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Abstract 

In polymer electrolyte fuel cells, a foremost goal is to design catalyst layers with high performance 

at markedly reduced platinum loading. As a contribution towards this objective, we explore a 

simplified pore geometry to capture the impact of ionomer structure and metal charging properties 

on the proton density distribution and conductivity in relevant nanopores. The basic model is a 

cylindrical tubular pore confined by an ionomer shell and a solid platinum-coated core. The gap 

region between metal and ionomer is filled with water. We study how the surface charge density 

at the ionomer and the metal charging relation as well as geometric pore parameters affect the 

electrochemical performance. The density of charged side chains at the ionomer shell exerts a 

pronounced impact on the surface charge density at the Pt surface and thereby on the activity of 

the pore for the oxygen reduction reaction. The key parameter controlling the interplay of surface 

and bulk charging phenomena is the overlap of the Debye lengths of ionomer and metal surfaces 

in relation to the width of the gap. It allows distinguishing regions with weak and strong correlation 

between surface charge densities at ionomer shell and Pt core. 
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1. Introduction

Polymer electrolyte fuel cells (PEFCs) are touted as energy conversion devices of choice for 

various transportation systems and backup stationary power supply [1–3]. Their positive attributes 

include a high theoretical thermodynamic efficiency, high power density, scalability of the total 

power, and ideal compatibility with hydrogen as a fuel [4–6]. The large-scale commercial 

deployment of PEFCs hinges on breakthroughs in design and fabrication of innovative materials 

to increase durability and reduce cost [7,8].   

The cathode catalyst layer (CCL) contributes the largest voltage losses in the fuel cell. To minimize 

these losses, it is paramount to optimize the interplay of oxygen diffusion, proton transport, 

electron migration, electrochemical surface reactions, and water transport [8]. The CCL consists 

of three main materials components, viz. carbon (C), platinum (Pt), and ionomer (e.g. Nafion ®) 

that assemble into a multiphase composite medium [7–11]. An ink solution of these ingredients is 

either directly sprayed or transferred by a decal method onto the polymer electrolyte membrane to 

form the electrodes [12]. Nanoparticles of Pt provide the active catalyst surface for the 

electrochemical reaction. The continuously connected carbon phase provides pathways for 

electron conduction and the ionomer phase supplies protons. In order for proton transport to 

happen and render the surface of Pt active for the oxygen reduction reaction (ORR), it is essential 

that a percolating water phase forms inside of the porous CCL [13]. Water is present in the layer 

in various phases, as liquid water in pores of carbon and ionomer domains or as interfacial water. 

Oxygen diffuses through the continuously connected gas pore network before dissolving in water-

filled pores and diffusing in the liquid phase towards the catalyst surface. 

During the fabrication process, self-organization between component materials leads to the 

formation of agglomerates with a core region of nanoporous carbon|Pt and a nanoscopic ionomer 
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skin wrapped around it, as depicted in Fig. 1(a) and (b) [9,14]. This agglomerate structure exhibits 

a characteristic bimodal porosity [11,13,15,16]. Primary intra-agglomerate pores of 1 to 10 nm 

size are hydrophilic and are responsible for the proton transport whereas secondary inter-

agglomerate pores of 10 to 100 nm size are essential to facilitate the gaseous diffusion of oxygen 

[16,17]. Water with liquid-like properties in pores is essential to render the Pt surface 

electrochemically active, as the ORR requires the rapid supply of protons [9,14].  

The structure described above presents us with two types of interfaces at the water-filled pore 

level: one type of interface that forms between water and metallic walls made up of the catalyst 

and the carbon support and the other type of interface between water and the charged ionomer 

skin. This allows for two different types of ORR-active pores, one with metallic walls only and 

one with mixed walls of metal and ionomer, as shown in Fig. 1(c) and (d). The charged interfaces 

exert a major influence on the proton distribution and hence the reaction rate distribution at the 

nanopore level. The understanding of the role of these different wall configurations on the proton 

density distribution in pores is essential for a rational design of highly performing CCLs.  

The impact of the surface charge density on the proton concentration in a single water-filled and 

ionomer-free pore with metallic boundaries was studied by Chan and Eikerling [18]. They 

developed a model for the ORR in a cylindrical pore with charged metal walls. The model explains 

the effect of the applied metal potential (active control) on the proton density and electrical 

potential inside the pore. It demonstrates the importance of charging phenomena at the metal wall 

for the ORR activity.  

In order to assess the performance of the pore, an effectiveness factor, Γ, was employed in Ref. 

[18]. It is defined as the total current produced by the pore normalized by an “ideal” current, 𝑗ideal,

that would be obtained if reactant and potential distributions were completely uniform, 
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𝛤 =  
∫ 𝑗ν(𝑧)d𝑧
L

0

𝐿𝑗ideal
,       𝑗ideal = 𝑗

oexp(−
𝛼cF𝜂c
Rg𝑇

). (1) 

Zenyuk et al. [19,20] adopted the effectiveness factor concept proposed by Chan and Eikerling 

and they employed a similar parameterization of the metal charging relation based on the Stern 

model. However, in contrast to Chan and Eikerling, Zenyuk et al. considered the potential of zero 

charge (pzc), 𝜙pzc, strictly as an experimental parameter and they used a value of 𝜙pzc ≅

 0.3 VRHE, obtained for a pristine Pt surface [21–26], as a constant in their study, suggesting that a

simple Stern-type metal charging relation could be extrapolated to potentials relevant for the ORR. 

However, at relevant electrode potentials, 𝜙M > 0.7 VSHE, this approach results in unphysical high

positive values of the metal surface charge density, 𝜎M. Based on this oversimplified treatment of

metal charging phenomena, Zenyuk et al. inferred that alkaline conditions would prevail in the 

nanopores at potentials relevant for the ORR [19,20]. 

In contrast, Chan and Eikerling deliberately treated 𝜙pzc as a variable parameter to allow for

nonlinear and nonmonotonic variations in the metal charging relation, as had been seen in seminal 

experiment by Frumkin and Petrii [27]. A refined model of the electrified interface that accounts 

in a self-consistent manner for  charging effects caused by oxygen chemisorption at the Pt surface 

and ordered interfacial water molecules was presented by Huang et al. [28,29]. Both treatments, 

those by Chan and Eikerling [18] and Huang et al.  [28,29], give  acidic conditions in the nanopore 

under potentials of the ORR.  

Chan and Eikerling scaled up their model and validated it against experimental data for ionomer-

free ultrathin catalyst layers [18]. Sadeghi et al. developed a hierarchical model of a conventional 

ionomer-impregnated CCL and quantified the performance by expanding the definition of the 

effectiveness factor [30]. Sadeghi et al. found the total effectiveness factor of Pt utilization for a 
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CCL to be ~ 3 to 4% [30]. This low value of Γ suggests that an improved performance should be 

achievable through advanced structural design of the CCL, which hinges on the understanding of 

the impact of charged ionomer and metal walls on the proton density distribution at the pore level. 

Nouri-Khorasani et al. reported a molecular dynamics study of the proton density distribution in a 

water-filled nanopore bounded by a slab of Pt oxide and a thin ionomer skin layer. The study 

revealed a significant impact of chemisorbed oxygen at the Pt surface on the interfacial proton 

concentration [31]. 

The objective of the present work is to rationalize the concerted impact of the surface charge 

densities at ionomer shell and metal phase on the potential and proton density distribution at the 

nanopore level. The model relates these properties further to the ORR activity of the pore. In the 

terminology of the nanofluidics literature, the nanopore model is a hybrid of passive control of 

pore charging by a material with fixed surface charge density, viz. the ionomer film, and active 

control by a material whose surface charge density is modulated by an applied potential, viz. the 

metal core [32–40]. 

Section 2 and 3 introduce and define the model and the input parameters. Section 4 presents an 

implicit analytical solution to the set of governing equations. Section 5 comprises discussions 

about effects of side chain density at the ionomer shell, metal|solution interfacial properties, and 

pore geometry on the electrostatic properties and ORR activity. 

2. Model and Methodology

The basic model illustrated in Fig. 2, consists of a coaxial cylindrical configuration. The use of 

cylindrical coordinates simplifies the problem mathematically and allows for the variation of key 

geometric parameters, viz. pore width and pore length. In contrast to earlier works on electrostatic 
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and transport phenomena in nanopores, in which symmetrical charging properties of opposing 

walls were used [18,29], our geometry considers walls with different and independently controlled 

charging properties.  

The cylindrical core with radius 𝑅 consists of a solid rod with uniform Pt coating. A cylindrical 

ionomer shell with radius 𝑅 + 𝑑 coaxially surrounds the core. The gap space 𝑑, between core and 

shell is filled with water. The pore opening at 𝑧 = 0 is assumed to form an interface with a proton-

conducting polymer electrolyte membrane (PEM), whereas the opposite pore opening at 𝑧 = 𝐿 has 

an interface with a gas diffusion medium through which oxygen is supplied. In radial direction, 

the water-filled pore has a metal boundary at 𝑟 = 𝑅 and an ionomer boundary at 𝑟 = 𝑅 + 𝑑 . The 

charge density at the ionomer wall, 𝜎p, depends on the density of anionic surface groups, a

materials property (passive control). The charge density at the metal wall, 𝜎M, is a function of the

metal phase potential, 𝜙M
b  (active control). 

To determine the electrochemical performance of the pore, the continuum model developed by 

Chan and Eikerling [18] and more recently refined by Huang et al. [28,29] is adopted, and modified 

by the inclusion of the fixed 𝜎p. The model relates 𝜎p to 𝜎M, and to the rate of the ORR, using an

electric double layer model, transport equations, and a kinetic equation for the interfacial charge 

transfer. The continuum approach is sufficiently accurate when the pore opening is > 5 times the 

size of a hydrated proton, which is ~ 3 Å. Continuum models and molecular dynamics studies for 

proton conduction in water filled cylindrical pores agree well for pore radii > 1 nm, while 

corrections are required for smaller pores [18–20,30,41–52]. We have restricted our analysis to 

pore width ≥ 2 nm.  
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2.1.Governing Equations 

It is assumed that protons are only transported by diffusion and migration and the convection term 

in the Poisson-Nernst-Planck Equation (PNP) is neglected [53,54]. The Nernst-Planck equation,  

𝑗H+ = −DH+ (∇𝐶H+ +
F

Rg𝑇
𝐶H+∇𝜙), (2) 

relates the proton flux to the gradients of the solution-phase potential, 𝜙, and proton concentration, 

𝐶H+ , where 𝐷H+ is the diffusion coefficient of protons. Mass conservation of protons is given by

the steady state continuity equation, 

∂𝐶H+

𝜕𝑡
= −(∇⃗⃗⃗ ∙ 𝑗H+) = 0. (3) 

The potential distribution is obtained from the Poisson equation, 

∇2𝜙 = −
𝐶H+F

𝜖𝑜𝜖𝑟
. (4) 

The oxygen flux 𝑗O2is given by Fick’s law, 

𝑗O2 = −DO2(∇𝐶O2), (5)

where 𝐶O2 and DO2 are the concentration and diffusivity of oxygen. The Laplace Equation

determines the oxygen mass balance, 

∇2𝐶O2 = 0. (6)

The reaction plane is assumed to be located at a distance from the metal surface that corresponds 

to the radius of the hydrated proton. The superscript “‡” indicates a property evaluated at the 

reaction plane. The faradaic current density at this plane is  
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𝑗‡(z) = 𝑗o (
𝐶O
‡

2
 (𝑧)

𝐶O
o
2

)

γO2

(
𝐶H+
‡ (𝑧)

𝐶H+
o )

γ
H+

exp(−
𝛼cF𝜂

‡(𝑧)

Rg𝑇
), (7) 

where  𝑗o is the exchange current density, γO2 and γH+ are reaction orders, 𝐶O
o
2
 and 𝐶H+

o  denote

the reference oxygen concentration at 𝑧 = 𝐿 and the reference proton concentration at 𝑧 = 0, 

respectively, 𝛼c  is the electronic transfer coefficient and 𝜂‡(𝑧) is the local overpotential at the

reaction plane. 

The proton concentration at the reaction interface is given by 𝐶
H+
‡ (𝑧), and the local overpotential 

𝜂‡(𝑧) at the reaction plane is given by

𝜂‡(𝑧) = 𝜂c − (𝜙
‡(z) − 𝜙o), (8) 

where 𝜂c is the cathodic overpotential, 𝜙‡(z) the solution phase potential at the reaction plane, and

𝜙o the solution phase potential at 𝑧 = 0.

2.2.Boundary Conditions 

The proton concentration at 𝑧 = 0 is 𝐶H+(𝑟, 0) and the potential at this boundary is 𝜙o,

𝐶H+ (𝑟, 0) =  𝐶H+
o , (9) 

𝜙 (𝑟, 0) =  𝜙o. (10) 

Assuming that the PEM is gas tight, the oxygen flux at 𝑧 = 0 is 

𝐽O2 (𝑟, 0) ∙ 𝑧̂ = 0, (11)

where 𝑧̂ is a unit vector in z-direction. At 𝑧 = 𝐿, the concentration of dissolved oxygen is obtained 

using Henry’s law, 

𝐶O2 (𝑟, 𝐿) = HO2 𝑝O
o
2
, (12)
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where 𝐻O2  is the Henry’s constant and 𝑝O
o
2
 is the partial pressure of oxygen at the interface with

the gas diffusion medium. When moving along the pore in axial direction starting from 𝑧 =  0, 

the proton flux is gradually consumed in the ORR and it goes to zero at 𝑧 = 𝐿, 

𝑗H+(𝑟, 𝐿) ∙ 𝑧̂ = 0. (13) 

The metal core is considered to be equipotential,  

∇𝜙M(𝑟, 𝐿) ∙ 𝑧̂ = 0. (14)

At the reaction interface, both the oxygen and the proton flux are coupled to the reaction current 

density, 

𝑗
H+
  ‡ (z) ∙ 𝑧̂ =

𝑗‡(𝑧)

𝐹
, (15) 

𝑗O2
  ‡ (z) ∙ 𝑧̂ =

𝑗‡(𝑧)

4𝐹
. (16) 

The charging relation that captures the electrostatic interaction between protons and the charged 

metal pore walls [28] is given by 

where 𝜙OHP is the potential at the outer Helmholtz plane, 𝛿PtO,  𝛿OHP, and  𝛿IHP are the  thicknesses

of the PtO layer, OHP, and IHP respectively; 𝑋 is the dimensionless total field-dependent 

adsorption energy of water molecules as defined in [28]; ∆𝜙M is a constant potential drop at the

metal surface due to the electron spillover effect; 𝜖PtO, 𝜖OHP, and 𝜖IHP are dielectric constants of

the PtO layer, OHP, and IHP respectively (in units of the dielectric permittivity of vacuum, 𝜖o);

𝜙OHP = 𝐸app − ∆𝜙𝑀 −
𝜇PtO
𝜖PtO

+
𝑁tot𝜇𝑤
𝜖IHP

tanh𝑋  

− 𝜎M (
𝛿PtO
𝜖PtO

+
𝛿OHP
𝜖OHP

+
𝛿IHP
𝜖IHP

), 

(17)
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𝑁tot is the density of adsorption sites at the metal surface, which we replace by the Pt surface atom

density, and 𝜇𝑤 is the dipole moment of water. An expression for 𝜙OHP will be presented in Eq.34

obtained for the specific model geometry considered in this article. The surface oxide dipole 

density 𝜇PtO is calculated from Eq. 5, 7-8 in Ref. [28].

𝜇PtO =  𝑁tot𝜇site, (18) 

with 𝜇site being the average dipole moment per surface Pt atom,

𝜇site =  𝜃Ox(𝜍𝑒)𝛿PtO, (19)

where  𝜍 is the fractional charge number assigned to surface metal atoms and oxygen atoms in the 

oxide dipole layer. In Eq. 19,  𝜃Ox is the normalized oxide coverage, given by

where 𝑝𝐻s represents the pH on the surface of the metal and can be transformed into 𝜙‡ using the

Boltzmann relation; 𝜓Ox is the lateral interaction parameter of chemisorbed oxygen species, 𝜙M
b

is the bulk metal potential, 𝜙s is the interfacial potential in the water phase, and 𝐸Ox
o  represents the

equilibrium potential of oxide layer formation as explained in Ref. [28];  

 The free metal surface charge density 𝜎M is related to the gradient of potential via Gauss law,

𝜎M =   𝜖𝑠
d𝜙(𝑟)

d𝑟
|
OHP,   z

 . (21) 

where 𝜖𝑠 is the dielectric constant of the solvent in the gap region (in units of 𝜖𝑜) .

The boundary condition at the charged ionomer wall is 

F(𝜙M
b − 𝜙s − 𝐸Ox

o )

RgT
+ (2.3)𝑝𝐻s

= ln (
𝜃Ox

1 − 𝜃Ox
) + 

𝜓Ox𝜃Ox
Rg𝑇

, 

(20)
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𝜎p =   𝜖𝑠
d𝜙(𝑟)

d𝑟
|
𝑅+𝑑,   z

. (22) 

For simplicity, the anionic charges at the ionomer skin layer are assumed to be located directly at 

the wall. The ionomer interface is assumed to be impermeable to oxygen. This assumption defines 

a worst-case scenario, as all oxygen must transport through the water filled pore volume, a pathway 

that always exists. This assumption allows for a simplified axial boundary condition for oxygen 

presented in section 4.  

3. Model Parameters

The values of model parameters are listed in the Table 1. For the geometry, we assume that 𝑅 is in 

the range of the size of a typical Pt nanoparticle, i.e., 2 − 4  nm. As discussed below, the main 

geometric parameter of the model is the gap width, 𝑑. Normally, 𝑑 is expected to be < 2 nm. For 

𝑑 ~ 𝑅 the curvature in the cylindrical geometry will exert a strong impact on the model solution. 

For 𝑑 ≪ 𝑅, the solution will approach the limiting case of a flat slab-like pore.  

The typical range of variation of 𝐿 is from 50 nm to 100 nm. For practical considerations, 𝐿 could 

correspond to the pore length encountered in flooded agglomerates of conventional CCLs, which 

are gas-diffusion electrodes, cf. Fig. 1, or to the pore length in electrolyte-flooded ultrathin CCLs. 

The potential decay region at the pore interface with the PEM, corresponding to the Donnan 

potential difference, extends over a width of about 4 Å that is very small compared to 𝐿; this region 

thus has a negligible impact on the electrostatic properties of the pore.   

As we will explain in section 4, the proton density and solution phase potential assume quasi-

equilibrium distributions in the model, which are insensitive to 𝐿. The distribution of the oxygen 

concentration and ORR activity along the pore are highly sensitive to 𝐿, when 𝐿 exceeds the 
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oxygen penetration depth 𝛿 [8,18]. In flooded pores, 𝛿 lies typically in the range of ~ 100 nm; it 

could be reduced if the pore surface is highly ORR active. 

The nearest neighbor separation distance 𝑙c of sidechains lies in the range of 0.7 to 1.2  nm [9].

Considering a side chain arrangement in a square lattice, the relation between 𝑙c and 𝜎p is given

by 

𝜎p =   −
𝑒𝑜

𝑙c
2, (23) 

where 𝑒𝑜 is the elementary charge. For a hexagonal arrangement of surface groups at the ionomer

film, the relation is 

𝜎p =   −
2𝑒𝑜

√3𝑙𝑐
2 . (24) 

The metal surface charge density depends on the value of the metal potential relative to the 

potential of zero charge (pzc). The pzc is a measure of the propensity of a metal to retain negative 

charge at the surface. However, the recent work by Huang et al. [28,29] has shown that 𝜙pzc is not

sufficient as a descriptor of metal charging phenomena.. In the presence of chemisorbed species at 

the metal surface, Frumkin and Petrii [27] and Trasatti [55] introduced the notions of the potential 

of zero free charge and the potential of zero total charge. 

Another peculiar observation by Frumkin and Petrii was the “inverse” potential of zero free charge 

[27]. As the potential increases, the surface charge climbs to more positive values, as expected. 

However, in the potential region of oxygen chemisorption, the charge density decreases with 

increasing potential, goes through an “inverse” potential of zero charge and then assumes negative 

charge density values again [27,56]. 
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 The model of  Huang et al. [28,29] reproduces this non-monotonic behavior. In the hydrogen 

adsorption region and the double layer charging region, that is for 𝜙M
b  <  0.6 V𝑆𝐻𝐸, 𝜎M  increases

with 𝜙M
b . In the potential region of oxygen chemisorption, the relation between 𝜎M and 𝜙M

b  goes 

through a maximum and then it exhibits a downward turn. 𝜎M is negative  at high potentials, that

is for 𝜙M
b  >  0.8 V𝑆𝐻𝐸, as seen in the Fig. 6 of  Ref. [28]. The negative charging region at high

potential was also observed as well by Garcia-Araez et al.[57]. In our work, the formalism of 

Huang et al. [28,29] is adopted, as described in Section 2.2. 

For the kinetic parameters of the ORR, we use 𝛼c = 1 and 𝛾H+ = 1.5 in the high potential region,

and 𝛼c = 0.5, 𝛾H+ = 1.0 in the low potential region [58–60], following the rationale presented in

Chan and Eikerling [18]. The transition between the two potential regions occurs at 𝜂c = −0.4  𝑉

[61–65]. 

4. Model Solution

Because of the slow ORR kinetics, the PNP Equation is reduced to the Poisson-Boltzmann (PB) 

equation. The PB equation is solved analytically and the solution is analyzed for the considered 

ranges of radii, length and potential. This approximation allows solving for potential and reactant 

concentration profiles analytically and factorizing Γ into separate factors due to electrostatic and 

oxygen transport effects. 

4.1.Electrostatic Problem 

Setting the flux term on the left-hand side of Eq. 2 equal to zero gives an equation in the form of 

the PB equation in cylindrical co-ordinates, 
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1

𝑟
(
𝜕

𝜕𝑟
) (𝑟

𝜕

𝜕𝑟
)𝜙 + 

𝜕2

𝜕𝑧2
𝜙 = −

𝐶H+
o F

ϵs
exp[−𝑏(𝜙(𝑅, 𝑧) − 𝜙o)] 

with  b =  
F

Rg𝑇
 .

(25) 

To simplify notations, equations are non-dimensionalized by using the substitutions 

𝜈 =
𝑟

𝑅
 , 𝑟 = 𝜈𝑅, 𝑑𝑟 = 𝑅𝑑𝜈, 

𝜉 =  
𝑧

𝐿
,   𝑧 = 𝜉𝐿,   𝑑𝑧 = 𝐿𝑑𝜉,  and  𝛷 =  

F𝜙

Rg𝑇
. 

We thus obtain 

where 𝜆D = √
ϵsRg𝑇

𝐶
H+
o F2

 is the Debye length. The dimensionless boundary conditions are 

d𝛷(𝜈)

d𝜈
|
𝜈=1+

𝑑
𝑅

= −
𝜎pF

ϵsRg𝑇
𝑅, and (27) 

d𝛷(𝜈)

d𝜈
|
𝜈=1

= −
𝜎MF

ϵsRg𝑇
 𝑅. (28) 

The following simplifications convert the 2D model into a 1D +1D model. For high aspect ratios, 

i.e. 𝐿 ≫ 𝑑, the second term on the left-hand side of Eq. 26 becomes negligibly small, as verified

by comparison with the exact numerical solution. Due to the high electronic conductivity, the 

potential decay region at the 𝑧 = 0 boundary is limited to a small region with thickness of the 

order of the Debye length, 𝜆D  ~ 0.4  nm. Ignoring the contribution of this region for the overall

rate of current generation in the pore, one can set 
∂2𝛷

∂𝜉2
= 0, which reduces the electrostatic problem

to a radial problem. This means that the proton concentration varies only in radial direction, 𝐶H+ =

𝛷
1

𝜈
(
𝜕

𝜕𝜈
) (𝜈

𝜕𝛷

𝜕𝜈
) +

𝑅2

𝐿2
∂2𝛷

∂𝜉2
= −

R2

𝜆D
2 exp(−(𝛷(𝜈) − 𝛷

𝑜))  (26)
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𝐶H+(𝑟). A comparison of the approximate model solution obtained with this 1D approach with the 

full numerical solution of Eq. 26 confirms that the 1D approximation is sufficiently accurate. 

As can be seen in the Fig. 1(a) and (b), in a partially ionomer covered agglomerate, oxygen 

molecules for the ORR reach the Pt surface by diffusion through the ionomer thin film as well as 

by diffusion through the water filled pores, defining a complex mixed-phase or random network-

type diffusion problem. The solution of this transport problem is beyond the scope of this article 

and we have made the simplifying assumption that the ionomer shell blocks oxygen diffusion, 

implying that oxygen transport must take place by dissolving oxygen in liquid water, as stated 

earlier. It is self-evident that the liquid-water based diffusion mechanism is crucial; without it the 

major fraction of the Pt surface area, embedded inside of water-filled agglomerate pores, would 

be inactive. Recent efforts in modeling transport and reaction in individual nanopores or ionomer 

free catalyst layers [18,29] lend credibility to this view.   

Moreover, the diffusion of dissolved oxygen through water in agglomerates was considered in a 

hierarchical model of catalyst layer operation that reproduced very well experimental voltage vs. 

current density curves [30].  

We are aware of a common conjecture that diffusion of oxygen through the ionomer skin 

surrounding C|Pt  particles or agglomerates is a performance-limiting process [70,71]. However, 

as will be seen from results of pore level modeling presented below, oxygen diffusion through the 

ionomer skin is not essential for the ORR activity of a typical nanopore under normal conditions 

and it will not become performance-limiting under critical conditions, when CCL flooding occurs, 

justifying neglect of this contribution. 
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For high aspect ratio, i.e. 𝐿 ≫  𝑑 considered throughout this work, oxygen concentration varies 

only along the axial direction and it is uniform in the radial direction (
𝜕𝐶𝑂2
𝜕𝑟

= 0). These

simplifications reduce the 2D model to a 1D model for proton density and potential profile in radial 

direction and a 1D model for oxygen concentration in axial direction. The model equation for the 

potential reduces to 

The solution of Eq. 29 is 

where 𝜒 and 𝑐2 are integration constants. Using boundary conditions Eq. 27 and 28 in Eq. 30 gives

d𝛷(𝜈)

d𝜈
|
𝜈=1+

𝑑
𝑅

= −
𝜎pF

Rg𝑇
𝑅

=
2𝑅

𝑅 + 𝑑
(1 + 𝜒 coth(

𝜒 (ln (
𝑅 + 𝑑
𝑅

) + 𝑐2)

2
)), 

(31) 

1

𝜈
(
𝜕

𝜕𝜈
) (𝜈

𝜕𝛷

𝜕𝜈
) = −

𝑅2

𝜆D
2 exp(−(𝛷(𝜈) − 𝛷

𝑜)). (29) 

𝛷(𝜈) − 𝛷o =  ln

(

𝛬2𝜈2 sinh (
𝜒(ln(𝜈) + 𝑐2)

2 )
2

𝜒2

)

, (30) 

d𝛷(𝜈)

d𝜈
|
𝜈=1

= −
𝜎MF

Rg𝑇
 𝑅 = (2 + 2𝜒coth (

𝜒𝑐2
2
)) ,  (32) 

 (
0.6

𝜋𝛿IHP
2 +𝑁tot)(

𝑁𝐴𝜇w
2

Rg𝑇𝛿IHP𝜖IHP
) tanh𝑋 − 𝑋 = 

𝑁𝐴𝜇w𝜎M
𝜖IHPRg𝑇

, (33) 
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where 𝑁𝐴 is the Avogadro’s number. Equation (31) to (34) must be solved together with Eq. 20 to

find the parameters 𝜒, 𝑐2, 𝜎M, 𝜃Ox, and 𝑋.

The effectiveness factor of Pt utilization for the ORR is given by 

𝛤 =  ∫ (𝐶O
‡

2
)
γO2

𝐿

0

exp ((𝛼c − 𝛾H+)(𝛷
‡ − 𝛷o))  𝑑𝑧. (35) 

Since Φ‡ is independent of z, Γ decouples into factors representing electrostatic and oxygen

transport effects, 

𝛤 =  𝛤elec𝛤O2 , (36) 

with 

𝛤elec = exp ((𝛼c − 𝛾H+)(𝛷
‡ −𝛷o)), (37) 

𝛤O2 = ∫ (𝐶O
‡

2
)
γO2

𝐿

0

𝑑𝑧. (38) 

By using Eqs. 17, 30, and 37 at the OHP, we obtain 

 ln (
𝛬2 sinh (

𝜒𝑐2
2
)
2

𝜒2
)

= 𝐸app − ∆𝛷M −
𝜇PtO
𝜖PtO

+
𝑁tot𝜇𝑤
𝜖IHP

tanh𝑋  

− 𝜎M (
𝛿PtO
𝜖PtO

+
𝛿OHP
𝜖OHP

+
𝛿IHP
𝜖IHP

), 

(34)
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Eq. 39 is solved numerically at different values of 𝜎p .

To analyze the charging behavior of the pore, we calculated the differential capacitance as a 

function of 𝜎p and 𝛷M
b . The total accumulated proton charge in the pore is

𝑄 =  2𝜋𝐿(𝜎p (𝑅 + 𝑑) + 𝜎M 𝑅). (40) 

Since 𝜎p is fixed, the differential pore capacitance 𝐶diff  is obtained from

𝐶diff = 
𝜕𝜎M
𝜕𝑉

, 𝜕𝑉 =  𝜕𝛷M
b . (41) 

4.2.Oxygen Transport 

The 1D oxygen diffusion equation is 

𝛾R
2 = 𝜆R

−2 =
𝑘o

DO2𝐿
(
𝐶H+
‡

𝐶H+
o )

𝛾
H+

exp(
−𝛼cF𝜂c
Rg𝑇

), (43) 

where 𝜆R is the reaction penetration depth and 𝑘o is the ORR rate constant. With the boundary

conditions, 

ln(𝛤elec)

𝛼c − 𝛾H+
= 𝐸app − ∆𝛷𝑀 −

𝜇PtO
𝜖PtO

+
𝑁tot𝜇𝑤
𝜖IHP

tanh𝑋  

− (2 − √𝜒2 + 𝛬2𝛤elec
(

1
γH+− 𝛼c

)
) (
𝛿PtO
𝜖PtO

+
𝛿OHP
𝜖OHP

+
𝛿IHP
𝜖IHP

). 

(39)

d2𝐶𝑂2(𝑧)

d𝑧2
− 𝛾R

2𝐶𝑂2 = 0.
(42)
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d𝐶𝑂2(𝑧 = 0)

d𝑧
= 0  and   𝐶𝑂2(𝑧 = 𝐿) =  𝐶𝑂2

𝑜 (44) 

Eq. 44 has the analytical solution 

𝐶O2(z) =  𝐶O2
o
cosh(𝛾R𝑧)

cosh(𝛾R𝐿)
. (45) 

5. Results and Discussion

5.1.Electrostatic Problem 

First, we analyze the influence of 𝜎pand 𝜙M
b  on 𝐶H+ and the electrostatic potential profile across

the pore. Fig. 3(a) and (b) show that protons accumulate at both interfaces. The variation of 𝜙M
b  in 

Fig. 3(a) has a slight impact on the proton density and potential, both at the metal interface and the 

ionomer interface. It is evident from Fig. 3(b), that the side chain density of the ionomer film 

largely affects the potential and proton density at both interfaces.  

For further discussion of charging effects, we introduce a total Debye length, 𝜆Dt, defined as the

sum of the Debye lengths at the metal interface, 𝜆DM , and at the ionomer interface, 𝜆Dp,

𝜆Dt = 𝜆DM + 𝜆Dp (46) 

with 

𝜆DM = √
ϵsRg𝑇

𝐶H+
OHPF2

, 𝜆Dp = √
ϵsRg𝑇

𝐶H+
𝑅+𝑑F2

, (47) 

where 𝐶H+
OHP and 𝐶H+

𝑅+𝑑 are the proton concentration at OHP and 𝑅 + 𝑑 respectively. The parameter 

𝜆Dt helps defining a characteristic value of 𝜎p  at which the ionomer starts to affect 𝐶
𝐻+
‡

. For 

𝜆Dt  < 𝑑, the values of 𝐶H+ close to the two interfaces are controlled independently by the
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respective surface charge densities. For 𝜆Dt >𝑑, the double layers overlap and 𝜎p exerts a strong

impact on 𝐶
𝐻+
‡

at the metal interface – this will be the normal situation encountered in CCLs. 

Fig. 4(a) shows that more negative 𝜎p incurs a shift of 𝜎M to more negative values. This shift in

𝜎M is controlled by the double layer overlap. At large negative values of 𝜎p and small pore width,

we expect highly negative 𝜎M. In this figure, we can see two opposing effects: on the one hand,

ionomer induces a negative charge on the metal surface; on the other hand, based on the Pt oxide 

equation used by Huang et al. [28,29], at low pH, a poor oxide coverage and resulting smaller 

oxide dipole moment would render the metal positively charged at intermediate potentials in 

ionomer free pores. In the system with ionomer, the effect of the ionomer-induced negative charge 

is dominant.  For comparison, 𝜎M for the situation with 𝜎p = 0 resembling an ionomer free pore

is shown in Fig. 4(b). In this case, 𝜙M
b controls 𝐶H+   inside the pore, as has been shown by Chan

and Eikerling [18]. 

At high potentials, a concerted effect of chemisorbed oxygen and ionomer on 𝜎M is discernible. At

sufficiently large absolute values of 𝜎p  (e.g. |𝜎p| =  0.65  Cm
−2), 𝜎M is an order of magnitude

more negative than the surface charge density in an ionomer free system. The ionomer acts as a 

proton reservoir and controls the 𝐶H+ distribution inside the pore. This ionomer-induced

enhancement effect vanishes for as |𝜎p|  → 0, as can be seen in Fig. 4(a).

To refine the discussion of the ionomer-effect on metal surface charging, we can distinguish two 

distinct charging regions in Fig. 4(c), which both exhibit roughly linear correlations between, 𝜎p

and 𝜎M . For the given set of basic pore properties defined in Table 1, the characteristic value of

|𝜎p| for the transition between these regions is |𝜎p| = 0.15  Cm
−2. For |𝜎p|  >  0.15  Cm

−2, the

approximate correlation between metal and ionomer surface charge density is 𝜎M ~  0.2 𝜎p .  For
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|𝜎p|  <  0.15  Cm
−2, the correlation is 𝜎M ~ 0.5 𝜎p. The transition between the two regions is

governed by 𝜆Dt. We see a strong impact of 𝜎p  on 𝜎M , when 𝜆Dt  >  𝑑, and a weak impact when

𝜆Dt  <  𝑑.

Fig. 5 shows the effect of the 𝜙M
b  and 𝜎p on Γelec. We see similar behavior as in Fig.4(a): the value

of Γelec increases as |𝜎p| grows. Γelec(𝜙M
b ) goes through a minimum at 𝜙M

b  ~ 0.78 V before

assuming higher values at higher potentials due to the concerted effect of chemisorbed oxygen and 

ionomer. As can be seen from Fig. 5(a), Γelec assumes values > 1 for large values of |𝜎p|  >

0.15 Cm−2 due to the increased 𝐶H+. At low potentials 𝜙M
b  <  0.6 VSHE, this overcharging of the

pore is a result of the negative charge on the metal that is induced by the ionomer. At higher 

potentials 𝛷M
b  >  0.7 VSHE, the overcharging results from the concerted effect of both the ionomer

induced negative charge and the chemisorbed oxygen. Fig. 5(c) shows that 𝛤elec assumes high

values (> 1) for |𝜎p|  >  0.15 Cm
−2.

For |𝜎p|  <  0.15 Cm−2 , Γelec is strongly correlated with 𝜎p indicating a drastic decline in the

electrostatic performance of the pore as 𝜎p → 0 . This transition between the two charging regimes

is controlled by the double layer overlap effect. For comparison,  Γelec is shown as a function of

𝜙M
b   for the case 𝜎p = 0 in Fig. 5(b).

In the double layer overlap region, electrostatic and transport phenomena in the pore are controlled 

by the surface charging effects [33,72]; our study shows that in this regime, 𝜎p  exerts a strong

impact on 𝜎M and thus on the performance of the pore as an electrocatalytic medium for the ORR.

Fig. 6 shows the effect of 𝜎p  on 𝐶diff. More negative 𝜎p  results in higher 𝐶H+ across the pore and

more negative 𝜎M . This leads to an increase of 𝐶diff, similar to the trend observed in Γelec (Fig.
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5(c)). This increase in 𝐶diff  is due to the induced charge by the ionomer and is amplified at high

potentials by the additional effect of the chemisorbed oxygen. 

We also studied the impact of the pore geometry on 𝜎M  and Γelec. The impact of 𝑅 and 𝑑 in Fig.

7(a) shows that a closer proximity of the ionomer interface to the metal interface results in more 

negative  𝜎M  due to the increased 𝐶H+ caused by enhanced double layer overlap under pore

confinement. The effect of pore confinement on Γelec is illustrated in Fig. 7(b). As can be seen in

Fig. 7(a) and (b), as the width of the gap region increases, the absolute value of 𝜎M  decreases,

causing the decline of Γelec, reflecting the waning impact of the ionomer skin.

We analyzed the radial curvature effect on the pore behavior by varying the ratio 
𝑑

𝑅
 at fixed value 

of 𝑑. As can be seen in Fig. 7(c), when 
𝑑

𝑅
decreases from 

𝑑

𝑅
= 1, representing a strong curvature to 

the limit of a flat slab-like pore i.e., 
𝑑

𝑅
→ 0, the metal surface charge decreases by ~ 25%.

As we can see from Figs. 4-7, the impact of 𝜎p  on 𝜎M  and Γelec is highly nonlinear. Two regions

can be distinguished: (1) for small |𝜎p|  <  0.15 Cm
−2, 𝜎M  and Γelec are strongly dependent on

𝜎p ; for large |𝜎p|  >  0.15 Cm
−2, 𝜎M  and Γelec exhibit a weak dependence on 𝜎p . The

characteristic value of 𝜎p that is seen to control transition between the two regions is mildly

dependent upon other model parameters. Overall, Γelec is significantly enhanced in a partially

ionomer-bound pore as compared to an ionomer-free (“all-metallic”) pore due to the impact of 𝜎p

on the proton density. 

5.2.Oxygen Transport Limitation Problem 

The profiles for 𝐶O2  are plotted in Figs. 8(a) and (b) for varying 𝜂c and 𝐿. At 𝜂c < −0.45 V, O2 is

depleted along the pore as can be seen in Fig. 8(a). For this range of overpotentials, the active part 
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of the pore is pinned to a thin slab close to 𝑧 =  𝐿. Fig. 8(b) illustrates the effect of the length of 

the pore on the 𝐶O2 profile. For 𝜆R > 𝐿, 𝐶O2 is uniformly distributed and independent of pore

length.  

The effect of the oxygen transport limitations on Γ is captured in the expression 

ΓO2(z) =
1

𝛾R𝐿
tanh(𝛾R𝐿). (48) 

For 𝜆R > 𝐿, in Eq. 48 tanh(𝛾R𝐿) ≈ 𝛾R𝐿  and

ΓO2(z) ≈  1. (49) 

In this limit, Γ is solely determined by Γelec , as can be seen in Fig. 9(a).  In the limit 𝐿 > 𝜆R, we

find   

ΓO2(z) ≈
1

𝐿𝛾R
,  and  Γ ≈  Γelec

1

𝐿𝛾R
. (50) 

In this limit, the impact of oxygen transport on Γ is shown in Fig. 9(a), with Γelec  plotted as a

dotted line for comparison. The interplay of increasing 𝐶H+ resulting from 𝜎p and depleting

𝐶O2  leads to a maximum in the plot of  Γ vs 𝜂𝑐 in Figs. 9(a) and (b). With increasing 𝐿, the

maximum in Γ shifts towards more positive overpotentials as the O2 transport limitation becomes 

more severe. Fig. 9(b) compares a pore with charged ionomer shell to one with an uncharged shell 

(𝜎p = 0). The pore with charged ionomer wall exhibits an enhancement of the effectiveness factor

of Pt utilization by about a factor 8. It is evident that 𝜎p  markedly impacts pore performance and

this effect should be considered in efforts to improve catalyst layer design. 
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6. Conclusion

We have presented a pore-scale model with mixed boundaries made of a charged metal core and 

an ionomer skin layer. The study rationalizes the impact of the charging properties of both 

boundaries on the potential and proton density distributions in the water-filled gap confined by 

these surfaces and it correlates these properties to the ORR performance of the pore. The most 

crucial parameter controlling the pore performance is the ionomer surface charge density. We 

found a significantly enhanced pore performance for values of the ionomer surface charge density 

and pore geometries for which the total Debye length is greater than the pore width. At lower 

applied potential, we found a strong impact of the ionomer surface charge density on the metal 

surface charge density and the effectiveness factor for the ORR. At higher potentials, the combined 

effects of ionomer surface charge density and chemisorbed oxygen, weaken the net impact on the 

metal surface charge density. The performance enhancement exerted by the charged ionomer skin 

is seen by comparison with a non-charged case. The effectiveness factor for the ORR is enhanced 

by a factor of ~ 8 for a system with highly charged ionomer skin. The effect of the pore geometry 

on performance was also explored. Pores with smaller width of the water-filled gap show enhanced 

performance due to the pore confinement effect. All in all, findings presented in this article reveal 

the important concerted impact of the density of charged sidechain at the ionomer skin and of the 

surface charging relation of the metal on the pore performance. Both of these structure-related 

properties should be considered in efforts to design and fabricate advanced catalyst layers. 
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Figure Captions 

Figure 1. (a) Schematic of catalyst layer structure with agglomerates (b) Schematic of single 

agglomerate structure with primary pores. (c) Pore with all metallic walls. (d) Pore with mixed 

boundaries of charged metal wall and charged ionomer skin wall. 

Figure 2. Schematic of a single pore with both mixed ionomer and metal walls. The pore interfaces 

at one opening with a proton supplying medium and at the other end with an oxygen diffusion 

medium. 

Figure 3. Radial profile of 𝐶H+ from metal interface to the ionomer interface (a) at different values

of 𝜙M
b  and fixed value of 𝜎p = −0.65  Cm

−2. (b) at different 𝜎p and fixed 𝜙M
b =  0.7  V𝑆𝐻𝐸. (𝑑 =

4  nm, 𝐿 = 100  nm). 

Figure 4. (a) 𝜎M  as a function of 𝜙M
b  for different values of  𝜎p. (b) 𝜎M as a function of 𝜙M

b  for 

𝜎p = 0  Cm
−2.  (c) 𝜎M as a function of 𝜎p.  (𝑑 = 4  nm, 𝐿 = 100  nm)

Figure 5. (a) Γelec  as a function 𝜙M
b  of for different values  𝜎p. (b)  Γelec  as a function of 𝜙M

b  for 

𝜎p = 0 Cm
−2.  (c) 𝛤elec as a function of 𝜎p.  (𝑑 = 4  nm, 𝐿 = 100  nm)

Figure 6. The differential pore capacitance, 𝐶diff, as a function of 𝜎p  (𝑑 = 4  nm, 𝐿 =

100  nm). 

Figure 7. (a) 𝜎M as a function of 𝜙M
b for varying pore width. (𝐿 = 100  nm). (b) Γelec  as a

function of 𝜙M
b  for varying pore width  (𝐿 = 100  nm) (c) 𝜎M as a function of 𝜙M

b  for varying 𝑅 

at constant 𝑑 (approaching the limit of flat slab like pore); (𝑑 = 4  nm, 𝐿 = 1  μm) 
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Figure 8. (a) 𝐶O2 profile across the pore at different 𝜂c (𝑑 = 4  nm, 𝐿 = 20  nm) (b)  𝐶O2  profile

across the pore as a function of 𝐿 for 𝜂c = −0.30 V. (𝑑 = 4  nm).

Figure 9. (a) Γ as a function of 𝜂c at different 𝐿  (𝑑 = 4  nm) (b) 𝛤 as a function of 𝜂𝑐 at different

𝜎P (𝑑 = 4  nm)
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Table Captions 

Table 1. Parameters used in the model 
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Figure 1 

(a)

(b)

(c) (d)
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Figure 2 
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Figure 3 

(a) (b)
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Figure 4 

(a)

(b) (c)
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Figure 5 

(a)

(c)

(b)
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Figure 6 

- -

Ionomer film
𝑙𝑐~ 7− 12  
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Figure 7 

(a) (b)

(c)
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Figure 8 

(a)
(b)
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Figure 9 

(a) (b)
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Table 1 

Parameters Values 

𝜙pzc Potential of zero charge 0.3  VSHE [24 –26]

𝛾O2 Reaction order of the ORR 1 [55–57] 

𝛾H+ Reaction order of the ORR 1.5 –  1 [58] 

𝛼c Symmetry coefficient 0.5 –  1 [58] 

𝑇 Temperature 353  K 

𝑃 Pressure 1  atm 

𝐷O2
Oxygen diffusivity through water filled 

pore 
1.0×10−4  cm2s−1 [61]

𝐷H+ Proton diffusivity through water filled pore 1.8 ×10−4  cm2s−1 [65]

F Faraday constant 96500 C mol−1

𝑙𝑐 Anionic surface groups separation 0.7  to 1.2  nm 

𝐻O2 Henry constant 5.9 ×10−4 mol kg−1bar−1 [62]

𝑅g Gas constant 8.314  J mol−1K−1

𝜖 Dielectric constant 61 𝜖O[62]
𝐶H+
o

Reference proton concentration 1.25  M [63] 

𝐶O2
o

Reference oxygen concentration 3.2×10−4 M
𝜎p Ionomer surface charge density −0.65  to  0.00  C m−2

𝐾H Helmholtz capacitance 0.2  F m−1 [64]

𝑗o Exchange current density (low cd region) 1.96×10−9 A cm−2 [65]

𝑗o

𝜖PtO
𝜖IHP
𝜖OHP
𝛿PtO
𝛿IHP
𝛿OHP
𝜇w
∆𝜙𝑀
𝜓Ox
𝜍 
𝐸Ox
o

𝑅 

𝑅2
𝑑 

Exchange current density (high cd region)

Permittivity of oxide layer

Permittivity of IHP

Permittivity of OHP

Thickness of the oxide layer

Thickness of IHP

Thickness of OHP

Water dipole moment

𝜙𝑀
𝑏 − 𝜙𝑀

𝑠

Lateral interaction parameter

Fractional charge number

Equilibrium potential of Pt oxidation

Radius of the metal core

Radius of the ionomer shell

Radius of the water filled pore

1.40×10−10 A cm−2 [65]

30 𝜖O [66]

0.6 𝜖O [67]

30 𝜖O [67]

0.2 nm [28, 29] 

0.275 nm (water dipole diameter) 

0.515 nm [28, 29] 

3.1 D [68] 

0.3 V [69] 

64.2(1 − 𝜃Ox) [28]

0.8 [28] 

0.716 V [28] 

2 nm  

≥ 6 nm 

≥ 4 nm 
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