

Miskolc Mathematical Notes Vol. 20 (2019), No. 1, pp. 565–584 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2019.2594

# **GENERALIZED CORE INVERSES OF MATRICES**

SANZHANG XU, JIANLONG CHEN, JULIO BENÍTEZ, AND DINGGUO WANG

Received 12 April, 2018

Abstract. In this paper, we introduce two new generalized inverses of matrices, namely, the  $\langle i,m \rangle$ -core inverse and the (j,m)-core inverse. The  $\langle i,m \rangle$ -core inverse of a complex matrix extends the notions of the core inverse defined by Baksalary and Trenkler [1] and the core-EP inverse defined by Manjunatha Prasad and Mohana [10]. The (j,m)-core inverse of a complex matrix extends the notions of the core inverse and the DMP-inverse defined by Malik and Thome [9]. Moreover, the formulae and properties of these two new concepts are investigated by using matrix decompositions and matrix powers.

2010 Mathematics Subject Classification: 15A09; 15A23

Keywords: (i,m)-core inverse, (j,m)-core inverse, core inverse, DMP-inverse, core-EP inverse

# 1. INTRODUCTION

Let  $\mathbb{C}^{m \times n}$  denote the set of all  $m \times n$  complex matrices. Let  $A^*$ ,  $\mathcal{R}(A)$  and  $\operatorname{rk}(A)$  denote the conjugate transpose, column space, and rank of  $A \in \mathbb{C}^{m \times n}$ , respectively. For  $A \in \mathbb{C}^{m \times n}$ , if  $X \in \mathbb{C}^{n \times m}$  satisfies AXA = A, XAX = X,  $(AX)^* = AX$ , and  $(XA)^* = XA$ , then X is called a *Moore-Penrose inverse* of A. This matrix X is unique and denoted by  $A^{\dagger}$ . A matrix  $X \in \mathbb{C}^{n \times m}$  is called an *outer inverse* of A if it satisfies XAX = X; is called a  $\{2,3\}$ -inverse of A if it satisfies XAX = A and  $(AX)^* = AX$ ; is called a  $\{1,3\}$ -inverse of A if it satisfies AXA = A and  $(AX)^* = AX$ ; is called a  $\{1,2,3\}$ -inverse of A if it satisfies AXA = A, and  $(AX)^* = AX$ .

The core inverse of a complex matrix was introduced by Baksalary and Trenkler [1]. Let  $A \in \mathbb{C}^{n \times n}$ . A matrix  $X \in \mathbb{C}^{n \times n}$  is called a *core inverse* of A, if it satisfies  $AX = P_A$  and  $\mathcal{R}(X) \subseteq \mathcal{R}(A)$ , here  $P_A$  denotes the orthogonal projector onto  $\mathcal{R}(A)$ . If such a matrix exists, then it is unique and denoted by  $A^{\oplus}$ . For a square complex matrix A, one has that A is core invertible, A is group invertible, and  $\operatorname{rk}(A) = \operatorname{rk}(A^2)$  are three equivalent conditions (see [2]). We denote  $\mathbb{C}_n^{CM} = \{A \in \mathbb{C}^{n \times n} \mid \operatorname{rk}(A) = \operatorname{rk}(A^2)\}$ .

© 2019 Miskolc University Press

The first author is the corresponding author.

Let  $A \in \mathbb{C}^{n \times n}$ . A matrix  $X \in \mathbb{C}^{n \times n}$  such that  $XA^{k+1} = A^k$ , XAX = X and AX = XA is called the *Drazin inverse* of A and denoted by  $A^D$ . The Drazin inverse of a square matrix always exists and it is unique. Such integer k is called the Drazin index of A, denoted by ind(A). If  $ind(A) \le 1$ , then the Drazin inverse of A is called the group inverse and denoted by  $A^{\#}$ .

The DMP-inverse for a complex matrix was introduced by Malik and Thome [9]. Let  $A \in \mathbb{C}^{n \times n}$  with  $\operatorname{ind}(A) = k$ . A matrix  $X \in \mathbb{C}^{n \times n}$  is called a *DMP-inverse* of A, if it satisfies XAX = X,  $XA = A^DA$  and  $A^kX = A^kA^{\dagger}$ . It is unique and denoted by  $A^{D,\dagger}$ . Malik and Thome gave several characterizations of the DMP-inverse by using the decomposition of Hartwig and Spindelböck [8].

The notion of the core-EP inverse for a complex matrix was introduced by Manjunatha Prasad and Mohana [10]. A matrix  $X \in \mathbb{C}^{n \times n}$  is a *core-EP inverse* of  $A \in \mathbb{C}^{n \times n}$  if X is an outer inverse of A satisfying  $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^k)$ , where k is the index of A. The core-EP inverse is unique and denoted by  $A^{\textcircled{}}$ .

In addition,  $\mathbf{1}_n$  and  $\mathbf{0}_n$  will denote the  $n \times 1$  column vectors all of whose components are 1 and 0, respectively.  $\mathbf{0}_{m \times n}$  (abbr. 0) denotes the zero matrix of size  $m \times n$ . If  $\mathscr{S}$  is a subspace of  $\mathbb{C}^n$ , then  $P_{\mathscr{S}}$  stands for the *orthogonal projector* onto the subspace  $\mathscr{S}$ . A matrix  $A \in \mathbb{C}^{n \times n}$  is called an *EP* matrix if  $\mathscr{R}(A) = \mathscr{R}(A^*)$ , A is called *Hermitian* if  $A^* = A$  and A is *unitary* if  $AA^* = I_n$ , where  $I_n$  denote the *identity matrix* of size n. Let N denote the set of positive integers.

## 2. PRELIMINARIES

A related decomposition of the matrix decomposition of Hartwig and Spindelböck [8] was given in [2, Theorem 2.1] by Benítez, in [3] it can be found a simpler proof of this decomposition. Let us start this section with the concept of principal angles.

**Definition 1** ([12]). Let  $\mathscr{S}_1$  and  $\mathscr{S}_2$  be two nontrivial subspaces of  $\mathbb{C}^n$ . We define the *principal angles*  $\theta_1, \ldots, \theta_r \in [0, \pi/2]$  between  $\mathscr{S}_1$  and  $\mathscr{S}_2$  by

$$\cos\theta_i = \sigma_i (P_{\mathscr{S}_1} P_{\mathscr{S}_2}),$$

for i = 1, ..., r, where  $r = \min\{\dim \mathcal{S}_1, \dim \mathcal{S}_2\}$ . The real numbers  $\sigma_i(P_{\mathcal{S}_1}P_{\mathcal{S}_2}) \ge 0$  are the singular values of  $P_{\mathcal{S}_1}P_{\mathcal{S}_2}$ .

The following theorem can be found in [2, Theorem 2.1].

**Theorem 1.** Let  $A \in \mathbb{C}^{n \times n}$ ,  $r = \operatorname{rk}(A)$ , and let  $\theta_1, \ldots, \theta_p$  be the principal angles between  $\mathcal{R}(A)$  and  $\mathcal{R}(A^*)$  belonging to  $]0, \pi/2[$ . Denote by x and y the multiplicities of the angles 0 and  $\pi/2$  as a canonical angle between  $\mathcal{R}(A)$  and  $\mathcal{R}(A^*)$ , respectively. There exists a unitary matrix  $U \in \mathbb{C}^{n \times n}$  such that

$$A = U \begin{bmatrix} MC & MS \\ 0 & 0 \end{bmatrix} U^*, \tag{2.1}$$

where  $M \in \mathbb{C}^{r \times r}$  is nonsingular,

$$C = \operatorname{diag}(\mathbf{0}_{y}, \cos \theta_{1}, \dots, \cos \theta_{p}, \mathbf{1}_{x}),$$

$$S = \begin{bmatrix} \operatorname{diag}(\mathbf{1}_{y}, \sin \theta_{1}, \dots, \sin \theta_{p}) & 0_{p+y,n-(r+p+y)} \\ 0_{x,p+y} & 0_{x,n-(r+p+y)} \end{bmatrix}$$

and r = y + p + x. Furthermore, x and y + n - r are the multiplicities of the singular values 1 and 0 in  $P_{\mathcal{R}(A)}P_{\mathcal{R}(A^*)}$ , respectively.

In this decomposition, one has  $C^2 + SS^* = I_r$ . Recall that  $A^{\dagger}$  always exists. We have that  $A^{\#}$  exists if and only if C is nonsingular in view of [2, Theorem 3.7]. The following equalities hold

$$A^{\dagger} = U \begin{bmatrix} CM^{-1} & 0 \\ S^*M^{-1} & 0 \end{bmatrix} U^*, \quad A^{\#} = U \begin{bmatrix} C^{-1}M^{-1} & C^{-1}M^{-1}C^{-1}S \\ 0 & 0 \end{bmatrix} U^*.$$

By [3, Theorem 2], we have that

$$A^{D} = U \begin{bmatrix} (MC)^{D} & [(MC)^{D}]^{2}MS \\ 0 & 0 \end{bmatrix} U^{*}.$$
 (2.2)

We also have

$$AA^{\dagger} = U \begin{bmatrix} I_r & 0\\ 0 & 0 \end{bmatrix} U^*, \qquad (2.3)$$

$$A^{\textcircled{\#}} = A^{\#}AA^{\dagger} = U \begin{bmatrix} C^{-1}M^{-1} & 0\\ 0 & 0 \end{bmatrix} U^{*}.$$
 (2.4)

**Lemma 1** ([13, Theorem 3.1]). Let  $A \in \mathbb{C}^{n \times n}$ . Then A is core invertible if and only if there exists  $X \in \mathbb{C}^{n \times n}$  such that  $(AX)^* = AX$ ,  $XA^2 = A$  and  $AX^2 = X$ . In this situation, we have  $A^{\oplus} = X$ .

**Lemma 2.** Let  $A \in \mathbb{C}^{n \times n}$ . If there exists  $X \in \mathbb{C}^{n \times n}$  such that  $AX^{k+1} = X^k$  and  $XA^{k+1} = A^k$  for some  $k \in \mathbb{N}$ , then for  $m \in \mathbb{N}$  we have

(1)  $A^{k} = X^{m}A^{k+m};$ (2)  $X^{k} = A^{m}X^{k+m};$ (3)  $A^{k}X^{k} = A^{k+m}X^{k+m};$ (4)  $X^{k}A^{k} = X^{k+m}A^{k+m};$ (5)  $A^{k} = A^{m}X^{m}A^{k};$ (6)  $X^{k} = X^{m}A^{m}X^{k}.$ 

*Proof.* (1). For m = 1, it is clear by the hypotheses. If the formula is true for  $m \in \mathbb{N}$ , then  $X^{m+1}A^{k+m+1} = XX^mA^{k+m}A = XA^kA = XA^{k+1} = A^k$ .

(3). It is easy to check that  $A^k X^k = A^{k+1} X^{k+1}$  by  $AX^{k+1} = X^k$ . It is not difficult to check the equality  $A^k X^k = A^{k+m} X^{k+m}$  by induction. (5). From (1) we have  $A^k = X^k A^{2k}$ . Thus by  $AX^{k+1} = X^k$ , we have  $A^k = X^k A^{2k}$ .

(5). From (1) we have  $A^k = X^k A^{2k}$ . Thus by  $AX^{k+1} = X^k$ , we have  $A^k = X^k A^{2k} = AX^{k+1}A^{2k} = AX^k XA^{2k} = A(AX^{k+1})XA^{2k} = A^2 X^{k+2}A^{2k} = A^2 X^2 X^k A^{2k} = \cdots = A^m X^m X^k A^{2k} = A^m X^m A^k$ .

The proofs of (2), (4), and (6) are similar to the proofs of (1), (3), (5), respectively.  $\Box$ 

**Lemma 3.** Let  $A \in \mathbb{C}^{n \times n}$ . If there exists  $X \in \mathbb{C}^{n \times n}$  such that  $AX^{k+1} = X^k$  and  $XA^{k+1} = A^k$  for some  $k \in \mathbb{N}$ , then  $A^D = X^{k+1}A^k$ .

*Proof.* Since A is Drazin invertible. We will check that  $A^D = X^{k+1}A^k$ . Have in mind,  $AX^{k+1} = X^k$  and  $XA^{k+1} = A^k$ , thus

$$A(X^{k+1}A^k) = X^k A^k = X^k (XA^{k+1}) = X^{k+1}A^k A.$$
 (2.5)

That is,  $X^{k+1}A^k$  and A commute. Then by (1) and (4) in Lemma 2, we have that

$$(X^{k+1}A^k)A(X^{k+1}A^k) = X^{k+1}A^{k+1}X^{k+1}A^k = X^kA^k(X^{k+1}A^k)$$
  
=  $X^kX^{k+1}A^kA^k = X^{k+1}X^kA^{2k} = X^{k+1}A^k.$  (2.6)

From (1) in Lemma 2, we have that

$$(X^{k+1}A^k)A^{k+1} = X(X^kA^{2k})A = XA^{k+1} = A^k.$$
 (2.7)

Thus we have  $A^D = X^{k+1}A^k$  by the definition of the Drazin inverse and in view of (2.5), (2.6), and (2.7).

*Remark* 1. From the proofs of Lemma 2 and Lemma 3, it is obvious that Lemma 2 and Lemma 3 are valid for rings. Moreover, we can get that for an element  $a \in R$ , a is Drazin invertible if and only if there exist  $x \in R$  and  $k \in \mathbb{N}$  such that  $ax^{k+1} = x^k$  and  $xa^{k+1} = a^k$ , where R is a ring.

The following lemma is similar to [9, Theorem 2.5].

**Lemma 4.** Let  $A \in \mathbb{C}^{n \times n}$  be the form (2.1). Then

$$A^{D,\dagger} = U \begin{bmatrix} (MC)^D & 0\\ 0 & 0 \end{bmatrix} U^*.$$
 (2.8)

*Proof.* By (2.2), (2.3) and the definition of DMP-inverse we have

$$A^{D,\dagger} = A^{D} A A^{\dagger}$$
  
=  $U \begin{bmatrix} (MC)^{D} & [(MC)^{D}]^{2} MS \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} U^{*} = U \begin{bmatrix} (MC)^{D} & 0 \\ 0 & 0 \end{bmatrix} U^{*}.$ 

**Lemma 5** ([11, Corollary 3.3]). Let  $A \in \mathbb{C}^{n \times n}$  be a matrix of index k. Then  $AA^{\bigoplus} = A^k (A^k)^{\dagger}$ .

# 3. $\langle i, m \rangle$ -CORE INVERSE

Let us start this section by introducing the definition of the (i,m)-core inverse.

**Definition 2.** Let  $A \in \mathbb{C}^{n \times n}$  and  $m, i \in \mathbb{N}$ . A matrix  $X \in \mathbb{C}^{n \times n}$  is called an (i, m)-core inverse of A, if it satisfies

$$X = A^D A X \quad \text{and} \quad A^m X = A^i (A^i)^{\dagger}. \tag{3.1}$$

It will be proved that if X exists, then it is unique and denoted by  $A_{i,m}^{\oplus}$ .

**Theorem 2.** Let  $A \in \mathbb{C}^{n \times n}$ . If exists  $X \in \mathbb{C}^{n \times n}$  such that (3.1) holds, then X is unique.

*Proof.* Assume that X satisfies the system in (3.1), that is  $X = A^D A X$  and  $A^m X = A^i (A^i)^{\dagger}$ . Thus  $X = A^D A X = (A^D)^m A^m X = (A^D)^m A^i (A^i)^{\dagger}$ . Therefore, X is unique by the uniqueness of  $A^D$  and  $A^i (A^i)^{\dagger}$ .

**Theorem 3.** The system in (3.1) is consistent if and only if  $i \ge ind(A)$ . In this case, the solution of (3.1) is  $X = (A^D)^m A^i (A^i)^{\dagger}$ .

*Proof.* Assume that  $i \ge ind(A)$ . Let  $X = (A^D)^m A^i (A^i)^{\dagger}$ . We have

$$A^{D}AX = A^{D}A(A^{D})^{m}A^{i}(A^{i})^{\dagger} = (A^{D})^{m}A^{D}AA^{i}(A^{i})^{\dagger} = (A^{D})^{m}A^{i}(A^{i})^{\dagger} = X$$
$$A^{m}X = A^{m}(A^{D})^{m}A^{i}(A^{i})^{\dagger} = A^{D}AA^{i}(A^{i})^{\dagger} = A^{i}(A^{i})^{\dagger}.$$

Thus, the system in (3.1) is consistent and the solution of (3.1) is  $X = (A^D)^m A^i (A^i)^{\dagger}$ .

If the system in (3.1) is consistent and the solution of (3.1) is  $X = (A^{-})^{-} A^{-}(A^{-})^{-}$ . If the system in (3.1) is consistent, then exists  $X_0$  such that  $X_0 = A^D A X_0$  and  $A^m X_0 = A^i (A^i)^{\dagger}$ . Then  $X_0 = A^D A X_0 = (A^D)^m A^m X_0 = (A^D)^m A^i (A^i)^{\dagger}$  and  $A^i (A^i)^{\dagger} = A^m X_0 = A^m (A^D)^m A^i (A^i)^{\dagger} = A A^D A^i (A^i)^{\dagger}$ . Hence  $A^i = A^i (A^i)^{\dagger} A^i = A A^D A^i$ , that is  $i \ge ind(A)$ .

*Example* 1. We will give an example that shows if i < ind(A), then the system in (3.1) is not consistent. Let  $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ . It is easy to get ind(A) = 2 and  $A^D = 0$ . Let i = 1 and suppose that X is the solution of system in (3.1), then  $X = A^D A X = 0$ , which gives  $AA^{\dagger} = A^m X = 0$ , thus  $A = AA^{\dagger}A = 0$ , this is a contradiction.

*Remark* 2. If  $i \ge ind(A)$ , then  $A_{i,m+1}^{\oplus} = A^D A_{i,m}^{\oplus}$ .

*Remark* 3. The (i,m)-core inverse is a generalization of the core inverse and the core-EP inverse. More precisely, we have the following statements:

- If m = i = ind(A) = 1, then the (1,1)-core inverse coincides with the core inverse;
- (2) If m = 1 and i = ind(A), then the  $\langle i, 1 \rangle$ -core inverse coincides with the core-EP inverse.

For the convenience of the readers, in the following, we give some notes of (1) and (2) in Remark 3.

(1) If m = i = ind(A) = 1, then A is group invertible and  $A^D = A^{\#}$  and (3.1) is equivalent to  $X = A^{\#}AX$  and  $AX = AA^{\dagger}$ . Thus  $X = A^{\#}AX = A^{\#}AA^{\dagger}$ ,  $(AX)^* = (AA^{\dagger})^* = AA^{\dagger} = AX$ ,  $AX^2 = AA^{\#}AA^{\dagger}A^{\#}AA^{\dagger} = AA^{\#}AA^{\dagger}AA^{\#}A^{\dagger} = AA^{\#}AA^{\dagger}AA^{\#}A^{\dagger} = X$  and  $XA^2 = A^{\#}AA^{\dagger}A^2 = A^{\#}A^2 = A$ . Hence,  $\langle 1, 1 \rangle$ -core inverse coincides with the core inverse by Lemma 1. Note that if A is group invertible, then we have that X is the core inverse of A if and only if  $X = A^{\#}AX$  and  $AX = AA^{\dagger}$ .

(2) If m = 1 and i = ind(A), then by Theorem 3.3,  $A_{i,1}^{\oplus}$  exists and  $A_{i,1}^{\oplus} = A^{D}A^{i}(A^{i})^{\dagger}$ . Let us denote  $X = A_{i,1}^{\oplus} = A^{D}A^{i}(A^{i})^{\dagger}$ . Observe that  $AX = A^{i}(A^{i})^{\dagger}$  is Hermitian. Now,

$$XAX = A^{D}A^{i}(A^{i})^{\dagger}A^{i}(A^{i})^{\dagger} = A^{D}A^{i}(A^{i})^{\dagger} = X,$$

that is X is an outer inverse of A. From

$$A^{i} = A^{D}A^{i+1} = A^{D}A^{i}(A^{i})^{\dagger}A^{i}A = XA^{i+1}$$

we get  $\mathcal{R}(A^i) \subseteq \mathcal{R}(X)$ . Also,

$$AX^{2} = (AX)X = A^{i}(A^{i})^{\dagger}A^{D}A^{i}(A^{i})^{\dagger}$$
$$= A^{i}(A^{i})^{\dagger}A^{i}A^{D}(A^{i})^{\dagger} = A^{D}A^{i}(A^{i})^{\dagger} = X$$

which implies  $X = (AX)^*X \in \mathcal{R}(X^*)$ , therefore,  $\mathcal{R}(X) \subseteq \mathcal{R}(X^*)$ . Finally,  $X^* = [A^D A^i (A^i)^{\dagger}]^* = A^i (A^i)^{\dagger} (A^D)^*$  implies  $\mathcal{R}(X^*) \subseteq \mathcal{R}(A^i)$ . Hence  $\mathcal{R}(X) = \mathcal{R}(X^*) = \mathcal{R}(A^i)$ . Therefore, the  $\langle i, 1 \rangle$ -core inverse coincides with the core-EP inverse by the definition of the core-EP inverse.

From the above statement, we have the following theorem.

**Theorem 4.** Let  $A \in \mathbb{C}^{n \times n}$  with i = ind(A). Then X is the core-EP inverse of A if and only if  $X = A^D A X$  and  $A X = A^i (A^i)^{\dagger}$ .

**Corollary 1.** Let  $A \in \mathbb{C}^{n \times n}$  with 1 = ind(A). Then X is the core inverse of A if and only if  $X = A^{\#}AX$  and  $AX = AA^{\dagger}$ .

For any  $A \in \mathbb{C}^{n \times n}$ , either  $A^l = 0$  for some  $l \in \mathbb{N}$ , or  $A^l \neq 0$  for all positive integers. Moreover, if  $\operatorname{ind}(A) = k$ , then  $G_k B_k$  is nonsingular (see [5–7]), where  $A = B_1 G_1$  is a full rank factorization of A and  $G_l B_l = B_{l+1} G_{l+1}$  is a full rank factorization of  $G_l B_l$ ,  $l = 1, \dots, k - 1$ . When  $A^k \neq 0$ , then it can be written as

$$A^{k} = \prod_{l=1}^{k} B_{l} \prod_{l=1}^{k} G_{k+1-l}.$$
(3.2)

We have the following results, (see [5, Theorem 4] or [4, Theorem 7.8.2]):

$$\operatorname{ind}(A) = \begin{cases} k & \text{when } G_k B_k \text{ is nonsingular} \\ k+1 & \text{when } G_k B_k = 0. \end{cases}$$

and

$$A^{D} = \begin{cases} \prod_{l=1}^{k} B_{l} (G_{k} B_{k})^{-k-1} \prod_{l=1}^{k} G_{k+1-l} & \text{when } G_{k} B_{k} \text{ is nonsingular,} \\ 0 & \text{when } G_{k} B_{k} = 0. \end{cases}$$
(3.3)

In the sequel, we always assume that  $A^k \neq 0$ .

It is well-known that if A = EF is a full rank factorization of A, where r = rk(A),  $E \in \mathbb{C}^{n \times r}$  and  $F \in \mathbb{C}^{r \times n}$ , then (see [4, Theorem 1.3.2])

$$A^{\dagger} = F^* (FF^*)^{-1} (E^*E)^{-1} E^*.$$
(3.4)

*Remark* 4. The notations and results in above paragraph will be used many times in the sequel.

We will investigate the (i,m)-core inverse of a matrix  $A \in \mathbb{C}^{n \times n}$  by using Remark 4.

**Theorem 5.** Let 
$$A \in \mathbb{C}^{n \times n}$$
 with  $ind(A) = k$ . If  $i \ge k$ , then  $A_{i,m}^{\oplus} = A_{k,m}^{\oplus}$ 

*Proof.* Since ind(A) = k, we have  $\mathcal{R}(A^k) = \mathcal{R}(A^i)$  for any  $i \ge k$ , and therefore,  $A^k(A^k)^{\dagger} = A^i(A^i)^{\dagger}$ . Now, the conclusion follows from Theorem 3.

*Remark* 5. The proof of Theorem 5 also can be proved as follows. Since the proof in this remark will be used several times in the sequel, we write this proof here.

*Proof.* If A is nilpotent, then  $A^D = 0$ , hence by Theorem 3, one has  $A_{i,m}^{\oplus} = A_{k,m}^{\oplus} = 0$ . Therefore, we can assume that  $A^k \neq 0$ . By equality (3.2), we have

$$A^{k} = \prod_{l=1}^{k} B_{l} \prod_{l=1}^{k} G_{k+1-l}.$$
(3.5)

where  $A = B_1G_1$  is a full rank factorization of A and  $G_lB_l = B_{l+1}G_{l+1}$  is a full rank factorization of  $G_lB_l$ , l = 1, ..., k-1. Let  $M = \prod_{l=1}^k B_l$ ,  $N = \prod_{l=1}^k G_{k+1-l}$  and  $L = G_kB_k$ . Now, we will show that

$$A^{i} = \prod_{l=1}^{k} B_{l} (G_{k} B_{k})^{i-k} \prod_{l=1}^{k} G_{k+1-l} = ML^{i-k} N.$$

In fact,

$$A^{i} = \prod_{l=1}^{i} B_{l} \prod_{l=1}^{i} G_{k+1-l}$$
  
=  $B_{1} \cdots B_{i} G_{i} \cdots G_{1}$   
=  $B_{1} \cdots B_{i-1} (B_{i} G_{i}) G_{i-1} \cdots G_{1}$   
=  $B_{1} \cdots B_{i-1} (G_{i-1} B_{i-1}) G_{i-1} \cdots G_{1}$   
=  $B_{1} \cdots B_{i-2} (G_{i-2} B_{i-2})^{2} G_{i-2} \cdots G_{1}$   
=  $\cdots$   
=  $B_{1} \cdots B_{k} (G_{k} B_{k})^{i-k} G_{k} \cdots G_{1} = ML^{i-k} N.$  (3.6)

If we let  $M_1 = ML^{i-k}$ , then  $A^i = ML^{i-k}N = M_1N$  is a full rank factorization of  $A^i$  (see [7, p.183]). Thus

$$(A^{i})^{\dagger} = N^{*}(NN^{*})^{-1}(M_{1}^{*}M_{1})^{-1}M_{1}^{*}.$$
(3.7)

Note that  $NM = \prod_{l=1}^{k} G_{k+1-l} \prod_{l=1}^{k} B_l = L^k$ . By Theorem 3, (3.3) and (3.7) we have

$$A_{i,1}^{\oplus} = A^{D} A^{i} (A^{i})^{\dagger}$$

$$= ML^{-k-1} NML^{i-k} N(A^{i})^{\dagger}$$

$$= ML^{-k-1} NML^{i-k} NN^{*} (NN^{*})^{-1} (M_{1}^{*}M_{1})^{-1} M_{1}^{*}$$

$$= ML^{i-k-1} NN^{*} (NN^{*})^{-1} (M_{1}^{*}M_{1})^{-1} M_{1}^{*}$$

$$= ML^{i-k-1} (M_{1}^{*}M_{1})^{-1} M_{1}^{*}$$

$$= ML^{i-k-1} [(L^{i-k})^{*} M^{*} ML^{i-k}]^{-1} (L^{i-k})^{*} M^{*}$$

$$= ML^{i-k-1} L^{k-i} (M^{*}M)^{-1} [(L^{i-k})^{*}]^{-1} (L^{i-k})^{*} M^{*}$$

$$= ML^{-1} (M^{*}M)^{-1} M^{*}.$$
(3.8)

The last expression does not depend on i, then  $A_{i,1}^{\oplus} = A_{k,1}^{\oplus}$ . Thus, by Remark 2, we have  $A_{i,m}^{\oplus} = A^D A_{i,m-1}^{\oplus} = A^D (A^D A_{i,m-2}^{\oplus}) = (A^D)^2 A_{i,m-2}^{\oplus} = \dots = (A^D)^{m-1} A_{i,1}^{\oplus} = (A^D)^{m-1} A_{k,1}^{\oplus} = A_{k,m}^{\oplus}$ .

*Remark* 6. By Theorem 5, it is enough to investigate the i = ind(A) = k case, when we discuss the (i,m)-core inverse of a matrix  $A \in \mathbb{C}^{n \times n}$ . That is, the Theorem 5 is a key theorem.

**Theorem 6.** Let  $A \in \mathbb{C}^{n \times n}$  with ind(A) = k and  $k, m \in \mathbb{N}$ . If  $A = B_1G_1$  is a full rank factorization of A and  $G_lB_l = B_{l+1}G_{l+1}$  is a full rank factorization of  $G_lB_l$ ,

l = 1, ..., k-1, then  $A_{k,m}^{\oplus} = ML^{-m}M^{\dagger}$ , where  $M = \prod_{l=1}^{k} B_l$ ,  $N = \prod_{l=1}^{k} G_{k+1-l}$ and  $L = G_k B_k$ .

*Proof.* By the proof of Remark 5, we have  $A_{k,1}^{\oplus} = ML^{-1}(M^*M)^{-1}M^*$  and  $NM = L^k$ . Now, we will prove  $(A^D)^s A_{k,1}^{\oplus} = ML^{-s-1}(M^*M)^{-1}M^*$  for any  $s \in \mathbb{N}$ . By (3.3) we have  $A^D = \prod_{l=1}^k B_l (G_k B_k)^{-k-1} \prod_{l=1}^k G_{k+1-l} = ML^{-k-1}N$ . When s = 1, we have

$$A^{D}A_{k,1}^{\oplus} = ML^{-k-1}NML^{-1}(M^{*}M)^{-1}M^{*} = ML^{-k-1}(NM)L^{-1}(M^{*}M)^{-1}M^{*}$$
$$= ML^{-k-1}L^{k}L^{-1}(M^{*}M)^{-1}M^{*} = ML^{-2}(M^{*}M)^{-1}M^{*}.$$

Assume that  $(A^D)^{s-1}A_{k,1}^{\oplus} = ML^{-s}(M^*M)^{-1}M^*$ . Then

$$(A^{D})^{s} A_{k,1}^{\oplus} = A^{D} (A^{D})^{s-1} A_{k,1}^{\oplus} = A^{D} M L^{-s} (M^{*} M)^{-1} M^{*}$$
  
=  $M L^{-k-1} N M L^{-s} (M^{*} M)^{-1} M^{*}$   
=  $M L^{-k-1} L^{k} L^{-s} (M^{*} M)^{-1} M^{*}$   
=  $M L^{-s-1} (M^{*} M)^{-1} M^{*}$ .

Thus by Remark 2, we have

$$A_{k,m}^{\oplus} = (A^D)^{m-1} A_{k,1}^{\oplus} = ML^{-m} (M^*M)^{-1} M^* = ML^{-m} M^{\dagger}.$$

In the following theorem, we will give a canonical form for the  $\langle k, m \rangle$ -core inverse of a matrix  $A \in \mathbb{C}^{n \times n}$  by using the matrix decomposition in Theorem 1. We will also use the following simple fact: Let  $X \in \mathbb{C}^{n \times m}$  and  $\mathbf{b} \in \mathbb{C}^n$ . If  $\mathbf{y} \in \mathbb{C}^m$  satisfies  $X^*X\mathbf{y} = X^*\mathbf{b}$ , then  $XX^{\dagger}\mathbf{b} = X\mathbf{y}$ .

**Theorem 7.** Let  $A \in \mathbb{C}^{n \times n}$  have the form (2.1) with ind(A) = k and  $m \in \mathbb{N}$ . Then

$$A_{k,m}^{\oplus} = U \begin{bmatrix} (MC)_{k-1,m}^{\oplus} & 0\\ 0 & 0 \end{bmatrix} U^*.$$
(3.9)

*Proof.* Let r be the rank of A. By Theorem 3 we have

$$A_{k,m}^{\oplus} = (A^D)^m A^k (A^k)^{\dagger}.$$
 (3.10)

Since A has the form given in Theorem 1 we have

$$A^{k} = U \begin{bmatrix} (MC)^{k} & (MC)^{k-1}MS \\ 0 & 0 \end{bmatrix} U^{*}.$$
 (3.11)

Let  $\mathbf{b} \in \mathbb{C}^n$  be arbitrary and let us decompose  $\mathbf{b} = U\begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{bmatrix}$ , where  $\mathbf{b}_1 \in \mathbb{C}^r$ . Let  $\mathbf{x}_0 \in \mathbb{C}^n$  satisfy  $(A^k)^* A^k \mathbf{x}_0 = (A^k)^* \mathbf{b}$  [this  $\mathbf{x}_0$  always exists because the normal

equations always have a solution]. We can decompose  $\mathbf{x}_0$  by writing  $\mathbf{x}_0 = U\begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2 \end{bmatrix}$ , where  $\mathbf{x}_1 \in \mathbb{C}^r$ . Let us denote  $N = (MC)^{k-1}M$ . Using (3.11),

$$U\begin{bmatrix} CN^* & 0\\ S^*N^* & 0\end{bmatrix}\begin{bmatrix} NC & NS\\ 0 & 0\end{bmatrix}\begin{bmatrix} \mathbf{x}_1\\ \mathbf{x}_2\end{bmatrix} = U\begin{bmatrix} CN^* & 0\\ S^*N^* & 0\end{bmatrix}\begin{bmatrix} \mathbf{b}_1\\ \mathbf{b}_2\end{bmatrix}.$$

Therefore,

$$CN^*N(C\mathbf{x}_1 + S\mathbf{x}_2) = CN^*\mathbf{b}_1$$
 and  $S^*N^*N(C\mathbf{x}_1 + S\mathbf{x}_2) = S^*N^*\mathbf{b}_1$ .

Premultiplying the first equality by *C* and the second equality by *S* and after, adding them, we get  $N^*N(C\mathbf{x}_1 + S\mathbf{x}_2) = N^*\mathbf{b}_1$ , and hence,  $N(C\mathbf{x}_1 + S\mathbf{x}_2) = NN^{\dagger}\mathbf{b}_1$ . Now,

$$A^{k}(A^{k})^{\dagger}\mathbf{b} = A^{k}\mathbf{x}_{0} = U\begin{bmatrix} NC & NS \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}$$
$$= U\begin{bmatrix} NC\mathbf{x}_{1} + NS\mathbf{x}_{2} \\ \mathbf{0} \end{bmatrix} = U\begin{bmatrix} NN^{\dagger}\mathbf{b}_{1} \\ \mathbf{0} \end{bmatrix} = U\begin{bmatrix} NN^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*}\mathbf{b}.$$

Since **b** is arbitrary,

$$A^{k}(A^{k})^{\dagger} = U \begin{bmatrix} NN^{\dagger} & 0\\ 0 & 0 \end{bmatrix} U^{*}.$$

Now we will prove  $NN^{\dagger} = (MC)^{k-1}[(MC)^{k-1}]^{\dagger}$ . Recall that we have  $N = (MC)^{k-1}M$ , and so,  $\mathcal{R}(N) \subseteq \mathcal{R}((MC)^{k-1})$ . Since M is nonsingular,  $\operatorname{rk}(N) = \operatorname{rk}((MC)^{k-1})$ , and thus,  $\mathcal{R}(N) = \mathcal{R}((MC)^{k-1})$ . Since  $(MC)^{k-1}[(MC)^{k-1}]^{\dagger}$  and  $NN^{\dagger}$  are the orthogonal projectors onto  $\mathcal{R}((MC)^{k-1})$  and  $\mathcal{R}(N)$ , respectively, we get  $NN^{\dagger} = (MC)^{k-1}[(MC)^{k-1}]^{\dagger}$ .

By (2.2) we have

$$A^{D} = U \begin{bmatrix} (MC)^{D} & [(MC)^{D}]^{2}MS \\ 0 & 0 \end{bmatrix} U^{*}.$$
 (3.12)

Thus, we have

$$(A^{D})^{m} = U \begin{bmatrix} (MC)^{D} \end{bmatrix}^{m} & [(MC)^{D}]^{m+1}MS \\ 0 & 0 \end{bmatrix} U^{*}$$

Since ind(A) = k, we have  $A^D A^{k+1} = A^k$ . By using the above representations of  $A^D$  and  $A^k$  given in (3.11) and (3.12), respectively,

$$\begin{bmatrix} (MC)^{D} & [(MC)^{D}]^{2}MS \\ 0 & 0 \end{bmatrix} \begin{bmatrix} (MC)^{k+1} & (MC)^{k}MS \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} (MC)^{k} & (MC)^{k-1}MS \\ 0 & 0 \end{bmatrix}.$$

Therefore,

$$(MC)^{D} (MC)^{k} M[C \mid S] = (MC)^{k-1} M[C \mid S].$$
(3.13)

Have in mind that we have  $C^2 + SS^* = I_r$ . Thus, postmultiplying (3.13) by  $\begin{bmatrix} C\\S^* \end{bmatrix}$  gives us  $(MC)^D (MC)^k M = (MC)^{k-1} M$  and from the nonsningularity of M we obtain  $(MC)^D (MC)^k = (MC)^{k-1}$ , and so,  $\operatorname{ind}(MC) \le k-1$ . Therefore we have

$$\begin{aligned} A_{k,m}^{\oplus} &= (A^D)^m A^k (A^k)^{\dagger} \\ &= U \begin{bmatrix} [(MC)^D]^m & [(MC)^D]^{m+1} MS \\ 0 & 0 \end{bmatrix} \begin{bmatrix} (MC)^{k-1} ((MC)^{k-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^* \\ &= U \begin{bmatrix} [(MC)^D]^m (MC)^{k-1} ((MC)^{k-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^* \\ &= U \begin{bmatrix} (MC)_{k-1,m}^{\oplus} & 0 \\ 0 & 0 \end{bmatrix} U^*. \end{aligned}$$

*Remark* 7. If we use the decomposition of Hartwig and Spindelböck in [8, Corollary 6], then an expression of the  $\langle k, m \rangle$ -core inverse of A is

$$A_{k,m}^{\oplus} = U \begin{bmatrix} (\Sigma K)_{k-1,m}^{\oplus} & 0\\ 0 & 0 \end{bmatrix} U^*,$$

which is similar to the expression of  $A_{k,m}^{\oplus}$  in Theorem 7. Since the proof of this result can be proved as the proof of Theorem 7, we omit this proof.

Let  $A \in \mathbb{C}^{n \times n}$  with ind(A) = k. The Jordan Canonical form of A is  $P^{-1}AP = J$ , where  $P \in \mathbb{C}^{n \times n}$  is nonsingular and  $J \in \mathbb{C}^{n \times n}$  is a block diagonal matrix composed of Jordan blocks. In the following theorem, we will compute the  $\langle k, m \rangle$ -core inverse by using the Jordan Canonical form of A.

**Theorem 8.** Let  $A \in \mathbb{C}^{n \times n}$  with  $\operatorname{ind}(A) = k$ , then  $A_{k,m}^{\oplus} = P_1 D^{-m} P_1^{\dagger}$ , where  $A = P \begin{bmatrix} D & 0 \\ 0 & N \end{bmatrix} P^{-1}$  with  $D \in \mathbb{C}^{r \times r}$  is nonsingular, N is nilpotent and  $P = [P_1 | P_2]$  with  $P_1 \in \mathbb{C}^{n \times r}$ .

*Proof.* The Jordan Canonical form of A is  $P^{-1}AP = J$ , where  $P \in \mathbb{C}^{n \times n}$  is nonsingular and  $J \in \mathbb{C}^{n \times n}$  is a block diagonal matrix. Rearrange the elements of J such that  $A = P \begin{bmatrix} D & 0 \\ 0 & N \end{bmatrix} P^{-1}$ , where D is nonsingular and N is nilpotent. It is well-known that  $A^D = P \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$  and  $A^k = P \begin{bmatrix} D^k & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$ . If we let  $P = [P_1 | P_2]$  and  $P^{-1} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix}$ , then

$$(A^{D})^{m}A^{k} = [P_{1} | P_{2}] \begin{bmatrix} (D^{-1})^{m} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} D^{k} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q_{1}\\ Q_{2} \end{bmatrix} = P_{1}D^{k-m}Q_{1}.$$

Observe that  $A^k = (P_1 D^k) Q_1$  is a full rank factorization of  $A^k$ . Hence by (3.4) we have

$$\begin{split} (A^k)^{\dagger} &= (P_1 D^k Q_1)^{\dagger} \\ &= Q_1^* (Q_1 Q_1^*)^{-1} [(P_1 D^k)^* P_1 D^k]^{-1} (P_1 D^k)^* \\ &= Q_1^* (Q_1 Q_1^*)^{-1} D^{-k} (P_1^* P_1)^{-1} [(D^k)^*]^{-1} (D^k)^* P_1^* \\ &= Q_1^* (Q_1 Q_1^*)^{-1} D^{-k} (P_1^* P_1)^{-1} P_1^* \\ &= Q_1^{\dagger} D^{-k} P_1^{\dagger}. \end{split}$$

By Theorem 3, we have  $A_{k,m}^{\oplus} = (A^D)^m A^k (A^k)^{\dagger}$ . Thus we have

$$A_{k,m}^{\oplus} = (A^{D})^{m} A^{k} (A^{k})^{\dagger} = P_{1} D^{k-m} Q_{1} Q_{1}^{\dagger} D^{-k} P_{1}^{\dagger}$$
  
=  $P_{1} D^{k-m} Q_{1} Q_{1}^{*} (Q_{1} Q_{1}^{*})^{-1} D^{-k} P_{1}^{\dagger} = P_{1} D^{-m} D^{k} D^{-k} P_{1}^{\dagger} = P_{1} D^{-m} P_{1}^{\dagger}.$ 

**Proposition 1.** Let  $A \in \mathbb{C}^{n \times n}$ . If  $i \ge ind(A)$ , then  $A^m A_{i,m}^{\oplus}$  is the projector onto  $\mathcal{R}(A^i)$  along  $\mathcal{R}(A^i)^{\perp}$ .

Proof. It is trivial.

In the following proposition, we will investigate some properties of the (i, m)-core inverse.

**Proposition 2.** Let 
$$A \in \mathbb{C}^{n \times n}$$
,  $m, i \in \mathbb{N}$ . If  $i \ge ind(A)$ , then

(1)  $A_{i,m}^{\oplus}$  is a {2,3}-inverse of  $A^m$ ; (2)  $A_{i,m}^{\oplus} = (A^D)^m P_{A^i}$ ; (3)  $(A_{i,m}^{\oplus})^n = (A^D)^{m(n-1)} A_{i,m}^{\oplus} = (A^D)^{mn} P_{A^i}$ ; (4)  $A^i A_{i,m}^{\oplus} = A_{i,m}^{\oplus} A^i$  if and only if  $\mathcal{R}(A^i)^{\perp} \subseteq \mathcal{N}(A^i)$ ; (5)  $A_{i,m}^{\oplus} = A$  implies that A is EP.

*Proof.* (1). By Theorem 3 we have  $A_{i,m}^{\oplus} = (A^D)^m A^i (A^i)^{\dagger}$ , thus

$$\begin{split} A^{\oplus}_{i,m} A^m A^{\oplus}_{i,m} &= (A^D)^m A^i (A^i)^{\dagger} A^m (A^D)^m A^i (A^i)^{\dagger} \\ &= (A^D)^m A^i (A^i)^{\dagger} A^i A^m (A^D)^m (A^i)^{\dagger} \\ &= (A^D)^m A^i A^m (A^D)^m (A^i)^{\dagger} = (A^D)^m A^m (A^D)^m A^i (A^i)^{\dagger} \\ &= A^D A (A^D)^m A^i (A^i)^{\dagger} = (A^D)^m A^i (A^i)^{\dagger} = A^{\oplus}_{i,m}. \end{split}$$

Thus  $A_{i,m}^{\oplus}$  is a {2,3}-inverse of  $A^m$  in view of  $A^m A_{i,m}^{\oplus} = A^i (A^i)^{\dagger}$ . (2) is trivial.

(3). By

$$(A_{i,m}^{\oplus})^{n} = (A^{D})^{m} A^{i} (A^{i})^{\dagger} (A^{D})^{m} A^{i} (A^{i})^{\dagger} (A_{i,m}^{\oplus})^{n-2}$$
  
=  $(A^{D})^{m} (A^{D})^{m} A^{i} (A^{i})^{\dagger} (A_{i,m}^{\oplus})^{n-2}$   
=  $(A^{D})^{m} A_{i,m}^{\oplus} (A_{i,m}^{\oplus})^{n-2} = (A^{D})^{m} (A_{i,m}^{\oplus})^{n-1}$ 

it is easy to check (3).

(4). By 
$$\mathcal{R}[(I_n - A^i (A^i)^{\dagger}] = \mathcal{N}[(A^i)^{\dagger}]$$
, we have  
 $A^i A^{\oplus}_{i,m} = A^{\oplus}_{i,m} A^i \Leftrightarrow A^i (A^D)^m A^i (A^i)^{\dagger} = (A^D)^m A^i (A^i)^{\dagger} A^i$   
 $\Leftrightarrow A^i (A^D)^m A^i (A^i)^{\dagger} = (A^D)^m A^i$   
 $\Leftrightarrow A^i (A^D)^m (I_n - A^i (A^i)^{\dagger}) = 0$   
 $\Leftrightarrow \mathcal{R}[I_n - A^i (A^i)^{\dagger}] \subseteq \mathcal{N}[A^i (A^D)^m]$   
 $\Leftrightarrow \mathcal{N}[(A^i)^{\dagger}] \subseteq \mathcal{N}[(A^D)^m]$   
 $\Leftrightarrow \mathcal{N}[(A^i)^*] \subseteq \mathcal{N}[(A^D)^m]$   
 $\Leftrightarrow \mathcal{R}(A^i)^{\perp} \subseteq \mathcal{N}[(A^D)^m]$   
 $\Leftrightarrow \mathcal{R}(A^i)^{\perp} \subseteq \mathcal{N}[A^i].$ 

(5). Let *A* be written in the form (2.1). We have  $A_{i,m}^{\oplus} = U \begin{bmatrix} (MC)_{i-1,m}^{\oplus} & 0 \\ 0 & 0 \end{bmatrix} U^*$  by Theorem 7. Thus,  $A_{i,m}^{\oplus} = A$  implies MS = 0. From the nonsingularity of *M*, we have S = 0, which is equivalent to say that *A* is EP in view of [2, Theorem 3.7].  $\Box$ 

# 4. (j,m)-CORE INVERSE

Let us start this section by introducing the definition of the (j,m)-core inverse.

**Definition 3.** Let  $A \in \mathbb{C}^{n \times n}$  and  $m, j \in \mathbb{N}$ . A matrix  $X \in \mathbb{C}^{n \times n}$  is called a (j,m)-core inverse of A, if it satisfies

$$X = A^D A X \quad \text{and} \quad A^m X = A^m (A^j)^{\dagger}. \tag{4.1}$$

**Theorem 9.** Let  $A \in \mathbb{C}^{n \times n}$ . If the system in (4.1) is consistent, then the solution is unique.

*Proof.* Assume that X satisfies (4.1), that is  $X = A^D A X$  and  $A^m X = A^m (A^j)^{\dagger}$ . Then  $X = A^D A X = (A^D)^m A^m X = (A^D)^m A^m (A^j)^{\dagger} = A^D A (A^j)^{\dagger}$ . Thus X is unique.

By Theorem 9 if X exists, then it is unique and denoted by  $A_{i.m}^{\ominus}$ .

**Theorem 10.** Let  $A \in \mathbb{C}^{n \times n}$  and  $m, j \in \mathbb{N}$ .

(1) If  $m \ge ind(A)$ , then the system in (4.1) is consistent and the solution is  $X = A^D A(A^j)^{\dagger}$ .

(2) If the system in (4.1) is consistent, then  $ind(A) \le max\{j,m\}$ .

*Proof.* (1). Let  $X = A^D A(A^j)^{\dagger}$ . We have  $A^D A X = A^D A A^D A(A^j)^{\dagger} = A^D A(A^j)^{\dagger} = X$  and  $A^m X = A^m A^D A(A^j)^{\dagger} = A^D A A^m (A^j)^{\dagger} = A^m (A^j)^{\dagger}$ .

(2). If the system in (4.1) is consistent, then exits  $X_0 \in \mathbb{C}^{n \times n}$  such that  $X_0 = A^D A X_0 = (A^D)^m A^m X_0 = (A^D)^m A^m (A^j)^\dagger = A^D A (A^j)^\dagger$  and  $A^m (A^j)^\dagger = A^m X_0 = A^m A^D A (A^j)^\dagger = A^m (A^D)^j A^j (A^j)^\dagger$ . Thus

$$A^{m}(A^{j})^{\dagger}A^{j} = A^{m}(A^{D})^{j}A^{j}(A^{j})^{\dagger}A^{j} = A^{m}(A^{D})^{j}A^{j} = A^{m}A^{D}A.$$

If  $m \ge j$ , then  $A^m A^D A = A^m (A^j)^{\dagger} A^j = A^{m-j} A^j (A^j)^{\dagger} A^j = A^{m-j} A^j = A^m$ . That is,  $\operatorname{ind}(A) \le m$ . If j > m, then  $A^j = A^j (A^j)^{\dagger} A^j = A^{j-m} A^m (A^j)^{\dagger} A^j = A^{j-m} A^m A^D A = A^j A^D A$ . That is,  $\operatorname{ind}(A) \le j$ . Thus,  $\operatorname{ind}(A) \le \max\{j, m\}$ .  $\Box$ 

*Example* 2. We will give an example that shows if m < ind(A), then the system in (4.1) is not consistent. Let A be the same matrix in Example 1. It is easy to get ind(A) = 2 and  $A^D = 0$ . Let m = j = 1 and suppose that X is the solution of system in (4.1), then  $X = A^D A X = 0$ , which gives  $AA^{\dagger} = AX = 0$ , thus  $A = AA^{\dagger}A = 0$ , this is a contradiction.

*Example* 3. The converse of Theorem 10 (1) is not true. Let m = 1 and j = 3. If we let

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

then ind(A) = 3 and  $A^3 = 0$ . Hence X = 0 is a solution of (4.1), but m < ind(A).

*Example* 4. If  $ind(A) \le max\{j, m\}$ , then the system in (4.1) may be not consistent. If we let

$$A = \begin{bmatrix} 2 & 2 & 1 \\ -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

then

578

$$A^{3} = A^{2} = \begin{bmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

 $A^D = A^2$  and ind(A) = 2. Let m = 1 and j = 2, then  $ind(A) \le max\{j, m\}$ . It is easy to check that

$$(A^2)^{\dagger} = \frac{1}{15} \begin{bmatrix} 2 & -1 & 0 \\ 2 & -1 & 0 \\ 2 & -1 & 0 \end{bmatrix}.$$

If the system in (4.1) has a solution  $X_0$ , then  $X_0 = A^D A X_0 = A^D A (A^2)^{\dagger}$  and  $A(A^2)^{\dagger} = A X_0 = A A^D A (A^2)^{\dagger} = A^4 (A^2)^{\dagger} = A^2 (A^2)^{\dagger}$  would hold. But

$$A(A^{2})^{\dagger} = \frac{1}{15} \begin{bmatrix} 10 & -5 & 0 \\ -4 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \neq \frac{1}{15} \begin{bmatrix} 12 & -6 & 0 \\ -6 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix} = A^{2} (A^{2})^{\dagger}.$$

Thus, the system in (4.1) is not consistent.

*Remark* 8. If  $m \ge \text{ind}(A) = k$ , it is not difficult to see that  $A_{j,m}^{\ominus} = A_{j,m+1}^{\ominus}$ . That is to say, the (j,m)-core inverse of A coincides with the (j,m+1)-core inverse of A. Thus, in the sequel, we only discuss the m = ind(A) case.

**Theorem 11.** Let  $A, X \in \mathbb{C}^{n \times n}$ ,  $k, j \in \mathbb{N}$ . If ind(A) = k and X is the (j,k)-core inverse of A, then we have  $X^j A^j X^j = (A^D)^{j(j-1)} X^j$  and  $XA^j = A^D A$ .

*Proof.* By the definition of the (j,k)-core inverse, we have  $X = A^D A X$  and  $A^k X = A^k (A^j)^{\dagger}$ . By  $X = A^D A (A^j)^{\dagger}$ , it is easy to check that  $X^{n+1} = (A^D)^j X^n$  for arbitrary  $n \in \mathbb{N}$ , which gives that  $X^j = (A^D)^{j(j-1)} X$ .

$$XA^{j} = A^{D}A(A^{j})^{\dagger}A^{j} = (A^{D})^{j}A^{j}(A^{j})^{\dagger}A^{j} = (A^{D})^{j}A^{j} = A^{D}A;$$
  
$$X^{j}A^{j}X^{j} = (A^{D})^{j(j-1)}XA^{j}X^{j} = (A^{D})^{j(j-1)}A^{D}AX^{j} = (A^{D})^{j(j-1)}X^{j}.$$

**Corollary 2.** Let  $A, X \in \mathbb{C}^{n \times n}$  and ind(A) = k. If X is the (1,k)-core inverse of A, then we have XAX = X and  $XA = A^D A$ .

The (j,m)-core inverse is a generalization of the core inverse and the DMP-inverse in view of Theorem 11.

*Remark* 9. When j = m = 1 = ind(A), the equations in (4.1) are equivalent to XAX = X,  $XA = A^{\#}A$ , and  $AX = AA^{\dagger}$ . Thus  $AX = AA^{\dagger}$  implies that  $(AX)^* = AX$ ;  $XA = A^{\#}A$  gives that  $XA^2 = A$  and AXA = A; and  $X = XAX = A^{\#}AX = AA^{\#}X$ , which means that  $\mathcal{R}(X) \subseteq \mathcal{R}(A)$ , then X = AY for some  $Y \in \mathbb{C}^{n \times n}$ , thus  $X = AY = AXAY = AX^2$ . Therefore, we have  $A^{\oplus} = X$  by Lemma 1. In a word, the (1, 1)-core inverse coincides with the usual core inverse.

*Remark* 10. If we let j = 1 and m = ind(A), then the equations in (4.1) are equivalent to XAX = X,  $XA = A^DA$ , and  $A^kX = A^kA^{\dagger}$  by Theorem 11. Thus (1,k)-core inverse coincides with the DMP-inverse.

From Remark 10, Theorem 11 and the definition of the (j,k)-core inverse, we have the following theorem, which says that the conditions XAX = X, and  $XA = A^D A$  in the definition of the DMP-inverse can be replaced by  $X = A^D A X$ .

**Theorem 12.** Let  $A \in \mathbb{C}^{n \times n}$  with k = ind(A). Then  $X \in \mathbb{C}^{n \times n}$  is the DMP-inverse of A if and only if  $X = A^D A X$  and  $A^k X = A^k A^{\dagger}$ .

In the following theorem, we will give a canonical form for the (j,k)-core inverse of a matrix  $A \in \mathbb{C}^{n \times n}$  by using the matrix decomposition in Theorem 1.

**Theorem 13.** Let  $A \in \mathbb{C}^{n \times n}$  have the form (2.1) with ind(A) = k and  $j \in \mathbb{N}$ . Then

$$A_{j,k}^{\Theta} = U \begin{bmatrix} (MC)^D (MC)_{j-1,k}^{\Theta} & 0\\ 0 & 0 \end{bmatrix} U^*.$$

*Proof.* By Theorem 10 and the idempotency of  $A^D A$  we have

$$A_{j,k}^{\Theta} = A^D A (A^j)^{\dagger} = (A^D)^j A^j (A^j)^{\dagger}.$$
 (4.2)

From the proof of Theorem 7, we have

$$A^{j}(A^{j})^{\dagger} = U \begin{bmatrix} (MC)^{j-1}((MC)^{j-1})^{\dagger} & 0\\ 0 & 0 \end{bmatrix} U^{*}.$$
 (4.3)

By (2.2) we have

$$(A^{D})^{j} = U \begin{bmatrix} [(MC)^{D}]^{j} & [(MC)^{D}]^{j+1}MS \\ 0 & 0 \end{bmatrix} U^{*}.$$
 (4.4)

By the proof of Theorem 7, we have  $ind(MC) \le k - 1 < k$ . From (4.2), (4.3) and (4.4), we have

$$\begin{split} A_{j,k}^{\Theta} &= (A^{D})^{j} A^{j} (A^{j})^{\dagger} \\ &= U \begin{bmatrix} [(MC)^{D}]^{j} & [(MC)^{D}]^{j+1} MS \\ 0 & 0 \end{bmatrix} \begin{bmatrix} (MC)^{j-1} ((MC)^{j-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*} \\ &= U \begin{bmatrix} [(MC)^{D}]^{j} (MC)^{j-1} ((MC)^{j-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*} \\ &= U \begin{bmatrix} (MC)^{D} [(MC)^{D}]^{j-1} (MC)^{j-1} ((MC)^{j-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*} \\ &= U \begin{bmatrix} (MC)^{D} (MC)^{D} MC ((MC)^{j-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*} \\ &= U \begin{bmatrix} (MC)^{D} (MC)^{\Theta} MC ((MC)^{j-1})^{\dagger} & 0 \\ 0 & 0 \end{bmatrix} U^{*} . \end{split}$$

*Remark* 11. If we use the decomposition of Hartwig and Spindelböck in [8, Corollary 6], then an expression of the (j,k)-core inverse of A is

$$A_{j,k}^{\Theta} = U \begin{bmatrix} (\Sigma K)^D (\Sigma K)_{j-1,k}^{\Theta} & 0\\ 0 & 0 \end{bmatrix} U^*,$$

which is similar to the expression of  $A_{j,k}^{\ominus}$  in Theorem 13. Since the proof of this result can be proved like the proof of Theorem 13, we omit this proof.

**Theorem 14.** Let  $A \in \mathbb{C}^{n \times n}$  and ind(A) = k. If  $(A^k X^k)^* = A^k X^k$ ,  $AX^{k+1} = X^k$  and  $XA^{k+1} = A^k$ , then A is (k,k)-core invertible and  $A_{k,k}^{\ominus} = X^k$ .

*Proof.* By Lemma 2 and Lemma 3, we have  $A^k X^k A^k = A^k$ ,  $X^k A^k X^k = X^k$ ,  $A^k = X^k A^{2k}$ , and  $A^D = X^{k+1} A^k$ . Equalities  $(A^k X^k)^* = A^k X^k$  and  $A^k X^k A^k = A^k$  imply that  $X^k$  is a {1,3}-inverse of  $A^k$ . From  $A^D = X^{k+1} A^k$ , we can obtain  $(A^D)^k = X^{k-1} A^D$  by induction. Thus

$$A_{k,k}^{\ominus} = A^{D} A (A^{k})^{\dagger} = (A^{D})^{k} A^{k} (A^{k})^{\dagger} = (A^{D})^{k} A^{k} (A^{k})^{(1,3)}$$
  
=  $(A^{D})^{k} A^{k} X^{k} = (X^{k+1} A^{k})^{k} A^{k} X^{k} = X^{k-1} X^{k+1} A^{k} A^{k} X^{k}$   
=  $X^{2k} A^{2k} X^{k} = X^{k} (X^{k} A^{2k}) X^{k} = X^{k} A^{k} X^{k} = X^{k}.$ 

**Proposition 3.** Let  $A \in \mathbb{C}^{n \times n}$  be a matrix with  $j \ge \operatorname{ind}(A) = k$ . If A is (j,k)-core invertible, then  $A^j A_{j,k}^{\ominus}$  is the projector onto  $\mathcal{R}(A^j)$  along  $\mathcal{R}(A^j)^{\perp}$ .

*Proof.* It is trivial.

In the following proposition, we will investigate some properties of the (j,k)-core inverse.

**Proposition 4.** Let  $A \in \mathbb{C}^{n \times n}$  with  $j \ge ind(A) = k$ . If A is (j,k)-core invertible, then

(1) 
$$A_{j,k}^{\ominus}$$
 is a {1,2,3}-inverse of  $A^{j}$ ;  
(2)  $A_{j,k}^{\ominus} = (A^{D})^{j} P_{A^{j}}$ ;  
(3)  $(A_{j,k}^{\ominus})^{n} = \begin{cases} \left[ (A^{D})^{j} (A^{j})^{\dagger} \right]^{n/2} & \text{if } n \text{ is even,} \\ A^{j} \left[ (A^{D})^{j} (A^{j})^{\dagger} \right]^{(n+1)/2} & \text{if } n \text{ is odd.} \end{cases}$   
(4)  $A_{j,k}^{\ominus} A^{D} = (A^{D})^{j+1}$ ;  
(5)  $A^{j} A_{j,k}^{\ominus} = A_{j,k}^{\ominus} A^{j} \text{ if and only if } \mathcal{R}(A^{j})^{\perp} \subseteq \mathcal{N}(A^{j})$ ;  
(6)  $A_{j,k}^{\ominus} = A \text{ implies that } A \text{ is } EP$ .

Proof. (1). By Theorem 10 we have  $A_{j,k}^{\ominus} = A^D A (A^j)^{\dagger} = (A^D)^j A^j (A^j)^{\dagger}$ , thus  $A^j A_{j,k}^{\ominus} A^j = A^j (A^D)^j A^j (A^j)^{\dagger} A^j = A^j (A^D)^j A^j = A^j A^D A = A^j$ ;  $A_{j,k}^{\ominus} A^j A_{j,k}^{\ominus} = (A^D)^j A^j (A^j)^{\dagger} A^j A_{j,k}^{\ominus} = A^D A A_{j,k}^{\ominus}$   $= A^D A A^D A (A^j)^{\dagger} = A^D A (A^j)^{\dagger} = A_{j,k}^{\ominus}$ ;  $A^j A_{j,k}^{\ominus} = A^j (A^D)^j A^j (A^j)^{\dagger} = A^j (A^j)^{\dagger}$ .

(2) is trivial.

(3). By  $(A_{j,k}^{\ominus})^2 = (A^D)^j A^j (A^j)^{\dagger} (A^D)^j A^j (A^j)^{\dagger} = (A^D)^j (A^j)^{\dagger}$  and induction it is easy to check (3). (4).  $A_{j,k}^{\ominus} A^D = (A^D)^j A^j (A^j)^{\dagger} A^D = (A^D)^j A^j (A^j)^{\dagger} (A^D)^j A^j A^D = (A^D)^{j+1}$ . (5). By  $\mathcal{R} [I_n - A^j (A^j)^{\dagger}] = \mathcal{N} [(A^j)^{\dagger}]$  and  $\mathcal{N} (A^D A) = \mathcal{N} (A^D)$ , we have  $A^j A_{j,k}^{\ominus} = A_{j,k}^{\ominus} A^j \Leftrightarrow A^j (A^D)^j A^j (A^j)^{\dagger} = (A^D)^j A^j (A^j)^{\dagger} A^j$   $\Leftrightarrow A^j (A^D)^j A^j (A^j)^{\dagger} = (A^D)^j A^j$   $\Leftrightarrow A^j (A^D)^j [I_n - A^j (A^j)^{\dagger}] = 0$   $\Leftrightarrow \mathcal{R} [I_n - A^j (A^j)^{\dagger}] \subseteq \mathcal{N} (A^D A)$   $\Leftrightarrow \mathcal{N} [(A^j)^{\dagger}] \subseteq \mathcal{N} (A^D A)$  $\Leftrightarrow \mathcal{N} [(A^j)^{\dagger}] \subseteq \mathcal{N} (A^D)$ 

(6). Let A be written in the form (2.1). We have

582

$$A_{j,k}^{\Theta} = U \begin{bmatrix} (MC)^D (MC)_{j-1,k}^{\Theta} & 0\\ 0 & 0 \end{bmatrix} U^*$$

by Theorem 13. Thus,  $A_{j,k}^{\ominus} = A$  implies MS = 0. From the nonsingularity of M, we have S = 0, which is equivalent to say that A is EP in view of [2, Theorem 3.7].  $\Box$ 

In the following proposition, we shall give the the relationship between the (j,k)-core inverse and DMP-inverse and core-EP inverse.

**Proposition 5.** Let  $A \in \mathbb{C}^{n \times n}$  with ind(A) = k. Then

$$A_{k,k}^{\ominus} = A^{D,\dagger} (A^D)^{k-1} A A^{\textcircled{}}.$$

*Proof.* We have that  $A^k(A^k)^{\dagger} = AA^{\oplus}$  by Lemma 5 and  $A^{D,\dagger} = A^D AA^{\dagger}$ . Thus

$$\begin{aligned} A_{k,k}^{\ominus} &= A^{D} A (A^{k})^{\dagger} = (A^{D})^{k} A^{k} (A^{k})^{\dagger} = A^{D} A^{k} (A^{D})^{k-1} (A^{k})^{\dagger} \\ &= A^{D} A A^{\dagger} A^{k} (A^{D})^{k-1} (A^{k})^{\dagger} = A^{D,\dagger} (A^{D})^{k-1} A^{k} (A^{k})^{\dagger} \\ &= A^{D,\dagger} (A^{D})^{k-1} A A^{\textcircled{}}. \end{aligned}$$

In the following theorem, we will give a relationship between the (i,m)-core inverse and (j,m)-core inverse.

**Theorem 15.** Let 
$$A \in \mathbb{C}^{n \times n}$$
 with  $ind(A) = k$ . Then  $A_{k,m}^{\oplus} = A_{m,k}^{\ominus}$  for any  $m \ge k$ .

*Proof.* By Theorem 10, we have  $A_{m,k}^{\ominus} = A^D A (A^m)^{\dagger} = (A^D)^k A^k (A^m)^{\dagger}$ . By the proof of Remark 5, we have  $A^k = MN$  and  $NM = L^k$ , where  $M = \prod_{l=1}^k B_l$ ,  $N = \prod_{l=1}^k G_{k+1-l}$  and  $L = G_k B_k$ . It is easy to see that  $(A^D)^s = ML^{-k-s}N$  for any  $s \in \mathbb{N}$  by  $NM = L^k$ . Thus  $(A^D)^k = ML^{-2k}N$  and

$$(A^D)^k A^k = ML^{-2k} NMN = ML^{-2k} L^k N = ML^{-k} N.$$

By the proof of Remark 5, we have  $A^m = ML^{m-k}N = M_1N$  is a full rank factorization of  $A^m$ , where  $M_1 = ML^{m-k}$  and

$$(A^m)^{\dagger} = N^* (NN^*)^{-1} (M_1^*M_1)^{-1} (M_1)^*$$

By Theorem 6, we have  $A_{k,m}^{\oplus} = ML^{-m}M^{\dagger}$ . In the following steps, we will show that  $A_{m,k}^{\ominus} = ML^{-m}M^{\dagger}$ . From  $A_{m,k}^{\ominus} = (A^D)^k A^k (A^m)^{\dagger}$ , we have

$$\begin{aligned} A_{k,m}^{\ominus} &= (A^{D})^{k} A^{k} (A^{m})^{\dagger} = M L^{-k} N N^{*} (N N^{*})^{-1} (M_{1}^{*} M_{1})^{-1} (M_{1})^{*} \\ &= M L^{-k} (M_{1}^{*} M_{1})^{-1} (M_{1})^{*} = M L^{-k} [(L^{m-k})^{*} M^{*} M L^{m-k}]^{-1} (L^{m-k})^{*} M^{*} \\ &= M L^{-k} L^{k-m} (M^{*} M)^{-1} [(L^{m-k})^{*}]^{-1} (L^{m-k})^{*} M^{*} \\ &= M L^{-m} (M^{*} M)^{-1} M^{*} = M L^{-m} M^{\dagger}. \end{aligned}$$

**Theorem 16.** Let  $A \in \mathbb{C}^{n \times n}$  with  $i \ge \operatorname{ind}(A) = k$ , then  $A_{i,k}^{\ominus} = P_1 D^{-i} P_1^{\dagger}$ , where  $A = P \begin{bmatrix} D & 0 \\ 0 & N \end{bmatrix} P^{-1}$  with  $D \in \mathbb{C}^{r \times r}$  is nonsingular, N is nilpotent and  $P = [P_1 | P_2]$  with  $P_1 \in \mathbb{C}^{n \times r}$ .

*Proof.* It is easy to see that by Theorem 8 and Theorem 15.

### ACKNOWLEDGEMENT

This research is supported by the National Natural Science Foundation of China (NO.11771076 and No. 11471186). The first author is grateful to China Scholarship Council for giving him a purse for his further study in Universitat Politècnica de València, Spain.

#### REFERENCES

- O. M. Baksalary and G. Trenkler, "Core inverse of matrices," *Linear Multilinear Algebra*, vol. 58, no. 6, pp. 681–697, 2010, doi: 10.1080/03081080902778222.
- [2] J. Benítez, "A new decomposition for square matrices," *Electron. J. Linear Algebra*, vol. 20, pp. 207–225, 2010, doi: 10.13001/1081-3810.1369.
- [3] J. Benítez and X. Liu, "A short proof of a matrix decomposition with applications," *Linear Algebra Appl.*, vol. 438, no. 3, pp. 1398–1414, 2013, doi: 10.1016/j.laa.2012.10.002.
- [4] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. Philadelphia, SIAM, 2009.

- [5] J. Chen, "Group inverses and drazin inverses of matrices over rings, (chinese)," J. Xinjiang Univ. Natur. Sci., vol. 9, no. 1, pp. 44–49, 1992.
- [6] R. E. Cline, "An application of representations for the generalized inverse of a matrix," Mathematics Research Center, University of Wisconsin, Madison, Tech. Rep., 1965.
- [7] R. E. Cline, "Inverses of rank invariant powers of a matrix," SIAM J. Numer. Anal., vol. 5, no. 1, pp. 182–197, 1968, doi: 10.1137/0705015.
- [8] R. E. Hartwig and K. Spindelböck, "Matrices for which a\* and a<sup>†</sup> commute," *Linear Multilinear Algebra*, vol. 14, no. 3, pp. 241–256, 1983, doi: 10.1080/03081088308817561.
- [9] S. B. Malik and N. Thome, "On a new generalized inverse for matrices of an arbitrary index," *Appl. Math. Comput.*, vol. 226, pp. 575–580, 2014, doi: doi.org/10.1016/j.amc.2013.10.060.
- [10] K. Manjunatha Prasad and K. S. Mohana, "Core-ep inverse," *Linear Multilinear Algebra*, vol. 62, no. 6, pp. 792–802, 2014, doi: 10.1080/03081087.2013.791690.
- [11] H. Wang, "Core-ep decomposition and its applications," *Linear Algebra Appl.*, vol. 508, pp. 289–300, 2016, doi: 10.1016/j.laa.2016.08.008.
- [12] H. K. Wimmer, "Canonical angles of unitary spaces and perturbations of direct complements," *Linear Algebra Appl.*, vol. 287, pp. 373–379, 1999, doi: 10.1016/S0024-3795(98)10017-4.
- [13] S. Xu, J. Chen, and X. Zhang, "New characterizations for core inverses in rings with involution," *Front. Math. China*, vol. 12, no. 1, pp. 231–246, 2017, doi: 10.1007/s11464-016-0591-2.

## Authors' addresses

### Sanzhang Xu

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, 223003 Huaian, China *E-mail address:* xusanzhang5222@126.com

### Jianlong Chen

School of Mathematics, Southeast University, 210096 Nanjing, China *E-mail address:* E-mail: jlchen@seu.edu.cn

### Julio Benítez

Universitat Politècnica de València, Instituto de Matemática Multidisciplinar, 46022 Valencia, Spain *E-mail address:* jbenitez@mat.upv.es

## **Dingguo Wang**

School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, China *E-mail address:* dingguo95@126.com