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Abstract. In this paper, we introduce two new generalized inverses of matrices, namely, the
(i,m)-core inverse and the (j,m)-core inverse. The (i,m)-core inverse of a complex matrix
extends the notions of the core inverse defined by Baksalary and Trenkler [!] and the core-EP
inverse defined by Manjunatha Prasad and Mohana [10]. The (j,m)-core inverse of a complex
matrix extends the notions of the core inverse and the DMP-inverse defined by Malik and Thome
[9]. Moreover, the formulae and properties of these two new concepts are investigated by using
matrix decompositions and matrix powers.
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1. INTRODUCTION

Let C™*" denote the set of all m x n complex matrices. Let A*, R(A) and
rk(A) denote the conjugate transpose, column space, and rank of A € C™*", respect-
ively. For A € C™*" if X € C"*™ satisfies AXA = A, XAX = X, (AX)* = AX,
and (XA)* = XA, then X is called a Moore-Penrose inverse of A. This matrix X
is unique and denoted by AT. A matrix X € C"™ ™ is called an outer inverse of
A if it satisfies XAX = X; is called a {2,3}-inverse of A if it satisfies XAX =
X and (AX)* = AX; is called a {1,3}-inverse of A if it satisfies AXA = A and
(AX)* = AX; is called a {1,2,3}-inverse of A if it satisfies AXA = A, XAX =X
and (AX)* = AX.

The core inverse of a complex matrix was introduced by Baksalary and Trenkler
[1]. Let A € C™*". A matrix X € C"*" is called a core inverse of A, if it satisfies
AX = Pgand R(X) C R(A), here P4 denotes the orthogonal projector onto R(A).
If such a matrix exists, then it is unique and denoted by A®_ Fora square complex
matrix A, one has that A is core invertible, A is group invertible, and rk(A4) = rk(A42)
are three equivalent conditions (see [2]). We denote CSM ={AeCV"|1k(A) =
k(A2)}.

The first author is the corresponding author.
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Let A € C™". A matrix X € C™" such that XA*+! = A%, XAX = X and
AX = XA is called the Drazin inverse of A and denoted by AP . The Drazin inverse
of a square matrix always exists and it is unique. Such integer k is called the Drazin
index of A, denoted by ind(A). If ind(A) < 1, then the Drazin inverse of A is called
the group inverse and denoted by A*.

The DMP-inverse for a complex matrix was introduced by Malik and Thome [9].
Let A € C™" with ind(A) = k. A matrix X € C™*" is called a DMP-inverse of A,
if it satisfies XAX = X, XA = AP A and A¥X = A*¥ AT 1t is unique and denoted by
AD-T_ Malik and Thome gave several characterizations of the DMP-inverse by using
the decomposition of Hartwig and Spindelbock [8].

The notion of the core-EP inverse for a complex matrix was introduced by Man-
junatha Prasad and Mohana [10]. A matrix X € C™*" is a core-EP inverse of
A € C™" if X is an outer inverse of A satisfying R(X) = R(X*) = R(4¥), where
k is the index of A. The core-EP inverse is unique and denoted by AD.

In addition, 1,, and 0,, will denote the n x 1 column vectors all of whose compon-
ents are 1 and 0, respectively. 0, x5 (abbr. 0) denotes the zero matrix of size m x n. If
& is a subspace of C", then Pg stands for the orthogonal projector onto the subspace
&. A matrix A € C"*" is called an EP matrix if R(A) = R(A*), A is called Her-
mitian if A* = A and A is unitary if AA* = I, where I, denote the identity matrix
of size n. Let N denote the set of positive integers.

2. PRELIMINARIES

A related decomposition of the matrix decomposition of Hartwig and Spindelbock
[8] was given in [2, Theorem 2.1] by Benitez, in [3] it can be found a simpler proof
of this decomposition. Let us start this section with the concept of principal angles.

Definition 1 ([12]). Let 8; and 8> be two nontrivial subspaces of C". We define
the principal angles 01,...,0, € [0, /2] between 81 and §, by

cost; =o;(Pg, Ps,),

fori =1,...,r, where r = min{dim&;,dim&,}. The real numbers o; (Pg, Pg,) >0
are the singular values of Pg, Pg,.

The following theorem can be found in [2, Theorem 2.1].

Theorem 1. Let A € C*", r =1k(A), and let 01,...,0, be the principal angles
between R(A) and R(A*) belonging to 0, /2. Denote by x and y the multiplicities
of the angles 0 and 1t /2 as a canonical angle between R(A) and R(A™), respectively.
There exists a unitary matrix U € C"*" such that

MC MS ] U,

o o 2.1)

a=v|
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where M € C™" is nonsingular,

C = diag(0y,cos0y,...,cos6,,1x),

g— |: diag(1y,sin6y,...,sin0,) Opyy n_(r+p+y) :|
Ox,p+y Ox,n—(r+p+y) ’
andr =y + p+x. Furthermore, x and y +n —r are the multiplicities of the singular
values 1 and 0 in Pg(4) PR (4x), respectively.

In this decomposition, one has C 24 §8* = I,. Recall that AT always exists. We
have that A" exists if and only if C is nonsingular in view of [2, Theorem 3.7]. The
following equalities hold

-1 —1 —1 —1 —1,—1
AT:U[CM O}U*’ A#:U[C M c'mM-1c S]U*.

S*M~1 0 0 0
By [3, Theorem 2], we have that
D D12
AD=U[(M5) [(MC)O] MS]U*. 2.2)
We also have
AAT = U[ 10, 8 }U*, (2.3)
—1ps—1
A@=A#AAT=U[ ¢ é” 8:|U*. (2.4)

Lemma 1 ([13, Theorem 3.1]). Let A € C"*". Then A is core invertible if and
only if there exists X € C™" such that (AX)* = AX, XA? = Aand AX*>=X.In
this situation, we have A® = x.

Lemma 2. Let A € C™". [fthere exists X € C"™" such that AX*t! = X* and
XA+ = AK for some k € N, then for m € N we have
(1) Ak = XmAk+m’.
) Yk — Aka+m,'
3) Ak xk — Ak-l—ka—i-m’.
4) Yk gk — xk+m gk+m.
(5) Ak — AmeAk;
6) Xk =xmAmxk.

Proof. (1). For m = 1, it is clear by the hypotheses. If the formula is true for
m € N, then X1 gk+m+1 — xym ghtm g — x Ak 4 = X AF+1 = gk,

(3). It is easy to check that A¥ Xk = AkT1xk+1 py Axk+1 = Xk Tt is not
difficult to check the equality AK X% = Agk+m xk+m vy induction.

(5). From (1) we have A¥ = Xk 42k Thus by AX*¥+1 = X¥ we have AF =
Xk g2k — Axk+l 42k — gxkxq2k — A(AXk+1)XA2k — A2xk+2 42k _
A2X2XkA2k — .= AmmekAZk — AmeAk
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The proofs of (2), (4), and (6) are similar to the proofs of (1), (3), (5), respectively.
O

Lemma 3. Let A € C™". [f there exists X € C™" such that AX*+! = X* and
XA+ = AK for some k € N, then AP = Xk+1 4k,

Proof. Since A is Drazin invertible. We will check that A? = Xk+1 4k Have in
mind, AXK*+1 = Xk and X4¥+1 = Ak, thus

AXFFL ARy = xk gk = xFk(xAk+1) = xk+14k 4, (2.5)
That is, X¥*1 A% and 4 commute. Then by (1) and (4) in Lemma 2, we have that

(Xk+1Ak)A(Xk+1Ak) — Xk+1Ak+le+1Ak — XkAk(Xk+1Ak)

— Xka+1AkAk — Xk+1XkA2k — Xk+1Ak. (26)
From (1) in Lemma 2, we have that
(Xk+1Ak)Ak+1 — X(XkAZk)A — XAk+1 — Ak. 2.7

Thus we have AP = xk+14k by the definition of the Drazin inverse and in view of
(2.5), (2.6), and (2.7). O

Remark 1. From the proofs of Lemma 2 and Lemma 3, it is obvious that Lemma 2
and Lemma 3 are valid for rings. Moreover, we can get that for an element a € R, a

is Drazin invertible if and only if there exist x € R and k € N such that axk+l = xk
and xa*¥t1 = gk where R is a ring.
The following lemma is similar to [9, Theorem 2.5].
Lemma 4. Let A € C™*" be the form (2.1). Then
APt =y [ (MC)® 0 ]U*. (2.8)
0 0
Proof. By (2.2), (2.3) and the definition of DMP-inverse we have
AP T = AP 44T
e [ (Mg)” [(MC)(I;FMS ] [ b0 } — [ (Mg)D 0 ] U*
O

Lemma 5 ([11, Corollary 3.3]). Let A € C**" be a matrix of index k. Then
AAD = Ak (4F)T.
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3. (i,m)-CORE INVERSE
Let us start this section by introducing the definition of the (i, m)-core inverse.

Definition 2. Let A € C"*" and m,i € N. A matrix X € C"*" is called an (i, m)-
core inverse of A, if it satisfies

X =APAX and A™X = A'(ADHT. (3.1)
It will be proved that if X exists, then it is unique and denoted by A??m.

Theorem 2. Let A € CV". [f exists X € C"™" such that (3.1) holds, then X is
unique.

Proof. Assume that X satisfies the systemin (3.1), thatis X = AP AX and A X =
AT (AT, Thus X = AP AX = (AP)ymA™X = (AP)™ A1 (A))T. Therefore, X is
unique by the uniqueness of A2 and A?(47)%. O

Theorem 3. The system in (3.1) is consistent if and only if i > ind(A). In this
case, the solution of (3.1) is X = (AP)™ Al (4.

Proof. Assume that i > ind(A). Let X = (AP)™ A7 (A")T. We have
AP AX = AP A(APY" A1 (AN = (APY" AP 44T (AT = APy AT (AT = X
A"X = A" (AP AT (AN = AP 44T (AT = 4T (4T
Thus, the system in (3.1) is consistent and the solution of (3.1)is X = (4P)™ A% (4))T.
If the system in (3.1) is consistent, then exists X¢ such that X¢ = AP A_Xo and
A™Xg = A(A)T. Then Xo = AP AXy = (AP)"A™ Xy = (AP)™ A'(A))T and
AT (AT =AM Xo =A™ (AP)m AT (AT)T = AAP AT(A")T. Hence A’ = AT(A")TA" =
AAP AT (AT AT = AAP AT thatis i > ind(A). O
Example 1. We will give an example that shows if i < ind(A), then the system in

8 (1) ] It is easy to get ind(4) =2 and AP = 0.

Leti = 1 and suppose that X is the solution of system in (3.1), then X = AP AX =0,
which gives AAT = A" X =0, thus A = AATA = 0, this is a contradiction.

(3.1) is not consistent. Let A = |:

Remark 2. 1f i > ind(A), then A7, | = AP AP .

Remark 3. The (i,m)-core inverse is a generalization of the core inverse and the
core-EP inverse. More precisely, we have the following statements:

(1) If m =i = ind(A) = 1, then the (1, 1)-core inverse coincides with the core
inverse;

(2) If m =1 and i = ind(A), then the (i, 1)-core inverse coincides with the core-
EP inverse.
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For the convenience of the readers, in the following, we give some notes of (1) and
(2) in Remark 3.

(1) Ifm =i =ind(A) = 1, then 4 is group invertible and AP = A4* and (3.1)
is equivalent to X = A*AX and AX = AAT. Thus X = A*AX = A* 44T,
(AX)* = (AAT)* = AAT = AX, AX? = AA*AATA* AAT = AA*AATAA* AT =
AA*AT = X and XA2 = A*AAT A% = A* A2 = A. Hence, (1, 1)-core inverse
coincides with the core inverse by Lemma 1. Note that if A is group invert-
ible, then we have that X is the core inverse of A if and only if X = A¥AX
and AX = AAT.

(2) If m =1 and i = ind(A), then by Theorem 3.3, AfBl exists and Ai®1 =
AP AT (AT, Let us denote X = AfBI = AP A1 (A)T. Observe that AX =
A" (AT is Hermitian. Now,

XAX = AP AT (AH)T AT (4Dt = AP AT (4D = X,
that is X is an outer inverse of A. From

Ai — ADAi+1 — ADAZ(AZ)TAIA — XAi+1

we get R(A') € R(X). Also,

AX2 = (AX)X = A" (AT AP AT (4)T

= A" (AHNTAT AP (AT = AP AT (AT = X,

which implies X = (4X)*X € R(X™), therefore, R(X) € R(X™). Finally,
X* = [AP AT (A)T]* = AT (AD)T(AP)* implies R(X*) C R(A'). Hence

R(X)=R(X*) = R(A"). Therefore, the (i, 1)-core inverse coincides with
the core-EP inverse by the definition of the core-EP inverse.

From the above statement, we have the following theorem.

Theorem 4. Let A € C"*" withi = ind(A). Then X is the core-EP inverse of A
ifand only if X = AP AX and AX = A'(A")T.

Corollary 1. Let A € C™" with 1 =ind(A). Then X is the core inverse of A if
and only if X = A*AX and AX = AAT.

Forany A € C" either A' = 0 for some / € N, or A? # 0 for all positive integers.
Moreover, if ind(A4) = k, then G, By, is nonsingular (see [5—7]), where A = B1 G is
a full rank factorization of 4 and G;B; = Bj41Gj41 is a full rank factorization of
G;B;,l=1,...,k—1. When Ak = 0, then it can be written as

k k
Ak = 1_[ B 1_[ Gr+t1-1- (3.2)

=1 I=1
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We have the following results, (see [5, Theorem 4] or [4, Theorem 7.8.2]):

ind(A4) = k when Gy By, is nonsingular,
k+1  when Gy By = 0.
and
4D — 1_[?:1 B (G By) %1 1_[5(:1 Gk+1—1 when Gg By is nonsingular, (3.3)

0 when G B = 0.

In the sequel, we always assume that Ak #0.
It is well-known that if A = E'F is a full rank factorization of A, where r = rk(A),
E ¢ C"™ " and F € C™*" then (see [4, Theorem 1.3.2])

AT = F*(FF*™WE*E) 'E*. (3.4)

Remark 4. The notations and results in above paragraph will be used many times
in the sequel.

We will investigate the (i,m)-core inverse of a matrix A € C"*" by using Re-
mark 4.

Theorem 5. Let A € C"" with ind(A) = k. If i > k, then AY =AY

k.m"
Proof. Since ind(A) = k, we have R(A*) = R(A") for any i > k, and therefore,
AR (AF)YT = A7 (A")T. Now, the conclusion follows from Theorem 3. O

Remark 5. The proof of Theorem 5 also can be proved as follows. Since the proof
in this remark will be used several times in the sequel, we write this proof here.

Proof. If A is nilpotent, then AP = 0, hence by Theorem 3, one has Al@m =
A,?m = 0. Therefore, we can assume that A¥ # 0. By equality (3.2), we have

k k
AC =TT ]]Gerir- (35)
=1 I=1

where A = B;G; is a full rank factorization of 4 and G;B; = B;4+1G4+1 is a full
rank factorization of G; By, [ =1,....k—1.Let M = [[¥_, B;, N = [[¥_, Grs1-1
and L = Gy By. Now, we will show that

k k
A" =[] Bi(GkB) ™* [ | Grg1—1 = MLIT*N.
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In fact,
. i i
A" =18 T]Grsr
=1 I=1
=B;---BiG;---G;

= B1--Bi-1(B;G;)Gj-1---G1
=B1--Bi-1(Gi-1Bi-1)Gj-1---G1
= By---Bi_2(Gi—2Bi—2)*Gi—3---Gy

(3.6)

= By Bi(Gx By) %Gy -Gy = MLI7FN.

If.we let M; = MLi_k, then A’ = MLI=kN = M1 N is a full rank factorization of
A" (see [7, p.183]). Thus

AN = N*(NN*"Y(MFMy) M (3.7)
Note that NM = []¥_, Gx41-1 [15=, B; = L*. By Theorem 3, (3.3) and (3.7) we
have
AR = AP A (4T

= ML *INML=*NAHT

=ML INML=ENN*(NN*) " (M} M) M}

=ML *FINN*(NN*) N (MFMy) T M

= ML 7Y MMy~ M}

— MLi—k—l[(Li—k)*M*MLi—k]—l(Li—k)*M*

— MLi—k—lLk—i (M*M)—l[(Li—k)*]—l(Li—k)*M*

=ML7'(M*M)" M*.

(3.8)

The last expression does not depend on i, then Al@l = A,?l. Thus, by Remark 2, we

have Aj'?m = ADA;'fm_l = AD(ADA;‘?m_2 = (AD)ZA;‘?m_2 == (AD)"'—IA;‘?1 =
Dym—1 4® _ 4@
(APym=1A® =42 . O

Remark 6. By Theorem 5, it is enough to investigate the i = ind(A) = k case,
when we discuss the (i, m)-core inverse of a matrix A € C"*". That is, the Theorem 5
is a key theorem.

Theorem 6. Ler A € C*" withind(A) =k and k,m € N. If A = B1G1 is a full
rank factorization of A and Gy B; = B;4+1Gy41 is a full rank factorization of G; By,
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I=1.....k—1,then A® = ML= M7, where M =TT{_, B;, N =Tj=; Grr1
and L = G By.

Proof. By the proof of Remark 5, we have Affl =MLY (M*M)"'M* and

NM = LK. Now, we will prove (AP)SA® = ML™~Y(M*M)~'M* for any

s € N. By (3.3) we have AP = ]_[;czl B(Gy By)*! Hf:l Git1-1=ML*IN,
When s = 1, we have

AP AR = MLTINMLT (M M) M = ML (NM) LT (M M) T M
=ML * LY MMy T M = MLTA(M M) M
Assume that (AD)S_lA,?il =ML™S(M*M)~'M*. Then
(APY AR = AP (AP T AR = AP ML (M* M) M
=ML 'NML™S(M*M) ' M*
— ML %V kLS (M My M
=MLY (M*M)"M*.
Thus by Remark 2, we have
AR = AP TIAR =ML (M M) T M = ML M
O

In the following theorem, we will give a canonical form for the (k,m)-core inverse
of a matrix A € C"*" by using the matrix decomposition in Theorem 1. We will
also use the following simple fact: Let X € C"*™ and b € C". If y € C™ satisfies
X*Xy= X*b, then XXTb = Xy.

Theorem 7. Let A € C"*" have the form (2.1) with ind(A) = k and m € N. Then

AL, = U[ (Mcz),?_l,m 8 ]U*. (3.9)
Proof. Let r be the rank of A. By Theorem 3 we have
AR = (AP AR (AN, (3.10)
Since A has the form given in Theorem 1 we have
Ak:U[ (Moc)k (MC)];_IMS ]U*. 3.11)

Let b € C” be arbitrary and let us decompose b = U [2;] where by € C". Let

xg € C" satisfy (AF)* Ak xg = (AK)*b [this xo always exists because the normal
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equations always have a solution]. We can decompose Xo by writing xo = U [g],
where x; € C”. Let us denote N = (M C)k=1 M. Using (3.11),

U CN* 0 NC NS X1 _U CN* 0 by
S*N* 0 0 0 X2 - S*N* 0 b2 ’
Therefore,

CN*N(CX1 4+ 5x5) = CN*bl and S*N*N(Cxl +Sx5) = S*N*bl.

Premultiplying the first equality by C and the second equality by S and after, adding
them, we get N*N(Cx; + Sx») = N*by, and hence, N(Cx; + Sx») = NNTb;.
Now,

Ak(Ak)‘szAkxozU[ NC NS ][Xl ]

0 0 X2
_ [ NCxi+NSx; | _ [ NNy T_,,[ NNT 07, ,«
—U[ 0 ]—U[ 0 =U| "y o |U™
Since b is arbitrary,
+
Ak(Ak)T:U[NéV 8}(]*'

Now we will prove NNt = (MC)*~1[(MC)k—1]T. Recall that we have N =
(MC)*=1M, and so, R(N) € R((MC)*~1). Since M is nonsingular, rk(N) =
tk((M C)*~1), and thus, R(N) = R((MC)*~1). Since (MC)*~1[(M C)*~1]" and
NNT are the orthogonal projectors onto R((M C)*~1) and R(N), respectively, we
get NNt = M)k [(MmC)kF—1f.

By (2.2) we have

4D — U[ (Mg)D [(MC)(I))]zMS ]U*. (3.12)

Thus, we have
m _ [(MC)PI™ [(MC)PI"HIMS *
(APym = U[ 0 0 ]U .

Since ind(A) = k, we have AP AK*t1 = 4% By using the above representations of
AP and A¥ givenin (3.11) and (3.12), respectively,

0 0 0 0
:[ (MC)e (MCs—MmsS ]

[ (MC)P [(MC)P1PMS ][ (MC)+1 (MCcMS ]

0 0

Therefore,
(MC)YP(MCY*M[C | S]=MC)TM[C | S]. (3.13)
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Have in mind that we have C? + SS* = I,. Thus, postmultiplying (3.13) by [ & ]
gives us (M C)P (M C)*M = (MC)*~'M and from the nonsningularity of M we
obtain (M C)2 (M C)* = (M C)*~1, and so, ind(M C) < k — 1. Therefore we have

AL, = (APy" AR (A5

_y | [OPT [(MO)PYHIMS T (MO (MO)HT 0]
7 0 0 0 0
—U [(1\40)’3]'"(1\46%"—1((MC)’H)T 8}]

C(MC)E 0], .
=U k—1,m U*.
0 0

g

Remark 7. If we use the decomposition of Hartwig and Spindelbock in [8, Corol-
lary 6], then an expression of the (k,m)-core inverse of A is

®
® (XK);” 0
Ak,m =U |: (;C i 0 ur,

which is similar to the expression of A,? » in Theorem 7. Since the proof of this result
can be proved as the proof of Theorem 7, we omit this proof.

Let A € C" with ind(A) = k. The Jordan Canonical form of Ais P~1AP = J,
where P € C™*" is nonsingular and J € C"*" is a block diagonal matrix composed
of Jordan blocks. In the following theorem, we will compute the (k,m)-core inverse
by using the Jordan Canonical form of 4.

Theorem 8. Let A € C"™" with ind(A) = k, then AD = PyD™™P[, where
A=P [6’ ]?,] P~ Y with D € C™" is nonsingular, N is nilpotent and P = [Py | P;]
with P; € crxr,

Proof. The Jordan Canonical form of A4 is P"'AP = J, where P € C" is
nonsingular and J € C"*" is a block diagonal matrix. Rearrange the elements of J
such that A = P8 D] P!, where D is nonsingular and N is nilpotent. It is well-

known that AP = P [DO_' 8]P_1 and Ak = P [%k 8]P_1. Ifwelet P =[P | P3]

and Pl = [gl],then
2

—1\m k
e AR I | I | I B et
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Observe that AKX = (P; D¥)(Q is a full rank factorization of A¥. Hence by (3.4) we
have

(45T = (P D¥ Q)
= 01(0:10) ' (P D*)* Py D¥] ' (P D})*
= 01(2107) ' D7H(PF P (DM (D) P
= 07(Q10) ' DT*(PF P P
=oip~*p/.
By Theorem 3, we have A,?’m = (AP)m Ak (Ak)T Thus we have
AR = (APym k(4T = P Dm0, 0T D7* P
= P, D*"™0,0%0,0)'D*P = P D™ D*D*Pf = P.D" P
O
Proposition 1. Let A € C**". Ifi > ind(A), then A™ A}
R(AT) along R(AT)*.

Proof. 1t is trivial. O

IS the projector onto

In the following proposition, we will investigate some properties of the (i, m)-core
inverse.

Proposition 2. Let A € C"*", m,i € N. Ifi > ind(A), then
(1) A??m is a {2,3}-inverse of A™;
) AD = (AP)y" Pyi;
(3) (43,)" = (AP)" VAP = APy Py
@) ATA® = A® Al ifand only if R(AT)" € N (A);
®) Al.e?m = A implies that A is EP.
Proof. (1). By Theorem 3 we have A??m = (AP)Y" A1 (ADT, thus
AR A" A = (AP)Y" AT (AT A" (AP)" AT (AN}
= (APy" Al (AT AT A APy (AT
= (AP)" AT A (AP)" (AN = (AP YA (AP AT (AT
= AP AAPY" AT (AN = (AP A (AT = 48
Thus A??m is a {2, 3}-inverse of A in view of AmAl.e?m = Al (AHT.
(2) is trivial.
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(3). By
(A )" = (AP)Y" AT (ADT (AP AT (4D T (4D, )2
= (APy"(AP)y" 4l (AD (48,
= (AP)" AT, (A8, 7% = (AP)" (A7, )",
it is easy to check (3).
4). By R[(I, — A (A)T] = N [(A))T], we have

ATAD = AP A & AT AP AT (AN = (AP)m AT (AT A
& AN (APY" A (ADHT = APy Al
& AN AP (1, — AT (AHD) =0
& Rlly— A (AN S N[AT(AP)"]
& N[(ADT € N[(4P)™]
& N[(A)*] € N[(AP)"]
& R(ANE S N[(AP)"]
& R(AHLT c N[A].
(5). Let A be written in the form (2.1). We have A??m =U [(Mcf—l,m 8] U* by
Theorem 7. Thus, A??m = A implies M S = 0. From the nonsingularity of M, we
have S = 0, which is equivalent to say that A is EP in view of [2, Theorem 3.7]. [

4. (j,m)-CORE INVERSE

Let us start this section by introducing the definition of the (j,m)-core inverse.
Definition 3. Let A € C"*" and m, j € N. A matrix X € C™"*" is called a (j,m)-
core inverse of A, if it satisfies
X=APAX and A"X = A™(4)'. (4.1)
Theorem 9. Let A € C"*". If the system in (4.1) is consistent, then the solution

is unique.

Proof. Assume that X satisfies (4.1), thatis X = ADAX and A"X = A" (A)T.
Then X = APAX = (APY" A" X = (APy"A™ (A7)t = AP A(A47)T. Thus X is
unique. O

. . e . o
By Theorem 9 if X exists, then it is unique and denoted by A T

Theorem 10. Let A € C"*" and m, j € N.

M Ifm> ind(A), then the system in (4.1) is consistent and the solution is X =
AP A(A)T.
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(2) If the system in (4.1) is consistent, then ind(A) < max{j,m}.

Proof. (1). Let X = AP A(47)T. We have APAX = AP AAP A(4/)T =
AP A(A7)T = X and A" X = A" AP A(A7)T = AP AA™(AT)T = A™(47)T.

(2). If the system in (4.1) is consistent, then exits Xo € C"*" such that X¢ =
AP AXy = (APYrAmXxy = (APY"Am (AT = AP A(A/)T and A™(A))T =
A" Xo = A" AP A(A7)T = A™(AP)/ AT (A7)T. Thus

A™(AT)T 47 = AM(AP) AT (A7)T 47 = A (AP) 47 = Am AP A.

If m > j, then AmAP A = A™(AT)TA) = AT AT (ATYT AT = Am=T AT = A™.
That is, ind(4) < m. If j > m, then A/ = A/ (A/)T A/ = AJ=mAm(A))TA) =
A/7mAM AP A = A7 AP A. That is, ind(A) < j. Thus, ind(4) < max{j,m}. O

Example 2. We will give an example that shows if m < ind(A4), then the system
in (4.1) is not consistent. Let A be the same matrix in Example 1. It is easy to get
ind(A) =2 and AP =0. Letm = j = 1 and suppose that X is the solution of system
in (4.1), then X = AP AX = 0, which gives AAT = AX =0, thus A = AAT4 =0,
this is a contradiction.

Example 3. The converse of Theorem 10 (1) is not true. Letm =1 and j = 3. If
we let

A=

(=R el en]
S O =
S = O

then ind(A4) = 3 and A3 = 0. Hence X = 0 is a solution of (4.1), but m < ind(A4).

Example 4. If ind(A) < max{j, m}, then the system in (4.1) may be not consistent.
If we let

then

AB=4%2=| -1 -1 -1

AP = A2 andind(4) =2. Letm = 1 and j = 2, then ind(A) < max{j,m}. Itis easy
to check that
(2 -1 0
A)F==|2 -1 0
12 210
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If the system in (4.1) has a solution Xy, then Xo = AP AXy = AP A(A2)T and
A(A%)T = AXo = AAP A(A%)T = 4*(4%)T = A%2(A4?)T would hold. But

L[ 10 =50 L[ 12 =60
A(AZ)T:l—5 —4 2 0 |#F-| =6 3 0 = A%2(4>)T.
0 0 0 0 0 0

Thus, the system in (4.1) is not consistent.

Remark 8. 1f m > ind(A) = k, it is not difficult to see that 49, = AS, .. That
is to say, the (j,m)-core inverse of A coincides with the (j,m + 1)-core inverse of A.

Thus, in the sequel, we only discuss the m = ind(A) case.

Theorem 11. Let A, X € C”X” k,j € N. Ifind(A) = k and X is the (j,k)-core
inverse of A, then we have X7 A7 X7 = (AP)/ U=V XJ and XA7 = AP A.

Proof. By the definition of the (j,k)-core inverse, we have X = AP AXx and
Akx = Ak(A7)T. By X = ADA(A/)T., it is easy to check that X"+l = (4AD)J xn
for arbitrary n € N, which gives that X/ = (4P)/(U~-Dx.

XA = AP AT AT = (AP) A7 (A1) AT = (AP)) A/ = AP 4;
XAl X = (AD)j(j_l)XAij — (AD)j(j—l)ADAXj — (AD)J'(J'—l)XJ"
O

Corollary 2. Let A,X € C"™" and ind(A) = k. If X is the (1,k)-core inverse of
A, then we have XAX = X and XA = AP A.

The (j,m)-core inverse is a generalization of the core inverse and the DMP-inverse
in view of Theorem 11.

Remark 9. When j = m = 1 = ind(A), the equations in (4.1) are equivalent to
XAX = X, XA = A*A, and AX = AAT. Thus AX = AAT implies that (4X)* =
AX; XA = A*A gives that XA%? = A and AXA = A; and X = XAX = A¥AX =
AA*X, which means that R(X) € R(A), then X = AY for some Y € C"*", thus
X = AY = AXAY = AX?. Therefore, we have A® = x by Lemma 1. In a word,
the (1, 1)-core inverse coincides with the usual core inverse.

Remark 10. If welet j =1 and m = ind(A), then the equations in (4.1) are equival-
entto XAX = X, XA = AP A, and Ak X = Ak AT by Theorem 1 1. Thus (1, k)-core
inverse coincides with the DMP-inverse.

From Remark 10, Theorem 11 and the definition of the (j, k)-core inverse, we have
the following theorem, which says that the conditions XAX = X, and XA = AP 4
in the definition of the DMP-inverse can be replaced by X = AP AX.

Theorem 12. Let A € C*" with k = ind(A). Then X € C™*" is the DMP-inverse
of Aifand only if X = AP AX and A¥X = A¥ AT,
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In the following theorem, we will give a canonical form for the (J, k)-core inverse
of a matrix A € C"*" by using the matrix decomposition in Theorem 1.

Theorem 13. Let A € C"*" have the form (2.1) withind(A) =k and j € N. Then
A® =U|: (MC)D(MC)J Lk O]U*
Ik 0 0 ‘

Proof. By Theorem 10 and the idempotency of AP 4 we have
A9, = AP A4 = (4P 47 (4))T. (4.2)
From the proof of Theorem 7, we have

AT (47 = U[ (1‘40)f"1((()MC)<"‘1)T 0 }U*, 43)

By (2.2) we have
Py — U [ (MO [(MC)PY*tms } u* (4.4)

By the proof of Theorem 7, we have ind(MC) < k —1 < k. From (4.2), (4.3) and
(4.4), we have

Aje,k — (AD)J'AJ'(AJ')T

—U [ [(MCO)PY [(MC)PYFIMS :| |: (MC) =t (MC)y=hHT o ]U*
0 0 0 0
—U [ [(MC)P)Y (MC)/~H(MC)~HT o ]U*
0 0
—U [ (MC)P[(MC)PY -1 (MC)/ =1 (MC)~HT 0 ]U*
0 0
—U [ (MC)PMC)Pmc(mc)’~HT o }U*
0 0
_U (MC)D(MC)J k0 :|U*
I 0 0"

0

Remark 11. If we use the decomposition of Hartwig and Spindelbock in [8, Co-
rollary 6], then an expression of the (J, k)—core inverse of A is

D
i = 0 0
which is similar to the expression of AJe in Theorem 13. Since the proof of this

result can be proved like the proof of Theorem 13, we omit this proof.
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Theorem 14. Let A € C" and ind(A) = k. If (A Xk)* = Akxk Axk+1 =
X* and XAKtY = Ak then A is (kk)-core invertible and Ae = Xk,

Proof By Lemma 2 and Lemma 3, we have Ak Xk gk = gk xkpgk xk = xk,
Ak = x* A%k and AP = x*k+1 4k Equalities (4K X*)* = Aka and Ak Xk Ak =
Ak imply that X* is a {1,3}-inverse of AK. From AP = X¥*1 4% we can obtain
(AP)k = x*k=1 4D by induction. Thus

Aek — ADA(Ak)T (AD)kAk(Ak)T (AD)kAk(Ak)(l ,3)
(AD)kAka (Xk+1Ak)kAka Xk_le+1AkAka
— X2k g2k yk _ xk(xk g2k xk — xk gk yk = xk,
0

Proposition 3. Let A € C"*" be a matrix with j > ind(A) = k. If A is (J,k)-core

invertible, then A’ Ajek is the projector onto R(A7) along R(A’ )J'.

Proof. 1t is trivial. ]

In the following proposition, we will investigate some properties of the (j, k)-core
inverse.

Proposition 4. Ler A € C™" with j > ind(A) = k. If A is (J, k)-core invertible,
then
(1) Aje’k is a {1,2? 3Y-inverse of A7 ;
(2) A = (AP) Py,
[(AD)J'(AJ')T]”/2 if n is even,
j Dvj( At tD/2
A [(A )/ (A7) ] ifnisodd.
4) Ae AD (AD)j-l-l’.
(5) A/ Afk = AS AV if and only if R(AT)" C N (A7);
(6) Ajek = A implies that A is EP.

3) (47" =

Proof. (1). By Theorem 10 we have Aje,k = AP A(A)T = (AP)/ A7 (A7)T, thus
ATAS AT = AT (APY AT (AT AT = 4T (AP) AT = 4T AP A = A
AS AT AS, = (AP) AT (AT 4T A = AP 448,
= AP AAP A(A)YT = AP A(A))T = 4°
AT A9, = AT (APY AT (AT = AT (47)T.

(2) is trivial.
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(3). By (Aj?k)2 = (ADP)7 47 (AT (AP)] AT (A7) = (4P)7 (A7) and induction
it is easy to check (3).
(4). Aj?kAD = (AP)/ AT (ATYT AP = (AP)] AT (A7)T(AP)] 47 AP = (4P)I+1,
(5). By R[In — A7 (A))] = N [(47)T] and N (AP 4) = N (AP), we have
AjAje,k — Aje,kAj o A7 (AP 47 (A7)t = (4P)) 47 (A7) 47
< AV (APY A7 (AT = (4P)/ 4/
& AT (AP)I [1,, —AJ’(A/’)T] —0
s R [1,, —Af(AJ')T] c N (4P 4)
& N[(A)T c N (4P 4)
& N[(47)*] < N (4P)
o RAYT C N,
(6). Let A be written in the form (2.1). We have

(MC)D(MC)je_Lk 0 ]U*

e __
Af’k_U[ 0 0

by Theorem 13. Thus, Ajek = A implies M 'S = 0. From the nonsingularity of M, we
have S = 0, which is equivalent to say that A is EP in view of [2, Theorem 3.7]. [J

In the following proposition, we shall give the the relationship between the (j,k)-
core inverse and DMP-inverse and core-EP inverse.

Proposition 5. Let A € C**" withind(A) = k. Then
AR = AP T (AP 1449,
Proof. We have that A% (4%)" = 44D by Lemma 5 and AP-T = AP AAT. Thus
A]?’k — ADA(Ak)T — (AD)kAk(Ak)T — ADAk(AD)k—l(Ak)T
— ADAATAk(AD)k—l(Ak)T — AD,T(AD)k—lAk(Ak)T
= AP T(AP)k=1 44D,
O

In the following theorem, we will give a relationship between the (i,m)-core in-
verse and (j,m)-core inverse.

Theorem 15. Let A € C™*" with ind(A) = k. Then AY = AS | for any m > k.
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Proof. By Theorem 10, we have A2 0= AP A(A™)T = (AP)k 4k (4m)T. By
the proof of Remark 5, we have A*¥ = MN and NM = L*, where M = ]_[;;1 By,
N = Hf:l Gi4i1—7 and L = Gy By. It is easy to see that (AP)* = ML™*=5N for
any s € Nby NM = LK. Thus (AP)K = ML=2%N and

(APYe A% = ML2* NMN = ML72KL*N = ML7*N.
By the proof of Remark 5, we have A = ML™ KN = M, N is a full rank factoriz-
ation of A™, where M; = M L™ % and
(A™T = N (NN*THME M) M)

By Theorem 6, we have A,?m = ML™™MT. In the following steps, we will show
that AS , = ML= MT. From A® | = (4P)k Ak (4™), we have

m’k m,k
AQ = APk Ak (am)t = MLTENN*(NNSTH M My (M)

— ML—k(Ml*Ml)—l(Ml)* — ML—k[(Lm—k)*M*MLm—k]—l(Lm—k)*M*

— ML—kLk—m(M*M)—l[(Lm—k)*]—l(Lm—k)*M*

=ML""(M*M) 'M*=ML""M".

O

Theorem 16. Let A € C™*" with i > ind(A) =k, then Aiek =P D! PIT, where
A=P [13 1?,] P~ with D € C™ is nonsingular, N is nilpotent and P = [Py | P]
with P € Ccnxr,

Proof. It is easy to see that by Theorem 8 and Theorem 15. U
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