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Abstract: This paper proposes a complete framework of a machine learning-based model that detects
convective initiation (CI) from geostationary meteorological satellite data. The suggested framework
consists of three main processes: (1) An automated sampling tool; (2) machine learning-based CI
detection modelling; (3) repeated model tuning through validation. In this study, the automated
sampling tool was able to track the CI objects iteratively, even without ancillary data such as an
atmospheric motion vector (AMV). The collected samples were used to train the machine learning
model for CI detection. Random forest (RF) was used to classify the CI and non-CI. To enhance the
advantages of the machine learning approach, we adopted model tuning to iteratively update the
training dataset from each validation result by adding hits and misses to the CI samples, and false
alarms and correct negatives to the non-CI samples. Using 12 interest fields from the Himawari-8
Advanced Himawari Imager (AHI) over the Korean Peninsula, this simple and intuitive tuning
process increased the overall probability of detection (POD) from 0.79 to 0.82 and decreased the
overall false alarm rate (FAR) from 0.46 to 0.37 with around 40 min of the lead-time. Amongst the 12
interest fields, Tb(11.2) µm was identified as the most significant predictor in the RF model, followed
by Tb(8.6—11.2) µm, and Tb(6.2–7.3) µm. The effect of model tuning on the CI detection performance
was also analyzed using spatiotemporal validation maps. By automatically collecting and updating
the machine learning training dataset, the suggested framework is expected to help the maintenance
of the CI detection model from an operational perspective.

Keywords: convective initiation (CI); Himawari-8; random forest; automated sampling; machine
learning; repeated model tuning

1. Introduction

Strong convective clouds result in heavy rains in a short period of time, particularly during the
summer monsoon season in East Asia including the Korean Peninsula. The formation of convective
clouds accompanied by thunderstorms and heavy rainfall may cause significant damage to human
society [1–6], hence the timely prediction of such convective clouds is very important. In order to
minimize the damage caused by convective cloud-derived heavy rainfall and thunderstorms, it is
necessary to detect and forecast the convective initiation (CI) with ample lead time. Meteorological
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satellites have been widely used in the development of CI detection algorithms thanks to their high
temporal resolution (around 2-15 min) and wide imaging coverage. Many CI detection algorithms
have been developed using meteorological satellite sensor data such as that from the Geostationary
Operational Environmental Satellite (GOES) [5,7–10], Spinning Enhanced Visible and Infrared Imager
(SEVIRI) onboard Meteosat Second Generation (MSG) [11–13], Advanced Himawari Imager (AHI)
onboard Himawari-8 [6,14] and Meteorological Imager (MI) onboard Communication, Ocean and
Meteorological Satellite (COMS) [15]. Lightning and thunderstorms have also been monitored using
meteorological satellite sensor systems, which have a close relationship to CI [16–18].

Many studies have detected CI based on the rules consisting of multiple criteria using the
combinations of brightness temperatures (Tb) called interest fields which represent the physical
characteristics of convective clouds [5–10,12,15,16]. These interest fields play an essential role in the CI
algorithms. Numerous interest fields have been used and evaluated in the literature. Among them,
there have been commonly used critical interest fields such as the cloud depth, cloud top cooling
rate, and cloud updraft strength. As various spectral channels have recently become available from
spaceborne meteorological sensors such as AHI mounted on Himawari-8, the number of interest fields
available in the development of CI detection algorithms has increased. Several studies have been
conducted to find the optimal combinations of interest fields and to measure their contribution to
CI detection models. Mecikalski et al. [12] used principal component analysis (PCA) to identify 21
elements related to convective drift among 67 interest field candidates from MSG SEVIRI. The relative
importance of the interest fields for CI detection has also been evaluated in statistical and machine
learning approaches [6,9,15].

It is important to obtain the optimal combination of interest fields and to determine their thresholds
for successful CI detection. Early CI algorithms were developed based on static thresholds considering
the spectral channels of the satellite sensor used and their physical meanings [5,7,8,12]. This static
thresholding approach, based on the physical meaning of interest fields, is intuitive and easy to apply
when seeking to represent various critical factors of the convective clouds. However, because of the
wide variety of situations of convections, detection of CI using simple thresholds could be limited
often resulting in a high false alarm rate [6,9,15]. In order to mitigate such a problem, studies have
recently been conducted to detect CI using advanced statistics and machine learning. Jewett and
Mecikalski [10] applied a variable threshold for interest fields according to the environmental conditions,
through a statistical approach called time-space exchangeability and compared this with the fixed
threshold-based results. Mecikalski et al. [9] calculated the probability of CI using random forest (RF)
and logistic regression (LR) using the GOES-16 predictors to combine the satellite data and numerical
weather prediction (NWP) models, showing improved false alarm performance. Han et al. [15]
detected CI over the Korean Peninsula using COMS MI visible and IR satellite data along with three
machine learning approaches—decision tree (DT), RF, and support vector machine (SVM). Lee et al. [6]
compared deterministic and probabilistic CI results using DT, RF, and LR using Himawari-8 AHI.
These recently presented statistical and machine learning approaches are intended to effectively reflect
the characteristics of CIs that occur in various environments, showing the potential of machine learning
approaches for CI detection.

Machine learning-based CI modelling is highly dependent on the training dataset. Thus, a large
amount of unbiased training data is required to build robust machine learning models that consider
various CI cases. However, most studies have focused only on CI detection itself and there is currently
minimal exploration in the automation and efficiency of building the datasets. Mecikalski et al. [9]
constructed a training dataset using multi-radar/multi-sensor data from Lakshmanan et al. [19] and
Stumpf et al. [20]. Han et al. [15] and Lee et al. [6] manually tracked CI areas around the Korean
Peninsula through visual interpretation using COMS MI and Himawari-8 AHI data. Although the
manual sampling method has the advantage of making a model suitable for the characteristics of the
Korean peninsula, there are limitations in the automation and objectivity of sample extraction from an
operational perspective.
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The motivation of this research is to suggest a complete framework of CI detection combining of
(1) an automated sampling tool, (2) machine learning-based CI modelling, and (3) repeated model
tuning through validation from an operational CI monitoring perspective using Himawari-8 AHI
over the Korean Peninsula. To take full advantages of the machine learning-based CI modelling, this
study focuses on not only CI modelling itself but also on the automated sampling and tuning process.
Section 2 introduces the Himawari-8 AHI data and weather radar. Section 3 describes the detailed
processes of automated sampling, machine learning-based CI modelling, and repeated model tuning
through the validation. Results and discussions are covered in Section 4, and Section 5 summarizes
and concludes this paper.

2. Data

2.1. Himawari-8 AHI

Himawari-8 was launched by the Japan Meteorological Agency (JMA) in October 2014. The AHI
onboard Himawari-8 scans the full disk once, four-times for Japan and its surrounding areas every
10 min [21–24]. The AHI consists of 16 spectral bands from visible to longwave infrared (IR) with
spatial resolutions from 0.5 km to 2 km (Table 1). The characteristics of AHI are similar to those
of the Advanced Baseline Imager (ABI) onboard GOES-16 and Advanced Meteorological Imager
(AMI) onboard Geostationary Korea Multi-Purpose Satellite-2A (GK-2A) operated by the Korea
Meteorological Agency (KMA). In this study, 6 bands: 6.2, 7.3, 8.6, 11.2, 12.2, and 13.2 µm were used
with an interval of 10 min.

Table 1. The specification of the spectral channels of Himawari-8 Advanced Himawari Imager (AHI)
that were used to develop the convective initiation (CI) detection model in this study.

AHI Band Center Wavelength (µm) Temporal Resolution (min) Spatial Resolution (km)

8 6.2

10 min 2

10 7.3

11 8.6

14 11.2

15 12.3

16 13.3

2.2. Interest Fields

This study suggests a framework for CI detection using the same interest fields as those used
by Lee et al. [6] (Table 2), who developed a CI model using Himawari-8 AHI with machine learning
approaches over the Korean Peninsula. Lee et al. [6] selected interest fields based on empirical testing
and a CI algorithm for GOES-16 [8,9] because GOES-16 ABI and Himawari-8 AHI have similar spectral
bands, especially in the IR fields. All the interest fields were calculated only from IR channels in order
to predict CI using both daytime and nighttime images. Each interest field represents the significant
characteristics of the target CI events. The physical characteristics, such as the cloud depth or glaciation
of the top atmosphere, were considered for CI detection algorithms, as has been done in the previous
research [5–9,15,17]. A total of 12 interest fields were extracted from the Himawari-8 AHI data: Spectral
differences provide information on cloud-top height (cloud depth) and glaciation at the time of the
image, while those from temporal differences provide information on the rate of vertical cloud-top
growth [6].
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Table 2. Interest fields used in this framework for CI detection (Lee et al. [6]).

Interest Fields Physical Basis

Tb 11.2 µm Cloud-top temperature assessment

Tb 6.2–11.2 µm
Cloud-top height relative to tropopauseTb 6.2–7.3 µm

Tb 13.3–11.2 µm

Tb 12.3–11.2 µm Cloud-top glaciation
Tb 8.6–11.2 µm

Tb 11.2 µm time trend Cloud top cooling rate

Tb 6.2–11.2 µm time trend
Temporal changes in cloud-top heightTb 6.2–7.3 µm time trend

Tb 12.3–11.2 µm time trend

Tb (8.6–11.2 µm)–(11.2–12.3 µm) Cloud-top glaciation

Tb (8.6–11.2 µm)–(11.2–12.3 µm) time trend Temporal changes in cloud-top glaciation

2.3. Ground Weather Radar

Ground weather radar sensors emit radiometric energy to estimate rainfall intensity, direction,
and speed based on the interpretation of backscattered energy in the region with a radius of 100 to
280 km. Ground-based radar data are typically used as the reference of CI [5,6,8,9,12,14,15,25]. KMA
operates 11 Doppler weather radars in South Korea providing constant altitude plan position indicator
(CAPPI) data every 10 min (data available at http://radar.kma.go.kr). CAPPI is obtained by extracting a
certain height of observations from stereoscopic observation data, and displayed on a two-dimensional
plane. KMA provides CAPPI data at a height of 1.5 km, which was used to detect the occurrence of CI
in this study.

3. Methodology

3.1. The Proposed Framework

The overall process of the proposed framework is described in Figure 1. As mentioned above,
there are three major processes: (1) The automated sampling tool, (2) machine learning-based CI
modelling, and (3) repeated model tuning through the validation. The following sections from
Sections 3.2–3.4 are organized following those three main processes, consistent with Figure 1. One of
the advantages of machine learning approaches is that, in contrast to static thresholding approaches,
they can be optimized by updating training data. Using validation results to update the training dataset,
the suggested framework can be improved by adjusting any misclassifications, thereby reducing
false alarms.

http://radar.kma.go.kr
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Figure 1. An overall flowchart of this study. The suggested framework is composed as follows:
(a) The automated sampling tool; (b) machine learning-based CI modelling; (c) model tuning through
validation. ML in (a,b) stands for machine learning.

3.2. The Automated Sampling Tool

The automated sampling tool automatically extracts the interest fields of CI and non-CI before
the first CI events identified from ground radar data (Figure 2). First, areas with the first ≥35 dBZ
occurrence from the weather radar echoes were collected considering the area, duration, and Tb from
the 11.2 µm channel images. Since not all radar echoes over 35 dBZ are caused by convective clouds,
radar echoes with 253.15 K < Tb(11.2) µm < 288.15 K were excluded to remove unwanted radar
echoes originating from non-convective clouds or already matured clouds based on empirical tests and
previous studies [13,14,25,26]. After filtering, radar ≥35 dBZ points were used as initial seed points
for region growing to find the cloud objects in the 10 min preceding CI. The basic idea of the region
growing algorithm is to examine the adjacent pixels and decide whether to include them into the
region of the seed point iteratively. The detailed process is as follows:

1. First, a certain seed point (pixel A) is solely assigned to a region R.
2. Four neighboring points (up, down, left and right) of the pixel A are added to the candidate

pixel list.
3. The differences of Tb(11.2) µm between the mean of region R and each point in the candidate list

are calculated.
4. The pixel with the minimum difference (e.g., pixel B) amongst the candidate points is added to

the region R, and the mean temperature of the region R is updated.
5. Neighboring pixels of the pixel B are added to the candidate pixel list.
6. Repeat steps 3–5 until the minimum difference exceeds the threshold (here, 1.5 K).

When the region growing process is finished in the 10 min prior to CI (i.e., t0), interest fields are
collected from the cloud objects, and points of the minimum temperature of the cloud objects are used
as new seed points for region growing 20 min before t0. This process is repeated until clouds are not
detected. By this iterative process, cloud objects can be tracked without the atmospheric motion vector
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(AMV), which is only available over cloud-free areas. Even if manual interpretation of the candidate
CI samples is needed in the final step due to cases where the satellite and radar data do not match,
this sampling tool saves a considerable amount of time and effort when building a database for the
machine learning-based CI modelling.
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Figure 2. The process of the automated sampling tool. From the right to left side, the backward cloud
object tracking was conducted using the region growing method. Starting with the seed points from
radar constant altitude plan position indicator (CAPPI) echo ≥35dBZ area, seed points were updated
iteratively. t0 is the time when rain starts to fall.

3.3. Machine Learning-Based CI modelling

Before running the CI model, a cloud mask was adopted to eliminate areas of the clear sky, cirrus
cloud, or matured cloud. Cirrus contamination has a particularly profound negative effect on the
performance of CI detection [8,13,14,26]. Therefore, cloud masking focusing on removing cirrus clouds
with the selected thresholds for brightness temperature was used based on Lee et al. [6] and cloud
masking criteria from KMA as follows:

Tb(11.2) µm < 253.15 K (1)

Tb(11.2) µm − Tb (12.3) µm > 6 K, (2)

Tb(6.2) µm − Tb(11.3) µm < −38 K. (3)

Euation (1) was used to mask out matured clouds, and Equations (2) and (3) were used for masking
out cirrus clouds using the difference of water vapor and IR channels.

To build a dataset for the machine learning-based model, 18 CI occurrence dates were selected
from 2015 to 2017 (Table 3). In order to evaluate the developed model, samples were separated into
four groups—one training and three test groups. Samples in the same CI occurrence date were not
divided between groups, so the CI occurrence dates were separated exclusively for the independence
of training and test cases. Group A was used as the training dataset, while Groups B, C, and D were
used as the test datasets. Moreover, each test group was used for tuning the model of other test groups.
When Group B was used as the test case, for example, Group A was used as the base training dataset
while Groups C and D were used as the tuning dataset.
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Table 3. The list of CI cases used in this study.

Group ID Date Usage Model Tuning With

A

CI-A1 01 August 2015

Training dataset -

CI-A2 01 September 2015
CI-A3 30 June 2016
CI-A4 06 July 2016
CI-A5 17 May 2017
CI-A6 25 June 2017
CI-A7 25 July 2017
CI-A8 07 August 2017
CI-A9 17 August 2017

B
CI-B1 24 May 2017

Test & tuning
dataset

C+DCI-B1 05 July 2017
CI-B1 10 August 2017

C
CI-C1 18 June 2017

Test & tuning
dataset

B+DCI-C2 02 August 2017
CI-C3 11 August 2017

D
CI-D1 28 June 2017

Test & tuning
dataset

B+CCI-D2 30 July 2017
CI-D3 16 August 2017

RF was adopted as the machine learning approach in this study because it has shown robust
performance and the explainable ability for the results of many classification and regression studies in
remote sensing [27–35]. RF has been used in the previous studies of CI detection with other machine
learning approaches [6,9,15]. While RF is implemented in various programing languages, we used
Fortran [27] in this study, which is widely used in operational systems in meteorological fields (the
Fortran code is available at https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm).

RF creates a collection of trees based on Classification and Regression Trees (CARTs), which are
rule-based decision trees [27]. A CART uses a recursive binary split approach to extract patterns or rules
from training data. In RF, each CART grows using two randomizations in selecting samples and split
variables to overcome the limitations of CARTs—the dependency on a single tree and high sensitivity
to training samples. RF randomly permutes the values of each variable using the leave-one-out method
and applies them to the tree and subtracts the number of correct cases in the variable-permuted data
from the correct class in the untouched data. One of the advantages of RF is that it provides the mean
decrease accuracy which can be interpreted as the relative variable importance. A variable with high
mean decrease accuracy can be interpreted as an important and contributing variable in the RF model,
degrading the accuracy when the variable is randomly perturbed. Through the empirical testing, the
performance was found to improve asymptotically near the 250 trees, and thus the number of trees was
set to 250 considering both performance and efficiency. Default values were used for the remaining
parameters such as the number of variables sampled at each split node (squareroot of the number of
variables) and the minimum node size of 1. The computational time for training the RF model was less
than 30 s using Intel(R) Core i7-4770 CPU @3.40GHz.

There is a possibility that pixel-wise CI detection could make an inconsistent result over a CI
region with salt-and-pepper noise. To mitigate this problem, majority voting and region growing
methods were applied as post-processing based on Lee et al. [6]. These two post-processing approaches
effectively reduce false alarms and increase the probability of detection by removing salt-and-pepper
noise and making CI objects more compact and aggregated [6]. In this study, a 3 × 3 window was
adopted for the majority voting process, and Tb(11.2) µm was used as the background for region
growing with a 1.5 K threshold.

https://www.stat.berkeley.edu/~{}breiman/RandomForests/cc_home.htm
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3.4. Model Tuning Throught the Validation

As denoted in the previous section, the validation of the model was conducted for Groups B, C, and
D. For each test CI case, results at a certain time were compared with the time series of all radar echoes
within 120 min. When the model predicted CI at the certain pixel with a 10 km buffer, the occurrence of
radar echo over 35 dBZ within 120 min was assigned as a hit (H), while the non-occurrence of the radar
echo over 35 dBZ was assigned as a false alarm (F). In a similar way, the validation result was assigned
as a miss (M) when the radar echo exceeded 35 dBZ within 120 min without a CI result. No radar over
35 dBZ and no estimated CI resulted in a correct negative (C). The radar echoes from already matured
or non-convective clouds were excluded during the validation process using convective cloud masking
thresholds to focus on the convective clouds. After getting the validation result, the typical skill scores
of the probability of detection (POD) and false alarm rate (FAR) were calculated as followed:

POD = H/(H + M) (4)

FAR = F/(H + F) (5)

From the validation result, model tuning was conducted to improve the machine learning-based
model. As described in Figure 1c, hits and misses were added to the CI samples and the false alarms
and correct negatives were added to the non-CI samples. The model tuning process was conducted for
each group. For example, the validation results of Groups C and D were used to update the training
dataset for Group B. This simple and intuitive process updated the dataset for each validation case,
and the update of dataset resulted in the update of the machine learning model. Even if this process is
one of the strong advantages of machine learning approaches, it has not yet been covered in studies on
machine learning-based CI detection [6,9,15].

4. Results and Discussion

4.1. Temporal Trend of Automated Collected Samples

To understand how the temperature of the collected CI samples changes during the development
of clouds, the time series variation of Tb(11.2) µm was analyzed with the entire set of collected samples.
Figure 3 shows the temporal variation of Tb(11.2) µm measured from a total of 16,937 CI samples
collected by the automated sampling tool. The averaged Tb(11.2) µm varies from 281.15 K to 271.39 K
in 10–100 min before CI occurrence. This shows a similar pattern to a previous study of CI using
Himawari-8 AHI over southern-east China [14]. When the radar CAPPI echo started to exceed 35 dBZ,
the mean temperature of Tb(11.2) µm was 268.05 K, then it decreased rapidly to 247.18 K right after
10 min. When considering only the 30 min before and after CI events, convective clouds grew rapidly
after the CI event with a −14.25 K cooling rate per 10 min, while the cooling rate was much smaller
with −1.76 K per 10 min prior to the CI event. The mean standard deviation of Tb(11.2) µm was 4.64 K
before the CI event, 7.30 K at the CI event, and 13.40 K after the CI event. Due to the variety in the
duration and uplift power of each cloud in the developing phase, the standard deviation of Tb(11.2)
µm was higher after the CI events compared with the pre-developing phase.
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Figure 3. The variation of Tb(11.2) µm over the CI area from the samples obtained by the suggested
automated sampling tool. Negative time differences in the x-axis refers to the time before the CI events,
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4.2. Variable Importance

The mean decrease accuracy from the RF model could be interpreted as being the relative
importance in the RF model (Figure 4). Amongst the 12 interest fields, Tb(11.2) µm (cloud top
temperature) showed the highest mean decrease accuracy. Previous studies using machine learning
approaches also reported that Tb(11.2) µm representing cloud top temperature greatly contributed to
classifying the CI event [6,9]. Variables of the Tb(8.6–11.2) µm (cloud-top glaciation) and Tb(6.2–7.3) µm
trend (temporal changes in cloud-top height, updraft strength) were listed following Tb(11.2) µm.
The Tb(8.6–11.2) µm was reported as the most significant variable among glaciation indicators in
previous studies using PCA [12] and RF [6]. The updraft strength represented by the Tb(6.2–7.3) µm
trend was also reported as the highest PCA rank for clouds with cloud-top temperatures ≥240 K [12].
In contrast, the Tb(6.2–7.3) µm trend was identified as a less contributing variable in RF [6], while
the Tb (8.6–11.2)–(11.2–12.3) µm trend resulted in the high mean decrease accuracy implying that the
temporal changes in cloud-top glaciation were important for CI detection. As the overall distribution
of the cloud-top temperature for the target clouds were higher in this study (~270–280 K) and
Mecikalski et al. [12] (>240 K) than Lee et al. [6] (<240 K), the Tb(6.2–7.3) µm trend representing
the updraft strength might be more significant than the trend of cloud-top glaciation at the early
development of CI. Other trend variables except for the Tb(6.2–7.3) µm trend did not show high
mean decrease accuracy. Interest fields of the temporal trend were more heterogeneous than interest
fields at single times in an object (not shown here), thus large differences in the trend variables might
exist within a single object. Thus, the averaged value over an object may be able to make a larger
contribution of the trend variables for CI detection.
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Figure 4. The mean decrease accuracy of 12 interest fields in the RF model using all samples (Groups A,
B, C, and D). A higher mean decrease accuracy is interpreted as indicating a more significant variable
in the random forest (RF) model.

4.3. Model Performance

A quantitative evaluation of POD, FAR, and lead time was conducted for test CI cases and
summarized by each group with and without the model tuning process (Table 4). Without the tuning
process (training dataset with only Group A), the overall skill scores were a POD of ~0.79, a FAR of
~0.46, and a lead-time of ~44.0 min. After the tuning process, the results for the POD and FAR were
improved by 0.03 and 0.09. Overall, the POD slightly increased after tuning except for Group C. The
POD increased slightly overall (~0.3), but increased by 0.6 for Groups A and C, suggesting that the
model tuning process could improve the POD in some cases. However, the decrease in the POD for
Group C implies that the tuning process did not always guarantee a better POD, hence it should be
used carefully by considering the distribution of the CI cases used in the tuning process. With many
more CI cases for tuning, a more stable tuning effect might be expected. For all test groups, the FAR
was reduced by ~0.09. According to previous studies [8,14], lowering the false alarm rate is the most
important and challenging problem in the CI modelling, which is expected to be mitigated through the
model tuning process. In contrast to the POD and FAR, the lead-time was reduced from ~44 to ~37 min
after the tuning process. Especially, the increase in the POD was accompanied by the decrease in the
lead time in Groups B and D. As POD increased by ~0.08, the lead-time was shortened by ~10 min in
both groups. The increased hits near the time of strong radar echoes (i.e., about 10–20 min prior to the
time when rain starts to fall) might result in the lowered average lead time, but further study should
be needed to explain the effect of model tuning over the lead time. In addition to lead-time, the initial
detection time of CI was also examined to focus on the very first detection over each CI object. The
initial detection time was defined as the maximum lead time of each CI case. Similar to the lead-time,
the initial detection time of both Groups A and C was shortened by ~5–6 min while slightly extended
~3 min in Group B. Overall, the initial detection time became shorter ~6 min after the tuning process.
Nonetheless, the initial detection time regardless of the tuning process reached ~ l h or even longer
than that on average.

The direct comparison of the result from this study and previous studies using machine learning
approaches is not appropriate due to the difference CI cases and reference data. Han et al. [15] resulted
in a POD of ~0.75 and a FAR of ~0.45 with COMS MI data. Lee et al. [6] yielded a POD of ~0.80 and a
FAR of ~0.20 using DT, RF, and LR from Himawari-8 AHI data over the Korean Peninsula. Although
Lee et al. [6] yielded a higher performance than this study, it should be noted that the phase of target
clouds is much less developed in this study (cloud top temperature ~265–285 K) than that of Lee et al.
(~230–245 K). This indicates that the proposed approach in this study focuses on the much earlier
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detection of CIs than that in Lee et al. [6], which might increase the uncertainty of model forecasts.
Consequently, the lead time and initial detection time identified in this study were longer than those
in Lee et al. [6]. Mecikalski et al. [9] developed RF and LR models for CI detection using GOES-16
ABI and NWP data, yielding a POD of ~0.62 and a FAR of ~0.32 with only satellite data. Using both
satellite and NWP data, Mecikaslki et al. [9] showed improved results with a POD of ~0.80 and a FAR
of ~0.30. This implies that the NWP or other auxiliary data can be highly expected to increase the
overall performance if adopted in the framework proposed in the present study.

Table 4. The score of the probability of detection (POD), false alarm rate (FAR), and lead-time for test
Groups B, C, and D with and without model tuning.

Skill Score Group B Group C Group D Overall

POD (no tuning)
POD (tuning)

0.72
0.78

0.92
0.89

0.73
0.79

0.79
0.82

FAR (no tuning)
FAR (tuning)

0.48
0.39

0.39
0.28

0.52
0.44

0.46
0.37

Lead time in minutes (no tuning)
Lead time in minutes (tuning)

49.5
38.4

37.5
36.1

45.0
36.6

44.0
37.0

Initial detect time in minutes (no tuning)
Initial detect time in minutes (tuning)

71.6
65.6

52.7
55.9

75.1
59.7

66.4
60.4

Two case examples of CI-B2 and CI-C2 are depicted in Figures 5 and 6. They show the predicted
result of CI after the tuning process in the time series 20–50 min before the first occurrence of the
target CI events, as well as the radar echo at that time. In Figure 5 (CI-B2), target CI events around the
southern coast of the Korean Peninsula (marked with the black circle) were predicted around 50 min in
advance. Around Jeju Island, located at 33.5◦N and 127.5◦E, scattered false alarms were found at the
edge of a matured cloud (also in Figure 7). In the case of CI-C2 in Figure 6, target CI events around
35.5◦N and 127◦E were detected with 20–50 min of the lead time. As the time got closer to 04:50, the CI
detection result became clearer.
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Figure 5. Time series of CI detection results (a-d) and radar CAPPI echoes (e, f) on 05 July 2017 (CI-
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Figure 5. Time series of CI detection results (a–d) and radar CAPPI echoes (e,f) on 05 July 2017 (CI-B2)
from 04:30 to 05:20 after model tuning. In (a–d), the predicted CI area is shown in red with Tb (11.2)
µm as a background. The area over the target CI events is marked with a black circle in (e,f). The first
≥35 dBZ of radar echo over the target CI events occurred at 05:20 (f).
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Figure 6. Time series of CI detection results (a–d) and radar CAPPI echoes (e,f) on 02 August 2017
(CI-C2) from 04:00 to 04:50 after model tuning. In (a–d), the predicted CI area is shown in red with
Tb(11.2) µm as a background. The area over the target CI events is marked with a black circle in (e,f).
The first ≥35 dBZ of radar echo over the target CI events occurred at 04:50 (f).
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Figure 7. The spatial validation map of CI-B2 30–50 min prior to the target CI events on 05 July 2017
05:20 (corresponding to Figure 5). Results without (a–c) and with (d–f) model tuning were depicted
with the same time series. FA and CN stand for a false alarm and correct negative, respectively. Note
that the accuracy of the radar data could be degraded over the sea far from the inland area.
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The effect of model tuning on the CI detection performance was visually analyzed using validation
maps in the cases of CI-B2 and CI-C2 (corresponding to Figures 5 and 6) with time series depicted in
Figures 7 and 8. The top three figures (a–c) are validation maps without model tuning 30–50 min prior
to the target CI events, while the bottom three figures (d–f) depict validation maps of the CI results
after the tuning process. For both CI-B2 and CI-C2, false alarms were significantly reduced after model
tuning. In Figure 7, false alarms over the inland area of the Korean Peninsula notably decreased, but
there were more false alarms around the strong matured cloud near Jeju Island (33.5◦N and 127.5◦E)
after the tuning process. The tuning dataset from the other groups (C and D for CI-B2) contributed to
reducing the overall rate of false alarms, but there must have been some samples not suitable for CI
and non-CI cases. This might be an inevitable problem due to the various meteorological conditions
considering that only 18 days of CI occurrences were used in this study. In the case of CI-C2, the tuning
process also significantly reduced the number of false alarms (Figure 8).Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 18 
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Figure 8. The spatial validation map of CI-C2 30–50 min prior to the target CI events on 02 August 2017
04:50 (corresponding to Figure 6). Results without (a–c) and with (d–f) model tuning were depicted
with the same time series. FA and CN stand for a false alarm and correct negative, respectively. Note
that the accuracy of the radar data could be degraded over the sea far from the inland area.

4.4. Novelty and Limitations

This study suggested the complete framework for machine learning-based CI detection, including
an automated sampling tool and repeated model tuning process. These two sampling-related processes
enhanced the advantages of using machine learning approaches, in terms of acquiring and updating
the training dataset which has a significant effect on the performance of the developed model. By
using the automated sampling tool, interest fields were collected not only prior to the CI events, but
also after the CI events. With this backward and forward object tracking, a time series analysis was



Remote Sens. 2019, 11, 1454 14 of 17

conducted to understand the development phase of convective clouds related to CI. The automated
sampling tool used in this study can be helpful to generate a CI database over a new study area or
period. Our machine learning-based model has a high dependency on the training dataset. When
a misclassification occurs, the samples need to be updated to make the model mitigate the error.
Although only 18 days of CI occurrences with four groups were tested in this study, the repeated
model tuning continuously updated the training data to further improve model performance from
an operational perspective. In other words, the suggested model tuning process can shore up the
weak point of previous machine learning-based CI models. Even if there are some aspects that need
to be examined further, this tuning process is expected to improve the performance of CI detection,
especially in terms of decreasing the rate of false alarms. Moreover, several state of the art machine
learning techniques, such as convolutional neural networks, could be easily adopted in this framework
instead of RF. Consequently, the suggested framework is expected to help maintain the model from an
operational point of view. Moreover, this framework can help to make a new CI detection model from
scratch without a well-established database.

Despite the novelties of the proposed framework, however, there are still several limitations to
solve after this study. The major difficulty in this study was to exclude unwanted radar echoes—i.e.,
those that were not CI events. Getting exact radar echoes for CI events is one of the most crucial processes
in both the modelling and validation of CI detection. Previous GOES-based studies [9,10,25,36] used
the −10 ◦C isotherm radar [19,20] over the US area. If isotherm −10 ◦C radar data were available,
classifying radar echoes emanating only from CI would become easier, because strong convection
generally starts from around −5 ◦C (Figure 3). As isotherm radar data was not available over the
Korean Peninsula, this study used the radar CAPPI 1.5 km—the same as in the previous study [6]. The
altitude of 1.5 km may not correspond to a −10 ◦C temperature, especially during the Korean summer
with its very high humidity and surface air temperature, while the CI is generally defined by a radar
≥35 dBZ at the height of −10 ◦C. To get more accurate radar echoes from CI events, a combination of
base and composite reflectivity could be examined in future work to compare the difference in the
echoes between lower and higher altitudes.

5. Conclusions

A complete framework for detecting CI using Himawari-8 AHI over the Korean Peninsula was
suggested in this study. The suggested framework consists of an automated sampling tool, machine
learning-based model, and repeated model tuning. Without model tuning, the overall skill scores
were 0.79, 0.46, and 44.0 min for the POD, FAR, and the lead-time, respectively. The model tuning
resulted in better performance with an increase in the overall POD of 0.03 and a decrease to the FAR
of 0.09. However, the lead-time and initial detection time slightly dropped by around 9 and 6 min,
respectively. CI samples collected using the automated sampling tool showed the temporal distribution
of convective clouds, with a cloud top temperature of ~268.05 K at the first occurrence of radar echo ≥35
dBZ. Amongst the 12 interest fields, the Tb(11.2) µm, Tb(8.6–11.2) µm, and Tb(6.2–7.3) µm trends were
identified as the most important variables in the RF model, reflecting the importance of the cloud-top
glaciation and temporal change in detecting CI. A visual comparison of the model tuning showed that
there was a clear reduction in the rate of false alarms in cases of CI-B2 and CI-C2. Therefore, it is clear
that the suggested framework is beneficial for effectively reducing false alarms.

To develop a robust and accurate CI detection model with machine learning approaches, a greatly
expanded dataset reflecting various CI cases should be created. This process is challenging due to
the complex meteorological conditions that CI events appear in. From this perspective, the proposed
framework is promising and can be further improved in future work. Regarding model tuning, for
example, the cross-tuning over different CI dates was conducted in this study. Time series model tuning
within the same date in near real-time is also expected to improve the CI detection performance, as it is
able to consider the temporal changes of the meteorological condition. Several state of the art machine
learning techniques are also expected to bring better performance in the future. These techniques can
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easily be adopted in the suggested framework. Last but not least, the ability to accurately extract radar
echoes only for CI events would be as significant as the CI modelling in the suggested framework.
Therefore, further investigation into the relationship between the available radar data and CI is needed
over the Korean Peninsula and East Asia.
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Abbreviations

The following abbreviations are use in the manuscript:

ABI Advanced Baseline Imager
AHI Advanced Himawari Imager
AMI Advanced Meteorological Imager
AMV Atmospheric Motion Vector
CAPPI Constant Altitude Plan Position Indicator
CART Classification and Regression Tree
CI Convective Initiation
COMS Communication, Ocean and Meteorological Satellite
DT Decision Tree
FAR False Alarm Rate
GOES Geostationary Operational Environmental Satellite
JMA Japan Meteorological Agency
KMA Korea Meteorological Agency
LR Logistic Regression
MI Meteorological Imager
MSG Meteosat Second Generation
NWP Numerical Weather Prediction
PCA Principle Component Analysis
POD Probability of Detection
RF Random Forest
SEVIRI Spinning Enhanced Visible and Infrared Imager
SVM Support Vector Machine
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