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Abstract23

Scientists are often called upon to provide advice on the consequences of exploiting24

data-poor and potentially threatened sharks and rays. For species lacking detailed25

biological information, sensitivity to overfishing is often estimated using simple26

models that depend upon life history parameters. Yet, there has been little explo-27
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ration of the degree to which uncertainty in life history parameters can influence28

demographic parameter estimates and therefore fisheries management options. We29

estimate the maximum intrinsic rate of population increase (rmax) for ten coastal30

carcharhiniform shark populations using an unstructured life history model that31

explicitly accounts for uncertainty in life history parameters. We also seek to un-32

derstand which parameters most influenced the estimate of rmax. The median rmax33

estimate proved to be robust to the propagation of uncertainty of life history param-34

eters when that uncertainty is symmetric around the parameters’ point estimates,35

but accounting for uncertainty can lead to a wide range of plausible rmax estimates36

for any given species. While natural mortality M can considerably impact rmax37

estimates when its uncertainty is high it is very difficult to estimate this param-38

eter directly, hence we focused on the two directly estimated parameters: age at39

maturity αmat and annual reproductive output b. Uncertainty in age at maturity40

values was low, yet it still resulted in moderate uncertainty in rmax estimates. The41

model was particularly sensitive to uncertainty in annual reproductive output as42

b approached values of less than 5 female offspring per year, which is not unusual43

for large elasmobranchs and marine mammals. Furthermore, at very low b values44

(<1), there is a threshold that results in implausible rmax estimates when both45

M and αmat are high. Managers and policy makers should be careful to restrict46

mortality on species with very low annual reproductive output <2 females per year.47

We recommend elasmobranch biologists to measure frequency distributions of litter48

sizes (rather than just a range) and age at maturity, as well as improving estimates49

of natural mortality of data-poor elasmobranchs.50

Keywords: Bycatch, Carcharhinus, Chondrichthyes, Elasmobranchii, reference points, risk51

assessment, demography52

1 Introduction53

Many marine megafauna and predator populations are declining globally and are at in-54

creasing risk of local and regional extinction (Fowler et al., 2005; Christensen et al., 2014;55

Dulvy et al., 2017). Sharks, rays, and chimaeras (class Chondrichthyes) play a complex56

role as marine predators, hence there is concern for potential indirect impacts of predator57

declines on marine ecosystems (Kitchell et al., 2002; Heithaus et al., 2008; Heupel et al.,58

2014). They are often large-bodied, long-lived, late-maturing and produce few offspring59

(Compagno, 1990; Musick, 1999). Consequently, they tend to have low intrinsic rates60

of population increase and weak compensatory density dependence in juvenile survival61

(Compagno, 1990; Musick, 1999; Forrest and Walters, 2009); traits which make them less62

able to withstand over-exploitation (Kindsvater et al., 2016).63
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There are relatively few stock-assessed elasmobranch species (Simpfendorfer and Dulvy,64

2017) even though they can be directly targeted (Jaiteh et al., 2016, 2017) and are also65

caught as bycatch in longline fisheries targeting large finfish, coastal gill-net, and trawl66

fisheries (Kitchell et al., 2002; Ellis et al., 2005). Despite the large catch and high commer-67

cial value of elasmobranchs, our understanding of species-specific catches is poor because68

many species are not directly targeted (Stevens, 2000) but are considered valuable by-69

catch. Hence, accurate information on population trends is lacking for most species.70

These challenges to understanding sustainability of elasmobranch fisheries and using pre-71

cautionary approaches for their management are compounded further by multi-species72

fisheries and poor species-specific monitoring (Barker and Schluessel, 2005; Lack and73

Sant, 2009; Dulvy et al., 2017).74

Many countries have recently adopted policy regulations that require them to assess75

fisheries according to an Ecosystem-Based Management (EBM) approach (Jennings and76

Rice, 2011; Rogers et al., 2007). The EBM approach requires, among other things, the77

identification of safe ecological limits for bycatch species (Hobday et al., 2011; Salomon78

and Holm-Müller, 2013). These species, which lack detailed stock assessments and are79

not the focus of targeted commercial extraction, are usually understudied, resulting in a80

dearth of information on their biology and demography. As such, the usual data-intensive81

stock assessment methods are not applicable for a large diversity of bycatch, which has82

led to a recent increase in the development of tools for the assessment of data-poor species83

(Brooks et al., 2010).84

Identifying which life history traits affect resilience to a range of fishing pressures is85

crucial for averting over-exploitation or extinction of data-poor species (Reynolds, 2003;86

Kindsvater et al., 2016). Life history traits are interrelated due to the evolutionary con-87

straints imposed by energy acquisition and processing (Law, 1979; Charnov, 1993). Some88

of these relationships, widely known as Beverton-Holt dimensionless ratios, can be used89

to predict other life history parameters and tied to population dynamics, albeit with90

considerable uncertainty (Dulvy and Forrest, 2010). The link between life histories and91

demography allows the use of life history traits to quantify a species’ intrinsic sensitivity92

(Frisk et al., 2001; Dulvy et al., 2004; Reynolds et al., 2005), which encompasses biological93

traits that, in conjunction with exposure to threatening processes, determine their vul-94

nerability or extinction risk (Reynolds, 2003; Dulvy and Kindsvater, 2017). For example,95

age- and stage-structured models have been used to estimate the intrinsic sensitivity of96

numerous shark and ray species (e.g. Cortés, 2002; Mollet and Cailliet, 2002; Simpfendor-97

fer, 2005). Such models depend heavily on age- and stage-specific estimates of growth,98

natural mortality and reproductive output, but such detailed information is often lack-99

ing for most elasmobranchs, particularly natural mortality (Miller et al., 2003; Gedamke100

et al., 2007). Alternatively, unstructured models do not require age- or stage-specific life101

history estimates and instead use single trait estimates. Unstructured models have the102
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advantage of relying on simple assumptions on how fertility or survival may vary with103

age or stage, and have been used to estimate relative intrinsic sensitivity for numerous104

data-poor elasmobranch species (Smith et al., 1998; Garćıa et al., 2008; Simpfendorfer105

and Kyne, 2009).106

Recently, there has been increasing awareness of the importance of considering mul-107

tiple sources of uncertainty in demographic parameter estimation and risk assessment108

(Simpfendorfer et al., 2011; Cortés et al., 2014; Jaiteh et al., 2016). In addition, demo-109

graphic modelling frameworks quantify the degree of caution that should be exercised for110

their sustainable management and can have major implications for the conservation of111

species (Caswell et al., 1998; Cortés, 2002; Cortés et al., 2014). The two main sources112

of uncertainty that can be easily accounted for in a modelling framework are measure-113

ment error (or trait error), stemming from uncertainty in the empirical estimation of a114

life history parameter (Harwood and Stokes, 2003; Quiroz et al., 2010), and coefficient115

error, which is derived from the uncertainty in the values of the coefficients of a model116

(Quiroz et al., 2010, e.g., uncertainty around the intercept of a linear model, see). While117

multiple sources of uncertainty can be readily accounted for in stock assessments, this118

has not happened to the same extent in data-poor situations, particularly in commonly119

used unstructured models (for a recent example see Jaiteh et al., 2016).120

In this study, we use an unstructured derivation of the Euler-Lotka demographic121

model, which estimates the maximum intrinsic rate of population increase rmax (Myers122

et al., 1997; Pardo et al., 2016; Cortés, 2016). We address how measurement error in123

life history traits affects (1) uncertainty in productivity estimates, and (2) sensitivity124

of these estimates to uncertainty in each trait. We examine model performance under125

the estimated uncertainty of each required life history parameter for ten populations of126

comparatively well-studied ground sharks (order Carcharhiniformes) found in the Gulf127

of Mexico and northwest Atlantic Ocean. We selected these species as they are well128

studied and there is relatively good life history information for them. Specifically, we129

calculate uncertainty in rmax estimates through Monte Carlo resampling from probability130

distributions of the three input parameters required in the model: annual reproductive131

output, age at maturity, and instantaneous natural mortality. To assess sensitivity, we132

also compare models that only include uncertainty from individual life history traits.133

2 Methods134

[Figure 1 about here.]135

We used a Monte Carlo simulation model (Fig. 1) based on published information136

on the biology of a species to iteratively estimate maximum intrinsic rate of population137

increase rmax using a derivation of the Euler-Lotka model (Cortés, 2016; Pardo et al.,138
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2016). The model starts with the data required (Values for age at maturity αmat, maxi-139

mum age αmax, litter size l, and breeding interval i (“Data” section in Fig. 1), which are140

then used to define probability distributions for each parameter (except breeding interval141

whose value is fixed, see “Probability distributions” in Fig. 1). Values for age at maturity,142

maximum age, and litter size are then drawn from these distributions (see “Parameters143

drawn” in Fig. 1), and used to estimate natural mortality M and annual reproductive144

output b (see “Model inputs” section), which in turn are required to obtain an estimate145

of rmax (blue box in Fig. 1). The drawing of parameters from distributions is repeated146

20,000 times to obtain 20,000 rmax estimates (see inner loop in Fig. 1). Finally, we re-147

peat the whole process after replacing the probability distributions of each parameter148

with a fixed value to assess the sensitivity of the model to uncertainty in αmat, b, and149

M (see outer loop in Fig. 1). We apply this model to ten populations of ground sharks150

(order Carcharhiniformes) to examine how the uncertainty in traits underlies uncertainty151

in rmax.152

2.1 Life history data153

The population-specific life history information required for this simulation model consists154

of age at maturity (range of years), maximum age (in years), ranges of litter size (in155

number of female pups), and breeding interval (in years) (Table 1, Fig. 1 “Data” section).156

[Table 1 about here.]157

The annual reproductive output of females (b) was calculated as b = 0.5 ∗ l/i, where l158

is litter size (in numbers of males and females) and i is breeding interval (in years). An-159

nual reproductive output estimates were derived from uniform distributions constrained160

by the minimum and maximum litter sizes published in the literature. This was neces-161

sary because empirical distributions of litter sizes are lacking for most elasmobranchs.162

We assumed a sex ratio of 1:1 to calculate numbers of females only per litter. Age at163

maturity (αmat) estimates were derived from uniform distributions constrained between164

the minimum and maximum ages at maturity published in the literature (Table 1).165

Instantaneous natural mortality M was estimated using the reciprocal of average lifes-166

pan (M = 1/ω), with average lifespan ω defined as the midpoint between age at maturity167

and maximum age (ω = αmat+αmax

2
), for rationale see Pardo et al. (2016). Given that168

we obtained a distribution of age at maturity values for each population (see above),169

we used this uncertainty in age at maturity as the basis to estimate uncertainty in M ,170

thus uncertainty of M was iteratively estimated using the same age at maturity dis-171

tribution described above. Uncertainty in instantaneous natural mortality M had very172

little influence on rmax compared to the effect of uncertainty in age at maturity αmat173

and annual reproductive output b; however, this is an artifact of the constrained range174
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of M values produced by our estimation method. When accounting for uncertainty in175

natural mortality using the reciprocal of lifespan equation, we only included uncertainty176

in age at maturity as it is difficult to set a plausible range for maximum age. These177

narrow estimates of M (see Fig. S2d in Supplementary Materials) resulted in uncertainty178

in M having a very small effect on rmax estimates (see Results). We could increase the179

degree of uncertainty in M estimates, yet this increase would be arbitrary. We explored180

an alternative scenario where we arbitrarily increase uncertainty in our M estimate and181

as expected, its importance on rmax estimates increased considerably (see “Alternative182

scenario with a more uncertain M” in Supplementary Materials). The effect of uncer-183

tainty in M on rmax estimates will depend on the M estimator used and the degree of184

uncertainty associated with it (Then et al., 2015). Because of the difficulties of specifying185

an adequate level of uncertainty in M as well as how resource intensive it would be to186

obtain better estimates of M , we focus our analysis on the effects of including uncertainty187

in the other parameters required to estimate rmax: αmat and b.188

2.2 Estimating rmax189

We estimated the maximum intrinsic rate of population increase rmax, which in theory,190

occurs at low population sizes (i.e., in the absence of density dependence) whereupon it is191

equivalent to the fishing mortality required to drive a population to extinction Fext (Dulvy192

et al., 2004; Gedamke et al., 2007; Cortés et al., 2014). These two metrics are equivalent193

because, in order for a species to become extinct from fishing, fishing mortality needs194

to be to equal or exceed the maximum population growth rate (Fext ≥ rmax). Unlike195

previous estimates of rmax for chondrichthyans (Garćıa et al., 2008; Dulvy et al., 2014b),196

this equation accounts for juvenile mortality which has been previously overlooked (Pardo197

et al., 2016; Cortés, 2016)198

lαmatb = ermaxαmat − e−M(ermax)αmat−1 (1)

where lαmat is survival to maturity in the absence of fishing and is calculated as199

lαmat = (e−M)αmat . Because lαmat is derived from M and αmat we did not examine the200

effect of uncertainty in lαmat independently. Equation 1 is equivalent to equation 8 in201

(Myers and Mertz, 1998) which assumes age at selectivity (i.e., age at which they begin202

to be captured) is 1. We used Monte Carlo simulation to propagate uncertainty of input203

parameters. We drew parameters from their respective distributions iteratively 20,000204

times, and solved for rmax (inner loop in Fig. 1)205

We calculated two metrics that quantify uncertainty in the estimation of rmax. We206

first calculated the range between the 2.5% and 97.5% quantiles, which encompasses 95%207

of the rmax values in each distribution and we refer to as the 95% quantile interval. In208

order to compare variation for parameters of different magnitudes, we also calculated a209
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coefficient of variation (CV, %) by dividing the mean by the standard deviation of each210

distribution.211

2.3 Model sensitivity212

To assess how uncertainty in each parameter affected estimated of rmax, we repeated the213

Monte Carlo simulation for each of the seven possible model combinations with uncer-214

tainty in: (i) only b, (ii) only αmat, (iii) only M , (iv) b+ αmat, (v) b+M , (vi) αmat +M ,215

and (vii) a full model of b+ αmat +M (Fig. 1g).216

In order to visualise the parameter space of rmax values created by ranges of αmat, b,217

and M , we created two-dimensional contour plots, showing rmax estimates along gradients218

of αmat and b, plotted separately for three levels of M : low M = 0.05 year-1, medium M219

= 0.1 year-1, and high M = 0.2 year-1. We chose these three values of M as they span220

the natural mortality values we estimated for the ten shark populations examined.221

All models were built in R version 3.2.4 (R Core Team, 2016). The rmax equation222

was solved using the nlminb optimisation function by minimising the sum of squared223

differences.224

3 Results225

3.1 Estimation of rmax and comparison of uncertainty in input226

parameters227

The median rmax estimates were robust to uncertainty in all populations examined likely228

due to the symmetric uncertainty in the underlying parameters. As expected, uncertainty229

in rmax estimates varied considerably among species as a result of uncertainty in the230

underlying traits (Fig. 2).231

Estimates of rmax are most sensitive to uncertainty in annual reproductive output b232

(Fig. 2). This is particularly pronounced in the least fecund species (Fig. 3b), that is,233

those with ranges of annual reproductive output b less than 5 such as the Finetooth Shark234

C. isodon (b = 2.7; Fig. 2b) and Blacknose Shark C. acronotus (b = 1.8; Fig. 2c) as these235

species had larger differences in coefficients of variation between b and αmat (Table 2).236

[Figure 2 about here.]237

[Figure 3 about here.]238

By focusing on the Atlantic Sharpnose Shark R. terraenovae we see that the un-239

certainty rmax values for a model only incorporating uncertainty in b is approximately240

twice as great as those in the model only incorporating uncertainty in αmat (Fig. 2i).241
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For this species the coefficient of variation (CV) in rmax estimates is 32% when only242

accounting for uncertainty in b compared to 10% when only accounting for uncertainty243

in αmat (Table 2). While the ranges of plausible age at maturity values were low for all244

ten populations examined when compared with variation in the other traits (see Fig. 2b245

in Supplementary Materials), they still resulted in considerable uncertainty in rmax esti-246

mates (Fig. 2). Furthermore, CVs of rmax estimates were moderately higher in species247

with lower estimates of αmat, which are often thought to be relatively resilient to fishing,248

than those with higher αmat estimates (Fig. 3a). The CV of rmax estimates increased as249

average b values of decreased (Fig. 3b). The species in the lower left corner of Fig. 3b250

that have low b values but do not have high variability in rmax CV are C. leucas and251

C. brevipinna; these species have the highest minimum litter sizes among those with low252

b values (see Table 1). Thus, CV is reduced as parameter draws of litter size are very253

constrained and never below six, which result in b estimates that are also constrained254

(hence low CV in rmax estimates) but that never approximate zero.255

For all ten populations, the full model incorporating all uncertainties (b+ αmat +M)256

had a slightly smaller CV than the αmat + b model due to the close correlation between257

αmat and M (Table 2). This same pattern exists when comparing models with just αmat258

versus αmat +M .259

Accounting for uncertainty in life history parameters is important: theoretical bio-260

logical reference points based on the 2.5% quantile of rmax (equivalent to Fext) were on261

average 60% lower when all sources of uncertainty were accounted for than when the262

deterministic model was used (Fig. 4).263

[Figure 4 about here.]264

[Table 2 about here.]265

3.2 Model sensitivity266

The interactive effects of annual reproductive output and age at maturity on rmax are267

nonlinear and vary based on the values of natural mortality (M = 0.05, 0.1, 0.2 year-1;268

Fig. 5). Overall, rmax drops steeply at low b values regardless of αmat or M (bottom left269

corner of all plots in Fig. 5). At medium to high values of annual reproductive output,270

the estimate of rmax becomes increasingly sensitive to variation in age at maturity. With271

increasing M values, there are increasing combinations of αmat and b values that result272

in implausible rmax values (rmax ≤ 0; red areas in Fig. 5b & c). This “implausibility”273

threshold is particularly apparent when natural mortality M is less than 0.2 year-1, b is274

very low (b < 1), and αmat is over 5 years (Fig. 5b & c). Nonetheless, it is highly unlikely275

that any species have this combination of life histories.276

[Figure 5 about here.]277
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4 Discussion278

The availability of simple methods for estimating key population parameters has opened279

the door to comparative risk assessment of a wider range of bycatch species (Stobutzki280

et al., 2002; Hobday et al., 2011; Dulvy et al., 2014a). One such simple method is the281

Euler-Lotka approach to estimating the maximum intrinsic rate of population increase282

using point estimates of three life history traits (Garćıa et al., 2008; Hutchings et al.,283

2012; Dulvy et al., 2014a). However, all life history parameters are estimated with some284

associated uncertainty. Here, we show that the degree of uncertainty in life history285

parameters has a considerable effect on the distribution of the resulting range of maximum286

intrinsic rate of population increase, but little effect on median values. Fully propagating287

the uncertainty in natural mortality M , age at maturity αmat, and annual reproductive288

output b, increased the coefficient of variation of rmax values by between 11 and 46%289

(Table 2). These findings have important implications for the use of rmax estimates to set290

fishing limits for sharks and other data-poor species (Fig. 5). Acknowledging the level of291

uncertainty associated with estimates is crucial when using the precautionary approach,292

as the degree of risk associated with specific management practices can be estimated293

(Harwood and Stokes, 2003; Artelle et al., 2013).294

As we have shown, rmax is particularly sensitive to differences in annual reproductive295

output, particularly for species with very low annual reproductive output (b < 5 females296

per year; Fig. 3b). That demography is influenced by fecundity of the least fecund species297

is apparent from some demographic models, but it depends on how reproductive output is298

parameterised. Our finding is consistent with that of more data-intensive age-structured299

models. For example, an age-structured model of dogsharks (order Squaliformes) re-300

vealed that biological reference points can be strongly influenced by their low fecundity301

(Forrest and Walters, 2009). In contrast, we caution that another commonly used un-302

structured model—the rebound potential model (Au and Smith, 1997)—is agnostic to303

annual reproductive output as the values of b on both sides of the equation cancel out304

and hence are not considered mathematically in this model (Au et al., 2015). This differ-305

ence in the implementation of annual reproductive output (b) between two superficially306

similar unstructured models may help explain differences in species’ sensitivity between307

these methods. For example, Ward-Paige et al. (2013) used the rebound potential model308

to compare the sensitivity of manta rays (Mobula spp.) to that of other elasmobranchs.309

They found that manta rays were intermediate in sensitivity (r), are more similar to Spin-310

ner Shark (Carcharhinus brevipinna) or Silky Shark (C. falciformis). However, when the311

very low annual reproductive output of manta rays is accounted for using rmax, they were312

found to have one of the lowest population growth rates rmax observed in chondrichthyans313

(Dulvy et al., 2014a). The annual reproductive output of manta rays is highly uncertain,314

but with the potential of skipped mating, reproductive output may be as low as one fe-315
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male pup every second or third year (Couturier et al., 2012; Marshall and Bennett, 2010),316

resulting in rmax varying from 0.089 to 0.139 year-1 (Dulvy et al., 2014a). Being aware of317

major differences in the implementation of annual reproductive output in different models318

is important when choosing the model best suited to the research question.319

We show that the highest demographic uncertainty occurred in species with very low320

annual reproductive outputs—less than five female pups per year. Many elasmobranchs321

have this reproductive rate (Cortés, 2000). Nonetheless, we reached this conclusion based322

on assuming a uniform distribution of litter sizes, but they are unlikely to be uniform323

in the real world. For us to explore the validity of this assumption requires a better324

understanding of the empirical distribution of litter sizes. By having more accurate325

distributions of litter size, the uncertainty in annual reproductive output b is likely to326

decrease, and thus result in more accurate estimates of rmax. Hence, we urge biologists to327

report frequency distributions of individual litter sizes: choosing adequate distributions328

based on empirical data will result in reduced uncertainty in annual reproductive output.329

As we have shown in our study, this has considerable downstream effects in the uncertainty330

of rmax estimates.331

The updated model for estimating rmax includes juvenile survival which is derived332

from adult natural mortality M (Pardo et al., 2016). Yet, because of the known trade-off333

between offspring size and litter size (Smith and Fretwell, 1974; Hussey et al., 2010), the334

least fecund species often have the largest offspring. As is typical for marine fishes, such335

larger offspring will likely have a greater survival probability than the smaller offspring of336

species with rmax among species. An example of this can be illustrated by comparing the337

Spinner Shark (C. brevipinna) with the Scalloped Hammerhead (S. lewini). The Spinner338

Shark litter size ranges between 3–15 individuals born between 60 and 80 cm in length,339

while the Scalloped Hammerhead has a larger litter size ranging between 13–41 indi-340

viduals but which are born smaller, between 45 and 50 cm in length (Last and Stevens,341

2009). Spinner Sharks likely have lower young-of-year survival rates than Scalloped Ham-342

merheads, resulting in a higher survival to maturity and thus higher rmax estimates than343

those from our study. Additionally, local-scale differences in habitat have also been shown344

to relate with M (Heupel and Simpfendorfer, 2011). Nuances in relation to differential345

juvenile mortality among species are not accounted for in our model but should be the346

focus of further study.347

Natural mortality is one of the most important parameters in fisheries modelling348

but one of the hardest to estimate (Pope, 1975; Vetter, 1988; Kenchington, 2014). Our349

estimates of rmax are relatively insensitive to uncertainty in M for shark-like life histories350

(Figs. 2) because of the method we used for accounting for uncertainty in M . For example,351

the CV of rmax estimates for R. terraenovae is 1% when accounting for uncertainty in352

only M yet it increases to 31.5% if only uncertainty in annual reproductive output is353

taken into account (Table 2). Our finding is similar to Au et al. (2015), who showed that354
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M had only a minor role in the estimation of rebound potential when compared with355

αmat. However, as natural mortality is a difficult parameter to estimate it is unrealistic356

for its uncertainty to be narrowly constrained as it was with our method. This begs the357

question of how to assess how much uncertainty in M is “enough” or “too much”.358

Furthermore, there is considerable debate as to which empirical model should be used359

to estimate natural mortality M (Hewitt and Hoenig, 2005; Quiroz et al., 2010; Then360

et al., 2015). Here, we used the reciprocal of average lifespan; however, other methods,361

such as Chen and Watanabe (1989) and Peterson and Wroblewski (1984), have been used362

as they provide varying values of M through ontogeny as required for age-structured363

demographic modelling (Pardo et al., 2012). We note the differences in rmax estimates in364

our study compared to Cortés (2016) arise because Cortés uses the minimum estimate of365

a range of mortality estimators, whereas we use one simple method for consistency and366

transparency.367

Improving natural mortality estimates, and identifying the best indirect estimator,368

would require the use of data-intensive methods such as extensive catch data to analyse369

catch curves, mark recapture experiments, virtual population analyses (VPA), or even370

fully integrated stock assessments (Kenchington, 2014; Sippel et al., 2017). Therefore,371

research efforts on data-poor species might be better spent improving on life history372

estimates of the other parameters age at maturity and annual reproductive output. Fur-373

ther increasing uncertainty in natural mortality (by an arbitrary amount) does increase374

uncertainty in rmax (see Supplementary Materials). While in our study M is relatively375

unimportant, more complex age- and stage-structured models consistently show that ju-376

venile mortality has important contributions to population growth rate (Cortés, 2002;377

Frisk et al., 2005) and realized recovery potential (Hutchings and Kuparinen, 2017). This378

difference in importance of M needs to be borne in mind when comparing across demo-379

graphic model types.380

While age-dependent mortality estimates are needed for matrix models, only average381

natural mortality values (and the uncertainty around them) are needed for unstructured382

models. Natural mortality estimates in which correlation of parameters can be accounted383

for (e.g., Pauly, 1980) reduced uncertainty of estimates and their error when applied to384

elasmobranchs (Quiroz et al., 2010). A recent study by Then et al. (2015) suggests that385

the Pauly (1980) mortality model should not be used, and instead a new variant that386

eliminates temperature from the equation is preferred. Regardless, our results showing387

the effect of uncertainty in age at maturity and annual reproductive output on rmax388

estimates are likely to be robust to the choice of natural mortality estimator used.389

We show that accounting for uncertainty in trait estimates is important as it can lead390

to much more conservative estimates of fishing limits than if uncertainty is ignored. Incor-391

porating uncertainty also considerably increased the potential range of maximum popu-392

lation growth rate rmax estimates in these relatively well-studied sharks. Furthermore, we393
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urge managers and policy makers to focus on restricting mortality in species with annual394

reproductive outputs <2 females per year, particularly if this mortality occurs among395

younger age classes. For data-limited species, we recommend incorporating all sources396

of uncertainty in life history parameters, especially when lacking directly-estimated life397

history parameters. This uncertainty in rmax can be reduced by understanding the corre-398

lation in life history parameters, and we encourage researchers studying chondrichthyan399

reproductive biology to report distributions of litter sizes and offspring sizes as to reduce400

uncertainty in these parameter distributions and thus better quantify known uncertainty401

in demographic productivity models.402
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Table 1: Values and sources of life history parameters used to estimate rmax for the ten
populations studied. Note that annual reproductive output b is not obtained directly
from the literature but is estimated from litter size and breeding interval.

Litter size Breeding Mean Age at mat. Max. Source
Species min max interval b min max age

Carcharhinus
acronotus

1 6 2.0 1.8 4.0 5.0 19.2 Driggers et al. (2004a,b); Barreto et al.
(2011); Branstetter (1990)

Carcharhinus
brevipinna

6 10 2.0 4.0 7.0 8.0 16.0 Cortés (2002); Branstetter (1987a)

Carcharhinus
isodon

2 6 1.5 2.7 3.3 5.3 8.0 Castro (1993); Carlson et al. (2003); Drig-
gers and Hoffmayer (2009)

Carcharhinus
leucas

6 12 2.0 4.5 17.0 19.0 31.0 Branstetter (1990); Cliff and Dudley
(1991); Cortés (2002); Branstetter and
Stiles (1987)

Rhizoprionodon
terraenovae

1 12 1.0 6.5 2.8 3.9 9.0 Parsons (1983); Bigelow and Schroeder
(1948); Branstetter (1987b); Parsons
(1985)

Sphyrna lewini 12 38 1.0 25.0 13.0 15.0 36.0 Branstetter (1987c); Drew et al. (2015);
Stevens and Lyle (1989); Cortés (2002)

Sphyrna
mokarran

13 42 2.0 13.8 7.4 9.5 31.7 Harry et al. (2011); Compagno (1984);
Stevens and Lyle (1989); Last and Stevens
(2009)

Sphyrna tiburo 3 15 1.0 9.0 2.9 4.0 7.5 Lombardi-Carlson et al. (2003); Cortés
(2002)

Carcharhinus
limbatus ATL

2 10 2.0 3.0 5.7 7.7 21.6 Carlson et al. (2006); Branstetter (1990);
Castro (1996)

Carcharhinus
limbatus GULF

2 10 2.0 3.0 4.7 6.7 14.4 Carlson et al. (2006); Branstetter (1990);
Castro (1996)
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Figure 1: Flow chart illustrating the structure of the Monte Carlo simulation model used
in this study. The model starts with the data required (Values for age at maturity αmat,
maximum age αmax, litter size l, and breeding interval i), which are then used to define
probability distributions for each parameter (except breeding interval whose value is
fixed). Values for age at maturity, maximum age, and litter size are then drawn from these
distributions, and used to estimate natural mortality M and annual reproductive output
b, which in turn are required to obtain an estimate of maximum intrinsic rate of population
increase rmax. The drawing of parameters from distributions is repeated 20,000 times to
obtain 20,000 rmax estimates. Finally, we replace the probability distributions of each
parameter with a fixed value to assess the sensitivity of the model to uncertainty.
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Figure 2: Predicted values of maximum intrinsic rate of increase rmax for ten different
shark populations when including uncertainty in annual reproductive output b (blue box
plots), age at maturity αmat (yellow box plots), and natural mortality M (red box plots).
Boxes indicate median, 25% and 75% quantiles, while the lines encompass 95% of the
values (2.5% and 97.5% quantiles).
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Figure 3: Coefficient of variation (CV, %) in rmax estimates for ten different shark popula-
tions when accounting for uncertainty in (a) age at maturity αmat, (b) annual reproductive
output b, and (c) natural mortality M , plotted against the median values of the respective
life history parameter. Lines are loess-smoothed curves.
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Figure 4: Comparison of potential fishing limits based on rmax when estimated with no
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sources in the model (using 2.5% quantile, red diamonds). Points were slightly jittered
horizontally to avoid overlap. Note that rmax is equivalent to Fext, i.e. the point at which
fishing mortality is equal to the maximum rate of population increase.
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