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GENERALIZED CORE INVERSES OF MATRICES
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Abstract. In this paper, we introduce two new generalized inverses of matrices, namely, the
hi;mi-core inverse and the .j;m/-core inverse. The hi;mi-core inverse of a complex matrix
extends the notions of the core inverse defined by Baksalary and Trenkler [1] and the core-EP
inverse defined by Manjunatha Prasad and Mohana [10]. The .j;m/-core inverse of a complex
matrix extends the notions of the core inverse and the DMP-inverse defined by Malik and Thome
[9]. Moreover, the formulae and properties of these two new concepts are investigated by using
matrix decompositions and matrix powers.
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1. INTRODUCTION

Let Cm�n denote the set of all m� n complex matrices. Let A�, R.A/ and
rk.A/ denote the conjugate transpose, column space, and rank of A 2Cm�n, respect-
ively. For A 2 Cm�n, if X 2 Cn�m satisfies AXAD A, XAX D X , .AX/� D AX ,
and .XA/� D XA, then X is called a Moore-Penrose inverse of A. This matrix X
is unique and denoted by A�. A matrix X 2 Cn�m is called an outer inverse of
A if it satisfies XAX D X ; is called a f2;3g-inverse of A if it satisfies XAX D
X and .AX/� D AX ; is called a f1;3g-inverse of A if it satisfies AXA D A and
.AX/� D AX ; is called a f1;2;3g-inverse of A if it satisfies AXAD A, XAX D X
and .AX/� D AX .

The core inverse of a complex matrix was introduced by Baksalary and Trenkler
[1]. Let A 2 Cn�n. A matrix X 2 Cn�n is called a core inverse of A, if it satisfies
AX D PA and R.X/�R.A/, here PA denotes the orthogonal projector onto R.A/.
If such a matrix exists, then it is unique and denoted by A #
. For a square complex
matrix A, one has that A is core invertible, A is group invertible, and rk.A/D rk.A2/

are three equivalent conditions (see [2]). We denote CCM
n D fA 2 Cn�n j rk.A/D

rk.A2/g.

The first author is the corresponding author.
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Let A 2 Cn�n. A matrix X 2 Cn�n such that XAkC1 D Ak , XAX D X and
AX DXA is called the Drazin inverse of A and denoted by AD . The Drazin inverse
of a square matrix always exists and it is unique. Such integer k is called the Drazin
index of A, denoted by ind.A/. If ind.A/ � 1, then the Drazin inverse of A is called
the group inverse and denoted by A#.

The DMP-inverse for a complex matrix was introduced by Malik and Thome [9].
Let A 2Cn�n with ind.A/D k. A matrix X 2Cn�n is called a DMP-inverse of A,
if it satisfies XAX DX , XADADA and AkX DAkA�. It is unique and denoted by
AD;�. Malik and Thome gave several characterizations of the DMP-inverse by using
the decomposition of Hartwig and Spindelböck [8].

The notion of the core-EP inverse for a complex matrix was introduced by Man-
junatha Prasad and Mohana [10]. A matrix X 2 Cn�n is a core-EP inverse of
A 2Cn�n if X is an outer inverse of A satisfying R.X/DR.X�/DR.Ak/, where
k is the index of A. The core-EP inverse is unique and denoted by A �
.

In addition, 1n and 0n will denote the n�1 column vectors all of whose compon-
ents are 1 and 0, respectively. 0m�n (abbr. 0) denotes the zero matrix of sizem�n. If
S is a subspace of Cn, then PS stands for the orthogonal projector onto the subspace
S . A matrix A 2 Cn�n is called an EP matrix if R.A/DR.A�/, A is called Her-
mitian if A� D A and A is unitary if AA� D In, where In denote the identity matrix
of size n: Let N denote the set of positive integers.

2. PRELIMINARIES

A related decomposition of the matrix decomposition of Hartwig and Spindelböck
[8] was given in [2, Theorem 2.1] by Benı́tez, in [3] it can be found a simpler proof
of this decomposition. Let us start this section with the concept of principal angles.

Definition 1 ([12]). Let S1 and S2 be two nontrivial subspaces of Cn. We define
the principal angles �1; : : : ;�r 2 Œ0;�=2� between S1 and S2 by

cos�i D �i .PS1
PS2

/;

for i D 1; : : : ; r , where r DminfdimS1;dimS2g. The real numbers �i .PS1
PS2

/� 0

are the singular values of PS1
PS2

.

The following theorem can be found in [2, Theorem 2.1].

Theorem 1. Let A 2Cn�n, r D rk.A/, and let �1; : : : ;�p be the principal angles
between R.A/ and R.A�/ belonging to �0;�=2Œ. Denote by x and y the multiplicities
of the angles 0 and �=2 as a canonical angle between R.A/ and R.A�/, respectively.
There exists a unitary matrix U 2Cn�n such that

AD U

�
MC MS

0 0

�
U �; (2.1)
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where M 2Cr�r is nonsingular,

C D diag.0y ;cos�1; : : : ;cos�p;1x/;

S D

�
diag.1y ;sin�1; : : : ;sin�p/ 0pCy;n�.rCpCy/

0x;pCy 0x;n�.rCpCy/

�
;

and r D yCpCx. Furthermore, x and yCn�r are the multiplicities of the singular
values 1 and 0 in PR.A/PR.A�/, respectively.

In this decomposition, one has C 2CSS� D Ir . Recall that A� always exists. We
have that A# exists if and only if C is nonsingular in view of [2, Theorem 3.7]. The
following equalities hold

A�
D U

�
CM�1 0

S�M�1 0

�
U �; A#

D U

�
C�1M�1 C�1M�1C�1S

0 0

�
U �:

By [3, Theorem 2], we have that

AD
D U

�
.MC/D Œ.MC/D�2MS

0 0

�
U �: (2.2)

We also have

AA�
D U

�
Ir 0

0 0

�
U �; (2.3)

A #

D A#AA�

D U

�
C�1M�1 0

0 0

�
U �: (2.4)

Lemma 1 ([13, Theorem 3.1]). Let A 2 Cn�n. Then A is core invertible if and
only if there exists X 2Cn�n such that .AX/� D AX , XA2 D A and AX2 D X . In
this situation, we have A #
 DX .

Lemma 2. Let A 2Cn�n. If there exists X 2Cn�n such that AXkC1 D Xk and
XAkC1 D Ak for some k 2N, then for m 2N we have

(1) Ak DXmAkCm;
(2) Xk D AmXkCm;
(3) AkXk D AkCmXkCm;
(4) XkAk DXkCmAkCm;
(5) Ak D AmXmAk;
(6) Xk DXmAmXk .

Proof. (1). For m D 1, it is clear by the hypotheses. If the formula is true for
m 2N, then XmC1AkCmC1 DXXmAkCmADXAkADXAkC1 D Ak .

(3). It is easy to check that AkXk D AkC1XkC1 by AXkC1 D Xk . It is not
difficult to check the equality AkXk D AkCmXkCm by induction.

(5). From (1) we have Ak D XkA2k . Thus by AXkC1 D Xk , we have Ak D

XkA2k D AXkC1A2k D AXkXA2k D A.AXkC1/XA2k D A2XkC2A2k D

A2X2XkA2k D �� � D AmXmXkA2k D AmXmAk .
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The proofs of (2), (4), and (6) are similar to the proofs of (1), (3), (5), respectively.
�

Lemma 3. Let A 2Cn�n. If there exists X 2Cn�n such that AXkC1 D Xk and
XAkC1 D Ak for some k 2N, then AD DXkC1Ak .

Proof. Since A is Drazin invertible. We will check that AD D XkC1Ak . Have in
mind, AXkC1 DXk and XAkC1 D Ak , thus

A.XkC1Ak/DXkAk
DXk.XAkC1/DXkC1AkA: (2.5)

That is, XkC1Ak and A commute. Then by (1) and (4) in Lemma 2, we have that

.XkC1Ak/A.XkC1Ak/DXkC1AkC1XkC1Ak
DXkAk.XkC1Ak/

DXkXkC1AkAk
DXkC1XkA2k

DXkC1Ak :
(2.6)

From (1) in Lemma 2, we have that

.XkC1Ak/AkC1
DX.XkA2k/ADXAkC1

D Ak : (2.7)

Thus we have AD D XkC1Ak by the definition of the Drazin inverse and in view of
(2.5), (2.6), and (2.7). �

Remark 1. From the proofs of Lemma 2 and Lemma 3, it is obvious that Lemma 2
and Lemma 3 are valid for rings. Moreover, we can get that for an element a 2 R, a
is Drazin invertible if and only if there exist x 2R and k 2N such that axkC1 D xk

and xakC1 D ak , where R is a ring.

The following lemma is similar to [9, Theorem 2.5].

Lemma 4. Let A 2Cn�n be the form (2.1). Then

AD;�
D U

�
.MC/D 0

0 0

�
U �: (2.8)

Proof. By (2.2), (2.3) and the definition of DMP-inverse we have

AD;�
D ADAA�

D U

�
.MC/D Œ.MC/D�2MS

0 0

��
Ir 0

0 0

�
U � D U

�
.MC/D 0

0 0

�
U �:

�

Lemma 5 ([11, Corollary 3.3]). Let A 2 Cn�n be a matrix of index k. Then
AA �
 D Ak.Ak/�.
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3. hi;mi-CORE INVERSE

Let us start this section by introducing the definition of the hi;mi-core inverse.

Definition 2. Let A 2Cn�n andm;i 2N. A matrix X 2Cn�n is called an hi;mi-
core inverse of A, if it satisfies

X D ADAX and AmX D Ai .Ai /�: (3.1)

It will be proved that if X exists, then it is unique and denoted by A˚i;m.

Theorem 2. Let A 2 Cn�n. If exists X 2 Cn�n such that (3.1) holds, then X is
unique.

Proof. Assume thatX satisfies the system in (3.1), that isX DADAX andAmX D

Ai .Ai /�. Thus X D ADAX D .AD/mAmX D .AD/mAi .Ai /�. Therefore, X is
unique by the uniqueness of AD and Ai .Ai /�. �

Theorem 3. The system in (3.1) is consistent if and only if i � ind.A/. In this
case, the solution of (3.1) is X D .AD/mAi .Ai /�.

Proof. Assume that i � ind.A/. Let X D .AD/mAi .Ai /�. We have

ADAX D ADA.AD/mAi .Ai /� D .AD/mADAAi .Ai /� D .AD/mAi .Ai /� DX

AmX D Am.AD/mAi .Ai /� D ADAAi .Ai /� D Ai .Ai /�:

Thus, the system in (3.1) is consistent and the solution of (3.1) isX D .AD/mAi .Ai /�.
If the system in (3.1) is consistent, then exists X0 such that X0 D A

DAX0 and
AmX0 D Ai .Ai /�. Then X0 D ADAX0 D .AD/mAmX0 D .AD/mAi .Ai /� and
Ai .Ai /�DAmX0DA

m.AD/mAi .Ai /�DAADAi .Ai /�. HenceAi DAi .Ai /�Ai D

AADAi .Ai /�Ai D AADAi , that is i � ind.A/. �

Example 1. We will give an example that shows if i < ind.A/, then the system in

(3.1) is not consistent. Let AD
�
0 1

0 0

�
. It is easy to get ind.A/D 2 and AD D 0.

Let i D 1 and suppose thatX is the solution of system in .3:1/, thenX DADAX D 0,
which gives AA� D AmX D 0, thus AD AA�AD 0, this is a contradiction.

Remark 2. If i � ind.A/, then A˚i;mC1 D A
DA˚i;m.

Remark 3. The hi;mi-core inverse is a generalization of the core inverse and the
core-EP inverse. More precisely, we have the following statements:

(1) If mD i D ind.A/D 1, then the h1;1i-core inverse coincides with the core
inverse;

(2) IfmD 1 and i D ind.A/, then the hi;1i-core inverse coincides with the core-
EP inverse.
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For the convenience of the readers, in the following, we give some notes of (1) and
(2) in Remark 3.

(1) If m D i D ind.A/ D 1, then A is group invertible and AD D A# and .3:1/
is equivalent to X D A#AX and AX D AA�. Thus X D A#AX D A#AA�,
.AX/�D .AA�/�DAA�DAX ,AX2DAA#AA�A#AA�DAA#AA�AA#A�D

AA#A�DX andXA2DA#AA�A2DA#A2DA. Hence, h1;1i-core inverse
coincides with the core inverse by Lemma 1. Note that if A is group invert-
ible, then we have that X is the core inverse of A if and only if X D A#AX

and AX D AA�.
(2) If m D 1 and i D ind.A/, then by Theorem 3.3, A˚i;1 exists and A˚i;1 D

ADAi .Ai /�. Let us denote X D A˚i;1 D A
DAi .Ai /�. Observe that AX D

Ai .Ai /� is Hermitian. Now,

XAX D ADAi .Ai /�Ai .Ai /� D ADAi .Ai /� DX;

that is X is an outer inverse of A. From

Ai
D ADAiC1

D ADAi .Ai /�AiADXAiC1

we get R.Ai /�R.X/. Also,

AX2
D .AX/X D Ai .Ai /�ADAi .Ai /�

D Ai .Ai /�AiAD.Ai /� D ADAi .Ai /� DX;

which implies X D .AX/�X 2R.X�/, therefore, R.X/�R.X�/. Finally,
X� D ŒADAi .Ai /��� D Ai .Ai /�.AD/� implies R.X�/ � R.Ai /. Hence
R.X/DR.X�/DR.Ai /. Therefore, the hi;1i-core inverse coincides with
the core-EP inverse by the definition of the core-EP inverse.

From the above statement, we have the following theorem.

Theorem 4. Let A 2Cn�n with i D ind.A/. Then X is the core-EP inverse of A
if and only if X D ADAX and AX D Ai .Ai /�.

Corollary 1. Let A 2 Cn�n with 1D ind.A/. Then X is the core inverse of A if
and only if X D A#AX and AX D AA�.

For anyA2Cn�n, eitherAl D 0 for some l 2N, orAl ¤ 0 for all positive integers.
Moreover, if ind.A/D k, then GkBk is nonsingular (see [5–7]), where AD B1G1 is
a full rank factorization of A and GlBl D BlC1GlC1 is a full rank factorization of
GlBl , l D 1; : : : ;k�1. When Ak ¤ 0, then it can be written as

Ak
D

kY
lD1

Bl

kY
lD1

GkC1�l : (3.2)
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We have the following results, (see [5, Theorem 4] or [4, Theorem 7.8.2]):

ind.A/D

(
k when GkBk is nonsingular,
kC1 when GkBk D 0:

and

AD
D

(Qk
lD1Bl.GkBk/

�k�1
Qk

lD1GkC1�l when GkBk is nonsingular,
0 when GkBk D 0:

(3.3)

In the sequel, we always assume that Ak ¤ 0.
It is well-known that if ADEF is a full rank factorization of A, where r D rk.A/,

E 2Cn�r and F 2Cr�n, then (see [4, Theorem 1.3.2])

A�
D F �.FF �/�1.E�E/�1E�: (3.4)

Remark 4. The notations and results in above paragraph will be used many times
in the sequel.

We will investigate the hi;mi-core inverse of a matrix A 2 Cn�n by using Re-
mark 4.

Theorem 5. Let A 2Cn�n with ind.A/D k. If i � k, then A˚i;m D A
˚

k;m
.

Proof. Since ind.A/D k, we have R.Ak/DR.Ai / for any i � k, and therefore,
Ak.Ak/� D Ai .Ai /�. Now, the conclusion follows from Theorem 3. �

Remark 5. The proof of Theorem 5 also can be proved as follows. Since the proof
in this remark will be used several times in the sequel, we write this proof here.

Proof. If A is nilpotent, then AD D 0, hence by Theorem 3, one has A˚i;m D
A˚

k;m
D 0. Therefore, we can assume that Ak ¤ 0. By equality (3.2), we have

Ak
D

kY
lD1

Bl

kY
lD1

GkC1�l : (3.5)

where A D B1G1 is a full rank factorization of A and GlBl D BlC1GlC1 is a full
rank factorization of GlBl , l D 1; : : : ;k�1. Let M D

Qk
lD1Bl , N D

Qk
lD1GkC1�l

and LDGkBk . Now, we will show that

Ai
D

kY
lD1

Bl.GkBk/
i�k

kY
lD1

GkC1�l DML
i�kN:
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In fact,

Ai
D

iY
lD1

Bl

iY
lD1

GkC1�l

D B1 � � �BiGi � � �G1

D B1 � � �Bi�1.BiGi /Gi�1 � � �G1

D B1 � � �Bi�1.Gi�1Bi�1/Gi�1 � � �G1

D B1 � � �Bi�2.Gi�2Bi�2/
2Gi�2 � � �G1

D �� �

D B1 � � �Bk.GkBk/
i�kGk � � �G1 DML

i�kN:

(3.6)

If we let M1 DML
i�k , then Ai DMLi�kN DM1N is a full rank factorization of

Ai (see [7, p.183]). Thus

.Ai /� DN �.NN �/�1.M �1M1/
�1M �1 : (3.7)

Note that NM D
Qk

lD1GkC1�l

Qk
lD1Bl D L

k . By Theorem 3, (3.3) and .3:7/ we
have

A˚i;1 D A
DAi .Ai /�

DML�k�1NMLi�kN.Ai /�

DML�k�1NMLi�kNN �.NN �/�1.M �1M1/
�1M �1

DMLi�k�1NN �.NN �/�1.M �1M1/
�1M �1

DMLi�k�1.M �1M1/
�1M �1

DMLi�k�1Œ.Li�k/�M �MLi�k��1.Li�k/�M �

DMLi�k�1Lk�i .M �M/�1Œ.Li�k/���1.Li�k/�M �

DML�1.M �M/�1M �:

(3.8)

The last expression does not depend on i , then A˚i;1 D A
˚

k;1
. Thus, by Remark 2, we

haveA˚i;mDA
DA˚i;m�1DA

D.ADA˚i;m�2/D .A
D/2A˚i;m�2D �� �D .A

D/m�1A˚i;1D

.AD/m�1A˚
k;1
D A˚

k;m
. �

Remark 6. By Theorem 5, it is enough to investigate the i D ind.A/ D k case,
when we discuss the hi;mi-core inverse of a matrixA2Cn�n. That is, the Theorem 5
is a key theorem.

Theorem 6. Let A 2Cn�n with ind.A/D k and k;m 2N. If AD B1G1 is a full
rank factorization of A and GlBl D BlC1GlC1 is a full rank factorization of GlBl ,
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l D 1; : : : ;k�1, thenA˚
k;m
DML�mM �, whereM D

Qk
lD1Bl ,N D

Qk
lD1GkC1�l

and LDGkBk .

Proof. By the proof of Remark 5, we have A˚
k;1
D ML�1.M �M/�1M � and

NM D Lk . Now, we will prove .AD/sA˚
k;1
D ML�s�1.M �M/�1M � for any

s 2N. By (3.3) we have AD D
Qk

lD1Bl.GkBk/
�k�1

Qk
lD1GkC1�l DML

�k�1N .
When s D 1, we have

ADA˚
k;1
DML�k�1NML�1.M �M/�1M � DML�k�1.NM/L�1.M �M/�1M �

DML�k�1LkL�1.M �M/�1M � DML�2.M �M/�1M �:

Assume that .AD/s�1A˚
k;1
DML�s.M �M/�1M �. Then

.AD/sA˚
k;1
D AD.AD/s�1A˚

k;1
D ADML�s.M �M/�1M �

DML�k�1NML�s.M �M/�1M �

DML�k�1LkL�s.M �M/�1M �

DML�s�1.M �M/�1M �:

Thus by Remark 2, we have

A˚
k;m
D .AD/m�1A˚

k;1
DML�m.M �M/�1M � DML�mM �:

�

In the following theorem, we will give a canonical form for the hk;mi-core inverse
of a matrix A 2 Cn�n by using the matrix decomposition in Theorem 1. We will
also use the following simple fact: Let X 2 Cn�m and b 2 Cn. If y 2 Cm satisfies
X�XyDX�b, then XX�bDXy.

Theorem 7. Let A 2Cn�n have the form (2.1) with ind.A/D k andm 2N. Then

A˚
k;m
D U

�
.MC/˚

k�1;m
0

0 0

�
U �: (3.9)

Proof. Let r be the rank of A. By Theorem 3 we have

A˚
k;m
D .AD/mAk.Ak/�: (3.10)

Since A has the form given in Theorem 1 we have

Ak
D U

�
.MC/k .MC/k�1MS

0 0

�
U �: (3.11)

Let b 2 Cn be arbitrary and let us decompose b D U
h

b1

b2

i
, where b1 2 Cr . Let

x0 2 Cn satisfy .Ak/�Akx0 D .A
k/�b [this x0 always exists because the normal
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equations always have a solution]. We can decompose x0 by writing x0 D U
� x1

x2

�
,

where x1 2Cr . Let us denote N D .MC/k�1M . Using (3.11),

U

�
CN � 0

S�N � 0

��
NC NS

0 0

��
x1

x2

�
D U

�
CN � 0

S�N � 0

��
b1

b2

�
:

Therefore,

CN �N.Cx1CSx2/D CN
�b1 and S�N �N.Cx1CSx2/D S

�N �b1:

Premultiplying the first equality by C and the second equality by S and after, adding
them, we get N �N.Cx1CSx2/ D N

�b1, and hence, N.Cx1CSx2/ D NN
�b1.

Now,

Ak.Ak/�bD Akx0 D U

�
NC NS

0 0

��
x1

x2

�
D U

�
NCx1CNSx2

0

�
D U

�
NN �b1

0

�
D U

�
NN � 0

0 0

�
U �b:

Since b is arbitrary,

Ak.Ak/� D U

�
NN � 0

0 0

�
U �:

Now we will prove NN � D .MC/k�1Œ.MC/k�1��. Recall that we have N D
.MC/k�1M , and so, R.N / � R..MC/k�1/. Since M is nonsingular, rk.N / D
rk..MC/k�1/, and thus, R.N /DR..MC/k�1/. Since .MC/k�1Œ.MC/k�1�� and
NN � are the orthogonal projectors onto R..MC/k�1/ and R.N /, respectively, we
get NN � D .MC/k�1Œ.MC/k�1��.

By (2.2) we have

AD
D U

�
.MC/D Œ.MC/D�2MS

0 0

�
U �: (3.12)

Thus, we have

.AD/m D U

�
Œ.MC/D�m Œ.MC/D�mC1MS

0 0

�
U �:

Since ind.A/D k, we have ADAkC1 D Ak . By using the above representations of
AD and Ak given in (3.11) and (3.12), respectively,�

.MC/D Œ.MC/D�2MS

0 0

��
.MC/kC1 .MC/kMS

0 0

�
D

�
.MC/k .MC/k�1MS

0 0

�
:

Therefore,
.MC/D.MC/kMŒC j S�D .MC/k�1MŒC j S�: (3.13)
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Have in mind that we have C 2CSS� D Ir . Thus, postmultiplying (3.13) by
�

C
S�

�
gives us .MC/D.MC/kM D .MC/k�1M and from the nonsningularity of M we
obtain .MC/D.MC/k D .MC/k�1, and so, ind.MC/� k�1. Therefore we have

A˚
k;m
D .AD/mAk.Ak/�

D U

�
Œ.MC/D�m Œ.MC/D�mC1MS

0 0

��
.MC/k�1..MC/k�1/� 0

0 0

�
U �

D U

�
Œ.MC/D�m.MC/k�1..MC/k�1/� 0

0 0

�
U �

D U

�
.MC/˚

k�1;m
0

0 0

�
U �:

�

Remark 7. If we use the decomposition of Hartwig and Spindelböck in [8, Corol-
lary 6], then an expression of the hk;mi-core inverse of A is

A˚
k;m
D U

�
.˙K/˚

k�1;m
0

0 0

�
U �;

which is similar to the expression ofA˚
k;m

in Theorem 7. Since the proof of this result
can be proved as the proof of Theorem 7, we omit this proof.

Let A 2Cn�n with ind.A/D k. The Jordan Canonical form of A is P�1AP D J ,
where P 2Cn�n is nonsingular and J 2Cn�n is a block diagonal matrix composed
of Jordan blocks. In the following theorem, we will compute the hk;mi-core inverse
by using the Jordan Canonical form of A.

Theorem 8. Let A 2 Cn�n with ind.A/ D k, then A˚
k;m
D P1D

�mP
�
1 , where

AD P
�

D 0
0 N

�
P�1 with D 2Cr�r is nonsingular, N is nilpotent and P D ŒP1 j P2�

with P1 2Cn�r .

Proof. The Jordan Canonical form of A is P�1AP D J , where P 2 Cn�n is
nonsingular and J 2 Cn�n is a block diagonal matrix. Rearrange the elements of J
such that AD P

�
D 0
0 N

�
P�1, where D is nonsingular and N is nilpotent. It is well-

known that AD D P
�

D�1 0
0 0

�
P�1 and Ak D P

�
Dk 0
0 0

�
P�1. If we let P D ŒP1 j P2�

and P�1 D

h
Q1

Q2

i
, then

.AD/mAk
D ŒP1 j P2�

�
.D�1/m 0

0 0

��
Dk 0

0 0

��
Q1

Q2

�
D P1D

k�mQ1:
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Observe that Ak D .P1D
k/Q1 is a full rank factorization of Ak . Hence by (3.4) we

have

.Ak/� D .P1D
kQ1/

�

DQ�1.Q1Q
�
1/
�1Œ.P1D

k/�P1D
k��1.P1D

k/�

DQ�1.Q1Q
�
1/
�1D�k.P �1 P1/

�1Œ.Dk/���1.Dk/�P �1

DQ�1.Q1Q
�
1/
�1D�k.P �1 P1/

�1P �1

DQ
�
1D
�kP

�
1 :

By Theorem 3, we have A˚
k;m
D .AD/mAk.Ak/�. Thus we have

A˚
k;m
D .AD/mAk.Ak/� D P1D

k�mQ1Q
�
1D
�kP

�
1

D P1D
k�mQ1Q

�
1.Q1Q

�
1/
�1D�kP

�
1 D P1D

�mDkD�kP
�
1 D P1D

�mP
�
1 :

�

Proposition 1. Let A 2 Cn�n. If i � ind.A/, then AmA˚i;m is the projector onto

R.Ai / along R.Ai /
?.

Proof. It is trivial. �

In the following proposition, we will investigate some properties of the hi;mi-core
inverse.

Proposition 2. Let A 2Cn�n, m;i 2N. If i � ind.A/, then

(1) A˚i;m is a f2;3g-inverse of Am;
(2) A˚i;m D .A

D/mPAi ;
(3) .A˚i;m/

n D .AD/m.n�1/A˚i;m D .A
D/mnPAi ;

(4) AiA˚i;m D A
˚

i;mA
i if and only if R.Ai /

?
�N .Ai /;

(5) A˚i;m D A implies that A is EP.

Proof. (1). By Theorem 3 we have A˚i;m D .A
D/mAi .Ai /�, thus

A˚i;mA
mA˚i;m D .A

D/mAi .Ai /�Am.AD/mAi .Ai /�

D .AD/mAi .Ai /�AiAm.AD/m.Ai /�

D .AD/mAiAm.AD/m.Ai /� D .AD/mAm.AD/mAi .Ai /�

D ADA.AD/mAi .Ai /� D .AD/mAi .Ai /� D A˚i;m:

Thus A˚i;m is a f2;3g-inverse of Am in view of AmA˚i;m D A
i .Ai /�.

(2) is trivial.
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(3). By

.A˚i;m/
n
D .AD/mAi .Ai /�.AD/mAi .Ai /�.A˚i;m/

n�2

D .AD/m.AD/mAi .Ai /�.A˚i;m/
n�2

D .AD/mA˚i;m.A
˚

i;m/
n�2
D .AD/m.A˚i;m/

n�1;

it is easy to check .3/.
(4). By RŒ.In�A

i .Ai /��DN Œ.Ai /��, we have

AiA˚i;m D A
˚

i;mA
i
, Ai .AD/mAi .Ai /� D .AD/mAi .Ai /�Ai

, Ai .AD/mAi .Ai /� D .AD/mAi

, Ai .AD/m.In�A
i .Ai /�/D 0

,RŒIn�A
i .Ai /���N ŒAi .AD/m�

,N Œ.Ai /���N Œ.AD/m�

,N Œ.Ai /���N Œ.AD/m�

,R.Ai /? �N Œ.AD/m�

,R.Ai /? �N ŒAi �:

(5). Let A be written in the form (2.1). We have A˚i;m D U
h

.MC /
˚

i�1;m
0

0 0

i
U � by

Theorem 7. Thus, A˚i;m D A implies MS D 0: From the nonsingularity of M , we
have S D 0, which is equivalent to say that A is EP in view of [2, Theorem 3.7]. �

4. .j;m/-CORE INVERSE

Let us start this section by introducing the definition of the .j;m/-core inverse.

Definition 3. Let A 2Cn�n andm;j 2N. A matrix X 2Cn�n is called a .j;m/-
core inverse of A, if it satisfies

X D ADAX and AmX D Am.Aj /�: (4.1)

Theorem 9. Let A 2 Cn�n. If the system in (4.1) is consistent, then the solution
is unique.

Proof. Assume that X satisfies (4.1), that is X D ADAX and AmX D Am.Aj /�.
Then X D ADAX D .AD/mAmX D .AD/mAm.Aj /� D ADA.Aj /�: Thus X is
unique. �

By Theorem 9 if X exists, then it is unique and denoted by A	j;m.

Theorem 10. Let A 2Cn�n and m;j 2N.
(1) If m � ind.A/, then the system in (4.1) is consistent and the solution is X D

ADA.Aj /�.
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(2) If the system in (4.1) is consistent, then ind.A/�maxfj;mg.

Proof. (1). Let X D ADA.Aj /�. We have ADAX D ADAADA.Aj /� D

ADA.Aj /� DX and AmX D AmADA.Aj /� D ADAAm.Aj /� D Am.Aj /�.
(2). If the system in (4.1) is consistent, then exits X0 2 Cn�n such that X0 D

ADAX0 D .AD/mAmX0 D .AD/mAm.Aj /� D ADA.Aj /� and Am.Aj /� D

AmX0 D A
mADA.Aj /� D Am.AD/jAj .Aj /�. Thus

Am.Aj /�Aj
D Am.AD/jAj .Aj /�Aj

D Am.AD/jAj
D AmADA:

If m � j , then AmADA D Am.Aj /�Aj D Am�jAj .Aj /�Aj D Am�jAj D Am.
That is, ind.A/ � m. If j > m, then Aj D Aj .Aj /�Aj D Aj�mAm.Aj /�Aj D

Aj�mAmADAD AjADA. That is, ind.A/� j . Thus, ind.A/�maxfj;mg. �

Example 2. We will give an example that shows if m < ind.A/, then the system
in (4.1) is not consistent. Let A be the same matrix in Example 1. It is easy to get
ind.A/D 2 and AD D 0. LetmD j D 1 and suppose thatX is the solution of system
in (4.1), then X D ADAX D 0, which gives AA� D AX D 0, thus AD AA�AD 0,
this is a contradiction.

Example 3. The converse of Theorem 10 (1) is not true. Let mD 1 and j D 3. If
we let

AD

24 0 1 0

0 0 1

0 0 0

35 ;
then ind.A/D 3 and A3 D 0. Hence X D 0 is a solution of (4.1), but m< ind.A/.

Example 4. If ind.A/�maxfj;mg, then the system in (4.1) may be not consistent.
If we let

AD

24 2 2 1

�1 �1 0

0 0 0

35 ;
then

A3
D A2

D

24 2 2 2

�1 �1 �1

0 0 0

35 ;
AD DA2 and ind.A/D 2. LetmD 1 and j D 2, then ind.A/�maxfj;mg. It is easy
to check that

.A2/� D
1

15

24 2 �1 0

2 �1 0

2 �1 0

35 :



GENERALIZED CORE INVERSES OF MATRICES 579

If the system in (4.1) has a solution X0, then X0 D ADAX0 D ADA.A2/� and
A.A2/� D AX0 D AA

DA.A2/� D A4.A2/� D A2.A2/� would hold. But

A.A2/� D
1

15

24 10 �5 0

�4 2 0

0 0 0

35¤ 1

15

24 12 �6 0

�6 3 0

0 0 0

35D A2.A2/�:

Thus, the system in (4.1) is not consistent.

Remark 8. If m � ind.A/D k, it is not difficult to see that A	j;m D A
	

j;mC1. That
is to say, the .j;m/-core inverse of A coincides with the .j;mC1/-core inverse of A.
Thus, in the sequel, we only discuss the mD ind.A/ case.

Theorem 11. Let A;X 2Cn�n, k;j 2N. If ind.A/D k and X is the .j;k/-core
inverse of A, then we have XjAjXj D .AD/j.j�1/Xj and XAj D ADA.

Proof. By the definition of the .j;k/-core inverse, we have X D ADAX and
AkX D Ak.Aj /�. By X D ADA.Aj /�, it is easy to check that XnC1 D .AD/jXn

for arbitrary n 2N, which gives that Xj D .AD/j.j�1/X:

XAj
D ADA.Aj /�Aj

D .AD/jAj .Aj /�Aj
D .AD/jAj

D ADAI

XjAjXj
D .AD/j.j�1/XAjXj

D .AD/j.j�1/ADAXj
D .AD/j.j�1/Xj :

�

Corollary 2. Let A;X 2Cn�n and ind.A/D k. If X is the .1;k/-core inverse of
A, then we have XAX DX and XAD ADA.

The .j;m/-core inverse is a generalization of the core inverse and the DMP-inverse
in view of Theorem 11.

Remark 9. When j D m D 1 D ind.A/, the equations in (4.1) are equivalent to
XAX D X , XAD A#A, and AX D AA�. Thus AX D AA� implies that .AX/� D
AX ; XA D A#A gives that XA2 D A and AXA D A; and X D XAX D A#AX D

AA#X , which means that R.X/ �R.A/, then X D AY for some Y 2 Cn�n, thus
X D AY D AXAY D AX2. Therefore, we have A #
 D X by Lemma 1. In a word,
the .1;1/-core inverse coincides with the usual core inverse.

Remark 10. If we let j D 1 andmD ind.A/, then the equations in (4.1) are equival-
ent to XAX DX , XAD ADA, and AkX D AkA� by Theorem 11. Thus .1;k/-core
inverse coincides with the DMP-inverse.

From Remark 10, Theorem 11 and the definition of the .j;k/-core inverse, we have
the following theorem, which says that the conditions XAX D X , and XAD ADA

in the definition of the DMP-inverse can be replaced by X D ADAX .

Theorem 12. LetA2Cn�n with kD ind.A/. ThenX 2Cn�n is the DMP-inverse
of A if and only if X D ADAX and AkX D AkA�.
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In the following theorem, we will give a canonical form for the .j;k/-core inverse
of a matrix A 2Cn�n by using the matrix decomposition in Theorem 1.

Theorem 13. LetA 2Cn�n have the form (2.1) with ind.A/D k and j 2N. Then

A	
j;k
D U

�
.MC/D.MC/	

j�1;k
0

0 0

�
U �:

Proof. By Theorem 10 and the idempotency of ADA we have

A	
j;k
D ADA.Aj /� D .AD/jAj .Aj /�: (4.2)

From the proof of Theorem 7, we have

Aj .Aj /� D U

�
.MC/j�1..MC/j�1/� 0

0 0

�
U �: (4.3)

By (2.2) we have

.AD/j D U

�
Œ.MC/D�j Œ.MC/D�jC1MS

0 0

�
U �: (4.4)

By the proof of Theorem 7, we have ind.MC/ � k� 1 < k. From (4.2), (4.3) and
(4.4), we have

A	
j;k
D .AD/jAj .Aj /�

D U

�
Œ.MC/D�j Œ.MC/D�jC1MS

0 0

��
.MC/j�1..MC/j�1/� 0

0 0

�
U �

D U

�
Œ.MC/D�j .MC/j�1..MC/j�1/� 0

0 0

�
U �

D U

�
.MC/DŒ.MC/D�j�1.MC/j�1..MC/j�1/� 0

0 0

�
U �

D U

�
.MC/D.MC/DMC..MC/j�1/� 0

0 0

�
U �

D U

�
.MC/D.MC/	

j�1;k
0

0 0

�
U �:

�

Remark 11. If we use the decomposition of Hartwig and Spindelböck in [8, Co-
rollary 6], then an expression of the .j;k/-core inverse of A is

A	
j;k
D U

�
.˙K/D.˙K/	

j�1;k
0

0 0

�
U �;

which is similar to the expression of A	
j;k

in Theorem 13. Since the proof of this
result can be proved like the proof of Theorem 13, we omit this proof.
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Theorem 14. Let A 2 Cn�n and ind.A/D k. If .AkXk/� D AkXk , AXkC1 D

Xk and XAkC1 D Ak , then A is (k,k)-core invertible and A	
k;k
DXk :

Proof. By Lemma 2 and Lemma 3, we have AkXkAk D Ak , XkAkXk D Xk ,
Ak DXkA2k , and AD DXkC1Ak . Equalities .AkXk/� D AkXk and AkXkAk D

Ak imply that Xk is a f1;3g-inverse of Ak . From AD D XkC1Ak , we can obtain
.AD/k DXk�1AD by induction. Thus

A	
k;k
D ADA.Ak/� D .AD/kAk.Ak/� D .AD/kAk.Ak/.1;3/

D .AD/kAkXk
D .XkC1Ak/kAkXk

DXk�1XkC1AkAkXk

DX2kA2kXk
DXk.XkA2k/Xk

DXkAkXk
DXk :

�

Proposition 3. Let A 2Cn�n be a matrix with j � ind.A/D k. If A is .j;k/-core
invertible, then AjA	

j;k
is the projector onto R.Aj / along R.Aj /

?.

Proof. It is trivial. �

In the following proposition, we will investigate some properties of the .j;k/-core
inverse.

Proposition 4. Let A 2Cn�n with j � ind.A/D k. If A is .j;k/-core invertible,
then

(1) A	
j;k

is a f1;2;3g-inverse of Aj ;

(2) A	
j;k
D .AD/jPAj ;

(3) .A	
j;k
/n D

(�
.AD/j .Aj /�

�n=2
if n is even,

Aj
�
.AD/j .Aj /�

�.nC1/=2
if n is odd.

(4) A	
j;k
AD D .AD/jC1;

(5) AjA	
j;k
D A	

j;k
Aj if and only if R.Aj /

?
�N .Aj /;

(6) A	
j;k
D A implies that A is EP.

Proof. (1). By Theorem 10 we have A	
j;k
D ADA.Aj /� D .AD/jAj .Aj /�, thus

AjA	
j;k
Aj
D Aj .AD/jAj .Aj /�Aj

D Aj .AD/jAj
D AjADAD Aj

I

A	
j;k
AjA	

j;k
D .AD/jAj .Aj /�AjA	

j;k
D ADAA	

j;k

D ADAADA.Aj /� D ADA.Aj /� D A	
j;k
I

AjA	
j;k
D Aj .AD/jAj .Aj /� D Aj .Aj /�:

(2) is trivial.
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(3). By .A	
j;k
/2 D .AD/jAj .Aj /�.AD/jAj .Aj /� D .AD/j .Aj /� and induction

it is easy to check (3).
(4). A	

j;k
AD D .AD/jAj .Aj /�AD D .AD/jAj .Aj /�.AD/jAjAD D .AD/jC1.

(5). By R
�
In�A

j .Aj /�
�
DN

�
.Aj /�

�
and N .ADA/DN .AD/, we have

AjA	
j;k
D A	

j;k
Aj
, Aj .AD/jAj .Aj /� D .AD/jAj .Aj /�Aj

, Aj .AD/jAj .Aj /� D .AD/jAj

, Aj .AD/j
h
In�A

j .Aj /�
i
D 0

,R
h
In�A

j .Aj /�
i
�N .ADA/

,N Œ.Aj /���N .ADA/

,N Œ.Aj /���N .AD/

,R.Aj /
?
�N .Aj /:

(6). Let A be written in the form (2.1). We have

A	
j;k
D U

�
.MC/D.MC/	

j�1;k
0

0 0

�
U �

by Theorem 13. Thus, A	
j;k
DA impliesMS D 0: From the nonsingularity ofM , we

have S D 0, which is equivalent to say that A is EP in view of [2, Theorem 3.7]. �

In the following proposition, we shall give the the relationship between the .j;k/-
core inverse and DMP-inverse and core-EP inverse.

Proposition 5. Let A 2Cn�n with ind.A/D k. Then

A	
k;k
D AD;�.AD/k�1AA �
:

Proof. We have that Ak.Ak/� D AA �
 by Lemma 5 and AD;� D ADAA�. Thus

A	
k;k
D ADA.Ak/� D .AD/kAk.Ak/� D ADAk.AD/k�1.Ak/�

D ADAA�Ak.AD/k�1.Ak/� D AD;�.AD/k�1Ak.Ak/�

D AD;�.AD/k�1AA �
:

�

In the following theorem, we will give a relationship between the hi;mi-core in-
verse and .j;m/-core inverse.

Theorem 15. Let A 2Cn�n with ind.A/D k. Then A˚
k;m
DA	

m;k
for any m� k.
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Proof. By Theorem 10, we have A	
m;k
D ADA.Am/� D .AD/kAk.Am/�. By

the proof of Remark 5, we have Ak DMN and NM D Lk , where M D
Qk

lD1Bl ,
N D

Qk
lD1GkC1�l and LD GkBk . It is easy to see that .AD/s DML�k�sN for

any s 2N by NM D Lk . Thus .AD/k DML�2kN and

.AD/kAk
DML�2kNMN DML�2kLkN DML�kN:

By the proof of Remark 5, we have Am DMLm�kN DM1N is a full rank factoriz-
ation of Am, where M1 DML

m�k and

.Am/� DN �.NN �/�1.M �1M1/
�1.M1/

�:

By Theorem 6, we have A˚
k;m
DML�mM �. In the following steps, we will show

that A	
m;k
DML�mM �. From A	

m;k
D .AD/kAk.Am/�, we have

A	
k;m
D .AD/kAk.Am/� DML�kNN �.NN �/�1.M �1M1/

�1.M1/
�

DML�k.M �1M1/
�1.M1/

�
DML�kŒ.Lm�k/�M �MLm�k��1.Lm�k/�M �

DML�kLk�m.M �M/�1Œ.Lm�k/���1.Lm�k/�M �

DML�m.M �M/�1M � DML�mM �:

�

Theorem 16. Let A 2Cn�n with i � ind.A/D k, then A	
i;k
D P1D

�iP
�
1 , where

AD P
�

D 0
0 N

�
P�1 with D 2Cr�r is nonsingular, N is nilpotent and P D ŒP1 j P2�

with P1 2Cn�r .

Proof. It is easy to see that by Theorem 8 and Theorem 15. �

ACKNOWLEDGEMENT

This research is supported by the National Natural Science Foundation of China
(NO.11771076 and No. 11471186). The first author is grateful to China Scholarship
Council for giving him a purse for his further study in Universitat Politècnica de
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