
Western University
Scholarship@Western

Anatomy and Cell Biology Publications Anatomy and Cell Biology Department

10-2018

The Role of Cholinergic Midbrain Neurons in
Startle and Prepulse Inhibition
Erin Azzopardi

Andrea G. Louttit

Cleusa DeOliveira

Steven R, Laviolette

Susanne Schmid

Follow this and additional works at: https://ir.lib.uwo.ca/anatomypub

Part of the Anatomy Commons, and the Cell and Developmental Biology Commons

https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomypub?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomy?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomypub?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/903?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F148&utm_medium=PDF&utm_campaign=PDFCoverPages


Systems/Circuits

The Role of Cholinergic Midbrain Neurons in Startle
and Prepulse Inhibition

Erin Azzopardi, Andrea G. Louttit, X Cleusa DeOliveira, Steven R. Laviolette, and X Susanne Schmid
Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada

One of the two major cholinergic centers of the mammalian brain is located in the midbrain, i.e., the pedunculopontine tegmentum
(PPTg) and the adjacent laterodorsal tegmentum. These cholinergic neurons have been shown to be important for e.g., arousal, reward
associations, and sleep. They also have been suggested to mediate sensorimotor gating, measured as prepulse inhibition of startle (PPI).
PPI disruptions are a hallmark of schizophrenia and are observed in various other psychiatric disorders, where they are associated with,
and often predictive of, other cognitive symptoms. PPI has been proposed to be mediated by a short midbrain circuitry including
inhibitory cholinergic projections from PPTg to the startle pathway. Although the data indicating the involvement of the PPTg is very
robust, some more recent evidence challenges that there is a cholinergic contribution to PPI. We here use transient optogenetic activation
of specifically the cholinergic PPTg neurons in male and female rats to address their role in startle modulation in general, and in PPI
specifically. Although we could confirm the crucial role of PPTg cholinergic neurons in associative reward learning, validating our
experimental approach, we found that activation of cholinergic PPTg neurons did not inhibit startle responses. In contrast, activation of
cholinergic PPTg neurons enhanced startle, which is in accordance with their general role in arousal and indicate a potential involvement
in sensitization of startle. We conclude that noncholinergic PPTg neurons mediate PPI in contrast to the longstanding hypothetical view
that PPI is mediated by cholinergic PPTg neurons.
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Introduction
The PPTg is an evolutionary highly conserved cholinergic mid-
brain center and an important component of the ascending re-
ticular activating system. The PPTg is highly interconnected with
the basal ganglia, cerebellum, and thalamus, as well as with do-
paminergic centers in the brain. It is one of the targets for deep

brain stimulation in Parkinson disease (Garcia-Rill et al., 2015),
however, in recent years it has become evident that the PPTg is
not only a locomotor center, but also important for arousal, REM
sleep, and cognitive function, e.g., attention, associative reward
learning, reward prediction error processing, and decision mak-
ing (Alderson et al., 2004; Winn, 2008; Steidl et al., 2011; Thomp-
son and Felsen, 2013; Cyr et al., 2015; Gut and Winn, 2016; Mori
et al., 2016; Xiao et al., 2016). In this context, the idea that PPTg
promotes orienting responses toward a (prepulse) stimulus, e.g.,
eye saccades and/or head turns, while inhibiting avoidance re-
sponses such as startle, is very compelling (Yeomans, 2012). Pre-
pulse inhibition of startle (PPI) describes such an attenuation of
startle responses when a startle stimulus is preceded by another
sensory stimulus (prepulse) by �20 –500 ms. It can therefore be
viewed as an early action selection mechanism that allows a
subject to orient toward the prepulse while inhibiting other, po-
tentially interfering, avoidance responses (Yeomans, 2012). PPI
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Significance Statement

Activation of cholinergic neurons in the midbrain has been assumed to mediate prepulse inhibition of startle (PPI), a common
measure of sensorimotor gating that is disrupted in schizophrenia and other psychiatric disorders. We here revisit this long-
standing hypothesis using optogenetic activation of these specific neurons combined with startle testing in rats. In contrast to the
hypothetical role of these neurons in startle modulation, we show that their activation leads to an increase of baseline startle and
to prepulse facilitation. This supports recent data by others that have started to cast some doubt on the cholinergic hypothesis of
PPI, and calls for a revision of the theoretical construct of PPI mechanisms.
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measurements have been originally developed in humans for as-
sessing sensorimotor gating disruptions in people with schizo-
phrenia (Braff et al., 1978, 1995; Geyer and Braff, 1982; Kunugi et
al., 2007; Walters and Owen, 2007; Takahashi et al., 2008; Mori-
waki et al., 2009; Perry et al., 2009), however, several other psy-
chiatric disorders are also associated with disruptions in PPI, e.g.,
autism spectrum disorders, obsessive compulsive disorder, and
others (Swerdlow et al., 1995; Castellanos et al., 1996; Braff et al.,
2001). PPI disruptions have been shown to be associated with
other cognitive disruptions in affected people, most importantly,
with attentional problems (Green, 1996; Fenton et al., 2003; Sin-
clair et al., 2017). Although the reversal of dopamine-induced
PPI deficits in rats or mice is a gold standard for antipsychotic
drug screening in the pharmaceutical industry, none of the com-
mon antipsychotics show consistent and robust positive effects
on PPI in affected people.

For decades, PPI has been assumed to be a function of meso-
pontine cholinergic projections inhibiting the startle pathway on
the level of the pons (Fig. 1). This was primarily based on studies
reporting that general lesions of the PPTg greatly disrupt PPI
(Koch et al., 1993; Swerdlow and Geyer, 1993). However, the
majority of neurons in the PPTg are noncholinergic, i.e., GABAe-
rgic or glutamatergic (Wang and Morales, 2009). Furthermore,
although there is a plethora of in vivo and in vitro evidence that
seem to corroborate a role of acetylcholine in modulating the
startle pathway (Fendt and Koch, 1999; Koch, 1999; for review,
see Fendt et al., 2001; Bosch and Schmid, 2006, 2008; Pinnock et
al., 2015), the functional role of this cholinergic modulation, i.e.,
whether it contributes to PPI or rather modulates general startle
reactivity, has never been tested. However, it was recently re-
ported that a conditional knock-out of cholinergic function in
the midbrain caused mice to have improved PPI (Machold,
2013). In another study, specific lesions of cholinergic midbrain
neurons by a fusion toxin left PPI mainly intact, while profoundly
reducing general startle magnitude (MacLaren et al., 2014). Al-
though there are downsides of chronic lesions in terms of com-
pensatory processes, these latter two studies certainly provide
some evidence that is conflicting with the traditional view on the
role of PPTg cholinergic neurons in PPI. We here revisit the
hypothesis that PPTg cholinergic neurons mediate PPI, by tran-
sient and specific activation of these neurons using optogenetic
stimulation in a transgenic ChAT::Cre rat during startle testing.

Materials and Methods
Subjects. A hemizygous transgenic rat line was used [Long–Evans-Tg-
(Chat-Cre)5.1Deis; RRRC#00658, Rat Resource and Research Center,

Columbia, MO], with a bacterial artificial chromosome containing the
mouse ChAT gene with a Cre insertion before the ATG of the ChAT
promoter. This strain is estimated to carry six copies of the transgene
(Witten et al., 2011) and was maintained by breeding a carrier male with
a wild-type (WT) Long–Evans female. Animals were genotyped at the age
of 4 – 6 weeks via tissue punches taken from the ear and performing PCR.
Procedure and primers are described by Witten et al. (2011).

Animals were cared for according to the ethical guidelines of the Uni-
versity of Western Ontario Animal Use Subcommittee and Canadian
Council on Animal Car. For the first 8 –10 weeks of age, animals were
group housed. Following surgery, animals were individually housed. Rats
were given ad libitum food and water, and maintained on a 12 h light/
dark cycle. All testing occurred during the light phase.

Testing of the acoustic startle response. Testing of the acoustical startle
response (ASR) was completed in an enclosed sound-attenuated startle
box from MED Associates (MED-ASR-PRO1). Transgenic and WT ani-
mals were placed into small transparent tubes (25 � 12 cm) mounted on
a movement-sensitive platform. A piezoelectric transducer mounted be-
low the platform converted the vertical displacement of the platform
induced by a startle response into a voltage signal. Startle amplitude was
determined using the amplitude of the largest positive and negative peaks
of the signal measured in a 300 ms window after the presentation of the
acoustic stimulus. Determination of the amplitude was done by MED
Associates’ software (Startle Reflex v6.0). For a schematic representation
of ASR testing, see Figures 2A, 3A, and 5A. Before testing, animals were
acclimated to the startle box for 5 min for 2 subsequent days. During this
acclimation, and throughout each test session, there was a 65 dB SPL
white-noise background sound. On Day 3 rats were tested on an input/
output (I/O) function to assess startle reactivity. After a 5 min acclima-
tion period, this test began with the presentation of a 65 dB SPL white
noise (20 ms) and increased to 120 dB SPL, in 5 dB SPL steps at an
intertrial interval (ITI) of 20 s. Startle reactivity determined the setting of
the gain of the movement-sensitive platform (Valsamis and Schmid,
2011). This gain amplified the signal from the platform to ensure animals
startled within a detectable range. Once a subject’s gain was determined,
it was kept constant throughout the remaining days of testing. The I/O
was completed at a gain of 1 for all animals. Following the I/O, experi-
mental testing started: following a 5 min acclimation, animal startle re-
sponses were habituated by 30 startle-alone trials (20 ms white noise, 105
dB SPL, 20 s ITI). The following PPI test consisted of seven different trial
types (10 trials/condition, total � 70 trials, pseudorandomized order).
The trial conditions were as follows: startle pulse-alone trials (for baseline
startle amplitude) and combinations of two different prepulses (75 or 85
dB SPL white noise; 4 ms) at three different interstimulus intervals (ISIs;
15, 30, or 100 ms). The ITI for this block varied between 15 and 25 ms.

For combined optogenetic stimulation, animals were tested in a clear,
rectangular holding chamber (w: 25 cm, h: 30 cm), placed in a partially
enclosed startle box. This ensured the rat was comfortably tethered to the
light emitting diode (LED), which was suspended on top of the box. The
light source was connected to the animal using a branching opto-
patchcord (400/430 �m core, 0.48 NA, Doric Lenses). Before testing,
animals were acclimated to the tether procedure. Animals were tethered
two times (15 min) while freely exploring their home cages. During their
first exposure to the startle chambers, animals were not tethered (15
min), however, for the following three acclimation procedures they were
tethered to the light source but received no photostimulation. Because
tethering required the use of a larger holding chamber during startle
testing, the acclimation procedure was lengthened to 15 min to reduce
movement artifacts during testing. Optogenetic stimulation was trig-
gered by a 28 V signal from the Med Associates boxes, which was trans-
formed using a converter (SG231, Med Associates) into a TTL-pulse.
This TTL-pulse triggered a waveform generator (DG1022, Rigol Tech-
nologies), which was used to modulate light stimulation. The waveform
generator triggered the LED driver (LED RV 1Ch 1000 Single LED, Doric
Lenses), which controlled the LED light fiber. Light stimulation was de-
livered using a blue LED (465 nm, FRJ 1�1, Doric Lenses) at 50 Hz (3
pulses of 15 ms of light, 5 ms rest). For a dose/response curve, lower
stimulation frequencies were also tested: 10 Hz (3 pulses of 15 ms, 85 ms
rest) and 1 Hz (3 pulses of 15 ms). These frequencies were selected based

Figure 1. Hypothetical PPI pathway. The hypothetical primary startle pathway (orange) is
short and includes the cochlear root neurons (CRNs), and giant neurons in the PnC that directly
innervate cervical and spinal motor neurons (MNs). Inhibition of this pathway by prepulses is
assumed to occur on the level of the PnC (caudal pontine reticular formation) (blue pathway):
non-startling acoustic prepulses are processed through the ascending auditory pathway includ-
ing the cochlear nucleus (CN) and the inferior colliculus (IC). From there, auditory information is
signaled to the multisensory superior colliculus (SC) and the PPTg. Cholinergic inhibitory pro-
jections from the PPTg to the PnC have been suggested to mediate PPI (modified from Koch,
1999).
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on seminal findings from Witten et al. (2011). Light illumination varied
from 21 to 24.7 mW. Optical power was measured using an energy meter
console (PM100D paired with photodiode sensor S120C, Thorlabs).

For experiments with mecamylamine, all animals received an intra-
peritoneal injection of mecamylamine hydrochloride (3 mg/kg; M9020,
Sigma-Aldrich) or saline, 7 d apart, before combined optogenetic stim-
ulation and startle testing. During startle testing, the acclimation was
shortened to 7 min to account for the half-life of the drug.

Locomotor behavior. Rats were placed into a 45 � 45 cm box with two
adjacent opaque walls and two adjacent translucent walls. The animals
were able to freely explore the box for 20 min while they were tracked
using a webcam and ANYmaze software v4.99 (Stoelting). Distance trav-
eled and time spent in the center (15 � 15 cm centered square) and

surrounding perimeter was recorded. Additionally, the data for each
animal was averaged in to 5 min blocks (total of 4 blocks).

Conditioned place preference. A subset of males (n � 6/group) under-
went an unbiased, counterbalanced, conditioned place preference (CPP)
procedure, as described previously in detail (Ahmad et al., 2013). In brief,
saline vehicle or morphine sulfate injections (5 mg/kg, i.p., Macfarland-
Smith, administered immediately before placement in the chamber)
were paired with one of two environments that differed in color (black or
white), texture (smooth floor or textured with woodchip bedding), and
smell (2% acetic acid or no added scent). As reported previously, rats
display no baseline preference for either of these two environments
(Laviolette and van der Kooy, 2003). For optogenetic CPP, all animals
were tethered to the light source and received light stimulation whenever

Figure 2. ChAT::Cre rats exhibits normal startle and PPI. A, Scheme of startle testing protocol. B, Startle responses to increasing sound levels (I/O function). Both genotypes show a similar startle
threshold between 80 and 85 dB. There was no main effect of sex (F(1,27) � 2.2, p � 0.15) or genotype (F(1,27) � 2.2, p � 0.15), but a significant sex by genotype interaction (F(1,27) � 5.6, p �
0.03); ChAT::Cre n � 16 (7 males 9 females), WT n � 16 (8 males, 8 females). C, WT males had a higher startle amplitude than the other animals (F(1,14) � 6.4, p � 0.02). D, After habituation, there
were no differences between groups in baseline startle (startle-only trials) during PPI testing (genotypes: F(1,27) � 0.72, p � 0.40; sex: F(1,27) � 0.28, p � 0.60). E, There were no differences in PPI
between groups (genotype: F(1,27) � 0.03, p � 0.86; sex: F(1,27) � 0.12, p � 0.73). *p � 0.05.
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placed in the paired box. They did not receive any drug injections. Three
days after the conditioning phase, animals were tested for a place prefer-
ence: they were placed in a neutral zone between both chambers and
could freely explore both chambers for 10 min. The distance traveled and
time spent in each compartment were recorded and tracked using a
webcam and ANYmaze software v4.99 (Stoelting). For each animal, CPP
behavior was assessed by the time spent in each compartment and using
an individually calculated place preference score (time in morphine-
paired environment/time in saline).

Surgical procedure. Animals (males and females, aged 10 –14 weeks)
were induced with a 5% isoflurane and 95% oxygen and maintained with
a 2% isoflurane. A subcutaneous injection of meloxicam (1 mg/kg) and
intramuscular injection of Baytril (10 mg/kg) were administered before
surgery and as needed 7 d postsurgery for pain management. Blunt-
ended ear bars and a snout mask were used to secure the head in the
stereotaxic frame. A midline incision was made in the skin on top of the
head, and bilateral burr holes were drilled at the following coordinates
from bregma: �2.0 mm medial/laterally, �7.2 mm ventrally, and �7.6
caudally. 1 �l/side of virus solution were injected at a rate of 0.1 �l/min
using a blunt end 1.0 �l Hamilton syringe (Model 7001 KH SYR, Knurled
Hub NDL, 25 gauge, 2.75 in, point style 3; Hamilton). The syringe rested
for 1 min before injection and 7 min postinjection before retraction. For
optogenetic experiments, bilateral fiber-optic cannulae (7.2 mm, 400/
430 �m core, NA 0.48; Doric Lenses) were lowered into the same loca-
tion. Once in place, they were secured using acrylic dental cement. Three
jeweler’s screws were placed in the skull to improve security of the im-
plants (2 bilaterally over the parietal skull bones and 1 on the left frontal
skull bone). Silk suture was used to close the wound and rats were given
a 21 d recovery period to promote maximal expression of the respective
protein before testing began.

Viral constructs. For optogenetic stimulation, animals were stereo-
taxically microinjected with rAAV5-EF1�-DIO-hChR2(H134R)-eYFP
(4.3 � 10e12 vg/ml; Lot:AV4313p, UNC Vector Core, Chapel Hill, NC).
For controls, the following control virus was used: rAAV5-EF1�-DIO-
eYFP (4.9 � 10e12 vg/ml; Lot:AV4836c, UNC Vector Core). Viruses
were aliquoted and stored at �80°C.

Immunohistochemistry. Before perfusion, animals received bilateral
50 Hz light stimulation (25 pulses of 15 ms duration/min) for 30 min.
Animals were perfused 60 –90 min after with saline followed by 4% para-
formaldehyde. The brains were harvested and stored in 30% sucrose until
sliced into 40 �m slices using a freezing microtome (KS34S, Thermo-
Fisher Scientific). Slices were divided into four parallel series and stored
at �20°C in cryoprotectant solution [30% sucrose, 30% ethylene glycol,
and 5% of 0.01% sodium azide in 0.1 M phosphate buffer (PB)].

Before free-floating immunohistochemistry being performed, as well
as in between all incubations with antibodies, all slices were thoroughly
rinsed in 0.1 M PB. Antibodies were delivered in a 0.1 M PB and 0.1%
bovine serum albumin (BSA) solution. Slices were pretreated with a 1%
H2O2 in 0.1 M PB (Caledon Laboratories) for 10 min then blocked for 1 h
in a 0.1 M PB plus 0.4% Triton X-100 and 0.1% BSA (Fisher Scientific)
solution before incubation with primary antibodies. Immunohisto-
chemistry was performed using an antibody for c-FOS (1:1000; poly-
clonal rabbit, Sc-52, Santa Cruz Biotechnology) and a secondary
antibody AlexaFluor 594 (donkey anti-rabbit, ThermoFisher Scientific),
to ensure stimulation parameters activated target neurons. This valida-
tion of photostimulation has been used in the past (Liu et al., 2012;
Yamamoto et al., 2015). To verify virus expression in cholinergic cells we
used an antibody for choline transporter (ChT; 1:500; monoclonal
mouse, EMD Millipore) and amplified this using ta standard ABC
method and tagged this using Streptavidin AlexaFluor 594 conjugate
(1:1000; ThermoFisher Scientific). Images were taken for each animal
between postsurgery days 26 –35. For each animal, three representative
images were taken at 20� magnification: one at the injection site, one
posterior, and one anterior to the site within the same series. Coexpres-
sion with the fluorescent tag EYFP that labeled neurons expressing the
ChR2(H134R) protein was quantified. Images were acquired using a
Leica LSM 800 (Zeiss) confocal microscope using 20� and 40� magni-
fication. Images were scanned using the 488 and 546 nm laser lines indi-
vidually, and we collected wavelengths 490 –550 and 560 –700 nm,

respectively. Images were merged using Zen software (Zeiss). To estimate
cellular activation with photostimulation, two individuals blinded to the
groups counted the number of yellow fluorescent protein (YFP)-expressing
neurons, and c-FOS-positive cells, as well as the number of YFP neurons that
coexpressed c-FOS for both experimental (ChR2(H134R)-YFP) animals
and controls (YFP only). Cell counts were tracked using ImageJ software
using the Fiji cell counter plug-in (Schindelin et al., 2012; Schneider et al.,
2012). The inter-rater reliability between counters was calculated using a
two-way mixed effects model Intraclass correlation coefficient (ICC),
which revealed an acceptable correlation (0.90). Once counted, an aver-
age of the two cell counts was used for reporting (C: 0.93). Once counted,
an average of the two cell counts was used for reporting and analysis.

Statistical analysis. Startle testing: Levene’s Test of Equality of Error
Variance or Mauchley’s Test of Sphericity (repeated-measures ANOVA
only) was used before performing ANOVA. If Levene’s test was violated,
an equivalent nonparametric ANOVA was run. In the case of a repeated-
measures ANOVA, if sphericity was violated, corrections were applied
based on the � value (if � � 0.75 the Greenhouse–Geisser correction was
applied, or if � � 0.75 the Huynh–Feldt correction was used). If post hoc
tests were necessary, a Student’s t test with Bonferroni corrections was
performed. Criterion for significance was � � 0.05. Three-way repeated-
measures ANOVA (genotype/treatment � sex � sound level) was used
for the I/O function. Short-term habituation ratios were determined by
dividing the average of trials 25–30 by the average of trials 1–2 for each
animal and were compared using a two-way ANOVA (genotype � sex).
Prepulse inhibition was expressed as percentage of prepulse inhibition:
%PPI � [1 � (startle magnitude with prepulse/baseline startle without
prepulse) � 100]. This indicated the amount that startle was inhibited, as
a percentage of the baseline response. The average %PPI for each pre-
pulse type were calculated and compared using a four-way ANOVA
(prepulse dB SPL � ISI � genotype � sex). For locomotor behavior, a
three-way repeated-measures ANOVA (genotype � sex � time) was
performed. The total distance traveled was analyzed using a two-way
ANOVA (genotype � sex) and the time spent in the center or perimeter
was analyzed separately from distance using a repeated-measures three-
way ANOVA (genotype � sex � area). For CPP testing repeated-
measures ANOVA (environment � virus) were performed, and the
preference score was analyzed using a one-sample t test. For analyzing in
vivo and in vitro electrophysiology effects, paired t tests and ANOVA were
used as indicated.

Results
ChAT::Cre rats exhibit normal startle, PPI, and locomotion
To assess the potential role of cholinergic midbrain neurons in
PPI, the light-sensitive ion cation channel ChR2 was expressed
specifically in cholinergic midbrain neurons using a Cre-
dependent AAV vector injected stereotactically into the midbrain
of transgenic ChAT::Cre rats. The ChAT and VAChT gene share
a common locus. Because VAChT activity is the rate limiting step
in cholinergic neurotransmission, transgenic ChAT::Cre rats,
carrying additional copies of the VAChT gene, are potentially
hypercholinergic, as it has been described for the respective trans-
genic mouse model (Kolisnyk et al., 2013; Prado et al., 2017). We
therefore first measured startle reactivity, PPI, locomotion, and
anxiety-like behavior in the transgenic ChAT::Cre rats and com-
pared it to WT littermates. An I/O test showed that there was no
significant main effect of genotype on startle reactivity, although
WT rats trended to have higher startle amplitudes than the
ChAT::Cre rats (Fig. 2A,B). Further analysis revealed that this
was due to higher startle amplitudes in WT males compared with
the other animals (Fig. 2C). Most importantly, ChAT::Cre ani-
mals had the same startle threshold as WT animals at intensities
between 80 and 85 dB. On subsequent testing days, all groups had
similar baseline startle (Fig. 2D), and levels of PPI did not differ
between ChAT::Cre animals and WT animals (Fig. 2E).

Next we tested whether ChAT::Cre rats were hyperlocomo-
tive, as shown for the respective mouse model. There was no
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indication of a hyper-locomotive phenotype in ChAT:Cre rats.
While female animals of both genotypes showed slightly higher
locomotive activity than males, there was no significant differ-
ence between ChAT::Cre rats and WT in total distance traveled
(Fig. 3A), in locomotor activity over time (Fig. 3B), or in time
spent in center versus perimeter (Fig. 3C). The same ratio of time
spent in the center versus perimeter also indicates that there are
no differences in anxiety-like behavior, because anxious animals
tend to spend more time at the perimeter along the walls.

Optogenetic stimulation enhances startle
We microinfused the optogenetic AAV vector rAAV5-EF1�-
DIO-hChR2(H134R)-eYFP or control viral vector rAAV5-EF1�-
DIO-eYFP locally into the PPTg of ChAT::Cre rats to transfect
cholinergic cells with channelrhodopsin. Following microinfu-
sion, bilateral light conductors were implanted to target the
PPTg. Four weeks later we confirmed normal startle reactivity
with an I/O function in both viral injection groups without op-
togenetic stimulation and found no differences (Fig. 4A,B). We
then paired different amounts of optogenetic stimulation (3
pulses of 15 ms, with 1 s, 85 ms, or 5 ms ISI) with the startle
stimulus onset. Whereas the lower frequencies had no impact on
startle amplitudes, the 50 Hz application of bilateral optogenetic
stimulation of cholinergic PPTg neurons potentiated startle re-
sponse amplitudes in ChR2-expressing animals, but not in ani-
mals expressing the control virus (Fig. 4C), which is in contrast to
our hypothesis that these neurons inhibit startle. Moreover, re-
peated light stimulation showed a persistent startle potentiating
effect across at least 10 subsequent trials (Fig. 4D).

In a subsequent experiment, we applied optogenetic stim-
ulation shortly before the startle stimulus at intervals com-
monly used for PPI experiments to see whether preceding
stimulation of cholinergic PPTg neurons could mimic an
acoustic prepulse (Fig. 5A). These trials were interspersed with
startle only trials and trials with acoustic prepulses, at pseudo-
randomized order. As shown in Figure 5B, optogenetic stim-
ulation before startle still enhanced startle responses, leading
to negative PPI, or prepulse facilitation, across different inter-
vals between photostimulation and acoustic stimulation,
whereas acoustic prepulses greatly inhibited startle by 70 –
95%, as expected.

To confirm that the effects of optogenetic stimulation were
indeed due to the activation of cholinergic neurons and to also
gain some information about the respective cholinergic receptor
class involved, we subsequently combined optogenetic stimula-
tion with the administration of the nicotinic antagonist mecam-
ylamine. We ran a combination of the startle protocol shown in
Figures 4A and 5A, with first simultaneous optogenetic stimu-
lation and then startle preceding optogenetic stimulation at
different ISI, intermingled with prepulse trials and startle only
trials. Systemic injection of mecamylamine before startle test-
ing inhibited the startle potentiating effect of both the con-
current optogenetic stimulation (Fig. 6A) as well as of the
optogenetic stimulation preceding the startle sound in transgenic
animals expressing ChR2 (Fig. 6B), although it had no significant
effect in animals expressing control virus. This indicates that op-
togenetic activation of PPTg neurons and subsequent release of
acetylcholine target excitatory nicotine receptors presumably ex-
pressed in the startle pathway. In summary, these optogenetic
experiments indicate that activation of cholinergic PPTg neurons
enhance startle through activation of nicotinic receptors and are
therefore very likely not involved in mediating PPI.

To further verify that PPTg cholinergic neurons were indeed
specifically activated in our experiments, all animals were ana-
lyzed port-mortem for expression of ChR2 in the PPTg and for
the proper placement of light conductors (Fig. 7A). Immunohis-
tochemical labeling using an antibody for ChT1 was used to
quantify the percentage of PPTg cholinergic neurons expressing
ChR2, and the percentage of ChR2 (YFP)-expressing neurons
that are cholinergic (Fig. 7B). Overall, the ChR2(H134R)-YFP
protein was expressed in 70% (�11%) of PPTg cholinergic
neurons, and the YFP control virus in 73% (�9%) of PPTg cho-
linergic neurons. Inversely, 95% (�4%) of ChR2(H134R)-YFP-
expressing neurons, and 89% (�4%) of cells expressing the
control virus, were ChT1-positive. This confirmed that ChR2 was
specifically expressed in the majority of PPTg cholinergic neu-
rons, but not in noncholinergic neurons.

To assess whether photostimulation was effective in eliciting
action potentials in ChR2-expressing PPTg neurons, we also
killed three animals 90 min after optogenetic stimulation and
stained for c-FOS to detect cellular activation (Fig. 7C). When
analyzing coexpression of YPF with the cellular activation

Figure 3. ChAT::Cre rats are not hyper-locomotive and do not show increased anxiety-like behavior. A, The cumulative distance traveled in 20 min was calculated and females traveled to a greater
degree than their male counterparts in both genotypes (F(1,27) � 10.4, p � 0.01). There was no effect of genotype (F(1,27) � 0.1, p � 0.75). B, All groups habituated to the same degree over the
20 min testing period. C, both genotypes displayed a strong preference for the perimeter of the open field (F(1,27) � 522, p � 0.001). This was equal across genotypes (F(1,27) � 0.1, p � 0.75) and
sexes (F(1,27) � 0.14, p � 0.71). Overall this demonstrates that locomotor activity and anxiety of transgenic rats was not different from WT animals. *p � 0.05.
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marker, we found that photostimulation induced c-FOS expres-
sion in 71%(�13%) of ChR2(H134R)-YFP-expressing neurons,
whereas only 8%(�3%) of YFP-control virus expressing cells
coexpressed c-FOS. In both YFP-control and ChR2(H134R)-
YFP-expressing animals non-YFP-labeled cells were also express-
ing c-FOS.

Last, we verified efficient stimulation of PPTg cholinergic
neurons by running a positive behavioral control: a subset of
the animals used for startle testing experiments shown above
underwent a subsequent CPP test, because it has been shown
that optogenetic stimulation of cholinergic PPTg neurons is
sufficient to induce place preference (Xiao et al., 2016). One of
the boxes was assigned to be paired with optogenetic stimula-
tion and the other box to no stimulation (random). All ani-
mals were tethered during the training and testing sessions.
After three training sessions for each box, ChR2(H134R)-
YFP-expressing animals exhibited a preference for the box
paired with optogenetic stimulation at a subsequent testing
day, whereas animal transfected with the control virus did not
develop any preference for the box paired with photostimula-
tion (Fig. 8 A, B).

Discussion
Prepulse inhibition of startle and the PPTg
Our results show that specific activation of cholinergic midbrain
neurons using an optogenetic approach generally enhances star-
tle reactivity. PPI of startle is an operational measure to quantify
sensory filtering. It does not require any learning and is largely
independent of confounds like motivation and attention. As
such, PPI is widely used in pre-clinical research. PPI disruptions
are a hallmark of, schizophrenia (Braff et al., 1978, 1995; Geyer
and Braff, 1982; Kunugi et al., 2007; Walters and Owen, 2007;
Takahashi et al., 2008; Moriwaki et al., 2009; Perry et al., 2009),
but are also observed in a variety of other neurodevelopmental/
psychiatric disorders, including ADHD and autism spectrum dis-
orders (Swerdlow et al., 1995; Castellanos et al., 1996; Braff et al.,
2001). PPI measurements are routinely used in drug-discovery,
where the reversal of dopamine-induced PPI deficits in rats is a
gold standard for antipsychotic drug screening. It has been shown
that acoustic, tactile, and visual prepulses can induce PPI of
acoustic startle (Hoffman and Ison, 1980), however, acoustic
stimuli are primarily used for both prepulses and startle stimuli

Figure 4. Optogenetic stimulation increases startle. A, Schematic of the startle protocol with optogenetic stimulation represented in blue. B, Startle reactivity (I/O function) was not different
between animals inoculated with control virus and animals with the ChR2 virus, both of which were implanted with a light rod, without photostimulation (YFP: n � 6, ChR2: n � 7, F(1,10) � 0.9,
p � 0.37). C, ChR2-expressing animals showed increased startle responses with 50 Hz light stimulation by a ratio of 1.82 (�0.32; t(11) � 2.23, p � 0.04), but not with lower stimulation frequencies
of 1 Hz and 10 Hz. Control animals showed no change in startle magnitude with simultaneous optogenetic stimulation. D, This increase in startle responses could be sustained by repeated
optogenetic stimulation. The blue arrow indicates the first trial of startle paired with optogenetic stimulation. *p � 0.05.
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since they are easiest to experimentally control. The primary
acoustic startle pathway has been established by previous work
from us and others (Davis et al., 1982; Koch, 1999; Schmid and
Weber, 2002; Yeomans et al., 2002; Schmid et al., 2003, 2010;
Simons-Weidenmaier et al., 2006). Because PPI is fast, inhibiting
startle within 8 –12 ms after the prepulse, a short brainstem cir-
cuit mediating PPI is warranted (Mansbach and Geyer, 1991). A
hypothetical PPI pathway has been published in papers and re-
views, comprised of a short feedforward inhibitory loop in the
midbrain (Fendt et al., 1994; Fendt and Koch, 1999; Koch, 1999;
Figure 1). There is solid data from lesion studies and electrical
simulations in vivo that support the participation of the inferior
and superior colliculi in this PPI circuit (Fendt et al., 1994; Li et
al., 1998a,b; Fendt, 1999; Li and Yeomans, 2000; Fendt et al.,
2001; Li and Yue, 2002). Furthermore, the PPTg, known as pe-
dunculopontine nucleus in humans, seems to be the central hub
of this PPI pathway: lesions or inactivation of the PPT have been
shown by multiple studies to robustly disrupt PPI (Swerdlow and
Geyer, 1993; Fendt and Koch, 1999; Jones and Shannon, 2004;
MacLaren et al., 2014). This implies an inhibitory projection
from the PPT to the startle pathway, which mediates startle inhi-
bition by a prepulse.

Experimental limitations
We found optogenetic stimulation effects in the PPTg on the
startle magnitude at 50 Hz stimulation, but not at the two lower

frequencies. It is important to mention that PPTg neuron firing
might not necessarily following this frequency. The high-fre-
quency stimulation is probably efficient because it provides suf-
ficient amount of light and therefore membrane depolarization
of ChR2-expressing neurons to make them fire action potentials.
We used this high-frequency stimulation rather than constant
stimulation for a longer time period to avoid any heat effects in
the tissue (Suhan et al., 2017).

This study was focused on cholinergic cells in the PPTg, how-
ever, there is one study that suggests that cholinergic neurons in
the adjacent laterodorsal tegmentum (LDT), rather than in the
PPTg, play an important role in startle modulation (Jones and
Shannon, 2004). In most of the animals in the present study, the
LDT was also transfected with the viral constructs but often not to
the same extend as the PPTg (data not shown). It is likely that the
light stimulation by the implanted light conductors was efficient
to activate ChR2-expressing cells in the LDT at least to some
extent. While there is no evidence from our data that LDT cho-
linergic neurons might have an opposite effect on startle, we can-
not entirely rule out a different role for LDT cholinergic neurons.
However, we analyzed whether the optogenetic effects on base-
line startle (Fig. 4D) correlated with the spread of the viral expres-
sion to the LDT, or the medial/lateral position of the optotrode,
because there is a huge variability of the optogenetic stimulation
effect between animals. We found no strong correlation, indicat-

Figure 5. Optogenetic stimulation induces prepulse facilitation. A, Schematic of the startle protocol with optogenetic stimulation represented in blue. B, The amount of startle inhibition (% PPI)
was assessed using trials with acoustic prepulses or with short optogenetic stimulation at different interstimulus intervals, as indicated. Animals injected with control virus showed no change in
startle amplitude through optogenetic stimulation whereas animals expressing ChR2 showed prepulse facilitation instead of PPI upon optogenetic stimulation (F(1,5) � 17, p � 0.01). Both groups
showed normal PPI of 70 –95% with acoustic prepulses. *p � 0.05.
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ing that the higher variability is due to differences in general viral
transfection efficiency or the localization of the optic fiber.

The role of cholinergic PPTg neurons revisited
The PPTg is considered a cholinergic midbrain structure.
Based on the findings that general lesions of the PPTg disrupt
PPI (Koch et al., 1993; Swerdlow and Geyer, 1993), it has been
assumed that PPI is mediated by cholinergic inhibition of the
startle pathway on the level of the pons upon PPTg activation
by a prepulse (Koch et al., 1993; Swerdlow and Geyer, 1993;
Fendt and Koch, 1999; Jones and Shannon, 2000a,b; Fendt et
al., 2001; Yeomans et al., 2006). Our study does not conflict
with these previous studies showing the important role of the
PPTg in PPI, given the fact that PPTg contains also GABAergic
and glutamatergic neurons that were equally affected by gen-
eral lesions in past studies. Our results clearly indicate,
though, that inhibition of startle might not be executed by
cholinergic PPTg neurons, but instead may be a function of
GABAergic and/or glutamatergic cells in the PPTg. They could
either directly project to the caudal pontine reticular forma-
tion (PnC), or indirectly inhibit the startle pathway, e.g.,
through GABAergic projections from the substantia nigra. In-
deed, both GABA and metabotropic glutamate receptors have
been shown to inhibit startle in vivo, and startle mediating
neurons in the reticular formation in vitro (Schmid et al.,

2010; Yeomans et al., 2010). Furthermore, studies in cichlids,
zebrafish and mice, have implied a crucial involvement of
glutamatergic and/or GABAergic inhibition in PPI (Bergeron
et al., 2015; Curtin and Preuss, 2015; Tabor et al., 2018).

What is the function of cholinergic PPTg neurons in mod-
ulating startle? Our data, together with the results of another
recent study (MacLaren et al., 2014), indicate that cholinergic
projections to the PnC increases startle much in accordance
with the role of acetyl choline in arousal. As such, cholinergic
input to the startle pathway could be involved in generally
regulating and maintaining startle reactivity according to the
arousal state of the subject. Furthermore, it has become appar-
ent that cholinergic PPTg neuron activity carries information
about emotional salience, since they are crucial for associative
learning in the CPP paradigm (Xiao et al., 2016) and condi-
tioned avoidance task (Bortolanza et al., 2010). In that regard
they could also play a role in increasing PPI if the prepulse is
emotionally salient (Zou et al., 2007). There is also some lim-
ited evidence that cholinergic mechanisms may play a role in
long-term habituation of startle (Berón de Astrada and Mal-
donado, 1999; Schmid et al., 2011), or that these neurons
could be involved in sensitization of startle, as arousal and
sensitization have been linked in the past (Davis and Walker,
2014). Future experiments will address these hypotheses.

Figure 6. The nicotinic antagonist mecamylamine blocks the effect of optogenetic stimulation. A, Administration of nicotinic antagonist mecamylamine blocked the increase in baseline startle
reactivity through simultaneous optogenetic stimulation in ChR2-expressing animals (F(1,11) � 15.6, p � 0.01), whereas it had no significant effect on baseline startle in control animals. B, In a
separate group of animals, optogenetic stimulation caused a significant enhancement of startle magnitude in ChR2 animals, but not controls (F(1,11) � 6.9, p � 0.02; compare Fig. 5B). However,
we found a significant interaction between drug and virus type (F(1,11) � 6.2, p � 0.03). Post hoc tests revealed that mecamylamine treatment completely blocked the optogenetically-induced
increase in startle in the ChR2 animals (t(6) � 2.5, p � 0.04), whereas there was no effect of mecamylamine on PPI in the group with the control virus (t(6) � 1.0, p � 0.36). *p � 0.05.

Azzopardi et al. • PPTg Modulation of Startle J. Neurosci., October 10, 2018 • 38(41):8798 – 8808 • 8805



Figure 7. Quantification of ChR2 expression and c-FOS activation in ChR2-expressing cells. A, Scheme of a sagittal rat brain slice showing the PPTg in gray. Blue markers show the placements of
the light fiber tips in ChR2-expressing animals, and black represents placements in controls. Triangles denote placement on the right side and dots on the left. Right, Representative image of the
tracts of implanted light fibers is shown. Scale bar, 500 �m. B, Expression of ChR2 and its coexpression with the cholinergic marker ChT. Arrows point to some examples of double-labeled cells.
Quantitative analysis revealed substantial overlap of ChT and YFP expression (see Results). C, Double-labeling for the cellular activation marker c-FOS with the viral YFP tag. Substantial coexpression
of c-FOS and ChR2 was observed (white arrows), plus some occasional c-FOS stained cells that were not YFP-positive (arrowhead). Scale bars, 25 �m.

Figure 8. Optogenetic stimulation caused CPP. A, Schematic showing the set up for CPP: one box was paired with optogenetic stimulation, the other box with no stimulation. B, ChR2-expressing
animals tended to spend more time in the environment paired with photostimulation (F(1,10) � 4.3, p � 0.06; n � 6 per group). C, A preference score was calculated for each animal (time spent
in paired box/time spent in unpaired box). ChR2-expressing animals had a significantly increased preference score of 1.42 � 0.2 (t(5) � 2.3, p � 0.03), whereas control virus-expressing animals did
not develop any place preference upon light stimulation. *p � 0.05.
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Conclusion
In summary, the results of this study indicate that the role of
cholinergic neurotransmission in regulating startle has to be re-
defined: cholinergic input from the PPTg seem to be important
for maintaining high startle reactivity in accordance with their
role in arousal. In contrast to the general view, they seem not to be
involved in mediating prepulse inhibition. This calls for a revi-
sion of the long-standing hypothetical pathway mediating PPI.
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