. During the NB

inhalation, the core of laryngeal jet has lower turbulence strength that results in a

weaker impaction of flow to the posterior tracheal wall compared to the MB case.

As a result, lower inertial impaction and droplet deposition is expected for the NB

case at the trachea. However, there are similarities between the flow pattern at the

subglottal regions between the MB and NB. During the inhalation, the flow pattern

at mid trachea is similar between the MB and NB (see Figures 2.9 (a)-E and 2.10

(a)-F). During the exhalation, the secondary flow at mid trachea and glottis are sim-

ilar between NB and MB. This implicates the similarity of the flow pattern at the

subglottal airways regardless of the breathing via mouth or nose.

2.6.2 Relative Humidity Distributions

The airflow relative humidity (RH) is calculated by having the local tempera-

ture, pressure, and mass fraction of the water vapor. Figure 2.11 shows the RH in

percentage for both NB (upper row) and MB (lower row) cases. The contours are

at the onset of inhalation (t=0.10 s), the peak inhalation velocity profile (t=0.35 s
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for NB and t=0.56 s for MB), and at the end of inhalation (t=1.60 s for NB and

t=0.56 s for MB). The ambient conditions of water vapor were determined based on

the standard condition, i.e., T=310.10 K, P=1 bar, and RH=40%. Initial RH in the

pulmonary routes is assumed to be constantly equal to 99.5% and the airway walls

were considered nearly saturated at which RH=99.5% (Ferron, 1977). Simulation

results show that during the inhalation phase of NB, dry ambient air starts to lower

the RH in the nasal cavity. Due to the large surface area to passage length in the

nose, saturated airway walls compensate the loss of water vapor resulted from the

inhalation. Therefore, at the peak inhalation flow rate (t=0.35 s), RH values are

still higher than 90% from nasopharynx to the mid trachea. It can also be observed

that the RH distributions are consistent with the airflow velocity contour shown in

Figure 2.9. Additionally, compared with the velocity field (see Figure 2.9), RH in

recirculation regions are relatively higher because of the longer residence time of the

trapped dry airs than those in the mainstreams. At the peak inhalation flow rate,

RH was constant in the tracheobronchial trees from G1 to G6. Also, because of the

reduced convection effect at the end of nasal inhalation (t=1.60 s), RH in the upper

airways (shown in Figure 2.11 (a)) recovers to 99.5% due to the water vapor diffusion

from the saturated airway walls.

For the MB case, at t=0.10 s, the inhaled dry air stream has already influenced

the entire oral cavity. As the flow impacts the tongue, it deviates towards the upper

palate. At t=0.56 s, i.e., the peak inhalation flow rate, the influence of dry air on the

RH has already extended beyond the mid of trachea. Comparing with the velocity

profile shown in Figure 2.10 (a)-A, the recirculation zones created by the two vortices

near the mouth front results in higher local RH values. At t=0.56 s, the average RH%

of airstream at the cross-sections of oropharynx and glottis were calculated as 54.3%

and 61.6%, respectively. At the end of mouth inhalation, at t=1.76 s, RH values in

the upper airway did not recover as prompt as the NB case, indicating longer holding
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Figure 2.11: Local RH distribution of the respired airflow with RH=40% during
nasal breathing and mouth breathing at different times of inhalation period (the

walls are set up with RH=99.5%).
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time is needed for MB case to have the humid lung environment restored.

Comparisons between NB and MB cases show that the inhaled airflow with lower

RH could influence the humidity in pulmonary routes more with MB compared to

NB. The high ratio between surface area and passage distance of the nasal cavity

provide significant compensation of the humidity and restrict the influence of dry air

better than the mouth. Therefore, although the velocity field has a similar pattern at

the subglottal regions between NB and MB cases, the transport of the inhaled stream

is not identical.

2.6.3 IAV-laden Droplet Size Dynamics and Deposition Pattern

Droplet composition alters the partial pressure gradient and the thermodynamic

equilibrium between phases. The airflow velocity, temperature, and water vapor

fields determine the balance of heat and mass between phases. Figure 2.12 shows the

suspended droplet position at t=1.6 s for NB and t=1.76 s for MB cases, i.e., close to

the rest period between the inhalation-exhalation cycle, for pure water droplets, 6.8%

NaCl water droplets., and 10.4% NaCl water droplets. In Figure 2.12, droplets are

colored based on their diameters and to better compare the droplet size dynamics,

only 7 µm droplets are shown. For NB of pure water droplets, it can be observed

that droplets were undergoing evaporation. Fast droplet size reduction due to water

evaporation happens in the nasal cavity, because of the relatively lower regional RH

(see Figure 2.11 (a)). Specifically, RH decreased majorly in the nasal cavity during the

inhalation phase of NB, and significant water liquid droplets evaporation occurred in

supperglottal regions. In contrast, during MB inhalation of the pure water droplets,

RH is much lower in the entire upper airway compared to the NB case, evaporation

continues at high rates because of the higher partial pressure differences of water.

Specifically, the highest mass exchange occurred in the oropharynx and continued in

the trachea. As a result, lower droplet diameters can be observed in the MB case
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rather than the NB case (see Figures 2.12 (a) and (d)).
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Figure 2.12: The droplet position as it goes under hygroscopic growth or shrinkage
during NB and MB, at t=1.60 s (only 7 µm droplets are visualized).

For droplets containing 6.8% NaCl, inhaled by NB (see Figure 2.12 (b)), a decrease

in droplet diameter due to the evaporation was observed near the nostrils as the

inlet jet increases the droplets Reynolds number and consequently the heat and mass
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transfer due to the higher Sh and Nu, respectively. Also, lower RH of the inlet flow

resulted in an elevated mass exchange between the droplets and the surrounding gas

mixture. As droplets transport into the regions with higher RH, ambient water vapor

condensate and droplet size increases.

During the inhalation (see Figure 2.12 (b)), some droplets entered and stayed in

the nasal cavity with a higher diameter than other droplets. Since droplets suspend-

ing in the domain has the same residence time, i.e., 1.6 s, such differences in size

growth is due to the higher condensation mass rate induced by higher local RH in the

oral cavity (RH=99.5%). A similar trend could be observed for the MB 6.8% NaCl

containing droplets (see Figure 2.12 (e)). However, due to the lower RH field, the

partial pressure gradient as the driving force of the condensation was not as strong

as the NB case. Therefore, the average droplet diameter is lower compared to the

NB case. A similar observation is visible for the 10.4% NaCl containing droplets

compared to those with 6.8% NaCl. However, because the higher NaCl containing

droplets can absorb more water to reach the saturation concentration, the higher size

growth happens for droplets with 10.4% NaCl compared to those with 6.8% NaCl

content (compare Figures 2.12 (b) and (c) for the NB case and Figures 2.12 (e) and

(f) for the MB case).

Deposition patterns of droplets during the inhalation phase and the exhalation

phase for four cases of MB and NB with droplets containing pure water or 10.4%

NaCl are separately visualized in Figure 2.13. The droplets are colored based on

the final diameter at deposition sites. During MB of the pure water droplets, the

20-80 µm droplets deposit mainly at the back of the oral cavity and oropharynx due

to dominant inertial impaction effect. Additionally, dispersed deposition patterns of

nanoscale droplets can be found in the oral cavity due to the dominant influence of

Brownian motion and secondary flow. Moreover, the oral cavity is the main deposition

site for droplets with smaller initial size. Indeed, small droplets that did not deposit
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in the oral cavity will evaporate continuously and change entirely to the vapor phase.

Deposition patterns of droplets also show a gradual decrease in the droplet diameters

from the pharynx to lower airways due to the continuous evaporations of water liquid.

During the expiration, the droplets lost more masses and nanoscale droplet deposit

in the oral cavity. Similarly, during NB of pure water droplets, the impaction of large

droplets happened at the superior conchae right at the top of nares and due to the

narrower passage at the nasal cavity. Deposition includes droplets with all sizes. As

a result of high filtration efficiency of the nasal cavity, only the smaller droplets were

transferred to the pharynx and distal sections. On the contrary, for droplets with

10.4% NaCl, the deposition patterns show a more uniform size of deposited droplets.

The hygroscopic growth and shrinkage of droplets is a key mechanism that can

influence the droplet trajectory and deposition locations (Feng et al., 2016). To in-

vestigate such effect on deposition patterns, the regional and total droplet deposition

fractions (DF) (Haghnegahdar et al., 2018) are provided in Figure 2.14, with 6 dif-

ferent cases (also see Section 2.2 for case details). NB cases show higher DF in the

nasal cavity compared to MB cases, indicating the better filtration efficiency of nose

compared to mouth. Furthermore, the better filtration performance of nose prohibits

IAV-droplet entering the pharynx, which can be demonstrated by the lower DF in

pharynx compared to MB cases. In addition, the total DF of NB was slightly higher

compared to MB due to an increased deposition of small droplets when they pass

the narrow nasal passages. DF comparisons for droplets with different NaCl compo-

sition, i.e., 0.0%, 6.8%, and 10.4%, showed an increase in the total deposition with

the increase in NaCl concentration. Due to the higher initial NaCl concentration

in droplets, higher water vapor absorption and higher droplet growth are expected.

Hence, the deposition would increase in the upper airways. However, for pure water

droplets, the DF at the primary region of contact, i.e., the oral cavity for MB and

nasal cavity for NB, was higher compared to higher NaCl concentration droplets.
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Figure 2.13: The deposition pattern of the pure water and isotonic aqueous droplets
(YNaCl=10.4%) with polydispersed inlet injection during NB and MB.
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This pattern was due to the flow fluctuation and droplet dynamics at the beginning

of the mouth and nasal passages. As the droplet with NaCl content entered the cav-

ities, first it evaporates, i.e., because of the inlet jet lower RH and increased droplet

Reynolds number, and then gradually grow as it moves in the airways. This locally

lower droplet size resulted in lower deposition compared to the case with zero NaCl

composition, i.e., progressively losing mass and at the upper airway and not only at

the mouth opening or nares. Also, comparing the cases with different NaCl content

showed a lower locally vaporization of droplets with higher NaCl mass fraction at

the beginning of the mouth or nasal cavities which is acceptable as the lower water

content for the droplets with 10.4% NaCl results in faster vaporization.

Specifically, the statistical regional and total DF comparisons show that for MB

cases, with a 53% increase in the NaCl content (from 6.8% to 10.4% NaCl), the total

deposition increases by 6.72%. The pharynx DF increases by 8.85% and the oral cavity

DF increases by 2.22%. However, comparisons between the 6.8% NaCl containing

droplets and pure water droplets show that the increase in NaCl composition leads

to an increase of the total DF by 2.2% and the increase of the pharyngeal DF by

26.54%. Also, it results in a 10.6% decrease of the regional DF in the oral cavity.

Similarly for NB cases, with a 53% increase in the NaCl content (from 6.8% to

10.4% NaCl), the total deposition increases by 6.89%. The pharynx DF increases by

14.3% and the nasal cavity DF increases by 5.22%. However, comparisons between

the 6.8% NaCl containing droplets and pure water droplets show that the increase in

NaCl composition leads to an increase of the total DF by 1.4% and the increase of

the pharyngeal DF by 39.74%. Also, it results in a 5.95% decrease of the nasal cavity

DF.

Average diameters of the deposited droplets in the MB cases are lower than NB

cases. There are a few possible reasons: (1) The nasal cavity trapped larger droplets

more efficiently than the oral cavity; (2) the relatively lower RH in upper airways
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Figure 2.14: The average diameter of deposited droplets and histogram of the
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of MB cases restrict the condensation rate while enhance the evaporation rate. In

contrast, due to the lower size of droplets, the number of escaped droplets to the

distal sections of the lung was higher for mouth breathers, which result in higher

IAV-laden droplets to enter and infect lower airways. It worths mentioning that

during the evaporation process, the NaCl concentration in droplets increases. This

higher level of salt would be toxic to the IAV agents (Yang and Marr, 2012). In this

study, this effect is neglected as the evaporation is majorly happened for the pure

water containing droplets and the local vaporization of NaCl containing droplets at

the inlets was not significant (see Figures 2.12 and 2.13).

2.6.4 Within-Host Dynamics of IAV

The conjunction of the IAV-laden CFPD and post-deposition HCD provides in-

demand healthcare information. The local within-host cell dynamics and the virus

replication help to determine the local infection site and the immune system response

in the respiratory system. The deposition of the IAV-laden droplets shows the popu-
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lation of active virus agents at regional sites in upper airways. Exposure to a sneezing

event with a distance of 3 feet prompted an acute infection for IAV (Knight, 1980).

However, previous studies neglect the inhalation routes by the recipient to airborne

sneezing IAV droplets. Figure 2.15 shows the host cells (TT and R) dynamics and

50% human infectious dose [HID50] in the unit of TCID50 per secretion volume, and

produced IFN (F). A period of 12 dpi was simulated using the HCD model, dur-

ing the NB at the nasal cavity (NC) and pharynx (PY), and during the MB at the

oral cavity (OC) and pharynx (PY). The local threshold of clinical symptoms was

determined as the time once 10% of the epithelium are desquamated (Bocharov and

Romanyukha, 1994) until I has reached 5% of its lowest population.
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Figure 2.15: The regional HCD estimation and virus titer using the multiscale
model: (a-c) HCD during NB at the nasal cavity (NC) and pharynx (PY) for

droplets with different salt content (YNaCl=0 and YNaCl=0.104), (d-f) HCD during
MB at oral cavity (OC) and PY for droplets with different salt content (YNaCl=0

and YNaCl=0.104).

During the NB, the highest DFs are in NC and PY regardless of the droplet
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composition. The numbers of virus-laden droplets deposited at the NC were close for

cases with YNaCl = 0 and YNaCl = 0.104, but at the PY droplets with YNaCl = 0.104

had 38% higher DF compared to those with YNaCl = 0. Higher DF induced a higher

viral load to the local epithelium, but the difference is negligible as the number of

viral particulates representing one TCID50 determines the connection between the

CFPD and HCD models. The local HCD of NC and PY show that the higher DF

and epithelial cells at NC contributes to 2 times higher conversion of susceptible

cells to refractory state (Figure 2.15 (a)). More IFNs were released at NC with

1.14 times higher amount with longer duration (0.35 days) compared to PY (Figure

2.15 (c)). However, the TT profile shows a similar minimum value between PY and

NC because the higher surface area at the NC contributes to a higher population of

immune system agents and the infection was prevented from causing severe damage

to the tissue layers (Figure 2.15 (b)). Also, the virus titer shows comparable infection

severity at PY and NC during NB. As IIS and AIS removed the virus progenies, the

cells were shifting back to the susceptible state, and the total apoptosis of epithelium

at 12 dpi are 76.4% and 78.7% of the initial cell population at NC and PY respectively

(see Figure 2.15 (a)). The regional respiratory symptom threshold was determined

at 0.91 to 5.24 dpi and 0.85 to 5.26 dpi at NC and PY, respectively. The systemic

symptom was predicted with 1-day delay compared to respiratory symptoms based

on symptom score data provided by Knight (1980); Carrat et al. (2008). As a result,

the systemic symptom threshold at NC was between 1.91 to 6.24 dpi and similarly

1.85 to 6.26 dpi at PY during NB. The duration of symptom at the PY is longer

than NC as the AIS and IIS combated the pathogens with higher availability in NC

(higher ratio between passage surface area and passage length).

Once the IAVs are inhaled via MB, the highest DFs are in OC and PY. Similar to

NB cases, the difference in droplet composition does not impose a significant change

on the local viral load. The comparison of local HCD in OC and PY show a higher
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epithelial cell population in PY but similar DFs. The maximum population of the

refractory cell is 1.87 times higher and IFN cytokine release is 2.01 times more at

PY compared to OC (see Figures 2.15 (d) and (e)). The duration of IFN release was

similar due to the similarity between the surface area at PY and OC. An identical

TT minimum value between PY and NC due to similarity on the viral load and

consequently immune systems agents response (Figure 2.15 (d)). The virus titer

showed a similar trend but slightly higher peak infection titer at PY compared to

OC due to the 15.3% higher DF of virus-laden droplets with YNaCl = 0.104 at PY,

showing elevated infection at PY and OC during MB. By increasing the IIS and AIS

agents populations, the refractory cells shifted back to the susceptible state, and the

total apoptosis of epithelium at 12 dpi was predicted as 74.7% and 68.6% of the initial

cell population at PY and OC respectively (see Figure 2.15 (d)). The local respiratory

symptom threshold was determined at 0.62 to 5.44 dpi and 0.66 to 5.56 dpi at the

posterior of OC and PY, respectively. The threshold of the systemic symptom at the

posterior OC was predicted from 1.62 to 6.44 dpi and similarly for PY from 1.66 to

6.26 dpi at PY during NB.

The IAV-laden droplet respiration through MB and NB lead to different deposition

patterns and distinctive infection patterns in the short-term dpi. In this study, the

mucus clearance in OC and NC were neglected. In both cases, the virus titer decreases

to lower below the value at 5.6 dpi which represents an increased level of relief for flu

symptoms (see Figures 2.15 (b) and (e)). Comparatively, infections in PY induced

by the inhaled IAV-laden droplets via NB and MB show higher infection titers. The

clinical symptom was predicted to appear in the OC faster than NC due to the lower

surface area and hence, lower immune system agents population. It also indicates

a more extended recovery period. As demonstrated by the present in-silico study,

low strain (H1N1 and H3N2) IAV replication happened in the upper airway tissues

which agreed with experiments. Therefore, higher accumulation of activated dendritic
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cells as representative of adaptive immune system activation can be identified in PY

regions.

2.7 Conclusions

A multiscale in silico epidemiological study was performed to evaluate the trans-

portation, deposition, and local replication of the low-strain IAV in a subject-specific

human respiratory system. Two routes of exposure through oral and nasal breathings

with realistic respiratory waveforms were incorporated. The hygroscopic growth and

shrinkage of droplets with different NaCl content were estimated using the CFPD

model. The proposed model showed the feasibility of an experimentally validated

multiscale CFPD-HCD model in predicting the local virus replication and population

variations of the relative tissue agents. The quantitative conclusions are as follows:

• As demonstrated by the present in-silico study, low-strain (H1N1 and H3N2)

IAV replication occurs at the upper airway tissues which are in agreement with

experiments.

• For the mouth breathing case, the droplet deposition fraction in the oral cavity

was 26.4%, 23.7%, and 24.1% respectively for droplets with NaCl mass fraction

of 0, 0.068, and 0.104. No monotonic trend of the regional deposition is identified

with the NaCl mass fraction increase.

• For the nasal breathing case, the droplet deposition fraction in the nasal cavity

was 48.1%, 45.2%, and 47.6% respectively for the droplets with NaCl mass

fraction of 0, 0.068, and 0.104.

• As a result of high filtration efficiency of the nasal cavity, only the smaller

droplets were transferred to the pharynx and distal sections. Specifically, the

pharynx deposition fraction was significantly lower during the mouth breathing

(5.22%, 7.21%, and 8.34% respectively for the droplets with NaCl mass fraction
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of 0, 0.068, and 0.104) compared to the nasal breathing (20.2%, 25.5%, and

27.8% respectively for the droplets with NaCl mass fraction of 0, 0.068, and

0.104).

• Because of the elevated penetration of inhaled airflow rate with lower RH (with

RH=40%) for the mouth breathing case, total deposited droplets had a smaller

diameter compared to the nasal breathing case.

• Higher accumulation of activated dendritic cells as representative of adaptive

immune system activation was identified in the pharynx and oral cavity during

the mouth breathing and similarly in the pharynx and nasal cavity during the

nasal breathing.

• In the absence of mucus clearance, the average onset of systemic symptom was

estimated at 1.88 dpi for the nasal breathing and 1.64 dpi during the mouth

breathing exposure conditions. It shows the faster infection distribution and

immune system response during the mouth breathing exposure.

2.8 Limitations and Future Work

The biological system can be affected by a vast number of factors that makes

the numerical simulation highly complex and challenging. Dobrovolny et al. (2013)

have reported that no single model can predict the viral and host response dynamics

separately. Hence, more complex 3D cell culture media are required to consider the

intercellular communication in the realistic physiology of the tissue. Furthermore,

more informative data regarding the host cell and immune system response must be

used for the model training by employing the machine learning techniques. Currently,

most of the developed HCD models are underfitting the training data as the numbers

of the virus titer data are limited. To develop a more conclusive multiscale model,

other future research tasks include:
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• To consider the subject-specific human airway configurations for individual dis-

eased subjects, e.g., acute bronchitis and COPD patients.

• To employ the glottal adduction motion as it can significantly change the droplet

deposition patterns.

• To include the movement of the periciliary fluid layer by ciliary propulsions and

in tissue spatial distribution of the cell population, e.g., T cell movement within

lymph nodes, through employing the agent-based model.

• To include the resuspension of viral droplets from the wall film of the periciliary

fluid layer by employing the shear stress induced friction by the respired air as

this resuspension of discrete droplets would elevate the transport of the viral

agent in the lungs. The same framework can be employed for the evaluation of

HID50 in the human expelled breath at different times post-infection.
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APPENDIX A

ANSYS fluent user-defined functions (UDF) for the post-deposition calculation of

formaldehyde in the human nasal cavity.

/***********************************************************************

Copyright (C) 2018, Ahmadreza Haghnegahdar

Department of Chemical Engineering

Oklahoma State University, Stillwater, OK

Project:

Computational Fluid Particle Dynamics + Physiologically Based

Toxicokinetic model V.2 > [tissue and blood layers]

To calculate the absorption and translation of Formaldehyde

Macros/Functions:

[UDM_names] assigns the user-memory names.

[MixedBC_Form] defines the thermodynamic equilibrium between the gas mixture

in airways and the chemical concentration in the epithelium.

[CFPD_PBTK_v_2_FORM] do the in tissue calculation and save the data.

[tridiagonal] the tridiagonal matrix to solve the partial differential

equation (PDE).

Developer:

Ahmadreza Haghnegahdar - AUG 2018

************************************************************************/

#include "udf.h"

#include <stdio.h>

#include <stdlib.h>
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#include <math.h>

#include "para.h"

#include "sg.h" /* for the secondary gradient source macro */

#define extra_memories 21 /* Number of previously reserved UDMs, +1 is in this

UDF*/

#define ID_of_extended_wall 53 /*ID of the extended wall*/

/* Names enumerates of the user-defined scalars*/

enum{

PG, /*Propylene Glycol*/

VG, /*Vegetable Glycerin*/

NIC, /*Nicotine*/

FORM, /*Formaldehyde*/

ACR, /*Acrolein*/

DIACYL /*Diacetyl*/

};

/* Store data in UDMI s*/

/*

Region Airway || Tissue || Blood ||

d_index || 0 | 1 | ... | 49 || 50 | 51 | ... | 149 ||

NODE C_air || 0| 2 | ... | 50 || 51 | 52 | ... | 150 ||

UDMI UDSI || 21| 22| ... | 70 || 71 | 72 | ... | 170 ||

*/

/*********************** Formaldehyde ****************/

/* Formaldheyde has 150+30=80 UDMI after those defined for Diacetyl */

#define x_steps_t 150 /*It cannot be lower than 4.3667=(xt_max/xb_max) times of

x_steps_b*/

#define x_steps_b 30

#define n (x_steps_t + x_steps_b)

#define xt_max 6.55e-5 /* tissue thickness [m]*/

#define xb_max 1.5e-5 /* blood thickness [m]*/

#define deltax_t ((xt_max - 0.) / (real)x_steps_t)
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#define deltax_b deltax_t /*(xb_max / (real)x_steps_b)*/

#define P_t_air_form 101.5 /* tissue:air partition coefficient [m3/m3] */

DEFINE_EXECUTE_ON_LOADING(UDM_names, libname)

{

/*Formaldehyde*/

Set_User_Memory_Name(n + extra_memories, "Face [UDSI*rho*P_form/deltax^2]");

for (i = n + extra_memories + 1; i < 2*n + extra_memories + 1; i++)

{

const char tissue[] = "Tissue_F: ";

const char blood[] = "Blood_F: ";

char tissue_print[FILENAME_MAX];

char blood_print[FILENAME_MAX];

if (i < n + extra_memories + 1 + x_steps_t)

{

sprintf(tissue_print, "%s%d", tissue, (i - (n + extra_memories + 1)));

Set_User_Memory_Name(i, tissue_print);

}

else

{

sprintf(blood_print, "%s%d", blood, i - (n + extra_memories + 1) -

x_steps_t);

Set_User_Memory_Name(i, blood_print);

}

}

Set_User_Scalar_Name(0, "PG");

Set_User_Scalar_Name(1, "VG");

Set_User_Scalar_Name(2, "NIC");

Set_User_Scalar_Name(3, "FORM");

Set_User_Scalar_Name(4, "ACR");

Set_User_Scalar_Name(5, "DIACYL");

Message0("\nUDMIs and UDSIs are titled.\n");

}
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DEFINE_PROFILE(MixedBC_Form, thread, nv)

{

face_t f;

Thread *t0 = thread->t0;

real A[ND_ND], dG[ND_ND], dr0[ND_ND], es[ND_ND], dr, A_by_es;

real absrp;

absrp = 8.07e+7; /* 1/m */

/*C_UDSI_DIFF(c, t, FORM) */

real Af;

real beta0, gamma;

real temp1, temp2;

if (!Data_Valid_P() || !FLUID_THREAD_P(t0)) return; /* Do nothing if areas

are not computed yet or not next to fluid. */

begin_f_loop(f, thread)

{

cell_t c0 = F_C0(f, thread); /* identify the cell thread adjacent to the

face thread f */

if (N_TIME == 0) /*initialization*/

{

C_UDMI(c0, t0, n + extra_memories) = 0.0;

}

BOUNDARY_FACE_GEOMETRY(f, thread, A, dr, es, A_by_es, dr0);

Af = NV_MAG(A);

gamma = 1.;

if (NULLP(T_STORAGE_R_NV(t0, SV_UDSI_G(FORM))))

beta0 = 0; /* if gradient is not allocated and stored yet, bypass the

following macro (it happens when case/data files are being read */

else

BOUNDARY_SECONDARY_GRADIENT_SOURCE(beta0, SV_UDSI_G(FORM), dG, es,

A_by_es, gamma);

/* temporary variables used in the profile expression */

temp1 = gamma * A_by_es / dr;

134



temp2 = absrp * Af;

real delta_x = deltax_t / 2.;

real Y_inf;

if (N_TIME == 0)

{

Y_inf = 0.; /*It should be a fraction of the baseline*/

}

else if (N_TIME == 1)

{

Y_inf = (temp1*C_UDSI_M1(c0, t0, FORM) - beta0 + temp2 * Y_inf) / (temp2

+ temp1);

}

real Y0 = (temp1*C_UDSI(c0, t0, FORM) - beta0 + temp2 * Y_inf) / (temp2 +

temp1);

F_PROFILE(f, thread, nv) = Y0;

real C0 = P_t_air_form * Y0 * C_R(c0, t0); /* Input from the CFPD model:

mass fraction to concentration*/

C_UDMI(c0, t0, n + extra_memories) = C0 / pow(delta_x, 2.); /*Input of the

FEM at DEFINE_EXECUTE_AT_END*/

}

end_f_loop(f, thread)

}

DEFINE_EXECUTE_AT_END(CFPD_PBTK_v_2_FORM)

{

/* Input data */

/* Formaldehyde*/

/* Airway(1), Epithelium + Mucus(2), Subepithelium(3) */

/****************** General Input Data *******************/

/* Epithelium + Mucus Subepithelium

surface area(cm2)

Oral 103.1 103.1
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Pharyx / Larynx 100.0 100.0

Trachea 59.7 59.7

Main Bronchi 39.8 39.8

Bronchi + bronchiole 163.6 163.6

thickness(L, cm)

Oral 0.0065 0.0015

Pharyx / Larynx 0.0065 0.0015

Trachea 0.0066 0.0015

Main Bronchi 0.0066 0.0015

Bronchi + bronchioles 0.0066 0.0015

*/

real Q_b = 9.86766667e-5; /* Cardiac output [m3/s]*/

real adjust3[3] = { 0.01,0.02,1. }; /*nose=1%, all(broncial& trachea)=2%,

aleveoalr=100%*/

Q_b = Q_b * adjust3[1];

/***************** Epithelium + Mucus(2) ******************/

real V_maxC1 = 1.96e+4*1e-6; /* reaction V_max [kg/m3/s]*/

real adjust1[3] = { 1., 1.41, 1.051 }; /* V_maxC1 nose, bronchioles, other */

V_maxC1 = V_maxC1 * adjust1[1]; /* Adjusted V_maxC1*/

real K_m1 = 201e-3; /* reaction rate [Kg/m3]*/

real V_maxC2 = 0. ; /* reaction V_max [kg/m3/s]*/

real adjust2[3] = { 1, 3.81, 0.65 }; /* V_maxC2 nose, bronchioles, other */

V_maxC2 = V_maxC2 * adjust2[1]; /* Adjusted V_maxC2*/

real K_m2 = 1.; /* reaction rate [Kg/m3] - it should be

zero, but doesnt matter as long as V_maxC2 is zero (Numerator)*/

real D_t = 2.6 / 60. * 1e-8; /* tissue mass diffusivity [m2/s]*/

D_t = 8.08e-6;

real surfarea_t = 59.7e-4; /* tissue surface area [m2]*/

real V_t = surfarea_t * xt_max; /* volume of region [m3]*/

/******************* Subepithelium(3) ********************/

real P_b_t = 1.; /* blood:tissue partition coefficient [m3/m3]

*/
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real D_b = 1.62e-5; /* blood mass diffusivity [m2/s]*/

real K_f = 1.8e-2; /* reactivity [1/s]*/

real K_b = 1.07e-7; /* non specific binding [1/s]*/

real surfarea_b = surfarea_t; /* blood surface area [m2]*/

real V_b = surfarea_b * xb_max; /* volume of region [m3]*/

real delta_t = 0.05; /*Just to avoid -INF for steady case*/

real guard_SU = 1.; /* Steady and Unsteady Guard in diagonal elements*/

if (RP_Get_Boolean("pressure/unsteady?")) /* if UNSTEADY case*/

{

delta_t = CURRENT_TIMESTEP; /* dt for unsteady; 1 for steady case*/

}

else /* if STEADY case*/

{

guard_SU = 0.;

}

double a[n - 1]; /* Stack allocation*/

double b[n - 1];

double c[n - 1];

double d[n - 1];

double max_finder2[n - 1];

int i;

if (N_TIME == 0) /* initialization*/

{

for (i = 0; i < n; i++)

{

a[i] = 0.0;

b[i] = 0.0;

c[i] = 0.0;

d[i] = 0.0;

max_finder2[i] = 0.0;

}
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}

int myboolean = 0;

int face_number = 0;

Domain *domain = Get_Domain(1);

face_t f;

cell_t c0;

Thread *thread, *t0;

#if !RP_HOST

thread_loop_f(thread, domain) /* loops over all face threads in a domain*/

{

if (THREAD_TYPE(thread) == THREAD_F_WALL && THREAD_ID(thread) !=

ID_of_extended_wall) /* check if it is a wall */

/* and exclude the extended_wall */

{

begin_f_loop(f, thread)

{

if (PRINCIPAL_FACE_P(f, thread))

{

c0 = F_C0(f, thread); /* Get the cell id of cell adjacent to the

face*/

t0 = THREAD_T0(thread); /* Get the Thread id of the cells adjacent

to the face*/

real C0_by_deltax = C_UDMI(c0, t0, n + extra_memories);

if (N_TIME == 0) /* initialization*/

{

for (i = n + extra_memories + 1; i < 2*n + extra_memories+1; i++)

{

C_UDMI(c0, t0, i) = 0.0;
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}

}

else

{

for (i = n + extra_memories + 1; i < 2*n + extra_memories+1; i++)

{

d[i - (n + extra_memories +1)] = C_UDMI(c0, t0, i); /*

Initlize from previous time_step*/

}

}

for (i = 0; i < n; i++)

{

if (i == 0)

{

a[i] = 0.;

b[i] = 2.*D_t / pow(deltax_t, 2.) + K_f + K_b + V_maxC1 /

(K_m1 + d[i])

+ V_maxC2 / (K_m2 + d[i]) + guard_SU / delta_t;

c[i] = -D_t / pow(deltax_t, 2.);

}

else if (i < x_steps_t)

{

a[i] = -D_t / pow(deltax_t, 2.);

b[i] = 2.*D_t / pow(deltax_t, 2.) + K_f + K_b + V_maxC1 /

(K_m1 + d[i])

+ V_maxC2 / (K_m2 + d[i]) + guard_SU / delta_t;

c[i] = -D_t / pow(deltax_t, 2.);

}

else if (i == x_steps_t)

{

a[i] = -D_t / pow(deltax_t, 2.);

b[i] = (D_t / deltax_t + D_b / deltax_b) / ((deltax_t +
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deltax_b) / 2.) + K_f

+ K_b + V_maxC1 / (K_m1 + d[i]) + V_maxC2 / (K_m2 + d[i])

+ guard_SU / delta_t;

c[i] = -D_t * P_b_t / deltax_b / ((deltax_t + deltax_b) / 2.);

}

else if (i == x_steps_t + 1)

{

a[i] = -D_b / P_b_t / deltax_t / ((deltax_t + deltax_b) / 2.);

b[i] = 2.*D_b / pow(deltax_b, 2.) + K_f + K_b + Q_b / V_b +

guard_SU / delta_t;

c[i] = -D_b / pow(deltax_b, 2.);

}

else if (x_steps_t + 1 < i < x_steps_b)

{

a[i] = -D_b / pow(deltax_b, 2.);

b[i] = 2.*D_b / pow(deltax_b, 2.) + K_f + K_b + Q_b / V_b +

guard_SU / delta_t;

c[i] = -D_b / pow(deltax_b, 2.);

}

else if (i == x_steps_b)

{

a[i] = -2.* D_b / pow(deltax_b, 2.);

b[i] = 2.* D_b / pow(deltax_b, 2.) + K_f + K_b + Q_b / V_b +

guard_SU / delta_t;

c[i] = 0.;

}

}

for (i = 0; i < n; i++)

{

if (i == 0)

{

d[i] /= delta_t;

d[i] += D_t * C0_by_deltax;
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}

else

{

d[i] /= delta_t;

}

}

tridiagonal(a, b, c, d, n);

if ((n - 1) != sizeof(d) / sizeof(*d)) /* Check if [d] length has

changed*/

{

myboolean = 1;

face_number++;

}

for (i = 0 + n + extra_memories + 1; i < 2*n + extra_memories+1; i++)

{

C_UDMI(c0, t0, i) = d[i - (n + extra_memories + 1)];

if (C_UDMI(c0, t0, i) > max_finder2[i - (n + extra_memories + 1)])

max_finder2[i - (n + extra_memories + 1)] = C_UDMI(c0, t0, i);

}

}

}

end_f_loop(f, thread)

}

if (myboolean == 1)

{

CX_Message("\n Error! [d] dimensions mismatch. Tridiag input had size of:

%i, but output has size of : %i at %i faces of Thread %i.",

(n - 1), sizeof(d) / sizeof(*d), face_number, THREAD_ID(thread));

}

myboolean = 0;

}
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#endif

#if !RP_HOST

/*Print MAX face -in tissue layers at each time step in a text file*/

for (i = 0 + (n + extra_memories + 1); i < 2*n + extra_memories +1; i++)

{

max_finder2[i - (n + extra_memories + 1)] = PRF_GRSUM1(max_finder2[i - (n +

extra_memories + 1)]);

}

#endif

for (i = 0 + (n + extra_memories + 1); i < 2*n + extra_memories +1; i++)

{

node_to_host_real_1(max_finder2[i - (n + extra_memories + 1)]);

}

#if !RP_NODE

FILE *svfile2;

if (N_TIME == 0)

{

svfile2 = fopen("MAX_FACE_form.txt", "wb"); /* to clear the previous file*/

fclose(svfile2);

}

svfile2 = fopen("MAX_FACE_form.txt", "a"); /* appending */

if (N_TIME == 0)

{

for (i = 0 + (n + extra_memories + 1); i < 2*n + extra_memories +1; i++)

{

if (i == 0 + extra_memories)

{

fprintf(svfile2, "Time %i", i - (n + extra_memories + 1));

}

else

{
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fprintf(svfile2, " %i", i - (n + extra_memories + 1));

}

}

fprintf(svfile2, "\n");

}

for (i = 0 + (n + extra_memories + 1); i < 2*n + extra_memories + 1; i++)

{

if (i == 0 + (n + extra_memories + 1))

{

fprintf(svfile2, "%llu %e", N_TIME, max_finder2[i - (n + extra_memories +

1)]);

}

else

{

fprintf(svfile2, " %e", max_finder2[i - (n + extra_memories + 1)]);

}

}

fprintf(svfile2, "\n");

fclose(svfile2);

#endif

Message0("The Max face_formaldehyde UDMs are printed in the MAX_FACE_form.txt

file.\n");

}

void tridiagonal(real* a, real* b, real* c, real* d, int num)

{

/*Ahmadreza Haghnegahdar - 2018*/

/*

Inputs:

n - number of unknowns and equations (length of vector d)

[d] - initially contains the vector [x from the previous time step] [0 : n-1]

[a] - Subdiagonal [0 : n-2]
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[b] - The main diagonal [0 : n-1]

[c] - Superdiagonal [0 : n-2]

Outputs:

[d] - The solution at the current time step [0 : n-1]

*/

/*

Example:

|b0 c0 0 0 ||x0| |d0|

|a1 b1 c1 0 ||x1| _ |d1|

|0 a2 b2 c2||x2| |d2|

|0 0 a3 b3||x3| |d3|

1st row:

b0x0 + c0x1 = d0

-> x0 + (c0/b0)x1 = d0/b0

*-> x0 + h0x1 = r0

where h0 = c0/b0

r0 = d0/b0

middle row (2nd):

a1x0 + b1x1 + c1x2 = d1

from 1st row: -(a1x0 + a1h0x1 = a1r0)

------------------------------

-> (b1 - a1h0)x1 + c1x2 = d1 - a1r0

*-> x1 + h1x2 = r1

where h1 = c1/(b1 - a1h0)

r1 = (d1 - a1r0)/(b1 - a1h0)

middle row (3rd):

a2x1 + b2x2 + c2x3 = d2

from 2nd row: -(a2x1 + a2h1x2 = a2r1)
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------------------------------

-> (b2 - a2h1)x2 + c2x3 = d2 - a2r1

*-> x2 + h2x3 = r2

where h2 = c2/(b2 - a2h1)

r2 = (d2 - a2r1)/(b2 - a2h1)

last row:

a3x2 + b3x3 = d3

from 3rd row: -(a3x2 + a3h2x3 = a3r2)

------------------------------

-> (b3 - a3h2)x3 = d3 - a3r2

*-> x3 = r3

where r3 = (d3 - a3r2)/(b3 - a3h2)

In this way: all subdiagonals are changed to zeros

all Main Diagonals are ones

all superdiagonals are h [0 : n-1]

Condition: ||bi|| > ||ai|| + ||ci||

in this version, c matrix is reused instead of hand d matrix is reused instead

of r and x matrices to report results*/

int i;

for (i = 0; i < num; i++)

{

if (i == 0) /* For the first row*/

{

c[0] = c[0] / b[0]; /* h[0 : n-1] = c[0 : n-1] (one iteration behind) */

d[0] = d[0] / b[0]; /* d[0 : n-1] = r[0 : n-1] (one iteration behind) */

}

145



else

{

c[i] = c[i] / (b[i] - a[i] * c[i - 1]);

d[i] = (d[i] - a[i] * d[i - 1]) / (b[i] - a[i] * c[i - 1]);

}

}

for (i = num - 2; i >= 0; i--) /*The back substitution */

{ /* d[0 : n-1] = x[0 : n-1] (solution) (one iteration ahead) */

d[i] -= c[i] * d[i + 1];

}

}
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APPENDIX B

ANSYS fuent text user interface (TUI) to modify the droplet minimum diameter

and mass.

(rpsetvar ’dpm/lowest-diameter 1e-8)

(rpsetvar ’dpm/lowest-mass 1e-20)

(dpm-parameters-changed) /*execute to modify DPM settings*/

(models-changed)

147



APPENDIX C

ANSYS fuent UDF for realistic mouth breathing pattern.

/***********************************************************************

Copyright (C) 2018, Ahmadreza Haghnegahdar

Department of Chemical Engineering

Oklahoma State University, Stillwater, OK

Realistic Mouth Breathing Pattern

Reference: Scheinherra et al., 2015

Developer:

Ahmadreza Haghnegahdar - AUG 2018

************************************************************************/

#include "udf.h"

#include <math.h>

#define inhalation_time 1.7606 /*sec*/

#define exhalation_time 4.0254 /*sec*/

DEFINE_PROFILE(MOUTH_realistic_breathing_pattern_uniform, thread, position)

{

real x[ND_ND]; /*This will hold the position vector */

real r;

face_t f;

real xc = 0.0; /*Coordinates of inlet circle center */

real yc = 0.0;

real zc = 0.0;

real radius = 0.01; /*mouth-Inlet Radius > 1 cm */
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real Area = 0.00010558566; /*m*/

real t_model = RP_Get_Real("flow-time");

real t_size = RP_Get_Real("physical-time-step");

double V_fit;

double Q_fit;

/*Defining the Breathing pattern profile - Fitting by polynimial (ploy1-9 are

compared and the one with lowest RMSE is selected)*/

/* The fitted curve is validated for 20 B_cycle with RMSE=0.66 > 20*4.0254

sec ~ 8 sec */

real a0 = -1.462;

real a1 = 19.55;

real b1 = 60.38;

real a2 = -10.9;

real b2 = -0.9638;

real a3 = -1.6;

real b3 = 7.435;

real a4 = -2.737;

real b4 = 1.096;

real a5 = -2.057;

real b5 = -0.4919;

real a6 = -0.4734;

real b6 = 0.7077;

real a7 = -0.4042;

real b7 = -0.8452;

real a8 = 0.08115;

real b8 = 0.6936;

real w = 1.561;

Q_fit = a0 + a1 * cos(t_model * w) + b1 * sin(t_model * w) + a2 * cos(2 *

t_model * w) + b2 * sin(2 * t_model * w) + a3 * cos(3 * t_model * w) + b3 *

sin(3 * t_model * w) + a4 * cos(4 * t_model * w) + b4 * sin(4 * t_model *

w) + a5 * cos(5 * t_model * w) + b5 * sin(5 * t_model * w) + a6 * cos(6 *

t_model * w) + b6 * sin(6 * t_model * w) + a7 * cos(7 * t_model * w) + b7 *

sin(7 * t_model * w) + a8 * cos(8 * t_model * w) + b8 * sin(8 * t_model *
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w);

V_fit = Q_fit * 0.001 / 60.0 / Area; /*to m^3, to sec*/

begin_f_loop(f, thread)

{

/*

/* parabolic inlet condition - for cylindrical mouth inlet */

F_CENTROID(x, f, thread);

r = sqrt(pow((x[0] - xc), 2) + pow((x[1] - yc), 2) + pow((x[2] - zc), 2));

F_PROFILE(f, thread, position) = 2.0 * V_fit * (1.0 - pow(r, 2) /

pow(radius, 2)); /*u fitted from >> 2*u_average = u_max */

*/

/* uniform inlet condition - with exhalation time*/

F_PROFILE(f, thread, position) = V_fit;

}

end_f_loop(f, thread)

}
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APPENDIX D

ANSYS fluent UDF for realistic nasal breathing pattern.

/***********************************************************************

Copyright (C) 2018, Ahmadreza Haghnegahdar

Department of Chemical Engineering

Oklahoma State University, Stillwater, OK

Realistic Nasal Breathing Pattern

Reference: Rennie et al., 2011

Developer:

Ahmadreza Haghnegahdar - AUG 2018

************************************************************************/

#include "udf.h"

#include <math.h>

#define inhalation_time 1.60 /*sec*/

#define exhalation_time 3.98 /*sec*/

DEFINE_PROFILE(NASAL_realistic_breathing_pattern_uniform, thread, position)

{

real x[ND_ND]; /*This will hold the position vector */

real r;

face_t f;

real xc = 0.0; /*Coordinates of inlet circle center */

real yc = 0.0;

real zc = 0.0;

/*surface areas [m2]
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inlet_nose_left:37 3.9244705e-05 /*left nostril */

inlet_nose_right : 39 3.9904616e-05 /*right nostril */

*/

real surf_average = (3.9244705e-05 + 3.9904616e-05) / 2.;

real t_model = RP_Get_Real("flow-time");

real t_size = RP_Get_Real("physical-time-step");

double V_fit;

double Q_fit;

/*It is valid between 0 to 3.98 sec >> after this do the loop*/

if (t_model > exhalation_time && t_model < exhalation_time * 2)

{

t_model = t_model - exhalation_time;

}

else if (t_model > exhalation_time * 2)

{

Message0("\nWARNING: The fitted profile is not valid for the times > 3.98*2

seconds.\n");

}

real a1 = 263.7;

real b1 = 0.6369;

real c1 = 3.015;

real a2 = 330.7;

real b2 = 0.1254;

real c2 = -3.727;

real a3 = 73.19;

real b3 = 4.86;

real c3 = -0.7755;

real a4 = 48.58;

real b4 = 7.822;

real c4 = -0.7588;

real a5 = 16.06;

real b5 = 13.33;

real c5 = 0.03013;
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real a6 = 253.6;

real b6 = 2.011;

real c6 = -0.4039;

real a7 = 43.69;

real b7 = 10.85;

real c7 = -1.085;

Q_fit = a1 * sin(b1*t_model + c1) + a2 * sin(b2*t_model + c2) + a3 *

sin(b3*t_model + c3) + a4 * sin(b4*t_model + c4) + a5 * sin(b5*t_model +

c5) + a6 * sin(b6*t_model + c6) + a7 * sin(b7*t_model + c7);

V_fit = Q_fit * 1e-6 / surf_average; /*to m2/s*/

begin_f_loop(f, thread)

{

/*

/* parabolic inlet condition - for cylindrical mouth inlet */

F_CENTROID(x, f, thread);

r = sqrt(pow((x[0] - xc), 2) + pow((x[1] - yc), 2) + pow((x[2] - zc), 2));

F_PROFILE(f, thread, position) = 2.0 * V_fit * (1.0 - pow(r, 2) /
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pow(radius, 2)); /*u fitted from >> 2*u_average = u_max */

*/

/* uniform inlet condition - with exhalation time*/

F_PROFILE(f, thread, position) = V_fit;

}

end_f_loop(f, thread)

}
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