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A B S T R A C T

Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junc-
tions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it
remains unknown if CMS causes long-term and irreversible changes to skeletal muscles. In this study, we ex-
amined skeletal muscles in a mouse line with reduced expression of Vesicular Acetylcholine Transporter (VAChT,
mouse line herein called VAChT-KDHOM). We examined this mouse line for several reasons. First, VAChT plays a
central function in loading acetylcholine (ACh) into synaptic vesicles and releasing it at NMJs, in addition to
other cholinergic nerve endings. Second, loss of function mutations in VAChT causes myasthenia in humans.
Importantly, VAChT-KDHOM present with reduced ACh and muscle weakness, resembling CMS. We evaluated the
morphology, fiber type (myosin heavy chain isoforms), and expression of muscle-related genes in the extensor
digitorum longus (EDL) and soleus muscles. This analysis revealed that while muscle fibers atrophy in the EDL,
they hypertrophy in the soleus muscle of VAChT-KDHOM mice. Along with these cellular changes, skeletal
muscles exhibit altered levels of markers for myogenesis (Pax-7, Myogenin, and MyoD), oxidative metabolism
(PGC1-α and MTND1), and protein degradation (Atrogin1 and MuRF1) in VAChT-KDHOM mice. Importantly, we
demonstrate that deleterious changes in skeletal muscles and motor deficits can be partially reversed following
the administration of the cholinesterase inhibitor, pyridostigmine in VAChT-KDHOM mice. These findings reveal
that fast and slow type muscles differentially respond to cholinergic deficits. Additionally, this study shows that
the adverse effects of cholinergic transmission, as in the case of CMS, on fast and slow type skeletal muscles are
reversible.

1. Introduction

Congenital Myasthenic Syndromes (CMS) are a group of genetic
disorders that impair neuromuscular transmission, resulting in muscle

weakness (Aran et al., 2017; O'Neill, 2006). CMS are generally caused
by mutations in presynaptic and postsynaptic genes with crucial roles in
cholinergic transmission at the neuromuscular junction (NMJ) (Ohno
et al., 2017). One of the most relevant proteins for cholinergic
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transmission is Vesicular Acetylcholine Transporter (VAChT), encoded
by the SLC18A3 gene. Mutations in this gene were recently identified in
patients presenting with differing degrees of myasthenia (OMIN
number: # 617239) (Aran et al., 2017; O'Grady et al., 2016; Schwartz
et al., 2018). VAChT functions to move acetylcholine (ACh) into sy-
naptic vesicles (Kljakic et al., 2017; Parsons, 2000; Prado et al., 2013)
following its synthesis by choline acetyltransferase (ChAT). Under
steady-state conditions, VAChT transports sufficient ACh into synaptic
vesicles to activate acetylcholine receptors (AChRs) on the muscle fiber
membrane to promote muscle contraction (Katz and Miledi, 1964;
Langley, 1907). However, mutations in VAChT (de Castro et al., 2009;
Prado et al., 2006) reduce the amount of ACh loaded into synaptic
vesicles, thus impairing AChR activation and muscle contraction.

In addition to causing CMS, loss of ACh affects the formation and
development of muscle fibers and their NMJs (Darabid et al., 2014;
Gautam et al., 1999; Miner et al., 1998). Highlighting this point, de-
letion of ChAT or VAChT in mice affects the morphology and function of
nascent NMJs and muscle fibers, and invariably results in early post-
natal death due to lack of cholinergic transmission (Brandon et al.,
2003; de Castro et al., 2009; Misgeld et al., 2002). To further assess the
contribution of ACh to NMJ and muscle development, transgenic mice
with reduced expression of VAChT were generated and examined in
previous published studies. This involved introducing a selection
marker cassette within the 5′untranslated region of the VAChT gene to
interfere with VAChT expression (Prado et al., 2006) using homologous
recombination. Transgenic mice with both VAChT gene locus modified
are referred to as VAChT-KDHOM. These mice present with 65% re-
duction in VAChT levels, shown using qPCR and western blot analysis,
yet survive and reach adulthood despite having a pronounced deficit in
neuromuscular transmission and function (Lima et al., 2010; Prado
et al., 2006; Rodrigues et al., 2013). VAChT-KDHOM also exhibit cardiac
dysfunction (Lara et al., 2010), increased inflammatory responses (Leite
et al., 2016), and cognitive impairment (Prado et al., 2006). Thus, the
phenotypes described in VAChT deficient mice closely resemble phe-
notypes found in human patients with VAChT mutations, suggesting a
high degree of functional conservation and further indicating that low
levels of ACh causes CMS in VAChT transgenic mice (Aran et al., 2017;
O'Grady et al., 2016).

Although pre-synaptic alterations in adult VAChT-KDHOM mice have
been reported (Lima et al., 2010; Prado et al., 2006; Rodrigues et al.,
2013), it is still unknown whether long-term changes in cholinergic
activity due to VAChT deficiency causes long-term changes in the
structure and function of skeletal muscles. In most mammals, adult
skeletal muscles are populated by four types of muscle fibers, which can
be identified based on the expression of Myosin Heavy Chain (MyHC)
isoforms. The four types of MyHC are: type 1 or slow-oxidative fibers;
2A or fast oxidative-glycolytic; and 2X and 2B, which are fast-glycolytic
fibers. The unique metabolic and contractile properties of these muscle
fibers underlie the different functional outputs of skeletal muscles
(Bloemberg and Quadrilatero, 2012; Brooke and Kaiser, 1970;

Chakkalakal et al., 2010; Schiaffino et al., 1989; Schiaffino and
Reggiani, 2011). These muscle fibers also show different responses to
various diseases and aging. Despite this knowledge and obvious effects
of CMS on the function of NMJs and whole skeletal muscles, little is
known about the specific and long-term changes that suboptimal cho-
linergic transmission causes on muscle fibers. In this study, we ex-
amined skeletal muscles with varying functional demands and different
muscle fiber composition in VAChT-KDHOM mice. We also assessed if
pathogenic features resembling CMS are reversible in adult skeletal
muscles of VAChT-KDHOM mice.

2. Materials and methods

2.1. Experimental design

The generation and genotyping of VAChT-KDHOM transgenic mice
was previously described (Prado et al., 2006). VAChT-KDHOM mice have
a 65% reduction in VAChT expression. All animals were genotyped 10
days after birth. VAChT-KDHOM mice were obtained by intercrossing
heterozygous animals. Control mice were wild type (WT) age and sex-
matched littermates. We only examined male adult (3-6 months-old)
mice in this study. Animals were housed in an animal care facility in
Department of Physiology and Biophysics, Universidade Federal de
Minas Gerais (UFMG). Animals were grouped with three to five animals
into mini-isolator cages (length: 48,3 cm; width: 33,7 cm; height:
21,4 cm- Alesco®) in a temperature-controlled room (∼24 °C) with a
12:12 light-dark cycles, with food (Nuvilab CR-1) and water provided
ad libitum. Mice weight was approximately 28.6 ± 2.8 g for WT and
24.2 ± 2.7g for VAChT-KDHOM mice (see Table 3). The experimental
procedures were carried out in accordance with the protocol approved
by the UFMG ethics committee (CEUA, protocol 40/2009) and in ac-
cordance with NIH and ARRIVE guidelines for the Care and Use of
Animals in Research and Teaching. All efforts were made to minimize
animal suffering and to reduce the number of animals used.

All animals used in this study were appropriately identified by
numbers according to their genotype (WT or VAChT-KDHOM). Using the
genotyping table, animals were randomly divided into the following
groups: Group one, untreated: WT and VAChT-KDHOM; Group two
treated with Pyridostigmine (PYR): WT, WT PYR, VAChT-KDHOM and
VAChT-KDHOM PYR. Animals were randomly treated and evaluated.

The animals assigned to group one were deeply anesthetized by
inhalation of isoflurane in a glass chamber or with ketamine/xylazine
(0.1 mL/20 g). All procedures were performed in accordance to the
CEUA/UFMG protocol. All surgical procedures are described in the
appropriated sections. The experimental procedures were mostly per-
formed in the afternoon, and by the end of each surgical procedure
animals were euthanized using a super-dosage of anesthetics. The ex-
periments were conducted at the Department of Morphology and
Physiology on Federal University of Minas Gerais. The exact numbers
for all experiments are provided in the figure legends and results

Abbreviations

ACh acetylcholine
ALS amyotrophic lateral sclerosis
ChAT choline acetyltransferase
CMS congenital myasthenic syndrome
CSA cross sectional area
EDL extensor digitorum longus muscle
MIT maximal incremental test
MTND1 mitochondrial DNA encoding complex 1
MuRF1 muscle RING-finger protein-1
MyHC myosin heavy chain
MyoD myogenic differentiation 1

AChRs nicotinic receptors
NMJ neuromuscular junctions
Pax-7 paired box protein 7
PGC1-α peroxisome proliferator-activated receptor gamma coac-

tivator 1-alpha
PYR pyridostigmine
SLC18A3 solute carrier family 18 member A3
SMA spinal muscular atrophy
SR sarcoplasmic reticulum
TEM transmission electron microscopy
TTX tetrodotoxin
VAChT KDHOM VAChT knockdown Homozygous mice
VAChT vesicular acetylcholine transporter

M.P.S. Magalhães-Gomes et al. Neurochemistry International 120 (2018) 1–12

2



section. The experimental groups remained constant from the begin-
ning to the end of the study.

2.2. Morphological and morphometrical analyses

Mice were anesthetized with isoflurane, followed by cervical dis-
location. The gastrocnemius, extensor digitorum longus (EDL) and so-
leus muscles were surgically excised, fixed in 4% glutaraldehyde for
24 h, dehydrated in an ascending volumes of alcohol (70%, 80%, 90%,
95% 2X), embedded in glycol methacrylate resin (Leica), and cut in a
microtome (Reichert Jung). The mid-belly regions of muscles were cut
into 3–5 μm thick sections. Muscle sections were stained with toluidine
blue (EMS) for cross-sectional area (CSA) analysis of individual myo-
fibers. Images were acquired using a microscope (Zeiss Axiolab A1)
coupled to a CCD camera, visualized in a computer and analyzed using
the Axiovision (Zeiss) or Image J (NIH) where a polygon selection tool
was used to manually draw a perimeter around muscle fibers to de-
termine the CSA of individual myofibers. The average CSA for gastro-
cnemius muscle fibers were calculated from at least 500 individual
muscle fibers per animal per genotype.

2.3. Myosin heavy chain isoforms staining

Myosin heavy chain isoforms were identified according to the pro-
tocol described by Valdez et al. (2012). Mice were sacrificed, and then
EDL, gastrocnemius and soleus muscles were collected, immersed in
OCT (Easy Path), oriented in freezing molds, and covered with freezing
medium. The EDL and Soleus were put in the same mold and freshly

frozen in isopentane (Sigma-Aldrich), cooled in liquid nitrogen, and
stored at −80 °C. The mid-belly region of muscles was cut on a cryostat
(Leica CM3050S), and cross sections (10 μm) were collected on gelatin-
coated slides. Muscle sections were blocked 30min at room tempera-
ture (RT) with 3% BSA (Sigma-Aldrich), 5% goat serum (Sigma-Al-
drich), and 0.1% Triton X-100 (Sigma-Aldrich) diluted in PBS 1x.
Muscle sections were then incubated overnight (ON) at 4 °C with the
following primary antibodies (diluted in 3% BSA, 5% goat serum), all
raised in mice: type 1 (Leica Microsystems Cat# NCL-MHCs Lot#
RRID:AB_563898; 1:250); type 2A (DSHB Cat# SC-71 Lot# RRID:AB_
2147165; 1:100), type 2X (DSHB Cat# BF-35 Lot# RRID:AB_2274680,
which recognizes all types of muscles fibers except for the 2X; 1:100),
and type 2B (DSHB Cat# BF-F3 Lot# RRID:AB_2266724; 1:100). SC-71,

Table 1
Quantitative analyses of the EDL muscle from WT and VAChT-KDHOM mice.

EDL WT VAChT-KDHOM Statistics
(p < 0.05)

Whole muscle
area
(mm2)

1.8 ± 0.06 1.4 ± 0.06* p= 0.0016

Total number
of fibers

979 ± 74.5 778 ± 22.6* p= 0.0140

Mean fibers
CSA (μm2)

1735 ± 91.2 1429 ± 55.6* p= 0.016

Type 2A CSA
(μm2)

640.5 ± 35.1 540.3 ± 42.7 NS

Type 2X CSA
(μm2)

892.4 ± 50.9 700.9 ± 47.2* p= 0.02

Type 2B CSA
(μm2)

2344 ± 67.7 1758 ± 58.8* p= 0.0002

% of type 2A 5.6 ± 0.7 8.4 ± 1.03 NS
% of Type 2X 16.3 ± 1.4 25.9 ± 1.1* p= 0.0008
% of Type 2B 74 ± 2.6 64.6 ± 2.06* p= 0.04

Molecular
markers
(2−ΔΔCT)

WT VAChT-KDHOM Statistics
(p< 0.05)

Atrogin-1 0.0089 ± 0.0013 0.004 ± 0.0009* p= 0.02
MuRF-1 0.0128 ± 0.002 0.0114 ± 0.0021 NS
Pax-7 0.0003 ± 0.00002 0.0003 ± 0.00003 NS
MyoD 0.0012 ± 0.0002 0.0002 ± 0.00003* p= 0.0005
Myogenin 0.00036 ± 0.00002 0.00019 ± 0.00001* p= 0.0003
PGC1-α 0.0026 ± 0.0001 0.0019 ± 0.0001 NS (p= 0.06)
MTND1 4.88 ± 0.75 3.14 ± 0.36* p= 0.047

Statistical analysis was deployed to compare morphological differences be-
tween 5 WT and 7 VAChT-KDHOM mice. The average whole muscle area and
variability was compared between genotypes. For individual muscle fiber cross-
sectional area (CSA) analysis, we evaluated a total of 2767 fibers per genotype:
316 for type 2A, 544 for type 2X, and 1907 for type 2B. Molecular analysis was
performed in 3 WT and 6 VAChT-KDHOM mice. Values represent Mean ± SEM.
Unpaired Student's t-test was applied after the data was analyzed using
Kolmogorov-Smirnov normality test. * Statistically different from WT mice. #
Mann-Whitney test for non-Gaussian data set. NS: Not Significant.

Table 2
Quantitative analyses of the soleus muscle from WT and VAChT-KDHOM mice.

Soleus WT VAChT-KDHOM Statistics
(p < 0.05)

Whole muscle
area (mm2)

1.45 ± 0.12 1.5 ± 0.09 NS

Total number of
fibers

856.2 ± 22.8 730.3 ± 28.19* p= 0.009

Mean fibers
CSA (μm2)

1525 ± 45.4 1777 ± 51.1* p= 0.005

Type 1 CSA
(μm2)

1691 ± 75.6 1960 ± 92.3* p= 0.04

Type 2A CSA
(μm2)

1349 ± 11.6 1745 ± 54.4* P < 0.0001

Type 2X CSA
(μm2)

1652 ± 109.1 1727 ± 55.7 NS

% of type 1 34.8 ± 2.7 43.8 ± 1.03* p= 0.007
% of Type 2A 54.1 ± 2.4 46.5 ± 1.8* p= 0.03
% of Type 2X 11.1 ± 2.4 9.7 ± 2.01 NS

Molecular
markers
(2−ΔΔCT)

WT VAChT-KDHOM Statistics
(p< 0.05)

Atrogin-1 0.0055 ± 0.0009 0.0094 ± 0.0009* p= 0.02
MuRF-1 0.0122 ± 0.0015 0.0173 ± 0.001* p= 0.02
Pax-7 0.0005 ± 0.00008 0.00146 ± 0.0001* p= 0.0008
MyoD 0.0002 ± 0.00002 0.0004 ± 0.00002* p= 0.001
Myogenin 0.0008 ± 0.0001 0.001 ± 0.0001 NS#

PGC1-α 0.0038 ± 0.0003 0.0081 ± 0.001* p= 0.004#

MTND1 8.39 ± 0.76 13.04 ± 0.89* p= 0.003

Statistical analysis was deployed to compare morphological differences be-
tween 6 WT and 7 VAChT-KDHOM mice. The average whole muscle area and
variability was compared between genotypes. For individual muscle fiber cross-
sectional area (CSA) analysis, we evaluated a total of 2835 muscle fibers per
genotype: 1104 for type 1, 1186 for type 2A, and 397 for type 2X. Values re-
present Mean ± SEM. Unpaired Student's t-test was applied after the data was
analyzed by the Kolmogorov-Smirnov normality test. Molecular analysis was
performed in 6 WT and 6 VAChT-KDHOM mice. * Statistically different from WT
mice. # Mann-Whitney test for non-Gaussian data set. NS: Not Significant.

Table 3
Results of the maximal incremental test.

MIT TEST WT VAChT-KDHOM Statistics

Body weight (g) 28.6 ± 2.7 24.25 ± 2.6* p=0.03
Distance (m) 417.3 ± 132.6 105.4 ± 37.6* p=0.0004
Vmax (cm/s) 31.2 ± 4.02 15.5 ± 2.2* p < 0.0001
Duration (min) 26.8 ± 4.4 10.6 ± 2.4* p < 0.0001
VO2 Basal (ml.Kg-1.min-1) 15.1 ± 6.1 13.4 ± 4.3 NS
VO2 Max (ml.Kg-1.min-1) 29.9 ± 5.4 25.8 ± 4.2 NS
Work (J) 21.1 ± 7.5 3.3 ± 0.7* p=0.0003

Statistical analysis was deployed to compare differences between 5 WT and 6
VAChT-KDHOM mice. The average whole muscle area and variability was
compared between genotypes. Values represent Mean ± SEM. *Statistically
different from WT mice based on Unpaired Student's t-test. NS: Not Significant.
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BF-35 and BF-F3 antibodies were deposited to the DSHB by Stefano
Schiaffino. Slides were washed three times with PBS 1x and incubated
for 1 h at room temperature with secondary antibodies: Alexa 488 goat
anti-mouse IgG1 (Thermo Fisher Scientific Cat# A-21121 Lot#
RRID:AB_2535764. Recognizes the type 1, 2A and 2X antibodies) and
Alexa 488 goat anti-mouse IgM (Thermo Fisher Scientific Cat# A-21042
Lot# RRID: AB_2535711. Recognizes type 2B antibody). The slides
were washed 3 times again with PBS 1x and mounted using VectaShield
anti-fade solution (Vector Laboratories Cat# H-1000 Lot# RRID:AB_
2336789). Images were acquired using an air objective (10x, 0.25NA)
in a fluorescence microscope (Leica DM2500) coupled to a Leica DFC
345FX camera and visualized in a computer. Excitation light came from
a 100W Hg lamp, and an FITC filter was used to collect emitted light.
Whole muscle cross sections were imaged for analysis. Each fiber type
was expressed as a percentage of the total number of fibers counted in a
whole muscle section. Stained sections were also used to analyze the
CSA of type identified muscle fibers. Each antibody was validated using
appropriate negative controls, which included sections not incubated
with primary antibodies (data not shown).

2.4. Reverse transcription and qPCR

The EDL and soleus muscles were rapidly removed from animals,
immersed in RNA latter solution (Sigma-Aldrich) to avoid RNA de-
gradation, and stored for 24 h at 4 °C and at −20 °C until processing.
Total RNA was extracted using TRIzol reagent (Invitrogen, San Diego,
CA) and treated with DNAse Amplification Grade (RNase-free) (Sigma
AMP-D1). After reverse transcription (RT-PCR) using the M-MLV en-
zyme (M-MLV RT, Promega, M1705), 40 ng of the generated cDNA was
used for qPCR. The endogenous GAPDH (internal control) Fw: TGCG
ACTTCAACAGCAACTC; Rv: ATGTAGGCCATGAGGTCCAC; Myogenin
Fw: CACTCCCTTACGTCCATCGT; Rv:CAGGACAGCCCCACTTA
AAA;MyoDFw:GGCCACTCAGGTCTCAGGTGT;Rv:TGTTGCACTACACA
GCATGCCT; Pax-7 Fw: AAAAGCACCAAGCCAAGACC; Rv: GCACACAT
CCCACTCACACC; PGC1-α1 Fw: CCCTGCCATTGTTAAGACC; Rv: TGC
TGCTGTTCCTGTTTTC; MTND-1 Fw: GTTGGTCCATACGGCATTTT; Rv:
TGGGTGTGGTATTGGTAGGG; Atrogin1 Fw: GCAGAGAGTCGGCAA
GTC; Rv: CAGGTCGGTGATCGTGAG and MuRF1 Fw: TGGAAACGCTA
TGGAGAACC; Rv: ATTCGCAGCCTGGAAGATG were amplified. SYBR
green reagent (SYBR® Green PCR Master Mix, Applied Biosystems) was
used in ViiA™ 7 System (Applied Biosystems) real-time cycler that al-
lows automatic melting curve analysis. A single melt peak for each
reaction confirmed the identity of each PCR product. The relative
comparative Cycle Threshold (CT) method was applied to compare
gene expression levels between groups, using the equation (2)−ΔΔCT

(Pcr and Pfaffl, 2001). The expression level of WT and VAChT-KDHOM

genes were normalized to GAPDH as an internal control and no dif-
ferences were found in GAPDH CTs between EDLs fromWT and VAChT-
KDHOM mice. Myogenin (WT: 13.2 ± 0.1 and VAChT-KDHOM:
13.2 ± 0.28). MyoD (WT: 13.1 ± 0.1 and VAChT-KDHOM:
13.1 ± 0.27). MTND-1 and Pax-7 (WT: 13.4 ± 0.1 and VAChT-
KDHOM: 13.9 ± 0.32). Atrogin-1, MuRF-1 and PGC1-α (WT:
13.4 ± 0.08 and VAChT-KDHOM: 14 ± 0.38). Soleus: Myogenin (WT:
14.8 ± 0.3 and VAChT-KDHOM: 14.1 ± 0.2). MyoD (WT: 14.5 ± 0.3
and VAChT-KDHOM: 14 ± 0.2). MTND-1 and Pax-7 (WT: 14.8 ± 0.3
and VAChT-KDHOM: 14.4 ± 0.2). Atrogin-1, MuRF-1 and PGC1-α (WT:
14.7 ± 0.3 and VAChT-KDHOM: 14.1 ± 0.2). Expression changes re-
flect fold differences between WT mice (control) and VAChT-KDHOM

mice. RNA sequences are available at GenBank data base in: (https://
www.ncbi.nlm.nih.gov/genbank/).

2.5. Transmission electron microscopy (TEM)

For ultrastructure analyses, we used the protocol described by
Rodrigues et al. (2013). Briefly, EDL and soleus muscles from WT and
VAChT-KDHOM were fixed by ice-cold modified Karnovsky fixative (4%

paraformaldehyde and 2.5% glutaraldehyde in 0.1M sodium cacody-
late buffer) and maintained in this solution for at least 24 h at 4 °C. After
fixation, samples were washed with cacodylate buffer (0.1M- EMS), cut
into several pieces, post-fixed in reduced osmium (1% osmium tetr-
oxide in cacodylate buffer containing 1.6% potassium ferrocyanide-
EMS), contrasted en bloc with uranyl acetate (2% uranyl acetate in
deionized water- EMS), dehydrated through an ascending series of
ethanol solutions followed by acetone and embedded in EPON 812 resin
kit (EMS). Blocks were sectioned (50 nm) and collected on 200 or 300
mesh copper grids and contrasted with lead citrate (EMS). Sections
were viewed with a Tecnai- G2-Spirit-FEI/Quanta electron microscope
(120 kV Philips) located at Microscopy Center – UFMG.

2.6. Behavioral tests

2.6.1. Open field
The open field test was used to analyze spontaneous locomotor

activity (Ferreira-Vieira et al., 2014; Sousa et al., 2006). The test was
performed in a box (50×50 cm) with the floor divided into 16 equal
squares. The mice were individually placed in the back corner of the left
side and allowed to explore the open field for 300s. The spontaneous
locomotor activity was measured using sensors located at the base of
the boxes connected to a computer where a software automatically
determined the number of segments crossed, known as crossing (hor-
izontal locomotion) (Vianna et al., 2000).

2.6.2. Wire-hang
The wire-hang test is a useful tool to evaluate motor strength in

rodents, and the experiments were performed according to Sango et al.
(1996) and Prado et al. (2006). Mice were habituated at the behavioral
room 2 h before the test. We placed each animal individually in the top
of a wire cage lid (22×22 cm) and then the lid was gently turned
upside down by the investigator. The latency of mice to lose their grip
and fall off the lid was visually evaluated in three trials with a cutoff
time of 60s.

2.6.3. Rotarod
The rotarod test was used to assess motor coordination in our ex-

perimental model (Ingram et al., 1981). The apparatus consists of a
rotating cylinder. The time animals take to fall from the rotating rod is
registered automatically. We used the protocol described by Prado et al.
(2006) with minor modifications to account for the age of the mice
tested in this study. First, mice were acclimated three consecutive days
to the rotarod apparatus (Insight Equipments, Ribeirão Preto, Brazil)
with the device turned off. Second, each mouse was gently placed on
the rod, and the rotation speed was set to 7 rpm. The training session
consisted of three trials. Four hours later, animals were tested using a
non-accelerating protocol (rotation maintained at 7 rpm). The perfor-
mance of each animal on the rotarod represents the average of three
independent tests.

2.7. Maximal incremental test (M.I.T)

An electric treadmill (EP - 132 - INSIGHT, Ribeirão Preto, Brazil)
was used to evaluate mice maximal aerobic capacity. The initial speed
was set at 10 cm per seconds (cm/s) for 5min through five days
(Familiarization Period). The Maximal Incremental Test (MIT) starts
with the speed at 10 cm/s then increases 5 cm/s every 3min, at a 5%
grade, until the animal stops running and is fatigued. Fatigue is defined
by the refusal of the mouse to continue moving on the treadmill belt
more than 10 s. A mild electrical stimulus (0.2 mA) was applied to the
mice that stepped off the treadmill to keep them exercising. For oxygen
consumption mice were weighed and placed individually into the gas
chamber coupled to the test treadmill using continuous recorders of
oxygen consumption (VO2) with an open-flow indirect calorimeter
(LE405 Gas Analyzer, Panlab Harvard Apparatus, Spain). VO2 (mlO2/
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kg/min) was continuously recorded on-line, every minute at rest and
during the fatiguing exercise protocol (exercise protocol) and then
analyzed using a computerized system (Metabolism V 2.2.01, Harvard
Apparatus, Spain). In the first 30min, the animals were placed in the
treadmill coupled to a gas chamber for measurements of the basal VO2.

Immediately after this time, the treadmill was turned on and mice
started to run following the test protocol. At the end of the test the VO2

peak was selected for analysis. Workload (W) was calculated as
W= [body weight (kg)]× [time to fatigue]× [treadmill speed (m/
min)]× [sin θ (treadmill inclination)].

2.8. Pharmacological treatment

Six month old WT and VAChT-KDHOM mice were treated with the
acetylcholinesterase inhibitor pyridostigmine (Sigma-Aldrich) (i.p.,
1 mg/kg) for 28 days with two doses per day, according to Prado et al.
(2006). At the end of the treatment period, animals were sacrificed,
then EDL and soleus muscles were excised for histology analysis as
described above.

2.9. Statistical analysis

All data were analyzed using Microsoft Excel and GraphPad Prism 5.
The histology data represent the mean ± SEM of least 500 muscle fi-
bers CSA summarized in tables. Before defining the statistical tests, data
was evaluated by the Kolmogorov-Smirnov normality test to address
whether or not the data followed a Gaussian distribution. Statistical
significance was evaluated using the unpaired Student's t-test when
data was normally distributed or Mann-Whitney test for non-Gaussian

distribution. One-way ANOVA or Kruskal-Wallis, and a post hoc
Newman Kulls or Dunn's multiple comparison test was performed when
appropriate, as described in the text. Values of p≤ 0.05 were con-
sidered significant. All behavioral, molecular, electron microscopy and
maximal incremental tests experiments were conducted with re-
searchers “blind” to the genotypes of the mice, except for histological
and fiber typing analysis. Each genotyped animal was assigned a code
that was revealed to the investigator after completing analysis. In this
work we used between n=3–7 animals per genotype for each data set
to detect a difference at 95% confidence interval (a= 0.05) and 0.8
power. The exact n for each experimental procedure is described in the
figure legends, as well as p values. All data points were treated as
outliers and excluded from the data analysis using the Graph Pad
QuickCalcs outlier calculator available at (https://graphpad.com/
quickcalcs/Grubbs1.cfm).

3. Results

First, we evaluated the long-term effects of decreased ACh on the
morphology of muscle fibers in the gastrocnemius muscle.
Gastrocnemius muscle cross-sections from VAChT-KDHOM and wild type
(WT) mice were stained with antibodies against different fiber types
and with toluidine blue to visualize muscle fiber subtypes and their
cross-sectional area (CSA), respectively (Fig. 1A–B). We found that
muscle fibers in the gastrocnemius muscle of VAChT-KDHOM are on
average 14% smaller compared to WT mice (Fig. 1C–D). We also found
fewer type 2B fibers in the gastrocnemius muscles of VAChT-KD mice
(28 ± 1.46%) compared to WT (48.4 ± 5.07%). Interestingly, we
found more type 2X in VAChT-KDHOM mice (34.7 ± 5.1%) compared

Fig. 1. Gastrocnemius muscle from VAChT-KDHOM mice are atrophied and exhibit fiber type shift. A-B: Representative images of the whole gastrocnemius
muscle stained for the different fiber types (A) cross-section of fibers marked with toluidine blue (B), showing smaller muscle fibers in the VAChT-KDHOM mice (B)
when compared with WT. Scale bar= 1000 μm (A) 50 μm (B). C: Frequency distribution histogram of gastrocnemius muscle fibers Cross-Sectional-Area (CSA). D:
CSA mean values for VAChT-KDHOM mice compared with WT mice (*p < 0.05; one-tailed unpaired Student t-test, n = 3 animals per genotype). E: Fiber type
analysis showing reduced type 2B and increase in type 2X fibers in VAChT-KDHOM mice. We analyzed one muscle cross-section for each animal, and a total of 3152
myofibers were evaluated for both genotypes (*p < 0.05; Unpaired Student t-test, n = 3 animals per genotype. In D and E, values represent mean ± SEM). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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to WT (14.2 ± 1.91%). We next examined muscle fibers in the pre-
dominantly fast-twitch extensor digitorum longus (EDL) muscle. Muscle
fibers in the EDL were on average 22% smaller in VAChT-KDHOM mice
compared to WT (Fig. 2A and Table 1). This overall reduction in muscle
fiber size was due to decreased CSA in types 2X and 2B fibers in the EDL
of VAChT-KDHOM (Fig. 2B–D and Table 1). The EDL muscle is composed
mainly of fast-glycolytic muscle fibers (type 2X and 2B) and few fast
oxidative-glycolytic muscle fibers (type 2A) (Bloemberg and
Quadrilatero, 2012). Interestingly, the EDL muscles in VAChT-KDHOM

mice also have fewer muscle fibers (Table 1), suggesting that either
muscle fibers failed to form or degenerate postnatally. Based on this
observation, we determined the number of each muscle fiber type po-
pulating the EDL muscle in VAChT-KDHOM and WT mice. While Type 2B
fibers were reduced, type 2X fibers were increased in VAChT-KDHOM

mice compared with WT mice (Table 1). This analysis showed similar
numbers of type 2A muscle fibers between genotypes demonstrating
that these changes were specific to fast glycolytic muscle fibers (2B and
2X). The shifts in type 2X/2B ratio in the gastrocnemius and EDL
muscles suggest that reduced cholinergic transmission either causes

type 2B to dedifferentiate into type 2X or slows the differentiation of
type 2X into type 2B muscle fibers.

The reduced size and number of muscle fibers in the EDL muscle of
VAChT-KDHOM mice also indicates that reduced cholinergic transmis-
sion results in the activation of pro-atrophy genes. To look into this
possibility, we examined levels of Atrogin-1 and MuRF1, both involved
in the activation of the ubiquitin-proteasome system (Sacheck et al.,
2004). Unexpectedly, Atrogin-1 is reduced and MuRF-1 remains un-
changed in the EDL muscle of VAChT-KDHOM compared with WT mice
(Table 1). We then examined levels of Pax-7, Myogenin, and MyoD,
three genes important for muscle biogenesis and maintenance. We
found MyoD and Myogenin reduced in the EDL muscles of VAChT-
KDHOM mice (Table 1). However, levels of Pax-7 remain unchanged in
the EDL muscles of VAChT-KDHOM mice (Table 1). Next, we examined
levels of two mitochondria-related genes important in skeletal muscles.
PGC1-α promotes mitochondrial biogenesis (Yoon et al., 2001) and
MTND-1 is a mitochondrial DNA (mtDNA) encoding complex I gene
associated with mitochondrial respiratory chain (Mimaki et al., 2012).
No significant difference was found in PGC1-α expression between

Fig. 2. Fast-twitch EDL from VAChT-KDHOM mice shows reduction of whole muscle area, fiber type atrophy and fiber type shift. A: Images of the whole EDL
muscle from WT and VAChT-KDHOM mice labeled with type 2B antibody showing reduced CSA. Scale bar= 0.5mm2. B: Representative images from sections of EDL
from WT and VAChT-KDHOM mice stained with toluidine blue showing increased number of small muscle fibers in the VAChT-KDHOM mice compared with WT. Scale
bar= 50 μm. C: Images of the EDL from WT and VAChT-KDHOM mice labeled with antibodies against different fiber types showing reduced type 2B and increased
type 2X fibers expression in VAChT-KDHOM. Scale bar= 50 μm. D-G: Histogram of CSA values showing increased number of small muscles fibers in EDL from VAChT-
KDHOM mice. For cross-sectional area (CSA) muscle analysis we evaluated a total of 2767 fibers: 316 for type 2A, 544 for type 2X, and 1907 for type 2B n=5 WT and
7 VAChT-KDHOM mice. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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VAChT-KDHOM mice and WT mice (Table 1). However, MTND-1 was
reduced by 36% in VAChT-KDHOM mice (Table 1). These findings show
that myogenesis and mitochondria function are impaired, and poten-
tially contribute to the decreased number and size of muscle fibers in
the EDL muscles of VAChT-KDHOM mice.

The soleus muscle is quite different from the EDL muscle in several
respects. It is primarily composed of slow-twitch muscle fibers, it is
tonically active, and functions in maintaining posture (Di Giulio et al.,
2009). We thus asked if reducing ACh levels has a similar effect on the
soleus as observed above in the EDL muscles. In stark contrast to the
EDL muscle, we found that muscle fibers are approximately 11% larger
in the soleus muscle of VAChT-KDHOM mice compared to WT mice
(Fig. 3D and Table 2). Both type 1 and 2A muscle fibers were enlarged
by 8% and 17%, respectively in VAChT-KDHOM mice compared to WT
mice (Fig. 3C–G and Table 2). Moreover, the ratio of type 1 to type 2A
muscle fiber is higher in the soleus muscle of VAChT KDHOM compared
to WT mice (Table 2). Despite the increased size of muscle fibers, the
overall size of the soleus muscle was indistinguishable between VAChT-
KDHOM and WT mice (Fig. 3A and Table 2). The overall size of the

soleus muscle remains unchanged because it contains fewer, yet larger,
muscle fibers in VAChT-KDHOM compared to WT mice (Table 2).

To further examine the impact of reducing ACh on the soleus
muscle, we again assessed expression levels of genes associated with
muscle atrophy, biogenesis, and maintenance. In contrast to the EDL
muscle, Atrogin-1 and MuRF1 levels are 1.7 and 1.4 fold higher, re-
spectively, in VAChT-KDHOM mice (Table 2). Likewise, Pax-7 and MyoD
are 2.9 and 2 fold higher, respectively, in the soleus muscle of VAChT-
KDHOM mice (Table 2). Additionally, the metabolic modulators, PGC1-α
and MTND-1, are both increased in the soleus muscle of VAChT-KDHOM

mice (Table 2). Together, these data show that decreasing ACh levels
has a different effect on the soleus muscle, and particularly on type 1
muscle fibers, compared to the EDL muscle and fast type muscle fibers.

We used transmission electron microscopy (TEM) to visualize the
subcellular composition of slow and fast-twitch muscles under reduced
cholinergic transmission. In the EDL muscle of WT mice, as expected,
the Z-line (white arrows) (Fig. 4A), triads (sarcoplasmic reticulum- SR
and T-tubules) (white arrows-head) (Fig. 4B), mitochondria (red ar-
rows-head) (Fig. 4B), and sarcomeres (red asterisks) (Fig. 4B) appear

Fig. 3. Slow-twitch soleus from VAChT-KDHOM mice shows muscle fibers hypertrophy and fiber type shift. A: Images of the whole soleus muscle from WT and
VAChT-KDHOM mice labeled with type 1 antibody. No changes were observed. Scale bar= 0.5mm2. B: Representative images from sections of soleus from WT and
VAChT-KDHOM mice stained with toluidine blue. Traced rectangle shows newly formed muscle fibers. Scale bar= 50 μm. C: Images of the soleus from WT and
VAChT-KDHOM mice labeled with antibodies against different fiber types showing increased type 1 and reduced type 2A fibers expression in VAChT-KDHOM. Scale
bar= 50 μm. D-G: Histogram of CSA values showing increased number of muscle fibers with larger CSA in soleus from VAChT-KDHOM mice. For cross-sectional area
(CSA) muscle analysis we evaluated a total of 2835 fibers: 1104 for type 1, 1186 for type 2A, and 397 for type 2X n=6 WT and 7 VAChT-KDHOM mice. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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normal. In contrast, muscle fibers of the EDL from VAChT-KDHOM mice
present discontinuous Z-lines (white arrows) (Fig. 4C) and disruption of
myofilaments (separation of the thin and thick myofilaments) of some
sarcomeres (red asterisks) (Fig. 4D). Quantitatively, the number of
disrupted sarcomeres is 6.2 times higher in VAChT-KDHOM mice com-
pared to WT mice (WT: 5.7 ± 3.3 and VAChT-KDHOM: 35.6 ± 9.1%,
p=0.03). These muscle fibers also exhibit abnormal T-tubules, which
are more elongated than normal, and lack typical triads (white arrows-
head) (Fig. 4D). The SR also exhibits abnormal, swelled, and misplaced
vacuole-like structures (yellow arrows-head) (Fig. 4D). Moreover, we
found elongated mitochondrial profiles located in the regions of muscle
fibers associated with degraded myofibril regions (red arrows-head)
(Fig. 4D). In stark contrast to the EDL muscle, fibers in the soleus
muscle from VAChT-KDHOM mice exhibit preserved components, such

as correct alignment and continuity of the Z-lines (white arrows)
(Fig. 4E–G), and sarcomere integrity (red asterisk) (Fig. 4F–H). In
agreement with increased PGC1-α and MTND-1 levels, mitochondria
are more prevalent in muscle fibers in the soleus muscle of VAChT-
KDHOM compared to WT mice (Fig. 4G–H).

To assess the function of the gastrocnemius, soleus, and EDL mus-
cles, we performed a series of behavior and oxygen consumption tests in
VAChT-KDHOM and WT mice. Oxygen consumption while resting and
under maximal intensity was measured using a maximal incremental
test (MIT). The duration, distance, maximum velocity (Vmáx), the
work, and oxygen handling parameters were evaluated. We found a
significant reduction in the MIT duration and distance (Table 3) in
VAChT-KDHOM mice. The maximum velocity is also reduced (Table 3).
Additionally, the work performed is significantly reduced in VAChT-

Fig. 4. Myofibrils of the fast-twitch EDL from VAChT-KDHOM mice show signs of degeneration while slow-twitch soleus is preserved. A-B: Images in the
upper and lower panels are 16,500x and 26,500x, respectively. A: Representative images of the EDL muscle fibers from WT showing correct alignment of the Z-lines
(white arrows) (A), normal triads (white arrows-head) (B), normal-shaped mitochondrial profiles (red arrows-head) (B), normal sarcoplasmic reticulum located
between myofibrils (yellow arrows-head) and preserved sarcomere (red asterisk) (B). C-D: Representative images of EDL muscle fibers from VAChT-KDHOM mice
showing myofibrils disruption (red asterisks) (D), abnormal elongated T-tubules (white arrows-head) (D), abnormal and misplaced SR (yellow arrows-head),
elongated mitochondrial profiles associated to degenerated regions (red arrows-head). Normal sarcomere in C. E – F: Representative images of the soleus from WT
showing preserved muscle fibers. Alignment of Z-lines (E) (white arrows), normal size mitochondrial profiles (F) (red arrows-head), and regular sarcomere (F) (red
asterisks). G – H: The soleus from VAChT-KDHOM, shows preserved sarcomeres (red asterisks). The mitochondrial profiles from VAChT-KDHOM mice are more frequent
(H) (red arrows-head). We evaluated at least 15 images from three different animals for each genotype. Scale bar= 500 nm. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 5. Pyridostigmine (PYR) treatment partially reverses
morphology alterations in EDL and soleus muscles in
VAChT-KDHOM mice. A-B: Images of EDL (A) and soleus (B)
muscle fibers from WT and VAChT-KDHOM mice treated and
non-treated with PYR. C. Cumulative frequency of muscle
fibers areas of the EDL from WT and VAChT-KDHOM mice
showing VAChT-KDHOM-PYR partially restoring muscle fibers
to WT values. D. In the Soleus, VAChT-KDHOM-PYR partially
restored the sizes of its muscle fibers. For the EDL and soleus
at least 1130 and 1573 myofibers, respectively, were ana-
lyzed from three animals per genotype/treatment.
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KDHOM mice compared to WT mice (Table 3). Despite these differences,
the oxygen consumed is the same between genotypes while resting and
under MIT (Table 3). This finding is more surprising given that VAChT-
KDHOM mice weigh significantly less than WT mice (Table 3).

Given that skeletal muscles may be similarly affected in individuals
with VAChT mutations, we tested if increasing the levels of ACh at the
synaptic cleft reverses the functional and morphological features found
in VAChT-KDHOM mice. To address this, WT and VAChT-KDHOM mice
were treated with the cholinesterase inhibitor pyridostigmine (1mg/kg,
twice daily) for 28 days. We then compared the muscle fiber average
CSA among the different treatments and genotypes in the EDL and so-
leus muscles. In this case, we specifically compared the distribution of
muscles sizes using a cumulative frequency graph (Fig. 5C and D) due to
the inherent high variability of muscle sizes across genotypes and fol-
lowing pyridostigmine treatments. This analysis revealed that pyr-
idostigmine partially restores the size of muscle fibers in the EDL of
VAChT-KDHOM mice (Table 4 and Fig. 5A and C). Although the treat-
ment reduces the CSA of WT-treated compared with non-treated WT
mice (Table 4 and Fig. 5C), the size of muscle fibers in non-treated
VAChT-KDHOM mice remains reduced compared to treated WT mice
(Fig. 5A and C). In the soleus muscle, pyridostigmine partially reduces
the hypertrophy observed in VAChT-KDHOM muscle fibers (Fig. 5B and
D). These findings led us to ask if pyridostigmine treatment improves
motor function in VAChT-KDHOM mice. We found that animals treated
with pyridostigmine perform better in the open-field task (Table 4).
VAChT-KDHOM mice treated with pyridostigmine did not perform better
in the rotarod or wire-hanging test based on a Kruskal-Wallis with
Dunn's multiple comparison test. However, intra-genotype comparisons
revealed that VAChT-KDHOM mice treated with pyridostigmine perform
2.5 times better on both tests compared with vehicle treated VAChT-
KDHOM mice (Table 4). These differences were significant using a two-
tailed unpaired student t-test.

4. Discussion

Most CMS cases are related to mutations in postsynaptic proteins
and the prevalence of pre-synaptic mutations are very rare and, until
now, only found in SNAP25B (Shen et al., 2014), Synaptotagin-2
(Herrmann et al., 2014), Synaptobrevin-1 (Shen et al., 2017),MUNC13-1
(Engel et al., 2016), ChAT (Byring et al., 2002; Ohno et al., 2001), and
CHT- 1 (Bauché et al., 2016). However, recent reports revealed con-
genital myasthenia in individuals caused by mutations in the VAChT
gene (Aran et al., 2017; Schwartz et al., 2018; O'Grady et al., 2016).
Using VAChT mouse models to study CMS (VAChT-KDHOM and VAChT-
Knockout), our group has found motor (Prado et al., 2006), cardiac
(Lara et al., 2010), and synaptic (de Castro et al., 2009; Lima et al.,
2010; Prado et al., 2006; Rodrigues et al., 2013) alterations that re-
semble some of the features later discovered in patients with VAChT
mutations (O'Grady et al., 2016; Aran et al., 2017; Schwartz et al.,

2018). For example, we previously showed that NMJs in the diaphragm
from VAChT-KDHOM mice exhibit several abnormalities, including al-
tered recycling of synaptic vesicles (Rodrigues et al., 2013). Those
published findings led us to hypothesize that reduced cholinergic
transmission may differentially affect the size and biochemical prop-
erties of muscle fiber subtypes. Thus, in the present study, we in-
vestigated the impact of lowering ACh on the fast-contracting EDL, the
slow-contracting soleus, and the gastrocnemius muscles.

4.1. Fast type muscle fibers are preferentially affected by reduced
cholinergic transmission

Different mouse models of neuromuscular disorders have revealed
that fast-twitch skeletal muscles are more susceptible to atrophy than
slow-contracting muscles (Harandi et al., 2014; Wang and Pessin, 2013;
Biral et al., 1989). In addition, denervation or tetrodotoxin (TTX)
blockade of nerve impulses preferentially cause the atrophy of fast type
muscle fibers in the diaphragm (Aravamudan et al., 2006) and gastro-
cnemius muscles (Zhan and Sieck, 1992). We found that fast-twitch
muscle fiber types (2B, 2X) are smaller in the EDL muscle of VAChT-
KDHOM compared with WT mice using light microscopy. Ultrastructural
analysis corroborated this finding, and revealed that myofibrils degrade
in muscle fibers of the EDL muscle from VAChT-KDHOM mice. Inter-
estingly, the EDL muscle of VAChT-KDHOM mice contained fewer type
2B and more type 2X fibers compared to WT mice. This shift in the ratio
of muscle fiber types in fast muscles has also been observed in aged
animals (Larsson and Ansved, 1995; Larsson et al. 1993, 1995), where
cholinergic transmission has been found to also be altered.

In addition to cellular changes, reduced cholinergic transmission
also affects the molecular composition of the EDL muscle. We found
that Atrogin-1 is reduced while no changes were found in MuRF1 in the
EDL muscle of VAChT-KDHOM mice. This finding was surprising because
muscle fibers atrophy in the EDL muscle of adult VAChT-KDHOM mice,
and Atrogin-1 and MuRF1 promote muscle atrophy when induced
(Bodine and Baehr, 2014). However, the pro-myogenic genes MyoD and
myogenin are reduced in the EDL of VAChT-KDHOM mice. In addition to
playing critical roles in muscle biogenesis, myogenin and MyoD also
regulate the expression of Atrogin-1 and MuRF1 (Bonaldo and Sandri,
2013; Hyatt et al., 2003; Moresi et al., 2010). The observed reduction in
myogenin, MyoD, and Atrogin-1 expression in the EDL muscle from
VAChT-KDHOM suggests that reduced cholinergic transmission inhibits
myogenesis but also atrophy in adult fast type muscles. These findings
thus raise the possibility that myogenesis is impaired during develop-
mental stages and/or the growth of newly formed muscle fibers is in-
hibited in the EDL of adult VAChT-KDHOM mice, potentially accounting
for fewer and smaller muscle fibers. This is a possibility that can be
assessed in future studies designed to analyze the number and size of
muscle fibers during development in addition to myogenin and Myod
expression in VAChT-KDHOM mice. If the formation and growth of

Table 4
Results of the treatment with Pyridostigmine (PYR) on mice muscle histology and behavior.

HISTOLOGY WT WTPYR VAChT-KDHOM VAChT-KDHOM PYR Statistics

EDL – CSA (μm2) 1191 ± 28.9 998.7 ± 24.8a 936.5 ± 23a 1009 ± 28.4a p= 0.0007#

Soleus – CSA (μm2) 1199 ± 364 1031 ± 59.1 1535 ± 168.7 1258 ± 97.7 NS#

BEHAVIOR WT WTPYR VAChT KDHOM VAChT KDHOM PYR Statistics

Open-field 95 ± 27 106.4 ± 18 46 ± 11ab 83.4 ± 16.7c p= 0.0007#

Rotarod (s) 225 ± 100 271 ± 64 104 ± 60.3b 263 ± 29 p=0.03
Wire-hang (s) 28.4 ± 10 39.2 ± 6.2 5.0 ± 1.1ab 12 ± 2.1 p= 0.0007

Statistical analysis was deployed to compare differences between at least 3 WT and 3 VAChT-KDHOM mice. Values represent Mean ± SEM. Statistics for rotarod and
wire-hang: Kruskal-Wallis with Dunn's multiple comparison test. For the EDL, at least 1130 myofibers in a n= 3 animals per genotype/treatment were analyzed. In
soleus, at least 1573 myofibers in a n=3 animals per genotype/treatment were analyzed. For behavior n= 5 animals per genotype/treatment. a Statistically
different from WT; b different from WTPYR; c different from VAChT-KDHOM. #One-way ANOVA followed by Newman-Keuls Multiple Comparison Test.
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muscle fibers is disrupted in the EDL muscle of VAChT-KDHOM, it would
resemble findings reported following analysis of the R6/2 mice model
for Huntington's disease where muscle fiber maturation is also impaired
and partly due to progressive Cl-channel defects (Miranda et al., 2017).
Irrespective, our findings show that reducing cholinergic transmission
by 65% is deleterious to fast type muscle fibers.

4.2. Type 1 muscle fibers size increase under reduced cholinergic
transmission

In contrast to the EDL, reduced cholinergic transmission causes
muscle fibers in the soleus to hypertrophy. This finding was unexpected
because the soleus is a tonic muscle, and we thus expected that reducing
ACh by 65% would be detrimental to the viability of the soleus muscle.
What could then account for the increased size of muscle fibers in the
soleus muscle? One possibility is that atrophy of the gastrocnemius
increases the functional load on the soleus to maintain balance thereby
leading to compensatory hypertrophy of muscle fibers in the soleus.
This possibility is supported by published studies showing that com-
pensatory hypertrophy occurs in the soleus muscle (Allen et al., 2001)
(Hanzlíková et al., 1975; Minderis et al., 2016). Another possibility, not
mutually exclusive, is that type 1 fibers, which make a large proportion
of the soleus muscle, resist degeneration and instead hypertrophy when
cholinergic transmission is reduced. In this regard, Pax-7 and MyoD are
both increased in the soleus muscle of VAChT-KDHOM mice, both genes
important for myogenesis. Thus, mechanical overload could promote
the proliferation of Pax-7-expressing satellite cells, thereby leading to
increased expression of myogenic factors. However, the increased oxi-
dative profile of the soleus muscle in VAChT-KDHOM mice suggests an
alternative possibility. In these mice, the soleus is populated by more
type 1 muscle fibers and has augmented expression of PGC1-α, and
MTND-1. Accompanying these changes was a loss of type 2A muscle
fibers, further indicating that muscle fibers with a fast type profile are
more affected by reduced cholinergic transmission preferentially. These
changes are also found in aged skeletal muscles, where there is a shift
from fast to slow fiber types (Holloszy et al., 1991; Larsson and Ansved,
1995; Miljkovic et al., 2015; Thompson, 1994). Therefore, it may be
possible that the changes observed in the soleus muscle of VAChT-
KDHOM mice are more indicative of a premature aged phenotype.

4.3. Reduced cholinergic transmission impacts physical capacity

Previous data has shown that mice with reduced VAChT expression
perform worse than WT mice in running tests (Prado et al., 2006). Here,
in addition to the treadmill test, we measured oxygen consumption, a
gold standard for the evaluation of aerobic capacity (Petrosino et al.,
2016; Silva et al., 2016; Speakman, 2013). Interestingly, despite the
reduction in duration, distance, and Vmax, VAChT-KDHOM and WT mice
consumed the same oxygen amount during the tests. This result may be
due to the lower mechanical efficiency of the VAChT-KDHOM mice re-
sulting from cardiac dysfunction (Lara et al., 2010).

4.4. Pyridostigmine treatment reverses muscle pathology caused by reduced
cholinergic transmission

Ultimately, the increased availability of ACh in the synaptic cleft
caused by pyridostigmine partially reverses EDL atrophy and soleus
hypertrophy in our mice. In addition, performance in open field, ro-
tarod, and wire hanging are partially improved in comparison with non-
treated mice. Since pyridostigmine acts preferably at the level of the
peripheral nervous system, these results indicate that the reduced
performance in the tests is due to abnormalities in hind limb muscles,
including those analyzed herein. In our pyridostigmine treated mice, we
cannot rule out an effect of increased ACh availability induced by this
cholinesterase inhibitor in presynaptic auto-receptors. Previous work
has shown that pyridostigmine increases neurotransmitter released

following each nerve impulse in a mouse nerve muscle preparation
(Vizi and Somogyi, 1989). This effect is mediated by nicotinic auto-
receptors with positive feedback in the NMJ (Bowman et al., 1990;
Starke et al., 1989). In addition, several experiments have shown a
modulatory effect of presynaptic ACh release by agonists and antago-
nists of presynaptic muscarinic receptors (Ganguly and Das, 1979;
Wessler, 1989; Santafé et al., 2003). Future experiments will be needed
to clarify this point. Importantly, the successful reversion of some of the
muscle changes and performance improvement obtained with pyr-
idostigmine treatment of VAChT-KDHOM mice have interesting im-
plications for neuromuscular disorders, such as CMS. Indeed, a mild
clinical improvement was observed in patients with a biallelic variant
of the VAChT gene that were treated with pyridostigmine (O'Grady
et al., 2016). Taken together, these data emphasize the importance of
maintaining normal cholinergic activity for preserving the structure of
skeletal muscle fibers, and ultimately motor function.
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