Miskolc Mathematical Notes

GENERALIZED CORE INVERSES OF MATRICES

SANZHANG XU, JIANLONG CHEN, JULIO BENÍTEZ, AND DINGGUO WANG

Received 12 April, 2018

Abstract

In this paper, we introduce two new generalized inverses of matrices, namely, the $\langle i, m\rangle$-core inverse and the (j, m)-core inverse. The $\langle i, m\rangle$-core inverse of a complex matrix extends the notions of the core inverse defined by Baksalary and Trenkler [1] and the core-EP inverse defined by Manjunatha Prasad and Mohana [10]. The (j, m)-core inverse of a complex matrix extends the notions of the core inverse and the DMP-inverse defined by Malik and Thome [9]. Moreover, the formulae and properties of these two new concepts are investigated by using matrix decompositions and matrix powers.

2010 Mathematics Subject Classification: 15A09; 15A23
Keywords: $\langle i, m\rangle$-core inverse, (j, m)-core inverse, core inverse, DMP-inverse, core-EP inverse

1. Introduction

Let $\mathbb{C}^{m \times n}$ denote the set of all $m \times n$ complex matrices. Let $A^{*}, \mathcal{R}(A)$ and $\operatorname{rk}(A)$ denote the conjugate transpose, column space, and rank of $A \in \mathbb{C}^{m \times n}$, respectively. For $A \in \mathbb{C}^{m \times n}$, if $X \in \mathbb{C}^{n \times m}$ satisfies $A X A=A, X A X=X,(A X)^{*}=A X$, and $(X A)^{*}=X A$, then X is called a Moore-Penrose inverse of A. This matrix X is unique and denoted by A^{\dagger}. A matrix $X \in \mathbb{C}^{n \times m}$ is called an outer inverse of A if it satisfies $X A X=X$; is called a $\{2,3\}$-inverse of A if it satisfies $X A X=$ X and $(A X)^{*}=A X$; is called a $\{1,3\}$-inverse of A if it satisfies $A X A=A$ and $(A X)^{*}=A X$; is called a $\{1,2,3\}$-inverse of A if it satisfies $A X A=A, X A X=X$ and $(A X)^{*}=A X$.

The core inverse of a complex matrix was introduced by Baksalary and Trenkler [1]. Let $A \in \mathbb{C}^{n \times n}$. A matrix $X \in \mathbb{C}^{n \times n}$ is called a core inverse of A, if it satisfies $A X=P_{A}$ and $\mathscr{R}(X) \subseteq \mathscr{R}(A)$, here P_{A} denotes the orthogonal projector onto $\mathcal{R}(A)$. If such a matrix exists, then it is unique and denoted by A^{\oplus}. For a square complex matrix A, one has that A is core invertible, A is group invertible, and $\operatorname{rk}(A)=\operatorname{rk}\left(A^{2}\right)$ are three equivalent conditions (see [2]). We denote $\mathbb{C}_{n}^{C M}=\left\{A \in \mathbb{C}^{n \times n} \mid \operatorname{rk}(A)=\right.$ $\left.\operatorname{rk}\left(A^{2}\right)\right\}$.

[^0]Let $A \in \mathbb{C}^{n \times n}$. A matrix $X \in \mathbb{C}^{n \times n}$ such that $X A^{k+1}=A^{k}, X A X=X$ and $A X=X A$ is called the Drazin inverse of A and denoted by A^{D}. The Drazin inverse of a square matrix always exists and it is unique. Such integer k is called the Drazin index of A, denoted by $\operatorname{ind}(A)$. If $\operatorname{ind}(A) \leq 1$, then the Drazin inverse of A is called the group inverse and denoted by $A^{\#}$.

The DMP-inverse for a complex matrix was introduced by Malik and Thome [9]. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$. A matrix $X \in \mathbb{C}^{n \times n}$ is called a DMP-inverse of A, if it satisfies $X A X=X, X A=A^{D} A$ and $A^{k} X=A^{k} A^{\dagger}$. It is unique and denoted by $A^{D, \dagger}$. Malik and Thome gave several characterizations of the DMP-inverse by using the decomposition of Hartwig and Spindelböck [8].

The notion of the core-EP inverse for a complex matrix was introduced by Manjunatha Prasad and Mohana [10]. A matrix $X \in \mathbb{C}^{n \times n}$ is a core-EP inverse of $A \in \mathbb{C}^{n \times n}$ if X is an outer inverse of A satisfying $\mathcal{R}(X)=\mathscr{R}\left(X^{*}\right)=\mathscr{R}\left(A^{k}\right)$, where k is the index of A. The core-EP inverse is unique and denoted by A^{\oplus}.

In addition, $\mathbf{1}_{n}$ and $\mathbf{0}_{n}$ will denote the $n \times 1$ column vectors all of whose components are 1 and 0 , respectively. $0_{m \times n}$ (abbr. 0) denotes the zero matrix of size $m \times n$. If δ is a subspace of \mathbb{C}^{n}, then P_{\S} stands for the orthogonal projector onto the subspace 8. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $E P$ matrix if $\mathcal{R}(A)=\mathscr{R}\left(A^{*}\right), A$ is called Hermitian if $A^{*}=A$ and A is unitary if $A A^{*}=I_{n}$, where I_{n} denote the identity matrix of size n. Let \mathbb{N} denote the set of positive integers.

2. Preliminaries

A related decomposition of the matrix decomposition of Hartwig and Spindelböck [8] was given in [2, Theorem 2.1] by Benítez, in [3] it can be found a simpler proof of this decomposition. Let us start this section with the concept of principal angles.

Definition 1 ([12]). Let \wp_{1} and \wp_{2} be two nontrivial subspaces of \mathbb{C}^{n}. We define the principal angles $\theta_{1}, \ldots, \theta_{r} \in[0, \pi / 2]$ between ρ_{1} and ρ_{2} by

$$
\cos \theta_{i}=\sigma_{i}\left(P_{\delta_{1}} P_{\delta_{2}}\right)
$$

for $i=1, \ldots, r$, where $r=\min \left\{\operatorname{dim} \S_{1}, \operatorname{dim} \wp_{2}\right\}$. The real numbers $\sigma_{i}\left(P_{\boldsymbol{\rho}_{1}} P_{\boldsymbol{S}_{2}}\right) \geq 0$ are the singular values of $P_{\boldsymbol{\rho}_{1}} P_{\boldsymbol{\rho}_{2}}$.

The following theorem can be found in [2, Theorem 2.1].
Theorem 1. Let $A \in \mathbb{C}^{n \times n}, r=\operatorname{rk}(A)$, and let $\theta_{1}, \ldots, \theta_{p}$ be the principal angles between $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{*}\right)$ belonging to $] 0, \pi / 2[$. Denote by x and y the multiplicities of the angles 0 and $\pi / 2$ as a canonical angle between $\mathcal{R}(A)$ and $\mathcal{R}\left(A^{*}\right)$, respectively. There exists a unitary matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
A=U\left[\begin{array}{cc}
M C & M S \tag{2.1}\\
0 & 0
\end{array}\right] U^{*}
$$

where $M \in \mathbb{C}^{r \times r}$ is nonsingular,

$$
\begin{gathered}
C=\operatorname{diag}\left(\mathbf{0}_{y}, \cos \theta_{1}, \ldots, \cos \theta_{p}, \mathbf{1}_{x}\right) \\
S=\left[\begin{array}{cc}
\operatorname{diag}\left(\mathbf{1}_{y}, \sin \theta_{1}, \ldots, \sin \theta_{p}\right) & 0_{p+y, n-(r+p+y)} \\
0_{x, p+y} & 0_{x, n-(r+p+y)}
\end{array}\right]
\end{gathered}
$$

and $r=y+p+x$. Furthermore, x and $y+n-r$ are the multiplicities of the singular values 1 and 0 in $P_{\mathcal{R}(A)} P_{\mathcal{R}\left(A^{*}\right)}$, respectively.

In this decomposition, one has $C^{2}+S S^{*}=I_{r}$. Recall that A^{\dagger} always exists. We have that $A^{\#}$ exists if and only if C is nonsingular in view of [2, Theorem 3.7]. The following equalities hold

$$
A^{\dagger}=U\left[\begin{array}{cc}
C M^{-1} & 0 \\
S^{*} M^{-1} & 0
\end{array}\right] U^{*}, \quad A^{\#}=U\left[\begin{array}{cc}
C^{-1} M^{-1} & C^{-1} M^{-1} C^{-1} S \\
0 & 0
\end{array}\right] U^{*}
$$

By [3, Theorem 2], we have that

$$
A^{D}=U\left[\begin{array}{cc}
(M C)^{D} & {\left[(M C)^{D}\right]^{2} M S} \tag{2.2}\\
0 & 0
\end{array}\right] U^{*}
$$

We also have

$$
\begin{gather*}
A A^{\dagger}=U\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*} \tag{2.3}\\
A^{\oplus}=A^{\#} A A^{\dagger}=U\left[\begin{array}{cc}
C^{-1} M^{-1} & 0 \\
0 & 0
\end{array}\right] U^{*} . \tag{2.4}
\end{gather*}
$$

Lemma 1 ([13, Theorem 3.1]). Let $A \in \mathbb{C}^{n \times n}$. Then A is core invertible if and only if there exists $X \in \mathbb{C}^{n \times n}$ such that $(A X)^{*}=A X, X A^{2}=A$ and $A X^{2}=X$. In this situation, we have $A^{\oplus}=X$.

Lemma 2. Let $A \in \mathbb{C}^{n \times n}$. If there exists $X \in \mathbb{C}^{n \times n}$ such that $A X^{k+1}=X^{k}$ and $X A^{k+1}=A^{k}$ for some $k \in \mathbb{N}$, then for $m \in \mathbb{N}$ we have
(1) $A^{k}=X^{m} A^{k+m}$;
(2) $X^{k}=A^{m} X^{k+m}$;
(3) $A^{k} X^{k}=A^{k+m} X^{k+m}$;
(4) $X^{k} A^{k}=X^{k+m} A^{k+m}$;
(5) $A^{k}=A^{m} X^{m} A^{k}$;
(6) $X^{k}=X^{m} A^{m} X^{k}$.

Proof. (1). For $m=1$, it is clear by the hypotheses. If the formula is true for $m \in \mathbb{N}$, then $X^{m+1} A^{k+m+1}=X X^{m} A^{k+m} A=X A^{k} A=X A^{k+1}=A^{k}$.
(3). It is easy to check that $A^{k} X^{k}=A^{k+1} X^{k+1}$ by $A X^{k+1}=X^{k}$. It is not difficult to check the equality $A^{k} X^{k}=A^{k+m} X^{k+m}$ by induction.
(5). From (1) we have $A^{k}=X^{k} A^{2 k}$. Thus by $A X^{k+1}=X^{k}$, we have $A^{k}=$ $X^{k} A^{2 k}=A X^{k+1} A^{2 k}=A X^{k} X A^{2 k}=A\left(A X^{k+1}\right) X A^{2 k}=A^{2} X^{k+2} A^{2 k}=$ $A^{2} X^{2} X^{k} A^{2 k}=\cdots=A^{m} X^{m} X^{k} A^{2 k}=A^{m} X^{m} A^{k}$.

The proofs of (2), (4), and (6) are similar to the proofs of (1), (3), (5), respectively.

Lemma 3. Let $A \in \mathbb{C}^{n \times n}$. If there exists $X \in \mathbb{C}^{n \times n}$ such that $A X^{k+1}=X^{k}$ and $X A^{k+1}=A^{k}$ for some $k \in \mathbb{N}$, then $A^{D}=X^{k+1} A^{k}$.

Proof. Since A is Drazin invertible. We will check that $A^{D}=X^{k+1} A^{k}$. Have in mind, $A X^{k+1}=X^{k}$ and $X A^{k+1}=A^{k}$, thus

$$
\begin{equation*}
A\left(X^{k+1} A^{k}\right)=X^{k} A^{k}=X^{k}\left(X A^{k+1}\right)=X^{k+1} A^{k} A \tag{2.5}
\end{equation*}
$$

That is, $X^{k+1} A^{k}$ and A commute. Then by (1) and (4) in Lemma 2, we have that

$$
\begin{align*}
\left(X^{k+1} A^{k}\right) A\left(X^{k+1} A^{k}\right) & =X^{k+1} A^{k+1} X^{k+1} A^{k}=X^{k} A^{k}\left(X^{k+1} A^{k}\right) \\
& =X^{k} X^{k+1} A^{k} A^{k}=X^{k+1} X^{k} A^{2 k}=X^{k+1} A^{k} \tag{2.6}
\end{align*}
$$

From (1) in Lemma 2, we have that

$$
\begin{equation*}
\left(X^{k+1} A^{k}\right) A^{k+1}=X\left(X^{k} A^{2 k}\right) A=X A^{k+1}=A^{k} \tag{2.7}
\end{equation*}
$$

Thus we have $A^{D}=X^{k+1} A^{k}$ by the definition of the Drazin inverse and in view of (2.5), (2.6), and (2.7).

Remark 1. From the proofs of Lemma 2 and Lemma 3, it is obvious that Lemma 2 and Lemma 3 are valid for rings. Moreover, we can get that for an element $a \in R, a$ is Drazin invertible if and only if there exist $x \in R$ and $k \in \mathbb{N}$ such that $a x^{k+1}=x^{k}$ and $x a^{k+1}=a^{k}$, where R is a ring.

The following lemma is similar to [9, Theorem 2.5].
Lemma 4. Let $A \in \mathbb{C}^{n \times n}$ be the form (2.1). Then

$$
A^{D, \dagger}=U\left[\begin{array}{cc}
(M C)^{D} & 0 \tag{2.8}\\
0 & 0
\end{array}\right] U^{*} .
$$

Proof. By (2.2), (2.3) and the definition of DMP-inverse we have

$$
\begin{aligned}
A^{D, \dagger} & =A^{D} A A^{\dagger} \\
& =U\left[\begin{array}{cc}
(M C)^{D} & {\left[(M C)^{D}\right]^{2} M S} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I_{r} & 0 \\
0 & 0
\end{array}\right] U^{*}=U\left[\begin{array}{cc}
(M C)^{D} & 0 \\
0 & 0
\end{array}\right] U^{*} .
\end{aligned}
$$

Lemma 5 ([11, Corollary 3.3]). Let $A \in \mathbb{C}^{n \times n}$ be a matrix of index k. Then $A A^{\oplus}=A^{k}\left(A^{k}\right)^{\dagger}$.

3. $\langle i, m\rangle$-CORE INVERSE

Let us start this section by introducing the definition of the $\langle i, m\rangle$-core inverse.
Definition 2. Let $A \in \mathbb{C}^{n \times n}$ and $m, i \in \mathbb{N}$. A matrix $X \in \mathbb{C}^{n \times n}$ is called an $\langle i, m\rangle$ core inverse of A, if it satisfies

$$
\begin{equation*}
X=A^{D} A X \quad \text { and } \quad A^{m} X=A^{i}\left(A^{i}\right)^{\dagger} \tag{3.1}
\end{equation*}
$$

It will be proved that if X exists, then it is unique and denoted by $A_{i, m}^{\oplus}$.
Theorem 2. Let $A \in \mathbb{C}^{n \times n}$. If exists $X \in \mathbb{C}^{n \times n}$ such that (3.1) holds, then X is unique.

Proof. Assume that X satisfies the system in (3.1), that is $X=A^{D} A X$ and $A^{m} X=$ $A^{i}\left(A^{i}\right)^{\dagger}$. Thus $X=A^{D} A X=\left(A^{D}\right)^{m} A^{m} X=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$. Therefore, X is unique by the uniqueness of A^{D} and $A^{i}\left(A^{i}\right)^{\dagger}$.

Theorem 3. The system in (3.1) is consistent if and only if $i \geq \operatorname{ind}(A)$. In this case, the solution of (3.1) is $X=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$.

Proof. Assume that $i \geq \operatorname{ind}(A)$. Let $X=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$. We have

$$
\begin{aligned}
A^{D} A X & =A^{D} A\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{D} A A^{i}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=X \\
A^{m} X & =A^{m}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=A^{D} A A^{i}\left(A^{i}\right)^{\dagger}=A^{i}\left(A^{i}\right)^{\dagger}
\end{aligned}
$$

Thus, the system in (3.1) is consistent and the solution of (3.1) is $X=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$.
If the system in (3.1) is consistent, then exists X_{0} such that $X_{0}=A^{D} A X_{0}$ and $A^{m} X_{0}=A^{i}\left(A^{i}\right)^{\dagger}$. Then $X_{0}=A^{D} A X_{0}=\left(A^{D}\right)^{m} A^{m} X_{0}=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$ and $A^{i}\left(A^{i}\right)^{\dagger}=A^{m} X_{0}=A^{m}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=A A^{D} A^{i}\left(A^{i}\right)^{\dagger}$. Hence $A^{i}=A^{i}\left(A^{i}\right)^{\dagger} A^{i}=$ $A A^{D} A^{i}\left(A^{i}\right)^{\dagger} A^{i}=A A^{D} A^{i}$, that is $i \geq \operatorname{ind}(A)$.

Example 1. We will give an example that shows if $i<\operatorname{ind}(A)$, then the system in (3.1) is not consistent. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. It is easy to get $\operatorname{ind}(A)=2$ and $A^{D}=0$. Let $i=1$ and suppose that X is the solution of system in (3.1), then $X=A^{D} A X=0$, which gives $A A^{\dagger}=A^{m} X=0$, thus $A=A A^{\dagger} A=0$, this is a contradiction.

Remark 2. If $i \geq \operatorname{ind}(A)$, then $A_{i, m+1}^{\oplus}=A^{D} A_{i, m}^{\oplus}$.
Remark 3. The $\langle i, m\rangle$-core inverse is a generalization of the core inverse and the core-EP inverse. More precisely, we have the following statements:
(1) If $m=i=\operatorname{ind}(A)=1$, then the $\langle 1,1\rangle$-core inverse coincides with the core inverse;
(2) If $m=1$ and $i=\operatorname{ind}(A)$, then the $\langle i, 1\rangle$-core inverse coincides with the coreEP inverse.

For the convenience of the readers, in the following, we give some notes of (1) and (2) in Remark 3.
(1) If $m=i=\operatorname{ind}(A)=1$, then A is group invertible and $A^{D}=A^{\#}$ and (3.1) is equivalent to $X=A^{\#} A X$ and $A X=A A^{\dagger}$. Thus $X=A^{\#} A X=A^{\#} A A^{\dagger}$, $(A X)^{*}=\left(A A^{\dagger}\right)^{*}=A A^{\dagger}=A X, A X^{2}=A A^{\#} A A^{\dagger} A^{\#} A A^{\dagger}=A A^{\#} A A^{\dagger} A A^{\#} A^{\dagger}=$ $A A^{\#} A^{\dagger}=X$ and $X A^{2}=A^{\#} A A^{\dagger} A^{2}=A^{\#} A^{2}=A$. Hence, $\langle 1,1\rangle$-core inverse coincides with the core inverse by Lemma 1 . Note that if A is group invertible, then we have that X is the core inverse of A if and only if $X=A^{\#} A X$ and $A X=A A^{\dagger}$.
(2) If $m=1$ and $i=\operatorname{ind}(A)$, then by Theorem 3.3, $A_{i, 1}^{\oplus}$ exists and $A_{i, 1}^{\oplus}=$ $A^{D} A^{i}\left(A^{i}\right)^{\dagger}$. Let us denote $X=A_{i, 1}^{\oplus}=A^{D} A^{i}\left(A^{i}\right)^{\dagger}$. Observe that $A X=$ $A^{i}\left(A^{i}\right)^{\dagger}$ is Hermitian. Now,

$$
X A X=A^{D} A^{i}\left(A^{i}\right)^{\dagger} A^{i}\left(A^{i}\right)^{\dagger}=A^{D} A^{i}\left(A^{i}\right)^{\dagger}=X
$$

that is X is an outer inverse of A. From

$$
A^{i}=A^{D} A^{i+1}=A^{D} A^{i}\left(A^{i}\right)^{\dagger} A^{i} A=X A^{i+1}
$$

we get $\mathcal{R}\left(A^{i}\right) \subseteq \mathcal{R}(X)$. Also,

$$
\begin{aligned}
A X^{2} & =(A X) X=A^{i}\left(A^{i}\right)^{\dagger} A^{D} A^{i}\left(A^{i}\right)^{\dagger} \\
& =A^{i}\left(A^{i}\right)^{\dagger} A^{i} A^{D}\left(A^{i}\right)^{\dagger}=A^{D} A^{i}\left(A^{i}\right)^{\dagger}=X
\end{aligned}
$$

which implies $X=(A X)^{*} X \in \mathscr{R}\left(X^{*}\right)$, therefore, $\mathcal{R}(X) \subseteq \mathscr{R}\left(X^{*}\right)$. Finally, $X^{*}=\left[A^{D} A^{i}\left(A^{i}\right)^{\dagger}\right]^{*}=A^{i}\left(A^{i}\right)^{\dagger}\left(A^{D}\right)^{*}$ implies $\mathcal{R}\left(X^{*}\right) \subseteq \mathscr{R}\left(A^{i}\right)$. Hence $\mathcal{R}(X)=\mathscr{R}\left(X^{*}\right)=\mathcal{R}\left(A^{i}\right)$. Therefore, the $\langle i, 1\rangle$-core inverse coincides with the core-EP inverse by the definition of the core-EP inverse.
From the above statement, we have the following theorem.
Theorem 4. Let $A \in \mathbb{C}^{n \times n}$ with $i=\operatorname{ind}(A)$. Then X is the core-EP inverse of A if and only if $X=A^{D} A X$ and $A X=A^{i}\left(A^{i}\right)^{\dagger}$.

Corollary 1. Let $A \in \mathbb{C}^{n \times n}$ with $1=\operatorname{ind}(A)$. Then X is the core inverse of A if and only if $X=A^{\#} A X$ and $A X=A A^{\dagger}$.

For any $A \in \mathbb{C}^{n \times n}$, either $A^{l}=0$ for some $l \in \mathbb{N}$, or $A^{l} \neq 0$ for all positive integers. Moreover, if $\operatorname{ind}(A)=k$, then $G_{k} B_{k}$ is nonsingular (see [5-7]), where $A=B_{1} G_{1}$ is a full rank factorization of A and $G_{l} B_{l}=B_{l+1} G_{l+1}$ is a full rank factorization of $G_{l} B_{l}, l=1, \ldots, k-1$. When $A^{k} \neq 0$, then it can be written as

$$
\begin{equation*}
A^{k}=\prod_{l=1}^{k} B_{l} \prod_{l=1}^{k} G_{k+1-l} \tag{3.2}
\end{equation*}
$$

We have the following results, (see [5, Theorem 4] or [4, Theorem 7.8.2]):

$$
\operatorname{ind}(A)= \begin{cases}k & \text { when } G_{k} B_{k} \text { is nonsingular, } \\ k+1 & \text { when } G_{k} B_{k}=0\end{cases}
$$

and

$$
A^{D}= \begin{cases}\prod_{l=1}^{k} B_{l}\left(G_{k} B_{k}\right)^{-k-1} \prod_{l=1}^{k} G_{k+1-l} & \text { when } G_{k} B_{k} \text { is nonsingular } \tag{3.3}\\ 0 & \text { when } G_{k} B_{k}=0\end{cases}
$$

In the sequel, we always assume that $A^{k} \neq 0$.
It is well-known that if $A=E F$ is a full rank factorization of A, where $r=\operatorname{rk}(A)$, $E \in \mathbb{C}^{n \times r}$ and $F \in \mathbb{C}^{r \times n}$, then (see [4, Theorem 1.3.2])

$$
\begin{equation*}
A^{\dagger}=F^{*}\left(F F^{*}\right)^{-1}\left(E^{*} E\right)^{-1} E^{*} \tag{3.4}
\end{equation*}
$$

Remark 4. The notations and results in above paragraph will be used many times in the sequel.

We will investigate the $\langle i, m\rangle$-core inverse of a matrix $A \in \mathbb{C}^{n \times n}$ by using Remark 4.

Theorem 5. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$. If $i \geq k$, then $A_{i, m}^{\oplus}=A_{k, m}^{\oplus}$.
Proof. Since $\operatorname{ind}(A)=k$, we have $\mathcal{R}\left(A^{k}\right)=\mathcal{R}\left(A^{i}\right)$ for any $i \geq k$, and therefore, $A^{k}\left(A^{k}\right)^{\dagger}=A^{i}\left(A^{i}\right)^{\dagger}$. Now, the conclusion follows from Theorem 3.

Remark 5. The proof of Theorem 5 also can be proved as follows. Since the proof in this remark will be used several times in the sequel, we write this proof here.

Proof. If A is nilpotent, then $A^{D}=0$, hence by Theorem 3, one has $A_{i, m}^{\oplus}=$ $A_{k, m}^{\oplus}=0$. Therefore, we can assume that $A^{k} \neq 0$. By equality (3.2), we have

$$
\begin{equation*}
A^{k}=\prod_{l=1}^{k} B_{l} \prod_{l=1}^{k} G_{k+1-l} \tag{3.5}
\end{equation*}
$$

where $A=B_{1} G_{1}$ is a full rank factorization of A and $G_{l} B_{l}=B_{l+1} G_{l+1}$ is a full rank factorization of $G_{l} B_{l}, l=1, \ldots, k-1$. Let $M=\prod_{l=1}^{k} B_{l}, N=\prod_{l=1}^{k} G_{k+1-l}$ and $L=G_{k} B_{k}$. Now, we will show that

$$
A^{i}=\prod_{l=1}^{k} B_{l}\left(G_{k} B_{k}\right)^{i-k} \prod_{l=1}^{k} G_{k+1-l}=M L^{i-k} N
$$

In fact,

$$
\begin{align*}
A^{i} & =\prod_{l=1}^{i} B_{l} \prod_{l=1}^{i} G_{k+1-l} \\
& =B_{1} \cdots B_{i} G_{i} \cdots G_{1} \\
& =B_{1} \cdots B_{i-1}\left(B_{i} G_{i}\right) G_{i-1} \cdots G_{1} \\
& =B_{1} \cdots B_{i-1}\left(G_{i-1} B_{i-1}\right) G_{i-1} \cdots G_{1} \tag{3.6}\\
& =B_{1} \cdots B_{i-2}\left(G_{i-2} B_{i-2}\right)^{2} G_{i-2} \cdots G_{1} \\
& =\cdots \\
& =B_{1} \cdots B_{k}\left(G_{k} B_{k}\right)^{i-k} G_{k} \cdots G_{1}=M L^{i-k} N
\end{align*}
$$

If we let $M_{1}=M L^{i-k}$, then $A^{i}=M L^{i-k} N=M_{1} N$ is a full rank factorization of A^{i} (see [7, p.183]). Thus

$$
\begin{equation*}
\left(A^{i}\right)^{\dagger}=N^{*}\left(N N^{*}\right)^{-1}\left(M_{1}^{*} M_{1}\right)^{-1} M_{1}^{*} . \tag{3.7}
\end{equation*}
$$

Note that $N M=\prod_{l=1}^{k} G_{k+1-l} \prod_{l=1}^{k} B_{l}=L^{k}$. By Theorem 3, (3.3) and (3.7) we have

$$
\begin{align*}
A_{i, 1}^{\oplus} & =A^{D} A^{i}\left(A^{i}\right)^{\dagger} \\
& =M L^{-k-1} N M L^{i-k} N\left(A^{i}\right)^{\dagger} \\
& =M L^{-k-1} N M L^{i-k} N N^{*}\left(N N^{*}\right)^{-1}\left(M_{1}^{*} M_{1}\right)^{-1} M_{1}^{*} \\
& =M L^{i-k-1} N N^{*}\left(N N^{*}\right)^{-1}\left(M_{1}^{*} M_{1}\right)^{-1} M_{1}^{*} \\
& =M L^{i-k-1}\left(M_{1}^{*} M_{1}\right)^{-1} M_{1}^{*} \tag{3.8}\\
& =M L^{i-k-1}\left[\left(L^{i-k}\right)^{*} M^{*} M L^{i-k}\right]^{-1}\left(L^{i-k}\right)^{*} M^{*} \\
& =M L^{i-k-1} L^{k-i}\left(M^{*} M\right)^{-1}\left[\left(L^{i-k}\right)^{*}\right]^{-1}\left(L^{i-k}\right)^{*} M^{*} \\
& =M L^{-1}\left(M^{*} M\right)^{-1} M^{*} .
\end{align*}
$$

The last expression does not depend on i, then $A_{i, 1}^{\oplus}=A_{k, 1}^{\oplus}$. Thus, by Remark 2, we have $A_{i, m}^{\oplus}=A^{D} A_{i, m-1}^{\oplus}=A^{D}\left(A^{D} A_{i, m-2}^{\oplus}\right)=\left(A^{D}\right)^{2} A_{i, m-2}^{\oplus}=\cdots=\left(A^{D}\right)^{m-1} A_{i, 1}^{\oplus}=$ $\left(A^{D}\right)^{m-1} A_{k, 1}^{\oplus}=A_{k, m}^{\oplus}$.

Remark 6. By Theorem 5, it is enough to investigate the $i=\operatorname{ind}(A)=k$ case, when we discuss the $\langle i, m\rangle$-core inverse of a matrix $A \in \mathbb{C}^{n \times n}$. That is, the Theorem 5 is a key theorem.

Theorem 6. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$ and $k, m \in \mathbb{N}$. If $A=B_{1} G_{1}$ is a full rank factorization of A and $G_{l} B_{l}=B_{l+1} G_{l+1}$ is a full rank factorization of $G_{l} B_{l}$,
$l=1, \ldots, k-1$, then $A_{k, m}^{\oplus}=M L^{-m} M^{\dagger}$, where $M=\prod_{l=1}^{k} B_{l}, N=\prod_{l=1}^{k} G_{k+1-l}$ and $L=G_{k} B_{k}$.

Proof. By the proof of Remark 5, we have $A_{k, 1}^{\oplus}=M L^{-1}\left(M^{*} M\right)^{-1} M^{*}$ and $N M=L^{k}$. Now, we will prove $\left(A^{D}\right)^{s} A_{k, 1}^{\oplus}=M L^{-s-1}\left(M^{*} M\right)^{-1} M^{*}$ for any $s \in \mathbb{N}$. By (3.3) we have $A^{D}=\prod_{l=1}^{k} B_{l}\left(G_{k} B_{k}\right)^{-k-1} \prod_{l=1}^{k} G_{k+1-l}=M L^{-k-1} N$. When $s=1$, we have

$$
\begin{aligned}
A^{D} A_{k, 1}^{\oplus} & =M L^{-k-1} N M L^{-1}\left(M^{*} M\right)^{-1} M^{*}=M L^{-k-1}(N M) L^{-1}\left(M^{*} M\right)^{-1} M^{*} \\
& =M L^{-k-1} L^{k} L^{-1}\left(M^{*} M\right)^{-1} M^{*}=M L^{-2}\left(M^{*} M\right)^{-1} M^{*}
\end{aligned}
$$

Assume that $\left(A^{D}\right)^{s-1} A_{k, 1}^{\oplus}=M L^{-s}\left(M^{*} M\right)^{-1} M^{*}$. Then

$$
\begin{aligned}
\left(A^{D}\right)^{s} A_{k, 1}^{\oplus} & =A^{D}\left(A^{D}\right)^{s-1} A_{k, 1}^{\oplus}=A^{D} M L^{-s}\left(M^{*} M\right)^{-1} M^{*} \\
& =M L^{-k-1} N M L^{-s}\left(M^{*} M\right)^{-1} M^{*} \\
& =M L^{-k-1} L^{k} L^{-s}\left(M^{*} M\right)^{-1} M^{*} \\
& =M L^{-s-1}\left(M^{*} M\right)^{-1} M^{*}
\end{aligned}
$$

Thus by Remark 2, we have

$$
A_{k, m}^{\oplus}=\left(A^{D}\right)^{m-1} A_{k, 1}^{\oplus}=M L^{-m}\left(M^{*} M\right)^{-1} M^{*}=M L^{-m} M^{\dagger}
$$

In the following theorem, we will give a canonical form for the $\langle k, m\rangle$-core inverse of a matrix $A \in \mathbb{C}^{n \times n}$ by using the matrix decomposition in Theorem 1 . We will also use the following simple fact: Let $X \in \mathbb{C}^{n \times m}$ and $\mathbf{b} \in \mathbb{C}^{n}$. If $\mathbf{y} \in \mathbb{C}^{m}$ satisfies $X^{*} X \mathbf{y}=X^{*} \mathbf{b}$, then $X X^{\dagger} \mathbf{b}=X \mathbf{y}$.

Theorem 7. Let $A \in \mathbb{C}^{n \times n}$ have the form (2.1) with $\operatorname{ind}(A)=k$ and $m \in \mathbb{N}$. Then

$$
A_{k, m}^{\oplus}=U\left[\begin{array}{cc}
(M C)_{k-1, m}^{\oplus} & 0 \tag{3.9}\\
0 & 0
\end{array}\right] U^{*}
$$

Proof. Let r be the rank of A. By Theorem 3 we have

$$
\begin{equation*}
A_{k, m}^{\oplus}=\left(A^{D}\right)^{m} A^{k}\left(A^{k}\right)^{\dagger} \tag{3.10}
\end{equation*}
$$

Since A has the form given in Theorem 1 we have

$$
A^{k}=U\left[\begin{array}{cc}
(M C)^{k} & (M C)^{k-1} M S \tag{3.11}\\
0 & 0
\end{array}\right] U^{*}
$$

Let $\mathbf{b} \in \mathbb{C}^{n}$ be arbitrary and let us decompose $\mathbf{b}=U\left[\begin{array}{l}\mathbf{b}_{1} \\ \mathbf{b}_{2}\end{array}\right]$, where $\mathbf{b}_{1} \in \mathbb{C}^{r}$. Let $\mathbf{x}_{0} \in \mathbb{C}^{n}$ satisfy $\left(A^{k}\right)^{*} A^{k} \mathbf{x}_{0}=\left(A^{k}\right)^{*} \mathbf{b}$ [this \mathbf{x}_{0} always exists because the normal
equations always have a solution]. We can decompose \mathbf{x}_{0} by writing $\mathbf{x}_{0}=U\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{2}\end{array}\right]$, where $\mathbf{x}_{1} \in \mathbb{C}^{r}$. Let us denote $N=(M C)^{k-1} M$. Using (3.11),

$$
U\left[\begin{array}{cc}
C N^{*} & 0 \\
S^{*} N^{*} & 0
\end{array}\right]\left[\begin{array}{cc}
N C & N S \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]=U\left[\begin{array}{cc}
C N^{*} & 0 \\
S^{*} N^{*} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]
$$

Therefore,

$$
C N^{*} N\left(C \mathbf{x}_{1}+S \mathbf{x}_{2}\right)=C N^{*} \mathbf{b}_{1} \quad \text { and } \quad S^{*} N^{*} N\left(C \mathbf{x}_{1}+S \mathbf{x}_{2}\right)=S^{*} N^{*} \mathbf{b}_{1}
$$

Premultiplying the first equality by C and the second equality by S and after, adding them, we get $N^{*} N\left(C \mathbf{x}_{1}+S \mathbf{x}_{2}\right)=N^{*} \mathbf{b}_{1}$, and hence, $N\left(C \mathbf{x}_{1}+S \mathbf{x}_{2}\right)=N N^{\dagger} \mathbf{b}_{1}$. Now,

$$
\begin{aligned}
A^{k}\left(A^{k}\right)^{\dagger} \mathbf{b} & =A^{k} \mathbf{x}_{0}=U\left[\begin{array}{cc}
N C & N S \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right] \\
& =U\left[\begin{array}{c}
N C \mathbf{x}_{1}+N S \mathbf{x}_{2} \\
\mathbf{0}
\end{array}\right]=U\left[\begin{array}{c}
N N^{\dagger} \mathbf{b}_{1} \\
\mathbf{0}
\end{array}\right]=U\left[\begin{array}{cc}
N N^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*} \mathbf{b} .
\end{aligned}
$$

Since \mathbf{b} is arbitrary,

$$
A^{k}\left(A^{k}\right)^{\dagger}=U\left[\begin{array}{cc}
N N^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Now we will prove $N N^{\dagger}=(M C)^{k-1}\left[(M C)^{k-1}\right]^{\dagger}$. Recall that we have $N=$ $(M C)^{k-1} M$, and so, $\mathscr{R}(N) \subseteq \mathscr{R}\left((M C)^{k-1}\right)$. Since M is nonsingular, $\operatorname{rk}(N)=$ $\operatorname{rk}\left((M C)^{k-1}\right)$, and thus, $\mathcal{R}(N)=\mathcal{R}\left((M C)^{k-1}\right)$. Since $(M C)^{k-1}\left[(M C)^{k-1}\right]^{\dagger}$ and $N N^{\dagger}$ are the orthogonal projectors onto $\mathcal{R}\left((M C)^{k-1}\right)$ and $\mathcal{R}(N)$, respectively, we get $N N^{\dagger}=(M C)^{k-1}\left[(M C)^{k-1}\right]^{\dagger}$.

By (2.2) we have

$$
A^{D}=U\left[\begin{array}{cc}
(M C)^{D} & {\left[(M C)^{D}\right]^{2} M S} \tag{3.12}\\
0 & 0
\end{array}\right] U^{*}
$$

Thus, we have

$$
\left(A^{D}\right)^{m}=U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{m}} & {\left[(M C)^{D}\right]^{m+1} M S} \\
0 & 0
\end{array}\right] U^{*}
$$

Since $\operatorname{ind}(A)=k$, we have $A^{D} A^{k+1}=A^{k}$. By using the above representations of A^{D} and A^{k} given in (3.11) and (3.12), respectively,

$$
\begin{aligned}
& {\left[\begin{array}{cc}
(M C)^{D} & {\left[(M C)^{D}\right]^{2} M S} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
(M C)^{k+1} & (M C)^{k} M S \\
0 & 0
\end{array}\right] } \\
&=\left[\begin{array}{cc}
(M C)^{k} & (M C)^{k-1} M S \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
(M C)^{D}(M C)^{k} M[C \mid S]=(M C)^{k-1} M[C \mid S] \tag{3.13}
\end{equation*}
$$

Have in mind that we have $C^{2}+S S^{*}=I_{r}$. Thus, postmultiplying (3.13) by $\left[\begin{array}{c}C \\ S^{*}\end{array}\right]$ gives us $(M C)^{D}(M C)^{k} M=(M C)^{k-1} M$ and from the nonsningularity of M we obtain $(M C)^{D}(M C)^{k}=(M C)^{k-1}$, and so, $\operatorname{ind}(M C) \leq k-1$. Therefore we have

$$
\begin{aligned}
A_{k, m}^{\oplus} & =\left(A^{D}\right)^{m} A^{k}\left(A^{k}\right)^{\dagger} \\
& =U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{m}} & {\left[(M C)^{D}\right]^{m+1} M S} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
(M C)^{k-1}\left((M C)^{k-1}\right)^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{m}(M C)^{k-1}\left((M C)^{k-1}\right)^{\dagger}} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
(M C)_{k-1, m}^{\oplus} & 0 \\
0 & 0
\end{array}\right] U^{*} .
\end{aligned}
$$

Remark 7. If we use the decomposition of Hartwig and Spindelböck in [8, Corollary 6], then an expression of the $\langle k, m\rangle$-core inverse of A is

$$
A_{k, m}^{\oplus}=U\left[\begin{array}{cc}
(\Sigma K)_{k-1, m}^{\oplus} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

which is similar to the expression of $A_{k, m}^{\oplus}$ in Theorem 7. Since the proof of this result can be proved as the proof of Theorem 7, we omit this proof.

Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$. The Jordan Canonical form of A is $P^{-1} A P=J$, where $P \in \mathbb{C}^{n \times n}$ is nonsingular and $J \in \mathbb{C}^{n \times n}$ is a block diagonal matrix composed of Jordan blocks. In the following theorem, we will compute the $\langle k, m\rangle$-core inverse by using the Jordan Canonical form of A.

Theorem 8. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$, then $A_{k, m}^{\oplus}=P_{1} D^{-m} P_{1}^{\dagger}$, where $A=P\left[\begin{array}{cc}D & 0 \\ 0 & N \\ \hline\end{array}\right] P^{-1}$ with $D \in \mathbb{C}^{r \times r}$ is nonsingular, N is nilpotent and $P=\left[P_{1} \mid P_{2}\right]$ with $P_{1} \in \mathbb{C}^{n \times r}$.

Proof. The Jordan Canonical form of A is $P^{-1} A P=J$, where $P \in \mathbb{C}^{n \times n}$ is nonsingular and $J \in \mathbb{C}^{n \times n}$ is a block diagonal matrix. Rearrange the elements of J such that $A=P\left[\begin{array}{ll}D & 0 \\ 0 & N\end{array}\right] P^{-1}$, where D is nonsingular and N is nilpotent. It is wellknown that $A^{D}=P\left[\begin{array}{cc}D_{0}^{-1} & 0 \\ 0 & 0\end{array}\right] P^{-1}$ and $A^{k}=P\left[\begin{array}{cc}D^{k} & 0 \\ 0 & 0\end{array}\right] P^{-1}$. If we let $P=\left[P_{1} \mid P_{2}\right]$ and $P^{-1}=\left[\begin{array}{l}Q_{1} \\ Q_{2}\end{array}\right]$, then

$$
\left(A^{D}\right)^{m} A^{k}=\left[P_{1} \mid P_{2}\right]\left[\begin{array}{cc}
\left(D^{-1}\right)^{m} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
D^{k} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
Q_{1} \\
Q_{2}
\end{array}\right]=P_{1} D^{k-m} Q_{1} .
$$

Observe that $A^{k}=\left(P_{1} D^{k}\right) Q_{1}$ is a full rank factorization of A^{k}. Hence by (3.4) we have

$$
\begin{aligned}
\left(A^{k}\right)^{\dagger} & =\left(P_{1} D^{k} Q_{1}\right)^{\dagger} \\
& =Q_{1}^{*}\left(Q_{1} Q_{1}^{*}\right)^{-1}\left[\left(P_{1} D^{k}\right)^{*} P_{1} D^{k}\right]^{-1}\left(P_{1} D^{k}\right)^{*} \\
& =Q_{1}^{*}\left(Q_{1} Q_{1}^{*}\right)^{-1} D^{-k}\left(P_{1}^{*} P_{1}\right)^{-1}\left[\left(D^{k}\right)^{*}\right]^{-1}\left(D^{k}\right)^{*} P_{1}^{*} \\
& =Q_{1}^{*}\left(Q_{1} Q_{1}^{*}\right)^{-1} D^{-k}\left(P_{1}^{*} P_{1}\right)^{-1} P_{1}^{*} \\
& =Q_{1}^{\dagger} D^{-k} P_{1}^{\dagger}
\end{aligned}
$$

By Theorem 3, we have $A_{k, m}^{\oplus}=\left(A^{D}\right)^{m} A^{k}\left(A^{k}\right)^{\dagger}$. Thus we have

$$
\begin{aligned}
A_{k, m}^{\oplus} & =\left(A^{D}\right)^{m} A^{k}\left(A^{k}\right)^{\dagger}=P_{1} D^{k-m} Q_{1} Q_{1}^{\dagger} D^{-k} P_{1}^{\dagger} \\
& =P_{1} D^{k-m} Q_{1} Q_{1}^{*}\left(Q_{1} Q_{1}^{*}\right)^{-1} D^{-k} P_{1}^{\dagger}=P_{1} D^{-m} D^{k} D^{-k} P_{1}^{\dagger}=P_{1} D^{-m} P_{1}^{\dagger}
\end{aligned}
$$

Proposition 1. Let $A \in \mathbb{C}^{n \times n}$. If $i \geq \operatorname{ind}(A)$, then $A^{m} A_{i, m}^{\oplus}$ is the projector onto $\mathcal{R}\left(A^{i}\right)$ along $\mathcal{R}\left(A^{i}\right)^{\perp}$.

Proof. It is trivial.
In the following proposition, we will investigate some properties of the $\langle i, m\rangle$-core inverse.

Proposition 2. Let $A \in \mathbb{C}^{n \times n}, m, i \in \mathbb{N}$. If $i \geq \operatorname{ind}(A)$, then
(1) $A_{i, m}^{\oplus}$ is $a\{2,3\}$-inverse of A^{m};
(2) $A_{i, m}^{\oplus}=\left(A^{D}\right)^{m} P_{A^{i}}$;
(3) $\left(A_{i, m}^{\oplus}\right)^{n}=\left(A^{D}\right)^{m(n-1)} A_{i, m}^{\oplus}=\left(A^{D}\right)^{m n} P_{A^{i}}$;
(4) $A^{i} A_{i, m}^{\oplus}=A_{i, m}^{\oplus} A^{i}$ if and only if $\mathcal{R}\left(A^{i}\right)^{\perp} \subseteq \mathcal{N}\left(A^{i}\right)$;
(5) $A_{i, m}^{\oplus}=A$ implies that A is $E P$.

Proof. (1). By Theorem 3 we have $A_{i, m}^{\oplus}=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}$, thus

$$
\begin{aligned}
A_{i, m}^{\oplus} A^{m} A_{i, m}^{\oplus} & =\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger} A^{m}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger} \\
& =\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger} A^{i} A^{m}\left(A^{D}\right)^{m}\left(A^{i}\right)^{\dagger} \\
& =\left(A^{D}\right)^{m} A^{i} A^{m}\left(A^{D}\right)^{m}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{m}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger} \\
& =A^{D} A\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=A_{i, m}^{\oplus}
\end{aligned}
$$

Thus $A_{i, m}^{\oplus}$ is a $\{2,3\}$-inverse of A^{m} in view of $A^{m} A_{i, m}^{\oplus}=A^{i}\left(A^{i}\right)^{\dagger}$.
(2) is trivial.
(3). $B y$

$$
\begin{aligned}
\left(A_{i, m}^{\oplus}\right)^{n} & =\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}\left(A_{i, m}^{\oplus}\right)^{n-2} \\
& =\left(A^{D}\right)^{m}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}\left(A_{i, m}^{\oplus}\right)^{n-2} \\
& =\left(A^{D}\right)^{m} A_{i, m}^{\oplus}\left(A_{i, m}^{\oplus}\right)^{n-2}=\left(A^{D}\right)^{m}\left(A_{i, m}^{\oplus}\right)^{n-1}
\end{aligned}
$$

it is easy to check (3).
(4). By $\mathcal{R}\left[\left(I_{n}-A^{i}\left(A^{i}\right)^{\dagger}\right]=\mathcal{N}\left[\left(A^{i}\right)^{\dagger}\right]\right.$, we have

$$
\begin{aligned}
A^{i} A_{i, m}^{\oplus}=A_{i, m}^{\oplus} A^{i} & \Leftrightarrow A^{i}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger} A^{i} \\
& \Leftrightarrow A^{i}\left(A^{D}\right)^{m} A^{i}\left(A^{i}\right)^{\dagger}=\left(A^{D}\right)^{m} A^{i} \\
& \Leftrightarrow A^{i}\left(A^{D}\right)^{m}\left(I_{n}-A^{i}\left(A^{i}\right)^{\dagger}\right)=0 \\
& \Leftrightarrow \mathcal{R}\left[I_{n}-A^{i}\left(A^{i}\right)^{\dagger}\right] \subseteq \mathcal{N}\left[A^{i}\left(A^{D}\right)^{m}\right] \\
& \Leftrightarrow \mathcal{N}\left[\left(A^{i}\right)^{\dagger}\right] \subseteq \mathcal{N}\left[\left(A^{D}\right)^{m}\right] \\
& \Leftrightarrow \mathcal{N}\left[\left(A^{i}\right)^{*}\right] \subseteq \mathcal{N}\left[\left(A^{D}\right)^{m}\right] \\
& \Leftrightarrow \mathscr{R}\left(A^{i}\right)^{\perp} \subseteq \mathcal{N}\left[\left(A^{D}\right)^{m}\right] \\
& \Leftrightarrow \mathscr{R}\left(A^{i}\right)^{\perp} \subseteq \mathcal{N}\left[A^{i}\right]
\end{aligned}
$$

(5). Let A be written in the form (2.1). We have $A_{i, m}^{\oplus}=U\left[\begin{array}{cc}(M C)_{i-1, m}^{\oplus} & 0 \\ 0 & 0\end{array}\right] U^{*}$ by Theorem 7. Thus, $A_{i, m}^{\oplus}=A$ implies $M S=0$. From the nonsingularity of M, we have $S=0$, which is equivalent to say that A is EP in view of [2, Theorem 3.7].

4. (j, m)-CORE INVERSE

Let us start this section by introducing the definition of the (j, m)-core inverse.
Definition 3. Let $A \in \mathbb{C}^{n \times n}$ and $m, j \in \mathbb{N}$. A matrix $X \in \mathbb{C}^{n \times n}$ is called a (j, m) core inverse of A, if it satisfies

$$
\begin{equation*}
X=A^{D} A X \quad \text { and } \quad A^{m} X=A^{m}\left(A^{j}\right)^{\dagger} \tag{4.1}
\end{equation*}
$$

Theorem 9. Let $A \in \mathbb{C}^{n \times n}$. If the system in (4.1) is consistent, then the solution is unique.

Proof. Assume that X satisfies (4.1), that is $X=A^{D} A X$ and $A^{m} X=A^{m}\left(A^{j}\right)^{\dagger}$. Then $X=A^{D} A X=\left(A^{D}\right)^{m} A^{m} X=\left(A^{D}\right)^{m} A^{m}\left(A^{j}\right)^{\dagger}=A^{D} A\left(A^{j}\right)^{\dagger}$. Thus X is unique.

By Theorem 9 if X exists, then it is unique and denoted by $A_{j, m}^{\ominus}$.
Theorem 10. Let $A \in \mathbb{C}^{n \times n}$ and $m, j \in \mathbb{N}$.
(1) If $m \geq \operatorname{ind}(A)$, then the system in (4.1) is consistent and the solution is $X=$ $A^{D} A\left(A^{j}\right)^{\dagger}$.
(2) If the system in (4.1) is consistent, then $\operatorname{ind}(A) \leq \max \{j, m\}$.

Proof. (1). Let $X=A^{D} A\left(A^{j}\right)^{\dagger}$. We have $A^{D} A X=A^{D} A A^{D} A\left(A^{j}\right)^{\dagger}=$ $A^{D} A\left(A^{j}\right)^{\dagger}=X$ and $A^{m} X=A^{m} A^{D} A\left(A^{j}\right)^{\dagger}=A^{D} A A^{m}\left(A^{j}\right)^{\dagger}=A^{m}\left(A^{j}\right)^{\dagger}$.
(2). If the system in (4.1) is consistent, then exits $X_{0} \in \mathbb{C}^{n \times n}$ such that $X_{0}=$ $A^{D} A X_{0}=\left(A^{D}\right)^{m} A^{m} X_{0}=\left(A^{D}\right)^{m} A^{m}\left(A^{j}\right)^{\dagger}=A^{D} A\left(A^{j}\right)^{\dagger}$ and $A^{m}\left(A^{j}\right)^{\dagger}=$ $A^{m} X_{0}=A^{m} A^{D} A\left(A^{j}\right)^{\dagger}=A^{m}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}$. Thus

$$
A^{m}\left(A^{j}\right)^{\dagger} A^{j}=A^{m}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{j}=A^{m}\left(A^{D}\right)^{j} A^{j}=A^{m} A^{D} A
$$

If $m \geq j$, then $A^{m} A^{D} A=A^{m}\left(A^{j}\right)^{\dagger} A^{j}=A^{m-j} A^{j}\left(A^{j}\right)^{\dagger} A^{j}=A^{m-j} A^{j}=A^{m}$. That is, $\operatorname{ind}(A) \leq m$. If $j>m$, then $A^{j}=A^{j}\left(A^{j}\right)^{\dagger} A^{j}=A^{j-m} A^{m}\left(A^{j}\right)^{\dagger} A^{j}=$ $A^{j-m} A^{m} A^{D} A=A^{j} A^{D} A$. That is, $\operatorname{ind}(A) \leq j$. Thus, $\operatorname{ind}(A) \leq \max \{j, m\}$.

Example 2. We will give an example that shows if $m<\operatorname{ind}(A)$, then the system in (4.1) is not consistent. Let A be the same matrix in Example 1. It is easy to get $\operatorname{ind}(A)=2$ and $A^{D}=0$. Let $m=j=1$ and suppose that X is the solution of system in (4.1), then $X=A^{D} A X=0$, which gives $A A^{\dagger}=A X=0$, thus $A=A A^{\dagger} A=0$, this is a contradiction.

Example 3. The converse of Theorem 10 (1) is not true. Let $m=1$ and $j=3$. If we let

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

then $\operatorname{ind}(A)=3$ and $A^{3}=0$. Hence $X=0$ is a solution of (4.1), but $m<\operatorname{ind}(A)$.
Example 4. If $\operatorname{ind}(A) \leq \max \{j, m\}$, then the system in (4.1) may be not consistent. If we let

$$
A=\left[\begin{array}{ccc}
2 & 2 & 1 \\
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

then

$$
A^{3}=A^{2}=\left[\begin{array}{ccc}
2 & 2 & 2 \\
-1 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

$A^{D}=A^{2}$ and $\operatorname{ind}(A)=2$. Let $m=1$ and $j=2$, then $\operatorname{ind}(A) \leq \max \{j, m\}$. It is easy to check that

$$
\left(A^{2}\right)^{\dagger}=\frac{1}{15}\left[\begin{array}{lll}
2 & -1 & 0 \\
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right]
$$

If the system in (4.1) has a solution X_{0}, then $X_{0}=A^{D} A X_{0}=A^{D} A\left(A^{2}\right)^{\dagger}$ and $A\left(A^{2}\right)^{\dagger}=A X_{0}=A A^{D} A\left(A^{2}\right)^{\dagger}=A^{4}\left(A^{2}\right)^{\dagger}=A^{2}\left(A^{2}\right)^{\dagger}$ would hold. But

$$
A\left(A^{2}\right)^{\dagger}=\frac{1}{15}\left[\begin{array}{ccc}
10 & -5 & 0 \\
-4 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \neq \frac{1}{15}\left[\begin{array}{ccc}
12 & -6 & 0 \\
-6 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]=A^{2}\left(A^{2}\right)^{\dagger}
$$

Thus, the system in (4.1) is not consistent.
Remark 8. If $m \geq \operatorname{ind}(A)=k$, it is not difficult to see that $A_{j, m}^{\ominus}=A_{j, m+1}^{\ominus}$. That is to say, the (j, m)-core inverse of A coincides with the $(j, m+1)$-core inverse of A. Thus, in the sequel, we only discuss the $m=\operatorname{ind}(A)$ case.

Theorem 11. Let $A, X \in \mathbb{C}^{n \times n}, k, j \in \mathbb{N}$. If $\operatorname{ind}(A)=k$ and X is the (j, k)-core inverse of A, then we have $X^{j} A^{j} X^{j}=\left(A^{D}\right)^{j(j-1)} X^{j}$ and $X A^{j}=A^{D} A$.

Proof. By the definition of the (j, k)-core inverse, we have $X=A^{D} A X$ and $A^{k} X=A^{k}\left(A^{j}\right)^{\dagger}$. By $X=A^{D} A\left(A^{j}\right)^{\dagger}$, it is easy to check that $X^{n+1}=\left(A^{D}\right)^{j} X^{n}$ for arbitrary $n \in \mathbb{N}$, which gives that $X^{j}=\left(A^{D}\right)^{j(j-1)} X$.

$$
\begin{aligned}
X A^{j} & =A^{D} A\left(A^{j}\right)^{\dagger} A^{j}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{j}=\left(A^{D}\right)^{j} A^{j}=A^{D} A \\
X^{j} A^{j} X^{j} & =\left(A^{D}\right)^{j(j-1)} X A^{j} X^{j}=\left(A^{D}\right)^{j(j-1)} A^{D} A X^{j}=\left(A^{D}\right)^{j(j-1)} X^{j} .
\end{aligned}
$$

Corollary 2. Let $A, X \in \mathbb{C}^{n \times n}$ and $\operatorname{ind}(A)=k$. If X is the $(1, k)$-core inverse of A, then we have $X A X=X$ and $X A=A^{D} A$.

The (j, m)-core inverse is a generalization of the core inverse and the DMP-inverse in view of Theorem 11.

Remark 9. When $j=m=1=\operatorname{ind}(A)$, the equations in (4.1) are equivalent to $X A X=X, X A=A^{\#} A$, and $A X=A A^{\dagger}$. Thus $A X=A A^{\dagger}$ implies that $(A X)^{*}=$ $A X ; X A=A^{\#} A$ gives that $X A^{2}=A$ and $A X A=A$; and $X=X A X=A^{\#} A X=$ $A A^{\#} X$, which means that $\mathcal{R}(X) \subseteq \mathscr{R}(A)$, then $X=A Y$ for some $Y \in \mathbb{C}^{n \times n}$, thus $X=A Y=A X A Y=A X^{2}$. Therefore, we have $A^{\oplus}=X$ by Lemma 1. In a word, the $(1,1)$-core inverse coincides with the usual core inverse.

Remark 10. If we let $j=1$ and $m=\operatorname{ind}(A)$, then the equations in (4.1) are equivalent to $X A X=X, X A=A^{D} A$, and $A^{k} X=A^{k} A^{\dagger}$ by Theorem 11. Thus $(1, k)$-core inverse coincides with the DMP-inverse.

From Remark 10, Theorem 11 and the definition of the (j, k)-core inverse, we have the following theorem, which says that the conditions $X A X=X$, and $X A=A^{D} A$ in the definition of the DMP-inverse can be replaced by $X=A^{D} A X$.

Theorem 12. Let $A \in \mathbb{C}^{n \times n}$ with $k=\operatorname{ind}(A)$. Then $X \in \mathbb{C}^{n \times n}$ is the DMP-inverse of A if and only if $X=A^{D} A X$ and $A^{k} X=A^{k} A^{\dagger}$.

In the following theorem, we will give a canonical form for the (j, k)-core inverse of a matrix $A \in \mathbb{C}^{n \times n}$ by using the matrix decomposition in Theorem 1 .

Theorem 13. Let $A \in \mathbb{C}^{n \times n}$ have the form (2.1) with $\operatorname{ind}(A)=k$ and $j \in \mathbb{N}$. Then

$$
A_{j, k}^{\ominus}=U\left[\begin{array}{cc}
(M C)^{D}(M C)_{j-1, k}^{\ominus} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

Proof. By Theorem 10 and the idempotency of $A^{D} A$ we have

$$
\begin{equation*}
A_{j, k}^{\ominus}=A^{D} A\left(A^{j}\right)^{\dagger}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} \tag{4.2}
\end{equation*}
$$

From the proof of Theorem 7, we have

$$
A^{j}\left(A^{j}\right)^{\dagger}=U\left[\begin{array}{cl}
(M C)^{j-1}\left((M C)^{j-1}\right)^{\dagger} & 0 \tag{4.3}\\
0 & 0
\end{array}\right] U^{*}
$$

By (2.2) we have

$$
\left(A^{D}\right)^{j}=U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{j}} & {\left[(M C)^{D}\right]^{j+1} M S} \tag{4.4}\\
0 & 0
\end{array}\right] U^{*}
$$

By the proof of Theorem 7, we have ind $(M C) \leq k-1<k$. From (4.2), (4.3) and (4.4), we have

$$
\begin{aligned}
A_{j, k}^{\ominus} & =\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} \\
& =U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{j}} & {\left[(M C)^{D}\right]^{j+1} M S} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
(M C)^{j-1}\left((M C)^{j-1}\right)^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
{\left[(M C)^{D}\right]^{j}(M C)^{j-1}\left((M C)^{j-1}\right)^{\dagger}} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
(M C)^{D}\left[(M C)^{D}\right]^{j-1}(M C)^{j-1}\left((M C)^{j-1}\right)^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
(M C)^{D}(M C)^{D} M C\left((M C)^{j-1}\right)^{\dagger} & 0 \\
0 & 0
\end{array}\right] U^{*} \\
& =U\left[\begin{array}{cc}
(M C)^{D}(M C)_{j-1, k}^{\ominus} & 0 \\
0 & 0
\end{array}\right] U^{*} .
\end{aligned}
$$

Remark 11. If we use the decomposition of Hartwig and Spindelböck in [8, Corollary 6], then an expression of the (j, k)-core inverse of A is

$$
A_{j, k}^{\ominus}=U\left[\begin{array}{cc}
(\Sigma K)^{D}(\Sigma K)_{j-1, k}^{\ominus} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

which is similar to the expression of $A_{j, k}^{\ominus}$ in Theorem 13. Since the proof of this result can be proved like the proof of Theorem 13, we omit this proof.

Theorem 14. Let $A \in \mathbb{C}^{n \times n}$ and $\operatorname{ind}(A)=k$. If $\left(A^{k} X^{k}\right)^{*}=A^{k} X^{k}, A X^{k+1}=$ X^{k} and $X A^{k+1}=A^{k}$, then A is (k, k)-core invertible and $A_{k, k}^{\ominus}=X^{k}$.

Proof. By Lemma 2 and Lemma 3, we have $A^{k} X^{k} A^{k}=A^{k}, X^{k} A^{k} X^{k}=X^{k}$, $A^{k}=X^{k} A^{2 k}$, and $A^{D}=X^{k+1} A^{k}$. Equalities $\left(A^{k} X^{k}\right)^{*}=A^{k} X^{k}$ and $A^{k} X^{k} A^{k}=$ A^{k} imply that X^{k} is a $\{1,3\}$-inverse of A^{k}. From $A^{D}=X^{k+1} A^{k}$, we can obtain $\left(A^{D}\right)^{k}=X^{k-1} A^{D}$ by induction. Thus

$$
\begin{aligned}
A_{k, k}^{\ominus} & =A^{D} A\left(A^{k}\right)^{\dagger}=\left(A^{D}\right)^{k} A^{k}\left(A^{k}\right)^{\dagger}=\left(A^{D}\right)^{k} A^{k}\left(A^{k}\right)^{(1,3)} \\
& =\left(A^{D}\right)^{k} A^{k} X^{k}=\left(X^{k+1} A^{k}\right)^{k} A^{k} X^{k}=X^{k-1} X^{k+1} A^{k} A^{k} X^{k} \\
& =X^{2 k} A^{2 k} X^{k}=X^{k}\left(X^{k} A^{2 k}\right) X^{k}=X^{k} A^{k} X^{k}=X^{k}
\end{aligned}
$$

Proposition 3. Let $A \in \mathbb{C}^{n \times n}$ be a matrix with $j \geq \operatorname{ind}(A)=k$. If A is (j, k)-core invertible, then $A^{j} A_{j, k}^{\ominus}$ is the projector onto $\mathcal{R}\left(A^{j}\right)$ along $\mathcal{R}\left(A^{j}\right)^{\perp}$.

Proof. It is trivial.
In the following proposition, we will investigate some properties of the (j, k)-core inverse.

Proposition 4. Let $A \in \mathbb{C}^{n \times n}$ with $j \geq \operatorname{ind}(A)=k$. If A is (j, k)-core invertible, then
(1) $A_{j, k}^{\ominus}$ is a $\{1,2,3\}$-inverse of A^{j};
(2) $A_{j, k}^{\ominus}=\left(A^{D}\right)^{j} P_{A^{j}}$;
(3) $\left(A_{j, k}^{\ominus}\right)^{n}= \begin{cases}{\left[\left(A^{D}\right)^{j}\left(A^{j}\right)^{\dagger}\right]^{n / 2}} & \text { if } n \text { is even, } \\ A^{j}\left[\left(A^{D}\right)^{j}\left(A^{j}\right)^{\dagger}\right]^{(n+1) / 2} & \text { if } n \text { is odd } .\end{cases}$
(4) $A_{j, k}^{\ominus} A^{D}=\left(A^{D}\right)^{j+1}$;
(5) $A^{j} A_{j, k}^{\ominus}=A_{j, k}^{\ominus} A^{j}$ if and only if $\mathcal{R}\left(A^{j}\right)^{\perp} \subseteq \mathcal{N}\left(A^{j}\right)$;
(6) $A_{j, k}^{\ominus}=A$ implies that A is $E P$.

Proof. (1). By Theorem 10 we have $A_{j, k}^{\ominus}=A^{D} A\left(A^{j}\right)^{\dagger}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}$, thus

$$
\begin{aligned}
A^{j} A_{j, k}^{\ominus} A^{j} & =A^{j}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{j}=A^{j}\left(A^{D}\right)^{j} A^{j}=A^{j} A^{D} A=A^{j} \\
A_{j, k}^{\ominus} A^{j} A_{j, k}^{\ominus} & =\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{j} A_{j, k}^{\ominus}=A^{D} A A_{j, k}^{\ominus} \\
& =A^{D} A A^{D} A\left(A^{j}\right)^{\dagger}=A^{D} A\left(A^{j}\right)^{\dagger}=A_{j, k}^{\ominus} ; \\
A^{j} A_{j, k}^{\ominus} & =A^{j}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}=A^{j}\left(A^{j}\right)^{\dagger}
\end{aligned}
$$

(2) is trivial.
(3). By $\left(A_{j, k}^{\ominus}\right)^{2}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}=\left(A^{D}\right)^{j}\left(A^{j}\right)^{\dagger}$ and induction it is easy to check (3).
(4). $A_{j, k}^{\ominus} A^{D}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{D}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}\left(A^{D}\right)^{j} A^{j} A^{D}=\left(A^{D}\right)^{j+1}$.
(5). By $\mathscr{R}\left[I_{n}-A^{j}\left(A^{j}\right)^{\dagger}\right]=\mathcal{N}\left[\left(A^{j}\right)^{\dagger}\right]$ and $\mathcal{N}\left(A^{D} A\right)=\mathcal{N}\left(A^{D}\right)$, we have

$$
\begin{aligned}
A^{j} A_{j, k}^{\ominus}=A_{j, k}^{\ominus} A^{j} & \Leftrightarrow A^{j}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}=\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger} A^{j} \\
& \Leftrightarrow A^{j}\left(A^{D}\right)^{j} A^{j}\left(A^{j}\right)^{\dagger}=\left(A^{D}\right)^{j} A^{j} \\
& \Leftrightarrow A^{j}\left(A^{D}\right)^{j}\left[I_{n}-A^{j}\left(A^{j}\right)^{\dagger}\right]=0 \\
& \Leftrightarrow \mathcal{R}\left[I_{n}-A^{j}\left(A^{j}\right)^{\dagger}\right] \subseteq \mathcal{N}\left(A^{D} A\right) \\
& \Leftrightarrow \mathcal{N}\left[\left(A^{j}\right)^{\dagger}\right] \subseteq \mathcal{N}\left(A^{D} A\right) \\
& \Leftrightarrow \mathcal{N}\left[\left(A^{j}\right)^{*}\right] \subseteq \mathcal{N}\left(A^{D}\right) \\
& \Leftrightarrow \mathcal{R}\left(A^{j}\right)^{\perp} \subseteq \mathcal{N}\left(A^{j}\right)
\end{aligned}
$$

(6). Let A be written in the form (2.1). We have

$$
A_{j, k}^{\ominus}=U\left[\begin{array}{cc}
(M C)^{D}(M C)_{j-1, k}^{\ominus} & 0 \\
0 & 0
\end{array}\right] U^{*}
$$

by Theorem 13. Thus, $A_{j, k}^{\ominus}=A$ implies $M S=0$. From the nonsingularity of M, we have $S=0$, which is equivalent to say that A is EP in view of [2, Theorem 3.7].

In the following proposition, we shall give the the relationship between the (j, k) core inverse and DMP-inverse and core-EP inverse.

Proposition 5. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$. Then

$$
A_{k, k}^{\ominus}=A^{D, \dagger}\left(A^{D}\right)^{k-1} A A^{\oplus}
$$

Proof. We have that $A^{k}\left(A^{k}\right)^{\dagger}=A A^{\oplus}$ by Lemma 5 and $A^{D, \dagger}=A^{D} A A^{\dagger}$. Thus

$$
\begin{aligned}
A_{k, k}^{\ominus} & =A^{D} A\left(A^{k}\right)^{\dagger}=\left(A^{D}\right)^{k} A^{k}\left(A^{k}\right)^{\dagger}=A^{D} A^{k}\left(A^{D}\right)^{k-1}\left(A^{k}\right)^{\dagger} \\
& =A^{D} A A^{\dagger} A^{k}\left(A^{D}\right)^{k-1}\left(A^{k}\right)^{\dagger}=A^{D, \dagger}\left(A^{D}\right)^{k-1} A^{k}\left(A^{k}\right)^{\dagger} \\
& =A^{D, \dagger}\left(A^{D}\right)^{k-1} A A^{\oplus}
\end{aligned}
$$

In the following theorem, we will give a relationship between the $\langle i, m\rangle$-core inverse and (j, m)-core inverse.

Theorem 15. Let $A \in \mathbb{C}^{n \times n}$ with $\operatorname{ind}(A)=k$. Then $A_{k, m}^{\oplus}=A_{m, k}^{\ominus}$ for any $m \geq k$.

Proof. By Theorem 10, we have $A_{m, k}^{\ominus}=A^{D} A\left(A^{m}\right)^{\dagger}=\left(A^{D}\right)^{k} A^{k}\left(A^{m}\right)^{\dagger}$. By the proof of Remark 5, we have $A^{k}=M N$ and $N M=L^{k}$, where $M=\prod_{l=1}^{k} B_{l}$, $N=\prod_{l=1}^{k} G_{k+1-l}$ and $L=G_{k} B_{k}$. It is easy to see that $\left(A^{D}\right)^{s}=M L^{-k-s} N$ for any $s \in \mathbb{N}$ by $N M=L^{k}$. Thus $\left(A^{D}\right)^{k}=M L^{-2 k} N$ and

$$
\left(A^{D}\right)^{k} A^{k}=M L^{-2 k} N M N=M L^{-2 k} L^{k} N=M L^{-k} N
$$

By the proof of Remark 5, we have $A^{m}=M L^{m-k} N=M_{1} N$ is a full rank factorization of A^{m}, where $M_{1}=M L^{m-k}$ and

$$
\left(A^{m}\right)^{\dagger}=N^{*}\left(N N^{*}\right)^{-1}\left(M_{1}^{*} M_{1}\right)^{-1}\left(M_{1}\right)^{*}
$$

By Theorem 6, we have $A_{k, m}^{\oplus}=M L^{-m} M^{\dagger}$. In the following steps, we will show that $A_{m, k}^{\ominus}=M L^{-m} M^{\dagger}$. From $A_{m, k}^{\ominus}=\left(A^{D}\right)^{k} A^{k}\left(A^{m}\right)^{\dagger}$, we have

$$
\begin{aligned}
A_{k, m}^{\ominus} & =\left(A^{D}\right)^{k} A^{k}\left(A^{m}\right)^{\dagger}=M L^{-k} N N^{*}\left(N N^{*}\right)^{-1}\left(M_{1}^{*} M_{1}\right)^{-1}\left(M_{1}\right)^{*} \\
& =M L^{-k}\left(M_{1}^{*} M_{1}\right)^{-1}\left(M_{1}\right)^{*}=M L^{-k}\left[\left(L^{m-k}\right)^{*} M^{*} M L^{m-k}\right]^{-1}\left(L^{m-k}\right)^{*} M^{*} \\
& =M L^{-k} L^{k-m}\left(M^{*} M\right)^{-1}\left[\left(L^{m-k}\right)^{*}\right]^{-1}\left(L^{m-k}\right)^{*} M^{*} \\
& =M L^{-m}\left(M^{*} M\right)^{-1} M^{*}=M L^{-m} M^{\dagger}
\end{aligned}
$$

Theorem 16. Let $A \in \mathbb{C}^{n \times n}$ with $i \geq \operatorname{ind}(A)=k$, then $A_{i, k}^{\ominus}=P_{1} D^{-i} P_{1}^{\dagger}$, where $A=P\left[\begin{array}{ll}D & 0 \\ 0 & N\end{array}\right] P^{-1}$ with $D \in \mathbb{C}^{r \times r}$ is nonsingular, N is nilpotent and $P=\left[P_{1} \mid P_{2}\right]$ with $P_{1} \in \mathbb{C}^{n \times r}$.

Proof. It is easy to see that by Theorem 8 and Theorem 15.

ACKNOWLEDGEMENT

This research is supported by the National Natural Science Foundation of China (NO. 11771076 and No. 11471186). The first author is grateful to China Scholarship Council for giving him a purse for his further study in Universitat Politècnica de València, Spain.

REFERENCES

[1] O. M. Baksalary and G. Trenkler, "Core inverse of matrices," Linear Multilinear Algebra, vol. 58, no. 6, pp. 681-697, 2010, doi: 10.1080/03081080902778222.
[2] J. Benítez, "A new decomposition for square matrices," Electron. J. Linear Algebra, vol. 20, pp. 207-225, 2010, doi: 10.13001/1081-3810.1369.
[3] J. Benítez and X. Liu, "A short proof of a matrix decomposition with applications," Linear Algebra Appl., vol. 438, no. 3, pp. 1398-1414, 2013, doi: 10.1016/j.laa.2012.10.002.
[4] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations. Philadelphia, SIAM, 2009.
[5] J. Chen, "Group inverses and drazin inverses of matrices over rings, (chinese)," J. Xinjiang Univ. Natur. Sci., vol. 9, no. 1, pp. 44-49, 1992.
[6] R. E. Cline, "An application of representations for the generalized inverse of a matrix," Mathematics Research Center, University of Wisconsin, Madison, Tech. Rep., 1965.
[7] R. E. Cline, "Inverses of rank invariant powers of a matrix," SIAM J. Numer. Anal., vol. 5, no. 1, pp. 182-197, 1968, doi: 10.1137/0705015.
[8] R. E. Hartwig and K. Spindelböck, "Matrices for which a^{*} and a^{\dagger} commute," Linear Multilinear Algebra, vol. 14, no. 3, pp. 241-256, 1983, doi: 10.1080/03081088308817561.
[9] S. B. Malik and N. Thome, "On a new generalized inverse for matrices of an arbitrary index," Appl. Math. Comput., vol. 226, pp. 575-580, 2014, doi: doi.org/10.1016/j.amc.2013.10.060.
[10] K. Manjunatha Prasad and K. S. Mohana, "Core-ep inverse," Linear Multilinear Algebra, vol. 62, no. 6, pp. 792-802, 2014, doi: 10.1080/03081087.2013.791690.
[11] H. Wang, "Core-ep decomposition and its applications," Linear Algebra Appl., vol. 508, pp. 289300, 2016, doi: 10.1016/j.laa.2016.08.008.
[12] H. K. Wimmer, "Canonical angles of unitary spaces and perturbations of direct complements," Linear Algebra Appl., vol. 287, pp. 373-379, 1999, doi: 10.1016/S0024-3795(98)10017-4.
[13] S. Xu, J. Chen, and X. Zhang, "New characterizations for core inverses in rings with involution," Front. Math. China, vol. 12, no. 1, pp. 231-246, 2017, doi: 10.1007/s11464-016-0591-2.

Authors' addresses

Sanzhang Xu

Faculty of Mathematics and Physics, Huaiyin Institute of Technology, 223003 Huaian, China
E-mail address: xusanzhang5222@126.com

Jianlong Chen

School of Mathematics, Southeast University, 210096 Nanjing, China
E-mail address: E-mail: jlchen@seu.edu.cn

Julio Benítez

Universitat Politècnica de València, Instituto de Matemática Multidisciplinar, 46022 Valencia, Spain E-mail address: jbenitez@mat.upv.es

Dingguo Wang

School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, China
E-mail address: dingguo95@126.com

[^0]: The first author is the corresponding author.

