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Abstract

The current standard of breast conserving therapy is lumpectomy followed by whole breast

radiotherapy which is prohibitively long for many patients (4-6 weeks). In addition, the need

for treating the whole breast has been questioned. The London Regional Cancer Program

is enrolling early stage breast cancer patients in a prospective Phase I/II clinical trial (SIG-

NAL) to assess the safety/efficacy of neoadjuvant stereotactic ablative radiotherapy (SABR)

to the tumour alone to reduce treatment times. This provides a unique opportunity to assess

tumour response to SABR using non-invasive imaging. Patients received a pre-SABR dynamic

contrast-enhanced (DCE)-MRI to guide target volume delineation. A subset also received post-

SABR DCE-MRI to facilitate response assessment.

Recent safety concerns of long-term retention of gadolinium-based contrast agents (GBCA)

in brain and bone led us to reduce the dose of GBCA to half the clinical dose part way through

SIGNAL. Chapter 2 presents an investigation of the impact of this reduction on the inter- and

intra-observer variability for target volume delineation and we found no significant decreases.

These results are important for any context that requires repeated administrations of GBCAs to

patients.

Chapter 3 presents an investigation of the impact of intra-session image registration on the

voxel-by-voxel application of the Tofts model. Image registration led to significant reductions

in the uncertainty in model parameter estimates and unphysical parameter estimates. Also,

we showed that computation time could be reduced by a factor of two without affecting these

results.

Chapter 4 presents an investigation of DCE-MRI based assessment of treatment response to

SABR in early stage breast cancer. The analysis included two time delays post-SABR (6-7 or

16-19 days) and two SABR fractionation schemes (21Gy/1fraction or 30Gy/3fractions). DCE-

MRI response assessment one-week post-SABR was confounded by acute inflammatory effects

whereas 2.5 weeks appeared sufficiently long to minimize these effects. Kinetic parameters
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measured 2.5 weeks post-SABR in both fractionation groups were indicative of response, but

only the single fraction led to enhancement in tissue surrounding the tumour. Such metrics will

be valuable in adapting treatment to patients and in future studies that will investigate higher

ablative doses with the potential to eliminate surgery.

Keywords: Accelerated Partial Breast Irradiation (APBI), Early Stage Breast Cancer,

Stereotactic Ablative Radiotherapy (SABR), Gadolinium Contrast Agent Safety, Deformable

Registration, Tofts Model, 3D Slicer, Dynamic contrast enhanced (DCE) MRI, Response

Imaging
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Summary for Lay Audience

The current standard of treatment for low-risk early stage breast cancer patients is a lumpec-

tomy followed by 4-7 weeks of whole breast radiotherapy. This treatment time length has been

shown to be prohibitively long for many patients, particularly elderly or rural patients. The

London Regional Cancer Program is conducting a clinical trial with the aim of assessing the

safety and efficacy of treating low-risk early stage breast cancer with 1-3 treatments of radiation

therapy 1-3 weeks prior to surgery. This new treatment approach may significantly improve

the quality of life for many patients but also provides a unique opportunity to assess treatment

response to the high dose radiation using non-invasive imaging, which may allow for the de-

velopment of prognostic biomarkers of tumour response. The main objective of this thesis was

to explore the role of an imaging technique called dynamic contrast enhanced (DCE) MRI in

non-invasively assessing tumour response in patients receiving high dose radiotherapy.

Recent findings have shown long-term retention of contrast agents used in DCE-MRI in

brain and bone which led us to reduce the dose of these contrast agents part-way through the

clinical trial. Chapter 2 presents an investigation of the impact that this reduction has on patient

care, specifically the effect on the radiotherapy delivery process. We found that we could lower

the contrast dose used without compromising patient care.

Chapter 3 investigates the role that motion correction strategies play in the analysis of DCE-

MRI and was an important step in the analysis of DCE-MRI. Building off these results, Chapter

4 presents the results that address the original objective of investigating DCE-MRI in assessing

tumour response to high dose radiation therapy. This work presents novel insights into the

vascular response to high dose radiotherapy and shows that DCE-MRI may be a good candidate

to assess tumour response – so long as the imaging time post-radiotherapy is sufficiently long to

avoid confounding acute inflammatory effects due to the radiation. The work presented in this

thesis sets the stage for future studies that will investigate even higher doses of radiotherapy

with the potential to eliminate surgery altogether.
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Chapter 1

1 Introduction

1.1 Cancer

1.1.1 Overview

Over their lifetime, 1 out of every 2 Canadians will be diagnosed with cancer [1,2]. In addition,

cancer is one of the leading causes of death worldwide [1,3]. Cancer is a highly diverse disease

requiring several different modalities of treatment including radiotherapy, systemic chemical

therapies, and surgical procedures. However, radiotherapy is unique in that it is ubiquitous

across most to all cancers. It is estimated that at least two-thirds of all cancer patients are

treated with radiation therapy throughout their treatment course [4]. As such, it is important to

understand the mechanisms of radiation therapy as well as the way it has developed over the

past years. In the following section, we review radiotherapy in the context of cancer.

1.1.2 Tissue Response to Radiotherapy and the Linear Quadratic Model

Radiation therapy involves the delivery of ionizing radiation to a target site. Ionizing radiation

consists of high energy x-rays, gamma rays, or charged particles that are capable of ionizing

atoms. This ionization causes deposition of energy which can lead to harmful and potentially

lethal effects to living organisms. One measure of energy deposition that is important in cancer

radiotherapy is the "absorbed dose," which is the amount of energy deposited (in joules (J)) per

unit mass (kilogram (kg)). The SI unit of absorbed dose is called the "gray (Gy)". In the context

1
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of cancer, the goal of using ionizing radiation for treatment is to deliver enough radiation to

destroy cancer cells in the target site while minimizing the amount delivered to surrounding

normal tissues.

In terms of the mechanistic cause of cell killing due to ionizing radiation, there is a large

body of experimental evidence that demonstrates that the most important target for inducing

cell death is through DNA damage [5]. On a cellular scale, as the radiation deposits its energy,

there is a chance for the radiation to induce either single or double strand DNA breaks. This

occurs either through direct or indirect action. In the case of an x-ray photon, one mode of

interaction is with an electron on an atom that has the potential to liberate it (i.e., ionize the

atom). This electron can then interact with the DNA causing damage (direct action), or create

free radicals that then interact with DNA causing damage (indirect action) [6]. If the DNA

damage is not repaired, the resulting effects are either DNA mutation or cellular death (the

desired effect in cancer).

Early experiments into the effect of radiation on cellular systems established that the bio-

logical effect of radiation was influenced by factors such as the total dose, the dose rate, the

dose per fraction, the overall treatment time, the type of tissue, etc. The interplay between

dose delivery schema and inherent properties of the tissue are encapsulated by the "5 R’s of ra-

diobiology" which provide a framework for understanding how altering our radiation delivery

scheme will affect tumour cell killing [6, 7]. The 5 R’s are:

1. Repair of sublethal DNA damage

2. Repopulation of cells after a radiotherapy fraction

3. Redistribution of cells within the cell cycle

4. Reoxygenation of the surviving cells

5. Intrinsic cell Radiosensitivity

The interplay between these factors depends on the way that the radiation is delivered and the
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type of tissue under study. For example, if we divide the total dose into a number of treatment

sessions (fractionate), redistribution and reoxygenation lead to increased cell killing whereas

repopulation and repair allow for potentially increased tumour cell survival [7]. Attempting

to predict how these factors interact with living systems is important for determining optimal

treatment techniques in terms of sparing normal tissue while maximally damaging tumour

tissue [8].

A ubiquitous model predicated on these ideas and that has been in use for many years is

the linear-quadratic model (LQ model). This model allows for comparison and conversion

between different dose schemes, as well as a prediction of the biological effect that a certain

dose scheme will have based on the properties of the tissue i.e., it can calculate isoeffective

doses. In this model, it is assumed that single strand breaks rarely lead to cellular death, and

so, the primary focus of cell killing is the ability of the dose scheme to induce double strand

breaks. A double strand break can be caused by a single track of radiation or the cooperative

effort of two radiation tracks that break a single strand of DNA "close" in time and space such

that repair mechanisms fail. Then, the log of the number of cells surviving is related to dose

through the following:

S F = e−(αD+βD2) (1.1)

where S F is the cell survival fraction, D is the dose, α specifies the slope of the survival curve

as D → 0, and β specifies the relative contribution of the "quadratic component," which is

related to the effectiveness of the DNA repair mechanisms. In other words, αD is the yield of

double strand breaks due to a single track of radiation and βD2 is the yield of double strand

breaks due to cooperating tracks of radiation.

A parameter that is used to describe the relative sensitivity of a cell line to repeated smaller

doses of radiation (i.e., fractionation) is the α/β. Large values of α/β indicate that the survival

of the cell line does not largely depend on fractionation scheme (i.e., the cell of interest has
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Figure 1.1: An example of the effect of fractionation on cell survival as predicted by the linear
quadratic model. The black lines are tissues with a low α/β and the red is a tissue with a high
α/β. The solid lines represent a fractionated scheme and the dotted lines represents a single
fraction dose at different dose levels.

poor repair mechanisms). This is often the case for tumours with a typically assumed α/β

value of 10 [6]. Small α/β are indicative of strong DNA repair mechanisms and that the cell is

sensitive to fractionation. This is the case with "normal" tissue which is often assumed to have a

value of 3 and is why fractionated radiation therapy has been the standard method of treatment

for decades. Fractionating allows for a minimization of damage to normal tissue while not

significantly affecting damage to the tumour [6]. Figure 1.1 shows this when comparing early

(high α/β) versus late (low α/β) responding tissues. Fractionation leads to approximately

equivalent cell killing in tissue with a high α/β (i.e., tumours) but to tissue sparing effects in

tissues with a low α/β (i.e., normal tissue).

From this model, a parameter called the biologically effective dose (BED) can be derived
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that allows for comparisons between different dose fractionation schemes:

BED =
− log(S F)

α
(1.2)

BED = nd
(
1 +

d
α/β

)
(1.3)

where n is the number of fractions, d is the dose per fraction, and α/β is as described above.

This essentially specifies any dose scheme as if it had been given in an infinite number of small

doses. This metric allows for comparisons of dose schedules based on the relative effect they

would have on tissue cell killing [6].

1.1.3 The Evolution of External Beam Radiation Therapy

While different techniques exist to delivery radiotherapy, a commonly used method is through

external beam radiotherapy. In this technique, radiation therapy is delivered external to the

target site, typically with linear accelerators.

Before the advent of contemporary imaging (i.e., computed tomography (CT)), it was typ-

ical to treat a very large portion or the entirety of the affected organ up to the prescription dose

using multiple static fixed x-ray fields. With the advent of CT imaging and the ability to visu-

alize the target and surrounding tissues/organs, it became possible to treat more conformally,

facilitating increased normal tissue sparing. One of the first examples of this was in the use

of 3D conformal radiotherapy (3D-CRT), a technique where beam angles were chosen based

on what structures could be seen through the "beams-eye-view" in an attempt to minimize the

dose to the surrounding tissues and organs [9]. In addition, physical blocks or metallic mul-

tileaf collimators (MLCs) were used to statically shape the beam to further spare surrounding

organs. This type of treatment design is called "forward planning" where the beam intensities

are chosen and the resulting dose distribution is calculated [9].

It became evident that this method of planning had inherent flaws - we know the type of

dose distribution that we want (or at least specific characteristics such as maximal dose to nor-
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mal tissues). What if, instead, we could start from our dose distribution characteristics and find

the optimal beam positions? This type of treatment technique is called intensity modulated ra-

diotherapy (IMRT) and implements the paradigm of “inverse planning” where the beam shape

and intensity is optimized to provide the desired dose distribution [9,10]. The use of IMRT has

grown immensely and has shown success in many cancer sites [10]. Even still, radiation was

most commonly delivered in 1.8-2 Gy fractions per day to minimize normal tissue toxicities.

A technical advancement of IMRT is to deliver the therapy from an entire 360° arc while

simultaneously modulating the intensity and shape of the beam instead of delivering the ther-

apy from fixed angles. This method of delivery is called volumetric modulated arc therapy

(VMAT). Due to the fact that it is typically used for highly targeted radiation, it requires exten-

sive image-guidance. This has introduced a new era to treatment delivery design for cancer by

delivering highly focused dose distributions to a target with steep dose fall-off [11]. Further-

more, the delivery was more efficient than typical IMRT techniques that use fixed beams, both

in terms of the amount of radiation used over the treatment as well as reductions in the over-

all treatment time [11]. Finally, it has also enabled for the escalation of the dose per fraction

into stereotactic regimes resulting in shorter treatment courses for patients (typically 1-10 frac-

tions) [11, 12]. In terms of nomenclature, stereotactic radiotherapy is typically referred to as

stereotactic radiosurgery (SRS) for single fraction treatments (typically in brain and head and

neck cancer cases) and stereotactic ablative radiotherapy (SABR) (or stereotactic body radio-

therapy (SBRT)) for extra-cranial stereotactic radiotherapy. Stereotactic techniques have been

used successfully in several sites including head and neck, prostate, and lung cancers [11]. Its

use for breast cancer has been limited primarily due to the fact that breast cancer radiotherapy

is post-lumpectomy which results in large treatment volumes. This will be discussed in more

depth in the following sections, particularly in section 1.4.2.
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1.1.4 Stereotactic Radiotherapy and the Linear Quadratic Model

The LQ model has proved successful in traditional radiotherapy schemes [7]. However, defi-

ciencies have been identified in high dose per fraction regimes, particularly since it assumes

complete repair of sub-lethal DNA damage between fractions which may not be valid in stereo-

tactic treatments [13] as evident by potential repair saturation effects [14]. Researchers have

generally identified that the linear-quadratic model fails to predict cell survival accurately at

doses > 10 Gy per single fraction and overestimates the cell killing effect in tumours while

underestimating cell killing in normal tissues [14, 15], though this is controversial [7]. In any

case, development and implementation of alternative models that better predict cell killing

effects and account for potentially differential cell killing effects at stereotactic doses are nec-

essary [16].

Several models have been proposed to try and better describe tumour cell killing in higher

single fraction doses than has previously been used [17]. One such model is the universal

survival curve (USC) which merges the linear quadratic model, which explains cell killing

effectively at lower doses, and another empirical model called the multi-target model, which

fits empirical data well at higher doses [14]. The equation describing the log cell survival

is [14]:

ln S (d) =


−αd − βd2 if d ≤ DT

− 1
D0

d +
Dq

D0
if d ≥ DT

where S is the survival fraction, d is the dose, DT is the threshold dose where the model tran-

sitions from the LQ model to the multi-target model, D0 is the characteristic dose required to

deliver one inactivating event, on average, per cell, Dq is the quasi-threshold dose i.e., where

the linear portion of the curve intersects with the x-axis (see Figure 2 in reference [14]). The

parameters α and β have been explained previously in section 1.1.2.

The USC model has been used to some success but requires an additional 2 parameters
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which increases the complexity of data fitting [7,14] - a difficulty for all proposed models [17].

Furthermore, unlike the linear quadratic model, the USC model does not provide any mechanis-

tic explanation for the predictions at higher doses (a deficiency of the multi-target model). It is

clear however that, in the stereotactic regime, we need to carefully consider the dose used, as a

naive application of the LQ model to determine equivalent stereotactic dose schemes compared

to standard fractionation schemes could potentially result in insufficient dose being delivered

to the tumour or an under-estimation of the expected normal tissue toxicities [15].

1.1.5 Summary

The previous sections have been given a broad overview of the radiotherapy field in terms of the

mechanism behind radiotherapy cell killing and methods of radiation delivery. The remainder

of this thesis will be focused on breast cancer.

1.2 Breast Cancer

1.2.1 Overview

Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer

death in woman in Canada [2]. Fortunately, 80% of woman are diagnosed with early stage

breast cancer i.e., as either Stage I or II, primarily due to organized screening programs [2].

Furthermore, early stage breast cancer is highly treatable [18] with 5-year survival rates of

100% and 93% for stage I and II, respectively [2]. As such, research into breast cancer thera-

pies has generally shifted towards investigating methods to reduce the physical and emotional

burden on patients.
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1.2.2 Current Standard for Early Stage Breast Cancer Treatment

The current treatment options for early stage breast cancer are either radical mastectomy or

breast conserving therapy (BCT). Radical mastectomy, introduced by Halstead and Meyer in

1894 (later modified to spare the pectoralis major muscle), was the standard of care well into the

1980s [18,19]. Investigation into new techniques has continued to focus on further conservation

of breast tissue while maintaining tumour control. Most recently, several prospective clinical

studies have investigated using a BCT technique where a lumpectomy is performed followed

by external beam whole breast radiotherapy (WBRT) (Figure 1.2a, 1.2c). The radiotherapy is

delivered in 2 Gy fractions per day over 25 fractions for a total dose of 50 Gy. This is typically

followed by a 16 Gy boost to the surgical bed delivered in 2 Gy fractions [20,21]. The radiation

following surgery has shown to be essential for minimizing tumour recurrence [22–25] and

increasing overall survival [23,25]. These studies have demonstrated an equivalent cure rate to

total mastectomy [18, 22, 26, 27].

Despite the apparent benefits of BCT, its utilization has been limited [28,29]. This 5-8 week

treatment schedule has been shown to be prohibitively long for many patients, particularly

elderly and rural patients or patients who live in under-served areas [29,30]. Depending on the

region being studied, 10-80% of patients who are eligible for BCT opt to undergo mastectomy

instead [20]. Furthermore, 15-30% of patients who undergo BCT do not return for the adjuvant

WBRT after the lumpectomy [20].

There has been an increased investigation into reducing the treatment time for patients to

try and encourage them to return for the adjuvant radiotherapy as it is important in minimizing

recurrence. Several studies have investigated an alternative to the 50 Gy in 25 fractions WBRT

in which the dose is increased per fraction (i.e., hypo-fractionated). In the so-called “Cana-

dian” scheme, radiation is delivered in 2.66 Gy fractions over 16 fractions for a total of 42.5

Gy and has shown to provide equivalent tumour control and equivalent cosmetic outcome [21].

This scheme has thus become the standard for adjuvant WBRT radiotherapy [31]. Even still,
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this requires 3-5 weeks of treatment, again depending on the use of a boost of radiation to the

tumour bed. Ideally, the dose per fraction would be increased further to reduce the treatment

time but this is not possible without increasing the risk of normal tissue and organ complica-

tions, particularly for the heart and lungs [32]. If smaller volumes could be treated then it may

be possible to increase the dose per fraction.

Fortunately, large randomized prospective trials have established that recurrence tends to

occur local to the surgical bed [22, 26, 27], and that recurrence at other sites distal from the

original target was comparable to rates in the contra-lateral breast [26]. This has prompted

researchers to question whether it is necessary to deliver radiation to the entire breast. If it is

indeed true that we could treat a smaller volume, this would motivate reductions in the treat-

ment volume and would allow for further escalations of the dose per fraction. This method of

treatment has been termed accelerated partial breast irradiation (APBI) and has been investi-

gated by several researchers and institutions [20].

1.3 Accelerated Partial Breast Irradiation

1.3.1 Overview

Similar to WBRT, APBI typically begins with a lumpectomy where the tumour plus a margin

is removed, followed by targeted radiotherapy. The radiation is prescribed to the lumpectomy

plus a margin that accounts for microscopic disease as well as uncertainties in the delivery of

the radiation (due to motion, setup reproducibility etc.). This allows for escalation of the dose

per fraction resulting in typical treatment times of a week or less [20]. APBI can be performed

using three different techniques: brachytherapy, intra-operative radiotherapy (IORT), or exter-

nal beam radiotherapy (EBRT). The largest prospective, randomized trial comparing the three

methods of APBI to WBRT is the NSABP B-39/RTOG 0413 clinical trial [33], the results of

which are highly anticipated (the interim results reported for 3D-CRT are discussed in sec-

tion 1.3.5). In the meantime, many single-institution or smaller multi-institution studies have
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Table 1.1: A general description of the five grades in the criteria for adverse events (CTCAE)
system.

Grade of Adverse Event General Description

Grade 1 (Mild) Asymptomatic or mild symptoms

Clinical or diagnostic observations only

Intervention not indicated.

Grade 2 (Moderate) Minimal, local or noninvasive intervention indicated

Limits age appropriate activities of daily living

Grade 3 (Severe) Medically significant but not immediately life threatening

hospitalization or prolongation of hospitalization indicated

Disabling

Limiting of self care activities of daily living

Grade 4 (Life Threatening) Urgent intervention indicated

Grade 5 (Death) Death Related to adverse event

arisen to investigate APBI, though typically limited to just one of the aforementioned delivery

methods.

In the following sections, we begin by describing the general concepts of ipsilateral breast

tumour recurrence (IBTR), cosmesis assessment, and toxicity evaluation. This is important as

it, along with the concept of BED introduced in section 1.1.2, form a framework for compar-

ing new methodologies to the current standards of treatment as well as for comparing between

studies. Following this, a brief description of each APBI technique is given as well as associ-

ated studies that have quantified cosmetic outcomes and IBTR - with a focus on more recent

studies (within last 10 years).

1.3.2 Treatment Evaluation

Most studies investigating APBI base their assessment and outcomes on the primary and sec-

ondary endpoints of the NSABP B-39/RTOG 0413 trial.

While there are many different treatment evaluation metrics, the ones of focus are cosme-

sis, normal tissue and organ toxicities, and IBTR. IBTR is defined as a tumour recurrence that
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occurs within the affected breast after treatment. Contralateral breast and other regional re-

currences are also generally reported but rates are low in early stage breast cancer [34] and so

will not generally be discussed here. Cosmesis evaluation and toxicity are related but distinct

evaluations. Toxicities are pathological side effects in the surrounding tissue as a result of our

treatment. Cosmesis outcomes are macroscopic deterioration in the overall look, feel, or shape

of the treated breast. Cosmesis outcomes are linked to toxicological effects but a toxicity does

not necessarily present as a short- or long-term cosmetic deterioration.

In terms of toxicity reporting, the most commonly used system for side effect reporting is

the common terminology criteria for adverse events (CTCAE), which provides a standardized

framework for reporting system for toxicological side effects [35]. Generally, the adverse

events reported are specific to the organ under study and graded on a scale from 1-5 (or highest

grade that fits within the context of the current adverse events importance) which describes the

severity of the adverse event (table 1.1). For breast treatment, particularly due to radiation,

we are primarily concerned with adverse events related to breast under "Reproductive system

and breast disorders" as well as "Skin and subcutaneous tissue disorders." The most prevalent

assessments reported are skin toxicities (erythema, telangiectasia), fat necrosis, breast pain,

and fibrosis.

Cosmesis is typically evaluated by both patients and physicians or caregivers [36]. The first

formal system was developed in 1979 by Harris et al. who introduced a subjective assessment

scheme utilizing a four-point scale where the affected breast is compared to the untreated breast

[37]. The cosmetic outcome is typically grouped into four categories: excellent, good, fair, or

poor with most studies reporting the total proportion of patients that experienced excellent

or good cosmesis as rated by patients or physicians as a combined metric. Other authors

have attempted to provide more objective measures over the years but the Harris system (also

referred to as the Harvard scale) continues to be ubiquitous in the context of assessing breast

cosmesis outcomes.
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1.3.3 Brachytherapy Accelerated Partial Breast Irradiation

Brachytherapy is a technique that uses encapsulated radioactive sources ("seeds") to deliver

radiation over short distances. Due to the nature of radiation fall-off with distance (inverse

square law), this technique results in sharp dose gradients [38]. This makes it a prime candidate

for delivering focal radiotherapy to the target location for APBI. In the context of APBI, three

methods exist for its application: 1) interstitially using multi-catheter interstitial brachytherapy

(MCIB), 2) intracavitary using balloon-based techniques, or 3) using hybrid approaches.

MCIB uses multiple catheters that are inserted into the breast tissue in multiple planes

which allow the radioactive seeds to deliver their dose to the tissue [20]. The interstitial ap-

plicators can be placed at the time of surgery or in a follow-up if pathology and margin status

need to be evaluated before treatment [20, 34, 39].

Most studies that report long-term patient follow-up and evaluation were performed with

MCIB (Table 1.2) [20]. Generally, IBTR rates are equivalent to WBRT (Table 1.2). One of

the first series of successful studies involving brachytherapy APBI used interstitial implants

to deliver the radiotherapy following a lumpectomy [34]. These promising results lead to the

development of the RTOG-9517 trial where patients were treated over the course of 5 days

using MCIB - a significant reduction in treatment time [40]. Follow-up with patients continues

to show long term breast cancer control rates after more than 10 years [40]. Another large

multi-institution study conducted in European countries comparing WBRT versus MCIB APBI

found a IBTR of 1.44% vs 0.92%, respectively. This supports the idea that breast recurrence

tends to occur local to the surgical bed and further motivates continued investigation into APBI.

In terms of cosmesis and toxicity, results tend be favorable (Table 1.2 [20, 39]). RTOG-

9517 showed a patient rated cosmesis of 66% at 5 years which was comparable to to WBRT at

the time [41, 42]. Johansson et al. reported a very low cosmetic outcome of 51% but explain

that this may be due to the fact that patients were planned before the era of CT based planning

which necessitated large margins for radiotherapy i.e., a large amount of the surrounding breast
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Table 1.2: A list of studies reporting cosmetic outcome as well as IBTR with a focus on studies
from the last 10 years. Cosmetic outcome was determined using the Harvard Harris Criteria as
indicated previously. The cosmesis and IBTR are specified for the median follow-up time

Reference # Cases Method
Median

Follow up
(months)

Good/Excellent
Cosmesis IBTR

Mann [45] 111 Mammosite 66 97% 2.700%

Shah / Nelson [46] [47] 1449 Mammosite 63.1 91% 2.800%

Vargo [48] 157 Mammosite 66.33 93% 2.500%

Johansson [43] 51 MCIB 86 51% 6.000%

Antonucci [49] 199 MCIB 105.6 98% 5.000%

Strnad [50] 274 MCIB 63 90% 2.900%

Polgar [51] 128 MCIB 122.4 85% 5.500%

White / Rabinovitch [40] [42] 100 MCIB 145.2 66% 6.200%

Polgar / Strnd [52] [53] 633 MCIB 78 92% 1.400%

Gabani [54] 175 MCIB 120 95% 5.700%

Khan [55] 200 MCIB / Balloon 19 97% 0.005%

received a high dose of radiation in a shorter amount of time. They also identified that close to

50% of negative cosmesis rating were due to surgery [43]. Even with these promising results,

this techniques success relies heavily on accurate placement of the catheters, requiring a very

high degree of expertise and experience. As such, its implementation into regular clinical use

has been limited [20, 34, 44].

Intracavitary or balloon based brachytherapy APBI involves placement of a saline filled

balloon into the surgical cavity during or after the lumpectomy. The first to be developed was

the Mammosite® brachytherapy system (Hologic, Marlborough, MA) which provided a more

reproducible and easily applied methodology, requiring much less expertise. However, this

system only contained one central channel for an Iridium-192 high dose rate source to traverse

and deliver the dose resulting. This resulted in an inflexibility to shape the dose distribution

resulting in inhomogeneous dose distributions. In addition, the materials used lacked contrast

on x-ray or CT requiring injection of a contrast agent for visualization. Despite these short-

comings, it has shown relatively good cosmesis and toxicity (Table 1.2), though longer follow
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up is needed [20]. Other technologies such as the Axxent Electronic brachytherapy system

(Xoft, Fremont, CA), the Contura device (SenoRx, Inc, Aliso Viejo, Ca), etc. improve on

these aspects by introducing multiple channels for better dose distribution shaping, or use of

kilo-voltage x-ray sources to allow less stringent shielding requirements and greater system

mobility [20, 34], though clinical outcome data is currently lacking.

Finally, hybrid techniques have been developed to take advantage of the dose distribution

shaping versatility of MCIB with the ease-of-use and convenience of balloon based brachyther-

apy systems. These systems are surgically implanted in patients and typically have several

channels for entry of radioactive sources.

These studies taken together show that brachytherapy APBI is generally well tolerated by

patients and can reduce treatment time to approximately five days. However this technique is

highly invasive, sometimes requiring a second surgery for implantation of the devices into the

surgical cavity. It also has an increased risk of infection. Normal tissue toxicity is generally

acceptable but depends on factors such as tumour location, surgical excision irregularity, breast

size, and the expertise of the physician performing the operation which likely present as a

barrier for widespread adoption.

1.3.4 Intra-Operative Accelerated Partial Breast Irradiation

In IORT, a single high dose of radiation is delivered to the tumour bed during surgery. In this

way, large doses can be delivered in a single fraction while minimizing toxicities to the normal

tissue since the radiation does not have to traverse the normal tissues to reach the target. Ra-

diation was originally delivered using a standard linear accelerator by transporting the patient

from the operating room to the radiotherapy bunker, but recent development of portable linear

accelerators allow for patients to be treated without the additional logistical complications of

transporting them [56]. Linear accelerator miniaturization technologies has improved greatly

over recent years and is making this technique more appealing. In addition, IORT eliminates

the risk of patients not returning for their treatment and eliminates the risk of miss due to respi-
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ratory motion since the radiotherapy can be delivered under direct visualization of the tumour

bed.

There are only a few studies that have long term follow up for patients that received IORT

due to the previous logistical difficulties [57]. The two largest prospective trials with longer

term follow-up are the targeted intraoperative radiotherapy alone (TARGIT–A) trial and the

electron intra-operative radiotherapy (ELIOT) trial.

TARGIT–A compared external beam WBRT to single dose IORT [58]. IORT was delivered

using a 1.5-5 cm spherical applicator and an intrabeam device that used 50 kilo-voltage (kV)

energy x-rays to deliver the radiation. The surface of the tumour bed received 20 Gy which

attenuated to 5-7 Gy at 1 cm depth. Using a non-inferiority statistical design, the authors

showed that IORT did not perform worse than WBRT at the prescribed non-inferiority margin,

though there was indeed a significant increase in IBTR for the IORT arm (3.3% versus 1.3%).

Concerning toxicity, a study on a subsample of patients from the TARGIT-A trial showed that

patients enrolled in the IORT arm were twice as likely to have excellent or good cosmetic scores

as compared to WBRT using an objective camera based system, demonstrating that IORT was

well tolerated by patients [59].

The ELIOT trial was similar in design to the TARGIT–A trial but used a mobile electron

linear accelerator to deliver the therapy. While they found that there was a significant increase

in the IBTR rate for the IORT arm compared to WBRT, it was within the pre-specified equiva-

lence margin. They further commented that this increase was likely due to inclusion of patients

who would be selected as "unsuitable" according to American Society for Radiation Oncology

(ASTRO) consensus criteria for patient selection and showed no significant difference in re-

currence rate between IORT and WBRT when selecting favorable candidates [60]. In several

subsequent analyses on subsets of patients, toxicity profiles tended to favor IORT [61].

While IORT is generally well tolerated with acceptable IBTR in correctly selected patients,

its use has generally been low due to the logistical difficulties of having to transfer patients

from the surgical room to the radiotherapy treatment machines [62]. While mobile linear ac-
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celerators are renewing interest in this technique they still require a large cost investment as

well as additional quality assurance (QA) procedures and expertise. One of the largest criti-

cisms is that treatment occurs before final pathology has been determined and re-excision may

be required once pathology is established. Devices are being constructed that allow for detec-

tion of positive or negative margins at the time of surgery and may help to increase the use of

IORT [56].

1.3.5 External Beam Accelerated Partial Breast Irradiation

External beam accelerated partial breast irradiation (EB-APBI) utilizes linear accelerators to

treat patients non-invasively using the superposition of radiation beams. Most investigations

into APBI providing long-term follow-up have delivered the treatment in accordance to the

specifications of NSABP B-39/RTOG 0413 [20, 63] i.e., using 3D-CRT. Patients are setup in

the supine position and radiation is delivered using 3-5 non-coplanar static photon fields, with

the goal of minimizing dose to the uninvolved ipsilateral breast, the contra-lateral breast, the

heart, and the lungs.

However, other techniques have been developed since the initiation of NSABP B-39/RTOG

0413 that allow for better dose shaping. IMRT is a technique that modulates the beam inten-

sities at each treatment angle using using the multi-leaf collimators that provides further target

conformality [64]. For this reason, other studies have performed investigations for its use in

APBI [65].

For both 3D-CRT and IMRT, the gross target volume (GTV) is defined as the lumpectomy

cavity, visualized with CT, plus a margin for radiation treatment delivery uncertainties. Typi-

cal expansions of the GTV are 1.5cm for microscopic disease (clinical target volume (CTV))

and 1cm to account for the uncertainties in target position due to respiratory motion and the

generally mobile nature of the breast in the supine position as well as setup errors day-to-day

(planning target volume (PTV)). The most common dose scheme is 38.5 Gy total dose in 10

fractions twice per day with a minimal delay interval of 6 hours to allow for repair mechanisms
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(a) (b)

(c) (d)

Figure 1.2: A patient from the RAPID trial showing the differences between whole breast
radiotherapy and 3D-conformal radiotherapy. (A) and (B) show the dose distributions for the
whole breast and 3D-CRT plan, respectively. The GTV (lumpectomy), CTV, and PTV are
shown as purple, yellow, and red contours. The orange isodose line represents 100% of the
prescription dose and the green represents the 95% (prescription) isodose line. (C) and (D)
show a visual representation of the spatial geometry of the beams for whole breast and the
3D-CRT plans, respectively. Thanks to Dr. Scott Karnas from the London Regional Cancer
Program for providing the dosimetry plans for this representative patient.

in normal tissue.

The main advantages of APBI delivered using EBRT compared to brachytherapy and intra-

operative techniques are: 1) it is non-invasive, 2) the technology is widespread, requiring a

standard linear accelerator, 3) requires less expertise for planning which results in more uni-

form treatment across centers and easier comparisons, 4) more likely to have uniform dose

distributions compared to brachytherapy techniques, and 5) does not require subjecting the
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Table 1.3: A list of studies reporting cosmetic outcome (using Harvard Harris Criteria) as well
as IBTR with a focus on studies from the last 10 years. The cosmesis and IBTR are specified
for the median follow-up time. 3D-CRT = 3 dimensional conformal radiotherapy, IMRT =

intensity modulated radiotherapy

Reference Pub Year # Cases Method
Median

Follow up
(months)

Good/Excellent
Cosmesis IBTR

Hepel [66] 2009 60 3D-CRT 15 82% 0.00%

Chen [67] 2010 94 3D-CRT 50.4 89% 1.10%

Berrang [68] 2011 104 3D-CRT 37 82% 1.00%

Formenti [69] 2012 98 3D-CRTa 64 89% 1.00%

Lewin [70] 2012 36 IMRT 44.8 97% 3.00%

Rodriguez [71] 2013 51 3D-CRT 60 75% 0.00%

Lei [72] 2013 136 IMRT 53.1 88% 0.70%

Bergom [73] 2013 20 IMRTa 18.9 95% 0.00%

Liss [74] 2014 30 IMRT 60 73% 3.00%

Galland-Girodet [75] 2014 98 Proton 3D-CRT 82.5 62% 11.00%

Galland-Girodet [75] 2014 98 3D-CRT 82.5 94% 4.00%

Livi [76] 2015 260 IMRT 60 100% 1.40%

Peterson [77] 2015 569 3D-CRT 36 71% NS

Horst [78] 2016 141 3D-CRT 60 95% 0.70%

Rabinovitch [79] 2016 52 3D-CRT 96 64% 7.70%

Coles [80] 2017 669 IMRT 72.2 NS 0.50%

aPatients were setup prone
NS = not specified

patient to additional surgeries as well as verification of the tumour pathology before treat-

ment [20, 34, 39].

EB-APBI has seen a large increase in use, again owing to its high availability. Table 1.3

summarizes relevant contemporary studies. Most studies report IBTR rates similar to those of

other APBI techniques and WBRT, again supporting the notion that local recurrence tends to

occur local to the surgical bed. However, mixed results have been seen in terms of the long

term cosmesis outcomes.

In a single institution study, Rodgriguez et al. randomized patients to either WBRT or
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APBI using 3D-CRT [71]. In terms of IBTR, there was no significance differences between

the two arms. However, they found significant reductions in the Good/Excellent cosmesis

outcomes at a median follow up of 60 months (90% compared to 75%). The randomized

trial of accelerated partial breast irradiation (RAPID) trial, a large multi-institution Canadian

trial, performed an interim analysis comparing WBRT and 3D-CRT in 164 and 171 patients,

respectively. They found that there was a significant reduction in cosmesis for patients enrolled

in the 3D-CRT arm of 71% Good/Excellent compared to 83% in the WBRT. As a result, the

trial was terminated early [77,81]. Liss et al. also showed a significant reduction in cosmesis in

a single institution study with 30 patients using IMRT. With a median follow up of 60 months,

they found a cosmesis of Good/Excellent in only 73% of patients [74].

While there is mixed results in terms of toxicity and cosmesis, researchers claim that the

poor outcomes in these trials is largely due to patient selection criteria and, in particular, the

large volumes of normal breast tissue that receives radiation - especially for large tumours

or patients with large breasts [15]. A primary factor of these large treatment volumes is the

large margins that are used that account for patient respiratory motion and treatment setup

inaccuracies. For example, in NSABP B39/RTOG 0413 [33] and RAPID [81] PTV margins

of 1 cm were used in addition to a 1.5 cm margin for the CTV. Furthermore, because this is

delivered post-lumpectomy, the GTV will contain both the original tumour volume as well as

the surgical margins, which are typically 1cm or more. These factors compound resulting in

large amount of normal tissue being exposed to radiation. As was demonstrated in section

1.1.2, normal tissue is sensitive to fractionation scheme, and so, the hypofractionation leads

to additional normal tissue complications compared to WBRT (which allows for appropriate

repair). Figure 1.2 shows a patient from the RAPID trial (from the London Regional Cancer

Program) that was planned with both WBRT and APBI. It is evident that even though we

are treating more focally, a large amount of normal breast tissue still receives a high dose

of radiation (see 2000 cGy isodose) but over a shorter treatment period. This is most likely

causing sub-lethal damage to become lethal in the surrounding tissue as there is not sufficient
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time for DNA repair.

Despite these negative findings, there is a large motivation for addressing these shortcom-

ings due to the potential widespread availability of this technique and its non-invasive nature.

To address the poor cosmesis seen in several studies, investigation into techniques that reduce

the amount of radiation normal tissue receives is at the forefront of EB-APBI research. Reduc-

tions in the margins added to the GTV to account for the poor setup reproducibility and patient

motion is a primary area of investigation. In addition, more conformal techniques as well as

other potential treatment schemes need to be investigated.

1.4 Neoadjuvant Stereotactic Body Radiotherapy

Each of the techniques outlined above have their advantages and disadvantages. The largest

focus of research in the past several years is EB-APBI as it holds the greatest promise for wide

adoption and low patient burden. Most, if not all, cancer centres have a linear accelerator and

so, if we could address some of the short-comings of EBRT, we would be able to significantly

improve patient care while potentially decreasing the cost per patient [82]. Particularly, devel-

oping better treatment techniques to reduce dose to the surrounding normal tissue are of high

interest as the poor cosmesis in some studies most likely relates to large treatment volumes due

to the PTV expansion. Three ways of reducing the treatment volumes as well as minimizing

dose to the surrounding normal tissue are of primary interest: 1) treating patients prone, 2)

using VMAT, and 3) treating neoadjuvant (before) surgery.

1.4.1 Prone Positioning

One method that may potentially be able to reduce treatment volumes, improve dose homo-

geneity (particularly for large breast patients) as well as reduce dose to lung, chest wall, and

heart, is by treating patients prone [69, 83–87]. Formenti et al. [69] were one of the first to

demonstrate the efficacy of the prone setup in reducing setup error as well as reductions in the
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PTV volume needed by 1 cm compared to NSABP B-39/RTOG 0413. They note that this had a

pronounced effect in patient inclusion as in the NSABP B-39/RTOG 0413 study, 1/3 of patients

had to be excluded due to the final treatment volume exceeding the prescribed limits. Other re-

searchers have also shown its benefit; Bergon et al. [73] used image guided prone IMRT with a

CTV to PTV expansion of 0.5 cm - a large reduction compared to typical NSABP B-39/RTOG

0413. They did indicate this techniques required per-session image guidance beyond the stan-

dard weekly orthogonal pair of MV and KV images to maintain the 0.5 cm expansion which

led to longer treatment times and more demand on personnel.

There is the potential that larger GTV volumes are contoured when treating patients prone.

In one study Lakosi et al. [88] compared target volume size in patients planned in both the

supine and prone position using CT. They found a significant increase in the CTV and PTV

volumes when delineated on the prone images compared to the supine. They hypothesized that

this difference in delineation volume may be due to the expansion of the seroma cavity in the

prone position which lead to better visualization of the tumour bed and larger contour volumes.

In any case, the increased setup reproducibility and reductions in the expansions needed would

likely outweigh potential increases in contour volume size, as seen in the studies mentioned

above, so long as appropriate set-up imaging is performed [87].

Even with the strong evidence that prone setup could improve setup reproducibility and

minimize respiratory motion, it requires additional immobilization devices and a large bore CT

scanner [83]. This has most likely inhibited its wide adoption. In the context of APBI however,

its value increases as it may provide a way to decrease the margins needed to account for setup

error and patient motion, as well as minimizing lung and heart dose [83].

1.4.2 Stereotactic Radiotherapy

Technological advances in dose distribution shaping will be imperative for further tissue spar-

ing and target conformality.

As discussed in section 1.1.3, a notable technological advancement that allowed for SABR
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is a technique called VMAT. Instead of using static, fixed angles to delivery the radiation,

this method delivers radiation continuously over an arc while the radiation beam intensity and

shape is modulated through dose rate and multi-leaf collimators. This results in exceptionally

high doses at the target location and very low doses to the surrounding normal tissue with a

shorter treatment time [11]. It should be noted that an important aspect of this type of therapy

is image guidance; it is imperative that the radiation is delivered accurately when high doses

are delivered to a focal spot.

Only a few studies have investigated VMAT in the context of treating breast cancer - and

most are relegated to feasibility or treatment planning studies comparing different EBRT de-

livery techniques [11]. At the time of writing, there is only one study that has reported follow

up using VMAT for APBI. In a feasibility study in France [89], nine patients with early stage

breast cancer were treated with VMAT in the supine position. Patients were treated in 4 Gy

fractions, twice per day over 5 consecutive days. At a median follow-up of 26 months, no grade

2 or greater toxicities were observed and there was no evidence of IBTR. While this study used

a typical APBI delivery scheme, the ability to create highly contoured dose distributions with

steep dose gradients cannot be understated in terms of its importance for delivery of ablative

doses of radiation per fraction to the target while minimizing dose to the normal tissue.

1.4.3 Treating neoadjuvant to surgery

One of the simplest proposals for reducing the treatment volume is by treating before surgery.

Doing so would localize the dose to a small intact breast tumour and adjacent tissue, rather than

treating a large seroma volume post-surgery. In effect, this reduces the volume of normal tissue

exposed to radiation. Furthermore, a reduced inter-observer variability has been found when

contouring the tumour in the pre-operative setting compared to contouring the seroma [90],

though a contrast agent is required in the pre-operative setting [91, 92].

Very few studies have reported long-term follow-up for patients treated with EBRT neoad-

juvant to surgery. In one study [90], patients were treated with 40 Gy in 10 fractions over two
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weeks before lumpectomy. At median follow-ups of 6 months and 3 years, the Good/Excellent

cosmesis rating was 77% and 100%, respectively - showing a remarkable increase in cosme-

sis over time. This increase over time is in contrary to typical APBI studies such as in

RAPID [77, 81] and provides a strong motivation for implementing APBI before surgery.

In addition to the potential margin reductions by treating before surgery, it also enables the

investigation of response biomarkers. In this regime, since the tumour and surrounding tissue

are intact after the radiation, it is possible to investigate ways to assess treatment response non-

invasively in both the tumour and surrounding tissue [15]. Doing so could provide ways to

verify delivery of the radiation, as well as allow adaptation of our treatment to the patient, pro-

viding highly patient-centric care. It also allows for investigating the general radio-biological

effects of high dose radiotherapy, a topic not well studied in humans. Particularly in breast,

this has been seldom explored due to the removal of the tumour and surrounding tissue (which

forms the surgical bed) before radiotherapy.

1.5 The SIGNAL trial

The London Regional Cancer Program is conducting a phase I/II clinical trial called stereo-

tactic image guided neoadjvant ablation then lumpectomy (SIGNAL) to assess the safety and

efficacy of using neoadjuvant stereotactic body radiotherapy for treating low-risk early stage

breast cancer patients [93]. The trial has undergone two iterations which will be referred to as

SIGNAL 1.0 and SIGNAL 2.0. Inclusion and exclusion criteria and presented in appendix A.

Figure 1.3 shows the workflow for patients that are enrolled in SIGNAL. At the time of tumour

core biopsy, a metallic surgical clip (HydroMARK®, Biopsy Science, Clearwater, FL) is placed

adjacent to, or within the tumour. Patients then undergo imaging on a hybrid positron emission

tomography (PET)/magnetic resonance imaging (MRI) which includes a dynamic contrast en-

hanced (DCE)-MRI that will be used in conjunction with the radiation treatment planning CT

simulation to help target volume delineation. For SIGNAL 1.0, all patients were treated with
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Figure 1.3: Schematic diagram showing the general process for a patient enrolled in the SIG-
NAL trial. At the time of the tumour core biopsy, a metallic surgical clip was placed adjacent
to or within the tumour (HydroMARK®, Biopsy Science, Clearwater, FL). For SIGNAL 1.0,
all patients were treated with 21 Gy/1 fraction and imaged at 1 week post-SABR (gray box)
. However for SIGNAL 2.0, patients were randomized to either 21 Gy / 1 fraction or 30 Gy
/ 3 fractions every other day following the pre-radiotherapy imaging. The post-radiotherapy
imaging session was performed as close to the surgery as logistically possible which, again,
was initially one week post-radiotherapy for SIGNAL 1.0 but was moved to three weeks for
SIGNAL 2.0. Finally, all patients received a lumpectomy.

21 Gy in 1 treatment fraction (21 Gy / 1) with the purpose of determining the feasibility of

SABR for early stage breast cancer patients. However, following the success of this cohort

of patients ([93] and appendix F), SIGNAL was modified such that patients were randomized

to receive either 21 Gy / 1 or 30 Gy / 3. This was related to recent findings that fractionated

SABR may lead to immune priming effects that increase tumour cell killing [94, 95].

The doses used in this study are approximately equivalent to the standard whole breast

prescription dose. The 30 Gy / 3 dose scheme has the same BED as 50 Gy / 25 assuming

an α/β of 10. However, the 21 / 1 fraction dose has a slightly higher BED compared to the

traditional scheme as it has been adjusted for the fact that the linear quadratic model potentially

overestimates cell killing at high single fraction doses [15] (see section 1.1.2). This dose was

selected based on previous studies that showed little to no recurrence and generally low toxicity

and cosmesis [60, 96, 97].

The primary endpoints of SIGNAL are normal tissue toxicities and cosmesis outcomes.
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However, as previously mentioned, treating neoadjuvantly enables monitoring of treatment

response using non-invasive imaging. As such, following treatment, patients are imaged as

close to the lumpectomy as logistically possible - again using a 3T hybrid PET/MRI which

included another DCE-MRI acquisition. The pre- and post-SABR DCE-MRI acquisitions will

allow for interrogation of radio-biological effects to the SABR alone based on changes in the

vasculature and fibrosis.

1.6 Image Assessment of Treatment Response

1.6.1 Overview

Imaging has become a ubiquitous tool for researchers to assess in-vivo anatomical and physi-

ological measures. The earliest standardized methodologies to assess treatment response was

the World Health Organization (WHO) and response evaluation criteria in solid tumors (RE-

CIST) which were originally developed to assess tumour response to cytotoxic chemothera-

peutic drugs. These measures are solely based on the anatomical size changes of the tumour

or tumours. While these provide a common framework for evaluating response, weaknesses

have been identified. Particularly, it has been shown that tumour size does not always change

immediately in response to a therapy and that other physiological effects can lead to false as-

sessment of progression [98,99]. For example, fibrosis development post-SABR can lead to an

effect called pseudo-progression, where size estimates indicate progression when in fact, the

effect observed is due to benign injury due to the radiation. In the case of lung cancer, SABR

treatment can lead to the development of pneumonitis and fibrosis which presents as increased

CT density and the appearance of a growing tumour [100, 101]. It became evident that meth-

ods of assessing the underlying functional and metabolic changes could prove more valuable

for assessing response, particularly if assessment is desired at early timepoints in the patient’s

course of treatment.

Several methodologies have been developed that allow for the non-invasive assessment
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of treatment response using metabolic and functional information such glucose metabolism

(using tracers that mimic glucose and PET, markers of cellular proliferation (using tracers

such as fluorothymidine (FLT) and PET), and physiological properties such as blood flow,

vessel permeability, and vessel density [98]. Concerning the latter three, in the context of

cancer, image-based measures that provide information related to the vasculature are important

as angiogensis plays a significant role in both the growth and control of the tumour [98].

1.6.2 Vascular Response to Radiotherapy

It has been generally thought that the primary mode of tumour control from radiotherapy is

through damage to the DNA that leads to induction of apoptosis. However, there is a growing

body of evidence that the microvasculature plays a key role in tumour response to high doses of

radiation [102–108]. In particular, there is evidence that high doses of radiotherapy cause sig-

nificant dysfunction and destruction of endothelial cells due to induction of irreversible senes-

cence and apoptosis of these cells which leads to increased tumour cell death, potentially due

to hypoxia [16, 102, 106, 108].

The time course of the vascular response to SABR presents as a dynamic process. Previous

studies have established that vascular physiological changes depend on time post-therapy and

are due to the influence of acute inflammatory effects [104,106,109]. Previous work investigat-

ing vascular changes to high doses of radiotherapy has primarily been conducted in the context

of pre-clinical studies or in cancer sites other than breast.

Park et al. performed an in depth literature review looking into the role of radiation induced

vascular damage in tumours. They investigated vascular changes in human tumours, human

tumour xenografts in rodents, and mice or rat tumours [102]. The human studies were from

patients that received traditional doses per fraction on the order of 2 Gy / fraction with 10-25

fractions. Patients were imaged at various time points, primarily during treatment (both early

and mid treatment) with a few studies providing longer term follow up (~a few weeks to a few

months post-treatment). Response assessment was performed using a variety of techniques
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including DCE-MRI, DCE-CT, colour doppler ultrasound, and immunostaining. The general

conclusion drawn from the analysis by Park et al. was that, in response to standard fractionation

schemes (i.e., 2Gy/fraction), blood flow remained unchanged or slightly increased at early

times during treatment but decreased towards the end of treatment. In one study that provided

follow-up 4-6 weeks following treatment, there continued to be a decrease in perfusion values

as measured using DCE-MRI [110]. Park et al. summarized these findings, stating that the

cancer cell death due to radiotherapy lead to decreased demand for perfusion, rendering the

microvasculature beds nonfunctional.

In regards to higher doses of radiation, Park et al. summarized available pre-clinical studies

(mice and rat) performed over several decades. They conclude that, generally, the following

responses are seen: After a single exposure of 5-10 Gy, tumour blood flow tends to initially

increase and then return to pre-irradiation levels within 2-3 days. In studies that used doses

of 10-15 Gy in 1 or 2 fractions, blood flow decreases shortly after the therapy and remains

decreased for varying lengths of time, occasionally returning to baseline. Finally, most tumours

that are exposed to 15-20 Gy in a single exposure, there are rapid decreases in blood flow (2

hours - 2 days) followed by a deterioration of the vasculature, resulting in both a decrease in

the functional vasculature but also increases in vessel permeability. However, there was some

variation in the response measured between studies. Park et al. highlight the important fact

that there were varying volumes of adjacent "normal" tissues that received radiation. It is likely

that the varying amount of radiation delivered to the normal tissue vasculature would influence

tumour response measurements.

Several studies have categorized the response to radiation into "early" (during treatment

or within a few weeks after completion) vs "late" effects (a few months to years following

treatment) [102,104–106,109]. There is evidence to suggest that at early time points, response

assessment reflects acute inflammatory effects due to the radiotherapy [104, 105]. As such,

measures related to blood flow and permeability, as well as microvasculature function will

have different values depending on the timepoint following the therapy. For acute effects of
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radiation, Corre et al. [109] identify several early endothelial processes following high dose

radiation (> 15 Gy) that are not seen with traditional fractionation schemes. In particular,

endothelial apoptosis, recruitment of inflammatory cells, and increased permeability changes

are observed. Late effects include microvessel collapse, and irreversible senescence [106]. It

has been stipulated by several reports of studies in the pre-clinical setting that there exists a

"threshold dose" of radiation that causes endothelial cell death but this remains to be seen in

clinical data [104, 106, 109, 111].

With the importance that the vasculature plays in tumour response to radiotherapy, tech-

niques that allow for characterization of vascular physiology and changes following therapy

would allow for interrogation of the radiobiology of SABR as well as provide assessment of

response.

1.7 Dynamic Contrast Enhanced MRI

1.7.1 Overview

Dynamic contrast enhanced (DCE) imaging techniques allow for the non-invasive assessment

of tissue vascular function related to angiogensis and perfusion [112]. This technique provides

insight into normal and tumour tissue treatment response through measurement of the changes

in parameters related to blood flow, vessel permeability, and volume of the extracellular ex-

travascular space (EES) space. DCE imaging refers to the dynamic acquisition of images over

time before and after injection of a low molecular weight contrast agent. Two common imaging

modalities used in conjunction with DCE techniques are CT and MRI. The focus of this thesis

is on DCE-MRI as it is the most widely used in breast cancer assessment due to its superior

soft tissue contrast over CT.

In the case of DCE-MRI, the contrast agent contains a paramagnetic ion that causes longitu-

dinal relaxation time (T1) (and T2) shortening resulting in hyper-intense signal for T1-weighted

images in areas of contrast agent accumulation. The changes in the T1 relaxation rate (1/T1)
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Figure 1.4: General schematic overview of the acquisition and analysis of DCE-MRI.
T1w = T1 weighted, AIF = arterial input function.

are proportional to the contrast agent concentration in the tissue [113]. From the time-resolved

images, non-parametric (model free) or parametric (model-based) analyses can be used to de-

rive parameters related to vascular function of the tissue of interest. This is particularly useful

in the context of oncology since cancerous tissue has poorly developed vasculature with high

vessel density and high permeability [114].

In the sections below I will first discuss potential health effects of MRI contrast agents. This

will be followed by individual sections describing the components involved in the acquisition

and analysis of DCE MRI. Figure 1.4 shows an overview of these DCE-MRI acquisition and

analysis components. Finally, I will summarize currently available literature which reports the

application of DCE-MRI for response assessment to SABR techniques at an early time-point

post-therapy.

1.7.2 DCE-MRI Contrast Agents

The most common contrast agents for DCE-MRI are chelates of gadolinium with a low molec-

ular weight ligand (~500 Daltons) [115]. The gadolinium ion is paramagnetic, and hence, up-

take of contrast agent leads to reduced T1 relaxation times and increased signal intensity on T1

weighted imaging in tissue regions where this uptake occurs due to dipole-dipole interactions

between the bound Gadolinium and water molecules. Free gadolinium is toxic as it interferes

with calcium channels and directly competes with biological processes that require calcium

ions due to its similar size [116, 117]. In addition, free gadolinium accumulates in the liver,
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spleen, kidney, and bones. In mice the lethal dose that kills 50% of a test population (LD50)

for free gadolinium is 0.2 mmol/kg [117]. The chelated form of the contrast agent experiences

minimal interactions with the organism and leads to vastly reduced toxic side effects compared

to free gadolinium [116,117]. The ligand can be categorized as either linear or macrocyclic. In

the case of macrocyclic contrast agents, the ligand forms a rigid cage around the gadolinium

ion, whereas, the linear form is more flexible and does not fully enclose the gadolinium ion.

Generally, the macrocyclic agents are more thermodynamically stable.

The first contrast enhanced MRI was acquired in 1983 [113] and since then, more than 300

million doses have been used worldwide with 30 million doses used each year [118]. These

agents were initially considered exceptionally safe with the belief that essentially all of the con-

trast agent was excreted by the kidneys [113]. However, in 2006 (23 years later), two indepen-

dent reports demonstrated a causative link between a degenerative disease called nephrogenic

systemic fibrosis (NSF) and contrast exposure in patients with poor renal function [119, 120].

Since then, renal function screening is generally performed prior to contrast injection to pre-

vent patients with poor kidney function from undergoing contrast enhanced MRI. This has led

to the incidence of NSF being effectively eliminated [113,121]. In patients with sufficient renal

function, contrast agents were still considered to be fully excreted.

In 2014 and 2016, two studies (one in-vivo and the other post-mortem) reported long-term

gadolinium retention in brain and bone for patients who had healthy renal function and were

exposed to at least one contrast-enhanced MRI over their lifetime [121,122]. In addition, there

was a clear dose response relationship observed between the level of gadolinium in tissue and

the total contrast agent exposure over their lifetime (dose from all MRI scans). Studies continue

to investigate in what form (free ion or intact chelated) the gadolinium is retained with some

studies indicating that de-chelation may be occurring, at least for the linear agents [123]. In

addition, it is unclear if this retention has any associated pathologies. While no studies thus far

have reported causative links between pathological side effects and gadolinium deposition, pa-

tient advocacy groups have taken an active role in providing public communications regarding
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what they believe to be potential acute and long term side-effects of gadolinium retention from

contrast agent exposure [124]. Some researchers have proposed including gadolinium retention

from contrast agent exposure to a broad class of gadolinium associated disorders [124].

1.7.3 Contrast Agent Dose in SIGNAL

Based on the findings of gadolinium retention following DCE-MRI, post-SABR imaging

within the SIGNAL trial was temporarily halted. However, after some delay, we proposed

using half the clinical dose of contrast agent for patients that were to receive both a pre- and

post-SABR imaging session. In reviewing the literature, it seemed that the dose of contrast

agent now considered as the clinical standard dose (0.1 mmol/kg) may have been initially justi-

fied from a study of high risk multiple metastatic brain cancer patients imaged at a field strength

of 0.25-0.5 T. In this study it was observed that contrast agent doses below 0.1 mmol/kg led

to clinically unacceptable tumour visualization [125]. Given that our study is performed at a

much higher field strength and in early stage breast cancer (rather than metastatic brain cancer),

we felt that a dose as high as 0.1 mmol/kg might not be required. Furthermore, we noticed that

in the patient data that we had already acquired (pre-SABR only) that tumour visualization

appeared to be sufficient for images that were not fully enhanced (i.e., earlier or later than the

occurrence of the maximal enhancement). After implementation of this lower dose level (0.05

mmol/kg), the radiation oncologists involved in the SIGNAL study were satisfied that tumours

were still well visualized on the pre-SABR images. This provided a unique opportunity to

quantitatively assess the effect of reducing the dose on target volume delineation by comparing

tumour delineation from patients that received this half dose with those that had received the

full standard dose. This is the subject of chapter 2.

1.7.4 Image Acquisition

This section will outline the acquisition techniques and considerations for T1-weighted DCE-

MRI.



Chapter 1. Introduction 33

Dynamic Contrast Enhanced MRI acquisition

Spatial and time resolution are important imaging parameters that affect the quality of analysis

as well as the specificity of information related to the extent of angiogenesis and tissue per-

fusion characteristics that can be extracted from the dynamic signal intensity curves. On the

one hand, the time resolution of an image acquisition dictates the fastest hemodynamic process

that can be measured. For example, for plasma flow to be measured, it is recommended that

the time resolution be on the order of a few seconds or less [126]. On the other hand, spatial

resolution is important for minimizing partial volume effects in assessing contrast agent en-

hancement of the tumour. A clear example of how spatial and time resolution play conflicting

roles is in measurement of the arterial input function (AIF) - a patient specific (or often popu-

lation averaged) characterization of the contrast agent concentration versus time in the plasma

(ideally within an artery feeding the tumour). This curve is necessary for parametric-type anal-

yses (see section 1.7.6). For accurate measurement of the AIF, high temporal resolution on the

order of 3 seconds is necessary [127]. In opposition to this, high spatial resolution is required

to minimize partial volume effects which could potentially corrupt the measurement of this

AIF curve. The highest time and spatial resolution possible for an acquisition also depends on

required tissue volume of tissue coverage. For breast imaging large coverage is often required

unless the precise location of the lesions is known prior to imaging, which is often not the case.

Thus, the typical time resolution in most breast DCE-MRI studies to date have been on the or-

der of 60 seconds per image with a spatial resolution on the order of 1mm and complete breast

coverage [112]. Even with a spatial resolution on the order of 2mm it is difficult to achieve

temporal resolution below 20s with full breast coverage, making it impractical to measure the

AIF with clinically used sequences and breast coils.

The most common sequences used in DCE-MRI are those based on the Three-Dimensional

(3D)-Spoiled-Gradient Recalled Echo (SPGRE). This is a steady state T1-weighted sequence

that provides relatively fast acquisition of 3D volumes. Essentially, the longitudinal magneti-

zation is subjected to repeated radiofrequency (RF) pulses at uniform time intervals (repetition
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Figure 1.5: Schematic representation of the SPGRE sequence combined with fat suppression.
Frequency selective fat saturation RF pulses are applied which selectively suppresses magne-
tization of the lipid signal. This is followed by the acquisition of a kx by kz plane. The inset
outlined in red shows the gradients and signal following each RF pulse. A slab selective RF
pulse is applied followed by activation of slice and phase gradients. The echo signal is recorded
and is followed by an extended read gradient as well rewinding gradients which are required
as part of the RF spoiling technique. Following acquisition of each segment, fat saturation is
then re-applied before the next segment is acquired. The "order of acquisition" inset shows the
order that segments of k-space are acquired.

time (TR)). Signals are measured via gradient echoes at echo time TE. The repeated applica-

tion of RF pulses results in a steady state longitudinal magnetization (Mz) which is a balance

between suppression of Mz from the RF pulses and regrowth due to T1 relaxation. T1 weight-

ing is achieved by destruction or "spoiling" of the transverse magnetization before the next RF

pulse. The equation that describes the steady state signal intensity is:
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S = kM0 sinα
1 − exp(−TR/T1)

1 − cosα exp(−TR/T1)
exp(−TE/T ∗2) (1.4)

where S is the signal intensity, k is a proportionality coefficient related to scanner hard-

ware/adjustments and patient loading, M0 is the equilibrium magnetization of the sample and

related to proton density, α is the flip angle, TR is the repetition time, T1 is the tissue longitudi-

nal relaxation time with the presence contrast agent, TE is the echo time, and T ∗2 is the rate of

signal decay as a function of TE for gradient recalled echo sequences. If TE is chosen such that

TE « T ∗2 , then the factor exp(−TE/T ∗2) approaches unity, allowing for this term to be effectively

ignored [128].

Spatial encoding for 3D SPGR involves frequency encoding in one direction and phase en-

coding in the other two directions. At our institution this is performed with the Siemens VIBE

sequence [129] that utilizes slab selective rf pulses for excitation. For the projects in this thesis,

the frequency encoding direction is along the anterior-posterior direction to avoid respiratory

and cardiac related ghosting artifacts from interfering with image signal in the breast region.

The slab selective RF pulses are applied with the slab plane perpendicular to the inferior-

superior direction to prevent aliasing (along this phase-encode direction).

Spoiling of the transverse magnetization for our acquisitions is accomplished using so-

called RF spoiling. This includes (1) a scheme of phase increments between each RF pulse

(2) an extended read gradient and (3) phase encode rewinding. Details of this method can be

found elsewhere [130].

The SPGRE sequence is often accompanied by a fat suppression to increase the conspicuity

of structures of interest (such as enhancing tumour tissue). One fat suppression technique is fat

spectrally selective saturation which exploits the resonance frequency difference between fat

and water (~420 Hz at 3T [131]). Essentially, a spectrally selective RF pulse tuned to the peak

fat resonance frequency is applied to rotate the fat magnetization into (or close to) the transverse

plane. This fat excitation is followed by spoiling of the fat transverse magnetization leading

to a nulled fat magnetization immediately after the spoiling. Although the fat longitudinal
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magnetization then increases with time following this fat nulling, it remains relatively small for

the period over which a series of SPGRE signals are acquired, and hence, contributes minimally

to those signals. Fat suppression will slightly increase image acquisition time.

Figure 1.5 shows how the fat suppression is applied with the SPGRE acquisition. In this

case, a fat saturation sequence is applied before acquisition of each slice plane. Following this,

a segment is acquired using the SPGRE sequence as described above. A slab selective RF pulse

is applied followed by slice and phase encoding. The signal is then read followed by transverse

spoiling through the use of an extended read gradient [130]. Finally, slice and phase rewinding

gradients are applied. This is repeated until a full kx by kz plane is acquired (a full segment).

This series of steps is repeated until the full slab has been sampled.

Native T1 (T10) and B1 Mapping for Signal to Concentration Conversion

In order to convert the DCE signal to an estimate of contrast agent concentration (section

1.7.6), image based native T1 (T10) maps are required. These are needed strictly for parametric

analysis. For characterizing the tissue T10, the SPGRE sequence can again be used (pre-contrast

injection), but in this case, with varying flip angles. From this, non-linear fitting can be applied

to the flip angle versus signal intensity data which allows for estimation of M0 and T10 in

equation 1.4.

Finally, both the conversion from signal to concentration and T10 mapping require knowl-

edge of the actual flip angle. However, at higher field strengths (such as 3T), the flip angle

α can vary substantially with spatial position due to the spatial variation of the B1 magnetic

field [112]. To provide accurate local values of the flip angle, B1 mapping can be performed.

Two sequences that have been shown to be useful (and are used in this thesis) are the "actual

flip angle (AFI)" and the "slice-selective pre-conditioning RF pulse (SS-PRE)" sequences. The

details of these sequences can be found elsewhere [132, 133]. Images obtained with these B1
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mapping sequences allow for calculation of a "B1 correction factor (C)" defined as:

C =
αtrue

αnominal
(1.5)

where αtrue is the measured flip angle and αnominal is the prescribed flip angle. The SPGRE

steady state equation can be modified to incorporate this correction:

S = CkM0
1 − exp(−TR/T1)

1 − cos(C αnominal) exp(−TR/T1)
sin(C αnominal) (1.6)

where the factor exp(−T E/T ∗2) in equation 1.6 has been omitted by assuming TE « T ∗2 .

1.7.5 Intra-Session Image Registration

An important step in the analysis of DCE-MRI is correcting for intra-session patient movement.

It has been shown that patient movement between images in the DCE-MRI data can severely

corrupt the signal enhancement curves.

Pairwise image registration is a commonly used method to correct for movement between

a "fixed" (or reference) and moving image [134]. The moving image is iteratively transformed

until it "matches" the reference image. Between each transform iteration, the degree of "same-

ness" is assessed through the evaluation of a similarity metric, which is a function that charac-

terizes the degree of similarity between two images. This iterative process is continued until

there is there is a sufficient similarity between the two images. There are two important aspects

of interest for this thesis: 1) the specific similarity metric used and 2) the type of transformation

used.

Similarity Metric

The similarity metric quantifies the relationship between the fixed and moving images. It is

optimized over the course of iterative transformations in order to obtain the closest spatial cor-

respondence of the two images. Typical metrics are based on the extent to which the image
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intensity profiles of the two images match. As an example, a simple intensity-based similarity

metric that has been employed previously is the sum of squared differences between corre-

sponding voxel intensities.

The application of signal intensity based metrics for registration involves the assumption

that any differences between the two images is due to movement alone [134]. In the context

of DCE-MRI, this assumption is violated as uptake of contrast agents causes local changes

in intensity. Some researchers have investigated alternative ways that account for these lo-

cal intensity changes, either introducing new similarity metrics [135], adding a tolerance to

local variations in intensity in currently used registration algorithms [136], or through "de-

enhancement" of the post-contrast images to remove the contrast enhancement before image

registration [137]. However, implementation of these different strategies can be difficult and

time-consuming, requiring a high degree of expertise. Several studies have shown that a met-

ric known as mutual information is relatively robust to these local differences [136, 138, 139].

Mutual information is a measure of the statistical dependency of the of two sets of images.

While its use was originally designed for multi-modal registration, it is also commonly used in

the context of DCE-MRI [136,138,140–142]. To understand this metric, we begin with a brief

introduction to information entropy.

Information entropy was developed by Shanon [143] in 1940s which is based on the defini-

tion of information created by Hartley [144]. Essentially, Hartley proposed that the information

I associated with an event that has a probability p of occurring is:

I ≡ log2

(
1
p

)
= −log2(p) (1.7)

which has units of "bits." Intuitively this can be understood as follows: As the probability

of an event occurs becomes closer to 0, more information is "gained" knowing that the event

occurred. A simple example of this involves analyzing an unfair versus fair coin. In the case

of the unfair coin that always turns heads, the probability of that event occurring is equal to
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1 and, thus, the amount of information gained from knowing the next coin flip is equal to 0.

So in conveying the next coin flip result, it would require 0 bits according to equation 1.7 -

we already know the result. However, imagine we have a fair coin, knowing the result of the

next coin flip would reveal information. In essence, this would require 1 bit of information to

convey according to Hartley’s definition of information.

Shanon information entropy is an extension of Hartley’s definition of information as de-

scribed in the preceding paragraph. Essentially, it is a quantification of the bits needed to

convey the expected information from a set of possible events with probabilities of p. More

formally, if an event i occurs with a probability pi from a set of N events, the average or ex-

pected information is given by:

H(pi) = −

N∑
i=1

pi log2(pi) (1.8)

Whereas Equation 1.7 represents the minimum number of bits needed to transmit the result of

some event, equation 1.8 is the average bits needed to convey the results from a set of events

that can occur with different number of bits needed for each event. Another interpretation is

that the entropy is the expected uncertainty associated with a set of events.

Mutual information is a further extension of entropy. In essence, it quantifies how much

the uncertainty of a variable is decreased knowing information about some other variable. In

other words, it is a statistical measure of the shared information between two variables. For

two variables X and Y , it is defined as follows:

MI(X; Y) =
∑

xy

−pX|Y(x, y)(log pX(x) + log pY(y) − log pX|Y(x, y)) (1.9)

MI(X; Y) =
∑

xy

pX|Y(x, y) log
pX|Y(x, y)

pX(x)pY(y)
(1.10)

where pXY is the joint probability of events X and Y occurring. As stated previously, this metric

has been used extensively in DCE-MRI. In essence, by maximization of the mutual informa-
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Figure 1.6: Visual demonstration of the differences between a rigid, affine, and deformable
registration.

tion, we find the greatest similarity between the intensities for a given spatial transformation

of the moving image. Since it does not rely on the spatial intensity differences between two

images, it is robust in the presence of different intensity profiles.

Transformation Model

Another important consideration for image registration involves the type of transformation

used to deform the moving image onto the fixed image. Figure 1.6 shows the different trans-

formations with increasing degrees of complexity. Rigid transformations are those that simply

translate and/or rotate the moving image onto the fixed image (3-6 degrees of freedom). Affine

transformations allow for translations and rotations but also scaling and "shearing" (12 degrees

of freedom). Rigid and affine transformations are considered "global" registrations i.e., they

act on the image as a whole. Finally, a more complex transformation that allows for com-

plex movement characterization is deformable transformations. This type of transformation

is considered a "local" transformation, capable of deforming different sections of the image
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Figure 1.7: Simplified example of the free-form deformation transformation. Arrows repre-
sent displacement vectors with the length of the arrow representing larger displacements. The
control grid (red) is superimposed on the voxel grid (black). Control points are at the intersec-
tions of the control grid. A control point is displaced as part of the registration (blue arrows).
The vector for the voxels that are enclosed in a section of the control grid are generated us-
ing a BSpline interpolation scheme (purple arrows show the x-component of the interpolated
deformation field from the control point displacements; y-component not shown). Finally, the
deformation field is applied to the moving image to transform it.

independently. In the context of the breast image registration, deformable registration has been

shown to be the most appropriate due to the deformable nature of the breast tissue [145].

The goal of deformable registration is the creation of a positional mapping function that

relates the spatial position of the image voxels in the moving image to those in the fixed image.

This mapping is referred to as the deformation field. The deformation field contains a vector

describing the positional displacement of voxels. A particular characteristic of the deformation

field is that the direction and magnitude of the deformation should be "smooth" across the

image space without significant compressions or expansions [134].

One of the most commonly used algorithms for generating a deformation field is based
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on the work of Rueckert et al. [146]. Their group devised a "free-form" deformation model

whereby a set of control points are superimposed on the voxel grid at regular intervals. Figure

1.7 illustrates the deformation field for a simple hypothetical example of a free-form defor-

mation (FFD). The control points are located at the intersection of the control grid in Figure

1.7. The displacement of these control points is interpolated onto the voxel grid which defines

the deformation matrix that maps the moving image space into the fixed image space. The in-

terpolation is performed using a cubic BSpline interpolation of the control point displacement

vectors. Cubic BSplines have two particular strengths: 1) they are continuous at their junctions

and generally create smoothly varying fields, 2) they are locally controlled i.e., changing one

control point only affects the transformation in the local neighbourhood of that point [147,148].

Finally, by using control points instead of the voxel grid, the dimensionality is greatly reduced

which allows for faster optimization [147, 148].

In essence, the FFD process can be summarized as follows: each of the control points is

moved independently leading to the generation of a voxel-by-voxel deformation field (through

interpolation). The deformation field is applied to the moving image resulting in a transformed

image which is then compared to the reference image using the similarity metric. This process

of moving control points, generation of the deformation field, transformation of the moving

image, and comparison is repeated until a convergence threshold of the similarity metric is

reached.

Several authors have investigated the effect of registration on DCE-MRI by generating

a "ground truth" data set through application of known deformation fields or finite element

deformations (based on biomechanical models) to an image to create a simulated fixed and

moving image pair. Deformable image registration is then applied to this pair. The resulting

deformation field can then directly be compared to the ground truth deformation on a voxel by

voxel basis to determine absolute positional deviation [135, 136, 140, 145].

Very few authors have investigated the impact of registration in the context of kinetic model

application to DCE-MRI [135, 149]. To our knowledge, only one study [149] has investigated
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the impact of contemporary image registration techniques on Tofts model analysis of breast

DCE-MRI (see section 1.7.6). They investigated the impact of transformation model (rigid or

2D deformable registration based on FFD), similarity metric (sum of squares, Pearson corre-

lation, or mutual information), and choice of fixed volume (i.e., pre-contrast or a post-contrast

image) on the registration of breast DCE-MRI using the model goodness of fit root-mean-

square-error (RMSE). They found that a deformable registration based on cubic BSpline in-

terpolation using mutual information as the similarity metric resulted in the best performance.

However, there were several limitations to their study. They performed their kinetic analysis

on the average signals from regions-of-interest rather than voxel-by-voxel, which neglects the

effect of registration on the assessment of tumour spatial heterogeneity. They performed a 2D

registration localized to the tumour, neglecting displacements along a third dimension. Finally,

they did not report the effect that registration may have on model fit parameter estimations and

uncertainties (precision). Chapter 3 investigates the impact of 3D deformable registration on

the Tofts model parameter estimation, uncertainty in those parameters, and validity of param-

eter estimates.

1.7.6 Analysis

Non-parametric analysis of DCE-MRI

Non-parametric or model-free analysis of DCE-MRI involves creating quantitative measures

that describe the time-signal intensity curve. In early reports, this took the form of simple

classification of the "shape" of the time-intensity curves by an expert observer [150]. Other

more quantitative parameters were also explored to try and remove the subjective component

of this analysis [112]. A fairly exhaustive list of non-parametric parameters can be found in

the review paper written by Khalifa et al. [151].

The strength of these non-parametric quantities is that they are straightforward to apply.

Certain non-parametric parameters, such as the initial area under the curve to time point t
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(IAUCt) have also shown to correlate to more physiologically relevant model based parame-

ters [112]. Several parameters have shown to be clinically valuable for breast cancer disease

classification and diagnosis and these have been incorporated into Breast Imaging-Reporting

and Data System (BI-RADS) [152]. However, these non-parametric quantities do not provide

direct quantification of information related to underlying physiology [151, 152].

Parametric analysis of DCE-MRI

Parametric analysis involves application of a model to the DCE-MRI data. Several models of

different complexity exist that allow for quantification of parameters related to the underly-

ing vasculature [153]. In the context of breast DCE-MRI, the most commonly used model is

the Tofts model due to the typically poor temporal resolution that precludes the use of com-

plex models [112, 153]. In the following sections, the process of applying the Tofts model is

described from acquisition to application of the model.

MRI Signal to Concentration

For DCE-MRI in breast, T1-weighted sequences are typically used to acquire the dynamic

series. As the contrast agent enters the tissue of interest, the T1 value of that tissue decreases

in proportion to the concentration of contrast:

1
T1

= rC(t) +
1

T10
(1.11)

C(t) =

1
T1
− 1

T10

r
(1.12)

where T1 is the tissue longitudinal relaxation time after contrast injection, T10 is the tissue

longitudinal relaxation rate before contrast injection, and r is the longitudinal relaxivity at the

particular field strength (Litres mmol-1 s-1). The relaxivity is dependent on both the magnetic

field strength and the contrast agent used. Studies exist which have measured these values

[154].
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In essence, there is an assumed linearity between the concentration of contrast agent and

the reduction in T1 observed. From equation 1.12, we need the following to convert our signal

to concentration: 1) the equation that describes how signal is related to T1, 2) the "native"

or pre-contrast T1 (T10), and 3) the relaxivity which depends on the contrast agent used and

the MRI field strength. Acquisition of B1 and T10 values has been discussed in section 1.7.4.

To determine an equation for converting the signal observed in the dynamic series to T1, we

start with an expression for the signal enhancement, which is the ratio of the enhanced to

unenhanced signal and is given by:

S (t)
S 0

= S E =
1 − exp(−TR/T1)

1 − cos(Cα) exp(−TR/T1)

(
1 − cos(Cα) exp(−TR/T10)

1 − exp(−TR/T10)

)
(1.13)

If we set the second fractional term in brackets to "K" and perform some additional algebra,

equation 1.13 becomes:

1
T1

= −
1

TR
ln(

S E − K
S E cos(C α) − K

) (1.14)

The Tofts Model

With the motion corrected concentration versus time data for each voxel, it is now possible

to apply a kinetic model to extract the parameters related to perfusion and angiogenesis. Ki-

netic analysis of DCE-MRI is based on well established tracer kinetic theory. There are many

models derived from this analysis [151] but the most commonly used in breast is the Tofts

model [112, 155]. The tissue of interest is represented by "compartments," which are defined

as well-mixed, homogeneous components that form distinct volumes in which the contrast

agent can distribute in to. Well-mixed specifically means that the concentration of contrast

agent is the same everywhere within that compartment. Other assumptions of most models

(including the Tofts model) are that the system is linear and time-invariant [151, 156]. More

specific assumptions of the Tofts model are discussed below.



Chapter 1. Introduction 46

Figure 1.8: A schematic of the Tofts compartment model. The two compartments that com-
prise this model are the plasma space (represented by the blood vessel) and the extracellular-
extravascular compartment (highlighted in light blue). Cells are represented by the green
shapes. Ktrans, kep, and ve are parameters of the Tofts model. AIF stands for arterial input
function.

As depicted in Figure 1.8, the Toft model assumes two distinct compartments of the un-

derlying tissue: the plasma space (represented by the blood vessel), and the EES (represented

by the light blue rectangle but does not include the cells). Since the contrast agent molecules

are small, leakage across the endothelium from plasma to the EES is generally assumed to be

through passive diffusion. We can therefore assume that the concentration in either compart-

ment is proportional to the difference in concentration between the two compartments [157]:

ve
dce(t)

dt
= Ktrans(cp(t) − ce(t)) (1.15)

where ce(t) is the concentration of contrast agent in the EES, ve is the fractional volume of

contrast agent in the EES, Ktrans is the constant of proportionality, and cp is the concentration

in the plasma. Using the fact that the tissue concentration is ct(t) = vpcp(t) + vece(t) (i.e.,

a combination of the plasma concentration and the EES concentration) and solving equation
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1.15 for ce(t), the tissue concentration ct is then given by [158]:

ct(t) = vpcp(t) + Ktrans
∫ t

0
cp(τ)e−

Ktrans(t−τ)
ve dτ (1.16)

where vp is the plasma volume and note that Ktrans/ve is defined as kep. Toft et al. [159] argued

that the plasma contribution is, in some cases, sufficiently small that it can be neglected to

reduce complexity of the model. In this case eqn 1.16 further reduces to:

ct(t) = Ktrans
∫ t

0
cp(τ)e−

Ktrans(t−τ)
ve dτ (1.17)

which can also be written as the convolution (∗):

ct(t) = Ktranscp(t) ∗ e−
Ktrans

ve
t (1.18)

where the parameters have been defined previously. Equation 1.17 is referred to as the Tofts

Model and equation 1.16 is the extended Tofts model, which may provide better fits in tissues

that are highly vascularized [112].

In equation 1.17, we have ct(t) from the converted signal intensities (section 1.7.6). How-

ever, to retrieve estimates of Ktrans and ve, the plasma concentration versus time information,

cp(t), is needed. This is also referred to as the AIF and describes the delivery of contrast to

the tissue of interest (see Figure 1.8). For accurate quantification of Ktrans and ve it is gener-

ally advisable to measure this on a patient specific basis using an artery as close as possible

to the tissue of interest. However, for breast imaging this is generally challenging given the

required spatial resolution and field-of-view coverage required for a breast exam which pre-

cludes sufficient temporal resolution for measurement of an AIF with current clinical hardware

and protocols (see section 1.7.4). In addition, if the internal mammery artery was to be used,

an even greater spatial resolution would be required due to the small size of this artery, further

inhibiting increases to temporal resolution. Instead, many breast DCE-MRI studies have in-
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stead used a population based AIF as an approximation to individually measured AIFs. One of

the most commonly used AIFs in recent years is the one generated by Parker et al. [160]. To

determine a population averaged AIF these authors analyzed DCE-MRI data from 23 cancer

patients scanned a total of 113 times. Scans were performed with high time resolution (4.97s)

but limited coverage over the pelvic region. Signal from the descending aorta or iliac arteries

was analyzed and fit to an empirical model to describe an average AIF. With the measured ct(t)

data and the population based AIF, non-linear fitting can be applied for extraction of parame-

ters Ktrans and ve (as well as kep through the relation mentioned above). Interpretation of ve is

straightforward - it represents the fractional volume taken up by the EES within the tissue of

interest. However, the interpretation of Ktrans is less clear [161]. Strictly speaking, Ktrans rep-

resents the forward rate of gadolinium transfer between the plasma compartment and the EES

(figure 1.8). However, this rate of transfer depends on both the local blood flow, vessel perme-

ability, and the surface area of the vessels, and so, Ktrans is a reflection of all these parameters:

Ktrans = EFp (1.19)

where E is the extraction fraction and Fp is the plasma flow. The extraction fraction is the

proportion of tracer that leaves the plasma compartment and enters the EES in the first pass of

blood through the capillary system [161]. It is related to the permeability and surface area of

the capillary system (called the permeability-surface area product (PSA)) as well as the plasma

flow [161]:

E =
PS A

PS A + Fp
(1.20)

The interpretation of Ktrans is characterized by three regimes of tracer exchange [159, 161]:

1) when PSA « Fp, Ktrans is directly proportional to PSA, 2) when PSA » Fp then Ktrans is

directly proportional to blood flow and, 3) when neither dominates then Ktrans reflects a mixed

combination of blood flow and PSA [115, 159, 161].

The Tofts model can be applied either to the average signal from a region-of-interest (ROI)
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or on a voxel-by-voxel basis. ROI analysis minimizes noise as the average signal intensity is

taken over a set of voxels, which can potentially improve model fitting. However, ROI fitting

disallows assessment of tumour heterogeneity. It may also bias the result in that the measured

value may not reflect the spatial mean across the tumour [157].

1.7.7 DCE-MRI Response Assessment to SABR

Response assessment using DCE-MRI has been previously investigated in the context of neoad-

juvant chemotherapy and traditional schemes of radiation treatment in breast cancer [112].

There have been very few studies that investigate DCE-MRI for assessment of response to

SABR at early time points post-treatment.

To our knowledge, there is only one study that has investigated response of breast cancer

to SABR [165]. Wang et al. conducted a prospective study treating early stage breast cancer

patients with either 15, 18, or 21 Gy in a single fraction and imaged patients prior to and

one week following treatment. DCE-MRI images were acquired with a time resolution of

one minute over 6 minutes post-contrast injection. They analyzed their data by averaging

enhancement signals over regions of interest corresponding to three clinical volumes, the GTV,

CTV, and PTV. They reported the initial area under the curve up to 6 minutes (non-parametric

measure), Ktrans, and ve, though, Ktrans and ve were not reported for the GTV. They found no

significant pre- to post-SABR changes in Ktrans for either the CTV or PTV. However, they

observed significant increases in the initial area under the curve in the CTV and PTV. Finally,

they found significant increases in ve for the CTV and PTV. They also performed a correlation

analysis to determine if the change in parameters from pre- to post-SABR were related to the

dose received in a single fraction. No significant correlations were found for DCE parameters

except for the PTV value of Ktrans, though from observing their plot, the data had considerable

variability. There were several limitations to their study that are discussed in chapter 4. The

method of averaging over the regions of interest neglects spatial heterogeneity information and

may have contributed to their finding of no significant changes as the volumes used included
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Table 1.4: Studies that report early changes in DCE parameters including both MRI and CT
modalities. The table is sorted by Image delay post radiotherapy. Note that "Day X" specifies
that assessment occured during treatment.

Refs Site Method Sample Size Dose
(Gy)/fractions

Image Delay
(days)

∆BF and
Perm ∆ve

Janssen [162] Rectal DCE-CT 23 25 / 5 Day 5a Increase NSC

Coolens [163] Liver DCE-CT 6 30-54 / 6

Day 3a Increase Increase

30 Decrease NSC

60 Decrease NSC

Winter [164] Brain Met DCE-MRI 29 15-21 / 1
3 NSC NSC

20 NSC Decrease

Wang [165] Breast DCE-MRI 15 15-21 / 1 7 NSC Increase

Detsky [166] Colorectal
Liver Met DCE-CT 10 54 totalb 7 Decreasec,d N/A

Sawyer [167] Pulmonary Met DCE-CT 11 26 / 1
14 Increased NSC

70 Decreased Decrease

Huang [168] NSCLC DCE-MRI 19 40-50 / 4-5 42 Decreased NSC

Spratt [169] Sarcoma Spine
Met DCE-MRI 12 9 / 3 or 10 / 3

or 24 / 1 57 Decreased N/A

Taunk [170] Brain met DCE-MRI 53 21 / 1 77

Trend to
decrease

(p =

0.054)

NSC

Santos [171] Chrodoma DCE-MRI 6 / 11 24 / 1 154 Decreasedd N/A

aof the treatment regime, bfractionation was not specified, cindicates blood flow in the case that it is
explicitly specified, dindicates permeability in the case that it is explicitly specified

∆ = change in, BF = blood flow, Perm = permeability, NSC = no significant change, N/A = not appli-
cable, fx = fraction, met = metastases

a large amount of tissue. In addition, they did not report kinetic model parameter (Ktrans or

ve) values for the GTV. The reason provided for not presenting these values was “poor model

fitting”, possibly due to low signal-to-noise ratio (SNR). Another limitation was the fact that
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they used ROI averaging analysis of the CTV and PTV which includes surrounding tissue that

may not respond the same way as normal tissue and confound their results. Finally, although

this study applied the Tofts model, the AIF used is one that, to our knowledge, has not been

not widely used in recent DCE studies. This AIF, reported in 1984 [172], does not capture the

fast contrast agent concentration changes believed to occur at early times post injection.

Looking beyond breast cancer, there is only sparse data with regard to the application of

DCE-MRI for response assessment at an early time point post radiotherapy. Table 1.4 summa-

rizes studies that have investigated DCE-MRI response assessment to stereotactic radiotherapy.

Concerning parameters related to blood flow and vessel permeability (represented in the Tofts

model by changes in Ktrans), most studies show transient increases in blood flow and vessel

permeability at time delays less that 3-14 days, before an eventual decrease at later time points

following SABR [163,167]. Other studies have also shown decreases in these parameters when

patients were evaluated from 30-154 days (table 1.4) [163,167,168,170,171]. These decreases

also correlated to pathologically complete response at later follow-up [168–170]. This litera-

ture provides an indication of the "expected" course of the parameter Ktrans changes with time.

Reports of ve are much more variable. Since ve represents the fraction of a voxel that is

extracellular extravascular space, vascular and cellular death would likely cause it to increase.

Some studies report an increase [163, 165] while others report a decrease [164, 167] or no

significant changes. A requirement for estimation of ve is sufficient measurement of the wash-

out phase. The inconsistent results may be due to variable acquisition times over which the post

injection DCE signals were followed. In some cases these acquisition times may be insufficient

for accurate ve characterization, which is typically stipulated to be approximately 10 minutes

[157], but may be longer if there is very slow wash-out.
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1.8 Research Hypothesis

The primary hypothesis of this thesis is that response to SABR treatment for early stage breast

cancer can be detected with 3T DCE-MRI using deformable registration procedures followed

by parametric analysis. Furthermore, I propose that half the standard dose of contrast agent

will be sufficient for this detection. The secondary hypothesis is that using a half-dose of

gadolinium-based contrast agent will not affect the inter- and intra- observer variability for

target volume delineation in the radiotherapy planning process.

1.9 Research Objectives

The work presented in this thesis is focused on three main objectives:

1. To quantitatively assess the potential of reducing the dose of gadolinium contrast agent

for DCE-MRI-based radiotherapy target volume delineation. More specifically the aim

was to compare using a full versus half clinical dose of contrast agent on the inter- and

intra-observer variability (Chapter 2).

2. To quantitatively evaluate the impact of 3D deformable registration on voxel-by-voxel

parameter values, associated uncertainties, and goodness of fit extracted from application

of the Tofts model to DCE-MRI data from breast cancer patients.

3. To determine tumour and the surrounding tissue response to SABR in early stage breast

cancer patients using two different SABR fractionations and two different time delays

post-SABR.
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1.10 Thesis Outline

1.10.1 Reducing the dose of gadolinium-based contrast agents for DCE-

MRI guided SBRT: The effects on inter and intra observer vari-

ability for preoperative target volume delineation in early stage

breast cancer patients (Chapter 2)

In chapter 2, the effect of reducing the dose of gadolinium-based contrast agent for MRI-guided

target volume delineation in the radiotherapy planning process is presented. Patients included

in this analysis had received either a full clinical dose of contrast or half a clinical dose. Ini-

tially, pre-SABR imaging in SIGNAL was performed with the standard contrast agent dose, but

later in the study the dose was reduced for reasons explained in Section 1.7.3 above. Five radia-

tion oncologists from the London Regional Cancer Program contoured the gross target volume

for each patient twice, with a month in-between contouring sessions. Using several metrics of

agreement, we found no significant decreases in the inter- or intra-observer variability when

using a half-dose of contrast agent. With the increased concern regarding gadolinium safety

and long-term retention, this study is likely the first in many that will look to decrease patient

exposure to gadolinium contrast agents. Such studies are particularly important for clinical ap-

plications that require repeated contrast agent administrations, such as DCE-MRI acquisition

for response assessment.

1.10.2 The effect of registration on voxel-wise Tofts model parameters

and uncertainties from DCE-MRI of early stage breast cancer pa-

tients using 3DSlicer (Chapter 3)

As mentioned in section 1.7.5, the effect of intra-session image registration on the value and

precision of Tofts model fit parameters has not been quantitatively explored. Chapter 3 ad-
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dresses this gap in the literature. We quantitatively investigated the influence of image reg-

istration on Tofts model-based kinetic analysis of dynamic contrast enhanced MRI of early

stage breast cancer patients. Signal enhancement curves were analyzed voxel-by-voxel using

the Tofts kinetic model. The major findings of this study were that 3D deformable registration

led to a significant reduction in the uncertainty of model fit parameters as well as a significant

reduction in the number of voxels that had an unphysical value for one of the two Tofts model

parameters. We also showed that registration computation time could be reduced by a factor of

two without altering model fit quality using a lower percent sampling of voxels for estimation

of the cost function. The results of this study demonstrate that deformable image registration

likely contributes to the efficacy of kinetic voxel-by-voxel DCE-MRI analysis for detecting

pre- to post-SABR response.

1.10.3 DCE-MRI assessment of response to neoadjuvant SABR in early

stage breast cancer: Comparisons of single versus three fraction

schemes and two different imaging time delays post-SABR (Chap-

ter 4)

The final project of this thesis involved quantitatively determining the effect of SABR dose

fractionation and time delay post-neoadjuvant SABR on DCE-MRI parameters in early stage

breast cancer patients. The results of this study suggest that performing breast DCE-MRI

one-week post-SABR may be too early for response assessment, whereas 2.5 weeks appears

sufficiently long to minimize confounding acute inflammatory effects. In addition, kinetic pa-

rameters measured 2.5 weeks post-SABR in both single fraction and 3 fraction groups were

indicative of response, but only the single fraction protocol led to enhancement in tissue sur-

rounding the tumor. We suspect that this increased contrast uptake in the surrounding tissue

is likely due to a hypothesized endothelial cell death threshold that is seen at doses >8-12 Gy.

This work sets the stage for further study of treatment schemes for early stage breast cancer
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that may be able to eliminate surgery all-together. This will be a subject of discussion in the

final chapter (section 5.3).

1.10.4 Conclusions and Future Work (Chapter 5)

The final chapter of this thesis summarizes the main findings of the three projects that comprise

this thesis. Important limitations are highlighted followed by a discussion of how the work

presented here sets the stage for future directions in breast cancer radiotherapy treatment and

imaging research.
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Chapter 2

2 Reducing the dose of gadolinium-based contrast agents
for DCE-MRI guided SBRT: The effects on inter and in-
tra observer variability for preoperative target volume
delineation in early stage breast cancer patients

2.1 Introduction

The current standard of treatment for early stage breast cancer patients opting for BCT is

lumpectomy followed by whole breast radiotherapy delivered over several weeks [1]. This

treatment time can be prohibitively long for many patients. APBI techniques can reduce treat-

ment time by treating a smaller volume and increasing the dose per fraction (hypofractionate).

Long-term studies [2–4] have found equivalent tumour control and recurrence compared to

whole breast radiotherapy. Further studies have shown that performing neoadjuvant to lumpec-

tomy can reduce treatment volumes, allowing further dose escalation [5, 6].

An important aspect of APBI is target volume delineation [7,8] which relies heavily on im-

age quality. Previous investigations [6] have focused on adjuvant external beam APBI, which

use the lumpectomy cavity as the target volume and can be visualized without contrast. Our

centre is currently enrolling early-stage breast cancer patients in a neoadjuvant stereotactic

radiation therapy trial [9] which requires use of a contrast agent as there is no endogenous

contrast at the tumour site. Patients are receiving a dynamic contrast enhanced MRI using

83
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a gadolinium based contrast agent (GBCA). This image sequence is being used for tumour

guided delineation as well as to assess patient response to radiotherapy.

Contrast enhanced (CE) techniques involve injecting a contrast agent which causes the

tumour to appear hyperintense. This technique can be performed with CT or MRI. Previous

studies have shown CE-MRI to be superior to standard CT imaging in the context of breast

cancer [7]. For example, in one study [10] comparing contouring the GTV on CE-CT versus

CE-MRI in neoadjuvant BCT, observers missed the tumour in 2/14 patients. They also found

a significant reduction in GTV definition variability across observers using CE-MRI.

While the use of CE-MRI has increased, recent research has provided evidence for longer

term retention of gadolinium in body tissues [11, 12]. This depends on the specific class of

GBCA, with higher levels of retention for those GBCAs having ligands with a linear config-

uration, compared to those where the ligand surrounds the gadolinium (macrocyclic). It also

appears to depend on the dose a patient has received. It is not known what effect the retention

causes and no pathological risks have been identified from these recent findings. However, the

association between nephrogenic systemic fibrosis and GBCAs was not discovered for decades

in renally impaired patients [11] and so more time is needed to comprehensively evaluate what

this retention may cause, though there are known pathological issues associated with heavy

metal toxicities including free gadolinium [11]. It has yet to be established in what form the

retained gadolinium exists in the body. In response to these findings, the European Medicines

Agency and Health Canada have indicated that the agents found to be more stable (macro-

cyclic) can still be used but with the lowest possible doses [13,14], while the FDA is requiring

that patients be informed of the currently unknown risk [15]. As such, it is important to inves-

tigate methods of minimizing exposure and, hence, any potential health risk to patients. One



Chapter 2. Reduced Dose ofMRI Contrast for target volume delineation 85

way would be to reduce the dose of GBCA given to patients per scan [11]. However, in the

context of radiotherapy delivery (particularly in SABR techniques), we must ensure visibility

of the tumour is not compromised by reducing the contrast dose.

We hypothesize that reducing the concentration of gadolinium to half of the standard clini-

cal dose will not significantly affect gross target volume as delineated by expert observers. The

objective of this study was to quantitatively assess the efficacy of target volume delineation on

CE-MR images obtained with half the standard dose of GBCA compared to full dose GBCA

for early stage breast cancer patients. Specifically, the quantitative measures of efficacy were

based on the inter- and intra- observer variability, volume of delineation, and center of mass of

the delineation.

2.2 Materials and Methods

Patients

Data was collected from a phase I/II clinical trial conducted at the London Regional Cancer

Program [9]. Inclusion and exclusion criteria are included in the clinical trial document [9].

Patients enrolled in the study had a surgical clip placed adjacent to the tumour at the time of

the initial biopsy. A subset of the latest 23 patients within the SIGNAL trial at the time of the

experiment were included in this study.

Image Acquisition

Patients were imaged prone with their ipsilateral arm raised above their head to mimic the

radiotherapy treatment positioning. For radiotherapy, this was done to minimize the impact
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Table 2.1: Patient characteristics for the two groups

Characteristic Full Dose Group Half Dose Group

Age

Median 61 69

Range 57-76 58-80

Side

Left 7 6

Right 7 3

of respiratory motion and reduce inclusion of normal tissue. The contralateral breast was

compressed so only the ipsilateral breast was in the coil and the prone breast board. Pa-

tients received a planning CT scan (Brilliance Big Bore, Philips Medical Systems, Best, The

Netherlands) with a prone board (Aktina Medical, New York, USA) and a DCE-MRI scan on

a Siemens Biograph mMR 3T-PET/MRI system (Siemens Medical, Munich, Germany) with a

four channel prone breast coil [16].

Three-dimensional fat suppressed fast flow angle shot (FLASH) images were acquired with

the following parameters: TR = 4.1ms, TE = 1.5ms, flip angle = 15°, spatial resolution = 1.0 x

2.1 x 2.1 mm interpolated to 1.0 x 1.0 x 1.2 mm, field of view = 38 x 38 cm, slab thickness =

13.4cm, acquisition time of approximately 20s. The DCE series contained a pre-contrast image

and 28 post-contrast images as the clinical trial protocol also includes kinetic analysis to assess

tumour response using non-invasive perfusion biomarkers [9]. The GBCA used was gadobutrol

(Gadavist®). Of the 23 patients, 14 received a clinical dose of 0.1 mMol/kg with an injection

rate of 2ml/s. Following the findings of gadolinium retention, we decided to reduce the dose to

half the standard dose, so patients imaged before and after radiotherapy would only receive a

standard dose in total and not increasing their risk for a research only scan (the post-radiation
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treatment). Thus far, 9 patients have received half the clinical dose (0.05 mMol/kg) with an

injection rate of 0.75ml/s. This injection rate was chosen to match the injection protocol to a

population derived arterial input function for DCE-MRI kinetic analysis (outside objective of

this study) [17]. A late post-contrast MRI that visually had the highest signal in the tumour

was chosen by an expert external to the study to aid the observers in contouring the tumour.

Target Volume Delineation

The patient data from both groups were pooled and randomly ordered for contouring. The CT

and late post-contrast CE-MRI scan (that visually showed peak intensity) were fused and manu-

ally aligned by a single expert external to this study in MIM (v6.8.0, Mim Software, Cleveland,

USA) such that the tumour was in the same location. Five radiation oncologists (ROs), all of

whom had enrolled patients on APBI trials, including the SIGNAL trial, RTOG 0413, and the

RAPID trial, were asked to delineate the GTV on the CT image with the aid of the fused CE-

MRI and the embedded surgical clip. The CT was displayed in grayscale with a soft tissue

window/level and the MRI displayed as a heatmap overlaid on the CT with a window/level

determined by an expert external to the study and ensured that the window/level settings used

were reasonable for all patients. Observers were not allowed to change the display map for the

CE-MRI or the window/level though they were able to change the transparency of the CE-MRI

heatmap from 0 (only CT shown) to 1 (only CE-MRI shown). The ROs were blinded to each

others’ contours. After at least 1 month, ROs were asked to recontour the images (randomized

again), blinded to their first contouring session and given identical delineation instructions. In

accordance with the SIGNAL trial [17], CTV were created by adding a 0.5cm margin to the

GTV.
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Data Analysis

The contours were exported from MIM as RTStructs and imported into MATLAB as binary

label maps. All metrics were calculated using MATLAB v. 2017a (Mathworks Inc., Natick,

MA) using in-house programs. Reporting of multiple metrics is required for accurate charac-

terization of data and comparison to previous results [18]. We chose to use metrics that fall

under different categories of characterizing observer agreement: descriptive metrics, spatial or

overlap metrics, and statistical metrics [18]. The descriptive and spatial metrics used the first

contouring session for analysis [19]. The statistical methodology for comparing groups for

each metric is described in the statistical section. For the descriptive metrics, we compared

the volumes of the contours and the coefficient of variation (CV). The mean, median, standard

deviation, and range of the volume contoured across observers for each patient and both groups

were calculated. The CV was calculated for each patient and is defined as the standard devia-

tion of the volume across observers normalized by the average volume across observers [20].

We used three spatial measures to assess differences in contours between observers: the

conformity index (CI), the generalized conformity index (CIgen), and the distance between

centers of mass (dCOM). The CI is a simple measure of overlap and is defined as [10]:

CIi j =
vi ∩ v j

vi ∪ v j
(2.1)

where vi and v j are a pair of observers and v is the volume of the contour. It has a value between

0 and 1 where 1 indicates perfect agreement. For each patient, CI was calculated between all

pairs (10 pairs) and averaged across observers [21] and the groups statistically compared.
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The CIgen can be used to compare any number of observers simultaneously and is unbiased

by the number of observers included [21]. It is defined as:

CIgen =

∑
pairsi j(vi ∩ v j)∑
pairsi j(vi ∪ v j)

(2.2)

where vi and v j are a pair of observers and v is the volume of the contours for those respective

observers. It has the same limits as CI (0 to 1). We used the dCOM to determine if there tended

to be any difference in systematic shifts between observers. For each patient, the dCOM was

calculated for each pair and was averaged across observer and the groups were statistically

compared.

Finally, we assessed inter- and intra-observer variability using a statistical methodology

that results in two measures termed the reliability coefficients [19, 22–24]. This method al-

lows for the concurrent assessment of inter- and intra-observer reliability by using at least two

successive measurements by the same set of observers. In brief, this method ascribes portions

of the total variance in the volume measurement to the patients, observers, and inter-/intra-

observer random error. These variances are estimated using a two-way random analysis of

variance (ANOVA) [23, 24]. We report the variance for each component. From the variances,

the inter-observer (ρinter) and intra-observer (ρintra) reliability coefficients, defined as the pro-

portion of the total volume variance ascribed to inter- and intra-observer effects, are reported

and compared statistically. Values close to unity indicate perfect reliability.

In addition to the above metrics, we also attempted to quantify differences in the shape of
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contours between groups. This was done by calculating the shape circularity (SC):

S C =
Area o f Contour S lice

Area o f Bounding Circle
(2.3)

This method assumes more jagged contours will occupy less space of a bounding circle than a

“simple” contour. We are interested in the most jagged contour for each patient. As such, this

analysis worked as follows: 1) For each expert, for each patient, average (SCavg) and minimum

(SCmin) SC across all slices was recorded, 2) for each patient, the minimum (and range) across

observers was calculated for each patient for SCmin. In addition, the average value across

observers for each patient (and standard deviation of the average values) was calculated for

both SCavg and SCmin, 3) full and half dose groups were compared statistically.

Statistics

Statistical analysis was performed using GraphPad Prism v. 6.01 (GraphPad Software, La

Jolla, CA) except for the reliability coefficient analysis which was performed using SPSS v. 25

(SPSS, Inc, IBM, Armonk, NY, USA).

The descriptive, spatial and shape circularity were not normally distributed as determined

by a Shapiro Wilks test and so a Mann-Whitney U was performed for comparison of the groups.

For the reliability coefficients, we used a left-sided F-test with the methods outlined in Eliasziw

et al. [24]. A p-level of 0.05 was used.
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2.3 Results

Table 2.1 shows patient characteristics for each dose group. In the process of contouring, no

expert missed the tumour for any patient, so each contour was included in the analysis. The

average ± standard error of the mean post-contrast image timepoint used for the full and half

dose group was 7.30 ± 0.72 minutes and 7.44 ± 0.76 minutes respectively signifying essentially

no difference in selection of the post-contrast image selected.

Figure 2.1a,b shows the GTV delineations of the five observers on the CT image (grayscale)

fused with the CE-MRI image (heat-map) for a representative patient from the full dose group

(Figure 2.1a) and the half dose group (Figure 2.1b). In terms of descriptive measures of vari-

ability, Figure 2.2a,b shows the volumes for each patient and Figure 2.2c,d shows the CV. There

was no significant difference in the volume or CV for the GTV and CTV between the full and

half dose group, though there tended to be a reduced volume in the half dose group compared

to the full dose group as seen by both the mean (Figure 2.2a,b) and median values (median

[range] of 0.83 [0.37-3.63]cc and 0.57 [0.29-3.33]cc for the full and half dose of the GTV,

5.95 [3.79-15.01] and 4.68 [3.34-13.65] for the full and half dose of the CTV). For the spatial

metrics, there was a significant difference between the full and half dose group for CIgen, but

no significant difference between groups for CI and dCOM (Table 2.2).

From the statistical comparison, the variability was predominantly due to patients, though

there was a larger variability due to inter-observer effects for the full dose group for both the

GTV and CTV, though this difference was small. This is reflected in the reliability coefficients

(Table 2.3), which show the full dose group had 10% less inter-observer reliability than the
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Figure 2.1: 3D delineations of the five observers in the axial (left) and sagittal (right) planes
for representative patients from the full dose group (A) and the half dose group (B).

half dose group. Following this, a sensitivity analysis was conducted to determine if there was

a volume effect in the full dose group. Excluding the top four patients with the largest tumours

in the full dose group and recalculating the inter-observer reliability coefficient resulted in a

difference of the inter-observer reliability coefficient of approximately 5% between groups.

Shape circularity was used to determine how round a given contour was with higher values

indicating rounder contours. We found there was a statistically significant increase in the SCmin

for the half dose group compared to the full dose group with an average ± standard deviation
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Figure 2.2: Column scatter plots of the volume measurements (A,B) and coefficient of vari-
ation (C,D) from each patient for the GTV (left column) and CTV (right column) for the full
dose group and the half dose group. “Contour 1” and “Contour 2” represent the repeated ses-
sion. The horizontal bar represents the mean volume across patients and the whiskers represent
the standard error of the mean.

value of 0.48 ± 0.11 for the full dose group and 0.58 ± 0.11 for the half dose group for the case

where the minimum was taken across observers, indicating contours were less round when

using the full dose of contrast. However, there was no significant difference in the average

value across all observers for the full dose group (0.5 ± 0.07) versus for the half dose group

(0.57 ± 0.08, p = 0.7) for SCmin. For SCavg, there was also no significant difference between

the full dose group (0.60 ± 0.04) compared to the half dose group (0.63 ± 0.02, p = 0.07).
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Table 2.2: Summary of the spatial metrics CI, CIgen, and dCOM and significance results com-
paring the first contouring session for both the GTV and CTV and both dose groups. Normality
was violated for most cases and so a Mann-Whitney U test was used. No significance was found
in comparing the two groups except for CIgen though the difference in median value was small.

Full Dose Group Half Dose Group

Median Range Median Range P-Value

CI

GTV 0.58 0.29 – 0.73 0.52 0.46 – 0.69 NS

CTV 0.73 0.60 – 0.81 0.72 0.65 – 0.79 NS

CIgen

GTV 0.61 0.49 – 0.62 0.66 0.61 – 0.69 SIG

CTV 0.73 0.65 - 0.74 0.78 0.74 – 0.79 SIG

dCOM (mm)

GTV 1.23 0.45 – 2.09 1.24 0.37 – 2.30 NS

CTV 1.46 0.49 – 2.66 1.14 0.46 – 2.09 NS

2.4 Discussion

Over the past decade, there has been a large increase in the use of MRI scanning for radia-

tion treatment planning, particularly in the case where soft-tissue contrast is highly desirable.

Accurate localization for neoadjuvant radiotherapy or screening requires the use of a GBCA

as these lesions are often difficult to localize using CT alone. Due to the finding of long-term

retention in brain and bone for gadolinium-based contrast agents, if it is possible to reduce the

dose of GBCA to a patient without affecting tumour delineation, then it is imperative we do so.

This study showed that it is feasible to reduce the dose of contrast given to early stage breast

cancer patients while not affecting both the inter- and intra-observer variability.

Apart from tumour volume delineation, CE-MRI is finding increased use in the clinical

workflow for patients [25]. For example, studies have found that it has strong potential as a tool



Chapter 2. Reduced Dose ofMRI Contrast for target volume delineation 95

Table 2.3: Inter- and intra-observer reliability coefficients for volume measurements from 5
observers and 1 repetition (2 contour sessions) for both the GTV and CTV

Reliability Coefficients (%)

Full Half P-value

ρinter

GTV 82.84 91.97 0.002

CTV 80.41 91.13 0.001

ρintra

GTV 89.94 95.94 0.103

CTV 89.19 95.62 0.105

for selecting patients best suited for conserving therapies as well as a screening tool [26, 27].

If CE-MRI is to be used more routinely, reducing the dose of GBCA is an important way to

mitigate the deposition in brain and bone [11]. In the context of screening, it is reassuring that

even in the half dose group, no targets were missed, especially since tumours included in this

study were small (Figure 2.2 a,b).

Regarding the reliability coefficients, an inter-observer reliability > 0.6 implies a substantial

agreement and an intra-observer reliability > 0.8 implies an almost perfect agreement [22].

Importantly, using a half dose of GBCA still maintained this threshold i.e., using a half dose of

contrast does not alter the inter- or intra-observer variability compared to using a full dose of

GBCA.

There is scant literature on observer agreement in the setting of neoadjuvant target volume

delineation. In comparing CI and CIgen reported here to those previous studies, it is important

to note that CI and CIgen are sensitive to the overall volume of the contour [10] which makes

comparing to traditional whole-breast contouring studies difficult. In any case, the values of CI

for both the GTV and CTV are well within reported ranges [6, 10].

The shape circularity assessment was used to try and account for the better inter-observer
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agreement in the half-dose group compared to the full dose group as assessed by CIgen (Table

2.3) and the reliability coefficients - which showed a 5% increase in the half dose group after the

sensitivity analysis was performed. This metric was able to detect differences between groups

(using the minimum across observers) when using the slice with the maximum deviation from

a circle (minimum SC value). However, averaging across observers and slices resulted in only

a trend to significance, most likely due to inadequate sample size and sensitivity of the metric

as it is non-specific and only assess deviation from a circle. There may be other metrics more

sensitive to differences in shapes between groups.

Furthermore, other factors not considered here that may affect contour variability should be

investigated. For example, the use of a heatmap for the overlaid MRI and its window/level was

mostly arbitrary which will add a systematic bias to the absolute tumour volume contoured, but

because the same expert set the window/level, should not have a large impact on the systematic

bias of the gross target volume delineation. However, it may be more appropriate to set the

window/level of the MRI based on some characteristic of the signal intensity or to overlay

subtraction images (a post-contrast image – a pre-contrast image). However, doing so requires

good intra-imaging session registration to avoid motion artifacts and this is not currently being

done clinically at our centre. In addition, there may be a confounding effect due to different

injection flow rates of the GBCA [28]. Finally, providing additional MRI sequences or imaging

modalities (PET) as additional information may be beneficial.

One other notable limitation was that the data was unpaired. This makes absolute com-

parison between groups difficult since patient biological variability becomes a confounding

factor. Furthermore, it does not allow us to make any conclusions on the accuracy of the tu-

mour volume delineated which would require confirmation with pathological specimens. In
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addition, our sample size was small, though larger than other studies investigating contouring

effects [10, 18].

MRI-guided radiotherapy is showing increasing promise for screening and APBI tech-

niques, though due to recent findings concerning the deposition of contrast agents in brain

in bone, it is important we minimize exposure of patients to these contrast agents. The re-

sults presented here suggest it is possible to reduce the dose of contrast agent delivered to

patients without significantly affecting the efficacy to delineate the volume. Further studies are

needed to examine the accuracy of the volumes delineated using a half dose of gadolinium-

based contrast agents. The results of this study have prompted our center to reduce the dose of

gadolinium in all patients enrolled in the SIGNAL trial.
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Chapter 3

3 The effect of registration on voxel-wise Tofts model pa-
rameters and uncertainties from DCE-MRI of early
stage breast cancer patients using 3DSlicer

3.1 Introduction

Dynamic contrast enhanced (DCE) MRI is a valuable tool for aiding clinical diagnosis and

treatment monitoring of breast cancer. A series of T1 weighted images are acquired with at least

one image prior to the injection of a contrast agent and several images following the injection.

From these images, signal enhancement curves are generated either voxel-by-voxel or using

the average signals over regions of interest and can be analysed using pharmacokinetic models,

empirical models or qualitative methods [1]. Pharmacokinetic model analysis can provide

physiological information and has many advantages over using empirical models or qualitative

methods [1]. One of the most popular models in breast cancer is the Toft’s model [2] from

which one can extract two parameters: (1) Ktrans which is the extravasation rate of contrast

from the vasculature to the extra-cellular, extra-vascular space, and (2) ve which represents the

fraction of tissue volume occupied by the extra-vascular, extracellular space. To be physically

realistic, measured ve values must be atleast < 1.

Inter-scan patient movement during the DCE image series can degrade pharmacokinetic

analysis of the curves unless image registration is applied [3, 4]. While several papers [5–10]
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have reported on image registration in breast imaging, very little information has been pro-

vided on the influence of registration in pharmacokinetic analysis, particularly the Tofts model.

Shafer et al. [9], using in-house developed software, investigated the influence of registration

on the root-mean-square-error (RMSE) of the data around a fitted curve based on an early ver-

sion of the Tofts model using an analytic AIF that has shown poor performance compared to

more contemporary AIFs [11]. In addition, the assessment of the kinetic fit was based on a

voxel averaging method rather than voxel-by-voxel, the registration was only in two dimen-

sions through a single slice of the tumour, and their data set only had 5-6 images with a time

resolution of > 60s on a 1.5T MRI scanner. To our knowledge the influence of registration on

measured pharmacokinetic parameters and their uncertainties has not been investigated and not

with more recently measured AIF.

While image registration is an important step in pharmacokinetic analysis the computation

time can be quite long. This is especially true for deformable registration based on mutual in-

formation which is a cost function known to be robust in the presence of local contrast changes

such as in the case of DCE [6, 7, 9, 12–14]. Long computation times could be a burden partic-

ularly for large clinical studies. For example, our analysis procedure is presently applied for

the SIGNAL trial [15] in which registration of 29 DCE images per patient will be performed

for more than 100 patients. To reduce computation time for registration, it is possible to use

a random subset of the image voxels rather than the full image [16]. Here we use the term

percent sampling (PS) to refer to the fraction of voxels sampled within the region of interest.

To our knowledge, the effect of under-sampling the image for estimation of the cost metric and

its effect on the performance of the kinetic model analysis has not previously been explored

quantitatively in the context of DCE-MRI.
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Figure 3.1: Timing diagram for the image acquisition. Following contrast injection (to) a
HASTE series is acquired for 15.54 or 18.5 s (t1) which is immediately followed by the post-
contrast dynamic contrast enhanced series until approximately 10 minutes has elapsed (t2).

In this paper, we consider the influence of fully 3D deformable registration on pharmacoki-

netic model voxel-by-voxel analysis using the Tofts model and the AIF from Parker et al. [17]

in the context of breast DCE with full breast coverage and relatively high time resolution (18-

20 s). In particular, we assess the influence of this registration on parameter values and their

uncertainties and on the extent of physically reasonable values for ve. We also investigate the

efficacy of reduced percent sampling as a means of reducing computation time. In addition to

demonstrating the importance of registration on pharmacokinetic analysis in breast DCE and

the efficacy of reduced sampling, our results provide the reader with estimates of parameter

precision for voxel-by-voxel analysis that can be achieved at 3T with moderate spatial reso-

lution and relatively acquisition times. Finally, we specifically chose an open-source program

(3DSlicer) that can be applied for image registration with only minimal time and resource

investment for implementation.
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3.2 Materials and Methods

DCE-MRI breast images were acquired from 13 patients with early stage breast cancer [15].

The median (range) of patient ages was 60 (52-77). The studies were performed on a 3T-

PET/MRI system (Siemens Biograph mMR) with a four channel breast coil [18]. Patients

were positioned prone to mimic the radiotherapy delivery position with the ipsilateral arm

above their head and the contralateral arm at their side.

Figure 3.1 shows a timing diagram for the image acquisition. Three-dimensional fat sup-

pressed fast low angle shot (FLASH) images were acquired with TR = 4.1ms, TE = 1.5ms, flip

angle = 15°. The images had a spatial resolution of 1.0 x 2.1 x 2.1 mm interpolated to 1.0 x

1.0 x 1.2 mm, a field of view of 38 x 38 cm and a slab thickness of 13.4 cm. Using 6/8 Par-

tial Fourier in two directions and an acceleration factor of two the acquisition time per image

was 18-20 s. Each DCE series included one pre-contrast image and 28 post-contrast images

following Gadovist (0.1 mMol/kg) injection. Single slice half-Fourier acquisition single-shot

turbo spin echo (HASTE) images positioned at the arch of the aorta were acquired for approx-

imately 18-19 seconds immediately following the injection and before the first post contrast

DCE image. Time resolution for the HASTE images was 0.37s for nine patients and 0.49s for

the remaining four.

Images were registered using the BRAINSFit module [19] of 3DSlicer v4.5.1 [20] on a

PC running Windows 10 (16GB ram, Intel i7-4790 CPU). Unless otherwise specified, default

values for this version were used for other parameters related to the registration as these have

been tuned by the authors of the BRAINSFit over the course of development and generally



Chapter 3. Influence of Registration on ToftsModelling in DCE-MRI 108

Figure 3.2: An example mask defined over a patients’ breast for the DCE-MRI intra-session
image registration

provide good registrations [19].

The key steps in the registration process are as follows: A mask was defined over the af-

fected breast, extending to approximately the pectoral muscle and dilated to include air around

the skin (Figure 3.2). This mask defined the region from where voxels were sampled for esti-

mation of the cost function. The interpolator used for the registration and for final generation of

the image output was a windowed sinc. All images were registered to the middle post-contrast

image (i.e., the 14th time point) [3, 9, 21]. To correct for gross movement, we performed a

sequential affine transformation i.e., a rigid, a rigid + scale, a rigid + scale + skew, and fi-

nally an affine. The result of this was used as input into the BSpline registration. The BSpline

registration had an approximately 2cm isotropic grid spacing as we were not expecting large

deformations.

Registrations were performed using each of the following values of PS: 100%. 20%, 5%,
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Figure 3.3: Computation times for all PS cases for registering the series of 29 images (1 pre-
contrast and 28 post-contrast). The bar represents the mean and the whiskers represent the
standard deviation. Each point represents a patient.

1% and 0.5%. The PS here refers to the percentage of voxels within the mask used for deter-

mination of the cost function and were sampled randomly. The computation time was recorded

for each registration procedure applied to each patient. This investigation was performed to

determine if registration performance could be maintained while decreasing computation time.

Analysis of the unregistered and registered DCE-MRI data was performed with MATLAB

2016b using in-house code. Otsu’s segmentation method [22] was applied to automatically

segment the tumour using the last post contrast image. Voxels included in the contour were fit

using the Levenberg-Maqquardt algorithm (see fit function in matlab or [23]), voxel by voxel,

using the Tofts kinetic model [24] and a population derived AIF [17]. The time at which the

contrast agent arrived at the arch of the aorta on the HASTE images was considered as a lower
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bound on the time of arrival of the contrast bolus to the tumour. Model fitting was applied to

voxels that met the following conditions: 1) the signal enhancement was 1.5 times that of the

pre-contrast value at any point in the time series and 2) the maximum value of the signal curve

did not occur at the last time point. Parameter values of Ktrans (forward rate constant) and ve

(fractional volume of extracellular, extravascular space) were generated for each voxel within

the segmented region of each patient and each registration condition. In addition, the standard

errors for Ktrans and ve (σKtrans and σve) and the root-mean-square-error (RMSE) of the fit were

determined for each voxel where the standard error here refers to 1/4 of the 95% confidence

interval width. In addition, the percentage of voxels where ve > 1, was reported since values of

ve > 1 are unphysical. In addition, to provide an estimate of the error in ve (σve), we calculated

the percentage of voxels where σve exceeded four defined thresholds: 0.1, 0.2, 0.5, and 1.

Statistical analysis of parameters included the following: for Ktrans, σKtrans, and the RMSE,

the median and 90th percentile over all voxels in each of the segmented tumours was calcu-

lated for unregistered images and registered images at each PS level. For ve and σve we also

computed the median values but did not consider 90th percentile metric because for some vox-

els the extracted values were extremely high. Instead, we determined the number of voxels

with ve > 1 (unphysical) and the number of voxels with σve > four threshold values (0.1, 0.2,

0.5 and 1.0). A Wilcoxon sign-rank test was used to compare the values of each parameter

obtained from unregistered images to those obtained from registered images. A comparison

of values obtained using PS = 100% to values obtained with the lower percent sampling (PS)

was also carried out with this test. Theoretically, 100PS should result in the best registration

performance.
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Table 3.1: Results of statistical comparisons between parameters obtained with unregistered
images versus registered images (at any PS level). Dashed lines indicate where comparison
metrics were not assessed

Median 90th Percentile Number of voxels above threshold

Ktrans NS SC —

σKtrans SR SR —

ve NS — SR (ve> 1.0)

σve SR — SR for median and σve > 0.1, 0.2, 0.5, 1.0

RMSE SR SR —

SR = significant reduction, SC = significant change, NS = no significant difference (all at p <≤ 0.05)

3.3 Results

Figure 3.3 shows the mean and standard deviation of the total computation time across pa-

tients. Using a lower PS values (≤ 20PS) lead to a dramatic reduction in the computation times

compared to 100PS, as well as a large reduction in the standard deviation. However, using 1

or 0.5PS did not further decrease computation time compared to 5PS and so they were omit-

ted from further analysis. For the following paragraphs, Table 3.1 shows a summary of the

comparisons of each PS case to the unregistered data.

The top row of Figure 3.4 shows representative parametric maps for Ktrans for 100PS, 20PS,

5PS, and the unregistered case for a representative patient. Large differences can be seen

comparing all the PS cases to the unregistered case with subtle variations between PS cases.

Figure 3.5 illustrates values of Ktrans and its uncertainty (σKtrans) extracted from unregistered

and registered images from all PS groups. Comparing unregistered images to registered images

(all PS), differences in the uncertainty metrics (median and 90th percentile σKtrans) and in the

90th percentile Ktrans are large for some patients and were found to be statistically significant
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Figure 3.4: Parametric maps for Ktrans (top row) and ve (bottom row) across percent sampling
cases for a representative patient.

(Table 3.1). However, the differences in the median value of Ktrans between unregistered and

registered images (all PS) was not significant, though a relatively large difference can be seen

for one subject. Any variation in these metrics (Figure 3.5) between PS groups appear to be

small. The only difference that was significantly worse than 100PS (but small) was between

the median of σKtrans for 5PS.

The bottom row of Figure 3.4 shows representative parametric maps for ve for 100PS,

20PS, 5PS, and the unregistered case for a representative patient. Large differences can be

seen comparing all the PS cases to the unregistered case, particularly around the periphery.

There are subtle variations between PS cases, again, mostly around the periphery. Figure

3.6 illustrates differences in ve and its uncertainty (σve) extracted from unregistered versus

registered images from all PS groups. Comparing unregistered images to registered images

(all PS), differences in the uncertainty metrics (median σve; number of voxels with σve > 0.2)

and in the percentage of unphysical voxels (ve > 1) are large for some patients and were found

to be statistically significant (Table 3.1). Significant differences were also found between the
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Figure 3.5: Median and 90th percentile of Ktrans (A,B) and σKtrans (C,D) for unregistered and
registered images (all PS cases). Median and 90th percentile was determined over all voxels in
the segmented region for each patient. P # represents patient number.

number of voxels with σve > other thresholds tested (Table 3.1, Figure 3.7). However, any

difference of the median value of ve between unregistered and registered images (all PS) was

not significant. Any variation in these metrics (Figure 3.6) between PS cases appear to be small

and none were statistically significant.
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Figure 3.6: Median ve (A), percentage of voxels with ve > 1 (B), median σve (C), and per-
centage of voxels where σve exceeded 0.2 (D) for unregistered and registered images (all PS).
P # represents patient number. The median values were determined over all voxels in the
segmented region for each patient.

Finally, for the RMSE, the median (Figure 3.8a) and 90th percentile (Figure 3.8b) of all

PS cases were significantly reduced compared to the unregistered data (Table 3.1). There were

no significant differences between 20 or 5PS compared to 100PS but there was a trend to

significance in both the median (p = 0.07) and 90th percentile (p = 0.08) when comparing 5PS

and 100PS.
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3.4 Discussion

In this study, we investigated the influence of registration on DCE-MRI kinetic parameters

in the context of breast imaging using freely available and well tested open source software

(3DSlicer and BRAINSFit). We are the first to show how registration can reduce the number

of unphysical voxel fits and improve the precision of voxel-wise parameter estimates which is

important in the context of assessing response to therapy using these kinetic parameters. In

addition, we showed how registration time can be reduced by a factor of two using a smaller

sampling of voxels (20PS). To our knowledge, no other publication has quantitatively explored

the influence of registration or of reduced PS on the parameter values (Ktrans, ve) or their asso-

ciated uncertainties (σKtrans, σve) in DCE-MRI of breast cancer [25].

The methods presented here are being implemented in the SIGNAL clinical trial as men-

tioned in the introduction [15]. The DCE-MRI imaging protocol has a relatively high time

resolution compared to many previous studies [2] that investigate DCE-MRI of breast cancer,

with full breast coverage. For our clinical trial, registration of 29 DCE images will be per-

formed for more than 100 patients and in some cases twice per patient as they will be receiving

a post-treatment DCE-MRI session. As such, reducing the computation time for registration

will be important for maintaining timely assessment of image data. As DCE-MRI improves

and 3D images can be acquired faster (which results in more images), ways to mitigate regis-

tration time will become even more important. PS reduction is one strategy; however, reducing

PS below 5PS had little if any affect on computation time.

In this study we found that registration reduced the number of voxels for which the fitting
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Figure 3.7: Percentage of voxels having σveabove four different thresholds for different regis-
tration cases (PS values). The bar presents the mean across patients and the error bars represent
the standard deviation.

with the Tofts model led to an unphysical value for ve (ve > 1). This has not been widely

considered. However, even with registration the number of such voxels was still substantial

(Figure 3.6b) for some patient image sets. From our observation and a previous report [26],

this tends to occur for signal enhancement curves that have not reached the washout phase by

the end of the dynamic series. For this study, post contrast imaging covered a time period of

approximately 10 minutes, but this may not be sufficient for estimating ve of voxels near the

edges of the tumour which were typically still enhancing by the end of the series. It is unclear

how these unphysical voxels affect Ktrans estimation, particularly since the fitting procedure is
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Figure 3.8: The median (A) and 90th percentile (B) of the model fit RMSE for unregistered
and all PS cases for each patient. Median and 90th percentile were determined over all voxels
in the segmented region for each patient. P # represents patient number.

highly non-linear.

Previous studies investigating DCE-MRI registration have not typically reported the effect

of registration on model fit parameter outputs and associated uncertainties for the Tofts model.

Interestingly, the median values of the parameter values (Ktrans and ve) seemed relatively in-

sensitive to slight misalignment of images as indicated by the lack of significant difference

comparing unregistered and registered data. In voxel-by-voxel analysis which has the potential

to show the spatial heterogeneity of the tumour, we can see that there is a significant effect

of registration on the overall distribution of parameter values as indicated by the significant

change in the 90th percentile of Ktrans and the reduction of unphysical voxels. Further, we

can significantly reduce the uncertainty in the parameter values (σKtrans, σve), increasing con-

fidence in voxel-wise analysis without a large cost in computation time when a lower PS is

used.
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Interestingly, there was a large amount of variation in Ktrans (Figure 3.6a,b) and ve (Figure

3.7a) across patients even though all patients were early stage breast cancer patients with a

similar age [15]. However, this is most likely reflective of the highly heterogeneous nature

of tumours. In comparison to reported ranges in the literature for studies that used the Tofts

model, it is not uncommon for there to be variability between patients [27, 28].

Our data also demonstrates a large variation between patients regarding the extent to which

the RMSE (Figure 3.8), uncertainty metrics (σKtrans, σve, Figure 3.3c,d and Figure 3.5c,d) and

number of voxels with unphysical values of ve (Figure 3.6b) were reduced by image registra-

tion. In fact, there are some patients for which any such changes are quite small, suggesting

that these patients are able to remain essentially motionless during the 10 min DCE acquisition.

It may be that the uncertainty values obtained for these patients might represent an estimate of

the potentially achievable fit uncertainties with our protocol (3T, four channel breast coil, 4.4

µL voxel volume, full breast coverage in approximately 20 s). There are several potential fac-

tors that could influence the extent to which patients can remain motionless, including level of

comfort in this radiotherapy position (one arm overhead), a position that could be challenging

for older patients, as those in our study (median (range) of age: 60 (52-77)).

In terms of limitations, we had a small number of patients included in this study. We

did not exhaustively investigate all registration parameters and there may be ways to further

reduce computation time, such as removing parts of the registration steps before the BSpline

i.e., it may only be necessary to perform a rigid and affine before the BSpline without any

intermediate steps.

Finally, we would like to highlight the fact that patients included were imaged prone with

their ipsilateral arm raised above their head to mimic the radiotherapy position. Typical breast
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MR imaging studies are performed with the patient prone with both arms at their side. This

difference may affect the extent of patient motion compared to our study. However, the appli-

cation of MRI for image guidance and treatment monitoring of radiotherapy for breast cancer

treatment is growing which means there is a need for MRI studies involving breast patients im-

aged in the radiotherapy delivery position to assess ways to mitigate motion as well as quantify

the optimal imaging and analysis techniques.

3.5 Conclusion

In this paper, we investigated the influence of registration using 3DSlicer and percent sampling

on extracted kinetic parameters and their uncertainties. Registration resulted in significant re-

ductions in the number of unphysical fits (ve > 1), the standard error (uncertainty) of parameter

estimation, as well as the root-mean-square error of the model fit. We also found that com-

putation time could be reduced by a factor of two by using reduced sampling (20PS) without

detectable changes in these measures. This computation time reduction will help to improve

the practicality of analyzing DCE images with high time resolution for large clinical studies

and for studies that include a large number of post-contrast injection images.
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Chapter 4

4 DCE-MRI assessment of response to neoadjuvant
SABR in early stage breast cancer: Comparisons of
single versus three fraction schemes and two different
imaging time delays post-SABR

4.1 Introduction

The current standard of breast conserving therapy for early stage breast cancer patients is a

lumpectomy followed by whole breast radiotherapy delivered over 5-7 weeks [1]. This treat-

ment time is prohibitively long for many patients [1, 2]. Accelerated partial breast irradiation

(APBI) is being investigated to reduce treatment time by treating local to the tumour [3] while

attempting to maintain the same efficacy as the current standard. The treatment volume can be

further reduced by treating before surgery [4] allowing large doses to be delivered per fraction

and facilitating the use of stereotactic ablative radiotherapy (SABR). With pre-surgical radio-

therapy it becomes possible to use imaging to assess the physiological effects of the radiation

and investigate potential tumour response biomarkers. Determination of tumour control at an

early stage could potentially allow patient-specific radiotherapy adaption.

It has been shown that microvascular damage from radiotherapy plays a key role in tumour

regression [5,6]. Dynamic contrast enhanced (DCE) MRI provides a means to assess microvas-

culature function and potential damage. Parameters extracted from DCE-MRI include the rate
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at which a gadolinium contrast agent exits capillaries into the extracellular-extravascular space

(Ktrans) and the volume of the extracellular, extravascular space (ve). Using these metrics we

can non-invasively assess response to the SABR treatment [7].

Pre-clinical and clinical studies have demonstrated early vs late changes in tumour re-

sponse parameters related to blood flow and vessel permeability. Early changes have been

attributed to acute inflammatory reactions which can cause increased vessel permeability, and

endothelial cell death within irradiated volumes [5, 6, 8]. Determination of the optimal time

post-radiotherapy for DCE-based assessment of response without confounding acute effects

remains an unanswered question.

In addition to the effect of high doses of radiation within the tumour it is important to

consider the influence of irradiation on the surrounding tissue, which has been seldomly studied

in humans. Pre-clinical studies have suggested there may exist a threshold dose (8-12 Gy)

above which a cascade of events leads to endothelial apoptosis in normal vasculature [6,9–12].

To our knowledge, only one study has investigated DCE-MRI after SABR in the context

of breast cancer [13]. DCE-MRI parameters (Ktrans, ve, area under enhancement curve) were

quantified one week following single-fraction SABR (15, 18, or 21 Gy). Measurements were

limited to region-of-interest enhancement curves (rather than voxel-wise curves) for the gross,

clinical, and planning target volumes (GTV, CTV, PTV). However, no values of Ktrans or ve for

the GTV, which most closely relates to the tumour region, were reported. Finally, the authors

used an arterial input function proposed by Weinmenn in 1984 [14] that has shown to have

poor performance [15].

The purpose of the present study was twofold. First, we aimed to compare potential DCE-

MRI measures of response obtained from early stage breast cancer patients at one-week post
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SABR versus 2-3 weeks. This information is important in developing a protocol for monitor-

ing SABR response as one would hope to monitor response as early as possible while avoiding

potential confounding factors (e.g., inflammatory changes). Our second aim was to compare

DCE-MRI measures obtained from patients exposed to single high dose (21Gy/1fraction) ver-

sus a fractionated scheme (30Gy/3fractions every other day). While these two schemes pro-

vide equivalent tumour cell killing according the linear quadratic model and universal survival

curves [2], we wanted 1) to verify that the two schemes lead to similar tumour response as

assessed by DCE-MRI and 2) to determine if DCE-MRI measures are consistent with expec-

tations that the fractionated scheme would lead to a differential effect in the surrounding tissue

due to the higher biologically effective dose in the single fraction scheme in the surrounding

tissue. To investigate the influence of SABR on tissue surrounding the tumour, the changes

in enhancing tissue volume from pre to post-SABR were quantified. To investigate tumour

response, we applied the Tofts pharmacokinetic model to assess pre to post-SABR changes

within the tissue enhancing in the pre-SABR scan.

4.2 Methods

Figure 4.1 is a flowchart that summarizes the order of methods used to analyse the DCE-MRI

data.

4.2.1 Patients

Images were acquired as part of a phase I/II clinical trial called SIGNAL [2]. Early stage breast

cancer patients were treated with neoadjuvant SABR, and randomly assigned to either 21Gy/1
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Figure 4.1: Flowchart outline image processing and analysis for this study. Two comparisons
were performed, one between the signal enhancement volume changes, and a separate compar-
ison between the parameters involved in the kinetic model analysis. The kinetic analysis was
localized to tumour contours. RT = radiotherapy, SE = signal enhancement.

fraction or 30Gy/3 fractions every other day. A surgical clip was placed either adjacent to or

within the tumour at the time of initial biopsy. All patients underwent an MRI scan prior to and

following SABR, with the post-SABR as close to the lumpectomy as possible. Patients were

categorized into three groups (Table 4.1) as follows: Group 1 patients received 21Gy/1 fraction

with imaging scheduled to be as close as possible to one-week post-SABR. Group 2 and group

3 patients received 21Gy/1 fraction and 30Gy/3 fractions, respectively, with post-SABR MRI
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Table 4.1: Study/patient information, image timing and SABR treatment scheme separated by
group. Note that for the 3 fraction patients, imaging time post-treatment is the time delay from
the conclusion of radiation therapy to the MRI scan.

# Patients Dose Scheme Median (Range) Imaging Time
Post-SABR (days) Breast Affected Mean Age

Group 1 5 21Gy/1FX 6 (6-7) 3L / 2R 72

Group 2 6 21Gy/1FX 16 (16-19) 3L / 3R 69

Group 3 6 30Gy/3FX 16 (15-18) 3L / 3R 69

FX = fraction, L / R = Left or right sided breast affected, SABR = stereotactic ablative radiotherapy

scans schedule to be as close to three weeks as possible.

4.2.2 Image Acquisition

Images were acquired on a Siemens Biograph mMR 3T-PET/MRI system (Siemens Medi-

cal, Erlangen, Germany) with a four channel prone breast coil [16]. Prior to contrast injec-

tion native T1 relaxation time (T10) maps were generated using the variable flip angle (VFA)

method [17] for conversion of signal to concentration [7]. B1 maps were acquired to determine

the true flip angle for both T10 mapping and DCE-MRI [7]. Due to a scanner upgrade, two

different sequences for B1 quantification were used- the Actual Flip Angle (AFI) [18] and the

“slice-selective pre-conditioning RF pulse” (SS-Pre) [19] methods. Imaging parameters for

both methods are provided in Table 4.2. T10 maps were reconstructed in MATLAB v. 2018a

(Mathworks Inc., Natick, MA).

Three-dimensional fat suppressed fast low angle shot (FLASH) images were acquired with

field of view = 38x38cm, slab thickness = 13.4cm, time of acquisition = 20s using 6/8 partial

Fourier in two directions and an acceleration factor of two. The DCE series included a pre-

contrast and 28-post gadobutrol (Gadavist®) contrast injection images using half a clinical
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Table 4.2: Acquisition Parameters for MRI sequences used in this study.

Acquisition Nominal FA TR (ms) TE (ms) Spatial Resolution
(mm)

Interpolated voxel size
(mm)

HASTE 10° 489.6 / 521.4 1.16 / 1.36 1.4 x 2.0 x 5 1.4 x 1.4 x 5

DCE-MRI 15° 4.1 1.5 1.0 x 2.1 x 2.1 1.0 x 1.0 x 1.2

VFA (T1 map) 5 or 6 FAs
(1° to 17°)

4.9 or 5.1 1.9 or 2.5
1.0 x 1.1 x 2.11

or
1.0 x 2.1 x 2.0

1 x 1 x 1.2
or

1.0 x 1.0 x 1.0

AFI B1 Map 50° TR1 = 20
TR2 = 100

2.46 2.4 x 4.0 x 2.4 2.4 x 2.4 x 2.4

SS-Pre B1 Map 80° 10000 2 5.94 x 5.94 x 5 N/A

VFA = variable flip angle, AFI B1= actual flip angle B1 mapping sequence, SS-PRE B1 = slice-
selective pre-conditioning RF pulse B1 mapping sequence

dose of 0.05 mmol/kg and an injection rate of 0.75ml/s. Immediately after injection but prior-

to post-contrast images, single slice HASTE image, positioned at the arch of the aorta were

acquired for 18-19s.

4.2.3 Image Registration

To correct for intra-session motion, DCE images were deformably registered to the mid-time

point post-contrast image using BRAINSFit [20] in 3DSlicer v4.8.0 [21] and Mattes mutual

information as the similarity metric [22] (see chapter 3). To correct for patient movement

between the B1 and T10 mapping, scans relative to the DCE-MRI, deformable registration was

performed using MIM v6.8.5 (v6.8.0, MIM Software, Cleveland, USA) and its multi-modality

metric [23, 24].

Following intra-session registration, a post- to pre-radiotherapy registration was performed.

The post-radiotherapy, pre-contrast image was deformably registered to the pre-radiotherapy

pre-contrast image (MIM v6.8.0, MIM Software, Cleveland, USA), creating a deformation



Chapter 4. Early response assessment in breast cancer 131

field linking the pre-radiotherapy space to the post-radiotherapy space.

4.2.4 Analysis

Signal Enhancement Volume

The purpose of this analysis was to compare the change in the absolute volume of enhancement

between the pre- and post-radiotherapy setting. A 3D rectangular cuboid centered on the tu-

mour and sized to encompass all visibly enhancing tissue (excluding skin) was manually drawn

on the 9th post-contrast (3.3 minutes post-injection) DCE-MRI image in the pre-radiotherapy

setting. The same sized cuboid was used for the post-radiotherapy data for a given patient.

A signal enhancement map was calculated by dividing the 9th post-contrast DCE-MRI image

by the pre-contrast image for both the pre-radiotherapy and post-radiotherapy data. Within

the cuboid region, the signal enhancement volume ≥ signal enhancement thresholds ranging

from 1-5 with increments of 0.01 was calculated, generating threshold vs signal enhancement

volume curves. The area under these curves (AUC) was calculated (higher values indicating

greater volume of enhancement). The percent change from pre- to post-SABR was used to

compare differences.

Tumour Segmentation

The tumour was automatically segmented in the pre-SABR DCE-MRI images. Figure 4.2A

shows this process schematically. Initial filtering was performed using Otsu’s segmentation

method [25] on a subtraction image (last post-contrast – pre-contrast). Then, a k-means clus-

tering algorithm using three clusters was applied using five features: 1-3) XYZ spatial position
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Figure 4.2: Schematic representation of the process in generating the (A) pre-SABR tumour
contour and (B) post-SABR tumour contour. The pre-SABR contour was generated using a k-
means clustering algorithm with 5 features. Following this, the post-SABR pre-contrast image
was registered to the pre-SABR pre-contrast image and the deformation field was applied to
the pre-SABR contour.

of each voxel, 4) the entropy of a voxel (MATLAB entropyfilt with 9,9 neighborhood) [26],

and 5) the signal intensity of a mean subtraction image generated by taking the average of the

last 5 post-contrast images subtracting the pre-contrast image. Each feature was normalized to

have a mean of zero and standard deviation of 1 [27]. Voxels not connected in 3D to the central
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tumour contour were eliminated and a morphological fill was used to remove holes. The post-

to pre-SABR deformation field was applied to the pre-SABR tumour contour resulting in a

post-SABR tumour contour (Figure 4.2B).

Kinetic analysis

The first step in the kinetic analysis was to estimate T10 values. Beginning with the contour

generated above, the surgical clip was automatically segmented and removed followed by a

2 pixel in-plane erosion to remove partial volume voxels. The average B1 and T10 over each

tumour was calculated. Pre- and post-SABR data were compared to determine if differences

in B1 or T10 from pre- to post-SABR were statistically significant. Following this, the average

across all patients was calculated, and this population derived average T10 [28] was used to

convert signal enhancement to concentration [7] using a relaxivity of 4.5s-1mM-1 [29].

The Tofts kinetic model [30] was applied voxel-by-voxel to the concentration curves within

the tumour contour using a population derived arterial input function (AIF) [31], with ampli-

tude adjusted to our dose. An adjustable fit parameter was included to account for the delayed

bolus arrival with a lower time bound set using the time the contrast agent arrived at the aortic

arch as determined from the HASTE images. From this, Ktrans and ve were extracted from the

model fit. For each tumour, the mean (Ktrans, ve) and standard deviation (σKtrans, σve) of the

parameters were calculated. The median absolute difference method [32] was used to remove

ve values that were outliers in each tumour.
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Statistical Analysis

A Wilcoxon signed-rank test was used to test for significant within-subject changes between

pre- and post-radiotherapy parameters (α=0.05, SPSS Inc. v25.0 Chicago). For T10, differences

between pre- and post-SABR in group 1 could not be tested in 3 out of 5 patients due to small

tumours as well as clip placement.

4.3 Results

Table 4.1 shows patient characteristics by group. The mean (standard deviation) time between

initial biopsy and pre-SABR imaging was 35 (9) days. Median days post-SABR delays for

groups 2 and 3 was 16 days and substantially longer than for group 1 (6 days).

Table 4.3 shows AUC percent change values and the pre-SABR contour volume for each

patient by group. The AUC increased in all group 1 patients and in 4/6 group 2 patients,

whereas it decreased in all group 3 patients. Figure 4.3a shows subtraction images from three

representative patients for the three groups pre and post-SABR, demonstrating the increased

enhancement in the tissue surrounding the tumour for single fraction patients. Figure 4.3b

shows representative signal enhancement threshold volume vs threshold curves.

Regarding T10, the average ± standard deviation for pre- and post-SABR was 1571±264ms

and 1656±204ms, respectively. This difference was not significant (see appendix D). There-

fore, the average of these two values (1613ms) was applied for conversion of enhancement

signal to contrast concentration.

Figure 4.4a and 4.4b illustrate pre- to post-SABR changes in the mean values of Ktrans
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Figure 4.3: Subtraction images (A) and associated signal enhancement threshold vs volume
curves (B) from representative patients for each of the three groups. The slices are approxi-
mately through the center of the tumour. The pink outline represents the skin/air interface. The
single fraction images show clear evidence of an increase in the signal enhancement volume
local to the tumour following SABR, and this is not seen in the 30Gy/3 fraction patient.

and ve, respectively, referring to the mean across each contoured region. Mean Ktrans values for

group 1 increased 76% (p=0.043) but decreased for groups 2 and 3 by 15% (p=0.028) and 34%

(p=0.028), respectively. Mean values of ve increased 25% (p=0.046) for group 2 and showed a

trend to increase of 32% (p=0.075) for group 3, but did not reach significance. Group 1 showed

no significant change (p=0.138).
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Table 4.3: Pre-SABR contour volume and pre to post SABR percent change for signal en-
hancement area under the curve (AUC) for each patient in the different groups. Bold indicates
an increase in the AUC value from pre- to post-SABR

Patient # Pre-SABR Contour Volume (cm3) Percent change (%) for Signal
Enhancement AUC

G
ro

up
1

1 0.07 1932

2 2.22 598

3 0.6 295

4 0.49 64

5 0.11 1829

G
ro

up
2

6 1.23 180

7 0.72 52

8 1.27 -18

9 0.33 -31

10 1.93 144

11 0.47 45

G
ro

up
3

12 0.66 -42

13 0.62 -28

14 2.26 -77

15 1.37 -14

16 0.57 -87

17 0.77 -40

Figures 4.4c and 4.4d illustrate pre to post-SABR changes in σKtrans and σve, respectively,

representing the spatial variability across contoured regions. For group 1, σKtrans increased

100% (p=0.043), but decreased by 31% (p=0.028) for group 3. No significant change of

σKtrans was found for group 2 (p=0.173). For σve, group 2 and 3 showed increases of 36%

(p=0.046) and 113% (p=0.028), respectively. There was no significant change in σve for group

1 (p=0.225).



Chapter 4. Early response assessment in breast cancer 137

Figure 4.4: Pre SABR vs Post SABR changes in the mean and standard deviation of kinetic
model parameters Ktrans (A, C) and ve (B,D) for the three patient groups. These measures refer
to the mean and standard deviation over all voxels within the tumour contours of each patient.
Circles connected by a line represent an individual patient’s pre- and post-SABR values. The
bars represent the median across patients. The asterisks represent significance (p>0.05).

4.4 Discussion

In this study, we investigated changes in quantitative DCE-MRI parameters post-SABR with

two different fractionation schedules and two different imaging times for the single fraction
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scheme. Our results show a differential tumour response depending on time-delay post-SABR.

In addition, we found a signal enhancement volume increase following single fraction SABR

that was also seen 2.5 weeks post-SABR in most patients. To our knowledge, no study has

reported this signal enhancement volume change (Figure 4.3, Table 4.3).

In the context of previous studies, our results suggest that 2.5 weeks post-SABR is a suf-

ficient time-delay in order to minimize acute transient inflammatory effects. In other sites, it

has been shown that at short times post-stereotactic radiotherapy (~1-2 weeks post-therapy),

there are transient increases in Ktrans following therapy, primarily attributed to endothelial cell

death, and permeability increases accompanying acute inflammatory effects [5, 13, 33–37]. A

recent early stage breast cancer study [13] found significant increases in the initial area un-

der an enhancement curve for the entire GTV at one-week post single dose SABR. However,

when assessing response at later times (>1month) in other cancer sites, decreases in Ktrans were

associated with pathologically complete response [38–40]. Two of these reports [38, 40] also

indicated that decreases in σKtrans was indicative of response.

Our results suggest that a three-fraction scheme spares surrounding tissue while providing

an equivalent or stronger response at three weeks post-SABR. The magnitude of change in the

mean Ktrans was greater for the three-fraction group compared to the single fraction group at

three weeks post-SABR (34% vs 15%). However, only the single fraction scheme led to an

increase in enhancement volume for the surrounding tissue for some patients (4/6). This im-

plies that fractionation of SABR may reduce the impact of radiation on tissue surrounding the

tumour. We suspect that this differential effect on surrounding tissue is related to an endothelial

cell death dose threshold which has been hypothesized to be on the order of 8-12 Gy delivered

in a single dose [5, 9, 10, 41–44]. With endothelial cell death, gadolinium contrast would be
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freer to diffuse into the extra-cellular, extra-vascular space and result in enhancement outside

the tumour. Long-term follow-up studies are needed to understand the long-term implications

of this in terms of post-radiotherapy toxicities.

The application of ve as a metric for response assessment remains unclear. It is expected

that vascular and cellular death would lead to increases in ve [5, 13]. We found a significant

increase in group 2 and a trend to increase in group 3, but not for group 1 (one-week post-

SABR). However, Wang et al. [13] showed a significant increase in ve at 1 week post-SABR

for the PTV and CTV, but did not report ve for the GTV which most closely corresponds to the

volumes used in our study. On the contrary, Winter et al. [35] found significant decreases in ve

20 days post stereotactic radiosurgery for brain metastases. Furthermore, most studies do not

find a significant change following therapy [33–35, 38, 40]. These variable results may be due

to the long scan times required for precise measurement of ve [5, 45].

Our study had a few limitations. First, our sample size for each group was small. How-

ever, there were consistent trends within each group with similar directions of change observed

for Ktrans and most patients showing similar direction of change for ve. Second, for T10 we

used an average value over all patients because of non-optimal surgical clip location and par-

ticularly small tumours in two patients. Third, we did not image at one-week post-SABR for

the 30Gy/3fraction treatment and cannot determine if surrounding tissue enhancement would

occur in this case. Fourth, physiological changes associated with tumour core biopsy may con-

found the 1 versus 3 week comparison but at the same time, there was more than a month,

on average, between pre-SABR imaging and the biopsy which should minimize these effects

Finally, pathological analysis to investigate vasculature structure of tumours and surrounding

tissue was not performed.
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4.5 Conclusion

Our results suggest that performing breast DCE-MRI one-week post-SABR may be too early

for response assessment, whereas 2.5 weeks appears sufficiently long to minimize confounding

transient acute effects. In addition, kinetic parameters measured within tumours at 2.5 weeks

post-SABR in both single fraction and three-fraction groups were indicative of response, but

only the single-fraction protocol led to enhancement in tissue surrounding the tumour. This

indicates that while both schemes may lead to response within the tumour, greater sparing of

surrounding tissue may be achieved with the three-fraction scheme. Longer-term follow-up of

tissue toxicity is needed to confirm this potential benefit of fractionated delivery in this context.
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Chapter 5

5 Conclusions and Future Works

5.1 Summary and Conclusions

The introductory chapter of this thesis provides motivation for the use of APBI; specifically that

long treatment times have resulted in the under-utilization of BCT in early stage breast cancer

patients. APBI has the potential to address this short-coming by treating smaller volumes (the

tumour) and allowing for higher doses per fraction to be used resulting in shorter treatment

times. While various techniques can be used to deliver APBI, there is a strong motivation for

using EB-APBI due to its ease of access and non-invasive nature, so long as its shortcomings

can be addressed. Specifically, several studies have found worse cosmesis in patients which is

likely caused by the fact that large margins are needed to account for setup error and patient

motion and the use of somewhat dated conformal radiotherapy techniques (i.e., 3D-CRT) which

do not allow for sufficiently conformal doses and normal tissue sparing. Treating patients

before surgery, prone, and with stereotactic techniques would allow for sufficiently conformal

dose distributions to spare the normal tissue and would potentially bring EB-APBI on-par with

cosmesis outcomes of WBRT but treating in a significantly shorter treatment time.

The SIGNAL trial was introduced with a summary of the protocol. Highlighted in this was

the fact that treating neoadjuvant provides a unique opportunity to investigate non-invasive
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response biomarkers using functional imaging techniques while the tumour is still intact. Re-

sponse biomarkers would allow for early assessment of treatment response, potentially pro-

viding a means to confirm tumour control as well as possible adaptation of treatment on a

patient by patient basis at a very early stage in their care. In addition, imaging following high

dose radiotherapy could provide novel insights into the early radiobiological response to SABR

treatments. To our knowledge, very little information about the response, in-vivo, is available

(particularly in breast).

The primary goal of this thesis was to investigate response to SABR using DCE-MRI at

an early timepoint post SABR in early stage breast cancer patients. However, before this

could be investigated, it was necessary to address two issues related to the acquisition and

analysis of DCE-MRI. First, contrast agent safety issues lead to a temporary halt to the post-

SABR imaging in SIGNAL. We decided to reduce the contrast agent dose that patients would

receive to half the standard clinical dose. While the radiation oncologists involved in SIGNAL

found that using the reduced dose of contrast agent the tumour conspicuity was sufficient for

radiotherapy planning, nevertheless, we wanted to quantitatively investigate what effect this

reduced dose would have on target volume delineation for MRI guided radiotherapy planning.

Second, we wished to quantify the effect that registration had on parameter values, precision,

and model goodness of fit from application of the commonly used Tofts model. Finally, we

also considered the effect of strategies to reduce computation time and how it affected these

same parameters.

The three objectives of this thesis were:

1. To quantitatively assess the potential of reducing the dose of gadolinium contrast agent
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for DCE-MRI-based radiotherapy target volume delineation. More specifically the aim

was to compare using a full versus half clinical dose of contrast agent on the inter- and

intra-observer variability (Chapter 2).

2. To quantitatively evaluate the impact of 3D deformable registration on voxel-by-voxel

parameter values, associated uncertainties, and goodness of fit extracted from application

of the Tofts model to DCE-MRI data from breast cancer patients.

3. To determine tumour and the surrounding tissue response to SABR in early stage breast

cancer patients using two different SABR fractionations and two different time delays

post-SABR.

Chapter 2 addressed the first objective. The major conclusion from this study was that using

a half-dose of contrast did not significantly decrease inter- and intra-observer variability as

assessed by several metrics. This is one of the first studies to investigate half the standard dose

of gadolinium in a clinical setting. Gadolinium-based contrast agents are used in many different

MRI applications, several of which require repeated administrations, and so, we expect that my

study will provide motivation for investigating the impact of reduced contrast agent dose in the

context of other MRI applications. The conclusions of our study provided evidence to support

the continuation of the post-SABR imaging for response assessment to the SABR treatment in

SIGNAL.

Chapter 3 addressed the second objective by investigating the impact of registration on the

the values of model fit parameter estimates and their uncertainties. The primary conclusion

was that registration significantly reduced the uncertainties of Tofts model parameter estimates

and significantly decreased the percentage of voxels that were fit with unphysical ve values.
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This study is the first to demonstrate deformable registration leads to a reduction in the number

of voxels for which unphysical values of ve are extracted. We also showed that computation

time could be decreased by a factor of two without affecting the parameter estimates by using

a lower sampling of the image for estimation of the registration similarity metric.

Finally, chapter 4 addressed the third objective of assessing response to SABR within tu-

mour and surrounding tissue, in early stage breast cancer patients, using DCE-MRI. We inves-

tigated the effect of both fractionation and time delay post-SABR on the response. The changes

in surrounding tissue have not been previously studied. Also kinetic parameter changes within

the tumor have not been reported. We found a profound increase in contrast uptake in the

surrounding tissue for patients who were exposed to a single fraction of SABR at both 1 and

2.5 weeks post-SABR but not when exposed to three fraction SABR assessed 2.5 weeks post-

SABR - a result which has not been previously reported. An important finding was that a delay

of 2.5 weeks post-SABR was sufficient to assess response without confounding acute effects

using either single or 3 fraction SABR. The methods and results presented here will play an

important role in designing future clinical trials for early stage breast cancer treatment (see

section 5.3).

5.2 Limitations

A common limitation across all three studies presented in this thesis was the relatively small

sample size which inhibits generalizations of the conclusions. However, the finding of statis-

tically significant changes with this small sample size (and with lower than standard contrast

agent doses in chapters 2 and 4) is also encouraging. For example, the finding of statistically
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significant pre- to post-SABR changes of kinetic parameters in chapter 4, despite the relatively

small number of patients, suggests that the metrics have potential for providing strong sensi-

tivity to response. Further work will look to add more patient data as more patients are accrued

to the SIGNAL trial.

In Chapter 2, the most important limitation was the fact that data was unpaired which acts

as a potential confounder when making comparisons between groups due to the introduction of

biological variability. A systematic analysis should be performed to investigate the effect that

changing the contrast agent dose has on an observer’s ability to contour a target. Most likely,

this could not be performed from images acquired using different contrast agent doses on the

same patients due to ethical concerns. However, it may be possible to investigate this either by

using a large animal model or by manipulating acquired patient data and simulating different

contrast doses and associated changes in signal enhancement. The simulation experiment is

discussed in section 5.3.

In Chapter 3, we assessed the influence of registration on voxel-by-voxel application of the

commonly used Tofts model. Specifically, we considered deformable registration impact on

parameter estimates and associated uncertainties, and goodness of fit. However, the analysis

used here does not provide a means to assess the effect of registration on parameter accuracy

due to the lack of ground truth data.

In Chapter 4, a novel analysis scheme was developed in an attempt to separate tumour from

surrounding tissue effects. However, there are still areas that need to be improved. We chose

to use a population averaged T10, based on T10 measurements from our patients, instead of

patient-specific voxel-by-voxel T10 values. The primary reason for this choice of methodology

was to minimize partial volume averaging of tumour tissue (especially from smaller tumors)
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with the surgical clip or with the surrounding fat tissue in patients where fat suppression was

not used for T10 measurements. Through simulation, we determined that these partial volume

effects could severely affect the curve fitting for T10 estimation (see appendix B). Another

limitation is that we did not correct for intra-session motion between the images used for T10

estimation due to the drastically changing contrast between the different flip angle images. It

may be possible to register these images and the DCE-MRI data set simultaneously using novel

group-wise registration techniques that register all images together (rather than in pairs) [1].

However, this was not explored in this study.

5.3 Future Work

Registration played an important role in this thesis. In chapter 3, we investigated how registra-

tion affected precision of Tofts model estimates. Future work should look to investigate other

registration software and algorithms that may provide better results [2], or compare DCE-MRI

specific cost metrics that may be able to better account for the local changes in contrast. For

example, using a principle component analysis based metric has been shown to outperformed

mutual information based metrics since they can incorporate the intensity change over time

information [3, 4]. However, there has been a lack of consideration for computation time and

should likely be considered in future work, especially since the temporal resolution of DCE-

MRI studies will only continue to increase resulting in a large number of images per data set.

In chapter 4 we showed that single fraction but not three fraction radiotherapy led to in-

creased gadolinium contrast agent in the tissue surrounding the tumour. We suspect that this

is due to vascular permeability changes accompanying acute inflammatory effects [5] and pos-
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sibly due to a hypothesized endothelial cell death threshold [6]. At this time, we have begun

acquiring simultaneous 18F-Fluorodeoxyglucose (FDG)-PET in addition to the DCE-MRI im-

ages for patients enrolled in the pre- and post-imaging arm of SIGNAL. The PET data may

serve to provide additional information related to the response of the normal and tumour tissue

to SABR – not only by measuring the glucose activity of the tumour itself, but also poten-

tially serving as a marker of macrophage activity [7–9]. Studies have shown that macrophage

polarization (M1 versus M2) may mediate tumour response to radiation [10] and that the pre-

dominant type of macrophage (i.e., M1 or M2) may depend on fractionation scheme [11].

FDG-PET will potentially help to understand the role the immune system plays in response to

SABR for both the tumour and the surrounding tissue.

In chapter 4 we observed differential effects in the tissue surrounding the tumour which we

suspect is due to vascular permeability changes accompanying acute inflammatory effects [5]

and possibly due to a hypothesized endothelial cell death threshold [6]. Perhaps our PET-MRI

study (mentioned in the previous paragraph) may be able to provide insight into the inflam-

matory and immune response following SABR [7]. The FDG PET signals may also serve as

a potential imaging biomarker - though this may be difficult at the early stages when acute

inflammatory and immune response may be the predominant effect and, hence, may confound

tumour FDG uptake measurements [12]. Furthermore, it has been shown that FDG uptake is

variable in breast cancer due to varying degrees of metabolic activity [13]. However, it may be

possible to separate response values in tumours from those that are due to immune response

using a time-point method [13, 14] and this will be the subject of future work. It may be ben-

eficial as well to use more specific tracers if FDG is not specific enough. Several PET tracers

are being investigated in the context of assessing tumour response to treatment such as FLT
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(which measures cellular proliferation), fluoroazomycin arabinoside (FAZA) (which measures

hypoxia), or more breast cancer specific tracers such as those based on estrogen and proges-

terone receptors [15]. However, these are still under active investigation and are costly and so,

their role is unclear in patient care.

In addition to complementary imaging information, future studies will include additional

information from immunohistochemistry performed on the surgical specimens following

SABR (see “lumpectomy” in figure 1.3). This will help to elucidate the vascular changes fol-

lowing radiotherapy and confirm the hypothesis of vascular permeability changes and potential

endothelial cell death as a cause for the increased contrast uptake in the tissue surrounding the

tumour as speculated in chapter 4. In particular, immunohistochmistry analysis could include

assessment of the following: 1) general "bulk" changes following SABR in tumour and the

surrounding tissue using a hematoxylin and eosin (H&E) stain [16], 2) Disruption of the vas-

culature and extracellular matrix using CD31 staining [17], and 3) apoptosis assessed using the

TUNEL assay [18]. Inflammation will be investigated in the future as well under the purview

of SIGNAL which will quantify the change in the following immunomarkers: 1) CD8 which

indicates the prescence of infiltrating leukocytes, 2) Anti-PDL1 which plays a role in immune

response suppression, and 3) Ki-67 which indicates cellular proliferation.

Another area of future work is in the delivery of SABR. Advances in technology have made

during-treatment (intra-session) delivery monitoring possible through the use of the kV fluo-

roscopic imaging system mounted 90◦s to the gantry treatment head. Currently, this is being

used clinically in SIGNAL to confirm that the tumour and surgical clip are within the prescribed

margins and act as a confirmation that the target received the prescribed dose. However, it may

be possible to utilize the series of 2D kV images to estimate the 3D trajectory of the tumour
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and better inform the statistical margins needed for generation of the PTV [19].

The doses used for SIGNAL (30 Gy/3 fraction or 21 Gy/1 fraction) are biologically equiv-

alent to the traditional treatment regime of 50 Gy in 25 fractions. However, it may be possible

in the future to escalate the dose even further. The dose that can be achieved will depend on

a variety of factors such as breast size, tumour location compared to the chest wall and skin,

as well as advances in treatment planning and setup accuracy. In a future iteration of SIG-

NAL, the London Regional Cancer Program is proposing a dose escalation study. Using a 3+3

design [20], the dose will be continually escalated in early stage breast cancer patients to deter-

mine the maximum tolerable dose. Lumpectomy will still be performed and analyzed at each

dose level to see if tumour control is achieved before surgery is performed. In this way, it may

be possible to deliver a sterilizing dose of radiation to the tumour such that surgery is no-longer

needed. An integral part to investigating this treatment scheme is adequate response imaging

and so, the work presented in this thesis sets the stage for investigating further improvements

to early stage breast cancer patient care.
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Appendix A

A SIGNAL inclusion/exclusion criteria

For completeness, the entire inclusion/exclusion criteria for SIGNAL is included for ease of

reading. Note that this is from an internal revised protocol, named “SIGNAL 2.0” but should

closely match those stipulated in reference [1].

Eligibility Criteria

The following criteria must all be met:

• Age ≥ 50 years and postmenopausal

• Tumor size < 3cm on pre-treatment imaging

• Any grade of disease, estrogen receptor (ER) positive

• Unicentric/unifocal disease

• Invasive ductal carcinoma or other favorable subtypes of epithelial breast malignancy

(lobular, medullary, papillary, colloid, mucinous, or tubular) .

• Clinically node-negative (based upon pre-treatment physical examination and/or axillary

ultrasound).

• Surgical expectation that a > 2mm margin can be obtained.

• Lesion is 1 cm or greater from the skin surface.
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• Able to have surgery within 14-20 days of radiation therapy.

• Able to lie comfortably in the prone position with arms raised above the head for ex-

tended periods of time.

Ineligibility Criteria

Any of the following renders a patient ineligible for enrollment:

• Previous RT to the same breast

• Evidence of suspicious diffuse microcalcifications in the breast prior to the start of radi-

ation.

• Local metastatic spread into ipsilateral axilla and/or supraclavicular region and/or neck

nodes and/or internal mammary nodes diagnosed on clinical examination or any imaging

assessment (unless such sites can be confirmed as negative following biopsy)

• Distant metastases

• Involvement of contralateral axillary, supraclavicular, infraclavicular or internal mam-

mary nodes (unless there is histologic confirmation that these nodes are negative)

• Prior non-hormonal therapy or radiation therapy for the current breast cancer

• Patients with Paget’s disease of the nipple.

• Skin involvement, regardless of tumor size.

• Patients with a breast technically unsatisfactory for radiation therapy.

• Inability to lie prone with arms raised above head for extended periods of time.
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• Patients not appropriate for BCS due to expectation of poor cosmetic result, even without

RT

• Collagen vascular disease (particularly lupus, scleroderma, dermatomyositis)

• Inability or unwillingness to provide informed consent.

• Any other malignancy at any site (except non-melanomatous skin cancer) < 5 years prior

to study enrollment

• Patients who are pregnant or lactating
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B The Effect of Partial Volume on T10 Estimation Using
the Variable Flip Angle Method

Purpose: In chapter 4, the tumour contour was altered in an attempt to remove T10 values that

may have been influenced by partial volume averaging with the surrounding fat. The images

acquired for T10 were not fat-suppressed for the majority of patients. Initially we acquired these

images without fat suppression to avoid the small gaps in the sequence that slightly perturbs

the magnetization. However, we found that the partial volume problem created a substantial

challenge for analysis, especially for small tumors.

This appendix demonstrates the effects of partial volume effects on T10 estimation when fat

is not suppressed.

Methods: To generate the simulated signals for fat and fibroglandular tissue the SPGRE

equation was used:

S = PD
1 − exp(−TR/T10) sin(θ)
1 − cos(θ) exp(−TR/T10)

(B.1)

where PD is the proton density which was assumed to be equal to 1 for both fat and fibroglan-

dular tissue, TR is the repetition time = 4.97ms (as per SIGNAL), θ is the flip angle, and T10 is

the native longitudinal relaxation time. Signal equations for fat and fibroglandular tissue were

simulated using a T10 of 366.78 ms and 1444.83ms, respectively [2]. For initial generation of

the signal curves, we used flip angles from 1 to 50 degrees.
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To determine the total signal observed, we must first calculate the angle offset between the

fibroglandular and fat tissue magnetizations:

∆θ = ∆ω0TE (B.2)

where ∆θ is the angular difference between the two vectors in radians, ∆ω is the frequency

difference between water and fat (440*2πHz at 3T), and TE is the echo time, set to 1.5ms as per

the imaging protocol. Using this and the law of cosines, the total signal was calculated from

the individual signal curves using relative percentages of fat and fibroglandular tissue (Figure

B.1):

S total =

√
(P f atS f at)2 + [(1 − P f at)S f ibro]2 − 2(P f atS f at)(1 − P f at)S f ibro(− cos(∆θ)) (B.3)

where P f at is the proportion of fat, S f at and S water are the signals calculated from equation B.1,

and − cos(∆θ) is to calculate for the interior angle of the triangle.

S total was sampled at flip angles 1, 3, 5, 8, and 14 which correspond to the range and number

of flip angles used in SIGNAL. No noise was added to the curve. Using non-linear fitting, the

T10 was estimated from the sampled S total curve.

Results: Figure B.2 shows the results of this analysis. Depending on the proportion of fat,

there is over or under estimation of the T10 value.

Discussion/Conclusion: Even with just a small partial volume effect, there are overestima-

tionsof T10 - and this was in the absence of any noise. This result provides motivation for
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Figure B.1: Representation of a partial volumed voxel with different percentages ("P") of fat
and fibroglandular tissue

our decision to use a population average T10 value for patient tumours in all patients. This

population average T10 was determined by averaging the measured T10 values across all of our

patients scans. Both pre and post SABR T10 values were included in the average since dif-

ferences between average values for pre vs post SABR were very small and not statistically

significant.

A particular limitation of this analysis is that we assumed that the fibroglandular tissue

and the surrounding adipose tissue have equal proton density. This was based on the fact that

the 1°flip angle images (which are almost proton density weighted) had essentially no contrast

between fibroglandular and the surrounding fat tissue.
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Figure B.2: Estimated T10 values as a function of the percentage of fat in the partial volumed
voxel. The purple dashed line represents the “true” value of fibroglandular tissue and the red
dashed lines is the “true” value of fat
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C Response assessment - detailed methodology for image
registration and post-SABR contour generation

In chapter 4, a brief methodology was given to fit within the constraints of the journal publica-

tion. In this appendix, a detailed account of the methodology used for response assessment is

given. The general overview given in Figure 4.1 is a good reference for a high-level overview

of the methodology.

Intra-session image registration

The first step in the registration process was to register the intra-session images. Chapter 3

provides an account of how this was performed and is not re-iterated here. All images that were

not part of the DCE-MRI series were registered in MIM (v6.8.0, MIM Software, Cleveland,

USA) using the multi-modality metric. The motivation for using MIM and its multi-modality

metric rather than 3DSlicer is that I found this was better able to deal with registrations between

the non-fat suppressed variable flip angle images and the fat-suppressed DCE-MRI images.

Figure C.1 shows a schematic overview of the registration process for aligning the T1 images

and the B1 to the DCE registered series. Bias correction was performed to remove slowly

varying spatial intensity changes across the image based on the N4ITK algorithm [3]. The bias

corrected image with the largest flip angle that was part of the T10 image set was registered

to bias corrected pre-contrast DCE image. This deformation field was then applied to each of
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Figure C.1: Schematic of how the different images that comprise the variable flip angle se-
quence and B1 image were registered within a session to the pre-contrast DCE-MRI.
Corr = correction, Gd = gadolinium contrast

the acquired images used for T1 mapping and B1 map, resulting in a fully intra-session motion

corrected data set.

Post-SABR to Pre-SABR Registration for Post-SABR Contour Generation

Due to the presence of signal enhancement surrounding the tumour in the post-SABR setting,

we attempted to preserve the tumour volume by generating a contour in the pre-SABR setting

and transfer it to the post-SABR setting using deformable registration. Figure C.2 shows this

process schematically. The registered (intra-session) pre-contrast images were bias corrected

and then deformably registered to each other. The deformation field was then applied to the
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Figure C.2: Schematic of how the post-SABR contour was generated from the pre-SABR
tumour contour. Corr = correction, Gd = gadolinium contrast

pre-SABR contour to generate the post-SABR contour.
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D Response assessment - B1 and T10 variation within the
tumour for Chapter 4

In chapter 4 we indicated that an average B1 and T10 was used. In this appendix, the average

value across voxels for each patient is provided for the reader. Figure D.1a shows the B1

values across patients for the three groups under study. There was essentially no variation in

B1 values measured even though two different B1 correction techniques were used (see 1.7.4).

Figure D.1b shows T10 variation across patients. There were larger differences in group 1,

likely due to smaller tumours being included and a larger effect of partial voluming with the

clip and surrounding fat tissue. In groups 2 and 3 there was essnetially no difference pre- and

post-SABR.
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(a) (b)

Figure D.1: Additional Results for Chapter 4 showing variation of B1 (a) and T10 (b) across
patients
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F Stereotactic Image-Guided Neoadjuvant Ablative Sin-
gle Dose Radiation Then Lumpectomy (Signal) For
Early Breast Cancer: A Prospective Single Arm Trial
Of Single Dose Radiation Therapy

F.1 Introduction

The modern management of low-risk breast cancer involves the use of breast conserving

surgery (BCS) plus radiotherapy (RT), which can be hypofractionated without sacrificing ef-

ficacy or safety when compared to standard RT (i.e. 50 Gy in 25 fractions) [1–7]. Recently,

APBI was postulated as a viable treatment option for low-risk disease since most local recur-

rences are located in the lumpectomy cavity [8, 9]. The most accelerated example of APBI is

single-fraction radiotherapy (SFRT), which is well established in the literature and has been

used to treat large cohorts of women with low-risk breast cancer, with acceptable clinical

outcomes [10, 11]. It is more convenient and may reduce health-care costs by freeing space

on the radiation treatment units. SFRT may entice more women to undergo standard of care

treatment (i.e. breast conserving surgery with RT), because the primary reasons for the un-

derutilization of adjuvant radiotherapy following breast conserving surgery are the time, travel

and effort required [12, 13]. Despite such benefits, SFRT is associated with an increased risk

of treatment-related toxicity compared to standard techniques, and it has historically required
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treatment planning and delivery platforms that were not widely available, which limit its use in

North America [14]. In Canada, intra-operative radiation is cost-prohibitive due to the expense

of disposable components and is currently used in very few centres. With the movement toward

hypofractionation in the radiotherapeutic management of low-risk carcinoma of the breast in

general, a discussion of how best to implement and to incorporate SFRT into routine clinical

practice is very timely.

We therefore developed SIGNAL (Stereotactic Image-Guided Neoadjuvant Ablative radi-

ation then Lumpectomy), a single-arm, single-institution clinical trial, wherein a cohort of

women with early-stage low-risk carcinoma of the breast was treated with neoadjuvant radio-

therapy delivered one week prior to lumpectomy [15]. We selected 21 Gy in one fraction

based on a dose escalation trial and another single arm trial, and radiobiological calculations

described previously, delivered prone using external beam volumetric modulated arc therapy,

with dosimetry planning on computerized tomography (CT) simulation images co-registered

with magnetic resonance imaging (MRI) images [15–17]. Our objectives were to evaluate

the feasibility and safety of this approach in a pilot design, as a guide for future randomized-

controlled studies. Our hypothesis was that for selected patients with low-risk breast carci-

noma, neoadjuvant partial-breast hypofractionated SBRT would be technically feasible, with

acceptable toxicity and cosmesis. Here, we report the toxicity and cosmesis outcomes observed

in a cohort of patients treated according to this regimen.
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Figure F.1: Study schema showing the entire course of the experimental protocol undergone
by patients in this study
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F.2 Methods

The SIGNAL protocol has been previously published, and the study schema is shown in Figure

F.1 [15]. SIGNAL had two primary endpoints: radiation toxicity and feasibility. Radiation

toxicity was defined as grade ≥2 toxicity, such as fibrosis, measured using the Common Ter-

minology Criteria for Adverse Events (CTCAE) [18]. Feasibility was defined as the ability

to deliver treatment in accordance with the study-defined dosimetry constraints in ≥90% of

patients. Secondary endpoints were (i) cosmesis, scored by the patient and radiation oncol-

ogist or surgeon, using the Modified Harvard-Harris Cosmetic Scale [19]; and (ii) quality of

life (QOL), measured using the Functional Assessment of Cancer Therapy - Breast (FACT-B)

tool [20]. Post-operative complications were also collected, analyzed, and reported. SIGNAL

was approved by Western University’s Health Sciences Research Ethics Board (HSREB Num-

ber 105643) and was registered with Clinicaltrials.gov (identifier: NCT02212860).

All post-menopausal women presenting for surgical consultation between 2014 and 2016

with a new diagnosis of early stage (size <3cm, node-negative), estrogen receptor (ER) posi-

tive, unifocal breast cancer were approached for participation. If initial ultrasound suggested

sufficient distance (i.e. ≥2 cm) between both the lesion and skin, and the lesion and chest

wall, patients were enrolled. Once enrolled, patients underwent ultrasound-guided insertion

of a surgical clip as a fiducial marker. They were then immobilized on a prone breast board

and were imaged by contrast-enhanced prone breast MRI. If MRI confirmed unifocal disease

less than 3 cm, sufficiently distant from the skin and the chest wall, patients proceeded on to

radiation treatment planning: all patients were again positioned and immobilized on a prone
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Figure F.2: Sample size of the different cohorts of patients included in SIGNAL

breast board for CT simulation. The prone breast MRI was fused onto the prone CT simulation

images using rigid body registration. The GTV was defined as the primary breast lesion seen

on MRI. The CTV was defined as the GTV plus a 5 mm margin. The PTV was defined as
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the CTV plus a 5 mm margin. Radiation treatment plans were devised to deliver a prescription

dose of 21 Gy to the PTV in a single fraction. 21 Gy was delivered using SBRT with the patient

in prone position, using cone-beam CT imaging to confirm patient positioning and accuracy

of delivery by localizing the tumour via the surgical clip. Real-time image acquisition was

used to monitor patient positioning and allowed the beam to be disabled if the patient moved

significantly. Relevant, as-treated dosimetric constraints were based upon a thorough review

of relevant published literature, published SBRT-based clinical trials and general radiobiologi-

cal principles (Table F.1). Following induction radiotherapy, radiolocalizing I-125 seeds were

placed adjacent to the surgical clip to facilitate localization and guided excision. All patients

underwent breast conserving surgery and sentinel node biopsy (where clinically indicated),

ideally within 1 week of radiotherapy. Older patients could opt out of sentinel node biopsy

in accordance with clinical guidelines. Toxicity, cosmesis (patient-assessed and physician-

assessed) and QOL measures were collected at baseline, 3 weeks post-operation, 6 months

post-operation, and 1 year post-operation. Toxicity was reported as the number of patients

who experienced any grade 2 or higher toxicity at each time point, and these were compared

to baseline using Fisher’s exact test. The cosmesis score (excellent, good, fair, poor) was col-

lapsed into the proportion of patients or physicians rating the cosmesis as excellent/good or as

fair/poor, in order to allow for comparisons to other publications using the Modified Harvard-

Harris Cosmetic Scale in breast irradiation trials. The proportion of patients or physicians

reporting a good or excellent cosmetic score at each time point were compared to baseline us-

ing the Fisher’s exact test. The QOL total score was compared at each time point to baseline

using the Student’s t-test.
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F.3 Results

Between February 2014 and September 2016, 53 patients were approached for participation,

and 52 patients were initially enrolled (Figure F.2). Of these, 13 were excluded at the time of

MRI: 2 were upstaged by MRI; 5 did not fit in the MRI bore or were unable to remain still;

and 6 failed due to proximity of disease to skin or chest wall as-measured on MRI. Of the

remaining 39 who met the criteria for breast MRI and went on to radiation treatment planning,

the study-specified dosimetric constraints could not be met in 12 of them (in every case, it

was the chest wall and/or skin constraints that could not be met). These patients were taken off

study protocol and instead went on to surgery and standard whole-breast adjuvant radiotherapy.

The remaining patients fell into one of two distinct cohorts depending upon when they were

treated (Figure F.2). The first of these cohorts comprised the first 36 patients approached (the

“Initial Cohort”). Of these, 8 were excluded at the time of MRI: 2 were upstaged by MRI; 2

did not fit in the MRI bore; 4 failed due to proximity of disease to skin or chest wall. Of the

remaining 28 patients, the study-defined dosimetric constraints could not be met in 12 of them

(the same 12 detailed above). Therefore, in the Initial Cohort, only 16 of 28 patients meeting

the study criteria by breast MRI went on to receive the study-defined treatment, representing

a cohort-specific success rate of 57%. This was deemed a failure of the approach, triggering

an interim review as-required by protocol. During the interim review, we concluded that our

dosimetric constraints were too restrictive, especially regarding dose to skin. We similarly

concluded that our original definition of skin (external contour less 5 mm) was too restrictive

and more conservative than that used in similar published clinical trials employing SFRT [21].
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Table F.1: Normal Tissue Dosimetric Limits – Original and Revised. Our initial study
cohort (n=16) was treated according to the original limits (2014). Following an interim review
and quality assurance assessment, we adopted a new set of limits (2016) (n=11 completed
treatment). SE = Standard Error; D [x cm3] = dose delivered to a volume of x cm3.

Original Cohort (n=16) Revised Cohort (n=11)

Structure Dose (Gy) Specification Dose (Gy) Specification

Uninvolved Ipsilateral
Breast

10
18
21

≤50%
≤20%
≤47cm3

10.5
20
21

≤50%
≤47%

Point Dose

Contralateral Breast 0.6 Point Dose 1 Point Dose

Total Lung - - 11 ≤35%

Ipsilateral Lung 6
10

≤15%
≤10%

7.5 ≤15%

Contralateral Lung 3 ≤5% 1.7 ≤15%

Heart 3
1

≤5%
≤40%

22
3

16

Point Dose
<5cm3

≤15%

Thyroid 1.8 Point Dose 1.1 Point Dose

Skin 16
10

Point Dose
≤10cm3 18.3 <5cm3

Chest wall 10
15

≤10cm3

Any Point
10
16

<10cm3

<2cm3

Revised dosimetric constraints were therefore developed (Table F.1) and implemented to treat

the next 16 patients who were accrued (the “Revised Cohort”). Of these 16, 5 were excluded

at the time of MRI: 2 were upstaged by MRI; 3 did not fit in the MRI bore; 2 failed due to

proximity of disease to skin or chest wall. Of the remaining 11 patients, all of them went

on to receive the study-defined treatment, representing a cohort-specific success rate of 100%.

The actual mean doses delivered in both patient cohorts were similar between the cohort who

underwent treatment at the initial dosimetric constraints and the cohort treated under the revised

constraints (F.2).
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Table F.2: As-Treated Target Dosimetry. Numbers represent the as-treated dosimetry doses
averaged over the initial cohort (n = 16), the subsequent revised cohort (n=11), and the total
study cohort (n=27). SE = Standard Error

Original (n=16) Revised (n=11) Total (n=27)

Dosimetry Mean Dose ± SE Mean Dose ± SE Mean Dose ± SE

Prescription dose (Gy) 21 21 21

Prescription isodose (%) 95.7 ± 0.4 96.5 ± 0.30 95.9 ± 0.3

Delivered dose at isocentre (Gy) 22.0 ± 0.09 22.2 ± 0.36 22.0 ± 0.11

Minimum dose to 100% PTV (Gy) 19.5 ± 0.2 19.1 ± 0.45 19.3 ± 0.22

Minimum dose to 95% PTV (Gy) 21.0 ± 0.1 21.0 ± 0.06 21.0 ± 0.05

All treated patients underwent local excision of the primary tumour to negative margins

within 7 days of radiation without any delay or complication. No patients showed signs of

erythema at the time of surgery, none described any pain, and every patient expressed pleasure

with the entire process. None of the surgeries were made more complicated as a result of the

pre-operative radiation, and in fact the tissues appeared healthy and normal. No post-operative

complications were encountered. No patients required in situ drains and none had prolonged

seroma, wound dehiscence, skin necrosis or infections in the post-operative period.

Patient demographic and tumour details are presented in Table F.3. Toxicity, cosme-

sis (patient-assessed and physician-assessed) and QOL measures (all assessed at baseline, 3

weeks, 6 months, and 1 year post-operation) are presented in Table F.4. No patients expe-

rienced CTCAE toxicity grade 2 or higher at baseline, 3 weeks, or 1 year postoperatively,

and one patient out of 27 had a grade 2 delayed wound infection at the 6-month postop

visit, which was not significantly different from baseline (p=1.0). Physician-rated cosmesis

(Harvard-Harris score) was slightly worse than baseline (100% good/excellent) at the 3-week

(93% good/excellent, p=0.16), 6-month (96% good/excellent, p=0.29), and 1-year (92%
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Table F.3: Patient Demographics: Baseline and Tumour Characteristics. The baseline
patient and tumour characteristics are represented for the entire study cohort (n=27). Age and
tumour size are represented as mean +/- standard deviation, while all other categorical data are
represented as number of patients (percentage of cohort). Tumour size in ultrasound represents
the best pre-treatment estimate of baseline tumour size (using imaging), while tumour size
reported by pathologist represents the best estimate of post-treatment tumour size. The two
were compared using paired Student’s t-test.

N = 27 Baseline (mean ±SD) or N (%)

Age (years) 38.7 ±6.5

Laterality

Left 14 (60.9%)

Right 9(39.1%)

Tumour Size (cm)

Ultrasound 1.2 ± 0.63

Pathology 1.17 ± 0.63

Pathological Nodal Stage

N0 21 (91.4%)

N1mic 1 (4.3%)

N1 1 (4.3%)

Grade

1 10 (43.5%)

2 12 (52.2%)

3 1 (4.3%)

ER+ 23 (100%)

PR+ 18 (78.3%)

HER2+ 2 (8.7%)

good/excellent, p=0.13) postoperative periods, but none of these differences were statistically

significant. Physicians rated 96% of patients’ cosmetic outcomes as good/excellent at baseline

versus 93% at 3 weeks (p=0.60), 92% at 6 months (p=0.53), and 96% at 1 year (p=0.98);

again, none of these changes were statistically significant. Compared to baseline, QOL was

significantly improved compared to baseline at 3 weeks (p=0.01), and 1 year post-operation

(p=0.001), and was elevated, though not significantly, at 6 months post-operation (p=0.09).
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Table F.4: Toxicity, Cosmesis, and Quality of Life Outcomes Pre- and Post-Treatment
Toxicity is graded from 0-5 (CTCAE), cosmesis rated 1-4 (Modified Harvard-Harris), quality
of life rated out of a total 148 possible points (FACT-B), each scored 0-4. Three week, 6-month
and 1-year postop outcomes of patient and physician cosmesis as well as toxicity were each
compared to baseline values using fisher’s exact test. Paired Student’s t-test for was used to
compare FACT-B mean quality of life score at each time point to baseline.

N = 27
Baseline

(mean ± SD
or N(%)

3-week F/U
(mean ± SD)

p-value (3
wk. vs

baseline)

6-month F/U
(mean ±
SD)**

p-value (6
mo. vs

baseline)

1 yr F/U
(mean ±
SD)**

p-value (1 yr
vs baseline)

Toxicity$ (≥
grade 2) 0 0 p=1.0 1 p=1.0 0 p=1.0

Cosmesis†

(physician rated) 100% 93% p=0.16 96% p=0.29 92% p=0.13

Cosmesis†

(patient rated) 96% 93% p=0.60 92% p=0.53 96% p=0.98

Quality of Life
Score (FACT-B)

118.68 ±
16.8

123.56 ±
16.9 p=0.01* 122.48 ±

15.7 p=0.09 127.15 ±
15.4 p=0.001*

*statistically significant, α=0.05
**n=24 (1 patient diagnosed with advanced renal cell carcinoma, 1 patient diagnosed with glioblas-
toma, 1 patient diagnosed with metastatic breast cancer from prior remote contralateral breast cancer).
$Only 1 patient had a grade 2 toxicity (delayed wound infection), felt to be treatment related.
†Percentage rated good or excellent.

F.4 Discussion

SIGNAL represents a novel approach to the radiotherapeutic management of early-stage, low-

risk carcinoma of the breast. The classic approach for such patients, established over many

decades, is surgery followed by radiotherapy. The benefit of adjuvant radiotherapy in such

a setting is well known, and so too are its toxicities. In principle, neoadjuvant radiotherapy

holds several advantages over adjuvant radiotherapy, including improved tumor oxygenation,

reduced dose to the surrounding normal tissues due to a smaller target volume, and of course

the ability to recognize and to delineate the disease in situ. This latter benefit was of particular
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interest to us given the availability of MRI for radiation treatment planning with image co-

registration. Hypofractionation is now established in the treatment of multiple malignancies.

As SFRT, SBRT and other hypofractionated techniques likewise become more established in

the management of breast cancer, it is incumbent upon us to understand as fully as possible the

potential benefits and toxicities of this approach.

The unique aspects of this trial include the use of VMAT with strict dosimetry constraints

to skin and normal tissues, avoiding any early erythema or dermatitis to the skin, as well as any

delayed fibrosis or telangiectasias by latest follow-up at 1 year. The co-registration of prone

breast imaging allowed for high fidelity treatment delivery, minimizing dose to skin which,

if these low risk patients had requested mastectomy, would not require radiation at all, but

when radiated does contribute to a worsening cosmetic outcome and patient satisfaction. This

may explain why our cosmetic outcomes were better than those reported by Pinnaro in their

SFRT trial using intensity-modulated radiotherapy (59% of patients reporting good/excellent

cosmetic outcome), and similar or better that other larger trials looking at cosmesis with more

standard radiation regimens (ranging from 81-95% reporting good/excellent cosmesis) [17,20,

22].

As a pilot study, SIGNAL’s primary endpoints were feasibility and safety. Our results sug-

gested that SFRT, when delivered in the manner specified by SIGNAL, was certainly tolerable

and well-liked by the patients. Our approach was not feasible with the first cohort of patients

using the initial dosimetry constraints but became feasible after revisions of the conservative

constraints permitted successful treatment of all eligible patients. In that initial patient cohort,

12 patients who appeared eligible by breast MRI were not able to have acceptable radiation

treatment plans generated. For these 12 patients, the primary reason for ineligibility was prox-
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imity of the GTV to the skin (8 patients) and chest wall (4 patients), thereby rendering it im-

possible to meet the study-defined dosimetric limits. We therefore realized that our limits were

simply too restrictive and would limit generalizability of the trial to a breast cancer population

commonly seen in practice. This difficulty was most obvious for skin. We initially defined

skin as the external contour contracted isotropically by 5 mm; and we likewise required that

the PTV could not extend into the skin. In addition, we imposed a maximum point-dose of 16

Gy to the skin. Such definitions severely limited our ability to devise an acceptable treatment

plan in patients whose disease was located more than 2 cm away from the skin surface. The

situation was even less tenable when the PTV was situated in areas where the external breast

contour was changing rapidly in three dimensions, such as in the retro-areolar region, where

the PTV was surrounded by “skin” on every side except posteriorly. In addition, for lesions lo-

cated very medially, buildup of dose was less, necessitating delivery of somewhat higher dose

both superficially and also through the chest wall in order to attain the prescription dose.

When we devised the original normal tissue dosimetric limits for SIGNAL, we reviewed

multiple published studies of SFRT [11,17,21,23,24] and APBI [25,26], delivered using a va-

riety of techniques, in both the pre-operative and post-operative settings. Most of these studies

did not state specific skin constraints, even though the primary toxicity in most cases appeared

to be skin toxicity. Therefore, our original dosimetric limits were chosen to be conservative,

recognizing that there was limited clinical data available at this dose-fractionation. Our revised

dosimetric criteria were based upon re-review of the published literature, and upon our limited

clinical experience gained up to that point. Once the dosimetric limits were revised, 100% of

MRI-eligible patients accrued to the study were successfully treated, which met our a priori

feasibility threshold of 90%. Therefore, we feel that SIGNAL (using the revised dosimetric
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constraints) could be considered a feasible method of delivering single-dose neoadjuvant radi-

ation therapy.

Our second primary end-point was radiation toxicity, which is related to secondary end-

points cosmesis and QOL, since changes to the skin and underlying soft tissue of the breast

could be immediately visible as discolorations. The mean toxicity score was not significantly

different from baseline at 3 weeks, 6 months, or 1 year (Table F.4). A few grade 1 post-surgical

toxicities were reported (such as transient post-surgical thickening at scar), while one patient

in the entire study suffered a grade 2 toxicity (delayed wound infection at 6 months postop),

representing an expected breast wound infection rate from surgery alone. Neither patient nor

physician-rated cosmesis scores changed significantly from baseline at 3 weeks or 6 months

postop (Table F.1). Finally, patients reported significantly improved QOL at 3 weeks compared

to baseline, although this returned to baseline by 6 months.

The main limitation is the small sample size and relatively short follow up of this single-

arm study. SIGNAL was designed to determine overall feasibility, to identify any early con-

cerns regarding toxicity and safety, and to assess patient interest to inform the design of future

prospective randomized clinical trials. SIGNAL was certainly well received by our patients

(only 1 of 53 patients declined participation). Once we identified workable dosimetry con-

straints, we were successful in treating patients in a very timely manner, something that was

very popular with our local patient population, with many of them living several hours away.

Although acute toxicity and cosmesis were certainly acceptable, it is not possible to comment

upon late radiation toxicity as we simply have not followed our patients for a sufficiently long

time to enable such an assessment to be made. The determination of late radiation toxicity

is especially relevant with SFRT given that the estimation of equivalent radiobiologic effects
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at higher dose per fraction is notoriously difficult. Nonetheless, we are satisfied with our se-

lected dose (21 Gy in a single fraction) for several reasons. It was selected based upon both the

standard linear-quadratic formulation as well as newer approaches such as the “universal sur-

vival curve” which models effects at high doses per fraction more accurately [27]. In addition,

our selected dose was consistent with that delivered in several other similar studies [11, 17].

Finally, the use of MRI enabled us to define the GTV very accurately, and the fact that the

prescription dose was confined to the area targeted for excision likely reduced any significant

impact on acute and delayed [28]. To ensure safety we used very stringent criteria including

requiring lesions to be at least 2 cm from the skin. To ensure accurate localization, we fused a

breast MRI for each patient. Furthermore, we moved to a prone set up to minimize the impact

of respiratory motion and day-to-day set up of the breast. These three components of our treat-

ment are not readily available in all institutions and would limit the generalizability. However,

to maximize safety, to provide sufficient dose, and to ensure reliability for this new technique,

these components were included. These components could easily be adopted in most centres

and an assessment of the need for each of these (especially MRI) will be published separately.

In conclusion, neoadjuvant single fraction (21 Gy) partial breast stereotactic radiation ther-

apy followed by breast conserving surgery appears to be a feasible, safe and well-tolerated

method for delivering radiation in the prone position using external beam radiotherapy and

equipment available at standard radiation treatment facilities. The findings of this study need

to be confirmed in a prospective, randomized clinical trial.
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