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Abstract. In the paper, by methods and techniques in combinatorial analysis and the theory of
special functions, the authors discuss two kinds of special values for the Bell polynomials of the
second kind for two special sequences, find a relation between these two kinds of special values
for the Bell polynomials of the second kind, and derive an identity involving the combinatorial

numbers.
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1. MOTIVATION

In [1, Definition 11.2] and [2, p. 134, Theorem A], the Bell polynomials of the
second kind, denoted by B,, s (x1,x2,...,X,—k+1) forn > k > 0, are defined by

n—k+1

n! xi\Y%i
Bk (X1,%2, ... . Xp—f41) = Z — I l_[ (—:) .
1<i<n,f; {0}UN l—[i=1 Gy
Zl’-l:li(,'=n
Z?=1Ei=k

For more information on the Bell polynomials of the second kind B, ., please refer
to the monographs and handbooks [1—3] and closely related references therin.
In [1, p. 451], the formulas

@) fr—1
k' \k—1)’

B2r_1,k(0,2!, ey (27" —2)',0) = O,

2r)! —1
Bayas(11,0,....(2r —1)1,0) = 2 <r+s )

By, x(0,2!,...,0,(2r)!) =

2s)'\ 2s—1
Bor2s—1(11,0,...,(2r —1)1,0) =0,
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2r—D![r+s-2
B2r_1’2s_1(1!,0,...,(21"—1)!,0)=—Ezs_li'( 2512 )7

Bor_1.25(11,0,....0,(2r = 1)1) = 0

were stated, but no proof was supplied for them there.
For simplicity, we denote

1 -1 n—k+1
A(n.k) = By (0,2!,0,4!,...,(n —k+ 1)!%)

and

1— (_l)n—k+1
wn k) = Bn,k(l!,0,3!,(),...,(n —k+ D’f)'

In terms of these notations, the above claims in [ 1, p. 451] can be restated as

2r)! fr—1
AQr k) = (kr') (;_1), AQ2r—1,k) =0,
erlfr+s—1
,u(2r,2s)=—(2s)' 1 | ur,2s—1)=0,
Qr—D!fr+s-2
u(2r—1,2s—1)=—(2s_1)! re_o | u@r—1,2s =0.

In this paper, by methods and techniques in combinatorial analysis and the theory
of special functions, we will provide alternative proofs for the above six formulas,
find a relation between them, and derive an identity involving combinatorial numbers.

2. MAIN RESULTS

We first derive an identity involving combinatorial numbers, which will be useful
in next proofs of our main results.

Theorem 1. Fork > 1 andn > 0, we have

-7 (n) 1
Zk+q<) (E 2.1)

k

Proof. Let

N EDT ) ey _
f(X)—;)k+q(q)x 7, xel-11].

Then f(0) =0 and

f/(x) Z( l)q( ) k+q— 1 _ k—l Z(_l)q (Z)xq :Xk_l(l—X)n.
q=0
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Integrating from O to ¢ € (0, 1] on both sides of the above equality yields

f(r) = /Otxk_l(l —x)"dx = B(t:k.n+1),

where B(z;a,b) denotes the incomplete beta function, see [3, p. 183]. Therefore, we
obtain

f(y=B(l;k.n+1) = Blk.n+1)

_ TR+ _ (k=D! 1 ka! 1
C T'k+n+1)  (k+n)! _k(k-l—n)!_k(n‘]'c‘k)’

where B(a,b) and I'(z) denote the beta function and the classical Euler gamma
function respectively, see [3, p. 142] and [3, Chapter 5]. The formula (2.1) is thus
proved. The proof of Theorem 1 is complete. O

We are now in a position to state and prove our main results.

Theorem 2. For n >k > 0, we have the relation
pn,k)y  An+k.k)

= 2.2
n! (n+k)! @2)
and two explicit formulas
I+(=D"n! (21
ky= ——-"——|2 2.3
A(n, k) 5 wilk—1 (2.3)
and
1+ (=1 (nrk g
= - . 24
pln. k) 7 al ko1 24

Proof. It is known [2, 10] that the quantities

n—1
x—1D-(x—n+1), n>1
(x)n = w—@={x

=0
and
n—1
x(x+1)-(x+n—-1), n>1
= ﬁ =
n=[Tecr0 =7 .

are called the falling and rising factorials respectively. In [2, p. 133], it was listed that

(e m\ = "
Al Z Xm% = ZBn,k(XLxZ,---’xn—k—{—l)m (2.5)
! ! oy !

m=1
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for k > 0. Hence, we have
o0

k
> " 1+( 1™ ™ 1/ 12 \F
’;Ck(n,k)a {Z m,} :F(ﬁ)

which is equivalent to

t” t k
';)A(Hk k) (n+k) (W) :

Since the function 1_t7 is odd, we derive A(2r — 1,k) = 0. Further computation
yields

n+k\ 4" t k
“"“"k):( . )}Lmow(l_zz)

)k—é-i—(n—q)

_1)k k
- (”:k)Z(—l)@(’Z) S (- 1)4( )( 0)glt—K)n

qg=0
_1\rtk k k k
- =2 (”: )Z(—l) ( )Z( 1)'1( )(@)qac Ong.
£=0 q=0

In summary, we obtain

k n—k _
Mok =7 ()Z( 1)5( )Z(—DQ(”qk)<—6>q<e—k>n_k_q
qg=0
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_ 1)" (KK
Z( 1) Z(—l) . (O)g(k —0)p_t—g. (2.6)
g=0

By similar argument as above, it follows that

k
= o[ o _EDF
gu(n,k);— [Z m!:| ~ Kk (z—1+t+1)

which is equivalent to

" (=DF 11 1\ 1
Zu(n+kk)(n+k) =5 7k(z-1+z+1) ‘(1—z2)' 2.7)

n=0

— =0 and u(2r,2s —
1) = 0. By the L’Hospital rule and the identity (2.1) in Theorem 1, it follows that

C(n+k\EDE a0 1 \*
“(”“"k’—( ’ )z—k}i%m[rk(z_—ﬁm)]
n+k\(=DF L (n) (k) 1 1 \k
:( n ) 2k }%q;(q) f"+qq[(t—1+r+1”
k) CDF SR (n) (=K T 1 R
( n ) ok q22:<q)(k+q)!tlg>%[(t—_l+t+_l)]
_[(n+k 1)’< “ (=14 (k4+q—1)!
- (k= DIk +q)!
. : kg (k)
th—%[ ()(_1) (t+1) }
_[n+k) (=D (=1)4 (n
_( n )2k(k—1)!zk+q()§<)
i ntk n+k 1 (m) 1 —Lq(n+k—m)
am () T TR
DR (K R (ntk
~ kg ;}(6)}5’%2 m

m=

1 L+m 1 (k—0)+(n+k—m)
S Gy R oy
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—1)k k k n+k k
- (Qkk)! ;(_l)e(ﬁ) Z( l)m(n+ )(_e)mw_k)n—i-k—m-
=0
In short, we obtain
)k { = n
pin k) =" T Z(— ) ( );0(—1)m(m)<—z>mw—k>n_m

( 1)n+k

- 7 ek - [ B
— 2kp Z;)( D (g)mgo( 1) (m)(ﬁ)m(k Op-m. (2.8)

Comparing between (2.6) and (2.8) reveals

(_1)n+k 2k

Zkk! ( l)n—i—k (n—;c-k)

pn.k) =

A(n + k. k)

which can be rearranged as (2.2).
The Faa di Bruno formula, see [ 1, Theorem 11.4] and [2, p. 139, Theorem C], can
be described in terms of B, x (x1,X2....,X,—k+1) by

n

dx”?

foh(x)=>" fORx) B, (h'(x).h"(x).... . A" F+ D). (2.9

k=0
In [1, p. 412] and [2, p. 135], one can find the identity

B, k (abxl,abzxz, e ab”_k+1xn_k+1)

= a*b" B,k (X1,%2, ..., Xpy_k41) (2.10)

forn >k >0and a,b € C. In [8, Theorem 4.1] and [12, Section 3], it was set up
little by little that

Bn’k(x,l,o,...,0)=2’1—_’(5(”_]())( s (211)

where (J) = 1 and (7) =0 for g > p > 0. For detailed information on applications
of the formula (2.11), please refer to the papers [4-9, 11-14] and closely related
references therein. Then it follows from (2.7), (2.9), (2.10), and (2.11) that, when
denoting u = u(t) = 1 —12,

n+k\ d" 1 \F
“(”+"”‘)—< . )}i%ﬁ(l_zz)

n+k "o 1\®
= li — B, ¢(—2¢,-2,0,...
(1)) oo
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n +k . i 1 Y] 1 n' E 20—n
\n tll—%e_()(_k)e (1—¢2)k+t -2) 2”_€Z<n—ﬁ)t

n+k\ .. <« nl ¢ (21)2t—n
\n }%E)(k”ﬂ (n —3) (1—r2)k+t

0, n=2m-—1
= !
2m+k (k)m@ m Cn=om
2m m! \2m—m
0, n=2m-—1
=q0Cm+k)! (m+k—1 _5
k! k—1 ) "
0, n=2m-—1
=1 (n+k)! (22K
=2
k! k—1 | T

for m € N. The formula in (2.4) is thus proved.
Substituting the formula in (2.4) into (2.2) and simplifying lead readily to the
formula in (2.3). The proof of Theorem 2 is complete. U

3. REMARKS
In this section, we state several remarks on something related.

Remark 1. In [8, Theorem 2.1], it was proved that

_ k
1_(_1)11 k+1 B 1 ‘ k .
Bn,k(l,o,l,..., 5 ) = 2kk!1§)(—1) ) |e=20

and

— k
T N = o[ 2k )
Bn,k(o,l,o,..., 5 —2kk!;)(—1) , k=0

for n > k > 0, where 0° is regarded as 1. In [8, Section 3], basing on numerical
calculation, the authors guessed that

1+ (_1)(26—1)—k+1
2

Bze_ljk(o,Lo,..., ):0, 2—1>k >0, 3.1)
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1_(_1)2K—k+1
B2€,k(0,1a0,,f)=0, 2£>k>€, (32)
1— (_1)2€—k+1
Bzg,k(O,l,O,...,f);ﬁO, {>k>1, 3.3)
Bk_,_zg,k(l,(),l,...,l,o,l)750, k.2 eN, (3.4)
and
Bii2e—14(1.0.1.....0,1,0) =0, k.LeN. (3.5)

In [8, Theorem 3.1], the identity (3.5) was proved to be true. In fact, the identit-
ies (3.1) and (3.5) can be concluded readily from the proof of [8, Theorem 2.1] as
follows. From the formula (2.5), it followed that

> 1+ (=) *k+1N\ s (coshr —1)k
an’k(O,l,O,...,f)n—!=k—! (3.6)
and
iB (1 o] 1—(—1)”"‘“){ _sinh¢ a7
= ok T 2 n! k! ‘

In (3.6), the function cosh# — 1 is even, so the identity (3.1) is clearly valid. Since the
function sinh? in (3.7) is odd, then

an,zk_l(l,o,l,...,l,())=O and an_l’zk(l,o,l,...,l,())=O

which are equivalent to the identity (3.5). However, the validity of the identities (3.2),
(3.3), and (3.4) has not been verified yet.

Remark 2. The formula (2.8) can be rewritten as

(=D kp
2k k!

k n
K\ (C+m—1\[{(k=0)+n—m)—1
<) Z(‘l)ngm(z)( ;}: )<( )kt(fn—lm) ) (3-8)

{=0m=0

p(n, k) =

Then combining the formulas (2.8) and (3.8) with the formula in (2.4) and rearranging
arrive at

k PANL
>0 ( E) > (l’;)(z)m(k—z)n_m
£=0 m=0

n+k
ntk g
:1 _1n+k2k—1| 2
[+ DRt 2

and
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ii(—l)“m K\ (C+m—1\{(k—0)+n—m)—1
=i 1 -1 k—€—1
k
=[1+(_1)n+k]2k—1 %_1
k—1

Comparing these identities with the Vandermonde convolution formula

n

> J O dnmk = b+ 30
k=0

in [1, Theorem 3.1] and [2, p. 44] motivates us to ask a question: is the quantity

n

S EDR ) )k ()i

k=0 k

summable?
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