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Immunogenic potency of the recombinant Erp, HspR, LppX, MmaA4, and
OmpA proteins from Mycobacterium tuberculosis (MTB), formulated with Montanide
ISA 720 VG adjuvant, was evaluated in BALB/c mice for the first time in this study. The
five vaccine formulations, adjuvant, and BCG vaccine were subcutaneously injected
into mice, and the sera were collected at days 0, 15, 30, 41, and 66. The humoral and
cellular immune responses against vaccine formulations were determined by measuring
serum IgG and serum interferon-gamma (IFN-γ) and interleukin-12 (IL-12) levels,
respectively. All formulations significantly increased IgG levels post-vaccination. The
highest increase in IFN-γ level was provided by MmaA4 formulation. The Erp, HspR,
and LppX formulations were as effective as BCG in enhancement of IFN-γ level. The
most efficient vaccine boosting the IL-12 level was HspR formulation, especially at
day 66. Erp formulation also increased the IL-12 level more than BCG at days 15
and 30. The IL-12 level boosted by MmaA4 formulation was found to be similar to that
by BCG. OmpA formulation was inefficient in enhancement of cellular immune
responses. This study showed that MmaA4, HspR, and Erp proteins from MTB are
successful in eliciting both humoral and cellular immune responses in mice.
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Introduction

Mycobacterium tuberculosis (MTB) is the causative agent of the infectious
disease tuberculosis (TB), and characterized with its slow growth, dormancy,
complex cell envelope, and intracellular pathogenesis [1]. TB is at the ninth rank
among the global causes of death, and at the first place to be a single infectious
agent causing death. In 2016, 6.3 million new TB cases including 476,774
HIV-positive patients have been reported. In addition, 1.3 million HIV-negative
and 374,000 HIV-positive people had died due to TB [2]. The death rate is
unacceptably high as the most of them could be preventable with early diagnosis
and appropriate treatment. Due to this reality, the World Health Organization
declared “The End TB Strategy” with a first step of reducing the TB deaths and
incidence (compared with 2015 levels) by 35% and 20%, respectively, until 2020
[2].

The only vaccine used worldwide against TB is Bacillus Calmette-Guérin
(BCG), which is an attenuatedMycobacterium bovis strain. Its protection capacity
ranges between 80% and 0% in human, and it does not protect especially the adults
against pulmonary TB [3, 4]. Therefore, there is a need for vaccines more efficient
than BCG. Although a potential protection equal or better than BCG was detected
in earlier studies using some cell wall components or inactivated preparations of
MTB, this potential was questioned due to a non-specific inflammation response
[3]. Later, several studies have been conducted on the development of recombinant
subunit vaccines against TB, with a single or a couple of specific antigens, and
having specific and prolonged protection potential. Horwitz and Harth [5] evaluated
the rBCG30 vaccine, aM. bovis BCG strain expressing the 30-kDa major secretory
protein of MTB in the guinea pig model, and obtained better protection than the
commercial BCG vaccine. The complementation of BCG strain with ESAT-6
protein from MTB also increased the protection potential [6]. The mice vaccinated
with Mycobacterium smegmatis expressing heparin-binding hemagglutinin from
MTB and human IL-12 fusion were reported to be protected against MTB infection
[7]. In addition, Bacillus subtilis spores expressing MPT64 antigen from MTB
protected the mice against TB [8]. Liu et al. [9] showed that the fusion ofMtb8.4 and
HspX proteins from MTB elicited strong immune responses in mice.

Identification of the virulence factors playing role in the pathogenesis of
MTB is important for the development of recombinant vaccines. Smith [10]
grouped the virulence factors as the ones related to (a) cell secretion and cell
envelope, (b) enzymes involved in the cell metabolism, and (c) transcriptional
regulators. The cell surface components Erp (Rv3810), MmaA4 (Rv0642c), and
OmpA (Rv0899), and transcriptional regulator HspR (Rv0353) are among the
virulence factors of MTB [10]. The lipoprotein LppX (Rv2945c) is involved in the
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virulence of MTB [11]. To our knowledge, the immune responses provided by
these proteins have not been evaluated.

Th1-type cellular immunity, especially interferon-gamma (IFN-γ) and
interleukin 12 (IL-12) cytokines, plays an important role in the resistance against
TB [12, 13]. Adjuvants used for the development of subunit vaccines can direct the
type of immune response. Utilization of the oil-based adjuvant, Montanide ISA
720 (Seppic, France), in human vaccines was approved, and it provides strong
IFN-γ and IL-12 responses [14]. In this study, humoral and cellular immune
responses elicited by the recombinant Erp, HspR, LppX, MmaA4, and OmpA
proteins from a clinical isolate of MTB were first evaluated in mice as vaccine
formulations prepared with Montanide ISA 720 adjuvant. One of the two control
groups of mice received adjuvant only, and the other group received commercial
BCG vaccine. The serum IgG, IFN-γ, and IL-12 levels were compared between
the control and vaccine formulation groups.

Materials and Methods

Bacterial strain and genomic DNA isolation

A clinical isolate of MTB strain 14/1649, obtained from a TB patient in
Turkey, was used. The isolate was verified using GenoType MTBC (Hain Life-
science, Germany) test and 16s rRNA analysis (GenBank accession number:
KY810766). The MTB isolate was grown in Löwenstein–Jensen medium
(Salubris Inc., Turkey) at 37 °C for 2 weeks. The genomic DNA of the MTB
isolate was isolated using GeneJET Genomic DNA Purification Kit (Thermo
Scientific, Lithuania, EU) according to the manufacturer’s recommendations. The
quality of purified genomic DNA was examined using NanoDrop (Thermo Scien-
tific) and agarose gel electrophoresis, and the genomic DNA was stored at −20 °C.

Amplification of erp, hspR, lppX, mmaA4, and ompA genes

The genomic DNA of MTB 14/1649 was used as the template for amplifi-
cation of erp, hspR, lppX, mmaA4, and ompA genes. The primers listed in
Supplementary Table I were designed using Primer3 (http://bioinfo.ut.ee/
primer3-0.4.0) and BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast)
tools. The polymerase chain reaction (PCR) mix was prepared using 1U Taq
DNA polymerase, 1X Taq buffer, 2.5 mM MgCl2, 0.2 mM dNTP mix, all from
Thermo Scientific, 0.2 pmol forward and reverse primers, and 1 ng template DNA,
in a final volume of 50 μl. The PCR program was set as initial denaturation at
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94 °C for 10 min, 35 cycles of amplification (denaturation at 94 °C for 1 min,
annealing at 52 °C for 30 s, and elongation at 72 °C for 1 min), and final extension
at 72 °C for 10 min. The PCR products were run on 1% agarose gel, and the related
bands were purified using GeneJET Gel Extraction Kit (Thermo Scientific)
according to the manufacturer’s recommendations.

Cloning of erp, hspR, lppX, mmaA4, and ompA genes

The PCR products were first ligated to pGEM-T Easy Vector System
(Promega, WI, USA) according to manufacturer’s recommendations, and
introduced into E. coli DH5α; later, the clones were verified using Sanger
sequencing (BGI, Denmark, Europe). Next, erp, hspR, mmaA4, and ompA genes
were cloned in BamHI site, and lppX gene was cloned in EcoRI site of pET-28a(+)
(Novagen, Germany) in E. coli DH5α. The clones were verified by plasmid
isolation and restriction enzyme digestion. The recombinant pET-28a(+) vectors
carrying erp, hspR, lppX, mmaA4, and ompA genes were introduced into E. coli
BL21(DE3) competent cells (Novagen).

Purification of the recombinant Erp, HspR, LppX, MmaA4, and OmpA proteins

Purification of the recombinant proteins was performed according to Okay
et al. [15]. The recombinant E. coli BL21(DE3) cells with pET-28a(+) vectors
carrying erp, hspR, lppX, mmaA4, and ompA genes were grown in Luria Broth
(Merck, Germany) containing kanamycin (30 μg/ml) at 37 °C until logarithmic
growth phase. Later, isopropyl-β-D-galactopyranoside (Sigma, Germany) was
added to a final concentration of 1 mM, and the culture was incubated at 37 °C
for 5 h shaking at 165 rpm. After incubation, the cells were collected using
centrifugation at 4,500 rpm for 10 min, resuspended in 5 ml of lysis buffer (8 M
urea, 300 mM NaCl, 50 mM NaH2PO4, pH 8.0), and disrupted using sonicator
(Bandelin-Sonoplus, Germany) for 6 × 10 s at 60% amplitude. The cellular debris
was separated using centrifugation at 15,000 rpm for 15 min, and the supernatants
containing recombinant proteins were collected. The his-tagged recombinant
proteins were purified using Protino® Ni-TED 2000 packed columns (Macherey-
Nagel, Germany) according to the manufacturer’s recommendations. Purity of the
proteins were monitored using sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS-PAGE) [16] staining with Coomassie Blue R-250 (Merck), and the
quantity of recombinant proteins was determined according to Bradford’s [17]
method. The purified recombinant proteins were sterilized using 0.2 μm membrane
filter, and maintained at −20 °C until use.
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Preparation of the vaccine formulations and immunization

Each vaccine formulation was prepared by mixing 0.1 mg of the purified
recombinant protein and Montanide ISA 720 VG in 7:3 proportion [18, 19]. The
mixtures were vortexed for 1 min and incubated at 4 °C for 24 h. The vaccine
formulations (0.1 ml) were inoculated on Luria agar plates and incubated at 37 °C
for 24 h to verify their sterility.

The animal experiments were approved by the Local Ethics Committee of
Kobay DHL Inc. (Ankara, Turkey) with the protocol number of 119. Six- to
eight-week-old female BALB/c mice were used. A group of five mice were
subcutaneously immunized with 0.33 ml of Erp, HspR, LppX, MmaA4, and
OmpA vaccine formulations as well as adjuvant only, and 1 × 105 CFU BCG
vaccine (Serum Institute of India Pvt. Ltd., India) [7]. The injections were
performed twice at days 0 and 15. The blood samples from tail vein were
collected from mice at days 0 (before first injections), 15 (before second injec-
tions), 30, 41, and 66. After the last blood collection (day 66), all of the mice were
euthanized through cervical dislocation. The sera collected from mice were pooled
and maintained at −20 °C until use.

Western blot

Protein samples were run on two separate 12% SDS–polyacrylamide gels.
One of the gels was stained with Coomassie Blue R-250. Proteins on the other gel
was transferred to a 0.2 μm nitrocellulose membrane through Mini Trans-Blot Cell
(Bio-Rad, CA, USA) using a modified procedure of Towbin et al. [20]. The
membrane was cut into pieces, each containing one of the recombinant proteins,
and 1:400 dilution of respective serum for each protein was applied as primary
antibody. The secondary antibody, alkaline phosphatase-conjugated anti-mouse
IgG (Sigma, Germany), was used at a dilution of 1:10,000. The AP Conjugate
Substrate Kit (Bio-Rad, CA, USA) was used for visualization of the bands [15].

Determination of antibody response

The humoral immune response elicited by the vaccination groups was
detected measuring the serum IgG titers via the enzyme-linked immunosorbent
assay (ELISA) [15]. The 96-well ELISA plates were coated with 1 μg/well of
purified recombinant proteins. The primary antibody, sera obtained from vacci-
nated mice, was applied as twofold serial dilutions ranging from 1:50 to 1:3,200 in
triplicates, and alkaline phosphatase-conjugated anti-mouse IgG was applied to
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each well as secondary antibody at a dilution of 1:1000. The AP Conjugate
Substrate Kit was used as colorimetric reagent. Plates were read at 405 nm to
determine optical density on a microtiter plate reader.

Determination of IFN-γ and IL-12 titers

The cellular immune response elicited by the vaccination groups was
detected measuring the serum IFN-γ and IL-12 titers using Mouse IFN-γ ELISA
Total Kit (Thermo Scientific, MD, USA) and Mouse IL-12 ELISA Total Kit
(Thermo Scientific), respectively, according to manufacturer’s recommenda-
tions. The sera from the vaccinated mice were used as primary antibody. The
amount of IFN-γ and IL-12 in the sera was calculated as pg/ml using a standard
curve.

Statistical analysis

The data obtained from ELISA experiments were evaluated statistically via
GraphPad Prism 5 Software (GraphPad Software, Inc., CA, USA) using one-way
analysis of variance (ANOVA) and a post-hoc test (Tukey’s or Dunnett’s test).
The mean and the standard deviation values were calculated using Microsoft
Office Excel software (Microsoft Co., WA, USA).

Results

Cloning of erp, hspR, lppX, mmaA4, and ompA genes

The erp, hspR, lppX, mmaA4, and ompA genes from MTB strain 14/1649, a
clinical isolate, were successfully cloned in pGEM-T Easy vector, their sequences
were verified, and submitted to GenBank (https://www.ncbi.nlm.nih.gov/
genbank) having the accession numbers of KY848243, KY848244, KY848245,
KY848246, and KY848247, respectively. Next, each of these genes was success-
fully cloned in pET-28a(+) vector.

SDS-PAGE and Western blot analysis of the recombinant proteins

The recombinant proteins Erp, HspR, LppX, MmaA4, and OmpA were
expressed using pET-28a(+) vector in E. coli BL21(DE) cells, and purified using
nickel affinity chromatography. The predicted molecular weights (MWs) of the
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recombinant proteins (including his-tags) were calculated using ProtParam tool
(https://web.expasy.org/protparam) as 28.5 kDa for Erp, 15 kDa for HspR, 25 kDa
for LppX, 35.5 kDa for MmaA4, and 34.5 kDa for OmpA. The observed MWs of
the recombinant proteins on SDS-PAGE were ca. 31 kDa for Erp, 17 kDa for
HspR, 31 kDa for LppX, 40 kDa for MmaA4, and 40 kDa for OmpA (Figure 1A).
However, some other bands with different MWs were also observed due to the
folding, cleavage, or possible dimerization of the proteins. Therefore, additional
bands together with these main bands were detected in Western blot analysis when
protein-specific sera were used (Figure 1B). A strong signal was obtained for the
recombinant proteins, being weakest for LppX.

Antibody response against the vaccine formulations

The humoral immune responses against recombinant Erp, HspR, LppX,
MmaA4, and OmpA proteins in BALB/c mice were evaluated quantitatively via
ELISA. The total IgG levels were compared between sera collected at day 0 (pre-
immunization) and at days 15, 30, 41, and 66 using one-way ANOVA and Dunnett’s
test (Figure 2). When pre-immunization values were used as control, the highest
increase in humoral immune response was obtained against Erp and OmpA
formulations with a statistical confidence of 99.9%, and remained high until the
day 66. Next, HspR and MmaA4 formulations increased serum IgG levels after first
vaccination with a confidence of 99% and 95%, respectively, and their confidence
was increased to 99% after boost injection. The LppX formulation did not increase
the IgG level significantly after the first injection, whereas an increment was observed
after the second vaccination with a confidence level of 95% until the day 66.

Figure 1. (A) SDS-PAGE and (B) Western blot analyses of the purified recombinant proteins.
M: prestained marker (New England Biolabs P7712), 1: Erp, 2: HspR, 3: LppX, 4: MmaA4, and

5: OmpA
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IFN-γ and IL-12 response against vaccine formulations

The cellular immune responses elicited by vaccine formulations in BALB/c
mice were evaluated measuring the serum IFN-γ and IL-12 levels. The IFN-γ level
belonging to each injection group at days 0, 15, 30, 41, and 66 (Figure 3) was
compared with each other using one-way ANOVA and Tukey’s test (Table I). At
day 41, all vaccine groups, except OmpA, and at day 66, BCG, HspR, andMmaA4
groups increased the serum IFN-γ levels more than the adjuvant. Moreover,
MmaA4 formulation elicited IFN-γ levels more than BCG after the day 30. There
was no statistically significant difference between the IFN-γ levels boosted by
BCG and HspR or LppX formulations. The difference in IFN-γ levels for BCG
and Erp formulation was also not significant until the day 66, being higher for
BCG at day 66. The best increment in serum IFN-γ levels was provided by
MmaA4 formulation. Erp, HspR, and LppX formulations showed a potential as
BCG in eliciting the serum IFN-γ levels. The increment in IFN-γ level provided by
the OmpA formulation was found to be low.

The serum IL-12 levels boosted by the vaccination groups at days 0, 15, 30,
41, and 66 (Figure 4) were also compared with each other (Table II). The adjuvant
itself increased the serum IL-12 levels as much as BCG until the day 41, and more
than BCG at day 66. The highest IL-12 level was provided by HspR formulation at
day 66. Erp formulation boosted IL-12 levels more than BCG at days 15 and 30.
There was no significant difference in serum IL-12 levels belonging to MmaA4

Figure 2. The serum IgG levels in BALB/c mice provided by the vaccine formulations
prepared using Erp, HspR, LppX, MmaA4, and OmpA proteins together with Montanide

ISA 720 VG adjuvant. 1:800 dilution values were used. *p< 0.05. **p< 0.01.
***p< 0.001
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Figure 3. The serum IFN-γ levels in BALB/c mice conferred by the vaccine formulations prepared
using Erp, HspR, LppX, MmaA4, and OmpA proteins together with Montanide ISA 720 VG

adjuvant as well as adjuvant only and BCG vaccine

Table I. Analysis of variance for the serum IFN-γ levels in BALB/c mice, provided by the
vaccine formulations

Injection groups Pre-immunization Day 15 Day 30 Day 41 Day 66

Adjuvant – BCG NS NS NS * *
Adjuvant – Erp NS * NS ** NS
Adjuvant – HspR NS NS NS ** **
Adjuvant – LppX NS ** NS * NS
Adjuvant – MmaA4 NS NS *** *** ***
Adjuvant – OmpA ** NS * NS NS
BCG – Erp NS NS NS NS *
BCG – HspR NS NS NS NS NS
BCG – LppX NS NS NS NS NS
BCG – MmaA4 NS NS *** *** *
BCG – OmpA * NS ** *** NS
Erp – HspR NS NS NS NS **
Erp – LppX NS NS NS NS NS
Erp – MmaA4 NS NS *** *** ***
Erp – OmpA ** NS * *** NS
HspR – LppX NS NS NS NS *
HspR – MmaA4 NS NS *** ** NS
HspR – OmpA * NS ** *** NS
LppX – MmaA4 NS NS *** *** **
LppX – OmpA * * * *** NS
MmaA4 – OmpA ** NS *** *** **

Note: Each injection group was compared with others to find out if there is a significant difference in IFN-γ
levels. The increased or decreased levels can be seen in Figure 3. NS: not significant.
*p< 0.05. **p< 0.01. ***p< 0.001.
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formulation and BCG. HspR was the strongest and OmpA was the weakest
formulation in boosting the serum IL-12 levels.

Discussion

The BCG is the only licensed vaccine used today against TB, a deadly
disease killing millions of people each year. Although BCG protects the children
against TB meningitis to some extent, the efficacy of this vaccine is variable in
adults, and its usage is not recommended for people with immune deficiency [21].
Therefore, there are an increased number of studies related to the development of
new vaccines against TB. Some of these studies report development of DNA
vaccines. Dai et al. [21] showed that the IFN-γ, IL-2, and TNF-α levels were
increased in lungs and spleen of neonatal mice injected with a DNA vaccine
composed of ag85b gene. Similarly, Liang et al. [22] reported that DNA vaccines
prepared with rv2190c or ag85a provided increased IFN-γ levels and decreased
number of MTB in lungs and spleen of mice. The genes encoding PE and
PE_PGRS cell surface proteins [23], Hsp65 and IL-12 combination [24], or
ag85a/b chimera [25] were also used in experimental DNA vaccines. Some other
studies utilized proteins, such as TFP846 fusion composed of Rv3615c, Mtb10.4,

Figure 4. The serum IL-12 levels in BALB/c mice conferred by the vaccine formulations prepared
using Erp, HspR, LppX, MmaA4, and OmpA proteins together with Montanide ISA 720 VG

adjuvant as well as adjuvant only and BCG vaccine
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and Rv2660c antigens [26], AERAS-402 vaccine including 85A, 85B, and
TB10.4 antigens [27], and adenovirus expressing CFP10, ESAT6, Ag85A, and
Ag85B proteins [28].

In addition to these reports utilizing similar antigens, new candidate
proteins and formulations have also been investigated to develop TB vaccines.
The hypothetical nitroreductase Rv3131 protein in the MTB-specific DosR
dormancy regulon increased TNF-α, IFN-γ, and IL-2 levels in lungs and
spleen of mice, and decreased the bacterial load [29]. Larrouy-Maumus et al.
[30] formulated two mycobacterial lipid antigens, Ac2SGL and PIM2, with
the liposomes dimethyl-dioctadecyl-ammonium and synthetic trehalose-6,
6′-dibehenate. These formulations provided increased protection against MTB
infection in the spleen of guinea pigs, whereas no statistically significant
difference was found in lungs as compared to non-vaccinated animals. Xue
et al. [31] reported that the recombinant RpfE protein from MTB induced
immune responses in mice.

Table II. Analysis of variance for the serum IL-12 levels in BALB/c mice, provided by the
vaccine formulations

Injection groups Pre-immunization Day 15 Day 30 Day 41 Day 66

Adjuvant – BCG * NS NS NS **
Adjuvant – Erp NS NS NS ** *
Adjuvant – HspR NS NS NS * *
Adjuvant – LppX NS NS NS *** ***
Adjuvant – MmaA4 NS NS NS ** *
Adjuvant – OmpA NS * *** *** ***
BCG – Erp ** * * * NS
BCG – HspR NS * ** NS ***
BCG – LppX ** NS NS *** **
BCG – MmaA4 NS NS NS * NS
BCG – OmpA ** NS ** *** ***
Erp – HspR NS NS NS NS ***
Erp – LppX NS * NS * ***
Erp – MmaA4 * ** NS NS NS
Erp – OmpA NS ** *** *** ***
HspR – LppX NS * * ** ***
HspR – MmaA4 NS ** NS NS ***
HspR – OmpA NS ** *** *** ***
LppX – MmaA4 NS NS NS * **
LppX – OmpA NS NS *** * **
MmaA4 – OmpA NS NS *** *** ***

Note: Each injection group was compared with others to find out if there is a significant difference in IL-12
levels. The increased or decreased levels can be seen in Figure 4. NS: not significant.
*p< 0.05. **p< 0.01. ***p < 0.001.
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In this study, the Erp, HspR, LppX, MmaA4, and OmpA proteins of MTB
were expressed in and purified from E. coli as well as their usability in develop-
ment of a recombinant subunit TB vaccine was evaluated in mice, for the first time.
The cell surface components Erp, MmaA4, and OmpA and the transcriptional
regulator HspR are among the virulence factors of MTB. The Erp is required for
the formation of cell wall structure in M. smegmatis [32], and plays role in the
virulence of MTB [33, 34]. In addition, Martinez et al. [35] showed that the Erp
can be used to differentiate the TB infection and disease in human. Another cell
wall component, OmpA, is a virulence factor protecting the MTB against acidity
in host phagosomes [36]. The IL-12 production in macrophages is repressed in
MTB infection, and one of the repressors is MmaA4 protein responsible for
modification of mycolic acid [37]. The BCG mutant with mmaA4 gene deletion
was reported to provide increased protection against TB [38]. The Hsp is also
among the potent antigens [39]. Increase in the amount of Hsp may trigger the
immune responses against MTB infection [40]. Bell et al. [39] reported that the
LppX, a lipoprotein, was found in high amount among the culture filtrate proteins
of MTB. On the other hand, a gene fromM. bovis BCGwith 98% identity to LppX
was evaluated as a DNA vaccine, but a successful result could not be obtained
[41]. Nevertheless, as the strong antigenic properties of lipoproteins [39] were
taken into account, evaluation of the antigenic capacity of LppX from a local MTB
isolate together with a suitable adjuvant was decided to be useful in this study.
Here, the effect of formulations, prepared by mixing the recombinant Erp, HspR,
LppX, MmaA4, or OmpA protein with Montanide ISA 720 adjuvant, on the
cellular immune responses in BALB/c mice was evaluated by measuring the serum
IFN-γ and IL-12 levels. The MmaA4 formulation provided the highest increment
in serum IFN-γ level. The Erp, HspR, and LppX formulations were as effective as
BCG vaccine in boosting the IFN-γ level. The OmpA formulation did not provide
a statistically significant increase in the IFN-γ level. On the other hand, HspR
formulation conferred higher IL-12 level than adjuvant and other vaccine groups at
day 66, whereas Erp formulation provided higher IL-12 level than the BCG at days
15 and 30. The IL-12 level conferred by MmaA4 formulation was found to be
similar to that by BCG. The most successful formulation increasing the serum
IL-12 level determined was HspR, and the weakest was OmpA.

Although the importance of cellular immune responses has been mentioned
in the studies related to the development of vaccines against TB, recently
Prados-Rosales et al. [42] reported that the conjugate vaccine, prepared by
mycobacterial capsular arabinomannan and Ag85b, provided lowered MTB count
in lungs and spleen and increased lifetime together with higher antibody (IgG)
response in mice as compared to control group, showing the contribution of humoral
immunity in the protection against MTB infection. The vaccine formulations
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prepared in this study conferred significant increment in serum IgG levels in
BALB/c mice, which might be useful for the development of a TB vaccine.

Conclusions

The vaccine formulations prepared using Erp, HspR, LppX, MmaA4, and
OmpA proteins from MTB and Montanide ISA 720 VG adjuvant successfully
induced serum IgG levels in BALB/c mice. The MmaA4 formulation provided
higher serum IFN-γ and similar IL-12 levels, and the HspR formulation provided
higher IL-12 and similar IFN-γ levels as compared to commercial BCG vaccine.
The Erp formulation was also prospering in induction of the cellular immune
responses. Consequently, the MmaA4, HspR, and Erp proteins from MTB were
shown to be successful in triggering both humoral and cellular immune responses
in BALB/c mice. In future studies, the efficacy of double or triple fusions of
MmaA4, HspR, and Erp proteins may be evaluated.
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