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Abstract. Existence results of infinitely many solutions for a fourth-order differential equation
are established. This equation depends on two real parameters. The approach is based on an
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1. INTRODUCTION

The aim of the present paper is to investigate the existence of infinitely many
solutions for the following fourth-order problem8<: u.i�/.x/D � ˛.x/f .x;u.x//Ch.x;u.x//; x 2 Œ0;1�;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D �g.u.1//

(1.1)

where � and � are positive parameters, f W Œ0;1��R! R is L1-Carathéodory func-
tion, g W R! R is a continuous function ,˛ 2 L1.Œ0;1�/ , ˛.x/ � 0 , for a.e. x 2 R
,˛ 6� 0 and h W Œ0;1��R!R is a Carathéodory function , there exists 0 <L< 1, such
that h.x; t/� Ljt j for each x 2 Œ0;1� and t 2 R.
The problem (1.1) is related to the deflections of elastic beams based on nonlinear
elasticity . In relation with the problem (1.1), there is an interesting physical descrip-
tion.
Suppose an elastic beam of length d D 1, which is clamped at its left side x D 0, and
resting on a kind of elastic bearing at its right side x D 1 is given by �g . Along
its length, a load � f̨ C h, is added to cause deformations. If u D u.x/ denotes
the configuration of the deformed beam, then since u000.1/ represents the shear force
at x D 1, the condition u000.1/ D �g.u.1// means that the vertical force is equal to
�g.u.1//, which denotes a relation, possibly nonlinear, between the vertical force
and the displacement u.1/. In addition , since u00.1/ D 0 indicates that there is no
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bending moment at x D 1, the beam is resting on the bearing �g.
Different models and their applications for problems such as (1.1) can be derived
from [4]. We refer the reader to the references [14] and [10] for a physical justific-
ation of this model. There is increasing interest in studying fourth-order boundary
value problems. Because the change of the static form beam or the support of rigid
body can be described by a fourth-order equation. Also a model to study travelling
waves in suspension bridges can be furnished by nonlinear fourth-order equations
(for instance , see [5]).

When the boundary conditions are nonzero or nonlinear, fourth-order equations
can model beams resting on elastic bearings located in their extremities( see for in-
stance [1, 3, 6–8, 11–13] and the references therein).

For example, using a variational methods, the existence of three solutions for spe-
cial cases of problem (1.1) has been established in [13] and [12]. In [7] the author
obtained the existence of at least two positive solutions for the problem8<: u.i�/.x/D f .x;u.x//; x 2 Œ0;1�;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D g.u.1//;

(1.2)

based on variational methods and maximum principle. It should be noted that the
function f is assumed to be continuous. By assuming appropriate conditions on f
and g, the author guarantees positive solutions to problem (1.2). Also existence and
multiplicity results for this kind of problems were considered in [1,3,6] . In all these
works the critical point theory is applied.

Moreover in [8] authors, considered numerical solutions for problem (1.2) with
nonlinear boundary conditions.

In particular, using a variational methods the existence of non-zero solutions for
problem 8<: u.i�/.x/D f .x;u.x//; x 2 Œ0;1�;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D �g.u.1//;

(1.3)

has been established in [1].
In the present paper, using one kind of infinitely many critical points theorem ob-
tained in [2] , we establish the existence of infinitely many weak solutions for the
problem (1.1). The paper is organized as follows.
In section 2 we establish all the preliminary results that we need, and in section 3 we
present our main results.

2. PRELIMINARIES

The following theorem is a smooth version of Theorem 2.1 of [2] which is a more
precise version of Ricceri’s Variational Principle [9] and it is the main tool of the next
section .
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Theorem 1. Let X be a reflexive real Banach space, let ˚;	 W X ! R be two
Gâteaux differentiable functionals such that ˚ is sequentially weakly lower semi-
continuous, strongly continuous, and coercive and 	 is sequentially weakly upper
semicontinuous. For every r > infX ˚ , let us put

'.r/ WD inf
u2˚�1.��1;rŒ/

supv2˚�1.��1;rŒ/	.v/�	.u/

r �˚.u/

and
 WD liminf

r!C1
'.r/; ı WD liminf

r!.infX ˚/C
'.r/:

Then, one has

.a/ for every r > infX ˚ and every � 2�0; 1
'.r/

Œ, the restriction of the functional
I� D ˚ ��	 to ˚�1.��1; rŒ/ admits a global minimum, which is a critical point
(local minimum) of I� in X .

.b/ If  <C1 then, for each � 2�0; 1

Œ, the following alternative holds:

either
.b1/ I� possesses a global minimum,

or
.b2/ there is a sequence fung of critical points (local minima) of I� such that

lim
n!C1

˚.un/DC1:

.c/ If ı <C1 then, for each � 2�0; 1
ı
Œ, the following alternative holds:

either
.c1/ there is a global minimum of ˚ which is a local minimum of I�,

or
.c2/ there is a sequence of pairwise distinct critical points (local minima) of I�

which weakly converges to a global minimum of ˚ .

Now, we recall some basic facts and introduce the needed notations.

Definition 1. A function f W Œ0;1��R! R is said to be a
Carathéodory function if
(C1) the function x! f .x; t/ is measurable for every t 2 R;
.C2/ the function t ! f .x; t/ is continuous for a.e. x 2 Œ0;1�.
And f W Œ0;1��R! R is said to be a L1-Carathéodory function if, in addition to
conditions .C1/ and .C2/ ,the following condition is also satisfied :
.C3/ for every � > 0 there is function l� 2 L1.Œ0;1�/ such that supjt j�� jf .x; t/j �
l�.x/ for almost every x 2 Œ0;1�.

Denote
X WD fu 2H 2.Œ0;1�/ju.0/D u0.0/D 0g;
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where H 2.Œ0;1�/ is the Sobolev space of all functions u W Œ0;1�! R such that u and
its distributional derivative u0 are absolutely continuous and u00 belongs to L2.Œ0;1�/.
X is a Hilbert space with the usual norm

kukX D

�Z 1

0

.ju00.x/j2Cju0.x/j2Cju.x/j2/dx

�1=2
which is equivalent to the norm

kuk D

�Z 1

0

ju00.x/j2dx

�1=2
:

Also the embedding X ,! C 1.Œ0;1�/ is compact and we have

kukC1.Œ0;1�/ Dmaxfkuk1;ku0k1g � kuk (2.1)

for each u 2X (see [12] ) .

Put

F.x; t/D

Z t

0

f .x;�/d� for all .x; t/ 2 Œ0;1��R;

G.t/D

Z t

0

g.�/d� for all t 2 R;

and

H.x; t/D

Z t

0

h.x;�/d� for all .x; t/ 2 Œ0;1��R:

Let ˚; 	 WX ! R be defined by

˚.u/D
1

2

Z 1

0

ju00.x/j2dx�

Z 1

0

H.x;u.x//dxD
1

2
kuk2�

Z 1

0

H.x;u.x//dx (2.2)

and

	.u/D

Z 1

0

˛.x/F.x;u.x//dx�
�

�
G.u.1// (2.3)

for every u 2X .
Now according to (2.1) we observe that

.1�L/

2
kuk2 � ˚.u/�

.1CL/

2
kuk2 (2.4)

for every u 2 X . Similar to [ [1]-page 3], 	 is a differentiable functional whose
differential at the point u 2X is

	 0.u/.v/D

Z 1

0

˛.x/f .x;u.x//v.x/dx�
�

�
g.u.1//v.1/;
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and, ˚ is continuously Gâteaux differentiable functional whose differential at the
point u 2X is

˚ 0.u/.v/D

Z 1

0

u00.x/v00.x/dx�

Z 1

0

h.x;u.x//v.x/dx

for every v 2X .

Definition 2. A function u 2X is a weak solution to the problem (1.1) ifZ 1

0

u00.x/v00.x/dx��

Z 1

0

˛.x/f .x;u.x//v.x/dxC�g.u.1//v.1/

�

Z 1

0

h.x;u.x//v.x/dx D 0 (2.5)

for every v 2X .

3. MAIN RESULTS

Let
G� D min

jt j��
G.t/D inf

jt j��
G.t/ for all � > 0;

� WD
1�L

8�4.2
3
/3.1CL/

; (3.1)

C WD liminf
�!C1

Z 1

0

sup
jt j��

˛.x/F.x; t/dx

�2
(3.2)

and

D WD limsup
�!C1

Z 1

3
4

˛.x/F.x;�/dx

�2
: (3.3)

Now we formulate our main result as follows.

Theorem 2. Assume that

.A1/

Z 3
4

0

˛.x/F.x; t/dx � 0 for all t � 0.

.A2/ C < �D, where � , C and D are given by (3.1) , (3.2) and (3.3) .

Then, setting

�1 WD
4�4.2

3
/3.1CL/

D
; �2 WD

1�L

2C
;
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for each � 2 .�1;�2/,for every arbitrary continuous function g W R! R whose po-
tential

G.t/D

Z t

0

g.�/d� for all t 2 R;

is a non-positive function satisfying the condition

G� WD �
2

1�L
lim

�!C1

G�

�2
<C1 (3.4)

and for every � 2 .0;�g;�/ where �g;� D
1
G�

�
1� �

�2

�
, the problem (1.1) has un-

bounded sequence of weak solution in X .

Proof. From .A2/ we see that �1 < �2. Our aim is to apply Theorem 1 , to prob-
lem (1.1). Fix N� 2 .�1;�2/ and let g be a function satisfies the condition (3.4). Since
N�<�2, we have�

g; N�
D

1
G�

�
1�

N�
�2

�
>0:Now fix N�2 .0;�

g; N�
/ and put ´1D �1 and

´2 D
�2

1C N�
N�
�2G�

. If G� D 0, clearly, ´1 D �1, ´2 D �2 and N� 2 .´1;´2/: If G� ¤ 0,

since N� < �
g; N�

, we obtain
N�
�2
C N�G� < 1; and so �2

1C N�
N�
�2G�

> N�; namely, N� < ´2:

Hence, since N� > �1 D ´1; one has N� 2 .´1;´2/:

Take X , ˚ and 	 as in the previous section.
For each u 2X , we let the functional I N� WX ! R be defined

I N�.u/D ˚.u/�
N�	.u/:

˚ is a sequentially weakly lower semicontinuous onX . Indeed, consider an arbitrary
u 2 X and fung1nD1 � X such that un*u in X . Due to the compact embedding X
into C.Œ0;1�/, we have that un! u in C.Œ0;1�/. This impliesZ 1

0

H.x;un.x//dx!

Z 1

0

H.x;u.x//dx; (3.5)

and the weakly sequentially lower semicontinuous property of the k:k implies

liminf
n!C1

kunk
2
�k u k2 : (3.6)

From (3.5)-(3.6) we have
liminf
n!C1

˚.un/� ˚.u/:

Since

˚.u/�.
1�L

2
/kuk2;

taking the condition 0 < L < 1 into account we observe ˚ is coercive. Moreover,
˚ is strongly continuous. On the other hand, the compact embedding X into C Œ0;1�
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implies that the functional 	 is continuously differentiable and with compact de-
rivative. Hence 	 is sequentially weakly upper semicontinuous (see [15, Corollary
41.9]).Therefore we observe that the regularity assumptions of Theorem 1 on ˚ and
	 are satisfied . Note that the weak solution of problem (1.1) are exactly the critical
points of I N�(in particular , see [12, Lemma 2.1] ).
Let f�ng be a sequence of positive numbers such that �n!C1 as n!C1 and

lim
n!C1

 Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

�2n
�
N�

N�

G�n
�2n

!

D liminf
�!C1

 Z 1

0

sup
jt j��

˛.x/F.x; t/dx

�2
�
N�

N�

G�

�2

!
: (3.7)

According to .A2/ and (3.4), it is obvious that the limit on the right-hand side in (3)
is finite and therefore we have

lim
n!C1

 Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

�2n
�
N�

N�

G�n
�2n

!
<C1: (3.8)

Now for all n 2N, put rn D
�
1�L
2

�
�2n . Since

�
1�L
2

�
kuk2 � ˚.u/; for each u 2 X

and bearing (2.1) in mind, we see that

˚�1.��1; rnŒ/Dfu 2X I ˚.u/ < rng

�

�
u 2X I .

1�L

2
/kuk2 < rn

�
�fu 2X I ju.x/j � �n for each x 2 Œ0;1�g :

Note that ˚.0/D 	.0/D 0. Hence, for all n 2N, one has

'.rn/D inf
u2˚�1.��1;rnŒ/

supv2˚�1.��1;rnŒ/	.v/�	.u/

rn�˚.u/

�
supv2˚�1.��1;rnŒ/	.v/

rn

D

supv2˚�1.��1;rnŒ/

 Z 1

0

˛.x/F.x;v.x//dx�
N�

N�
G.v.1//

!
rn

�
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supv2˚�1.��1;rnŒ/

Z 1

0

˛.x/F.x;v.x//dx

!
�
N�

N�

 
inf

v2˚�1.��1;rnŒ/
G.v.1//

!
rn

� Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

!
�
N�

N�

 
inf
jt j��n

G.t/

!
rn

D

2

1�L

 Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

�2n
�
N�

N�

G�n
�2n

!
:

Therefore, from (3.8) we obtain

 � liminf
n!C1

'.rn/� lim
n!C1

2

1�L

 Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

�2n
�
N�

N�

G�n
�2n

!
<C1:

(3.9)

Now we show that N�<
1


. Since N� 2 .0;�

g; N�
/ then N�< 1

G�
.1�

N�
�2
/D 1

G�
.1� 2C

N�
1�L

/.

Hence from (3) and (3.9) we have

 � liminf
n!C1

'.rn/� lim
n!C1

2

1�L

 Z 1

0

sup
jt j��n

˛.x/F.x; t/dx

�2n
�
N�

N�

G�n
�2n

!
D

liminf
�!C1

2

"Z 1

0

sup
jt j��

˛.x/F.x; t/dx�
N�

N�
G�

#
.1�L/�2

<

2C

1�L
� lim
�!C1

2.1� 2C
N�

1�L
/G�

N�.1�L/G��2
D

2C

1�L
C

1�
2C N�

1�L
N�

D
1

N�
:

This implies that N� <
1


. So we proved that

N� 2 .´1;´2/� .�1;�2/�

�
0;
1



�
:

For the fixed �, the inequality (3.9) concludes that the condition (b) of Theorem 1
can be applied and either I

�
has a global minimum or there exists a sequence fung of

weak solutions of the problem (1.1) such that limn!C1 kunk DC1:
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The other step is to prove that for the fixed � the functional I
�

has no global min-
imum. Let us show that the functional I

�
is unbounded from below. Since N� > �1

then we have

1

N�
<

1

4�4.2
3
/3.1CL/

limsup
�!C1

Z 1

3
4

˛.x/F.x;�/dx

�2

and so there exists a sequence f�ng of positive numbers and a constant � such that
�n!1 as n!1 and

1

N�
< � <

1

4�4.2
3
/3.1CL/

Z 1

3
4

˛.x/F.x;�n/dx

�2n
(3.10)

for each n 2N large enough. For all n 2N define

wn.x/ WD

8<:
0 if x 2 Œ0; 3

8
�

�n cos2.4�x
3
/ if x 2�3

8
; 3
4
�

�n if x 2�3
4
;1�:

We observe that wn 2X and kwnk2 D 8�4.23/
3�2n and so from (2.4) we see that

˚.wn/�
.1CL/

2
kwnk

2
D 4�4.

2

3
/3.1CL/�2n: (3.11)

On the other hand, bearing .A1/ in mind and since G is non-positive, we have

	.wn/�

Z 1

3
4

˛.x/F.x;�n/dx: (3.12)

It follows from (3.10)-(3.12) that

I N�.wn/D˚.wn/�
N�	.wn/

�4.1CL/�4.
2

3
/3�2n�

N�

Z 1

3
4

˛.x/F.x;�n/dx

<4�4.
2

3
/3.1CL/�2n�4�

4.
2

3
/3.1CL/�2n

N� � D

4�4.
2

3
/3.1CL/�2n.1�

N��/

for every n 2N large enough. Since N�� > 1 and �n!C1 as n!C1, we have

lim
n!C1

I N�.wn/D�1
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and it follows that I N� has no global minimum. Therefore, taking the fact

˚.u/�
1CL

2
kuk2

into account, by .b/ from Theorem 1 , there exist a sequence fung of critical points
of I N� such that limn!1 kunk DC1, and the conclusion is achieved. �

Now we present the following example to illustrate the result.

Example 1. Let F W Œ0;1��R! R be the function defined as

F.x; t/ WD

(
ex2
t3
�
1� cos.ln.jt j//

�
if .x; t/ 2 Œ0;1�� .R�f0g/

0 if .x; t/ 2 Œ0;1��f0g

and

˛.x/ WD

�
1
4

if x 2 Œ0; 1
4
�

0 if x 2 .1
4
;1�:

Consider the problem8̂̂̂̂
<̂̂
ˆ̂̂̂:
u.i�/ D �˛.x/ ex2

 
3u2

�
1� cos.ln.juj//

�
Cu2 sin.ln.juj//

!
C
1
2

sinu;

x 2 .0;1/;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D �g.u.1//:
(3.13)

Let f .x;u/D ex2

 
3u2

�
1�cos.ln.juj//

�
Cu2 sin.ln.juj//

!
, h.x;u/D 1

2
sinuwith

LD 1
2

, g.u/D�u.

We observe that

C WD liminf
�!C1

R 1
0 supjt j�� ˛.x/F.x; t/dx

�2
D 0

D WD limsup
�!C1

R 1
3
4
˛.x/F.x;�/dx

�2
DC1

and

G� WD �
2

1�L
lim

�!C1

G�

�2
D 2:

Hence, by Theorem 2, for every � 2 .0;C1/ and � 2 .0; 1
2
/ the problem (3.13) has

a sequence of generalized solutions which is unbounded in X .
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Theorem 3. Assume that assumption .A1/ in Theorem 2 holds and

D > 4�4.
2

3
/3.1CL/ and C <

1�L

2

and for every arbitrary continuous function g W R! R whose potential

G.t/D

Z t

0

g.�/d� for all t 2 R; is a non-positive function, satisfying the condition

lim�!C1
G�
�2
D 0. Then, the problem8<: ui� D f .x;u/Ch.x;u/; x 2 .0;1/;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D �g.u.1//

(3.14)

for every � 2 .0;C1/ has an unbounded sequence of weak solution in X .

Proof. Theorem is an immediately consequence of Theorem 2 when �D 1. �

Remark 1. In Theorem 2, if we assume that the function f is non-negative, the
assumption .A2/ can be written as

liminf
�!C1

Z 1

0

˛.x/F.x;�/dx

�2
< � limsup

�!C1

Z 1

3
4

˛.x/F.x;�/dx

�2

as well as �g;� D 1
G�

�
1� 2�

1�L
liminf�!C1

R 1
0 ˛.x/F .x;�/dx

�2

�
. Moreover, in the

autonomous case, putting F.t/ D
Z t

0

f .�/d� for all t 2 R, and ˛.x/ D 1 for a.e.

x 2 R , the assumption .A2/ assumes the form

liminf
�!C1

F.�/

�2
<
�

4
limsup
�!C1

F.�/

�2
;

and in this case, we have

�1 D
16�4.2

3
/3.1CL/

limsup�!C1
F.�/

�2

and �2 D
1�L

2 liminf�!C1
F.�/

�2

and �g;� D 1
G�

�
1� 2�

1�L
liminf�!C1

F.�/

�2

�
.

Remark 2. Replacing �!C1 with �! 0C and also put

C WD liminf
�!0C

Z 1

0

sup
jt j��

˛.x/F.x; t/dx

�2
(3.15)
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and

D WD limsup
�!0C

Z 1

3
4

˛.x/F.x;�/dx

�2
(3.16)

and

G� WD �
2

1�L
lim
�!0C

G�

�2
<C1 (3.17)

in Theorem 2, by the same way as in the proof of Theorem 2 but using conclusion
(c) of Theorem 2 instead of (b), we can obtain a sequence of pairwise distinct weak
solutions to the problem (1.1) which converges uniformly to zero.

We present the following example to illustrate Remark 2.

Example 2. Let ˇ > 1847 be a real number and F W R! R be a function defined
by putting

F.t/ WD

(
t2
�
1Cˇ sin2.1

t
/
�

if t 2�0;C1Œ
0 if t 2��1;0�:

We see that F.t/D
Z t

0

f .�/d�, where f .t/D 2tC2ˇt sin2.1
t
/�ˇ sin.2

t
/:

Put g.t/D�t3 , ˛.x/D 1 and h.x; t/D 1
3
x t sin t for every x 2 .0;1/ and t 2 R.

We can consider LD 1
3

and in this case � D 27
128�4

.
Let an D 1

n�
, bn D 1

2nC1
2
�

. For every n 2N, we have

C WD liminf
�!0C

F.�/

�2
� lim
n!1

F.an/

a2n
D 1; (3.18)

and

D WD limsup
�!0C

F.�/

�2
> lim
n!1

F.bn/

b2n
D ˇC1; (3.19)

and by (3.18) and (3.19)one has

liminf
�!0C

F.�/

�2
<
�

4
limsup
�!0C

F.�/

�2
;

as well as � 512�4

81.˛C1/
;
1

3

�
�

 
16�4.2

3
/3.1CL/

limsup�!0C
F.�/

�2

;
1�L

2 liminf�!0C
F.�/

�2

!
:



INFINITELY MANY WEAK SOLUTIONS 537

Therefore, by applying Remark 1 and Remark 2, for every ˇ > 1847, and every
� 2

�
512�4

81.˛C1/
; 1
3

�
and � 2 .0;C1/ the problem8̂<̂

:
ui� D �

�
2uC2ˇusin2. 1

u
/�ˇ sin. 2

u
/
�
C
1
3
xu sinu; x 2 .0;1/;

u.0/D u0.0/D 0;

u00.1/D 0; u000.1/D �g.u.1//

(3.20)

has a sequence of pairwise distinct weak solutions which converges uniformly to
zero.
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