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Premise of research. Leaves of an extinct kind of cycad are recognized from the middle and late Eocene
Clarno Formation of Oregon. Although the pinnately compound leaf is similar in gross form and organization
to some other extant and Cenozoic cycads such as Dioon Lindl., Encephalartos Lehm., and Dioonopsis
Horiuchi et Kimura, it is readily distinguished from them by its venation, consisting of a closed reticulum of a
single order of veins with a frequent dichotomizing and anastomosing pattern.

Methodology. Fossils stored in the Museum of Paleontology (University of California), Florida Museum
of Natural History (University of Florida), and Condon Museum of Natural History (University of Oregon)
were studied applying conventional macromorphological and micromorphological methods including trans-
mitted light and epifluorescence microscopy.

Pivotal results. The leaves conform in their peculiar venation and epidermal anatomy to the extinct genus
Ctenis Lindley et Hutton, which previously was known only from Mesozoic occurrences. Ctenis clarnoensis
Erdei et Manchester sp. n. adds to the diversity of cycads known from the Paleogene of western North America.

Conclusions. The record of the reticulate-veined C. clarnoensis and other fossil cycad genera with anas-
tomosing venation patterns from the Paleogene implies that an extinct lineage or lineages of cycads sharing the
character of reticulate venation, previously considered to be restricted to the Mesozoic, may have persisted
into the Paleogene. Some physiognomic features of leaflets including the involute margin and pointed apex
may suggest periodically dry conditions. By the present record the stratigraphic range of Ctenis is significantly
extended from its previously known latest records in the Early Cretaceous up to as late as the Eocene.
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Introduction

Leaves displaying the general morphology of cycad foliage
are encountered only sporadically in Paleogene sediments of
North America contrasting with Mesozoic strata in which
cycad-like remains are relatively frequent and typical elements
of the flora. One of the well-known cycadalean foliage genera
of the Mesozoic, Ctenis was established by Lindley and Hut-
ton (1834, p. 103) to accommodate leaves with the general
character of modern cycads but with abundant vein anasto-
moses, giving a reticulate venation pattern. Although some
early authors (e.g., Raciborski 1894; Staub 1896;Möller 1902;
Yokoyama 1906) favored the assignment of Ctenis leaves to
the pteridophytes, characteristic epidermal traits revealed later
by Florin (1933) and Harris (1964) suggested their relation to
cycads. Leaves assigned to Ctenis were not frequent elements
of fossil assemblages; nevertheless, the genus was relatively
widespread and reported from mainly Upper Triassic to Mid-

dle Jurassic strata in England (Yorkshire et al. 1834; Harris
1950, 1964); southern Sweden (Nathorst 1886; Florin 1933);
Denmark (Möller 1902; Florin 1933); Greenland (Harris 1932,
1937); California, Oregon, and Virginia (Fontaine 1889, 1896,
1898–1899; Ward 1905); Poland (Raciborski 1894); Ro-
mania (Staub 1896); the Middle East (Schweitzer and Kirch-
ner 1998); Üzbekistan (Gomolitzky 1974); China (Yokoyama
1906; Zhang and Zheng 1987); Japan (Oishi 1932, 1940;
Kimura and Sekido 1972); Korea (Kawasaki 1926); and Ar-
gentina (Artabe and Stevenson 1999). In this article we con-
tribute to the fossil record of Ctenis with a much younger oc-
currence of the genus from the Eocene Clarno Formation in
Oregon.
The Cenozoic record of cycads in North America includes

good examples from the northern Rocky Mountains and
Western Interior and the Pacific Northwest including Oregon,
Washington, and Alaska (DeVore and Pigg 2010). However,
only a few have been well documented and thoroughly in-
vestigated with studies including epidermal anatomy as well
as leaf architecture, such as Eostangeria pseudopteris Kvaček
et Manchester from Wyoming and Oregon (Kvaček and Man-
chester 1999) and Dioonopsis species from Alaska and Cali-
fornia (Erdei et al. 2012). An isolated zamioid leaflet was
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recorded from the Republic flora of northeastern Washington
(Hopkins and Johnson 1997), but epidermal characters re-
main unknown. Convergence in gross form and venation of
leaves among different extant and extinct genera makes it dif-
ficult to confirm the placement of such fossil remains unless
epidermal anatomy can also be observed. Differences in epi-
dermal anatomy recorded in the cuticles can be used to distin-
guish among extant and fossil genera. The nearly whole-plant
record of a cycad resemblingDioonopsis has been documented
from the highly diverse flora of the Early Paleocene Castle
Rock locality in central Colorado from the Rocky Mountains
(Ellis et al. 2003; Miller et al. 2007; DeVore and Pigg 2010).
Although cones are not known for this plant, the growth ar-
chitecture, leaf form, venation, and epidermal characters are
preserved. A thorough review is required, as well, for numerous
other specimens previously reported in the literature, such as
tiny fragments that were identified by Berry (1916), Hollick
(1928), and Brown (1962) as various extinct species of Za-
mia L. (Erdei et al. 2014). The North American Paleogene
fossil record and distribution of cycads have recently been dis-
cussed by DeVore and Pigg (2010).

Although the systematic relationships of Tertiary cycads
are still far from resolved, the importance of extinct lineages
among cycads, e.g., Dioonopsis (Horiuchi and Kimura 1987;
Erdei et al. 2012), Eostangeria Barthel (Barthel 1976; Kvaček
and Manchester 1999; Uzunova et al. 2001), and Pseudo-
dioon Erdei, Akgün et Barone Lumaga (Erdei et al. 2010),
seems to be significant in the North American and Eurasian
Paleogene floras. A common feature of these extinct cycads
is that their leaves display a gross morphology mostly well
comparable to modern genera, e.g., Eostangeria to extant
Stangeria T. Moore and Dioonopsis to modern encephalar-
toid members of Zamiaceae, e.g., Dioon, but their epidermal
characters either are not present among modern cycads or
represent a combination of traits of various extant genera. In
concert with this, DeVore and Pigg (2010) emphasize as well
that a mosaic of characters not encountered in modern taxa
has been recorded among fossil cycads and the relationships
between Cenozoic and modern taxa are unclear. This inter-
pretation seems to be supported by recent molecular studies
suggesting surprisingly recent radiation of modern species of
cycads (Nagalingum et al. 2011).

The foliage Ctenis clarnoensis sp. n. described herein con-
tributes to the Cenozoic morphological diversity of extinct
leaf forms assigned to cycads and extends considerably the
stratigraphic range of the genus Ctenis, which is reported here
for the first time from post-Mesozoic floras. We compare it
with other species of Ctenis based on a comprehensive review
of the literature and discuss the significance of the reticulate
venation pattern in this and other groups of plants.

Material and Methods

The study is based on foliage material in the collections of
the Museum of Paleontology, University of California (cata-
log numbers prefixed UCMP), Berkeley; Florida Museum of
Natural History at the University of Florida (UF); Condon
Museum of Natural History, University of Oregon, Eugene (F);
and the Oregon Museum of Science and Industry, Portland
(OMSI). Specimens from UCMP were collected by R. W.

Chaney with A. W. Hancock and A. D. Vance in 1936 from
tuffs of Hancock Canyon in the Clarno Formation and identi-
fied as a putative cycad assuming its relation to the modern
cycad genus Dioon (Chaney 1936). Specimens stored at UF
and F were collected at the Clarno Nut Beds by S. Manchester,
W. Cox, and D. Mustard in 1981.

The middle portion of two leaves and occasional leaf seg-
ments are preserved mainly as impressions (figs. 1A, 1C, 2A).
Macroscopic details of the fossil foliage are nicely preserved in
some of the fossils showing leaflet margin and venation; also
whole pinnae with apices are observable, indicating shape of
leaf segments and type of attachment. Remains of the cuticle
are preserved in patches showing just faintly the former epi-
dermal patterns.

Cuticular details were studied using both epifluorescence
and transmitted light microscopy with much more success
when applying the former. UV light was applied on cuticles
intact on sediment of the megafossil, as well as on pieces of
cuticle removed from the megafossil specimens, cleaned in hy-
drofluoric acid, and subsequently washed in water. For trans-
mitted light microscopy, pieces of cuticle were macerated by
oxidation with Schultze’s solution and leached by an aqueous
solution of potassium hydroxide (5%). Unfortunately, we were
able to macerate successfully only the upper cuticle; only
epifluorescence revealed features from the poorly preserved
lower cuticle. For description of the fossil leaves, we use the
term “pinna” following Florin (1933) andHarris (1964).When
describing venation, the term “reticulate” was favored in the
sense as used by earlier authors (Wagner 1979; Trivett and
Pigg 1996; Roth-Nebelsick et al. 2001).

For extant comparisons cycad leaflets were sampled with
permission from the living cycad collections at the Montgom-
ery Botanical Center (Coral Gables, FL). Leaflets of extant cy-
cads were cleared for comparison of venation patterns by
treatment with 10% solution of potassium hydroxide at room
temperature.

Images of fossil cuticles were obtained using a Zeiss Axio-
phot microscope equipped with a digital camera (Axiocam).
For the purpose of focus stacking of cuticle images, the soft-
ware Heliconfocus was used. Although the quite robust,
three-dimensional leaf rachis seemed to be permineralized in
one specimen; our attempts to reveal its anatomy through
sectioning revealed it to be a cast lacking preservation of cel-
lular structure.

Geological Settings

The most impressive specimens, large leaves with several
segments attached along the rachis, were collected from Steg-
amonster Hill (lat. 44755.287′N, long. 120725.293′W), ad-
jacent to present-day Hancock Field Station in Hancock
Canyon (Chaney 1936). These specimens were deposited at
UCMP and F. This occurs in siltstone layers interdigitating
with lahar deposits of the Clarno Formation, considered to
be late Eocene (ca. 44 Ma; Uintan; Hanson 1996). This site
was labeled cycad locality within unit C of the Clarno For-
mation in figure 2 of Hanson (1996). Smaller fragmentary
specimens, obtained from the nearby Clarno Nut Beds locality
(lat. 44755.370′N, long. 120725.930′W; unit B of Hanson
1996) contain remnant cuticle. This locality is considered to
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Fig. 1 Macromorphological details of Ctenis clarnoensis sp. n. from the Eocene Clarno Formation. Scale bars p 1 cm. A, Holotype speci-
men of C. clarnoensis sp. n. (UCMP151989). B, Apex of leaf segments of the holotype showing a pointed tubular extension (UCMP151989).
C, Specimen of C. clarnoensis sp. n. cited as “additional specimen,” which is characterized by more elongate pinnae than the holotype (F34381).
D, Detail of the holotype showing attachment of pinnae to rachis (UCMP151989). E, Detail of venation in the holotype. Note the frequent
anastomoses forming elongate areoles (UCMP151989).



be older, early middle Eocene, ca. 47 million years (Bridge-
rian; Hanson 1996).

The Nut Beds flora contains a diverse subtropical flora doc-
umented by 145 genera of fruits and seeds (Manchester 1994),
66 genera of silicified woods (Wheeler and Manchester 2002),

and a large number of leaf remains (Manchester 1981). Note-
worthy elements of the leaf flora include Ginkgo L., Meliosma
Blume, Quercus L., Lauraceae, Menispermaceae, Juglanda-
ceae, and ferns plus at least two other cycads in addition to
the one presented here (so-called Dioon [fig. 5 in Manchester

Fig. 2 Macromorphological and cuticular details of Ctenis clarnoensis sp. n. from the Eocene Clarno Formation. A, Detached pinna with
contracted base (1754a); scale bar p 1 cm. B, Detail of venation of specimen on A showing elongate meshes (1754a); scale bar p 1 mm.
C, Adaxial cuticle of C. clarnoensis sp. n. showing isodiametric cells and thickened cell walls (OMSI-PB 1715), transmitted light microscopy (lm);
scale bar p 50 mm. D, Enlargement of C (OMSI-PB 1715), lm; scale barp 50 mm. E, Abaxial cuticle C. clarnoensis sp. n. showing scattered, ran-
domly orientated stomata. Arrows indicate stomata with subsidiaries faintly observable (OMSI-PB 1754b), fluorescence microscopy (fm); scale
bar p 50 mm. F, Stomata showing sunken guard cells (OMSI-PB 1754b), fm; scale bar p 20 mm. G, Stoma enlarged showing walls of some sub-
sidiaries (OMSI-PB 1754b), fm; scale barp 20 mm. H, Stoma enlarged from E showing cyclocytic arrangement of subsidiaries (OMSI-PB 1754b),
fm; scale barp 20 mm.
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1981] and Eostangeria [fig. 1E in Kvaček and Manchester
1999]). The fruit and seed flora includes members of the
Musaceae (Ensete Bruce ex Horan.); Cannabaceae (Celtis L.);
Juglandaceae (Juglans L., Platycarya Siebold et Zucc., Engel-
hardia Lesch. ex Blume); Tapisciaceae (Tapiscia Oliv.); Tori-
celliaceae (Toricellia DC.); Ulmaceae (Cedrelospermum Sap-
orta); and diverse Icacinaceae, Menispermaceae, and Vitaceae.

Results: Systematics

Order—Cycadales Dumort

Genus—Ctenis Lindley et Hutton

Species—Ctenis clarnoensis Erdei et Manchester sp. n.

(Figs. 1, 2A–2G, 3A–3C)

Holotype. UCMP 151989 here designated (figs. 1A, 1B,
1D, 1E, 3A–3C).

Repository. University of California, Museum of Paleon-
tology (UCMP).
Paratypes. UF 225-47241, 47243, OMSI-PB 492, 1754a,

1754b (fig. 2A, 2B, 2E–2G; loose cuticle fragments have been
preserved and analyzed), OMSI-PB 1715 (and cuticle slides
prepared from OMSI-PB 1715; fig. 2C, 2D).
Repositories. Florida Museum of Natural History (UF).
Additional specimen. F34381 (Condon Museum of Nat-

ural History, University of Oregon [F]; fig. 1C).
Type locality. Hancock Canyon,Wheeler County, Oregon.
Stratigraphichorizon. ClarnoFormation,LateEocene (type

locality) and middle Eocene (Nut Beds locality yielding the
paratypes).
Etymology. Referring to the Clarno Formation (the forma-

tion is named after a small settlement Clarno that commemo-
rates with its name Andrew Clarno, an early settler in the area).
Diagnosis. Leaf pinnately compound; pinnae at least six

pairs, inserted with broad, slightly contracted base laterally
and suboppositely on rachis sides at angles of 807–857 to ra-
chis. Pinnae falcate, robust, elliptic, margin entire, partly in-

Fig. 3 Line drawings of leaves of Ctenis clarnoensis sp. n. and Ctenis kaneharai for comparison. Scale bars p 1 cm. A–C, C. clarnoensis
sp. n.A, Drawing of holotype (UCMP151989). B, Detail of venation (UCMP151989).C, Closer view showing insertion of pinnae (UCMP151989).
D, C. kaneharai (from Harris 1964, fig. 48D).
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volute; basiscopic pinna base decurrent to rachis; apex obtuse
with an acuminate tubular tip. Veins frequently forking and
anastomosing to form a network. Veins decurrent at pinna
base; adjacent veins joining before reaching the margin or the
apex. Ordinary epidermal cells on adaxial and abaxial sides
isodiametric, anticlinal cell walls thickened, slightly undulate.
Leaf hypostomatic, stomata scattered, randomly orientated,
cyclocytic, guard cells sunken; subsidiary cell walls thickened,
forming a rim around guard cells.

Description. Fragmentary middle portions of pinnately
compound leaves, rachis with attached leaf segments, and
several detached pinnae form the basis of this study. The
length and width of the largest fragmentary leaf (fig. 1A) are
26.5 and 19.5 cm, respectively. Extrapolated complete width
of the leaf is 27 cm. Although the original length could not be
estimated, it may be assumed that the leaf was significantly
larger than its preserved part. The rachis is straight, relatively
robust, with a width of 0.8–1.2 cm, and seems to have definite
parallel grooves, suggesting that rachis may have displayed
a noncircular cross-sectional pattern (fig. 1E). (However, it
should be taken into account that such grooves may be taph-
onomic artifacts, as well.) Five pairs of pinnae (plus fragments
of one more pair are observable) are inserted on the rachis, but
the number of pinna pairs must have been much higher. The
relatively large and robust tongue-shaped lanceolate pinnae
are 12.7–15 cm long and 3.8–5 cm wide (l/w ∼ 3.2). Pinnae
are inserted to rachis slightly suboppositely at angles of 807–
857, laterally on rachis sides with a broad but contracted base
right above the place of insertion (fig. 1A, 1D). Pinnae are to
some extent falcate and seem not or only slightly overlapping.
The leaf was probably keeled because leaflet bases and the
main part of the lamina seem to have been in different planes
originally. Pinnae are entire margined, and the margin seems
to be partly involute, giving a wavy appearance along the
middle portion of pinnae (fig. 1A, 1B).

The lamina is decurrent to the rachis and contracted close
to the point of insertion (fig. 1D). Contraction mainly occurs
by the basal acroscopic part of the lamina. The apex is obtuse
and asymmetrical, with the acroscopic margin more rounded.
Pinnae apices possess a tubelike, pointed, probably spiny ex-
tension (fig. 1B), which is likely to have resulted from the
abruptly involute margin, but we cannot rule out that this
form was an artifact caused by shape deformation due to dry-
ing out of the leaf. Nevertheless, we consider the former in-
terpretation to be more likely.

Vein density is moderate, with 11–15 veins per centimeter
in the middle part of the lamina. Up to 40–60 veins are in-
tercepted in a line across the full width of the middle part of
the lamina, and they are of the same order, without a differ-
entiated midvein. Veins entering the pinnae fork and anasto-
mose frequently, thus forming a mesh of 5–30-mm-long are-
oles (figs. 1D, 1E, 2B). Although it is usually faintly observable,
veins seem to join adjacent veins close to the margin. This is
more conspicuous close to the apex (fig. 1B). Veins are decur-
rent at the base of pinnae (fig. 1D).

Adaxial cuticle is thick, with large, mostly isodiametric cells
of 30–60 mm in diameter (fig. 2C, 2D). Anticlinal cell walls
are mostly penta- and hexagonal. No definite rows or group-
ing of cells is observable. Anticlinal cell walls are thickened
and slightly undulate. No stomata or trichome bases were ob-

served, although it should be considered that the cuticle is just
partial and very poorly preserved.

Abaxial cuticle is thinner and very poorly preserved in
patches around stomata (fig. 2E). Ordinary epidermal cell out-
lines are hardly observable, probably (observed in one sam-
ple) isodiametric, with slightly undulate anticlinal cell walls.
Stomata seem to be scattered, based on the brightly fluo-
rescing annular thickenings around stomata (fig. 2E, 2F), but
the few available fragments are not large enough to recog-
nize whether they are arranged in bands. Stomata are cy-
clocytic, with sunken guard cells, and seem randomly orien-
tated (fig. 2E–2G). Guard cells are 30–40 mm in length. The
stomatal aperture is narrow, oblong, and about 20–25 mm long.
Subsidiary cells are barely observable (fig. 2F, 2G). Probably
5–7 subsidiary cells having thickened cell walls surround the
guard cells. Centripetally, the cell walls seem to be more thick-
ened, forming a coronal rim of about 25–30 mm in diameter
surrounding the stomatal pit. Trichome bases were not ob-
served, but their absence may be attributable to poor pres-
ervation.

It must be noted that some of the leaf remains—one of
them right on the same slab with the holotype (fig. 1A) and
another cited as an “additional specimen” (fig. 1C)—show
slightly different morphology with slender and more elongate
pinnae. Pinna apices are not preserved in these cases. Epi-
dermal characters were not available, but the identical vena-
tion pattern with frequently dichotomizing and anastomosing
veins indicates that these specimens probably represent mor-
phological variation within the species or even individuals.

Discussion

Systematic Position

The gross morphology of the fossil leaves—including the
pinnately compound organization with pinnae attached lat-
erally with broad bases to the rachis, basically parallel ve-
nation constructed of a single order of veins, and basic micro-
morphological traits such as cyclocytic stomata and strongly
cutinized epidermis—indicate a most probable affinity to cy-
cads. Other alternatives such as relationship to ferns, pterido-
sperms, other cycadophytes (Bennettitales), or monocots are
not supported by epidermal features, such as strongly cutin-
ized epidermis or scattered, randomly oriented, cyclocytic sto-
mata, or by macromorphological traits, such as pinnate leaves
with elongate pinnae attached laterally with a broad base to
rachis or the lack of stronger middle vein on pinnae or the
uniform order of parallel veins and the lack of perpendicular
veinlets connecting major veins.

Among other Cenozoic cycads, Dioonopsis (Horiuchi and
Kimura 1987) and Pterostoma R. S. Hill (Hill 1980) have
leaflets of comparable gross morphology, and even some anas-
tomosing veins of the same type as in the Clarno fossils are
observable. Furthermore, Dioonopsis leaves were recorded
from coeval floras of North America (Erdei et al. 2012);
therefore, it might seem to be straightforward to assign the
Clarno leaves to Dioonopsis. However, the much more fre-
quent anastomoses forming meshes all over the leaf lamina
in the Clarno leaves do not justify their inclusion in Dioonop-
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sis (or Pterostoma). Among modern cycads, anastomoses of
veins occur in leaves of some genera (e.g., Encephalartos)
close to the leaflet apex. Anastomosis of veins in extant cycads
is basically different, in as much as these always result in the
decrease of the number of veins.

Morphologically similar leaves known from Mesozoic flo-
ras have been assigned to the genus Ctenis (Lindley and Hut-
ton 1834; for an extensive list of references, see below). Ctenis
was established by Lindley and Hutton (1834, p. 103; Ctenis
falcata Lindley et Hutton) based on Phillips’s leaf remains
from the Mesozoic flora of Gristhorpe Bay, Yorkshire (Cy-
cadites sulcicaulis Phillips 1829, p. 148, pl. 7, fig. 21). Lindley
and Hutton disputed the assignment of Phillips’s leaf to Cyca-
dites Sternberg and established the genus Ctenis to accommo-
date cycad-like simply pinnate leaves with parallel, frequently
anastomosing venation—practically a reticulate venation pat-
tern. Later, Ward (1905) noted that according to nomen-
clatural rules Lindley and Hutton’s binomial should be cor-
rected as Ctenis sulcicaulis (Phillips) Ward. De Zigno (1856,
p. 190) published a more detailed formal diagnosis of the ge-
nus; then Harris (1964, p. 102) presented an emended diag-
nosis based on descriptions by Florin (1933). Certain epider-
mal features of leaves assignable to Ctenis were mentioned
first by Seward (1917) but were extensively revealed in works
of Harris (1932, 1950, 1964) and Florin (1933). Consequently,
the distinction of some species was based primarily on the
micromorphological details preserved in the cuticles.

Earlier there was some debate as to whether Ctenis leaves
belonged to cycads or ferns. In his study of the Bjuv flora of
Sweden, Nathorst (1878) compared leaf remains that were
described as simple leaves of Anthrophyopsis to some poly-
podiaceous ferns. Additional findings indicated later that it
is a heterogenous group representing in part pinnate leaves
assignable to Lindley and Hutton’s genus, Ctenis (Nathorst
1886; Harris 1932; Florin 1933; Florin gave a detailed discus-
sion on the topic). Assignment of Ctenis leaves to pterido-
phytes was favored later by others based on structures resem-
bling sori on some of the pinnae (e.g., Raciborski 1894,
p. 196; Staub 1896, p. 332; Möller 1902, p. 14; Yokoyama
1906, p. 26; see details in Seward 1917). Seward (1917, p. 578)
noted, however, that no sporangia had ever been found on
Ctenis leaves and classified Ctenis species under the heading
“cycadophytes.” Disputing the earlier proposed relationship
with ferns, Florin (1933, p. 62) argued that the sorus-like
structures were formed by parasitic organisms and empha-
sized that the characteristic epidermal traits of the leaves
suggested their relation to cycads. Harris (1964, p. 102) sup-
ported Florin’s view, adding other characters as evidence
of cycad affinity of Ctenis leaves. Later, Florin’s view has been
adopted, and Ctenis remains have been attributed to the cy-
cads by various authors. We conclude that, among modern
and so-far-known extinct groups of plants, cycads serve as the
best comparisons for leaf remains accommodated in the genus
Ctenis.

A large number of Ctenis species have been established in
the fossil record (more than 50; see Kimura and Sekido 1972).
The majority of these were diagnosed using macromorpho-
logical details and were often based on overlapping charac-
ters. Species distinctions are frequently poorly grounded and
need future revision beyond the scope of this study.

Leaves assigned to Ctenis have been reported just sporad-
ically from Mesozoic localities in North America, although
additional records may be expected based on unpublished
material in museum collections (B. Erdei, personal observa-
tion). Fontaine and Ward (Fontaine 1889, 1896, 1898–1899;
Ward 1905) assigned foliage remains from the Mesozoic of
California (Oroville), Virginia (Potomac), and Oregon to vari-
ous Ctenis species, including C. sulcicaulis (Phillips) Ward
(syn. C. falcata, Lindley and Hutton 1834), C. orovillensis
Fontaine, C. grandifolia Fontaine, C. auriculata Fontaine, and
C. imbricata Fontaine. These leaves mostly resemble each
other in having somewhat slender, strap-shaped pinnae. Cte-
nis grandifolia has relatively broader leaf segments, but these
are of irregular width (Fontaine 1898–1899, pl. 57). Pinnae
of C. auriculata (California, Oroville flora; Fontaine 1898–
1899, pl. 58, figs. 1–3) show a contracted base and a slightly
rounded form comparable to some specimens of C. clar-
noensis (PB1754a,b; fig. 2A); however, pinna apices are not
preserved.
The Eurasian record of Ctenis is abundant as compared to

the North American. Ctenis kaneharai Yokoyama from the
Jurassic of China (Yokoyama 1906) has relatively broad pin-
nae; its width is sometimes close to that of C. clarnoensis, but
leaf segments are more elongated and not tongue shaped
in the Chinese species. Ctenis kaneharai was later described
from Japan (Oishi 1940) and England, Yorkshire (Harris
1950, 1964), as well. Specimens from the Jurassic of York-
shire (Harris 1950, 1964) have somewhat more slender leaf
segments but agree in the contracted base of pinnae with a
slightly rounded acroscopic margin (for a comparison fig. 3
shows line drawings of C. clarnoensis sp. n. and C. kane-
harai). Other Ctenis species from the Mesozoic of Japan in-
clude C. japonica Oishi, C. yabei Oishi, and C. takamiana
Oishi and Huzioka (Oishi 1932, 1940; Oishi and Huzioka
1938). Those from Korea are C. yamanarii Kawasaki (Ka-
wasaki 1926) and from China C. chaoi Sze (Sze 1933) and
C. uwatokoi Toyama et Oishi (Toyama and Oishi 1935).
None of these conform to the morphological features of the
leaves from Clarno. The species C. yabei (Oishi 1932) and
C. takamiana (Oishi and Huzioka 1938) possess short and
broad pinnae that are distinct from other species of the ge-
nus Ctenis, and even the authors note the resemblance of the
leaves of the latter species to Anomozamites Schimper and
Nilssonia Brongn. Nevertheless, the type specimens of these
species do not correspond to the pectinated character of the
genus Ctenis as noted by Lindley and Hutton (1834, p. 64):
“we venture to propose the name of Ctenis in reference to its
pectinated character.”
Among the Ctenis species reported by Raciborski (1894)

from the Polish and Staub (1896) from the Hungarian (lo-
cality now in Romania) Mesozoic, pinnae of C. zeuschneri
Raciborski show an overall shape more or less comparable to
C. clarnoensis. However, they differ in being basally less con-
tracted and in having obtuse but not pointed apices. Another
Ctenis species, C. potockii Raciborski (Raciborski 1894), has
broad leaf segments but with a less or uncontracted base.
Ctenis nathorstii Möller reported by Möller (1902), and

later by Florin (1933) from the Jurassic of Sweden, has a
much more delicate structure than leaves of C. clarnoensis,
with elongate, slender leaf segments. Antevs (1919) and later
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Florin (1933) described foliage remains as Ctenis species from
the Jurassic flora of Sweden, with Florin (1933) providing
detailed epidermal descriptions. Some of these species have ba-
sically similar morphology except for the pointed apex of
pinnae in C. clarnoensis. Leaves assigned by Florin (1933)
to Harris’s species, C. nilssonii (Nath.) Harris, have pinnae
broader than 3 cm, but venation is less dense than in C. clar-
noensis. Ctenis latepinnata Florin (Florin 1933) has leaves
with very broad pinnae, exceeding 7 cm, and a large number of
densely packed veins, although veins are spaced more widely
than in the leaf from Clarno. Pinnae have obtuse rounded
apices comparable to C. clarnoensis, except for the pointed
apex of the latter. However, epidermal features are clearly
distinct; in Florin’s species, the stomata are arranged in groups,
and epidermal cells are elongate rather than isodiametric, as
in C. clarnoensis. Harris (1964) noted that Ctenis species dis-
play conspicuous striations on the cuticle, a feature that had
already been noted by Florin (1933) in most species descrip-
tions. Probably due to poor preservation, this character is not
observable on the cuticles of C. clarnoensis. Another species
from Sweden, C. laxa Florin (Florin 1933), possesses pinnae
broader than 3 cm, but its venation is less dense (4–5 per cm)
than in C. clarnoensis.

Species identified by Harris (1932, 1937) from Scoresby
Sound EastGreenland,C.minuta Florin,C. nilssonii (Nathorst)
Harris, and C. stewartiana Harris, were all reported from
Sweden as well (Florin 1933). The Jurassic flora of Yorkshire
(England) included a great number of foliage remains assigned
to various species of Ctenis by Harris (1964); he even provided
a dichotomous key of the species using both macromor-
phological and cuticular details. Harris (1964) published ex-
tensive synonym lists and detailed comparisons for all the
species, from which it is obvious that characters of the numer-
ous species described formerly are often overlapping. Most
species (C. sulcicaulis, C. kaneharai, and C. stewartiana) re-
ported from Yorkshire are shared by other Mesozoic floras. As
partly discussed above, none of the species described from
Yorkshire is closely comparable with the Clarno species.

Later on, numerous accounts of Ctenis foliage remains have
been published, including those from the Mesozoic of Argen-
tina (Artabe and Stevenson 1999); the Jurassic of Uzbekistan
(Gomolitzky 1974), Oxfordshire, United Kingdom (Cleal and
Rees 2003), Antarctica (Rees and Cleel 2004), and China
(Zhang and Zheng 1987); the Cretaceous of Japan (Kimura
and Sekido 1972); the Jurassic and Cretaceous of USSR/
Russia (Vakhrameev 1966; Samylina 1983); the Jurassic of
the Middle East (Schweitzer and Kirchner 1998); and so on.
Kimura and Sekido (1972) gave an account on Ctenis species
and summarized shortly their main macromorphological traits.
Some of these show unusual morphology, e.g., Ctenis sp. cf.
exilis Harris (Rees and Cleal 2004) and C. angrenica Gomo-
litzky (Gomolitzky 1974; resolution of figures is too low to
observe the exact venation pattern), with narrow, lobed, or
toothed leaf segments. For more examples see Kimura and
Sekido (1972) and Rees and Cleal (2004).

Schweitzer and Kirchner (1998) related some fossil leaf
impressions from the Middle East to Ctenis species that were
formerly described from England, China, and Japan (C. cf.
sulcicaulis, C. cf. kaneharai, C. cf. takamiana) and also pro-
vided a brief review of those that had been described earlier

from the region. None of these records corresponds to the
macromorphological traits of the leaves from Clarno.

Kimura and Sekido (1972) described some fronds with
broad pinnae as Ctenis nipponica Kimura et Sekido and Cte-
nis sp. from the Lower Cretaceous of Japan and compared it
with other species having similarly robust leaf segments de-
scribed from England, Greenland, and Sweden by Florin and
Harris (see above), from Oregon (C. grandifolia Fontaine;
Ward 1905), Afghanistan (C. approximatus Jacob et Shukla,
C. constrictus Jacob et Shukla; Jacob and Shukla 1955), Ro-
mania (locality formerly in Hungary; C. asplenioides [Et-
tingshausen] Schenk; in Seward 1917; C. hungarica; Staub
1896), Russia (C. burejensis Prynada; Vakhramejev and Do-
ludenko 1961; Samylina 1963; C. pleschkovii Genkina, C.
uralensis Genkina; Genkina 1963), and China and Mongolia
(C. chaoi Sze; Sze 1933; C. uwatokoi Toyama et Oishi; To-
yama and Oishi 1935). Although C. uwatokoi displays more
or less tongue-shaped leaf segments (Toyama and Oishi 1935,
pl. 3, fig. 3; figure poor quality, details hardly observable) com-
parable to the leaves from Clarno, none of the above species
(including C. nipponica) have pinnae with apices, if preserved,
characterized by a pointed apex as in the Clarno leaves.

None of the Ctenis records discussed above matches the
combination of distinct characters of the Ctenis leaves from
the Clarno Formation at the specific level, although compar-
ison has often been hindered by the rather fragmentary leaf
remains lacking important leaf traits or by the occasional lack
or poor quality of documentation in the literature. Finally,
it should be noted that most of the formerly described Cte-
nis species have been established on fragmentary leaf records
mostly with important characters such as pinna apices either
not or just poorly preserved, limiting appropriate compari-
sons. Many of the species were distinguished using characters
(e.g., width of pinnae) that may vary depending on the po-
sition on the plant or on the leaf (basal, medial, or apical
portion).

As a summary, based on macromorphological traits and the
shape and form of pinnae and pinna apices, we establish a
new species for the here described leaves from the Clarno
Formation. With regard to the leaves having slender and more
elongate leaflets (F34381 and a leaf from the holotype’s slab),
we presume that these represent the same species. It may be
noted that none of the leaflets of the above two leaves have
apices preserved that could enable a complete assignment.
These leaves may originate from other parts of the plant or
the leaf, resulting in a slightly different morphology.

The marginal termination of veins is usually not discussed
in detail by authors; they just mention that veins run to the
margin. Florin (1933, p. 79), noting as well that veins reach
the margin in pinnae of some Ctenis species, gave no more de-
tails. However, some figures (e.g., Ward 1905, pl. 27, figs. 1–
4) suggest that veins do not end freely by the margin; instead,
neighboring veins join, resulting in the pattern seen in C. clar-
noensis.

Harris (1964, pp. 102, 105, 117) provided a more detailed
description of the venation of Ctenis species from the Jurassic
of Yorkshire. Based on well-preserved specimens of C. sul-
cicaulis, the type species of Ctenis, he found that margin is
thickened by a fiber bundle. According to his description, at
the margins of the pinnae, the outermost vein runs parallel
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with the marginal fiber bundle but usually do not anasto-
mose with it. Toward the apex, marginal veins end separately
in or near the fiber bundle. The pinnae of the Clarno leaves
show a similar pattern (fig. 1B); however, the marginal fiber
bundle is not identifiable—possibly due to limitations of pres-
ervation.

Some leaves display a large triangular apical segment, e.g.,
C. nilssonii (Florin 1933, taf. 4, fig. 5), C. nathorstii (Florin
1933, taf. 8, fig. 5.); however, there is no information on the
form of the apical segment in C. clarnoensis. None of the
leaves assigned so far to Ctenis displays an involute margin
and pointed apex of pinnae comparable to that in C. clar-
noensis. The cuticular details of C. clarnoensis, although just
faintly observable, are comparable to species so far described
with micromorphology (e.g., Harris 1932, 1964; Florin 1933),
i.e., cuticle relatively thick, haplocheilic stomata randomly dis-
tributed, sunken on the abaxial side. Unfortunately, due to
poor preservation, finer details are not comparable. Striations
described in species ofCtenis (Florin 1933;Harris 1964) are not
conspicuous in the cuticle of C. clarnoensis.

Based on the observation that pinnae are preserved domi-
nantly in attachment to the rachis, it may be assumed that
they were not deciduous from (or articulated on) the rachis.
Preservation of intact leaves may be attributable to tapho-
nomical factors, as well; however, it is much more likely that
leaves fossilized as a whole reflect the nonarticulate character
of pinnae. Most species of present-day cycads have nonarticu-
late leaflets. Three genera, Ceratozamia Brongn. (27 species),
Zamia (75 species), and Microcycas (Miq.) A.DC. (1 species),
possess deciduous leaflets. That means that less than one-
third of the presently recognized modern cycad species (335;
Osborne et al. 2012; Calonje et al. 2013 [the World List of
Cycads]) have articulate/deciduous leaflets. Considering the
high number of both Cenozoic and Mesozoic cycadalean leaf
forms that are fossilized with pinnae attached (e.g., Cenozoic:
Dioonopsis, Pseudodioon, Pterostoma R.S. Hill, and numer-
ous other Dioon-like leaves; Mesozoic: Almargemia Florin
[Florin 1933], Ctenis, Jirusia Bayer [Bayer 1914], Mesodes-
colea Archangelsky [Archangelsky 1963], Mesosingera Arch-
angelsky [Archangelsky 1963], Pseudoctenis Seward [Seward
1911], Ticoa Archangelsky [Archangelsky 1963]), it is prob-
able that the proportion of fossil cycad forms with nonar-
ticulated pinnae was likewise relatively high.

The most conspicuous characters of leaf segments in C.
clarnoensis are venation pattern and the pointed pinna apices
with a tubular ending unknown among both modern cycads
and fossil cycads. This feature may indicate somewhat xero-
phytic conditions attributable to either a seasonally dry climate
or certain habitat conditions causing physiological drought.
Another plausible explanationmay be that, on the contrary, the
leaflet apices represent drip tips that were distorted due to
desiccation after being shed from the parent plant.

Venation of Fossil Cycadalean Foliage and Modern Cycads

Venation of Ctenis pinnae is characterized by a reticulate
pattern whereby the basically parallel, uniform-order veins
frequently fork and anastomose, thus forming loose meshes.
This venation pattern is not seen among any of the modern
cycads. Based onBrashier (1968) and the authors’ observations,

the following notes can be made on the venation of modern
cycads. Dichotomous branching of veins is relatively frequently
observable in the lower half of the lamina of most genera
except for Dioon (Cycas L. is an exception, having just a mid-
rib and no side veins). In Stangeria the side veins departing
from the midvein form frequent dichotomies. The few anas-
tomoses, rarely observable in the minority of the extant gen-
era (fig. 4A–4D), display a pattern different from that of Cte-
nis (fig. 3B, 3D); e.g., veins steeply join apically (Dioon,
Macrozamia Miq.; fig. 4A) or veins join close to the margin
(forming a marginal vascular system in Stangeria leaflets; Bra-
shier 1968; fig. 4B). Anastomoses are observable in somewhat
higher number in leaflets of Encephalartos; however, this is
confined mostly in the upper, more apical part of leaflets where
the lamina begins to taper (fig. 4C, 4D). Eventually, vein anas-
tomoses observable in leaflets of modern cycads occur close
to the margin or apex, contrasting with anastomoses rela-
tively evenly distributed on the entire lamina of Ctenis. Fur-
thermore, anastomoses are formed in basically different forms
in Ctenis and extant genera. In the former, neighboring par-
allel veins are usually traversed by a steep vein forming an
N shape (figs. 2B, 3B, 4E), whereas in extant genera, neigh-
boring parallel veins are joined (fig. 4A–4D), by which mean
number of veins is decreased, e.g., when the lamina is tapering.
Among previously described Tertiary fossil cycad records,

Pterostoma (Hill 1980) from Australia and Dioonopsis from
Japan (Horiuchi and Kimura 1987) and North America (Erdei
et al. 2012) show the same kind of vein anastomoses as seen
in Ctenis (fig. 4E). In leaflets of both of these genera, however,
anastomoses are described as rare or occasional (Hill 1980;
Erdei et al. 2012). Horiuchi and Kimura (1987) noted that
the anastomoses of Dioonopsis are similar to those of Ctenis
but much fewer in number and pointed out epidermal simi-
larities of Dioonopsis and certain Ctenis species. Hill (1980)
assumed a finer network of venation between major parallel
veins in pinnae of Pterostoma anastomosans R.S. Hill based
on the shape and orientation of epidermal cells. However,
this would presume a different evolutionary stage of venation
development, a hierarchical reticulate venation pattern not
known among any fossil or modern cycads.
The venation of Ctenis leaves shows a simple reticulate pat-

tern. The term “simple” is used here as defined by Roth-
Nebelsick et al. (2001). Contrasting with the hierarchical re-
ticulate pattern of veins (e.g., angiosperms), the veins of Ctenis
are of uniform order, without hierarchical ranking. The term
“closed” or “reticulate” versus “open” or “dichotomous” has
been used to differentiate venation types with or without anas-
tomoses of veins (Wagner 1979; Trivett and Pigg 1996; Roth-
Nebelsick et al. 2001).
The open venation pattern is often regarded to be the

primitive architecture, and this type of venation is encoun-
tered dominantly among early land plants with fernlike leaves
(Roth-Nebelsick et al. 2001). It should be noted that dichot-
omizing venation pattern (with occasional anastomoses) oc-
curs even among angiosperms, e.g., Circaeaster Maxim. and
Kingdonia Balf.f. et W.W.Sm. (Ren et al. 1998), but it is in-
terpreted by Ren et al. (1998) as a reduced character showing
adaptation to moist and shady habitat.
Closed or reticulate venation pattern appeared in nearly

all groups of land plants, among ferns and various gymno-
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sperms, and as the characteristic branching pattern of leaf
vasculature among angiosperms. It seems undoubted that re-
ticulate venation has been established repeatedly several times
in various plant lineages. For instance, the development of
network pattern from an open, dichotomous one was sug-
gested to have occurred among ferns more than 50 times
(Wagner 1979). Simple reticulate venation pattern was rec-
ognized in the fossil record as early as the Late Carboniferous

(Zodrow and Cleal 1993; Kull 1999) and was reported
among various groups of plants, both modern and fossil (Tri-
vett and Pigg 1996), e.g., ferns (Wagner 1979), cycads (e.g.,
Brashier 1968), Gnetales (Rodin 1967), and even in Ginkgo,
manifested by rare anastomoses (Arnott 1959), and fossil
groups such as Paleozoic and Mesozoic pteridosperms (e.g.,
glossopterids, Caytoniales), gigantopterids, and many pinna
or pinnule forms with unknown affinity (Taylor et al. 2009).

Fig. 4 Venation details of extant cycads and fossil cycadalean foliage. A, Detail of venation from the apical part of a leaflet of Macrozamia
moorei F. Muell. Anastomosis is formed by joining neighboring veins (cleared leaflet, MBC 59302B). B, Stangeria eriopus (Kunze) Baill leaflet;
arrow indicates anastomosis (cleared leaflet, MBC 651325B). C, Venation close to the apex of an Encephalartos horridus (Jacq.) Lehm. leaflet.
Arrows indicate anastomoses; the white arrow marks fibers between veins (cleared leaflet, MBC 64755D). D, Seedling leaflet of Encephalartos
hildebrandtii A. Braun et C.D. Bouché showing anastomoses of neighboring veins close to apical teeth (cleared leaflet, MBC without number).
E, Venation detail of Dioonopsis macrophylla (Potbury) Erdei, Manchester et Kvaček. Note the anastomosis forming an N shape (UCMP 876).
A color version of this figure is available online.
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Medullosan pteridosperms, putative ancestors of cycads, may
have possessed leaf types with simple reticulate venation as
well (Trivett and Pigg 1996). The fern genus Acrostichum L.,
which co-occurs with C. clarnoensis, is another example of
reticulate venation. The distant relationships of these groups
support the conclusion that evolution of reticulate venation
may be driven by ecological constraints as noted by many
authors (Hickey and Doyle 1977; Trivett and Pigg 1996;
Roth-Nebelsick et al. 2001). Diverse theories have been de-
veloped to explain why reticulate venation appeared in vari-
ous groups of plants. Some authors presume that among
monocots there may be a positive correlation between anas-
tomosing venation pattern and climbing habit or the network
pattern is more frequent in shaded forest environment (Cam-
eron and Dickison 1998). Others, on the contrary, argue that
open venation pattern is more prone to water deficit caused
by, e.g., damage; a closed venation can compensate for the
failure of some veins (Wagner 1979; Roth-Nebelsick et al.
2001). Zodrow and Cleal (1993) noted that development of
reticulate venation patterns in seed ferns may have been in-
duced by physiological stress caused by reduced water avail-
ability.

The functional background of the evolution of a closed ve-
nation type is unclear and may be different in the various
plant groups; however, it has obvious advantages and adap-
tive significance (see Roth-Nebelsick et al 2001). Hypotheses
usually focus on the main functions of venation as a trans-
porting and mechanical system. In modern cycads, transport-
ing and mechanical functional aspects of the basically open
venation (dichotomous or containing just a midrib) are com-
plemented by thick cuticle, an extensive fiber system (most
genera), and/or a transfusion tissue in the mesophyll (first of
all in Cycas; Worsdell 1897; Takeda 1913; Brashier 1968;
Norstog and Nicholls 1997; Griffith et al. 2014).

Harris (1964, p. 102) noted that “the lamina in Ctenis (at
least in species from Yorkshire) seems to be rather more deli-
cate than in most recent cycads” and lacks hypodermal fi-
bers. This seems to be supported by the seemingly nonleathery
leaves from Clarno. One of the better-preserved Yorkshire
specimens showed the remnants of the mesophyll parenchyma
directly attached to the cuticle, but no fibers were observable.
Based on this, Harris (1964) concluded that the characteristic
fibers strengthening modern cycad leaves may have not been
developed in Ctenis leaves. The reticulate venation of Ctenis
leaves may have had a mechanical function as well, fulfilling
the role of a fiber system. The pinnae of C. clarnoensis show a
more dense venation than in most modern cycads.

Reticulate venation with evenly distributed areoles does not
occur among modern cycads despite the fact that fairly broad
leaflets evolved in some, mainly Zamia species, e.g., Zamia
imperialis A.S. Taylor, J.L. Haynes et Holzman, Z. nesophila
A.S. Taylor, J.L. Haynes et Holzman, Z. skinneri Warsz. ex
A. Dietr., with a relatively high average intervenal distance
(the distance of two neighboring veins in the middle lamina)
of 2–3 mm contrasting the 0.6–0.9 mm in the leaves from
Clarno. Furthermore, most modern cycads grow in habitats
with some seasonality of rainfall (Norstog and Nicholls 1997),
and many extant species occupy a relatively harsh environment
with significant water stress (which was supposed as a trigger-

ing factor for the development of reticulate venation in certain
fossil groups).
Based on the plant taxa accompanying C. clarnoensis in the

flora of the Clarno Formation, a humid subtropical climate
may be assumed. If interpreting the form of pinna apices in
C. clarnoensis as adaptation to drier conditions (and assum-
ing that reticulate venation formed as a response to water
stress), we may presume some seasonality of rainfall. This is
in accordance with the observation that some of the woods of
the Clarno flora show semi-ring porous condition (Wheeler
and Manchester 2002).

Conclusions

The record of the reticulate-veined Ctenis clarnoensis and
other fossil genera attributed to cycads with traits of anas-
tomosing venation pattern from both the Mesozoic (Ctenis)
and the Cenozoic (Dioonopsis, Pterostoma) implies that an
extinct lineage or lineages of cycads with reticulate venation
may have persisted from the Mesozoic up to the Paleogene.
This is the first time that Ctenis leaves have been reported
from sediments younger than Mesozoic. In addition, leaf re-
mains collected from Eocene strata of Kupreanof Island,
Alaska (K. Johnson and I. Miller, personal communication),
show characters of Ctenis (pinnate leaf, reticulate venation),
providing further support to the survival of the genus up to
the Paleogene. The recognition of Ctenis in the Tertiary of
North America is not the only case of typical Mesozoic taxa
being reported in post-Cretaceous strata. Two recent reports
noted the unexpected Cenozoic occurrence of some members
of putative bennettitalean and pteridosperm taxa, i.e., Ptilo-
phyllum Morris from the Oligocene of Australia (McLoughlin
et al. 2011) and Komlopteris Barbacka in the Oligocene of
Tasmania (McLoughlin et al. 2008). Moreover, other frag-
mented leaf remains from the early Miocene of New Zealand
(Pole 1992) recall the reticulate venation of Ctenis; however,
poor preservation and the lack of epidermal traits hinder a
proper identification. Cycads have not been recorded from the
Neogene of North America (north of Mexico), which may
indicate that the group disappeared from the flora and vege-
tation, probably driven by climatic change during the later
Paleogene.
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