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Abstract: In establishing the traditional analogies between mechanical and electrical networks, 

lack of preservation of topology while transitioning from a mechanical to its equivalent electrical 

network was rectified by so-called mobility or force–current analogy. One drawback was that the 

mass, which is the equivalent of the grounded capacitor, cannot represent a two-terminal device 

when described in an inertial frame. This was remedied by a two-terminal mechanical device 

termed the ‘inerter’ postulated at the turn of this century. The inerter is a mechanical element in 

which applied force is proportional to the relative acceleration across its terminals. The 

proportionality constant is termed ‘inertance’. Practically, the inerter is realized by storing energy 

using a flywheel and can deliver a dynamic mass presence a few orders of magnitude greater than 

the device mass leading to considerable interest in inerters in recent years. In this study, inspired 

by acoustic metamaterials (AM), the dynamic characteristics of ‘meta-structures’ employing 

inerters are explored. Firstly, improved analytical models incorporating component inertias and 

sizing and parametric studies for two prominent embodiments of the inerter viz. the rack-and-pinion 

and the ball-screw inerter are considered. The dependence of specific inertance (ratio of inertance 

to static mass) on key parameters are brought out through simulations. A prototype rack-and-pinion 

inerter with specific inertance of 90 was designed, fabricated and tested under low-rate excitations. 

Measured specific inertance was found to display an exponential decline with increase in excitation 

frequency. Using a phase-matching procedure, estimation of internal stiffness and damping in the 

prototype reveals influences of the excitation frequency and ultra-low frequency meandering 

effects. Further, motivated by challenges in miniaturizing rotary components for microscale 

inerters, a potential kinematically-simpler structure based on the von Mises truss is investigated. 

Its nonlinear equation of motion is derived using Hamilton’s principle. Potential inertant 

mechanisms for this structure under harmonic inputs are probed using simulations. Finally, while 

studies on inherent nonlinearities in inerters are more widely available, those concerning the use of 

intentionally nonlinear inerters are scarce. In this context, the mechanical wave manipulation 

characteristics of Nonlinear Inertant Acoustic Metamaterials (NLIAM) are studied. Based on 

notional concepts for inertant devices, frequency and acceleration-dependent nonlinear inertant 

models are advanced. Dispersion characteristics of NLIAM with frequency-dependent inverse 

square law (ISL) and power law (PL) inertance are examined. While a tuned ISL model ensures 

existence of band gap over almost the entire bandwidth of interest, its limiting inertances are 

challenging to realize in practice. A potentially more practical PL approximation is proposed and 

shown to have a widening of the band gap by more than 100% towards frequencies below the lower 

bound of the band gap for the AM with frequency invariant inertance. Further, drawing inspiration 

from the Duffing-type stiffness, first order dispersion corrections are obtained for an NLIAM with 

acceleration-dependent inertance using a perturbation approach. Dispersion curves shifts are found 

to enable this NLIAM to act as a passive adaptive filter for mechanical waves based solely on 

excitation amplitude. Practical manifestations of NLIAM could help realize extraordinary wave 

manipulation capabilities especially suitable for low frequency structural dynamic applications.



v 
 

TABLE OF CONTENTS 

 

Chapter                Page 

I. INTRODUCTION………………………………………………………………………...1 

 

1.1 Motivation…..…………………………………………………………………............1 

1.2 Literature Review…..…………………………………………………………….........2 

1.3 Objectives………..…………………………………………………………………...14 

1.4 Chapter Overviews……..…………………………………………………………….15 

 

II. CHARACTERIZATION OF A STRUCTURAL INERTER……………………………17 

 

2.1 Introduction…………..……………………………………………………................17 

2.2 Analytical Model………………..………………………………………………........18 

 2.2.1 Analytical Expressions for Specific Inertance………………...…………..18 

2.3 Numerical Parametric Study…………..……………………………………………..24 

2.4 Test Article Design and Fabrication………..…………………………………………30 

2.5 Experimental Setup and Procedures……..…………………………………………..31 

2.6 Results and Discussions…………..………………………………………………….35 

 2.6.1 Displacement Controlled Sinusoidal Excitations...……………………….36 

2.6.2 Acceleration Controlled Sinusoidal Excitations...………………………...40 

2.6.3 Estimation of Internal Stiffness and Damping……...……………………..43 

2.7 Summary………………..……………………………………………………………49 

 

III. CHARACTERIZATION OF INERTANCE IN A KINEMATICALLY SIMPLER 

STRUCTURE……………………………………………………………………………50 

 

3.1 Introduction & Motivation ……………………………………..……………………50 

3.2 Analytical Model ………………………..…………………………………………..52 

3.3 Numerical Parametric Study………………..………………………………………..56 

3.4 Harmonic Displacement Input………………………..………………………….......57 

 3.4.1 Swing Arm Mass Variation…………………...…………………………..58 

 3.4.2 Swing Arm Length Variation………………………...…………………...59 

 3.4.3 Damping Constant Variation……………………...………………………60 

 3.4.4 Excitation Frequency Variation…………………...……………………....62 

3.5 Harmonic Force Input……………………………..……………………....................63 

 3.5.1 Swing Arm Mass Variation…………………...…………………………..63 

 3.5.2 Swing Arm Length Variation……………...……………………………...65 

 3.5.3 Damping Constant Variation………………………...……………………66 



vi 
 

Chapter                Page 

 3.5.4 Excitation Frequency Variation……………………...……………............67 

3.6 Results and Discussions………………..…………………………………………….69 

3.7 Summary………………………..……………………………………………………71 

 

IV. NONLINEAR INERTANT ACOUSTIC METAMATERIALS………………………...73 

 

4.1 Introduction & Motivation ……………………..……………………………………73 

4.2 Analytical Model………………………………..…………………………………...74 

 4.2.1 NLIAM with Frequency-Dependent Inertance…………………...……….75 

4.2.2 NLIAM with Acceleration-Dependent Inertance……………………...….81 

4.3 Dispersion Characteristics………………………..………………………………….89 

4.3.1 NLIAM with Frequency-Dependent Inertance………………...………….89 

4.3.2 NLIAM with Acceleration-Dependent Inertance……………………...….94 

4.4 Summary…………………………..………………………………………………....96 

       

V. CONCLUSIONS AND RECOMMENDATIONS………………………………………97 

 

5.1 Conclusions………………………..…………………………………………………97 

5.2 Recommendations……………………………………..……………………………100 

 

REFERENCES………………………………………………………………………………….102 

 

  



vii 
 

LIST OF TABLES 

 

 

 

Table                     Page 

2.1. Key components of the ball-screw inerter and their parametric values……………………...26 

2.2. Key components of the rack-and-pinion inerter and their parametric values……...............29 

2.3. Summary of components for the rack-and-pinion inerter………………................................31 

3.1. Base parametric setting of the potential kinematically simpler structure …………………...56 

3.2. Swing arm mass variation cases……………………………..……………………………..58 

3.3. Swing arm length variation cases…………………………..……………….....................59 

3.4. Damping constant variation cases……………..…............................................................60 

3.5. Excitation frequency variation cases…………………………………..…………………62



viii 
 

LIST OF FIGURES 

 

Figure                     Page 

 

1.1. Traditional force current analogy [2]…………………………………….…......................3 

1.2. Force response equations showing the incompleteness of the element which relates to the 

relative acceleration…………………………………………………………………………….....4 

1.3. Updated force-current analogy [2]………………………………………………………….5 

1.4. Schematic of a rack-and-pinion inerter [10]…………………….…………………………….6 

1.5. Schematic of a ball-screw inerter [4, 6]……………………….……………......................6 

1.6. Ball-screw inerter manufactured at Cambridge University [10]……………………...............7 

1.7. von Mises truss having two pin joints [40]………….……………………………………..11 

1.8. Stress-strain curve of the von Mises truss [40].………………………………………….12 

2.1. Ball and screw inerter CAD model. Units: mm……………………………………………19 

2.2. Line diagram of ball and screw inerter showing forces and geometric parameters…………19 

2.3. Rack-and-pinion inerter CAD model. Units: mm………………………...………………..22 

2.4. Line diagram of rack-and-pinion inerter showing forces and geometric parameters………..22 

2.5. Parametric curves of ball-screw inerter. L: lead of screw…………………...……………..27 

2.6. Parametric curves of rack-and-pinion inerter. P: pitch of gear/pinion……....……………..28 

2.7. Rack-and-pinion inerter……………………………………………………...……………..30 

2.8. LCM 200 load cell…………………………………………………………...……………..32 

2.9. 3D model of the fixture between shaker head and the inerter……………….……………..32 

2.10. 3D model for the fixture between load cell and rack……………………………………..33 

2.11. Schematic of structural scale inerter experiment setup…………………….……………..33 

2.12. Rack-and-pinion inerter test setup with electro-dynamic shaker…………..……………..34 

2.13. Experimental (a) force and (b) acceleration histories at 0.5 Hz under displacement 

control…………………………………………………………………………………………….36 



ix 
 

Figure                     Page 

 

2.14. Experimental (a) force and (b) acceleration histories at 1 Hz under displacement 

control………………..………………..………………..………………………………………37 

2.15. Experimental (a) force and (b) acceleration histories at 2 Hz under displacement 

control………………..………………..………………..………………………………………37 

2.16. Experimental (a) force and (b) acceleration histories at 3 Hz under displacement 

control………………..………………..………………..………………………………………37 

2.17. Experimental (a) force and (b) acceleration histories at 4 Hz under displacement control...38 

2.18. Experimental (a) force and (b) acceleration histories at 5 Hz under displacement control...38 

2.19. Variation of J/Mst with excitation frequency from displacement controlled tests…………39 

2.20. Experimental (a) force and (b) acceleration histories at 3 Hz under acceleration control….40 

2.21. Experimental (a) force and (b) acceleration histories at 4 Hz under acceleration control….41 

2.22. Experimental (a) force and (b) acceleration histories at 5 Hz under acceleration control….41 

2.23. Variation of J/Mst with excitation frequency from acceleration controlled tests…………..42 

2.24. Line diagram of rack-and-pinion inerter with lumped elements representing the internal 

stiffness and damping………………..………………..…………………....…………………….43 

2.25. Estimated internal (a) stiffness and (b) damping versus excitation frequency……………..45 

2.26. Comparison of experimental and simulated specific inertance for (a) Displacement-

Controlled Sinusoidal Excitation (DCSE) and (b) Acceleration-Controlled Sinusoidal Excitation 

(ACSE) ………………..………………..………………………..……………………………46 

2.27. Phase angle spectra for (a) 0.5 Hz, (b) 1 Hz, (c) 2 Hz, (d) 3 Hz, (e) 4 Hz, and (f) 5 Hz for 

displacement control………………..………………..………………..…….………………….48 

2.28. Phase angle spectra for (a) 3 Hz, (b) 4 Hz, and (c) 5 Hz for acceleration control………….48 

3.1. von Mises truss [43] ………………..………………..……………………...……………...52 

3.2. Dynamic response of a von Mises truss [43] ………………..……………...……………...53 

3.3. Analytical model of the potential kinematically simpler structure ………………………..54 

3.4. Hysteresis loop for m1 = 0.0001 kg………………..……………………………………..59 

3.5. Hysteresis loop for l1 = 0.0005 m………………..………………………...……………..60 

3.6. Hysteresis loop for (a) c = 0.001 Ns/m (b) c = 10 Ns/m………………...……………..61 

3.7. Hysteresis loop for (a) ω = 0.628 rads−1(b) ω = 62.8 rads−1…………………………..63 

 



x 
 

Figure                     Page 

 

3.8. Dynamic response and force variation for (a) m1 = 0.0001 kg (b) m1 = 0.001 kg (c) m1 =

0.002 kg (d) m1 = 0.01 kg (e) m1 = 0.02 kg…………………………………………………64 

3.9. Dynamic response and force variation for (a) l1 = 0.0005 m  (b)  l1 = 0.001 m (c)  l1 =

0.005 m (d)  l1 = 0.01 m (e)  l1 = 0.02 m …………………………..………………………..66 

3.10. Dynamic response and force variation for (a) C = 0.001 Ns/m  (b)  C = 0.01 Ns/m (c)  C =

0.1 Ns/m (d)  C = 1 Ns/m (e)  C = 10 Ns/m …………………….………………….67 

3.11. Dynamic response and force variation for (a) ω = 0.628 rads−1  (b)  ω = 3.14 rads−1 

(c)  ω = 6.28 rads−1 (d)  ω = 31.4 rads−1(e)  ω = 62.8 rads−1………..…………………...68 

3.12. Specific inertance variation for SAM variation under (a) harmonic displacement input (b) 

harmonic force input………………..………………………….........................………………..69 

3.13. Specific inertance variation for SAL variation under (a) harmonic displacement input (b) 

harmonic force input………………..………………...………………………………….........70 

3.14. Specific inertance variation for damping constant variation under (a) harmonic displacement 

input (b) harmonic force input………………..………………...……………….......................70 

3.15. Specific inertance variation for excitation frequency variation under (a) harmonic 

displacement input (b) harmonic force input………………..………………...………………...71 

4.1. (a) Discrete element lattice representation of a one-dimensional nonlinear inertant acoustic 

metamaterial (NLIAM) and (b) its effective model…………………...……………………….75 

4.2. Conceptual schematics for potential frequency-dependent – (a) Sleeve-Type, (b) Radial 

Buckling-Type, (c) Clutch-Type, and acceleration-dependent – (d) Stroke Grip-Type nonlinear 

inerters………………..………………..…………………………..…………………………...79 

4.3. Comparison of inverse square law inertance and its approximation using the power law…..80 

4.4. Influence of the high frequency limit of the inertance, γ∞ = J∞ m2⁄  on the (a) real and (b) 

imaginary parts of the wavenumber for NLIAM with inverse square law (ISL) inertance………90 

4.5. Influence of the nonlinear inertance parameter, γn = Jn m2⁄  on the (a) real and (b) imaginary 

parts of the wavenumber for NLIAM with inverse square law (ISL) inertance………………….91 

4.6. Influence of the rate factor, r on the (a) real and (b) imaginary parts of the wavenumber for 

NLIAM with power law (PL) inertance………………..……………...……………………….92 

 

 



xi 
 

Figure                     Page 

 

4.7. Comparison of (a) the real and (b) imaginary parts of the wavenumber for the locally inertant 

acoustic metamaterial (LIAM) and the nonlinear inertant acoustic metamaterial (NLIAM) with 

inverse square law and power law inertance……………...……………………………...........93 

4.8. Dispersion curve shifts for the NLIAM with acceleration-dependent inertance for (a) 

variation of excitation amplitude, A∗ and (b) variation of the nonlinear parameter, Γ….………94 

4.9. Influence of excitation amplitude, A∗ and nonlinearity, Γ on the displacement transmissibility 

of the resonator (attachment) mass………………..…………………...……………………….96



xii 
 

LIST OF SYMBOLS AND ABBREVATIONS 

 

J…………………………………………………….....Inertance 

Υ………………………………………........................Specific inertance 

DCSE…………………………………………………Displacement Control Sinusoidal Excitation 

ACSE………………………………………………...Acceleration Control Sinusoidal Excitation 

ur…………………………………………………….Displacement of the Rack 

Φ………………………………………......................Phase angle 

Mst……………………………………………………Static mass 

k……………………………………….......................Stiffness 

c……………………………………………………...Damping constant or coefficient 

L……………………………………….......................Lagrange 

T……………………………………….......................Kinetic energy 

V………………………………………......................Potential energy 

SAM………………………………………………….Swing Arm Mass 

SAL…………………………………………………..Swing Arm Length 

AM…………………………………………………...Acoustic Metamaterial 

LRAM……………………………………………......Locally Resonant Acoustic Metamaterial 

LIAM………………………………………………...Linear Inertant Acoustic Metamaterial 

NLIAM………………………………........................Nonlinear Inertant Acoustic Metamaterial 

ISL…………………………………….......................Inverse Square Law 

PL……………………………………………………Power Law 

θ12…………………………………….......................Mass ratio 

δ12……………………………………………………Stiffness ratio



xiii 
 

ω̅……………………………………………………..Normalized frequency 

Γ̅……………………………………………………...Nonlinearity parameter 

Γ……………………………………….......................Normalized nonlinearity parameter 

A*…………………………………………………….Normalized amplitude 

r………………………………………………………Rate factor 

ε………………………………………………………Perturbation parameter 

γ0……………………………………………………..Static inertance Parameter 

γn……………………………………………………..Nonlinear inertance Parameter 

γ∞…………………………………………………….High frequency limit of the Inertance 

L……………………………………….......................Lattice length 

𝜇….…………………………………………………..Complex wave number 

α……………………………………….......................Real part of the wave number 

β……………………………………………………...Imaginary part of the Wave number 

u∗……………………………………………………..Displacement transmissibility



1 
 

CHAPTER I 

 

INTRODUCTION 

 

1.1 Motivation 

Humans have been inventing many things to satisfy their needs and to ease their work. Science has 

changed human life in a way no one expected. Starting with the invention of the bullock cart to the 

invention of the car, humans have strived to reduce their effort and improve their comfort. The 

rapid growth in human population and consequent huge demand on resources has led to 

considerable automation, which take less time and less human effort to produce many objects. 

One key component of such a system is the machine which reduces effort. Every machine 

under operation is subjected to different types of loads such as thermal load, mechanical load, 

seismic load, wind load etc. and it has to be designed to withstand these mechanical loads else it 

may result in adverse effects on the operation of the machines. Vibration is one such example, 

where the system is constantly moving to and fro with some displacement about the mean position. 

They have to be carefully designed to withstand these loads, such as a vibration suppression system 

in which the vibration absorber absorbs the vibrations and damps out the energy. The frequency of 

vibration and natural frequency of the system should not match otherwise it may lead to resonance 

and the structure vibrates with more amplitudes and may lead to failure. To avoid this, a vibration 

isolator can be used, where the system’s natural frequency is altered by the isolator and keeps it 

well below the natural frequency of the system so that resonance is avoided and the system doesn’t 

get damaged.
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Instead of vibrations being absorbed by the resonators, they can be used to harvest energy 

while reducing the vibrations. Several methods have evolved to harvest the unnecessary vibrations. 

One interesting way to utilize the undesired vibrations is by using an energy harvester, where the 

vibrations are absorbed by a means of transduction in harvesters and the generated energy is used 

to charge a battery. Discovered by Michael Faraday in 1831, one means to harvest energy is by 

electromagnetic induction which uses coils and magnets to harvest energy.  

The traditional vibration absorbers used are composed of springs and dampers, which when 

under load absorb energy. The spring gets compressed and the damper dissipates energy by offering 

resistance to the load. Depending on the type of load, they need to be modified and designed, for 

example in an earthquake sustaining bridge design, large springs and dampers are used, which 

deform and absorb the energy keeping the structure less prone to damage from vibrations. 

Manufacturing of these large springs and dampers is difficult to produce, uses more material and 

involves high cost. A suitably designed inerter could serve as a complementary mechanical element 

in such systems in order reduce overheads.  

The inerter which was introduce almost two decades ago has a unique property, inertance 

which is can provide dynamic mass amplification. It acts as if it has high dynamic mass under 

loading with relatively small static device mass. In practice, specific inertance (ratio of inertance 

to static device mass) of up to 300 can be achieved [2]. Using this approach, in addition to springs 

and dampers for vehicle suspensions systems, vibration isolation systems, and mechanical 

actuators, an inerter can be used, which significantly improves the performance and also reduces 

the size and mass of the mechanical system. 

1.2 Literature Review 

In the traditional analogy as shown in the Figure 1.1, between mechanical and electrical 

networks a spring is equivalent to an inductor, a damper is equivalent to a resistor, and mass is 

equivalent to a capacitor, force is equivalent to current, and a fixed end is equivalent to an electrical 

ground in an inertial frame of reference [1]. In the traditional analogy, the spring is equivalent to a 
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resistor and the damper is equivalent to the inductor. But there is no perfect equivalence for the 

non-grounded capacitor. Previously, the mass element was equivalent to a non-capacitor, but, the 

capacitor can have two active terminals where as one end of the mass element should be grounded 

and a mass element cannot store energy where as a capacitor can. 

 

Figure 1.1: Traditional force current analogy [2]. 

 

The two terminal capacitor in electrical networks had an incomplete equivalence, there has 

to be a mechanical device in which the force applied between the two ends is directly proportional 

to the relative acceleration of the two ends, the Figure 1.2 interprets the question in an easy way. 
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Figure 1.2: Force response equations showing the incompleteness of the element which relates to 

the relative acceleration 

 

To complete this analogy, a new element 'inerter' is proposed by Smith [2] in 2002. The 

inerter is a two terminal mechanical device in which the force applied between the two ends is 

directly proportional to the relative acceleration of the two ends. The inerter is the missing element 

in the force current analogy. It is equivalent to a capacitor which stores energy. A mass element 

has only one active terminal while another terminal is always grounded, but the capacitor can have 

two active terminals without one being grounded. Electrical networks with two active terminal 

capacitors do not have a direct mechanical analogy. The inerter is an element which has two 

terminals and a fly wheel which stores energy.  

𝐹 = 𝐽 (𝑎1 − 𝑎2)                (1.1)       

 

In which F is applied force, J is the inertance and 𝑎1 and 𝑎2 are the accelerations of the 

two terminals. With the invention of an inerter the force-current analogy can be completed as shown 

in the Figure 1.3 and the perfect equivalence for the capacitor is the inerter. 
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Figure 1.3: Updated force-current analogy [2]. 

The unique behavior of the inerter, which is the dynamic mass amplification is mostly used 

in vibration absorption systems and its use has significantly improved the performance over 

traditional shock absorbers. The physical realizations of the inerter is more important to study so 

as to understand its nature and its dynamic mass amplification effect. The inerters in practice, can 

achieve specific inertance of up to 300 which is the ratio of dynamic mass to static mass of the 

device. 

The inerter can be physically realized in many ways. The prominent realizations are rack-

and-pinion inerter [3] as shown in the Figure 1.4 is the schematic of rack-and-pinion inerter, in 

which the force transmission takes place from rack to pinion, pinion to gear, gear to pinion and 

pinion to flywheel, inertance occurs due to the gear ratios of the gear and pinion. 
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Figure 1.4: Schematic of a rack-and-pinion inerter [10] 

Figure 1.5 is the schematic of ball-screw inerter [4, 6], where it has a screw which 

translates, and the ball-nut rotates which has an attached flywheel. Force transmission takes place 

from screw to ball-nut, ball-nut to flywheel. 

 

Figure 1.5: Schematic of a ball-screw inerter [4, 6] 

Ball-screw inerter is the first ever manufactured inerter at Cambridge University, it is 

symmetric in nature and simple in construction as shown in the Figure 1.6, it has a ball-screw 

mechanism and a flywheel. 
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Figure 1.6: Ball-screw inerter manufactured at Cambridge University [10] 

Inerter can be realized in many ways out of which rack-and-pinion and ball-screw inerter 

are prominent. One more way of realizing an inerter is hydraulic inerter or fluid inerter [7, 8], whose 

construction is simple but installing the fluid-inerter is way more complex as it has to be used in 

very confined space and with proper control of pressure. Depending on the type of application and 

complexity involved different inertant realizations were evolved gradually. 

Prime application of inerter was as a vibration absorption system, so its applications are 

mostly focused on vehicle suspension system. Vehicle suspension is the first ever application of 

inerter in which the performance was improved significantly [2, 3]. The inerter was employed in 

eight different suspension layouts [3] including the full car model analytical optimization was done 

and experiment results of one such layout is reported. Significant performance improvement was 

observed in the layouts employing inerter. 

Wang et al [4] used the inerter in train suspension, where ball-screw inerter was used to 

study its effect on the different layouts. Five different types of suspension layouts are explained 
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and analytical results of those layouts were reported and one experiment result of one layout is 

reported, where the performance was very much observed. The third application was in steering 

systems of a high performance vehicle [5] where a damper was replaced with an inerter to stabilize 

the system and study its dynamic behavior, and the computer simulations demonstrate the 

stabilization of the system and improved performance parameters such as ride comfort, tire grip 

and suspension displacement. 

Papageorgiou and Smith [6] extended the study by testing both ball-screw and rack-and-

pinion inerter with a closed loop hydraulic test rig and low frequency response of both the inerters 

were reported. Both of the inerters were studied to explain their performance relatively. Any 

physical system has nonlinear properties, these are very tough to predict by experiment or analytical 

methods Liu et al [9] and Xin et al [12] studied nonlinearities in landing gear model incorporating 

inerter where the prime focus was to improve the landing gear model for shimmy vibrations and 

study its nonlinear effects. A Simulink model was used to predict the model [9] and interestingly 

models with inerter and without inerter were analyzed to compare the performance, model 

employing inerter showed more improvement in the performance parameters. Wang and Su [11] 

studied the inerter nonlinearities on vehicle suspension systems, three suspension layouts were 

analyzed and three nonlinearities of inerter which are friction, elastic effect and backlash were 

studied. 

Further the merits of inerter in semi active suspension system were studied in [13 - 17], 

where inerter was used in combination with spring and damper strut suspensions, simulations were 

carried out and they were analyzed on performance parameters like tire grip, road holding capacity, 

suspension deflection and body acceleration. They make up most of the parameters used to study 

the performance of a suspension system, drastic improvement was observed in layouts employing 

inerter. 

Kuznetsov et al [18] made an interesting study by employing inerter in a quarter car model 

for vibration analysis and focuses on comfort level of the passengers. First a theoretical quarter car 
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model considering kelvin elements is considered and acceleration equations are derived. For 

numerical examples actual road data of three rural streets is taken and it is used for the analysis. 

The use of real time data is the merit of this study. Tran and Hasegawa [19] investigated the effect 

of inertance on the passive suspension by varying the inertance over the model, this research 

focuses on disturbances of frequency range 0-30 Hz which effects the passenger comfort and 

comparisons were made with base model and optimized the inertance for the model with more ride 

comfort. A detail study is made on the suspension layouts by studying it under three different types 

of engagements in [20] which are compressive engagement, disengagement and extensive 

engagement, Simulink and experimental data match very well and the model is close to reality. Li 

[21] investigated the adaptive inerter with varying inertance on a semi-active suspension model, 

analysis is carried out with different inertances to study the effect of addition of inerter to the 

system. 

A novel structure for Inerter-based Dynamic Vibrational Absorbers (IDVA) is proposed 

by replacing the damper in the Traditional Dynamic Vibration Absorbers (TDVA) [22] with inerter-

based mechanical networks and the performances of the proposed IDVA’s are investigated. Hu and 

Chen [23] introduced a new term IDVA (inerter-based dynamic vibration absorber), in which 

inerter is used as a vibration absorber, numerical optimization with inerter predicts 20% 

improvement in the performance in a wider frequency band over traditional devices. The 

unnecessary oscillations of a pendulum are damped out by employing an inerter, where it is used 

as a tuned mass absorber [24]. A horizontal forced duffing oscillator is considered as the model. It 

is shown that by changing the damping and inertance one can eliminate dangerous dynamic 

instabilities from the systems. A similar study has been made but in single degree of freedom and 

in multiple degree of freedom systems [25]. Vibration isolations is one of the key areas in which 

inerter can be used Chen [26] used inerter to study the effect of it on the natural frequency of the 

single, two and multi degree of freedom systems, where inerter significantly reduced the natural 

frequency of the system. One more interesting area in which inerter can be used is in building 
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suspension, [27, 28] have investigated in this area, where the buildings are to be protected against 

earthquake loads. 

The performance improvement in the vehicle suspension using the inerter increases 

significantly this led the researches to explore more in the field of inerter where adaptive 

performance can be achieved. An adaptive inerter in which the inertance can be controlled in real 

time is used in the suspension system [29] and good improvement in the ride comfort is noticed. A 

quarter car model with an adaptive inerter in parallel with a spring and damper is installed to study 

effect of adding an adaptive inerter [30] and it is concluded that performance improvement in ride 

quality, suspension deflection and tire deflection are improved. A theoretical model of a novel type 

of tuned mass damper with a continuously variable transmission and gear-control system which 

enables change of inertance is studied to examine its damping properties [31]. The experimental 

study of the similar inerter was carried out and helps offers damping efficiency within a good range 

of forcing frequencies [32]. A fluid inerter was used investigated as a passive vibration control [33] 

where the change in inertance is achieved by using pipe with adjustable radius. A simplified yet 

authentic model was developed for an inerter-based tuned mass damper including nonlinear effects 

such as viscous damping and dry friction as well as the play in gears [34]. The nonlinear effects of 

the geometrical arrangement of the inerter are investigated in terms of vibration isolation and it is 

compared to the traditional arrangement [35] and shows possible benefits in the high frequency 

regime. The nonlinearities in the fluid inerter such as friction and nonlinear damping force caused 

by the viscosity of fluid is investigated [36]. The nonlinearities of the ball-screw inerter on the 

vibration isolation performance of the vehicle suspension system are investigated [37] and 

concluded that the vibration isolation performance with the nonlinear ball-screw inerter is slightly 

increased. The nonlinear effects for low-frequency civil engineering applications are studied using 

an off the shelf inerter [38]. Most of the research on inerters focuses on structural scale applications 

such as suspension systems, steering mechanisms, vibration absorption and the effect of natural 
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frequency of the system with inerter etc., but as the technology is moving towards the micro and 

nano scale there is a need to realize the inertance and find its applications at a miniature level. 

Every material which exists has some kind of nonlinearity, nothing in the nature is linear. 

Some exhibit nonlinear material properties while some have nonlinear stiffness. Nonlinearity might 

be in the material or by the geometry. Solving a nonlinear problem is very difficult hence we assume 

that the system has linearity in some region and solve our analytical models. 

On the other hand some structures exhibit negative stiffness which is of particular 

significance here. Stiffness is the resistance offered by the material or the structure against the 

applied force. In general stiffness is positive for structures undergoing some kind of displacement 

under load. But some structures exhibit negative stiffness in some region which means that they 

exhibit very large displacements even though no force or less force is applied which demonstrates 

that force and displacement are in opposite direction. Whereas all the systems with positive stiffness 

oppose the force and tend to increase the resistance with application of excess force in the same 

direction. 

A simple example of achieving negative stiffness regime is using a von Mises truss is 

shown in the Figure 1.7. 

 

Figure 1.7: von Mises truss having two pin joints [40]. 
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Figure 1.8: Stress-strain curve of the von Mises truss [40]. 

The truss is acted upon by a force ‘P’ as shown in the Figure 1.7. Till a certain point stress 

is directly proportional to strain then the structure exhibits negative stiffness region where the truss 

just snaps through to second stable position. The truss has two stiffness regimes, the positive 

stiffness and the negative stiffness regime. 

Fulcher et al [40] investigated the applications of buckled and unbuckled beams with 

negative stiffness in passive vibration and shock isolation systems. Kashdan et al [41] demonstrated 

the negative stiffness in a buckled beam and had experimental investigation as well, he considered 

two models one buckled beam and another unbuckled beam, both of them exhibited negative 

stiffness region but the buckled beam demonstrated more negative stiffness region making it more 

dominant for other investigations. The characteristics of vibration isolation systems were improved 

using negative stiffness elements [42]. 

Barbarino et al [43] investigated the behavior of bi-stable arch by deriving the force 

equation using Lagrange method and simulated in MATLAB with two different inputs one is 
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harmonic displacement input and harmonic force input. Further, they extended the research by 

investigating the behavior under impulsive excitation in [44]. Pontecorvo et al [45] further extended 

the research by ANSYS simulations of delrin arches and experimental setup of delrin arches and 

showing that they exhibit negative stiffness. Palathingal and Ananthasuresh [46] have investigated 

the effect of bi-stability in beams with different boundary conditions, in total six types of beams 

were investigated and concluded that pinned-pinned configuration had superior bi-stable 

characteristics. 

The need for inventing new materials with unusual properties which are not readily 

available in the nature is never ending. The technology is progressing rapidly and human needs 

materials with unusual properties which are not found in naturally occurring materials. 

Metamaterials are one such materials which are not naturally occurring but man made materials 

which have unusual properties. These materials derive their unique and unusual properties from the 

engineered microstructures. The concepts of metamaterials arose long back in the 1880’s but the 

studies on them are relatively recent. They are widely accepted in the fields such as Electromagnetic 

materials and Acoustic materials. 

The thought of metamaterial was first implemented for manipulating EM waves [47, 48, 

49] which paved a path for creation of left-handed materials with negative electric permittivity and 

negative magnetic permeability. The earliest works that paved the path for research in 

metamaterials was Veselago’s paper [50] which postulated the possibility of materials with 

negative magnetic permeability and electric permittivity. A huge surge of interest in this field began 

after Pendry [51] proposed the possibility of theoretical left-handed metamaterials. 

Over the past few decades significant progress has been made on the metamaterials. 

Acoustic metamaterials are a class of metamaterials which derive their unique dynamic properties 

from the locally engineered micro structures that exhibit unusual elastic wave propagation 

characteristics. The word Meta (meaning beyond in Greek) indicates the ability to offer material 

properties beyond existing in nature. Depending on their scale of implementation, microstructures 
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in the context of AM is used as a terminology to refer to engineered local structures and can even 

be macroscopic. They can be deployed as complex endo structures within functionally exo 

structures [52] or even as microscopic particulates in a host material [53]. The theoretical possibility 

of having negative mass density and negative bulk modulus [54, 55] in AM were explored. The 

presence of such negative properties for materials which are absent in any naturally occurring 

materials created more interest in these materials. The most prominent case explored in AM is the 

Locally Resonant Acoustic Metamaterial (LRAM) in which they have a resonator in the local 

attachments. The frequency-dependent attenuation for sound in a periodic structure was reported 

by Martinez et al [56] where the test article was a sculpture by Eusebio Sempere exhibited at Juan 

March Foundation in Madrid. Vincent [57] explored the gap effect for acoustic waves using 

nonlinear resonators was one of the earliest demonstrations. Using a one dimensional array of 

elastic membranes, negative effective density below a cutoff frequency was realized by Lee et al 

[58].  To explain the negative effective mass phenomenon Huang et al [59] presented different 

analytical models. Huang and Sun [60] presented the existence of more than one stop band for 

elastic wave propagation for mass in mass system. Many other studies on LRAM were explored 

using different local resonators. Helmholtz resonator were used as local structures in metamaterials 

[61], sonic crystals in [62], nonlinear oscillators in [63] and frequency invariant inerters in [64]. 

Several numerical investigations were carried out to verify the bandgap properties of AM 

with local nonlinear duffing-type springs [64], linear springs and also with static inerter [65]. 

Narisetti et al [66] employed nonlinear stiffness in local structures and used a perturbation approach 

to study the elastic wave propagation characteristics. These studies motivated the investigation of 

Duffing-type inertance which is discussed in Chapter 4. 

1.3 Objectives 

Inerter exhibits a distinctive feature of dynamic mass amplification. As discussed in the forgoing 

section, inerters have inspired several research studies that shed more light on their mechanisms 

and applications. Overall, the aim of this work is to examine the dynamic characteristics of 
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structures that employ inerters within the framework of the metamaterials design approach. The 

applicability of the resultant inertant meta-structures for enriched performance in low frequency 

structural dynamic scenarios is of interest. In this context, the objectives of this thesis are  

 Improve the analytical model of the inerter by including component sizing and inertias so 

that a simple yet unsimplistic approach for their analysis can be developed.  

 Experimentally characterize inertance and the nonlinear influences involved in practical 

inertant devices. 

 Investigate a potential kinematically simpler structure which could provide an inerter-like 

behavior and be more amenable to microscale implementation. 

 To investigate the influence of adding intentionally nonlinear inerter’s within the local 

engineered configurations for AM and to characterize their wave manipulation capabilities. 

1.4 Chapter Overviews 

The aim of this thesis is to improve the analytical model of the inerter and study the inertance effect 

experimentally, investigate a potential kinematically simpler structure of inerter which can have an 

inerter like behavior in miniature scale and study the effect of employing nonlinear inerter’s in AM. 

Chapter 1 deals with the motivation of this study, which deals with the need for conducting this 

research. It explains in detail about the inerter, its dynamic mass amplification and how it is 

achieved. It also explains about the past research that is done on this field and brings out the 

importance of this study and fills the gap of frequency dependence of inerter. It lists out the 

objectives of this thesis as well. 

In Chapter 2 the improved analytical models for two prominent mechanical realizations of 

the inerter which are ball-screw and rack-and-pinion inerter are demonstrated with necessary line 

diagrams and 3D models. Force equations for both of these inerter have been derived, with each 

step in detail. Parametric study for both the inerters have been reported, which explains the 

dependence of key parameters of the inerter with the specific inertance (J/Mst). It is followed by the 
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fabrication of the test article and experiment setup for the rack-and-pinion inerter. It is tested at two 

different cases, displacement controlled sinusoidal excitation and acceleration controlled sinusoidal 

excitation, both the test results have been reported and using a phase matching procedure the 

internal stiffness and damping of the structure are estimated and they are compared with the discrete 

element model simulations. 

The potential kinematically simpler structure which could give an inerter like behavior is 

explored in Chapter 3. The Analytical model for the structure is based on a von Mises truss and the 

equation of motion is derived using Hamilton’s principle based on Lagrange’s method. Using the 

equation of motion, a numerical parametric study is performed and the structure is studied under 

two excitation conditions which are harmonic displacement input and harmonic force input. Finally 

results are discussed and conclusions are made. 

The intentional nonlinearities of inerter and their effect on the AM wave propagation 

characteristics are investigated in Chapter 4. The notional concepts for realizing nonlinear inertance 

in practical are discussed using a ball-screw inerter as basis. Two types of inerter nonlinearities are 

studied which are frequency-dependent and acceleration-dependent. A perturbation approach was 

used to derive the first order corrections to frequency and displacement for the acceleration-

dependent case for weakly nonlinear cases. Then the dispersion curves are simulated and 

conclusions are made. Finally the conclusions are reported in the chapter 5 and recommendations 

for future are made.
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CHAPTER II 

CHARACTERIZATION OF A STRUCTURAL INERTER 

2.1 Introduction 

The basic mechanical two terminal devices which have an equivalent in electrical networks are the 

spring, damper and (previously) mass. The existing analogy was inadequate as mass was grounded 

element. The mass, which is the mechanical equivalent of the grounded electrical capacitor, cannot 

represent a two-terminal device, since by definition one of its terminals is ‘fixed’ when its motion 

is described with respect to an inertial frame of reference. But instead of mass, a new device inerter 

has been introduced which replaces the mass element which is the inerter. It is a two terminal 

mechanical device in which force applied between two ends is directly proportional to the 

difference of accelerations of the two ends. The constant of proportion is termed as inertance, which 

is akin to a dynamic mass amplification factor. The dynamic mass can exceed the static mass of the 

device by a few orders of magnitude.  

     𝐹 = 𝐽 (𝑎1 − 𝑎2)                     (2.1)  

Where F is the applied force, 𝑎1 and 𝑎2 are the accelerations of the two terminals and J is 

the inertance which has the units of mass.  

The potential applications of an inerter are many chief among them are as a vibration 

absorption and vibration isolation device. In vibration absorption system, where the vibrations are 

to be absorbed by a huge mass or high resistance, instead it can be replaced by an inerter with less 

static mass but has high dynamic mass. 



18 
 

The inertance property of inerter can help absorb more energy and damp out the oscillations 

more efficiently than a conventional damper. In vibration isolation system where the system has to 

protected from resonance, inerter can detune the natural frequency of the system due to its high 

dynamic mass, therefore by increasing the dynamic mass it reduces the natural frequency of the 

system and can keep it well below the excitation frequency of interest. 

2.2 Analytical Model 

Analytical models for specific inertance that include component inertias and sizing but retaining 

rigid body assumptions are developed for both the ball-screw and rack-and-pinion embodiments of 

the inerter. Firstly, detailed designs that account for functional components for both versions were 

created. Equations of motion were derived for these designs, and parametric studies were 

undertaken to extract the dependencies for specific inertance. 

2.2.1 Analytical Expressions for Specific Inertance 

The inerter can be mechanically realized in many ways, out of which the most prominent ones are 

the ball-screw inerter and rack-and-pinion inerter. Both achieve the inertance through the rotation 

of flywheel which is achieved through a series of rack, gear and pinions, while the former one uses 

a ball-screw mechanism. 

Ball-screw inerter is the mechanically simpler realization of the inerter. It transmits motion 

to its flywheel using a ball-screw mechanism. It converts the translation motion of screw to 

rotational motion of the ball nut and the flywheel is attached to the ball nut. Hence when the nut 

rotates the flywheel will also rotate. 

Figure 2.1 shows the 3D CAD model of a ball-screw inerter design, which is based on 

Commercial Off-the-shelf components (COTS). Its principal components are two thrust bearings, 

a fly wheel, the ball-screw unit and its nut, and an external casing to house the rotary components. 

From a mechanical standpoint, the ball-screw version is the simpler of the two versions considered 

here. One end of the screw acts as the first terminal of the inerter, while the casing acts as the other. 



19 
 

Force transmission occurs from the screw through the nut, flywheel, and bearings to the casing. 

Both axial and rotary dynamic balancing are easier to accomplish using the ball-screw design. 

 

Figure 2.1: Ball and screw inerter CAD model. Units: mm 

 

Figure 2.2: Line diagram of ball and screw inerter showing forces and geometric parameters 

A line diagram with forces and geometric parameters for the ball-screw design is shown in 

Figure 2.2 For the purposes of this analysis, a force is assumed to be applied to terminal 1 (i.e., the 

screw) and terminal 2 (casing) is assumed to be encastred as shown in Figure 2.2. The screw is 



20 
 

assumed to have rotation about its axis and translation in the axial direction alone. The effect of 

friction and other sources of damping as well as gravity are neglected. 

Consider a ball-screw inerter with the second end fixed as shown in Figure 2.2, the equation 

of motion for screw in axial direction is: 

𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑁𝑛𝑠 = 𝑚𝑠𝑎𝑠 (2.2) 

Where, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the Force applied on the screw, 𝑁𝑛𝑠 is the normal reaction of nut on 

screw, 𝑚𝑠 is the mass of the screw and 𝑎𝑠 is the acceleration of screw.  

Now, assuming that nut it rigidly connected to the flywheel, the rotational equation of motion for 

nut and flywheel due to the axial motion of the screw is as follows: 

𝑁𝑠𝑛𝐿

2𝜋
 = (𝐼𝑛 + 𝐼𝑓)𝛼𝑛 (2.3) 

 

Where, 𝑁𝑠𝑛 is the normal reaction of screw on nut, L is the lead of the screw,  𝐼𝑛 is the 

moment of inertia of nut, 𝐼𝑓 is the moment of inertia of flywheel and 𝛼𝑛 is the angular acceleration 

of nut. 

Now, expressing the linear accelerations of screw in terms of angular acceleration of nut, 

one can directly note that 𝛼𝑛 =
2𝜋

𝐿
𝑎𝑠 

Where, 𝑎𝑠 is the acceleration of screw, L is the lead of the screw and 𝛼𝑛 is the angular 

acceleration of nut. 

Simplifying Equations 2.2 and 2.3 and using the acceleration relationship we finally get 

the force equation as 

𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑  = [(
𝑚𝑛𝑟𝑛

2

2
 +  𝑚𝑓𝑘2) (

2𝜋

𝐿
)

2

+ 𝑚𝑠] 𝑎𝑠 (2.4) 
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Where, 𝑚𝑛 is the mass of nut is,  𝑚𝑓 is the mass of flywheel and 𝑘 is the radius of gyration 

of flywheel. Rewriting the above equation by comparing it with the Equation 2.1 in terms of 

inertance 𝐽 and the static mass of the inerter, 𝑀𝑠𝑡  one can obtain the expression for the specific 

inertance for this device as: 

Υ𝐵𝑆 = (
𝐽

𝑀𝑠𝑡
)

𝐵𝑆

=
(

𝑚𝑛𝑟𝑛
2

2
 +  𝑚𝑓𝑘2) (

2𝜋
𝐿

)
2

𝑀𝑠𝑡
+

𝑚𝑠

𝑀𝑠𝑡
 

(2.5) 

 

This equation expresses the specific inertance for a ball-screw inerter in terms of 

component inertias and sizing parameters. 

The rack-and-pinion inerter was one of the first manufactured inerters. In this inerter force 

transmission takes places through series of gears and pinions. The CAD model for the rack-and-

pinion inerter is shown in the Figure 2.3, in order to reveal the internal mechanism, the top and 

front panels are removed in the figure. It is complex in construction compared to the ball-screw 

inerter as it has a rack, two pinions, one gear, two shafts, bearings and a fly-wheel as its major 

components. Force transmission takes place from the rack, which is the first terminal, through its 

pinion, then to the gear and its pinion and finally to fly-wheel.  

The red colored component is the gear, the green ones are the pinions (which are the same 

in the paper), the blue one is the rack, the yellow colored component is the flywheel which is an 

aluminum ring of 4 inch outer and 3 inch inner diameter and 1 inch thickness, and it is attached to 

the shaft with the help of a 3D printed structure. The aluminum ring and the 3D printed structure 

are bolted together, and the structure has the facility to bolt to the shaft. 
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Figure 2.3: Rack-and-pinion inerter CAD model. Units: mm 

 

 

Figure 2.4: Line diagram of rack-and-pinion inerter showing forces and geometric parameters 
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Consider a rack and pinion inerter with the second end fixed as shown in Figure 2.4, then 

the equation of motion of rack is as follows. 

𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑁𝑝𝑟 = 𝑚𝑟𝑎𝑟 (2.6) 

Where, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the Force applied on the rack, 𝑁𝑝𝑟 is the normal reaction force due to 

rack’s pinion on rack, 𝑚𝑟 is the mass of the rack and 𝑎𝑟 is the acceleration of rack. 

Now, writing the equations of motion for pinion and gear in the x direction, y direction and moment 

equation in z direction we have. 

    −𝑅𝑝𝑥 + 𝑁𝑟𝑝 = 0                        (2.7)  

    −𝑅𝑔𝑦 + 𝑁𝑛𝑔 = 0                                                      (2.8) 

       −𝑁𝑟𝑝𝑟𝑝 + 𝑁𝑛𝑔𝑟𝑔 = (𝐼𝑝 + 𝐼𝑔)𝛼𝑝                                                              (2.9)  

Where, 𝑅𝑝𝑥 is the reaction force on the pinion in x direction due to the casing, 𝑁𝑟𝑝 is the 

normal reaction force due to the rack on rack’s pinion, 𝑅𝑔𝑦 is the reaction force on the gear in y 

direction due to the casing, 𝑟𝑝 is the radius of pinion, 𝑟𝑔 is the radius of gear, 𝐼𝑝 is the moment of 

inertia of pinion and 𝐼𝑔 is the moment of inertia of gear and 𝛼𝑝 is the angular acceleration of the 

rack’s pinion. 

Now, writing the equations of motion for pinion and flywheel in y direction and moment 

equation in z direction we have. 

    −𝑅𝑛𝑦 + 𝑁𝑔𝑛 = 0                                           (2.10)  

               𝑁𝑛𝑔𝑟𝑛 = (𝐼𝑛 + 𝐼𝑓)𝛼𝑛                       (2.11)                          

Where, 𝑅𝑛𝑦 is the reaction force on the gear’s pinion in y direction due to the casing, 𝑁𝑔𝑛 

is the normal reaction force of gear on gear’s pinion, 𝑟𝑛 is the radius of the gear’s pinion, 𝐼𝑛 is the 

moment of inertia of the gear’s pinion and 𝐼𝑓 is the moment of inertia of the flywheel.  

Now, the accelerations for all the components can be related through the expressions, 𝑎𝑟 =

𝑎𝑝, 𝑎𝑟 =
𝑟𝑝

𝛼𝑝
, 𝑎𝑛 = 𝑎𝑔, and 𝛼𝑛 = 𝑟𝑔𝑎𝑝/𝑟𝑛𝑟𝑝 
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Where, 𝑟𝑔 is the radius of the gear, 𝑎𝑝 is the acceleration of rack’s pinion, 𝑟𝑛 is the radius 

of gear’s pinion and 𝑟𝑝 is the radius of rack’s pinion. 

Now using the Equations 2.6, 2.9, 2.11, and acceleration relationships we derive the force equation 

for rack and pinion inerter as 

𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = [
(

𝑚𝑛𝑟𝑛
2

2
 + 𝑚𝑓𝑘2) 𝑟𝑔

2

𝑟𝑝
2𝑟𝑛

2 +
(𝑚𝑝𝑟𝑝

2 + 𝑚𝑔𝑟𝑔
2)

2𝑟𝑝
2 + 𝑚𝑟] 𝑎𝑟 (2.12) 

Where, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑= applied force, 𝑚𝑛 = mass of pinion, 𝑟𝑛 = radius of second pinion, 𝑚𝑓 = 

mass of flywheel, k = radius of gyration of flywheel, 𝑟𝑔 = radius of gear, 𝑟𝑛= radius of second 

pinion, 𝑟𝑝= radius of first pinion 𝑚𝑝 = mass of first pinion, 𝑚𝑟= mass of rack, and 𝑎𝑟= acceleration 

of rack. 

Rewriting Equation 2.12 in terms of inertance (J) and dividing the equation by static mass of the 

inerter, we have 

Υ𝑅𝑃 = (
𝐽

𝑀𝑠𝑡
)

𝑅𝑃

=
(

𝑚𝑛𝑟𝑛
2

2  + 𝑚𝑓𝑘2) 𝑟𝑔
2

𝑟𝑝
2𝑟𝑛

2 𝑀𝑠𝑡

+
(𝑚𝑝𝑟𝑝

2 + 𝑚𝑔𝑟𝑔
2)

2𝑟𝑝
2𝑀𝑠𝑡

+
𝑚𝑟

𝑀𝑠𝑡
 (2.13) 

 

Where, J = inertance and 𝑀𝑠𝑡= static mass of the inerter 

 This relationship (Equation 2.13) expresses the specific inertance of a rack and pinion 

inerter in terms of its component inertias and sizing. 

2.3 Numerical Parametric Study 

The parametric dependencies for the specific inertance of both ball-screw and rack-and-pinion 

inerters are explored using numerical simulations. They help in establishing the feasible design 

space and aid the selection of component. Observing the expressions for specific inertance, it can 

be easily seen that specific inertance depends on different parameters with varying degrees of 

influence. For designing an inerter of known inertance it is important that we know the optimum 
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values of the parameters for specific application and design constraints. For this, parametric curves 

are advantageous. If any parameter needs to be constrained, then it is easy to find the remaining 

parameters, and it is easy to check if the design is feasible or not with a given set of parameters. 

The parametric curve is a curve drawn between two variables while other parameters are 

kept constant. The parameter is varied between the limits for possible design values in order to 

understand the nature of its dependency. The expressions for specific inertance are adopted for the 

geometries of the component designs as follows. 

For the ball-screw inerter from Equation 2.5 substituting 𝑀𝑠𝑡 = 𝑚𝑠 + 𝑚𝑛 + 𝑚𝑓 + 𝑚𝑏 +

𝑚𝑐 where, subscripts s, n, f, b, and c denote the screw, nut, flywheel, bearing, and the casing, 

respectively. The mass of the fasteners and other miscellaneous components are lumped with the 

casing. Now, simplifying into corresponding density and thickness we have the following equation. 

It is deduced so that it is easy to know the dependency of the different variables on the inertance 𝐽. 

 

Υ𝐵𝑆 = (
𝐽

𝑀𝑠𝑡

)
𝐵𝑆

=  
[𝜌𝑛𝑡𝑛(𝑟𝑛𝑜𝑢𝑡

4 − 𝑟𝑛𝑖𝑛
4 ) + 𝜌𝑓𝑡𝑓(𝑟𝑓𝑜𝑢𝑡

4 − 𝑟𝑓𝑖𝑛
4 )]2𝜋3/(𝐿2) + 𝜌𝑠𝑙𝑠𝑟𝑠

2𝜋

[𝜋𝜌𝑛𝑡𝑛(𝑟𝑛𝑜𝑢𝑡
2 − 𝑟𝑛𝑖𝑛

2 ) + 𝜋𝜌𝑓𝑡𝑓(𝑟𝑓𝑜𝑢𝑡
2 − 𝑟𝑓𝑖𝑛

2 ) + 𝜋𝜌𝑠𝑙𝑠𝑟𝑠
2 + 𝑚𝑐 + 𝑚𝑏] 

 (2.14) 

 

In the above expression 𝑡𝑛 and 𝑡𝑓 represent the axial thickness for the nut and the flywheel 

respectively, while 𝑙𝑠 represents the axial length for the screw. The key parameters explored here 

are the inner and outer radius of flywheel and the nut within the bounds of the available sizing. The 

reference parameter is chosen as the lead of the screw. Remaining parameters are kept constant. 

Table 2.1 lists the base parametric setting used for the ball-screw inerter design. 

 

 

 

 



26 
 

Table 2.1: Key components of the ball-screw inerter and their parametric values. 

Component Parameter Value 

Nut 

Density 7890 kg/m3 

Thickness 17 mm 

Outer radius 5.5 mm 

Inner radius 2 mm 

Flywheel 

Density 7890 kg/m3 

Thickness 13 mm 

Outer radius 30 mm 

Inner radius 20 mm 

 Density 7890 kg/m3 

 Length 250 mm 

Ball-Screw Radius 2 mm 

 Lead 5 mm 

Casing Mass 0.2 kg 

Bearing Mass 0.174 kg 

 

A ball-screw is a device which converts linear motion to rotational motion and frictional 

forces are dominant and contribute to significant losses. Due to the frictional force and the sizing 

of the screw they can sometimes be ‘self-locking’. The self-locking condition is given by 𝜇𝜋𝑑 <

𝐿, where 𝜇 is the coefficient of friction, 𝑑 is the mean diameter of the screw, and L is the lead. 

When the lead is sufficiently small for a particular diameter of the screw the locking force will be 

high and it is becomes difficult to move the screw, and hence lead should be sufficiently high. 

Assuming the coefficient of friction 𝜇 between mating surfaces as 0.3, and the diameter of screw 

as fixed at 4 mm, a lead of 5 mm (> 𝜇𝜋𝑑 = 3.8 𝑚𝑚) is used to prevent self-locking. 
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Figure 2.5: Parametric curves of ball-screw inerter. L: lead of screw 

Figure 2.5 depicts the variation of specific inertance of the ball-screw inerter with the key 

parameters. For each parametric variation other parameters involved are invariant. It is seen that 

the specific inertance can be changed drastically if outer radius of flywheel is increased, this is 

explainable because the outer radius of flywheel influences the size and mass of the flywheel. The 

specific inertance increases with increase in the inner radius of the flywheel but less compared to 

the outer radius of flywheel this is because, increasing the inner radius of flywheel decreases the 

mass but also increases its radius of gyration. Further, an increase in the size of the nut somewhat 

decreases the specific inertance. Overall, among the key parameters, it is desirable to minimize the 

radius of the nut, and maximize the inner and outer radii of the flywheel for the given choice of the 

other fixed parameters. Under the design constraints of the components chosen, specific inertance 

up to about 450 is seen to be achievable through an optimal choice of key parameters. 
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Similarly for rack-and-pinion inerter, from Equation 2.13 substituting the static mass of the 

rack-and-pinion inerter as 𝑀𝑆𝑡 = 𝑚𝑟 + 2𝑚𝑝 + 𝑚𝑔 + 𝑚𝑓 + 𝑚𝑐 where, the subscripts r, p, g, f and 

c stand for the rack, pinion, gear, flywheel and casing. As the rack’s and the gear’s pinions are 

identical, a separate symbol is not introduced, but twice the mass of the rack’s pinion is used to 

account for the two pinions. The mass of the static shafts, bearings, fasteners, and other 

miscellaneous components are lumped with the casing. Introducing component densities, and 

expressions for volumes, radius of gyration, and mass moment of inertia, the specific inertance in 

terms of independent fundamental parameters can be expressed as: 

Υ𝑅𝑃 = (
𝐽

𝑀𝑠𝑡

)
𝑅𝑃

=
{[𝜌𝑝𝑡𝑝𝑟𝑝

4  + 𝜌𝑓𝑡𝑓(𝑟𝑓𝑜𝑢𝑡
4 − 𝑟𝑓𝑖𝑛

4 )]𝑟𝑔
2𝜋}/2𝑟𝑝

4 + (𝜌𝑝𝑡𝑝𝑟𝑝
4  + 𝜌𝑔𝑡𝑔𝑟𝑔

4)𝜋/2𝑟𝑝
2 + 𝜌𝑟𝑙𝑟𝑤𝑟𝑡𝑟

[2𝜋𝜌𝑝𝑡𝑝𝑟𝑝
2 + 𝜋𝜌𝑓𝑡𝑓(𝑟𝑓𝑜𝑢𝑡

2 − 𝑟𝑓𝑖𝑛
2 ) + 𝜋𝜌𝑔𝑡𝑔𝑟𝑔

2 + 𝜌𝑟𝑙𝑟𝑤𝑟𝑡𝑟 + 𝑚𝑐] 
 (2.15) 

 

 

Figure 2.6: Parametric curves of rack-and-pinion inerter. P: pitch of gear/pinion 
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Table 2.2: Key components of the rack-and-pinion inerter and their parametric values. 

Component Parameter Value 

Gear 

Density 7890 kg/m3 

Thickness 13 mm 

Outer radius 47.6 mm 

Inner radius 6.4 mm 

Pitch 16 mm 

Flywheel 

Density 7890 kg/m3 

Thickness 25.4 mm 

Outer radius 50.8 mm 

Inner radius 25.4 mm 

Pinion 

Density 7890 kg/m3 

Thickness 13 mm 

Outer radius 9.5 mm 

Inner radius 6.4 mm 

Pitch 16 mm 

 Density 7890 kg/m3 

 Length 500 mm 

Rack Width 12.7 mm 

 Pitch 16 mm 

Casing Mass 0.3 kg 

 

In Equation 2.15, the symbol 𝑡 pertains to the out-of-plane thickness for the subscripted 

components, while 𝑙𝑟 and 𝑤𝑟 are the length and width of the rack. Also, since the rack and gear 

pinions are identical, they are sized without distinction through the use of the same radius and 

thickness parameters. The base parametric setting for the rack-and-pinion inerter design is listed in 

Table 2.2. 

Figure 2.6 depicts the variation of specific inertance (𝐽/𝑀𝑠𝑡) for the rack-and-pinion inerter 

with key sizing parameters nondimensionalized by the pitch of the rack. The selected designed 
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points for each parameter are marked using black ‘X’ mark. The design value of specific inertance 

is marked on the vertical axis. It can be seen that the specific inertance has highly sensitive to the 

radius of pinion. This is because the participation of the pinion radii terms in the denominator. The 

specific inertance remains almost constant with the inner radius of flywheel this is because it 

increases the radius of gyration of flywheel, but at the same time decreases the mass of the flywheel. 

Both radii of gear and outer radius of flywheel show an increasing dependence on the specific 

inertance as they have a dominant influence on the rotary inertia. Overall it is desirable to have 

smaller pinion radii, larger gear and outer radius of flywheel for the design to have higher specific 

inertance. 

2.4 Test Article Design and Fabrication 

A prototype rack-and-pinion inerter that was fabricated is shown in the Figure 2.7, it has an 

inertance of 180 kg and static mass of 2 kg, providing a specific inertance of 90. It has two pinions, 

one gear, one rack, two shafts, four bearings and a flywheel which are commercial off the shelf 

(COTS) components. 

 

Figure 2.7: Rack-and-pinion inerter 
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Table 2.3: Summary of components for the rack-and-pinion inerter 

S. No Component Material Density (kg/m3) Key parameter Fabrication 

1 Rack Steel 7890 lr (length) COTS 

2 Pinion(s) Steel 7890 rp (radius) COTS 

3 Gear Steel 7890 rg (radius) COTS 

4 Flywheel Aluminum 2800 rf (radius) COTS 

5 Casing PLA 1250 mc (mass) 3D printed 

6 Hub PLA 1250 - 3D printed 

 

The yellow colored 3D printed part as shown in the figure is a structure to support flywheel 

which is an aluminum ring. Two acrylic sheets are used to reveal the internal mechanism and the 

casing is made up of 3D printed structures using a desktop three-dimensional (3D) printer, the base 

of the inerter is printed with holes which are used to mount the inerter to the vibration isolation 

table firmly. 

Table 2.3 summarizes the components used for manufacturing the rack-and-pinion inerter 

with key parameters and their details. 

2.5 Experimental Setup and Procedures 

The test setup is built on a vibration isolation table with an electro-dynamic shaker (ET-140 from 

Labworks Inc.) and the inerter connected to its actuator with the help of 3D printed fixtures. Inerter 

and electro-dynamic shaker are firmly mounted to the table so that they will not have any relative 

movement during the experiment. 

The electro-dynamic shaker receives its input from a waveform generator, which is 

connected to an amplifier, which amplifies the signal. In between the shaker and rack (terminal-1), 

there is an inline type load cell as shown in the Figure 2.8 which has a maximum load capacity of 

1000 lb. with 0.1 lb. sensitivity which reads the load that is being applied by the shaker on the rack. 

The load cell has external thread cuttings which is used to mount the load cell inside the adaptor 

fixture as shown in the Figure 2.9 which has internal thread cuttings. The adaptor fixture is designed 

with bolt holes to attach it to the shaker head firmly. 
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Figure 2.8: LCM 200 load cell. 

 

 

 

Figure 2.9: 3D model of the fixture between shaker head and the inerter 
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Figure 2.10: 3D model for the fixture between load cell and rack 

 

 

Figure 2.11: Schematic of structural scale inerter experiment setup 

Similarly, an attachment between the load cell and the inerter has been designed using 

Solid-works which can be used connect the load cell and the inerter’s rack. The inerter receives its 

input from a rack, and the load cell has external thread cuttings, hence an attachment was designed 

which can connect these both. The designed fixture has female thread cuttings which can be 

attached to the load cell. For attaching the fixture to the rack, a similar tooth profile is 3D modelled 
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so that the teeth will mate with the inerter’s rack. This will ensure a firm fix between the attachment 

and the rack. Figure 2.10 is the CAD model of the fixture between the load cell and the rack. To 

prevent the sideways motion of the rack, two side plates are fabricated which have four holes and 

can be used to bolt the two plates to the fixture. Accelerations are measured by a single axis B&K 

(4507) accelerometer which has a sensitivity of 10 mV/ms-2, and it is mounted to the rack. 

Figure 2.11 is the schematic of the inerter’s experiment test setup, first the type of wave 

and the amplitude of the wave are set in the function generator which is the Key sight waveform 

generator here, and these are pre-amplified by Labworks pa-141 power amplifier before they are 

fed into the shaker. The amplifier receives its input from the function generator where a constant 

level of amplification is used for each type of test case. A Labworks ET-140 shaker is used for the 

experiment which is a moving armature type 110 lbf capacity electro dynamic shaker. The 

Labworks pa-141 amplifier is equipped with a gain control which can amplify up to 40 dB voltage 

gain. 

 

Figure 2.12: Rack-and-pinion inerter test setup with electro-dynamic shaker 
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Figure 2.12 is the picture of the experiment setup which has all the components, a shaker 

which is connected to the load cell with the help of 3D printed fixtures, the inerter which is the test 

article and the accelerometer which reads the acceleration of the rack. 

Inerter is tested at two test cases based on excitation type one displacement control sinusoidal 

excitation (DCSE) and another acceleration control sinusoidal excitation (ACSE). First, an 

accelerometer is connected to the shaker head and LabVIEW code is built which displays the 

acceleration and displacement of the accelerometer which is connected to the shaker. First  for 

DCSE case, the amplifier level is kept constant and the voltage in the waveform generator is 

increased till the desired displacement of 7-8 mm is achieved and voltage is noted down for the 

corresponding frequency, this procedure is repeated for different frequencies and the corresponding 

voltage and frequency is noted. Similarly for the ACSE case using the same LabVIEW code, 

accelerations are observed and same procedure is repeated until acceleration of 3.5 m/s2 is achieved 

and the corresponding frequency and voltage is noted down, this is repeated for other frequencies 

and the corresponding voltages are noted. 

For the experiment, first the voltage and frequency are inputted in the waveform generator 

and the signal is inputted to amplifier which amplifies the signal and inputs the amplified signal to 

the shaker, next the LabVIEW code is ran and then the amplification level is tuned to the fixed 

value. LabVIEW code is ran prior to amplifier so that the initial transition data is not missed. The 

experiment will be stopped once the steady state in the load cell is achieved, and the load cell and 

accelerometer data is saved. Three sets of experiments are ran for consistency. This is repeated for 

acceleration case and the load cell and acceleration histories are saved. The results are displayed in 

the following section. 

2.6  Results and Discussions 

In this section firstly, the results from two test cases - Displacement-Controlled Sinusoidal 

Excitation (DCSE) and Acceleration-Controlled Sinusoidal Excitation (ACSE) are presented and 

discussed. Then the histories of load and acceleration readings are used to calculate the specific 
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inertance (𝐽/𝑀𝑠𝑡). Finally, the specific inertance values are used to plot the variation with the 

excitation frequency. 

2.6.1 Displacement Controlled Sinusoidal Excitations 

In this section, the inerter is tested at displacement controlled sinusoidal excitations at different 

frequencies under 5 Hz. Load and acceleration histories for frequencies 0.5 Hz, 1 Hz, 2 Hz, 3 Hz, 

4 Hz and 5 Hz are shown in the Figures 2.13 - 2.18. In all the cases the load and acceleration 

histories are time synchronous, and the history for the first 8 s from start-up is shown. For each 

frequency, the post start-up transient data is used to extract the average peak load and average peak 

acceleration in order to compute the specific inertance, 𝐽/𝑀𝑠𝑡 as per Equation 2.16 below: 

𝐽

𝑀𝑠𝑡
=

< |𝐹𝑝𝑒𝑎𝑘| >

< |𝑎𝑝𝑒𝑎𝑘| > 𝑀𝑠𝑡

 (2.16) 

 

  
   (a)      (b) 

Figure 2.13: Experimental (a) force and (b) acceleration histories at 0.5 Hz under displacement 

control. 
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   (a)      (b) 

Figure 2.14: Experimental (a) force and (b) acceleration histories at 1 Hz under displacement 

control. 

  
   (a)      (b) 

Figure 2.15: Experimental (a) force and (b) acceleration histories at 2 Hz under displacement 

control. 

  
   (a)      (b) 

Figure 2.16: Experimental (a) force and (b) acceleration histories at 3 Hz under displacement 

control. 
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   (a)      (b) 

Figure 2.17: Experimental (a) force and (b) acceleration histories at 4 Hz under displacement 

control. 

  
   (a)      (b) 

Figure 2.18: Experimental (a) force and (b) acceleration histories at 5 Hz under displacement 

control. 

For each frequency of excitation, three different trials were performed. The overall 

percentage error for the measured specific inertance between the trials was under 12%. Due to the 

presence of a pre-load in the load cell even at zero displacement condition an offset exists between 

the positive and the negative peaks in the load history. For the calculation of specific inertance the 

average of the peaks in the load history is used. The specific inertance versus the excitation 

frequency for the DCSE case are summarized in the Figure 2.19. For each frequency the data points 

represent the average value of the specific inertance with the error bars indicating the maximum 

and minimum values from the three trials. The measure specific inertance follows an exponential 
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trend with the excitation frequency. The fit for the specific inertance for the DCSE case is given 

by: 

(
𝐽

𝑀𝑠𝑡
)

𝐷𝑆𝐶𝐸

= 212.3 𝑒−0.53𝑓 (2.17) 

Where 𝑓 is the frequency of excitation. In the low frequency regime accelerations would 

be small and the displacement would be large hence due to the movement of the rack inertance can 

be realized, but in the high frequency regime due to high accelerations, displacements tend to 

diminish and there would be no visible movement in the rack to realize inertance, hence specific 

inertance tending to zero at higher frequencies is explainable. In the low frequency limit when the 

curve is extrapolated the fit yields a limiting value of 212.3 for the quasi-static case, which is much 

higher than the predicted theoretical value which is 90. It is explainable because experimental fit 

includes all the structural effects which include friction and misalignment, which gives an 

exaggerated value for the specific inertance in the low-frequency regime.  

 

Figure 2.19: Variation of 𝐽/𝑀𝑠𝑡 with excitation frequency from displacement controlled tests. 
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The trend line proves an overall estimate of the specific inertance behavior with the 

excitation frequency, deviations such as for the 1 Hz case could be attributed to the internal 

dynamics arising from the assemblage of the components. 

2.6.2 Acceleration Controlled Sinusoidal Excitations 

In this section, the inerter is tested at acceleration controlled sinusoidal excitations at different 

frequencies under 5 Hz. Load and acceleration histories for frequencies 3 Hz, 4 Hz and 5 Hz are 

shown in the Figures 2.13 - 2.18. In all the cases the load and acceleration histories are time 

synchronous, and the history for the first 8 s from start-up is shown. The accelerations shown in 

the following figures deviates from the inputted 3.5 m/s2, because the shaker operates without a 

feedback control. For each frequency, the post start-up transient data is used to extract the average 

peak load and average peak acceleration in order to compute the specific inertance, 𝐽/𝑀𝑠𝑡 as per 

Equation 2.16. 

 

  
(a)      (b) 

Figure 2.20: Experimental (a) force and (b) acceleration histories at 3 Hz under acceleration 

control. 
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(a)      (b) 

Figure 2.21: Experimental (a) force and (b) acceleration histories at 4 Hz under acceleration 

control. 

 

  
(a)      (b) 

Figure 2.22: Experimental (a) force and (b) acceleration histories at 5 Hz under acceleration 

control. 

 

Figure 2.23 summarizes the specific inertance versus the excitation frequency for the 

ACSE case. It follows a negative exponential trend with the excitation frequency which is governed 

by the following equation: 
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Figure 2.23: Variation of 𝐽/𝑀𝑠𝑡 with excitation frequency from acceleration controlled tests. 

 

(
𝐽

𝑀𝑠𝑡
)

𝐴𝑆𝐶𝐸

= 1032 𝑒−1.31𝑓 (2.18) 

 

Figure 2.23 shows the variation of experimental inertance to static mass (𝐽/𝑀𝑠𝑡) of the 

inerter with frequency, it has both experimental data and the curve fitted with that data. The orange 

points are the average values of the specific inertance at the corresponding frequency with error 

bars showing the minimum and maximum values. The orange dotted line is the trend line which 

follows the negative exponential trend as given by Equation 2.18. Similar to the ACSE case in the 

high frequency regime the curve decays to zero due to high accelerations and low displacements of 

the rack, where in the low frequency regime when the curve is extrapolated, which is the quasi-

static case it has a very high specific inertance of 1032, which is definitely high compared to the 

theoretical and the DCSE case. This is because ACSE and DCSE have different exciting conditions 
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and the displacement of the rack in DCSE is quiet less when compared to the displacements in 

ACSE (2-3 mm) and the system operates in a different regime as far as the mechanisms for internal 

resistance are concerned. 

Therefore, including the effects of internal stiffness and internal damping of the test article 

in the theoretical model is expected to improve the predictions. 

2.6.3 Estimation of Internal Stiffness and Damping 

The fabricated test article is expected to have internal stiffness and damping and has a significant 

effect on the performance of the test article. Therefore, a lumped element model is considered for 

the estimation of the internal stiffness and damping.  

 
Figure 2.24: Line diagram of rack-and-pinion inerter with lumped elements representing the 

internal stiffness and damping 

A spring and damper are connected in parallel with the rack as shown in the Figure 2.24, 

these act as the internal stiffness and damping of the test article. A phase matching procedure was 

employed to estimate the parameters. 

Using the same procedure for the original rack-and-pinion inerter model, the equation of 

motion for this model can be derived as: 
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𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = [
(

𝑚𝑛𝑟𝑛
2

2
 + 𝑚𝑓𝑘2) 𝑟𝑔

2

𝑟𝑝
2𝑟𝑛

2 +
(𝑚𝑝𝑟𝑝

2 + 𝑚𝑔𝑟𝑔
2)

2𝑟𝑝
2 + 𝑚𝑟] 𝑢�̈� + 𝑐𝑢�̇� + 𝑘𝑢𝑟 (2.19) 

Where 𝑢𝑟, 𝑢�̇� and 𝑢�̈� are the displacement, velocity, and acceleration of the rack, 

respectively. Since a harmonic forcing, 𝐹𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐹0𝑠𝑖𝑛(𝜔𝑡) is assumed, the displacement 

response of the rack can be expressed as: 

𝑢𝑟 = 𝑈𝑟𝑠𝑖𝑛(𝜔𝑡 + 𝜙) (2.20) 

Where 𝑈𝑟 is the displacement amplitude of the rack, and 𝜙 is the phase angle of the rack’s 

displacement response relative to the applied harmonic force. Substituting the harmonic input and 

the response into Equation 2.19 one can directly obtain: 

𝐹0 sin(𝜔𝑡) = 𝐽(−𝜔2𝑈𝑟) sin(𝜔𝑡 + 𝜙) + 𝑐(𝜔𝑈𝑟) cos(𝜔𝑡 + 𝜙) + 𝑘𝑈𝑟𝑠𝑖𝑛(𝜔𝑡 + 𝜙) (2.21) 

Simplifying and comparing the coefficients of sin(𝜔𝑡) and cos(𝜔𝑡), the following two equations 

can be extracted. 

𝐹0 + (𝐽𝜔2𝑈𝑟 − 𝑘𝑈𝑟) cos(𝜙) + 𝑐𝑈𝑟𝜔 sin(𝜙) = 0 (2.22) 

(𝑘𝑈𝑟 − 𝐽𝜔2𝑈𝑟) sin(𝜙) + 𝑐𝑈𝑟𝜔 cos(𝜙) = 0  (2.23) 

  

Using Equations 2.22 and 2.23, one can solve for the internal stiffness, 𝑘, and the internal 

damping coefficient, 𝑐, in terms of the phase angle, 𝜙, and the inertance, 𝐽, to obtain: 

𝑘 =
𝐹0

𝑈𝑟
cos(𝜙) + 𝐽𝜔2 (2.24) 

𝑐 =
−𝐹0

𝑈𝑟𝜔
sin(𝜙) (2.25) 

In Equations 2.24 and 2.25, 𝐹0, 𝐽, 𝑈𝑟,𝜔, and 𝜙 are experimental input or measured 

parameters. The phase angle is obtained from an averaging procedure based on the time 

synchronous load and acceleration histories recorded from experiments. The time lag is calculated 
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at multiple points and the corresponding phase angle for the respective frequencies are interpolated 

to obtain the evenly spaced phase angle data. Then the phase angle data is used to calculate the 

maximum, minimum and average phase angle. This method is repeated for all the frequencies to 

obtain the phase information. Then these experimentally determined phase values are substituted 

in order to obtain the internal stiffness and damping at all the frequencies for DCSE and ACSE 

cases. Then a plot is made between the frequency of excitation and the internal stiffness and 

parameters which is shown in the Figure 2.25. For each data point the maximum, minimum and 

average values are plotted using the corresponding phase values at that frequency. It is noted that 

the stiffness depends on the inertance, 𝐽 in addition to phase angle,𝜙 and displacement,𝑈𝑟 but the 

damping coefficient does not. This additional dependence on a derived experimental parameter 

results in higher magnitudes for the error in the estimates for internal stiffness. The values for the 

ACSE are comparatively smaller than those for DCSE, but they are comparable. In the DCSE case, 

the excitation displacements are relatively higher when compared to that of DCSE, which indicates 

the rate-dependence of the internal stiffness mechanism. Further, for the DCSE case, both stiffness 

and damping values are observed to tend towards a limiting value with an increase in the frequency 

of excitation. This behavior could be correlated with a transition in the rate-dependence of the 

internal stiffness mechanism when the frequency of excitation increases.  

  
(a)      (b) 

Figure 2.25: Estimated internal (a) stiffness and (b) damping versus excitation frequency. 
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(a)      (b) 

Figure 2.26: Comparison of experimental and simulated specific inertance for (a) Displacement-

Controlled Sinusoidal Excitation (DCSE) and (b) Acceleration-Controlled Sinusoidal Excitation 

(ACSE). 

To examine the specific inertance predicted by the theoretical model based on phase 

estimation a discrete element model was setup using ABAQUS finite element software. The 

average internal stiffness and damping values are used in the model which are extracted by phase 

matching procedure. The two cases DCSE and ACSE are simulated using this model. In DCSE a 

prescribed harmonic excitation displacement boundary condition was inputted and similarly 

acceleration for ACSE case. Figure 2.26 is the comparison of experimental specific inertance and 

simulated specific inertance as predicted by the model. The simulated specific inertance is found 

to have very close agreement with experiments in the high frequency regime, this is due to the high 

scattering of the phase values in the low frequency regime. But the phase matching procedures 

provides a simple process to estimate the theoretical model to include the internal structural effects 

present in the fabricated prototypes, which would have a significant influence on the inertant 

performance. 

The extraction of phase angle using the time synchronous load and acceleration histories 

reveals some interesting trends that indicated the test article nonlinear response under low-rate 

excitations. Using the experimentally determined phase angle data, the phase histories are used to 
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observe the spectrum for all the frequencies of excitation. The phase spectral data is presented in 

the Figures 2.27 and 2.28. Due to the test articles nonlinear response, the phase difference between 

the load and acceleration varies with time, even after the post-transient state seems to have been 

achieved. But the phase spectra shows the existence of ultra-low frequency components (< 1 Hz), 

do in general dominate excitation frequencies indicating the contributions from meandering effects 

within the structural assembly. The phase variation is also affected by the excitation frequency for 

DCSE case, in which the displacement amplitudes are significantly higher that the ACSE case. For 

this case a visible peak is observed in the frequency spectrum corresponding to the excitation 

frequency, indicating its direct contribution to the phase with time. In the ACSE case in which the 

displacements are relatively smaller, in the influence of the excitation frequency on the spectrum 

is not seen. 

  

(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 2.27: Phase angle spectra for (a) 0.5 Hz, (b) 1 Hz, (c) 2 Hz, (d) 3 Hz, (e) 4 Hz, and (f) 5 

Hz for displacement control 

  
(a) (b) 

 
(c) 

Figure 2.28: Phase angle spectra for (a) 3 Hz, (b) 4 Hz, and (c) 5 Hz for acceleration control 
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2.7 Summary 

The main aim of this section is to study about inertance and its rate dependency. The objective was 

achieved by designing a rack-and-pinion inerter and deriving its force equation. A simple 2D line 

diagram of rack-and-pinion inerter was considered and equations of motion of all components of 

the inerter were derived, based on the equations of motion the final equation of motion of the inerter 

is derived. Parametric curves were drawn before manufacturing the test article so as to achieve the 

required specific inertance of the structural scale model. Based on the parametric curves and the 

available commercial off the components and with the help of some 3D printed structures rack-

and-pinion inerter was manufactured. To study the rate dependence an experiment setup was built. 

The specific inertance ‘J/Mst’ followed a negative exponential trend with the rate of excitation in 

both the test cases. This indicates that the structural scale inerter is meant only to be used at low 

frequency excitations. The exaggerated specific inertance in the experiments is high compared to 

the theoretical predicted value, to explain this a lumped element model was considered to estimate 

the internal stiffness and damping of the system using a phase matching procedure. Next, a discrete 

element model was setup in ABAQUS to model the theoretical inerter and the experimentally 

estimated internal stiffness and damping were also included. The model predicts very close values 

of the specific inertance in the high frequency regime due to less error compared to the low-

frequency regime. To investigate a potential kinematically simpler structure which can have inerter 

like behavior and can be used at high frequencies is investigated in the succeeding section. 
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CHAPTER III 

CHARACTERIZATION OF INERTANCE IN A 

KINEMATICALLY SIMPLER STRUCTURE 

3.1 Introduction & Motivation 

The experimental study carried out in the previous chapter deals with a structural scale 

implementation of the inerter tested at low frequencies and it is observed that at high frequencies 

the inertance to static mass ratio 𝐽/𝑀𝑠𝑡 decays to zero exponentially as there will be no appreciable 

movement in the rack to result in dynamic mass amplification effect at high frequencies as 

displacements are quite small. This indicates that the inerter is restricted to low frequencies at the 

structural scale unless extreme gearing ratios are employed. Moreover the rotary components 

necessary to realize mechanical manifestation of the inerter are not easily amenable to 

miniaturization which is desirable for MEMS applications. For microscale applications it is 

therefore desirable to have kinematically simpler structures that could potentially deliver an inertant 

response. This chapter deals with the investigation of a potential kinematically simpler structure 

for inerter that is based on a modification of the von Mises truss. 

Now a question arises, about what type of model or structure is to be used exact this 

kinematic simplification so that the inerter can be used in high frequency applications. At 

microscale for instance, manufacturing of the rack-and-pinion inerter or the ball-screw inerter is 

very difficult and involves high manufacturing cost. Even if an inerter is manufactured it could be 

very difficult to ensure consistency due to the complicated structure.
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 Hence an inerter like structure that is kinematically simpler is desirable for such 

applications, so that it can be used in miniature scale and in high frequency applications. 

For the potential kinematically simpler structure a modified form of the von Mises truss is 

considered as basis for the new design. The von Mises truss is a bi-stable truss than exhibits snap-

through behavior. A bi-stable truss is the one which has two stable positions and it can snap through 

from one stable position to another after reaching a threshold point where the truss elements will 

encourage buckling.  

It has two stiffness regimes one where force is directly proportional to the displacement 

and another which is the negative stiffness region, where even though less force or no force is 

applied more displacement is caused, it is a region where force and displacement are in opposite 

direction. In other words the system can be self-driven due to internal forces in this regime. When 

the truss is acted upon by a force till a certain point the truss moves in proportion with respect to 

the force, but after the threshold point the truss elements cannot take the compression and undergoes 

buckling rapidly during which it snaps through to its second stable position with some transience. 

Using this snap through effect a novel truss first of its kind is designed which has an 

additional arm and mass. This arm swings about the pinned position, hence this arm is termed as 

swing arm and the mass attached to it is termed as the swing arm mass (SAM). The inertance effect 

in the rack-and-pinion inerter is due to the gearing ratio, flywheel mass and radius of gyration of 

the flywheel. This swing arm length (SAL) will act as the radius of gyration of the flywheel and 

the mass attached to the swing arm will act as the mass of the flywheel. So when the structure 

undergoes snap-through motion, the swing arm is thrown away to another position and might 

capture a part of the flywheel movement, hence this snapping effect and the SAM throw away 

might contribute to the dynamic mass amplification. 

The structure is simple in construction and easy to manufacture in miniature and micro 

scale as well, hence this model can be extended to investigate its application in MEMS (Micro 
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Electro Mechanical Systems) domain. The current study focusses on miniature scale model only, 

hence this serves as a basis to investigate further in the field of MEMS in the future. 

3.2 Analytical Model 

A von Mises truss which is a bi-stable truss is considered as the basis for the design as shown in 

the Figure 3.1, it has a vertex mass with two truss elements, it is connected to the ground with the 

help of a linear viscous damper, which has a roller support in the horizontal direction. This structure 

exhibits two types of stiffness regimes while moving to its second stable position. 

 

 

Figure 3.1: von Mises truss [43] 

As shown in the Figure 3.1, region ‘A’ is the positive stiffness region where the stress is 

directly proportional to strain. Region ‘B’ is the negative stiffness or zero stiffness region where 

the structure just snaps through to another stable position with some transience. 
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.  

Figure 3.2: Dynamic response of a von Mises truss [43] 

Lumped mass model is considered for the analytical model as shown in the Figure 3.2, 

which has two masses, three truss elements, two springs and a damper in the vertical direction. It 

is evident that the vertex mass can move only in the vertical direction, and the SAM moves in a 

circular motion about the SAL radius. The two ends of the bi-stable arch have pinned ends as bi-

stable arch with pinned ends has more bi-stable characteristic as discussed in [43]. A vertical force 

‘F’ is applied on the vertex mass, it is connected to the ground with a linear viscous damper with a 

fixed boundary condition. 

Figure 3.3, is a von Mises truss with additional arm and mass. The links are pin-jointed 

truss elements and are assumed to be rigid. The links are assumed to be massless and the entire 

mass is lumped into two concentrated masses which are the tip mass and the SAM. The tip mass is 

forced to move in the vertical direction only as the two ends of the pinned joints are fixed. The two 

pinned ends of the structure and the dashpot’s fixed end combined could act as the second end of 

the inerter, which is the fixed end. The vertex of the truss is connected to the ground by a linear 
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viscous damper. The initial angle made by the truss elements is denoted by 𝜃0, positive 

counterclockwise and at any time the angle made with the initial position is 𝜃 positive clockwise. 

 

 

Figure 3.3: Analytical model of the potential kinematically simpler structure 

To study the dynamics of this system it is important to know the equation of motion of the 

system, which defines the position of second mass 𝑚1 and 𝑚2 at any time. The nonlinear equation 

of motion is derived by using the Lagrange’s method based on Hamilton’s principle. In this method 

first the kinetic (T) and elastic potential (V) energies of the system are derived and the Lagrangian 

(L) is defined as follows. 

 𝐿 = 𝑇 − 𝑉   (3.1) 

The Euler-Lagrange equation is defined as 

 𝜕

𝜕𝑡
(

𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝑞
= 𝑄 

  (3.2) 

The kinetic energy of the system stems from the two masses, one at the vertex and another which 

is the swing arm mass. 
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𝑇 =

1

2
𝑚1𝑙1

2𝜃2̇ +
1

2
𝑚2𝑏2 𝑠𝑒𝑐(𝜃0 − 𝜃)4 𝜃2̇ 

  (3.3) 

The potential energy of the system due to the deflection of the two springs. 

 
2 ∗

1

2
𝑘(𝛿𝑥)2 

  (3.4) 

Deflection of the spring is given by the equation 

 
𝛿𝑥 = 𝑏 (

1

𝑐𝑜𝑠(𝜃01 )
−

1

𝑐𝑜𝑠(𝜃01 − 𝜃1)
) 

  (3.5) 

Hence potential energy contributed by the two springs is 

 
𝑘𝑏2 (

1

𝑐𝑜𝑠(𝜃01 )
−

1

𝑐𝑜𝑠(𝜃01 − 𝜃1)
)

2

 
  (3.6) 

The potential energy of the system due to the damper is 

 
− ∫ 𝑐𝑣2𝑑𝑡 𝑜𝑟 − ∫ 𝑐𝑣 𝑑𝑦  

  (3.7) 

 

The total potential energy of the system is as follows 

 
𝑉 = 𝑘𝑏2 (

1

𝑐𝑜𝑠(𝜃01 )
−

1

𝑐𝑜𝑠(𝜃01−𝜃1)
)

2

+ − ∫ 𝑐𝑣2𝑑𝑡 𝑜𝑟 − ∫ 𝑐𝑣 𝑑𝑦   
  (3.8) 

 

The velocity can be written as  

 𝑣 = 𝑏 𝑠𝑒𝑐(𝜃0 − 𝜃)2�̇� 𝑜𝑟 𝑑𝑦 = 𝑏 𝑠𝑒𝑐(𝜃0 − 𝜃)2 𝑑𝜃    (3.9) 

 

Now, substituting the Equations 3.3 and 3.8 into the Equation 3.1 we have the 

Lagrangian, L as follows 

 

 𝐿 =  
1

2
𝑚1𝑙1

2𝜃2̇ +
1

2
𝑚2𝑏2 𝑠𝑒𝑐(𝜃0 − 𝜃)4 𝜃2̇ − 𝑘𝑏2(𝑠𝑒𝑐(𝜃0) −

𝑠𝑒𝑐(𝜃0 − 𝜃))2 + [∫ 𝑐𝑣2𝑑𝑡 𝑜𝑟 ∫ 𝑐𝑣 𝑑𝑦 ]  

  

(3.10) 
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Now, substituting Equation 3.10 into Equation 3.2 and simplifying we finally end up 

with 

 �̈�[𝑚1𝑙1
2 + 𝑚2𝑏2 𝑠𝑒𝑐(𝜃0 − 𝜃)4] − 𝜃2̇[2𝑚2𝑏2𝑠𝑖𝑛(𝜃0 −

𝜃) 𝑠𝑒𝑐(𝜃0 − 𝜃)5] + 2𝑘𝑏2 𝑠𝑖𝑛(𝜃0 − 𝜃) 𝑠𝑒𝑐(𝜃0 − 𝜃)2 [𝑠𝑒𝑐(𝜃0) −

𝑠𝑒𝑐(𝜃0 − 𝜃)] + 𝑐𝑏2 𝑠𝑒𝑐(𝜃0 − 𝜃)4 �̇� = 𝐹𝑏 𝑠𝑒𝑐(𝜃0 − 𝜃)2  

 

  

(3.11) 

Equation 3.11 is the equation of motion of the potential kinematically simpler structure, 

it is a nonlinear ordinary differential equation in 𝜃 of second order. 

3.3 Numerical Parametric Study 

The parametric dependencies for the specific inertance of the potential kinematically simpler 

structure are explored using the simulations by numerically integrating the ODE (3.11) in 

MATLAB R2016b using ode45 based on an explicit Runge-Kutta formula. For all the dynamic 

solutions the system was initially at rest in the non-deformed configuration. 

 

𝜃 (𝑡 = 0) = 0 

�̇� (𝑡 = 0) = 0  

 

(3.12) 

 

Table 3.1: Base parametric setting of the potential kinematically simpler structure 

Parameter Value 

Tip mass (𝑚1) 0.001 kg 

Swing arm mass (𝑚2) 0.001 kg 

Link length (𝑙1) 0.005 m 

Swing arm length (𝑙2) 0.005 m 

Spring stiffness (𝑘) 600 N/m 

Damping Constant (𝑐) 0.1 Ns/m 
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The base parameters used for the simulation are shown in the table 3.1, which are based on 

the aim that the model is small enough such that it can be simulated at high frequencies. 

The generation of the variation of the specific inertance with the key parameter establishes 

a feasible design space and aids the parameter selection so as to optimize the specific inertance of 

the system. In the potential kinematically simpler structure the key parameters which could cause 

the dynamic mass amplification affect are carefully identified and a simulation matrix is developed 

as shown in the Table 3.2. 

Two cases are studied here (i) Harmonic Displacement Input (HDI) and (ii) Harmonic 

Force Input (HFI) on the tip or the vertex mass 𝑚1. In the HDI case the displacement of the tip 

mass is controlled and the amplitude is given such that the tip mass moves to the second stable 

position. In the HFI case the tip mass is given a harmonic force which causes the tip to snap-through 

to second stable position, the force which causes the snap through is called as snap through force 

and is calculated from the hysteresis loop of the HDI case. 

3.4 Harmonic Displacement Input 

In this case the tip mass displacement is controlled and it is excited with a sinusoidal displacement 

input. For the tip mass to travel to the second stable position the amplitude is set to the full 

stroke 𝐴𝑚𝑝 = 2𝑙2sin (𝜃0) that is the amount of displacement necessary to let the tip mass travel 

from the initial stable position to the second stable position. As the displacement of the tip mass is 

controlled the force-displacement curves don’t have the snap through effect. 

The displacement input equation which satisfies the initial conditions, given by Equation 

3.12 is as follows 

𝑦 = 𝑏𝑡𝑎𝑛(𝜃0) − 𝑏𝑡𝑎𝑛(𝜃0)𝑐𝑜𝑠 (𝜔𝑡) (3.13) 

 

Where 𝜃0 is the initial angle made by link 𝑙2 with horizontal, 𝜔 is the frequency of 

excitation. Based on the equation of motion given by the Equation 3.11 and the sinusoidal 

displacement input given by Equation 3.13, is solved in MATLAB. 
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The key parameters identified from the analytical model are the SAM (𝑚1), SAL (𝑙1), 

damping constant (𝐶) and excitation frequency (𝑓). The key parameters are varied keeping the 

other parameters constant to study the effect on the specific inertance. 

3.4.1 Swing Arm Mass Variation 

In this section the variation of SAM is studied under HDI. It is expected to act as the mass of the 

inerter’s flywheel, it is varied from a very less value to a high value when compared to the base 

value, to study its dependence on the specific inertance of the structure. 

 

Table 3.2: Swing arm mass variation cases 

Dimensionless 

Parameter 

𝑚1 = 

0.0001 𝑘𝑔 

𝑚1 = 

0.001 𝑘𝑔 

𝑚1 = 

0.002 𝑘𝑔 

𝑚1 = 

0.01 𝑘𝑔 

𝑚1 = 

0.02 𝑘𝑔 

𝜇 = 𝑚1/𝑚2 0.1 1 2 10 20 

 

The simulation matrix is shown in the Table 3.2, the SAM is varied from 0.0001 kg to 0.02 

kg. The base parameters used for this set of simulations are 𝑙1 = 0.005 𝑚, 𝑚2 = 0.001 𝑘𝑔,  𝑙2 =

0.005 𝑚,  𝑓 = 1 𝐻𝑧, 𝐶 = 0.1 𝑁𝑠/𝑚,  𝑘 = 600 
𝑁

𝑚
 𝑎𝑛𝑑 𝜔∗(√

𝑘

𝑚2
) = 775 𝑟𝑎𝑑/𝑠. 

As shown in the Figure 3.4 the structure has a hysteresis loop with some energy loss due 

to the presence of a damper which dissipates energy over the cycle. The force and displacement are 

directly proportional till about 1.3 mm of displacement and the structure has positive stiffness, then 

the tip mass experiences a peak force which is the snap through force and then it exhibits 

negative/zero stiffness up to 3.8 mm and followed by a positive stiffness region. 
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Figure 3.4: Hysteresis loop for 𝑚1 = 0.0001 𝑘𝑔 

The remaining cases of the SAM variation show a similar hysteresis loop with increasing 

peak force and energy loss due to the increase in the SAM. 

3.4.2 Swing Arm Length Variation 

The SAL which could act as the radius of the inerter and its variation might have considerable 

effect on the specific inertance. In this section the effect of varying the SAL is studied under HDI. 

It is varied from a small value to a high value as given by the Table 3.3 to study its effect on the 

specific inertance. 

Table 3.3: Swing arm length variation cases 

Dimensionless 

Parameter 

𝑙1 = 

0.0005 𝑚 

𝑙1 = 

0.001 𝑚 

𝑙1 = 

0.005 𝑚 

𝑙1 = 

0.01 𝑚 

𝑙1 = 

0.02 𝑚 

𝜆 = 𝑙1/𝑙2 0.1 0.2 1 2 4 
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The base parameters used for this set of simulations are 𝑚1 = 0.001 𝑘𝑔, 𝑚2 =

0.001 𝑘𝑔,  𝑙2 = 0.005 𝑚,  𝑓 = 1 𝐻𝑧, 𝐶 = 0.1𝑁𝑠/𝑚,  𝑘 = 600 
𝑁

𝑚
 𝑎𝑛𝑑 𝜔∗(√

𝑘

𝑚2
) = 775 𝑟𝑎𝑑/𝑠 . 

 

Figure 3.5: Hysteresis loop for 𝑙1 = 0.0005 𝑚 

Figure 3.5 is the hysteresis loop for 𝑙1 = 0.0005 𝑚, it shows a similar behavior as of the 

SAM variation case but with very small change in the snap through force and the energy dissipation. 

Increasing the SAL shows an increase in the snap through force and energy loss. 

3.4.3 Damping Constant Variation 

This section deals with the variation of damping constant of the structure under HDI. Damping is 

inherent in any kind of structure and its effect on the specific inertance is necessary. The damping 

is varied from 0.001 Ns/m to 10 Ns/m as given by the Table 3.4 

Table 3.4: Damping constant variation cases 

Dimensionless 

Parameter 

𝑐 = 0.001  

𝑁𝑠𝑚−1 

𝑐 = 0.01 

𝑁𝑠𝑚−1 

𝑐 = 0.1 

𝑁𝑠𝑚−1 

𝑐 = 1 

𝑁𝑠𝑚−1 

𝑐 = 10 

𝑁𝑠𝑚−1 

𝛾 =
𝑐2

𝑘𝑚2
  

0.00000167 0.000167 0.0167 1.67 166.67 
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The base parameters used for this set of simulations are 𝑚1 = 0.001 𝑘𝑔,  𝑙1 =

0.005 𝑚, 𝑚2 = 0.001 𝑘𝑔,  𝑙2 = 0.005 𝑚,  𝑓 = 1 𝐻𝑧,  𝑘 = 600 
𝑁

𝑚
 𝑎𝑛𝑑 𝜔∗(√

𝑘

𝑚2
) = 775 𝑟𝑎𝑑/𝑠. 

 

(a) 

 

(b) 

Figure 3.6: Hysteresis loop for (a) 𝑐 = 0.001 𝑁𝑠/𝑚 (b) 𝑐 = 10 𝑁𝑠/𝑚 

From Figures 3.6 (a) and (b) it can be inferred that increasing the damping constant 

increases the energy loss of the system and it will have a considerable effect on the performance of 

the structure. 
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3.4.4 Excitation Frequency Variation 

To study the rate dependent behavior of the potential kinematically simpler structure, the excitation 

frequency is varied as given in the Table 3.5. The frequency is varied from 0.628 𝑟𝑎𝑑𝑠−1 (0.1 𝐻𝑧) 

which is close to the quasi-static case and to 62.8 𝑟𝑎𝑑𝑠−1 (10 𝐻𝑧). 

Table 3.5: Excitation frequency variation cases 

Dimensionless 

Parameter 

𝜔 = 0.628 

𝑟𝑎𝑑𝑠−1  

 

𝜔 = 3.14 

𝑟𝑎𝑑𝑠−1  

𝜔 = 6.28 

𝑟𝑎𝑑𝑠−1  

𝜔 = 31.4 

𝑟𝑎𝑑𝑠−1  

𝜔 = 62.8 

𝑟𝑎𝑑𝑠−1  

 = 𝜔 /𝜔∗ 0.00081 0.004 0.0081 0.04 0.081 

 

The base parameters used for this set of simulations are 𝑚1 = 0.001 𝑘𝑔,  𝑙1 =

0.005 𝑚, 𝑚2 = 0.001 𝑘𝑔,  𝑙2 = 0.005 𝑚, 𝐶 = 0.1
𝑁𝑠

𝑚
 ,  𝑘 = 600 

𝑁

𝑚
𝑎𝑛𝑑 𝜔∗(√

𝑘

𝑚2
) = 775 𝑟𝑎𝑑/𝑠. 

From Figures 3.7 (a) and (b) as the excitation frequency varies the energy loss increases 

which is due to high accelerations achieved in the structure due to increase in the cycles per second 

and more energy loss. 

 

(a) 



63 
 

 

(b) 

Figure 3.7: Hysteresis loop for (a) 𝜔 = 0.628 𝑟𝑎𝑑𝑠−1(b) 𝜔 = 62.8 𝑟𝑎𝑑𝑠−1 

 

3.5 Harmonic Force Input 

In this section the variations discussed in the previous sections are studied under HFI (harmonic 

force input), in which a harmonic force is applied at the tip mass. The equation of motion given by 

the Equation 3.11 is solved in MATLAB using ODE45. In this case the harmonic force is chosen 

based on the HDI simulations in which the peak force experienced by the tip mass is the snap 

through force and any force above the snap through force causes the snap through effect. 

3.5.1 Swing Arm Mass Variation 

As discussed in the previous section the same set of simulations are carried out for the HFI case as 

well, where the input force is the peak force experienced by the tip mass under HDI. As given by 

the Table 3.2 the SAM is varied from 0.0001 kg to 0.02 kg to study its effect on the specific 

inertance and the snap through effect. 
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(a)                                                         (b) 

 

(c)                                                         (d) 

 

 

(e) 

Figure 3.8: Dynamic response and force variation for (a) 𝑚1 = 0.0001 kg (b) 𝑚1 = 0.001 kg 

(c) 𝑚1 = 0.002 kg (d) 𝑚1 = 0.01 kg (e) 𝑚1 = 0.02 kg 

Figure 3.8 (a) to (e) are the dynamic response and force variation on the tip mass with 

varying SAM. The positive stiffness region is seen up to 0.22 s where the force and displacement 
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are proportional and after that the structure exhibits zero stiffness region where even with less force 

more displacement is caused and the snap through effect is seen and the tip mass snaps from its 

first stable position to another stable position with some transience. 

It is clearly evident that as the SAM increases the transience frequency of the tip mass is 

changing, this is explainable because when the mass increases it takes more time to stabilize due to 

more inertia and the frequency decreases. 

3.5.2 Swing Arm length Variation 

The SAL which is supposed to act as the radius of the inerter in the potential kinematically simpler 

structure, as given by the Table 3.3 the SAL is varied from 0.0005 m to 0.02 m under HFI to study 

the influence of it on the specific inertance of the structure.  

 

(a)                                                         (b) 

 

(c)                                                         (d) 
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(e) 

Figure 3.9: Dynamic response and force variation for (a) 𝑙1 = 0.0005 𝑚  (b)  𝑙1 = 0.001 𝑚 

(c)  𝑙1 = 0.005 𝑚 (d)  𝑙1 = 0.01 𝑚 (e)  𝑙1 = 0.02 𝑚  

The snap through force is calculated using the same procedure that is employed for SAM variation. 

As seen in the SAM variation, similar snap through effect can be seen in the swing arm length 

variation as well. Increasing the SAL decreases the frequency of the transient response which is 

explainable due to decrease in the stiffness of the structure due to increase in the length.  

3.5.3 Damping Constant Variation 

Damping is inherent in any structure it may be due to material, friction or the structure. It has a 

significant effect on the performance of the structure under cyclic loading due to continuous loss 

of energy. As given by the Table 3.4 the similar set of simulations are carried for the HFI case with 

varying damping constant. 

 

(a)                                                         (b) 
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(c)                                                         (d) 

 

(e) 

Figure 3.10: Dynamic response and force variation for (a) 𝐶 = 0.001 𝑁𝑠/𝑚  (b)  𝐶 =

0.01 𝑁𝑠/𝑚 (c)  𝐶 = 0.1 𝑁𝑠/𝑚 (d)  𝐶 = 1 𝑁𝑠/𝑚 (e)  𝐶 = 10 𝑁𝑠/𝑚  

From Figure 3.10 (a) to (e) it can be inferred that initial transience are high for the case 

with less damping and gradually the transience disappear due to high damping constant, this is 

explainable due to high energy loss and the high resistance offered by the damper the transience 

vibrations are reduced drastically. 

3.5.4 Excitation Frequency Variation 

As given by the Table 3.5 similar set of simulations are carried out for the excitation frequency 

variation under HFI. The dynamic response and the force variation are given in the Figures 3.10 

(a) to (e). 
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(a)                                                         (b) 

 

(c)                                                         (d) 
 

 

 

(e) 

Figure 3.11: Dynamic response and force variation for (a) 𝜔 = 0.628 𝑟𝑎𝑑𝑠−1  (b)  𝜔 =

3.14 𝑟𝑎𝑑𝑠−1 (c)  𝜔 = 6.28 𝑟𝑎𝑑𝑠−1 (d)  𝜔 = 31.4 𝑟𝑎𝑑𝑠−1(e)  𝜔 = 62.8 𝑟𝑎𝑑𝑠−1 

From Figures 3.11 (a) to (e) the gradual decrease in the transient response is observed this 

is because the increase in number of cycles per second decreases the time for the tip mass to 

stabilize and by the time it stabilizes it moves to another stable position. 
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3.6 Results and Discussions 

The results from two test cases – Harmonic Displacement Input (HDI) and Harmonic Force Input 

(HFI) are presented and discussed for the key parameter variation. For each case the force and 

acceleration history are saved and the specific inertance is calculated using the following expression 

𝐽

𝑀𝑠𝑡

=
𝐹𝑟𝑚𝑠

𝑎𝑟𝑚𝑠 𝑀𝑠𝑡

 (3.14) 

 

 

(a)       (b) 

Figure 3.12: Specific inertance variation for SAM variation under (a) harmonic displacement 

input (b) harmonic force input 

The SAM and SAL which are expected to act as the mass and radius of the flywheel have 

a direct dependence on the specific inertance as explained in the Chapter I, but from the Figure 3.12 

and Figure 3.13 it is observed that specific inertance of the structure decreases with increase in the 

SAM and SAL, this might be because in the rack-and-pinion inerter the rack (first terminal) and 

the flywheel move in the same sense but in the potential kinematically simpler structure the tip 

mass (first terminal) and the SAM move in the opposite sense, due to the cancellation effect in the 

structure we see a decreasing trend in the specific inertance as observed from the simulations.  
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(a)       (b) 

Figure 3.13: Specific inertance variation for SAL variation under (a) harmonic displacement 

input (b) harmonic force input 

The cause for the high specific inertance values for the HFI case is explainable, the snap 

through motion is captured only in the HFI case, when the tip mass snaps to the stable position very 

high accelerations are achieved due to the sudden movement, due to high accelerations the 

denominator value in the Equation 3.14 increases and very less specific inertance values are 

observed when compared to the HDI case. 

 

 

(a)       (b) 

Figure 3.14: Specific inertance variation for damping constant variation under (a) harmonic 

displacement input (b) harmonic force input 
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(a)       (b) 

Figure 3.15: Specific inertance variation for excitation frequency variation under (a) harmonic 

displacement input (b) harmonic force input 

When the damping in the system increase more energy is dissipated due to very high 

resistance offered it, in the HDI case very high forces are observed because as the displacement is 

controlled no matter what the damping is the displacement is confined and the acceleration is the 

same hence we can observe a increasing trend in the specific inertance as reported in the Figure 

3.14 (a). In the HFI case due to very less damping initial transience is high and gradually reduce to 

almost no transience due to that an increasing trend is observed in Figure 3.14 (b). 

The frequency of excitation also has an effect on the specific inertance, at low frequencies 

very high specific inertance is observed as shown in the Figure 3.15 (a), due to very less 

acceleration and at high frequencies very high acceleration is achieved. Similar trend can be 

observed in the HFI case shown in the Figure 3.15 (b) 

3.7 Summary 

The structural inerter which was characterized in the first section is restricted to low frequencies 

and it is observed that as the frequency increases specific inertance decays to zero in a negative 

exponential trend. A potential kinematically simpler structure which may have an inerter like 

behavior and can be used in miniature scale was modeled in this section. The EOM was derived 

using the Hamilton’s principle based on Lagrange’s method and the structure was studied under 

two cases harmonic displacement input (HFI) and harmonic force input. The key parameters were 



72 
 

identified and they were varied to study the effect of them on the specific inertance of the structure. 

Then using the force and acceleration histories specific inertance was calculated and some 

interesting trends in the specific inertance with the key parameters were observed. It was inferred 

that the decreasing trend in the specific inertance with SAM and SAL variation was due to the 

opposite movement of the first terminal (tip mass 𝑚1) and the SAM 𝑚2 where as in the structural 

inerter the first terminal (rack) and the flywheel move in the same sense. Chapter I dealt with the 

inherent nonlinearity in the structural inerter, in the next chapter the wave dispersion characteristics 

of acoustic metamaterials having intentional nonlinear inerters in the local attachments is discussed.  
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CHAPTER IV 

NONLINEAR INERTANT ACOUSTIC METAMATERIALS 

 

4.1 Introduction & Motivation 

Acoustic metamaterials are a class of metamaterials which derive their unique dynamic properties 

from the locally engineered structures. Previously many studies typically used local linear or 

nonlinear spring to study the wave propagation characteristics [63]. Recent discovered element 

which completes the force-current analogy is the inerter, which has the dynamic mass amplification 

affect and it is mostly used in vibration suppression or isolation purposes. Kulkarni and Manimala 

[65] recently have explored the effect of adding a linear inerter in the local attachments and in the 

lattice to study the longitudinal wave propagation characteristics. As Section I deals with the 

inherent nonlinearity that is present in the structural inerter, this section explores the effect of 

adding nonlinear inerters to the acoustic metamaterials in the local attachments of the discrete 

element lattice is investigated and different nonlinearities are explored in the subsequent sections. 

The effective mass model for the lumped parameter model with local nonlinear inerters is 

discussed first.   Two cases of nonlinear inerters in local attachment are studied which are frequency 

dependent and acceleration dependent. The effect of nonlinearities on the bandgap properties, 

degree of attenuation and passive wave filtering are studied. The results are obtained in the form of 

dispersion relation, are used to study different properties of the wave propagation in 1D lattice
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4.2 Analytical Model 

An infinite one dimensional discrete mass-spring system is considered as shown in the Figure 4.1 

with local linear spring and nonlinear inerter. A unit cell is arbitrarily chosen along the infinite 1D 

system and assumed to be the 𝑗𝑡ℎ cell. The model illustrated in the Figure 4.1 (a) is analyzed using 

the effective mass approach [59] in which the host mass and the local linear spring and nonlinear 

inerter are subsumed into one single mass which is the effective mass as shown in the Figure 4.1 

(b). 

The host structure is discretized into mass-spring lattice of lattice length 𝐿, each unit cell 

has a lattice/host mass 𝑚1, lattice/host spring stiffness 𝑘1. The local resonator attachment has a 

local mass 𝑚2, spring of stiffness 𝑘2 with nonlinear inertance 𝐽(�̅�, �̈�). 

The dispersion characteristics of the nonlinear inertant acoustic metamaterials (NLIAM) is 

analyzed in two different categories which are the frequency dependent and acceleration dependent 

models. The following nonlinearities in the inerter are considered 

(i) Frequency-dependent inertance 

  (a) Inverse square law inertance 

(b) Power law inertance 

(ii) Acceleration-dependent inertance 

(a) Duffing-type inertance 

Local inertant acoustic metamaterial (LIAM) is the limiting case for all the models 

mentioned above. 
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(a) 

 

 

(b) 

 

Figure 4.1: (a) Discrete element lattice representation of a one-dimensional nonlinear inertant 

acoustic metamaterial (NLIAM) and (b) its effective model. 

 

  4.2.1 NLIAM with Frequency-Dependent Inertance   

The wave propagation characteristics or the dispersion characteristics of a 1D locally resonant 

acoustic metamaterials (LRAM), which have local linear resonator within a host structure or 

material are often analyzed using their representative discrete element lattice [59]. In this 1D 

infinite mass-spring system is represented as a monoatomic chain with each mass designated by an 

effective mass. The effective mass approach [59] is necessary to study the effect of both degrees of 

freedom.   Due to the presence of a local linear resonator there exists a tunable bandgap between 

acoustic and optical modes where the lower bound of the bandgap corresponds to the local 

resonance frequency, whereas the upper bound is a function of ratio of attachment mass to host 

mass. 

The waves within the bandgap cannot propagate through the system because the total 

energy is absorbed by the local resonator. The attenuation of the wave also depends on the 
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attenuation factor (𝛽) which is the imaginary part of the wavenumber which is theoretically 

unbounded at the lower bound of the bandgap. Therefore attenuation of the waves is higher only 

near the lower bound of the bandgap which is a smaller frequency range. From the effective mass 

approach the dispersion relation for the LRAM represented by its discrete element lattice model is 

expressed as 

 
𝜇 = 𝑞𝐿 = cos−1 [1

𝑚𝑒𝑓𝑓�̅�2𝜔𝑛
2

2𝑘1
]                                                      

   

  (4.1) 

Where 𝜇 = 𝑞𝐿 = 𝛼 + 𝑖𝛽 is the complex wavenumber, 𝜔𝑛 = √𝑘2 𝑚2⁄  is the local 

resonance frequency, and �̅� = 𝜔 𝜔𝑛⁄  is the nondimensional excitation frequency. The frequency-

dependent effective mass for the LRAM is given by 

 

𝑚𝑒𝑓𝑓
𝐿𝑅𝐴𝑀 = [(𝑚1 + 𝑚2) −

𝑚2

1 −
1

�̅�2

]                                                  

   

  (4.2) 

At �̅� = 1 it can be observed that the effective mass becomes unbounded and thereafter 

remains negative up to �̅� = √1 + 𝑚2 𝑚1⁄ . This frequency range of effective mass negativity 

corresponds to the band gap. Further, the nondimensional complex wavenumber can be written 

as 𝑞𝐿 = 𝛼 + 𝑖𝛽, where 𝛼 the real part is the phase constant that establishes the propagation modes 

and 𝛽 the imaginary part is termed as the attenuation factor, which indicates the existence of band 

gaps and gives a measure of the degree of attenuation with the band gaps. Now, if a linear inerter 

(𝐽0) is attached in parallel to the resonator’s spring (𝑘2) then the LRAM is converted to locally 

inertant acoustic metamaterial (LIAM) for which the effective mass expression is given as follows 

 

 
𝑚𝑒𝑓𝑓

𝐿𝐼𝐴𝑀 = [(𝑚1 + 𝑚2) −
𝑚2�̅�2

�̅�2(1 + 𝛾0) − 1
]                                     

   

  (4.3) 

Where 𝛾0 = 𝐽0 𝑚2⁄  is the ratio of the static inertance to the attachment mass. Due to the 

inerters participation in the local attachment lowers the local resonance frequency as it acts as 

additional mass and hence the lower bound of the band gap. But the advantage of adding an inerter 
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instead of a mass is the inerter provides a high dynamic mass compared to the static mass of the 

device. Now if the denominator of the second term on the right-hand side (RHS) in Equation 4.3 

tends to a very small positive value, the effective mass has a very large negative value which results 

in a high attenuation factor (𝛽). Therefore, a frequency-dependent nonlinear inertance could 

conceivably provide a means to ensure that degree of attenuation is retained at an appreciably high 

value for an extended frequency range, especially below the LRAM’s band gap. This condition can 

be enforced as 

 

 �̅�2(1 + 𝛾) − 1 = 𝜖                                       (4.4) 

Where 𝜖 is an arbitrarily small positive value that ensures the desired degree of attenuation 

and 𝛾(�̅�) = 𝐽(�̅�)/𝑚2, which is the required nonlinear inertance and is easily obtained as 

 
𝛾(�̅�) =

1 + 𝜖 

�̅�2
− 1 ≡

𝛾𝑛 

�̅�2
+ 𝛾∞                                     

  (4.5) 

From Equation 4.5 it can be inferred that an inverse square relationship between 𝛾 and �̅� 

is required to ensure high attenuation across all frequencies. Also, it can be observed that when �̅� →

0, the nonlinear inertance, 𝛾 becomes unbounded and �̅� > √1 + 𝜖, 𝛾 becomes negative both of 

which are not realistic. Therefore, realizing the requisite inverse square frequency-dependence for 

inertance that ensures high attenuation across the entire frequency bandwidth is not practical. This 

indeed becomes necessary to explore other types of nonlinear inertance models which are 

practically achievable while being a reasonably close approximation to the required inverse square 

law relation for as wide as a bandwidth possible, especially for frequencies below the LIAM’s 

bandgap. 

A ball-screw inerter [4, 6] is considered as the basis and some notional concepts for the 

variable inertance are postulated which display frequency-dependent changes in their inertance. 

Three concepts are postulated – (i) sleeve-type, (ii) radial buckling-type and (iii) clutch-type are 

shown in Figure 4.2. Basically, the aim of introducing frequency-dependent inertance is achieved 
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by varying the mass participation in flywheel in its rotary motion which is caused by the 

reciprocation of the screw. In the clutch-type could provide an inerter which displays an increase 

in inertance with increase in the frequency of excitation. As the frequency of excitation is increased 

more number of plates of the flywheel rotate together increasing the mass participation due to 

higher centrifugal force, which increase the thickness of the flywheel but the radius of gyration 

doesn’t change. Where as in the radial-buckling and the sleeve type concepts decrease in inertance 

with increase in frequency of excitation can be achieved. In the radial-buckling type concept 

envisions the use of a radially-graded structural material for the flywheel to provide a similar 

variation in the inertance. This flywheel could conceivably be fabricated similar to mechanical 

metamaterials using hybrid techniques consisting of an additively manufactured flexible host 

structure having concentric shear-induced buckling bands along with machined metallic inclusions 

or inserts to provide the radial gradation in mass. Such a concept would enable full mass 

participation of the radially-graded flywheel at low excitation frequencies with incremental 

reduction in mass participation with increase in excitation frequency due to sequential buckling of 

the radially-graded bands. In the sleeve-type concept utilizes a flywheel which has several 

concentric sleeves held in contact with each other with friction. At low frequencies due to low 

velocities all of the sleeves participate in the flywheel rotary motion increasing its mass as well as 

the radius of gyration which increase the inertance. But at higher frequencies due to high velocities 

the sleeves slip on the surface reducing the number of active sleeves and reduces the mass and 

radius of gyration which reduces the inertance. The detailed design or analysis of these concepts 

are reserved for future studies but they serve as a basis to model the nonlinear inerters in structural 

and even in miniature scale which can be used in metamaterials with advanced wave manipulation 

capabilities. 

 



79 
 

 

 

Figure 4.2: Conceptual schematics for potential frequency-dependent – (a) Sleeve-Type, (b) 

Radial Buckling-Type, (c) Clutch-Type, and acceleration-dependent – (d) Stroke Grip-Type 

nonlinear inerters.  

 

In contrast to the desired inverse-square relationship for the inertance in order to ensure a 

wide bandwidth of appreciable attenuation especially for the low frequency regime below the 

LIAM’s band gap, the potential concepts that could be explored to realize nonlinear inertance in 

practice would have bounded and positive inertance throughout the bandwidth. The concepts 

discussed above have a piecewise constant frequency-dependent inertance but eventually 

continuously variable ones could be potentially developed. One way to theoretically approximate 

the inverse square law inertance is by using a power law model which is of the form as follows 

 

 𝛾(�̅�) = 𝛾∞ + (𝛾0 − 𝛾∞)𝑟−�̅�                                       (4.6) 

 

Where 𝛾∞ = 𝐽∞ 𝑚2⁄  the nondimensionalized high frequency limiting value for the 

inertance is, 𝛾0 = 𝐽0 𝑚2⁄  is the nondimensionalized low frequency limiting value for the inertance, 

and 𝑟 is a rate factor that controls the nonlinearity. A rate factor which doesn’t vary with the 

frequency that represents the best nonlinear variation of the inertance for the physically realizable 

device as well as one that closely approximates the desired inverse square law relationship in the 
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low-frequency (�̅� < 1)  regime needs to be selected. As discussed in the literature [2] the highest 

possible inertance to static mass ratio is 300 and it is chosen as the low-frequency limiting value 

of 𝛾0 = 𝐽0 𝑚2⁄ = 300. At high frequency the inertance can be expected to tend to the static mass 

of the device which is subsumed into the attachment mass. Hence, this limit is set to 𝛾∞ =

𝐽∞ 𝑚2⁄ = 1. The inertance in the power law tends to a finite low-frequency limit of 300, for certain 

bandwidth in the extremely low-frequency regime it becomes smaller than the desired inertance as 

per the inverse square law. But for the rest of the frequency above the bandwidth, the inverse square 

law model remains well below the power law model. In order to enforce that the power law remains 

close to the inverse square law model the rate factor is chosen such that they both touch one more 

time after the initial crossover point. For this condition to satisfy the rate factor can be numerically 

obtained as 𝑟 = 18395.  

 
Figure 4.3: Comparison of inverse square law inertance and its approximation using the power 

law. 

Figure 4.3 is the comparison of the inverse square law and the power law inertance models. 

The parameters used for the inverse square law are 𝐼𝑆𝐿: [𝛾𝑛, 𝛾∞] = [1.01, −1] and the parameters 
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used for the power law model are 𝑃𝐿: [𝛾0, 𝛾∞, 𝑟] = [300,1,18395]. Both the curves first cross each 

other at �̅� = 0.0856 and the next cross over point is in the vicinity of �̅� = 0.57. 

4.2.2 NLIAM with Acceleration-Dependent Inertance 

The acceleration-dependent nonlinear inertance is inspired from the Duffing-type oscillator which 

exhibits amplitude-dependent cubically nonlinear stiffness, a similar type for Duffing-type 

inertance is postulated. The Duffing-type nonlinear inertance in this case is a function of the relative 

acceleration across the two terminals of the inerter and is defined by the relationship as follows 

 𝐽(�̈�) = 𝐽0 ± 𝐽𝑛�̈�2                                       (4.7) 

 

Where, 𝐽0 is the linear inertance, 𝐽𝑛 is the parameter that controls the nonlinearity, and �̈� is 

the relative acceleration across the two terminals of the inerter. The force response of this nonlinear 

inerter would be as follows 

 𝐹 = 𝐽�̈� = 𝐽0�̈� ± 𝐽𝑛�̈�3                                       (4.8) 

 

The above mentioned Duffing-type inertance can be realized by a variation of the clutch-

type concept that may be termed as the stoke-grip-type as shown in the Figure 4.2   which has an 

active amplitude-activated mechanism to vary the mass of the flywheel. The 1D infinite discrete 

lattice model of the NLIAM is shown in the Figure 4.1 that incorporates weekly nonlinear Duffing-

type inerter in parallel with the linear spring of each attachment mass. A perturbation approach 

based on the method of multiple scales [66] is used to obtain the first order correction to the linear 

dispersion relation for this NLIAM due to the presence of Duffing-type inerter in the 

microstructure. A 𝑗𝑡ℎ unit cell is arbitrarily chosen in the infinite discrete lattice model, the 

equations of motion of the unit cell are 
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 𝑚1�̈�𝑗,1 +  𝑘1(2𝑢𝑗,1 − 𝑢𝑗+1,1 − 𝑢𝑗−1,1) + 𝑘2(𝑢𝑗,1 − 𝑢𝑗,2) + 𝐽0(�̈�𝑗,1 −

�̈�𝑗,2) + 휀𝐽𝑛(�̈�𝑗,1 − �̈�𝑗,2)
3

= 0  

   

 

(4.9) 

 𝑚2�̈�𝑗,2 +  𝑘2(𝑢𝑗,2 − 𝑢𝑗,1) + 𝐽0(�̈�𝑗,2 − �̈�𝑗,1) + 휀𝐽𝑛(�̈�𝑗,2 − �̈�𝑗,1)
3

= 0 (4.10) 

 

Where 휀 is an arbitrarily small perturbation parameter used to enforce weak nonlinearity. 

For the purposes of the ensuing analysis, the following composite and non-dimensional parameters 

are defined.  

 

  𝜔𝑛 =  √𝑘2 𝑚2⁄     (4.11𝑎), �̅� = 𝜔 𝜔𝑛⁄    (4.11𝑏),      𝜏 = 𝜔𝑡   (4.11𝑐),

𝜃12 = 𝑚1 𝑚2⁄    (4.11𝑑), 𝛿12 = 𝑘1/𝑘2 (4.11e) 

 

 𝛾 = 𝐽0 𝑚2⁄    (4.12𝑎), 𝛤 = 𝐽𝑛𝐿2𝜔𝑛
4 𝑚2⁄    (4.12𝑏), 𝛤 ̅ = 𝛤/𝐿2 (4.12c)  

 

Where 𝜔𝑛 is the local resonance frequency of the spring, 𝜔 is the frequency of excitation, 

�̅� is the nondimensionalized frequency of excitation, 𝜏 is the nondimensionalized time, 𝜃12 is the 

mass ratio, 𝛿12 is the stiffness ratio, 𝛾 is the linear inertance ratio, 𝛤 is the nondimensionalized 

nonlinear inertance ratio, and 𝛤 ̅is its modified dimensional form used for convenience. 

Reconfiguring the equations of motion given by Equation 4.9 and Equation 4.10 above in terms of 

these parametric definitions the following equations are obtained 

 
𝜃12 �̅�2 𝑑2𝑢𝑗,1

𝑑𝜏2 + 𝛿12(2𝑢𝑗,1 − 𝑢𝑗+1,1 − 𝑢𝑗−1,1) + (𝑢𝑗,1 − 𝑢𝑗,2) +

𝛾�̅�2 (
𝑑2𝑢𝑗,1

𝑑𝜏2 −
𝑑2𝑢𝑗,2

𝑑𝜏2 ) + 휀�̅��̅�6 (
𝑑2𝑢𝑗,1

𝑑𝜏2 −
𝑑2𝑢𝑗,2

𝑑𝜏2 )
3

= 0  

   

 

 

(4.13) 

 
�̅�2 𝑑2𝑢𝑗,2

𝑑𝜏2 +  (𝑢𝑗,2 − 𝑢𝑗,1) + 𝛾�̅�2 (
𝑑2𝑢𝑗,2

𝑑𝜏2 −
𝑑2𝑢𝑗,1

𝑑𝜏2 ) + 휀�̅��̅�6 (
𝑑2𝑢𝑗,2

𝑑𝜏2 −

𝑑2𝑢𝑗,1

𝑑𝜏2 )
3

= 0  

 

 

(4.14) 
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Now introducing the first order corrections to the displacement and frequency which are 

defined as 

 𝑢 = 𝑢(0) +  휀𝑢(1) + 𝑂(휀2)   

(4.15) 

 𝜔 = 𝜔0 +  휀𝜔1 + 𝑂(휀2) (4.16) 

For easy understanding of the equations, superscripted order numbers placed in parenthesis 

are used for the displacement correction whereas the subscripted order numbers are used for the 

frequency correction terms. Substituting the corrections which are Equations 4.15 and 4.16 into the 

equation of motion for the lattice mass (𝑚1) which is given by the Equation 4.13, we have the 

following equation 

𝜃12 (�̅�0 +  휀�̅�1)2 
𝑑2

𝑑𝜏2 (𝑢𝑗,1
(0)

+  휀𝑢𝑗,1
(1)

) + 𝛿12(2(𝑢𝑗,1
(0)

+  휀𝑢𝑗,1
(1)

) −

(𝑢𝑗+1,1
(0)

+  휀𝑢𝑗+1,1
(1)

) − (𝑢𝑗−1,1
(0)

+  휀𝑢𝑗−1,1
(1)

)) + ((𝑢𝑗,1
(0)

+  휀𝑢𝑗,1
(1)

) −

(𝑢𝑗,2
(0)

+  휀𝑢𝑗,2
(1)

)) + 𝛾(�̅�0 +  휀�̅�1)2 (
𝑑2(𝑢𝑗,1

(0)
+ 𝑢𝑗,1

(1)
)

𝑑𝜏2 −
𝑑2(𝑢𝑗,2

(0)
+ 𝑢𝑗,2

(1)
)

𝑑𝜏2 ) +

휀𝛤(�̅�0 +  휀�̅�1)6 (
𝑑2(𝑢𝑗,1

(0)
+ 𝑢𝑗,1

(1)
)

𝑑𝜏2 −
𝑑2(𝑢𝑗,2

(0)
+ 𝑢𝑗,2

(1)
)

𝑑𝜏2 )

3

= 0  

   

 

 

 

 

 

 

 

(4.17) 

In the above equation the zeroth and first order terms of the perturbation parameter 휀 are 

separated to yield the following equations 

휀0:     𝜃12�̅�0
2

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2 + 𝛿12 (2𝑢𝑗,1
(0)

− 𝑢𝑗−1,1
(0)

−𝑢𝑗+1,1
(0)

) + (𝑢𝑗,1
(0)

−𝑢𝑗,2
(0)

) +

𝛾�̅�0
2 (

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 ) = 0  

   

 

 

 

(4.18) 

휀1:     𝜃12 (�̅�0
2

𝑑2𝑢𝑗,1
(1)

𝑑𝜏2 + 2�̅�0�̅�1

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2 )   + 𝛿12(2𝑢𝑗,1
(1)

−

𝑢𝑗−1,1
(1)

−𝑢𝑗+1,1
(1)

)  +   (𝑢𝑗,1
(1)

−𝑢𝑗,2
(1)

) + 𝛾�̅�0
2 (

𝑑2𝑢𝑗,1
(1)

𝑑𝜏2 −
𝑑2𝑢𝑗,2

(1)

𝑑𝜏2 ) + 2𝛾�̅�0�̅�1 (
𝑑2𝑢𝑗,1

(0)

𝑑𝜏2 −

𝑑2𝑢𝑗,2
(0)

𝑑𝜏2 ) + 𝛤�̅�0
6 (

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 )

3

= 0  

 

 

 

 

(4.19) 
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To obtain propagating wave solutions, a harmonic displacement excitation boundary 

condition is applied to the first lattice mass and a harmonic wave solution is assumed for the ε0 

order equation.  The zeroth order displacement solution for the first lattice mass (𝑚1) in the 𝑗𝑡ℎ 

unit can be represented as 

 
𝑢𝑗,1

(0)
=

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏                                     

  

(4.20) 

 

Where 𝑞 the wave is number and 𝐿 is the lattice length. 

Similarly the zeroth order displacement solutions for the lattice masses 𝑗 − 1𝑡ℎ and 𝑗 + 1𝑡ℎ units 

can be expressed as follows 

 

 
𝑢𝑗+1,1

(0)
=

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏𝑒𝑖(𝑞𝐿) +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏𝑒−𝑖(𝑞𝐿) 

𝑢𝑗−1,1
(0)

=
𝐴1

(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏𝑒−𝑖(𝑞𝐿) +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏𝑒𝑖(𝑞𝐿) 

  

(4.21) 

 

 

(4.22) 

 

The sum of the Equations 4.21 and 4.22 can be simplified as 

 
𝑢𝑗+1,1

(0)
+ 𝑢𝑗−1,1

(0)
= 2 cos(𝑞𝐿) [

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏] = 2𝑢𝑗,1

(0)
cos(𝑞𝐿)  

  

(4.23) 

The lattice mass zeroth order equation given by Equation 4.18 can be simplified as 

 휀0:     − 𝜃12�̅�0
2𝑢𝑗,1

(0)
+ 𝛿12 (2𝑢𝑗,1

(0)
− 2𝑢𝑗,1

(0)
cos(𝑞𝐿)) +

(𝑢𝑗,1
(0)

−𝑢𝑗,2
(0)

) + 𝛾�̅�0
2 (−𝑢𝑗,1

(0)
+𝑢𝑗,2

(0)
) = 0  

   

 

 

(4.24) 

 

 

 

 

(4.25) 
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휀0:     𝑢𝑗,1
(0)[−𝜃12�̅�0

2 + 2𝛿12(1 − cos(𝑞𝐿)) + 1 − 𝛾�̅�0
2] = 𝑢𝑗,2

(0)
[1 −

𝛾�̅�0
2]  

Similarly, substituting the first order corrections given by Equations 4.15 and 4.16 into the 

equation of motion of the attachment mass 𝑚2 obtained in Equation 4.14, the zeroth order equation 

for the attachment mass is as follows  

 

 
휀0:     �̅�0

2
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 + (𝑢𝑗,2
(0)

−𝑢𝑗,1
(0)

) + 𝛾�̅�0
2 (

𝑑2𝑢𝑗,2
(1)

𝑑𝜏2 −
𝑑2𝑢𝑗,1

(1)

𝑑𝜏2 ) =

�̅�0
2 (−𝑢𝑗,2

(0)
) + (𝑢𝑗,2

(0)
−𝑢𝑗,1

(0)
) + 𝛾�̅�0

2 (−𝑢𝑗,2
(0)

+𝑢𝑗,1
(0)

) = 0  

휀0:    𝑢𝑗,2
(0)

(1 − �̅�0
2 − 𝛾�̅�0

2) = 𝑢𝑗,1
(0)

(1 − 𝛾�̅�0
2)  

   

 

 

 

(4.26) 

 

 

(4.27) 

 

The linear dispersion relation is recovered by eliminating 𝑢𝑗,2
(0)

 from the zeroth order 

equations of motion given by Equations 4.25 and 4.27 

 휀0:    (1 − (1 + 𝛾)�̅�0
2)[1 − (𝜃12 + 𝛾)�̅�0

2 + 2𝛿12(1 −

cos(𝑞𝐿))] = (1 − 𝛾�̅�0
2)2  

  

(4.28) 

Now introducing µ = 𝑞𝐿 which is the nondimensional wavenumber, the linear dispersion 

relations becomes 

 �̅�0
4[𝜃12 + 𝛾 + 𝜃12𝛾] − �̅�0

2[1 + 𝜃12 + 2𝛿12(1 + 𝛾)(1 − cos(µ))] +

2𝛿12(1 − cos(µ)) = 0  

     

(4.29) 

Equation 4.29 is solved to obtain the solutions that give positive values for the frequency, 

resulting in the well-known explicit form for the linear dispersion relation. 

�̅�0 = √
{1+𝜃12+2𝛿12(1+𝛾)(1−cos(µ))}±√{1+𝜃12+2𝛿12(1+𝛾)(1−cos(µ))}2−8𝛿12(𝜃12+𝛾+𝜃12𝛾)(1−cos(µ))

2(𝜃12+𝛾+𝜃12𝛾)
  

  

(4.30) 

Further, the first order equation of motion for the lattice mass 𝑚1 given by the Equation 

4.19 is rewritten in the form 
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𝜃12�̅�0
2

𝑑2𝑢𝑗,1
(1)

𝑑𝜏2 + 𝛿12(2𝑢𝑗,1
(1)

− 𝑢𝑗−1,1
(1)

−𝑢𝑗+1,1
(1)

)  +   (𝑢𝑗,1
(1)

−𝑢𝑗,2
(1)

)  + 𝛾�̅�0
2 (

𝑑2𝑢𝑗,1
(1)

𝑑𝜏2 −

𝑑2𝑢𝑗,2
(1)

𝑑𝜏2 ) = −2𝜃12�̅�0�̅�1

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2  − 2𝛾�̅�0�̅�1 (
𝑑2𝑢𝑗,1

(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 ) − 𝛤�̅�0
6 (

𝑑2𝑢𝑗,1
(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 )

3

  

  

(4.31) 

From Equations 4.18 and 4.31 it can be observed that the Equation 4.31 resembles the 

zeroth order case as given by Equation 4.18 but with a forcing function on the right-hand-side. 

Substituting the expressions for the lattice mass displacements from Equations 4.20 and 4.23, 

eliminating the attachment mass displacement by using the Equation 4.27 and expanding the 

forcing function on the right-hand-side and grouping on 𝑒𝑖(𝑞𝑗𝐿+𝜏) and 𝑒3𝑖(𝑞𝑗𝐿+𝜏). The Equation 

4.31 can be expressed as 

2𝜃12�̅�0�̅�1𝑢𝑗,1
(0)

+ 2𝛾�̅�0�̅�1(𝑢𝑗,1
(0)

− 𝑢𝑗,2
(0)

) + 𝛤�̅�0
6(𝑢𝑗,1

(0)
− 𝑢𝑗,2

(0)
)

3
= 2�̅�0�̅�1 (𝜃12 −

𝛾�̅�0
2

1−(1+𝛾)�̅�0
2) [

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏] −

𝛤�̅�0
6 (

�̅�0
2

1−(1+𝛾)�̅�0
2)

3

[{
𝐴1

(0)3

8
𝑒3𝑖(𝑞𝑗𝐿)𝑒3𝑖𝜏 +

�̅�1
(0)3

8
𝑒−3𝑖(𝑞𝑗𝐿)𝑒−3𝑖𝜏} +

3

4
𝐴1

(0)
�̅�1

(0)
{

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏}] ≡ 𝑐1𝑒𝑖(𝑞𝑗𝐿+𝜏) + 𝑐3𝑒3𝑖(𝑞𝑗𝐿+𝜏) + 𝑐. 𝑐.  

   

 

 

 

 

 

 

 

 

(4.32) 

Where 𝑐. 𝑐. denotes complex conjugate terms. Noting that in Equation 4.32 all the terms in 

the expansion of the forcing function on the right-hand-side that occur with the term 𝑒𝑖(𝑞𝑗𝐿+𝜏) 

behave to force the first order equation of motion at resonance which leads to unbounded solutions. 

Hence, these terms are grouped as secular terms and must be equated to zero to result in bounded 

solutions. Hence the coefficient, 𝑐1 in Equation 4.32 must be set to zero which results in the 

following condition 

𝑐1 ≡ �̅�0�̅�1 (𝜃12 −
𝛾�̅�0

2

1−(1+𝛾)�̅�0
2) 𝐴1

(0)
− �̅��̅�0

6 (
�̅�0

2

1−(1+𝛾)�̅�0
2)

3
3

8
𝐴1

(0)2
�̅�1

(0)
= 0  

  

(4.33) 

 

 

The above condition directly provides the first order correction as 
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�̅�1 =
3

8
|𝐴1|2�̅��̅�0

5 (
�̅�0

2

1 − (1 + 𝛾)�̅�0
2)

3

(
1 − (1 + 𝛾)�̅�0

2

𝜃12 − (𝜃12 + 𝛾 + 𝜃12𝛾)�̅�0
2) 

  

(4.34) 

 

 

Now, using the above equation and substituting in the frequency correction defined in the 

Equation 4.16, the first order correction for the dispersion relationship is as follows 

�̅� = �̅�0 +  휀
3

8
|𝐴1|2�̅��̅�0

5 (
�̅�0

2

1 − (1 + 𝛾)�̅�0
2)

3

(
1 − (1 + 𝛾)�̅�0

2

𝜃12 − (𝜃12 + 𝛾 + 𝜃12𝛾)�̅�0
2) 

  

(4.35) 

 

 

It is noted that �̅�0 in the above expression is obtained from the linear dispersion relation 

given by the Equation 4.30. All the parameters in the Equation 4.35 are dimensionless except |𝐴1| 

and �̅�. The amplitude of excitation has the dimension of length and the nonlinearity parameter has 

inverse square length dimension. These are nondimensionalized as 𝐴∗ = |𝐴1| 𝐿⁄  and 𝛤 = �̅�𝐿2 

which are the nondimensional parameters corresponding to excitation amplitude and nonlinearity 

parameter. Now the Equation 4.35 can be rewritten as follows 

�̅� = �̅�0 +  휀
3

8
𝐴∗2𝛤�̅�0

5 (
�̅�0

2

1 − (1 + 𝛾)�̅�0
2)

3

(
1 − (1 + 𝛾)�̅�0

2

𝜃12 − (𝜃12 + 𝛾 + 𝜃12𝛾)�̅�0
2) 

  

(4.36) 

 

 

The above equation gives the shifts of the dispersion curve for the harmonic wave 

propagation through the NLIAM which is induced by the inclusion of the Duffing-type inertance 

in the local attachments.  

It is also interesting to explore the first order correction of the local resonator mass 𝑚2 

using the same approach. The first order equation of motion for the attachment mass can be 

obtained from the Equation 4.14 as 

휀1:     �̅�0
2

𝑑2𝑢𝑗,2
(1)

𝑑𝜏2   +   (𝑢𝑗,2
(1)

−𝑢𝑗,1
(1)

)   + 𝛾�̅�0
2 (

𝑑2𝑢𝑗,2
(1)

𝑑𝜏2 −
𝑑2𝑢𝑗,1

(1)

𝑑𝜏2 ) =

−2�̅�0�̅�1

𝑑2𝑢𝑗,2
(0)

𝑑𝜏2  − 2𝛾�̅�0�̅�1 (
𝑑2𝑢𝑗,2

(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,1

(0)

𝑑𝜏2 ) − �̅��̅�0
6 (

𝑑2𝑢𝑗,2
(0)

𝑑𝜏2 −
𝑑2𝑢𝑗,1

(0)

𝑑𝜏2 )

3

     

   

 

 

 

(4.37) 
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Similarly, expanding the forcing terms on the right-hand-side and grouping on 𝑒𝑖(𝑞𝑗𝐿+𝜏) 

and 𝑒3𝑖(𝑞𝑗𝐿+𝜏), Equation 4.37 can be expressed as follows 

2�̅�0�̅�1𝑢𝑗,2
(0)

+ 2𝛾�̅�0�̅�1(𝑢𝑗,2
(0)

− 𝑢𝑗,1
(0)

) + 𝛤�̅�0
6(𝑢𝑗,2

(0)
− 𝑢𝑗,1

(0)
)

3
=

2�̅�0�̅�1 (
1

1−(1+𝛾)�̅�0
2) [

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏] 

+𝛤�̅�0
6 (

�̅�0
2

1−(1+𝛾)�̅�0
2)

3

[{
𝐴1

(0)3

8
𝑒3𝑖(𝑞𝑗𝐿)𝑒3𝑖𝜏 +

�̅�1
(0)3

8
𝑒−3𝑖(𝑞𝑗𝐿)𝑒−3𝑖𝜏} +

3

4
𝐴1

(0)
�̅�1

(0)
{

𝐴1
(0)

2
𝑒𝑖(𝑞𝑗𝐿)𝑒𝑖𝜏 +

�̅�1
(0)

2
𝑒−𝑖(𝑞𝑗𝐿)𝑒−𝑖𝜏}] ≡ 𝑐1𝑒𝑖(𝑞𝑗𝐿+𝜏) + 𝑐3𝑒3𝑖(𝑞𝑗𝐿+𝜏) + 𝑐. 𝑐.     

   

 

 

 

(4.38) 

 

 

Enforcing the secular condition to avoid unbounded solutions as before yields 

𝑐1 = 2�̅�0�̅�1 (
1

1−(1+𝛾)�̅�0
2)

𝐴1
(0)

2
+ �̅��̅�0

6 (
�̅�0

2

1−(1+𝛾)�̅�0
2)

3
3

4
𝐴1

(0)
�̅�1

(0) 𝐴1
(0)

2
= 0  

(4.39) 

 

 

From Equation 4.39 the first order correction to the resonator mass response yields as 

�̅�1 = −
3

8
�̅�|𝐴1|2 �̅�0

11

(1−(1+𝛾)�̅�0
2)

2  
(4.40) 

 

 

Now, substituting this correction into the frequency equation given by Equation 4.16 gives 

the first order corrected frequency relation for the attachment mass as 

�̅� = �̅�0 −  휀
3

8
�̅�|𝐴1|2

�̅�0
11

(1 − (1 + 𝛾)�̅�0
2)

2 
(4.41) 

 

 

From Eq. 27, the zeroth order frequency-amplitude relationship for the resonator mass can 

be expressed as 

𝑢∗ =
𝑢𝑗,2

(0)

𝑢𝑗,1
(0)

=
1 − 𝛾�̅�0

2

1 − �̅�0
2 − 𝛾�̅�0

2 

(4.42) 

 

 

Where 𝑢∗ is the ratio of the displacement of the resonator mass to that of the lattice mass 

which is a measure of the frequency response of the resonator mass and can be termed the 
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displacement transmissibility. This relationship can be inverted to obtain the zeroth order frequency 

in terms of the displacement transmissibility. 

�̅�0 = √
1 − 𝑢∗

𝛾 − 𝑢∗ − 𝛾𝑢∗
 

(4.43) 

 

 

Substituting Equation 4.43 into Equation 4.41, the first order corrected frequency 

relationship for the resonator mass can be expressed in terms of the displacement transmissibility 

as 

�̅� = √
1 − 𝑢∗

𝛾 − 𝑢∗ − 𝛾𝑢∗
−  휀

3

8
�̅�|𝐴1|2

(√
1 − 𝑢∗

𝛾 − 𝑢∗ − 𝛾𝑢∗)

11

[1 − (1 + 𝛾)
1 − 𝑢∗

𝛾 − 𝑢∗ − 𝛾𝑢∗]
2 

(4.44) 

 

 

The dynamic characteristics of the NLIAM having acceleration-dependent inerters in the 

local attachment are discussed in the ensuing section. 

4.3 Dispersion Characteristics 

Based on the discrete element lattice representation the theoretical dispersion relations for NLIAM 

are investigated using numerical studies. The parameters are chosen such that the bandgap includes 

low frequencies (< 5 Hz) as structural inerters can be used at those frequencies. The base parametric 

setting used for all simulations is [𝑚1, 𝑚2, 𝑘1, 𝑘2, 𝐿] = [1,10,1000,100,1] with the values assumed 

to be in compatible units. All the parametric curves generated for each case are 

nondimensionalized. 

 

4.3.1 NLIAM with Frequency-Dependent Inertance 

In this section frequency-dependent NLIAM cases are studied. As the inertance doesn’t depend on 

the excitation acceleration, effective mass model as shown in Equation 4.3 is used to plot the 

dispersion curves. Firstly, NLIAM with inverse square (ISL) is studied. The case specific base 

parameters for ISL are inverse square law (ISL) inertance (Eq. 5) is examined. The case specific 
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base parameters for ISL are [𝛾𝑛, 𝛾∞] = [1.01, −1]  which ensure that the bandgap exists over almost 

entire frequency range of interest. Figure 4.4 shows the effect of varying the high frequency limit 

of the inertance 𝛾∞ = 𝐽∞ 𝑚2⁄  on the real part, 𝛼 and imaginary part, 𝛽 of the nondimensional 

wavenumber 𝑞𝐿. In can be inferred that bandgap region where the imaginary part 𝛽 is nonzero 

shifts towards higher frequencies as 𝛾∞ increases.  

 

          (a)                                                                                          (b) 

Figure 4.4: Influence of the high frequency limit of the inertance, 𝛾∞ = 𝐽∞ 𝑚2⁄  on the (a) real 

and (b) imaginary parts of the wavenumber for NLIAM with inverse square law (ISL) inertance. 

The band gap encompasses nearly the entire frequency range of interest as predicted 

when 𝛾∞ = −1. The effect of varying the nonlinear parameter which is 𝛾𝑛 = 𝐽𝑛 𝑚2⁄  on the real 

part, 𝛼 and imaginary part, 𝛽 of the nondimensional wavenumber 𝑞𝐿 is shown in the Figure 4.5, 

clearly showing the significance of retaining this parameter as close to and above the LRAM’s local 

resonance frequency (�̅� = 1) in order to maximize the bandgap which corresponds to the frequency 

range with nonzero 𝛽. In both parametric variations for ISL, it is interesting to note that the 

propagation mode denoted by the real part of the wavenumber, 𝛼 can evince regions where the 
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slope is negative indicating negative group velocity can be achieved for the extremely low 

frequency range. This phenomenon is seen for the power law (PL) cases too. 

 

                
          (a)                                                                                          (b) 

Figure 4.5: Influence of the nonlinear inertance parameter, 𝛾𝑛 = 𝐽𝑛 𝑚2⁄  on the (a) real and (b) 

imaginary parts of the wavenumber for NLIAM with inverse square law (ISL) inertance. 

 

Similarly for the NLIAM with power law (PL) inertance which is described using the 

Equation 4.6, the dispersion behavior is obtained using the effective mass model given by the 

Equation 4.3. The base parameters used for this case are fixed and are [𝛾0, 𝛾∞] = [300,1]. The 

parameters are chosen based on the inertance values which are physically realizable as provided in 

the literature [2]. Figure 4.3 shows the best approximate to ISL using the PL where 𝑟 is a tunable 

parameter is. The effect of varying the rate factor on the dispersion behavior of the NLIAM with 

PL inertance is shown in the Figure 4.6. When the rate factor 𝑟 = 10000, is less than the optimal 

value (𝑟 = 18395), the attenuation factor 𝛽 as well as the extent of bandgap both are diminished. 

When the rate factor 𝑟 = 25000, is greater than the optimal value, a high degree of attenuation is 

obtained, but the bandgap becomes discontinuous due to the appearance of an additional 
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propagation mode in between the two discontinuous portions of the bandgap. Hence in order to 

maximize the attenuation in the low frequency regime for NLIAM with PL, an optimal choice of 

the rate factor is essential. 

           
          (a)                                                                                          (b) 

         Figure 4.6: Influence of the rate factor, 𝑟 on the (a) real and (b) imaginary parts of the wavenumber 

for NLIAM with power law (PL) inertance. 

 

 

Figure 4.7 is the comparison of the dispersion behavior for the LIAM (having static 

inertance 𝛾0 = 1), NLIAM with ISL inertance (having [𝛾𝑛, 𝛾∞] = [1.01, −1]) and NLIAM with PL 

inertance (having    [𝛾0, 𝛾∞, 𝑟] = [300,1, 18395]). The LIAM’s bandgap is shifted below the 

LRAM’s local resonance frequency (�̅� = 1) due to the inclusion of the static inertance (set at 𝛾0 =

𝐽0 𝑚2⁄ = 1).This is because the static inerter increases the dynamic mass in the local attachments 

across entire bandwidth which lowers the resonant frequency of the local attachment. For the ISL 

inertance case it displays a nonzero 𝛽 over the entire frequency range even in the extremely low 

frequency range. Increase in frequency increases the attenuation factor 𝛽 which indicates high 

efficiency in attenuating high frequency waves. 
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             (a)                                                                       (b)         

Figure 4.7: Comparison of (a) the real and (b) imaginary parts of the wavenumber for the locally 

inertant acoustic metamaterial (LIAM) and the nonlinear inertant acoustic metamaterial 

(NLIAM) with inverse square law and power law inertance. 

From the Figure 4.7 it can be inferred that the power law (PL) inertance serves as a 

potentially physically realizable approximation to the ISL which delivers a widening of bandgap 

towards low frequencies. Substituting the power law (PL) inertance as given by Equation 4.6 in the 

dispersion relation from the effective mass model one can ascertain that the value of the cosine 

function exceeds 1 above �̅� = 0.434 resulting in the wave number becoming completely 

imaginary. The upper limit of the bandgap of LIAM case and PL case remain nearly unchanged at 

�̅� = 0.957 and �̅� = 0.945 respectively. But when comparing the lower limit of the bandgap nearly 

more than a 100% increase is obtained in the NLAIM with PL inertance. The attenuation factor in 

the NLIAM with PL inertance is relatively low compared to the LIAM, but the extent of the 

bandgap is high in the former covering the low frequency range. With only a small increase in the 
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static mass the gain the low frequency attenuation bandwidth could be realized as the nonlinear 

inerter displays a large frequency-dependent dynamic mass presence. 

4.3.2 NLIAM with Acceleration-Dependent Inertance 

In this section dispersion characteristics of the NLIAM with acceleration-dependent (AD) case are 

discussed, the base parameters used for this study are [𝛾, 𝛤, 𝐴∗, 휀] = [1,10, 0.1,0.001]. Firstly, due 

to the presence of the acceleration-dependent local attachments the shifts in the dispersion curves 

are examined by plotting the first order corrected dispersion given by the Equation 4.36. The 

variation of the excitation amplitude as well as the nonlinear parameter are considered as shown in 

the Figure 4.8. The shifts indicate higher influence in the low wavelength regime as compared to 

the lower shifts and influence in the high wavelength limit. This is experienced by the acoustical 

mode which is the low frequency mode below the bandgap as well as the optical mode which is the 

high frequency mode above the bandgap. 

 
                                         (a)                                                                         (b) 

Figure 4.8: Dispersion curve shifts for the NLIAM with acceleration-dependent inertance for (a) 

variation of excitation amplitude, 𝐴∗ and (b) variation of the nonlinear parameter, 𝛤. 
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As shown in the Figure 4.8 the shifts are more in the amplitude variation case compared to 

the nonlinear parameter variation case, this is due to the square dependence of the excitation 

amplitude in the correction. The Duffing-type inertance as inspired from the Duffing-type stiffness, 

when compared to it, a positive value for the nonlinearity (𝛤)results in a softening behavior where 

as a negative value for 𝛤 results in a hardening behavior. This is explainable as the inerter enters 

the attachment as a mass parameter, which is in the denominator. The bandgap widens for a positive 

𝛤 shifting the acoustic mode to lower frequencies. Figure 4.8 (a) which is the excitation amplitude 

variation, the lower bound of the bandgap shifts to �̅� = 0.696 for 𝐴∗=0.1 and to �̅� = 0.690 for 

𝐴∗=0.2 from the LIAM’s lower bound which is at �̅� = 0.707 for all excitation amplitudes. Hence 

physically realizing a Duffing-type inertance in the acoustic-metamaterials could be utilized as a 

passive adaptive means to filter out mechanical waves in the frequency range just below the 

LIAM’s bandgap based only on their amplitude. 

 Figure 4.9 shows the effect of the excitation amplitude, 𝐴∗ and the nonlinearity parameter, 

𝛤 on the displacement transmissibility for the resonator mass. The first order frequency correction 

has a negative sign as given by Equation 4.40 for the displacement transmissibility 𝑢∗, unlike the 

correction for the dispersion relation given by Equation 4.34. Hence, a positive value of the 

nonlinearity parameter results in a hardening response for the transmissibility similar to the 

Duffing-type oscillator, but its dependence on the frequency is of a much higher order. The 

presence of the acceleration-dependent inertance in the local attachment couples its influence 

between the resonator and the lattice chain. The correction for the dispersion curves is seen to be 

of a larger magnitude than the correction for the resonator’s response. Therefore, although the 

resonator displays a hardening response with increase in excitation amplitude for a positive value 

of 𝛤 as predicted by the corrections, the lattice chain displays a more massive response, with the 

result that the band gap widens below the corrected local resonance frequency for the NLIAM with 

AD inertance. 
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           (a)                                                                         (b) 

  Figure 4.9: Influence of excitation amplitude, 𝐴∗ and nonlinearity, 𝛤 on the displacement 

transmissibility of the resonator (attachment) mass.  

4.4 Summary 

The wave propagation characteristics of nonlinear inertant acoustic metamaterials having nonlinear 

inerter in the local attachments were investigated using the effective mass model for their discrete 

element lattice representation. The notional concepts for frequency-dependent and acceleration-

dependent nonlinear inertant devices are postulated using the ball-screw inerter as the basis. Using 

the effective mass approach the dispersion characteristics of NLIAM with frequency-dependent 

inertance were studied. The inverse square law model can ensure a bandgap over the entire 

frequency range, but the limiting values of inertance was not physically realizable. Hence a more 

practical power law inertance is approximated with the inverse square law. Next, the dispersion 

characteristics of NLIAM with acceleration-dependent inertance were studied using a perturbation 

approach. The first order corrections to frequency and displacement were derived for an NLAIM 

with cubic acceleration-dependent nonlinear inertance. Further, the transmissibility for the 

resonator is studied the first order corrections were derived using the same approach.  



97 
 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The world around us is rapidly evolving due to engineering progress and humans continue to 

innovate with new structures and materials to maximize performance and improve his comfort. 

Among the many recent mechanical innovations that have come forth, the invention of a new 

mechanical element known as the inerter has provided several exciting opportunities to enhance 

the dynamical performance of mechanical systems. Inerter is a two terminal mechanical element 

which gives a force response proportional to the relative acceleration across two ends. The 

proportionality constant is termed as its inertance which has the dimension of mass. The prominent 

mechanical realizations of the inerter are the ball-screw and rack-and-pinion inerters. It displays a 

relatively high dynamic mass under dynamic loading although its static device mass can be quite 

small.  

In this study, inspired by acoustic metamaterials, the dynamic characteristics of ‘meta-

structures’ that employ inerters are explored. Firstly, improved analytical models and parametric 

design studies for two prominent embodiments of the inerter viz. the rack-and-pinion and the ball-

screw inerter are considered. Analytical models incorporating component inertias and sizing were 

developed for both versions. The dependence of specific inertance, which is the ratio of inertance 

to static mass, on key parameters are brought out through simulations. A prototype rack-and-pinion 

inerter with a specific inertance of 90 was designed, fabricated and tested under low-rate 

displacement and acceleration-controlled excitations.  
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Both displacement as well as acceleration controlled excitation cases at low frequencies (< 

5 Hz) were considered during testing of the structural-scale inerter. The experimentally determined 

specific inertance displays a negative exponential trend with the excitation frequency for both the 

cases. Deviations from predictions are attributable to the frequency dependence of internal stiffness 

and damping in the fabricated prototype. Based on these results, the inherent internal stiffness and 

damping in the prototype test article were estimated using a phase matching procedure using a 

representative lumped element model. The internal stiffness and damping show increasing and 

decreasing trends respectively with increase in the excitation frequency and are observed to 

asymptote to finite limits. A discrete element simulation model was setup in ABAQUS. Using the 

theoretical value of inertance and the average internal stiffness and damping as inputs, the inertance 

predicted from simulations is found to have good agreement with experiment although the 

magnitude of deviation is larger for the low frequency cases. Further, spectral examination of the 

experimental phase lag shows the presence of ultra-low frequency components (< 1 Hz) in addition 

to the excitation frequency indicating the possibility of meandering effects stemming from within 

the structural assembly. Based on the results of this parametric study, design perspectives have been 

advanced for such mechanical inerters, which are seeing increasing use in several low-frequency 

applications. It is envisioned that the phase matching-based approach can be utilized to subsume 

the specific nonlinear characteristics of individual inerters into a simple yet unsimplistic model that 

can be used to more efficiently and accurately predict the behavior of multi-element, inerter-based 

systems that employ them. 

Due to the inability of a structural inerter to be responsive at high frequencies unless 

extreme gearing ratios are employed as well as the challenges involved in miniaturizing the rotary 

components for microscale applications, a potential kinematically simpler structure that can display 

inerter-like behavior is desirable. A candidate structure based on a modification of the von Mises 

truss is investigated to ascertain its inertant characteristics. The nonlinear equation of motion for 

this structure is derived using Hamilton’s principle. Numerical simulations were carried out for the 
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lumped parameter model of the structure under harmonic displacement and force inputs. The 

parametric influences on specific inertance for this structure are established using these simulations. 

The decreasing trend in the specific inertance with increase in swing-arm mass and swing-arm 

length indicates the need for additional kinematic transformations in order to ensure that the sense 

of the rotational throw of the swing-arm mass is opposite to the direction of motion of the vertex 

mass in order to mirror the sense of the flywheel’s rotation in the rack-and-pinion inerter.  

The inherent nonlinearity present in structural inerters is inevitable due to design and 

fabrication aspects of the inerter. The nonlinearities present in the inerter can be used as a passive 

way to alter tuned mass participation. Studies on such inherent nonlinearities due to design or 

fabrication aspects for inerters are more widely available, while those concerning the use of 

intentionally nonlinear inerters to enrich the dynamics of systems that employ them are 

comparatively scarce. On the other hand, research on inertant acoustic metamaterials is still 

emerging. . In this context, the mechanical wave manipulation characteristics of Nonlinear Inertant 

Acoustic Metamaterial (NLIAM) configurations are studied using analysis and simulations for their 

one-dimensional discrete element lattice representations. Based on notional concepts for nonlinear 

inertant devices, potential frequency-dependent and acceleration-dependent nonlinear inertant 

models are advanced. Using an effective mass model for the NLIAM with frequency-dependent 

inertance in the local resonator attachment, the dispersion characteristics of inverse square law and 

power law inertance models are examined and contrasted with those for an acoustic metamaterial 

with frequency invariant inertance. While a tuned inverse square law inertance model ensures the 

existence of a band gap over almost the entire frequency bandwidth of interest even encompassing 

the extremely low frequency regime, the low and high frequency limits for this inertance law would 

be challenging to realize in practice. A potentially more practical power law approximation is 

proposed and shown to deliver a widening of the band gap by more than 100% towards frequencies 

below the lower bound of the band gap for the acoustic metamaterial with frequency invariant 

inertance. Further, drawing inspiration from the Duffing-type stiffness, an acceleration-dependent 
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cubically nonlinear inertance model is proposed. First order corrections to the dispersion 

characteristics are obtained for an NLIAM with acceleration-dependent inertance using a 

perturbation approach akin to the method of multiple scales. For weakly nonlinear cases, excitation 

amplitude-activated shifts in the dispersion curves are found to enable this NLIAM to act as a 

passive adaptive filter for mechanical waves based solely on their excitation amplitude. Practical 

manifestations of such NLIAM could therefore provide a means to realize extraordinary wave 

manipulation capabilities especially suitable for low frequency structural dynamic applications. 

5.2 Recommendations 

Ever since the inerter was first postulated and then realized in practice, it has seen increasing use 

in performance-oriented applications including vehicle suspension systems and as an enhancement 

to tuned mass damper systems. In general, there is much scope to explore the applications of inerter 

in several related areas where dynamic mass is desirable without significant increase in the static 

device mass. The following are some recommendations for future research based on the lessons 

learnt from this study: 

1. Fabrication and testing procedures: The use of precision parts and high tolerances for fit 

between components is recommended to minimize inherent nonlinearities from fabrication and 

assembly considerations. The test article fabricated in this study could be improved by adopting 

transition or interference fit for attaching gears to shafts and shafts to bearings which could 

significantly reduce the play between them while testing. Custom fabricated components rather 

than modified COTS or 3D printed components are recommended where needed to facilitate 

operational efficiency. The use of active control during testing can also be implemented for the 

testing. 

2. Kinematically simpler structures for inerters: While the lumped parameter analytical 

model for the kinematically simpler structure based on the von Mises truss gives an idealized 

representation, in practice the use of bistable arches involving deformation of continuous structures 

would be required to construct such structures. Moreover, the additional kinematic coupling 
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required to ensure that the sense of the swing-arm mass’s throw is representative of the rotary 

motion of the flywheel requires further investigation. Also improved designs could be developed 

for the testing of such structures with mechanisms to vary the swing-arm mass and its location. 

With current additive and hybrid manufacturing processes attaining critical commercial maturity, 

it is an opportune time to explore new designs that can take advantage of this to develop inerters 

for microscale applications. 

3. Nonlinear Inertant Acoustic Metamaterials: Transitioning the advantage of inertant 

acoustic metamaterials to real world applications would require lab-scale demonstrations for 

specific configurations to begin with. There is much to be gained by exploring the potential for 

such meta-structures deploying inerters to be used for seismic wave mitigation, as well as for 

lightweight and long-distant mechanical actuation such as in cable-harnessed or large collapsible 

structures. This study was limited to the one dimensional propagation case using lumped parameter 

models for just one local engineered configuration. Ample scope exists to elaborate upon the 

theoretical explorations for multidimensional propagation characteristics for diverse local 

configurations. This could pave the way for enriched dynamics in several structural dynamic 

applications.
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