
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

8-13-2019

Collaborative Edge Computing in Mobile Internet
of Things
Ravishankar Chamarajnagar

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Chamarajnagar, Ravishankar, "Collaborative Edge Computing in Mobile Internet of Things." Dissertation, Georgia State University,
2019.
https://scholarworks.gsu.edu/cs_diss/153

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


TITLE: COLLABORATIVE EDGE COMPUTING IN MOBILE INTERNET OF THINGS

by

RAVISHANKAR CHAMARAJNAGAR

Under the Direction of Ashwin Ashok Phd.

ABSTRACT

The proliferation of Internet-of-Things (IoT) devices has opened a plethora of opportu-

nities for smart networking, connected applications and data driven intelligence. The large

distribution of IoT devices within a finite geographical area and the pervasiveness of wireless

networking present an opportunity for such devices to collaborate. Centralized decision sys-

tems have so far dominated the field, but they are starting to lose relevance in the wake of

heterogeneity of the device pool. This thesis is driven by three key hypothesis: (i) In solving

complex problems, it is possible to harness unused compute capabilities of the device pool in-



stead of always relying on centralized infrastructures; (ii) When possible, collaborating with

neighbors to identify security threats scales well in large environments; (iii) Given the abun-

dance of data from a large pool of devices with possible privacy constraints, collaborative

learning drives scalable intelligence.

This dissertation defines three frameworks for these hypotheses; collaborative comput-

ing, collaborative security and collaborative privacy intelligence. The first framework, Op-

portunistic collaboration among IoT devices for workload execution, profiles applications and

matches resource grants to requests using blockchain to put excess capacity at the edge to

good use. The evaluation results show app execution latency comparable to the centralized

edge and an outstanding resource utilization at the edge. The second framework, Integrity

Threat Identification for Distributed IoT, uses a new spatio-temporal algorithm, based on

Local Outlier Factor (LOF) uniquely using mean and variance collaboratively across spa-

tial and temporal dimensions to identify potential threats. Evaluation results on real world

underground sensor dataset (Thoreau) show good accuracy and efficiency. The third frame-

work, Collaborative Privacy Intelligence, aims to understand privacy invasion by reverse

engineering a user’s privacy model using sensors data, and score the level of intrusion for

various dimensions of privacy. By having sensors track activities, and learning rule books

from the collective insights, we are able to predict ones privacy attributes and states, with

reasonable accuracy. As the Edge gains more prominence with computation moving closer

to the data source, the above frameworks will drive key solutions and research in areas of

Edge federation and collaboration.
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PART 1

INTRODUCTION

Internet-of-Things (IoT) has created huge opportunities and challenges in compute,

security and our ability to drive intelligent insights with data from the fleet of heterogenous

devices. Collaboration among devices at the Edge in all these areas is the path forward

as we scale beyond the compute capabilities of centralized infrastructures and bandwidth

of networks. Collaboration in each of these areas mean the use of different resources or

intelligence. Collaboration on compute translates to sharing compute resources and services,

while collaboration in detecting security threats translates to sharing information about

context and federated learning implies driving decentralized intelligence with smaller subsets

of data in order to preserve data privacy. Lets explore each of these in more detail in the

sections below.

1.1 Collaborative Edge Computing

IoT is leading the way to a world of smart systems, applications and services powered

by mobile devices. Cloud based mobile IoT is paving the way for a large number of emerging

applications and computing platforms. One of the key challenges in realizing mobile IoT

systems using current day cloud solutions is the heavy dependence on centralized cloud

infrastructures. Such centralized solutions are necessary to address the large scale of IoT,

however, the performance of such systems degrade with the wireless network connectivity

between the device and the cloud. Also, with the growing need for data creation, access

and storage, the network backbones will be inundated with data if they try to handle every

IoT application and service request using centralized data centers. This dependency on a

centralized architecture can lead to performance degradation and eventually unreliability in

mobile IoT systems.
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We propose the idea of opportunistic collaboration among mobile IoT devices [1] to

share their services and excess computing resources. Opportunistic collaboration among

devices over wireless networking requires proper coordination and agreements among the

devices in a purely distributed manner. To facilitate the distributive collaboration, we pro-

pose a decentralized architecture design using blockchain technology. Through experimental

evaluation of a prototype collaborative mobile–IoT system involving RaspberryPis and a

Dell IoT edge gateway, we show that our proposed distributed collaborative approach is fea-

sible and comparable to a non–collaborative edge–computing based approach from a latency

perspective.

1.2 Collaborative Edge Security

As noted earlier, IoT paradigms have created, in addition to opportunities, a huge

void in security. Although there are multiple works that explore security through device

identification, cryptography and network security protocols, the question of can we trust the

integrity of things to represent reality or precisely, can we trust the data and the metrics

being sent by things, remains largely unanswered in distributed wireless scenarios. Given

the rapid pace of adoption of IoT, being able to trust data from each of these devices is

extremely important, but no systems exist today that can help us categorically state that

data from these devices can be trusted. Designing such a system is challenging given the

number of threat vectors and device types. Moreover, the problem becomes harder in a

wireless sensor networking scenario, especially in harsh environments, due to the potential

avenues for spoofing and physical attacks. Reliance on centralized algorithms to identify

these integrity threats is impractical given the scale and dynamism of the environment.

We explore conditions or threat vectors under which a wireless network of devices may

become unreliable in a fully distributed setting, and present an approach to identify potential

integrity failures or threats using a collaborative approach that makes use of spatial and

temporal locality to understand context [2]. We present the effectiveness of our approach

through a use–case analysis for precision agriculture applications. Through experimental
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and trace–based simulations, we show that threats can potentially be identified in real–time

with 80% accuracy and at about 90% precision and recall.

1.3 Collaborative Privacy Intelligence

The IoT devices have become the eyes and ears of the physical environment. Rich user

interactions and powerful sensors at the Edge mean they have access to an unprecedented

amount of data, in some cases, private in nature. Models learned on such data hold the

promise of greatly improving usability by powering more intelligent applications instead of

learning on purely consolidated data. There may be risks and responsibilities to storing it

in a centralized location when the data is private. Given the abundance of data from a

large pool of devices with possible privacy constraints, collaborative learning drives scalable

intelligence.

With Collaborative Privacy Intelligence, we aim to understand privacy invasion by re-

verse engineering an individual’s posture using derived insights from the sensors’ data, and

quantify the level of intrusion based on a generated ruleset for Localization and Emotional

dimensions of privacy [3]. By having sensors track activities in these dimensions, like sitting

and working at a desk, or being Optimistic(happy and surprise), and learning rule books

from the collective insights, we are able to predict ones privacy attributes, an individual’s

activities and state, with reasonable accuracy.
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PART 2

COLLABORATIVE EDGE COMPUTING: OPPORTUNISTIC MOBILE IOT

WITH BLOCKCHAIN BASED COLLABORATION

The pervasiveness of the Internet–of–Things (IoT) is leading the way to a world of

smart systems, applications and services powered by mobile devices. Cloud based mobile

IoT is paving the way for a large number of emerging applications and computing platforms.

One of the key challenges in realizing mobile IoT systems using current day cloud solutions

is the heavy dependence on centralized cloud infrastructures. Such centralized solutions

are necessary to address the large scale of IoT, however, the performance of such systems

degrade with the wireless network connectivity between the device and the cloud. Also,

with the growing need for data creation, access and storage, the network backbones will

be inundated with data if they try to handle every IoT application and service request

using centralized data centers. This dependency on centralized architecture can lead to

performance degradation and eventually unreliability in mobile IoT systems.

Even as we move towards Edge Computing for IoT workloads to counter computational

inefficiencies and network limits with cloud based architectures, the fact that mobile IoT

machines are getting smarter and more powerful is encouraging. IoT devices are getting

packed with resources such as sensors, computing, I/O, etc. However, these resources are

being completely underutilized as most of them are used only for a certain duration for

specific applications. For instance, a smartphone with quad–core processors has more com-

puting power and storage than necessary for an average daily usage which mostly involves

access to text and emails; a smart printer in an office is largely in sleep and usually handles

jobs in aperiodic chunks; a smart TV is used more in the evenings at homes. The scenario

applies to services available on devices as well. For instance, printer services and camera

video capabilities are unused for a large percentage of the time. In essence, there is excess
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Figure (2.1) Opportunistic Collaborative IoT using Blockchains

resource and service capacity available in mobile IoT devices at the Edge opening up a huge

opportunity for sharing them across all available nodes, in a paradigm that we would term

as the Collaborative Edge. In this regard, we propose a system design for better utilization

of resources and services in mobile IoT through opportunistic collaboration at the Edge.

2.1 Towards opportunistic collaboration

As we look to address the above issues with network reliability, and resource and service

underutilization, we realize the need for opportunistic collaboration of IoT devices to share

resources and services when they are available. Opportunistic collaboration becomes neces-

sary as application offloading to the cloud may not always be possible due to bandwidth and

latency concerns. Also, the problem gets worse at scale. We seek to improve computational

and network usage efficiency by mechanizing efficient ways to drive decisions and insights to



6

execute applications and services closer to the devices, at the edge. Improving computation

efficiency through collaboration coupled with the opportunistic usage of unused capacity

in devices and at the edge, motivates our proposed opportunistic collaborative mobile IoT

design. The proposed solution uses the well–known paradigm of blockchains to facilitate the

collaboration, as illustrated in Figure. 2.1.

2.1.1 Blockchain based collaboration

We present a novel collaborative mobile IoT architecture that lets mobile IoT devices

come together in an adhoc manner, advertise their excess resource capacity and offered

services using the blockchain framework. The collaborating devices are connected through a

blockchain network that manages data dissemination in the network. The system uses smart

contracts to advertise excess resources and network capacity, which are synchronized across

a global network of blockchain nodes. These contracts are binding in nature and transparent

to the network of nodes participating in the blockchain. Resources are made available to

the seeking devices through containers (e.g. docker) so that applications can be executed

in a sandboxed fashion and do not need rooting the device. Services are made available

through peer–to–peer (P2P) communication protocols. Here, services can be those initiated

by apps or broad IT infrastructure based services that cater to diverse applications and other

dependent services.

This approach lays the foundation for a distributed computing solution for mobile IoT

that lets one opportunistically use excess capacity on resources and services. In essence, our

proposal is a distributed middleware design that leverages blockchain technology for smart

resource/service discovery, coordination and management.

In summary, the key contributions of this solution are:

(i) Design of a distributed mechanism to allocate resources and execute services through

smart blockchain contracts and application execution on sandboxed containers,

(ii) Implementation of a prototype collaborative mobile IoT system on Raspberry Pis

and a Dell IoT edge gateway, and
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(iii) Evaluation of network latency and benchmarking resource utilization under col-

laboration.

2.1.2 Related Work

We discuss related works from the areas of resource abstraction platforms, resource

lookup algorithms, distributed resource sharing platform and service invocation platforms.

Ardalan Amiri Sani et. al. [4], proposed an architecture RIO, for the abstraction of

resources using a separation of the application layer from the operating systems services

and kernel layer. Their approach addresses the specific area of resource abstraction with

cross memory mapping. Daniel J. Dubois et. al. [5], proposed a middleware ShAir, for

P2P resource sharing. It elaborates on the abstraction of resources using an event bus.

While the approach addresses resource abstraction, it does not address specifically the adhoc

networking and resource registry aspects. Ion Stoica et al. [6] discuss the approach of P2P

lookup of Internet applications. It uses a distributed lookup protocol that helps map a given

key to a node with the right content and efficiently handles the dynamic registration and

exits of the nodes in the network. Salem, et.al, [7] have proposed a mechanism for sharing

resources at the edge. It uses registries and a central mediation to choose the right resources

based on demand. Also, they introduce the concept of compensation for the resources used.

IBM and Samsung [8] have brought together in a proof of concept, the blockchain as

a repository of assets, their artifacts and related services, along with the P2P fabric using

Telehash that enables discovery and communication. This is testament to the fact that

decentralized IoT is permeating the industry and there is a perceived need for it in the

near term. One of the key aspects to fully realize it is the flexibility to execute any apps or

services on any device using any resource in the pool. SingularityNet [9] has brought together

multiple AI services talking to each other to drive synergies from a decentralized AI. The

underlying platform to support this level of communication is a decentralized system on

blockchain that support services and apps. The group led by Prof. Bhaskar Krishnamachari

in USC [10] explores block chain technology for diverse areas. These are clear evidences that
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the decentralized platform to advertise, discover and instantiate services and apps using

blockchains is key to materializing highly sophisticated concepts in diverse areas.

Our proposed architecture helps provide a one–stop solution to: (a) Sharing of system

resources and services, (b) Decentralized mediator and decision making, and (c) Compensa-

tion for sharing. While such features have been discussed in many technologies and research

works before, combining all into a single entity framework has not been well explored.

2.2 Opportunistic Collaborative Platform design

2.2.1 Blockchain Overview

Blockchain is a distributed database for an active list of records called blocks. Each

block contains a timestamp and a link to a previous block making blockchain a chronological

sequence of blocks with all transactions recorded up to that point in time. Just as transac-

tions execute, they are mined, validated and added to blocks to be synchronized with the rest

of the blockchain network. A blockchain serves as an open, transparent distributed ledger

that can record transactions between parties efficiently and in a verifiable and permanent

way. The ledger hosts transactions and smart contracts that can be triggered and executed

automatically in software. A smart contract is a computerized transaction protocol that

executes the terms of a contract. All of its code and data are housed in the blockchain and

synchronized across the network.

2.2.2 System Overview

The core of this design is a distributed middleware that enables collaboration of mobile

IoT elements using the capabilities of blockchain network. The blockchain framework helps

to advertise, disseminate and make resources and services available to the network of IoT

devices. Our design focuses on a localized blockchain network of nodes. We position that

each network of IoT devices can form a small blockchain network that can expand organically

as more devices are registered into this collaborative network. It also provides a virtual

gateway to other blockchain networks making information on resource and service available
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on a global scale.

As shown in Figure. 2.1, there are two key elements that comprise this distributed

architecture: (a) applications and services that require resources, (b) distributed collection

of IoT elements (devices and machines) with resources to share. Here, the IoT elements

are termed as the collaborating nodes. Discovery of services and resources (computing and

storage), consent for collaboration, invocation of services and allocation of resources are done

using smart contracts that are deployed by each of the collaborating nodes in the blockchain.

These contracts contain information of the list of available services and resources on each

node. Through the blockchain framework these contracts are shared among all the nodes in

the network.

A subset of the blockchain nodes, designated (through consensus) as miners, create

and update smart contracts across the blockchain. For example, in an office room scenario

of a collaboration network of a phone, printer, laptop, smart voice assistant and smart

thermostat, the device with the highest computing power can be designated as the first

miner. In essence, every device in the network can be designated as the miner. The downside

is that the information dissemination time would increase as synchronization of each contract

update will have to percolate through each miner node and arrive at a consensus. Depending

on the number of miners the convergence can take few seconds to minutes. On the other

hand, less number of miners will put a heavy load on a few miners. This lends itself to an

interesting trade off between miner count and resource availability.

2.2.3 System Workflow

The blockchain setup is a one–time process that involves all the mining and collaborating

nodes. Here, we particularly focus on the collaborative execution process and not on the

setup process. The setup process is analogous to setting up any IT infrastructure where

registration of devices and information routing is checked through template test benches. In

the office room example discussed above, the setup process is equivalent to registering the

devices in the network of blockchain and designating the potential miners. In this section,
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Figure (2.2) System Workflow. Lines in Red are the contributions of this approach

we discuss the design details of the execution workflow of the process that happens once

a blockchain is setup and that a resource requirement is found in the network. How the

network of nodes collaborate among themselves in a distributed manner to help each other

achieve their tasks (applications and/or services) is the key notion of this workflow design.

We discuss this workflow in more detail using the illustration in Figure. 2.2. Note that

this framework does not implement any new security measures, but inherits the security

guarantees provided by the Blockchain and the underlying wired/wireless network.

(Step 1) Service and Resource Registration. Any node with resources or services to

offer registers the resources and/or services with the smart contract deployed in its blockchain

network. The contracts contain resources and services available for rent/lease along with

their cost and node identity in an encrypted manner. When the resources are advertised,

they are recorded along with the identity of the node offering the same. This minimizes the

resource discovery time as it accounts for locality in addition to keeping fragmentation to

a minimum. Once a resource or service becomes available, it goes through a dissemination

cycle, beginning with the blockchain contract getting invoked. As this request changes the
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state of the transaction, it gets synchronized with the rest of the blockchain that involves

mining of the transaction, creation of a block and subsequently synchronization with the rest

of the blockchain cluster. As the technologies move closer to autonomous operations, it is

extremely important for resources and services to be discovered when needed. Having them

on the blockchain makes them immediately available and easy to audit, two key aspects as

we look into distributed autonomous systems.

(Step 2 & 3) Application Profiling. Once an application is kicked off, a typical appli-

cation management system profiles the apps for its required and excess resources. It also

acquires the list of services that might be invoked as part of the execution cycle of the apps

and some of these services might be spread across the network. The apps and services to

profile are invoked through an automated triggering process during the contract preparation.

(Step 4) Resource Allocation. Once distributed or queued for execution, the edge com-

puting units check for the availability of the resources and/or services necessary to execute

the apps and services. These edge units can be a single edge computer or a collection of

nodes in the blockchain at the edge of the network. If the edge units do not have sufficient

computing resources as requested in the contracts the request is turned to the blockchain

nodes to execute the apps and services. Selection of the blockchain nodes to execute the

apps and services comprises the resource allocation phase. Any traditional resource alloca-

tion mechanism that optimizes for latency based on available computing resources works in

this case. However, the adhoc and distributed behavior of the blockchain approach simplify

the resource allocation process to a simple resource matching process by comparing con-

tracts. This is possible because the contracts are agreed upon based on consensus and all

collaborating nodes are informed of every other node’s resource requirement and availability.

This execution is analogous to pairing and agreement among the collaborating IoT devices

in the office scenario to help each other with resources to execute the apps pertinent in the

network. In the event, the nodes in the network do not have excess resources exposed for use,

the nodes initiating the apps will fall back to the central edge or cloud computing framework.
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(Step 5 & 6) Execution and Compensation. Once the node with the available resources

is acquired the app is executed and the results gathered. App/service execution is done in

sandboxed containers that get deployed in the blockchain nodes during the execution process.

As we will describe later, our prototype system uses docker [11] containers, however, any type

of sandboxing solution will work. In addition to satisfying the service and resource demands,

it matches the rental price with the price the requesting entity is ready to pay for the resource

or the service. Once either one is granted to the requesting entity, the node renting them is

compensated for it with cryptocurrency (e.g. bitcoin [12], ethereum [13]).

Note the distinction between ‘initiation’and ‘invocation’; initiation of the app/service

involves Resource discovery while invocations refer to execution which is instantaneous. For

instance, deploying an HTTP service (initiation) versus accessing webpage using HTTP urls

(invocation). Service invocation takes on a lot more importance in solutions that tie them

together by cascading them and getting results to be fed as inputs to the next set of services.

SingularityNet [9] has set an example of cascading the artificial intelligence services so they

no longer as just speech or text AI services, but services that work in tandem to create a

coherent solution. Such examples make a compelling case for the need of our decentralized

collaborative platform.

2.3 Platform Efficiency

We conducted experiments using a prototype implementation of our proposed system

to evaluate the feasibility and benefits of the collaborative approach. We use latency and

resource utilization efficiency as the metrics for our evaluation, where

• App Execution Latency is defined as the time it takes for all steps in the workflow in-

cluding the latency for resource procurement, transfer and deployment, and initiation.

This is equivalent to user response time or service delivery time.

• Resource Utilization Efficiency is defined as a combination of the dissemination ef-

ficiency to draw up a binding contract that makes the resource available on the
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blockchain network and the procurement efficiency to allocate resources to the re-

questing entity.

2.3.1 Experiment setup and methodology

We set up a blockchain network with 4 nodes forming a private network which are set to

mine transactions and blocks, each on a single thread. The setup comprises 3 Raspberry Pi3

and a Dell 5100 IoT gateway, all of which have resources to spare (x RAM, y CPU cycles,

z storage) and services available that are advertised on the blockchain as part of a contract

with appropriate usage costs. Any app that wants to use these resources and/or services will

need to request and acquire a handle to them and compensate the offering node. The nodes

each have (pseudo) accounts set up to receive compensation for mining, resources leased and

services invoked through pseudo cryptocurrency. Table 2.1 outlines the configuration of the

Raspberry Pis and the Dell gateway. Four containerized apps on Docker [11] with different

data and storage requirements and execution priorities are used as sandboxes for executing

the apps and services. All experiments were conducted in an office room environment with

the 3 Raspberry Pi nodes and the Dell edge gateway placed in the same local area network

within 5m radius.

Nodes RAM(GB) Storage(GB) CPU

Raspberry Pis 1GB LPDDR2 32GB microSD 4x ARM 1.2GHz
Dell5100 GW 2GB DDR3L-1067MHz 32GB SSD Intel E3825 1.33GHz

Table (2.1) HW Configuration of IoT Nodes

We deploy 4 containerized apps using our architecture and they are set to be available as

services in our prototype system. A Java program that simulates App Manager and Profiler

invokes the blockchain contract to procure resources to invoke services. This setup helps

evaluate the effects of sharing resources and services on the network. The containerized apps

we use for our evaluation are:

• whoami: greets the invoking user: size: 2.1 MB
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• busybox httpd: a full-fledged web server: size: 3.1 MB

• mysqld: a mysql database: size: 190MB

• dockerui: UI for docker management: size: 4.5 MB

2.3.2 App Execution latency

Figure (2.3) App Execution Latency

We consider 3 aspects when evaluating app execution latency: (a) Resource procure-

ment, (b) App deployment, and (c) App invocation. We will compare these steps for our

proposed Collaborative approach, purely computing on Edge and joint edge and collaborative

when the system will Fallback to Edge when the resources are not available in the collabo-

rating nodes. Here, edge implies a monolithic powerful edge with compute capabilities closer

to the source of data, and our solution implies an “Elastic Edge” with multiple nodes col-

laborating. The Edge is not opportunistic and all resources necessary for the execution of

apps and services have to be provisioned at the Edge when the app/service is initiated.

We observe from Figure. 2.3 that our collaborative system’s execution latency is compa-

rable to that of a purely centralized Edge computing system. This shows that a collaborative

distributive approach to mobile IoT is feasible. We also note that the collaboration may not

necessarily provide all resources requested, in which case the system is able to fallback to the

edge. We can observe that the fallback to edge approach has a minimal overhead as resource

discovery time is very small in the blockchain based architecture due to the information

availability on all nodes through smart contracts.
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Note that in our setup the Edge was placed in the same local network within a 5m radius

of the collaborating nodes. The latency for app setup phase will scale with the distance

between the requesting nodes and the edge unit. In a separate benchmark experiment, we

observed a network latency (cellular) of the order of 50ms for an Edge computing device

placed 10 miles away from the experiment office location. In the collaborative approach, the

apps are present and available on the local network. It is important to note that once the

resource is procured for a service app, it is available instantaneously for all other user apps

that access the service.

The app execution latency tAE is the cumulative sum of the resource procurement time

tRP , app deployment time tAD and app initiation time tAI . The app deployment time is a

function of transmission rate and app size and the app initiation time is transmission latency

coupled with message processing time to procure a resource handle. The procurement time

is the same as the time it takes for the replicas to reach consensus on when a resource has

been released for use or reacquired into the pool. The slope is dependent on a few factors;

proportional to the queuing delay at each replica in a bigger network (>4 replicas) and

inversely proportional to the transmission delay (increased transmission delay offsets the

queuing delay at each replica).

The 3 latency measures can be expressed as,

tRP = (slope ∗ nreplicas) + b; slope = a ∗ tqueue
ttrans

(2.1)

where, a and b are empirically measured constants that account for network factors that

impact performance and compute capacity of nodes in a heterogeneous network, respectively.

tAD =
sizeapp
ratetrans

; tAI = ttrans + tmsgprocess (2.2)

2.3.3 Resource Utilization Efficiency

In contrast to our proposed collaborative approach, a purely edge computing environ-

ment does not take advantage of the device resource pool. Table 2.2 shows the baseline
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resource usage of the 4 nodes in our network, and Table 2.3 shows the resource usage after

deploying the apps using our collaborative model. We can observe from the usage statistics

that collaborative approach enables to allocate resources through a proper matching of avail-

able with requested. In our test case, we ensured that the resources required for the 4 apps

are available in the collaborating nodes. In reality, the system will have to fall back to the

edge or cloud in case the resource is not available. However, the collaboration presents a first

hand opportunity to run the applications and services merely through mutual agreements

and only approach the central edge/cloud units when no agreements can be reached. Due to

the distributive nature of blockchains, such a case is rare as finding at least one node that

has the available resource has a non-trivial probability.

Node RAM Storage CPU

RP1 0.381 (38%) 5.922/29 (20%) 2%
RP2 0.329 (33%) 7.271/29 (25%) 2%
RP3 0.421 (42%) 8.372/29 (29%) 2%
Dell 0.597 (30%) 11.383/25 (46%) 3%

Table (2.2) Resource Usage before deploying apps – percentage of total capacity of the node

Node (App) RAM Storage CPU

RP1 (whoami) 0.395 (40%) 5.938/29 (20%) 2%
RP2 (httpd) 0.471 (47%) 7.422/29 (26%) 4%

RP3(dockerui) 0.489 (49%) 8.391/29 (29%) 3%
Dell(mysqld) 0.723 (36%) 12.123/25 (48%) 9%

Table (2.3) Resource Usage after deploying apps– percentage of total capacity of the node

To understand the resource utilization better we discuss a use–case to highlight the

benefit of the collaborative approach: A gaming app needs resources from multiple nodes as a

single node does not have the required resources. The request has to be supported by multiple

nodes with partial resources. Suppose the request is for 200 MB of memory, a camera and a

microphone, it is possible to fulfill the request from multiple nodes by allocating 50 MB from 4
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different nodes and camera and microphone from individual nodes. However, the caveat here

is that the app must be able to accept resources from multiple sources. E.g. an application

that requires camera and microphone at the same location may not benefit, however, it

can resolve to find a node that offers the RAM while using the camera and mic from a

different node. Our framework supports such a management of resources. Our distributed

model allows for handling heterogeneous set of resources from physically separated entities,

which gets complicated using traditional central resource allocation techniques. This is made

possible through the use of blockchain.

2.4 Takeaways and Future work

In this chapter, we explored the idea of an opportunistic collaborative resource sharing

for mobile IoT systems. We designed a novel architecture that uses blockchains for col-

laboration and developed a mechanism that opportunistically identifies available resources,

advertised services and invoked or utilizes them based on a collaborative consensus. We

implemented a preliminary prototype of a 4node collaborative IoT network along with an

edge computing gateway. Through experimental evaluation, we showed the feasibility of the

collaborative architecture with overall app execution latency comparable to the traditional

centralized edge approach and a much better resource utilization.

This model can be used further to explore larger scale collaborative blockchain networks

as outlined in our work on 5G IoT in a book chapter [14]. Although a detailed empirical

study of scale is out of scope of this chapter, here’s how a scaled collaborative edge-computing

5G mobile IoT platform is expected to evolve. The Edge, in addition to collaboration with

localized nodes outlined here, will interact with Fog or Core nodes. These Core nodes

are analogous to small data centers and have the necessary compute, storage and network

capabilities to run substantial workloads. These Core nodes will also take advantage of

architectural advances made with 5G, like NFV, Network Slicing and SDDC. To complete

the end-to-end flow, these core nodes will connect back to the Cloud for any central updates,

giving this structure centralized and decentralized control. Blockchains, used for application
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and service coordination will evolve into a more sophisticated architecture with localized

structural boundaries with more frequent synchronization that fits into a more globally

distributed structure. On these blockchain nodes, although resource/service procurement

times on a small network with little transmission delays are found to vary linearly with the

number of nodes, queueing delays play a huge role in bigger networks driving consensus

times higher making it important to profile and optimize the blockchain network for the

workloads we are interested in. Although empirical evidence from this chapter shows an

ideal fit in localized networks like office buildings, store locations, or industrial floors, this

scaled architecture over 5G with Edge Computing and Blockchain based collaboration would

be ideal for any complex IoT workloads.

Figure (2.4) Collaborative Edge Scaling
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PART 3

COLLABORATIVE EDGE SECURITY: INTEGRITY THREAT

IDENTIFICATION FOR DISTRIBUTED IOT IN PRECISION

AGRICULTURE

Despite lack of trust, the show must go on! The IoT Value/Trust Paradox survey

in 2017, [15] of 3,000 consumers found that 53 percent of respondents believed that Internet–

of–Things (IoT) devices make their life easier, but only 9 percent have a high level of trust

that their data collected and shared via IoT is secure. Despite the low levels of trust, 42

percent of respondents report they were not willing to disconnect their IoT devices, even

temporarily, because they bring sufficient value to them. These numbers attest to the fact

that IoT devices have become so integrated into human lives that it is almost impossible

to imagine disconnecting from the world of IoT – meaning that trust, or lack of it, hardly

seems to impact IoT adoption.

With consumers finding it increasingly difficult to disconnect, the only practical way to

support adoption of IoT is with stronger security policies and by being transparent about

data being used. To do so, one of the key factors for understanding is the potential for

failures or precisely, the threat vectors. Two key areas for threat vectors figure prominently

in IoT deployments: (i) ones that arise from device malfunctioning, (ii) ones that arise from

(malicious) user–driven attacks or control changes. It is the ignorance or opaqueness in our

current IoT system designs to such fundamental threats that brings about the question of

validity of the data being sampled on each of the devices in the IoT network. An exhaustive

list with reasoning on why devices become untrustworthy over time has been outlined in

[16].

Data trustworthiness in precision agriculture: To get an exemplar sense of the funda-

mental issues in lack of data trust validation, we consider the application of IoT in precision
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Figure (3.1) Precision Agriculture Data Integrity

agriculture. The US Department of Homeland Security outlines three broad categories of

threat vectors [17] for precision agriculture:

(a) Threats to Confidentiality: This attributes to the concern in loss of data privacy

of the farmers and potential reputation loss for the collaborating hardware and software

manufacturing companies.

(b) Threats to Integrity: This attributes to the concern in potential falsification of data

and introduction of rogue data into the devices/network, including sensor failures in harsh

conditions (watering/flood, tractor weight, high/low temperatures).

(c) Threats to Availability: This attributes to the concern in potential unavailability of

equipment and other cyber–related outages including natural disasters. This is key because

farming and livestock operations largely depend on specific equipment and tools.

3.1 Towards Collaborative Security

To this end, in this paper, we focus on addressing the Threats to Integrity problem. In

particular, we set up the problem as finding techniques to identify potential threats to sensor
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data in a distributed set of wireless networked sensors. The threat identification in prior

research have primarily focused on identifying unidentified or authenticated nodes or devices

on the network or profiling them based on characteristics that are either static or predictable.

Once identified and authenticated in one of the numerous ways, nodes are entirely trusted

and values from them are acted upon and propagated. However, it is entirely possible for

any malicious player with physical access to or in physical proximity to the network to

tamper with either the device or the conditions, making it essential to identify these data

integrity issues among a set of authenticated sensor nodes. As outlined by the DHS [17],

threats to Integrity are real, have a huge financial impact and remain unresolved at this

point. We explore and evaluate this in the context of Precision agriculture that employs a

distributed mesh sensor network due to the extensive real estate that needs to be monitored

and maintained at a reasonable cost. The sensors on the network are often connected via

cellular, Bluetooth, or Wi-Fi networks and rely on edge computing to make decisions at

the source. The solution entails the use of spatial and temporal locality of sensors on the

distributed network to detect data integrity threats as shown in Figure. 3.1.

To solve the threat identification problem we design a new spatio–temporal aware in-

tegrity algorithm that detects potential threats in a set of sampled data and quantifying

through a threat score metric. The core idea of this algorithm is based on using the Local

Outlier Factor (LOF) technique to identify outliers in a dataset through a clustering mech-

anism. The uniqueness of our approach is to involve the spatial and temporal distribution

of the sensor values in a unified manner for threat considerations. In this approach, sen-

sors within a local window (finite geographic range and sampling time window) are set for

threat investigations periodically, and this activity is duplicated across all the sensors in the

deployment. This means that the threat identification algorithm will run on each sensor

device and will work with data points from neighbor sensors within spatial vicinity. We

design our system using the analogy of a mesh network topology in a farm setting, and setup

experiments and simulations in such a setting to evaluate the effectiveness of our proposed

design.
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3.1.1 Related Work

It is noteworthy that our problem in question is fundamentally different from traditional

network security issues which have a long history of solutions through cryptography. Security

checks for devices have long been done through attestation methods that conduct a check

on the identity of the device. This is the closest form of integrity threat check that relates

to validating the integrity or trust of actual data from the device.

Hardware based or binary attestation is based on binaries that have been executed on

the execution platform. TPM [18] is a co-processor designed to protect cryptographic keys

and record software state of a computing platform by using a set of special-purpose Platform

Configuration Registers (PCRs). Each PCR stores a single cryptographic hash which can

be read by external software. The concept of a Dynamic Root of Trust for Measurement

(DRTM) [19] was introduced to address the issue of static PCR read sequence, by allowing the

chain of measurements to begin at a user-defined point in the platforms operation. Software

Guard Extensions (SGX) [20] provide a hardware-enforced isolated execution environment

(an enclave) for application software. The enclave provides a means of attesting software

inside the enclave to other enclaves. Binary attestation is brittle as any configuration changes

or upgrades result in different hashes of binaries, even if the platform remains in a trustworthy

state, leading to high false positives in flagging threats in a wireless sensor network.

Software based attestation verifies integrity of resource-constrained embedded devices

which have no hardware security features to store secrets for attestation. It exploits side–

channel information, such as precise time needed by the prover to perform specific compu-

tation. Limitations include strong assumptions about adversarial capabilities, and this only

works if the verifying entity communicates directly with the proving device, with no interme-

diate hops. However, multihop paths are unavoidable to ensure end–end threat identification

over a distributed wireless sensor network.

Hybrid attestation While binary (hardware) attestations are impractical in most

situations without a strong hardware support, software attestations have certain constraints
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to work with. Below are some hybrid approaches that address challenges with binary and

software attestations.

(a) Minimal Trust Anchors: The SMART architecture [21] provides a dynamic root of

trust for low-end devices without specialized memory management or protection features.

(b) TrustLite [22] is a generic security architecture for low-end embedded systems. It

allows OS-independent isolation of specific software modules, called trustlets. TrustLite

introduces the Execution-Aware Memory Protection Unit (EA-MPU) as a generalization of

simple means of memory protection, such as SMART.

(c) Physical Utility Functions (PUF): A PUF[23] based system that maps a set of

challenges to a set of responses based on the underlying physical micro structure of the device.

PUFs are equivalent to a fingerprint for the hardware element in the device, potentially

identifying the device through specific measures. It has been shown that radio signals’ RSS

(received signal strength) [24] can be used to identify a transmitting party. PUF and wireless

link fingerprints ensure that the data is coming from the stated IoT device and from the

stated location [25]. However, the key challenges of PUFs are that they hard to implement

and are very technology specific..

(d) Based on Sensor and Process Noise: A combined fingerprint for sensor and process

noise is created during the normal operation of the system as outlined in Noiseprint [26].

Under sensor spoofing attack, noise pattern deviates from the fingerprinted pattern. To

extract the noise difference between expected and observed value, a representative model

of the system is derived and the Kalman filter is used for state estimation. This method

performs device identification and profiling of normal operating range for comparison against

compromised profiles. However, it requires pre–calibration of each sensor setup to obtain

fingerprints for filter modeling, which can be unrealistic in a farm or large scale settings.

(e) Based on PUF data signing: Trusted sensors, as outlined in [23], offer integrity,

authenticity and non–repudiation guarantees on the sensed data by leveraging PUFs as root

of trust. This is done by having the sensor firmware sign the data, and integrity of the

firmware is achieved by secure boot of the sensor. This PUF-based design maps onto a
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typical low-end sensor hardware and does not require any hardware modifications. Although

applicable to standalone sensors, it is complex and cost prohibitive.

Although all of the above hybrid mechanisms help with authentication at a cost, they

fall short of validating the data and identifying any kind of anomalies in data from distributed

network of devices.

3.1.2 Background on Mesh Network

Before we discuss the proposed threat identification system architecture, we briefly

review the traditional knowledge of mesh network design. This is to ensure consistency in

the understanding of the type of network topology we chose for our design explanation and

evaluation.

Our proposed mechanism depends on the network establishment and routing details of

the Open Thread protocol [27] for mesh networks. Although we use the Thread network for

our evaluation, the framework is generic to any distributed network. The below device types

are included in a Thread network:

– Border Routers provide connectivity from the 802.15.4 network to adjacent networks

on other physical layers (Wi-Fi, Ethernet, etc.). These routers have special characteristics

like multiple interfaces. There may be one or more of these on the network.

– Thread Routers provide routing services to network devices. Thread Routers provide

joining and security services for devices trying to join the network. The Routing Enabled

End Devices (REED) can become Thread Routers, but not Border Routers.

– A Leader manages membership to the network and roles of the nodes. It maintains a

registry of assigned router IDs and accepts requests from router-eligible end devices (REEDs)

to become routers. The Leader, like all routers in a Thread network, can also have device-

end children. All information contained in the Leader is present in other Thread Routers so

that if the Leader fails or loses connectivity with the network, another Router is elected to

be a Leader.
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– End devices that are not router-eligible can be either FEDs (full end devices) or MEDs

(minimal end devices).

The Thread Mesh Link Establishment (MLE) [28] protocol establishes a network, con-

figures links and disseminates information about the network. Also, It is used to discover and

establish links to neighboring devices, determine their quality, and negotiate link parameters

with peers.

3.2 Spatio-Temporal locality based Threat detection

Figure (3.2) Our proposed integrity threat identification framework

We define a mechanism to detect threats using cluster based outlier detection techniques

and spatio–temporal locality based parameters. The scope of our contribution in this design

is that our technique opens up a new way to use existing knowledge on outlier detection in

an entirely distributed paradigm with locality based parameters. The technique identifies

physical layer data integrity threats related to sensor value tampering or falsification. Our

mechanism here involves distributed detection using data from neighboring nodes to form
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similar clusters and identify potential threats.

A fully distributed IoT network deployment in precision agriculture would use a mesh

network. As we set out to detect any outliers in the data flowing through this network as

outlined in the high level architecture in Figure. 3.2, we will leverage key characteristics of

a distributed network deployed in a wide farming area. In a wide area sensor deployment,

it is very practical to have sensors in certain patches report values that are similar or values

in the same range, or values trending similarly. This is true even with livestock reporting

temperature or humidity or other health related values. The key assumptions for the success

of this mechanism are that the network is fully distributed without any single point of failure

and there exist spatial and temporal locality in the network.

3.2.1 Local Outlier Factor Algorithm

We use the Local Outlier Factor (LOF) technique [29] to detect outliers in a data set with

varying distribution densities through a clustering approach. We develop on this algorithm

by extending this to a distributed paradigm with a locality based contextual variance and

introducing a histogram based approach for cluster delineation. The following paragraph

provides a brief discussion on the benefit of using LOF, with Figure. 3.3 describing the

pseudo–code of LOF algorithm. In the implementation, we use the lof function from the

DBScan package that is parameterized with the number of nearest neighbors that helps

control the clustering structure.

Consider the simple 2D data set shown in Figure. 3.4. There is a much larger number of

items in cluster C1 than in cluster C2, and the density of the cluster C2 is significantly higher

than the density of cluster C1. Our intent is to mark both objects p1 and p2 as outliers as

the conclusion is visually obvious. However, due to the low density of the cluster C1, it is

clear that for every item q inside the cluster C1, the distance between the item q and its

nearest neighbor is greater than the distance between the item p2 and the nearest neighbor

from the cluster C2. So, the item p2 will not be considered an outlier under a traditional

outlier detection algorithm that only looked at a global picture utilizing the nearest neighbor
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Figure (3.3) Local Outlier Factor (LOF) algorithm pseudocode

approach. Alternatively, LOF is able to capture both outliers (p1 and p2) due to the fact

that it considers the density around the points. The LOF algorithm runs with polynomial

time complexity and is mobile device-ready.

3.2.2 Spatio-Temporal locality based Threat detection algorithm

To this end, we assume that the network is setup and the device registration has already

been established. The core question we address is if the data values received from each sensor

are valid or not. To determine this, we run our proposed threat detection algorithm 1 on

each sensor node that collects data values from other neighboring nodes. We leverage the
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Figure (3.4) Results from Local Outlier Factor (LOF) algorithm

context of spatially local set of sensors, which is defined as a cluster of sensors within a finite

geographical area. This area is set based on the communication range of the sensors. In

addition, the data is sampled over a local time reference or window and the threat detection

is conducted periodically.

To understand the importance of spatio–temporal sampling in our work, let us take

the example of sensors deployed in an agricultural farm. In this case, the soil in the areas

of the farm within short distances are expected to have similar physical attributes such as

temperature, pressure, humidity, Oxygen content, Nitrogen content etc. We leverage this

fact to develop our insight that, the sensors within these relatively homogeneous spots in the

farm can communicate with one another and jointly agree/disagree on the values based on

comparative evaluation of the distribution of values they have sampled. This is analogous to

a group of people within a room being able to agree upon what the temperature of the room

could be or could not be (outlier) based on discussing with one another. The effect of outlier

and hence threat identification can be continued in this distributed fashion across multiple
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Figure (3.5) Sensor Network

cluster of nodes (or rooms as in the example mentioned above), thus enabling its impact at

scale. In this work, we describe the fundamental mechanics of the distributed technique and

aim to implement the functionality at large scale in future work.

In this regard, let us consider the mesh network configuration as shown in Figure. 3.5.

We use this network as the sensor spatial deployment reference. Here, each node (numbered

circles) represents the sensor device; the arrow represents the communication (connectivity).

The highlighted part of this network (6 nodes) is used in the evaluation of our technique

to be discussed in Section 3.3.1. We will now discuss each step of Spatio-Temporal Locality

based Threat Detection Algorithm[ 1] in detail.

Step 1: Data Maintenance for a time window: Each router–enabled node main-

tains values only of its neighbors. The neighbors are defined through a spatial adjacency

matrix based on the geographical distance; for instance, Node 4 will maintain values only for
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Algorithm 1 Spatio-Temporal Locality based Threat Detection

// Algorithm actively runs on all routing enabled nodes in real time

Data: Metric data from all adjacent nodes
Data: Mesh network and routing metadata
Data: Configured time interval for algorithmic runs
Result: Identified threats
while Router node is active do

while Looping for the threat detection time interval do
Data persistence: Persist data from all the adjacent nodes for the time interval

end
Create Contextual Mean and Variance: In the structure outlined in table 3.1
Run LOF algorithm: Using Mean and Variance as dimensions, as outlined in Figure. 3.3
Record Threat Scores: In the structure outlined in table 3.2
Calculate threat score threshold: Using a standard deviation based heuristic method
Identify Threats: Using the threshold that was calculated
Notification of Threats: Notify the elected leader of the mesh network

end

the nodes connected to it : {2, 3, 5, 7, 8 , 11}. Data from each node is sampled periodically

and communicated across to its cluster’s router-enabled node. If 1/Ts is the sampling rate

at each sensor node, the threat detection routine is executed every Td time window, where

Td > Ts. This time window is determined based on how long some characteristic would be

either constant or would be predictable. The time window duration is selected based on the

sampling duration on the nodes, ensuring that there are statistically relevant amount of non-

trivial (anything with non-zero information) data (atleast few hundred samples) collected in

each iteration.

Step 2: Create contextual Mean and Variance: The sensor values collected in

the relay node are recorded in a time-stamped table. Such a table is maintained for each

physical attribute, for e.g. temperature, humidity, oxygen levels, etc. We will refer to a

physical attribute as a class. For each class the mean and variance of the values collected

in time window Td are computed. It records the mean and variance values for each class as

mij and vij, respectively, where i is class index and j is node index. TABLE 3.1 shows an

example Mean-Variance table.
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Table (3.1) Mean-Variance table. This is an example table for 3 physical sensing attributes
(classes). A new column is appended for each new class. Each table represents the ensemble
mean in time window Td. Here, mean and variance of sensor data from each of 11 nodes are
collected within the time window.

Class 1 Class 2 Class 3
0 0 0

m12, v12 m22, v22 m32, v32
m13, v13 m23, v23 m33, v33

0 0 0
0 0 0
0 0 0
0 0 0

m18, v18 m28, v28 m38, v38
0 0 0
0 0 0

m111, v111 m211, v211 m311, v311

Step 3: Execute LOF algorithm: We ensure that there are sufficient number of non-

trivial mean and variance values collected in the table. We believe a few hundred entries for a

class is reasonably good (LOF needs atleast 25 to make a reasonable cluster identification).

If the number is lower than 25 we wait on the next time-window iteration. If there are

consistently trivial values collected in the table then it is a clear indication that something

is wrong with the sensor(s) and/or the collection. We will refer to the non-trivial case for

further discussion. The populated mean and variance values in each column (class) are input

as a tuple to the LOF algorithm 3.3, which outputs an LOF value for each class-node pair as

lofij. The lof values are maintained in a table as shown in TABLE 3.2. LOF computation is

a simple algebraic computation and thus converges fast (order of ms). Thus, even for large

numbers of nodes and potentially large number of clusters, the runs are effectively in real

time, making it viable to have this running in the nodes and/or the network at all times.

Step 4: Record Threat Scores: We use the LOF values in the context of threat scores

that underline the potential integrity threat to the sensors sampled in the list. The values of

the LOF represent the variability in the sampled measures – in this case mean and variance.
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Table (3.2) LOF of values from Mean-Variance table in time-window Td. The row and column
definitions are same as the mean-variance table.

Class 1 Class 2 Class 3
0 0 0

lof12 lof22 lof32
lof13 lof23 lof33

0 0 0
0 0 0
0 0 0
0 0 0

lof18 lof28 lof38
0 0 0
0 0 0

lof111 lof211 lof311

If the variability in the measures are high then it will lead to potential outliers. If the outliers

are clearly identified then it could potentially be flagging the threat on the corresponding

sensor. However, depending on the density of data (very few nodes in connection range)

then the table may not be rich, thus increasing the chances of potential false-positives and

false-negatives. The LOF value computation is a measure of variability and is independent

of the which sensor nodes are connected. This implies that such a mechanism will also work

for mobility scenarios, for example, sensors deployed on livestock. Here, the sensor nodes,

as they move, will connect to different set of sensor nodes and a router node. Ensuring that

connectivity is maintained across the area of mobility of the nodes (movement of livestock

over a farm) is sufficient for our approach to work in mobile scenarios.

Step 5: Calculate threat score threshold: We set the threshold for the LOFs

for each class, for threat identification equal to µ + ασ, where µ and σ are the mean and

standard-deviation of the LOFs. Here α is a variable representing the length of the tail of the

distribution of the LOFs. The rationale for this form of threshold is by invoking the central

limit theorem that attributes a normal (Gaussian) distribution to an i.i.d (independent and

identically distributed) set of random variables. We treat the LOF values as i.i.d random
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variables and fit to a normal distribution curve assuming a large number of LOF samples,

that would converge to the mean and variance of the LOFs (for each class) in the table.

A small value of α essentially means highly sensitive (many of the sensors are flagged as

potential threats) but less selective (less precision in identifying the threat(s)), and a larger

value can lead to higher selectivity but lower sensitivity. As we will discuss later, in our

evaluation we will consider α values of 0.75, 1, 2 and 3, and report the precision, recall and

accuracy values for these choices in our datasets from our experiments.

Step 6: Identify Threats: All values above the set threshold for LOF are flagged

and the corresponding sensors are noted for potential threats. Since the LOFs note the class

and sensor ID, the exact sensor node and physical attribute that could have been at risk

or attacked or failed (power disconnection) can be identified. Since these computations are

running every cycle of the time-window, the process essentially happens in real-time with a

practical latency of the order of Td. Hence, once a sensor node is at threat it can be flagged

by our system in the order of Td + Tp, where Tp is the processing time of the mechanism in

total.

Step 7: Notification of Threats: One of the metadata aspects maintained in the

router node is the elected (during deployment phase which is out of scope of this paper)

leader for that cluster of nodes (the router node could be the leader itself), which is dynamic

and might change as memberships change on the mesh network. As soon as the threats

are identified, it is made imperative that the router node notify the leader of all the threats

identified by this node. Once the leader receives lists of threats from all router enabled nodes,

it can take decisions on either observing them closely or quarantining them or invoking human

involvement.

3.3 Precision Agriculture based Threat Detection

There are various topologies for geographical placement of sensors in a precision agri-

culture application scenario. As shown in Figure. 3.6, we broadly identify 4 types of such
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Figure (3.6) Geometry of sensor placements in a precision agriculture setting (left) and
sample LOFs from simulated sensor data for the specific geometry (right)

deployments in irrigation based farming: (i) Striated, (ii) Striated Type 2, (iii) Matrix and

(iv) Livestock. To better understand the use of LOF based threat detection, we compute the

LOFs for each of these cases by simulating the sensor values (for one class) for 100 nodes.

We sample the sensor values as S ±R, where R is a random number and ranges from [0kS];

we chose k = 5 arbitrarily for example purpose. In all the results shown, the sensor value

clusters are captured visually with a blue oval and the value density is captured visually with

a red circle around the sensor; the bigger the red circle, the lower its density, which implies

the bigger the circle around a sensor, the farther away from the cluster it stands and hence

a potential outlier. In all the experiments, the kdistance is kept at 3, which implies that the

admission to a cluster is based on its proximity in terms of values, to at least 3 neighbors.

Striated Irrigation Treatment 1: This involves farming similar crops in striated lines

with possibly some gaps between those lines of crops. Given that all sensors are laid out in

a straight line, and adjacent lines have the same crop, all sensors values will likely reflect

similar conditions and we can expect a single cluster across a small geographical area. In

the simulation, sensor readings were tampered with on 2 sensors by changing the conditions

around them. They were both detected and shown in the diagram pointed to by arrows and

will need to be investigated.
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Striated Irrigation Treatment 2: This involves farming 2 or 3 crops in alternate

striations. So, crop A and crop B would alternate in crop lines across the farm. At a

minimum, we would expect to see as many or more similarity clusters as there are crops in

the striated model. As before, in this scenario, sensor readings were tampered on 2 sensors

by changing the conditions around them and you will see them both pointed to by arrows.

So, the technique clearly identifies real threats, and also identifies some false positives and

in some cases, potential threats that are flagged for further investigation. This is illustrated

with the 2 red circles with a larger radii inside the blue oval marking the cluster. While

these 2 nodes were not intentionally tampered with, they are potential threats in the data

set that need further investigation. With a well calibrated density threshold, the number of

false positives will be reduced drastically.

Concentric Irrigation: This involves crops laid out in concentric circular or rectan-

gular patterns to ensure that the nutrients in soil are not depleted from any one crop. If

the radii of circles are large enough, Cluster delineation with concentric irrigation is similar

to the Striated Treatment 2, with the expected number clusters the same or more than the

number of crops in those clusters.

Matrix Irrigation: This involves crops laid out in a matrix with each crop in one

cell of the matrix. While it is possible to have many crops cultivated across the farm, it is

more typical to have just a few in a specific pattern. The number of crops and conditions

around the farm determine the number of clusters and the results shown indicate outliers

fully delineated – as noted visually.

Livestock farming: This brings about the aspect of mobility where livestock with

different characteristics to track are roaming about in the farm and needs to account for a

higher variability and a dynamic connectivity. The number of similarity clusters would vary

drastically and the results shown indicate multiple outliers corresponding to sensors that

were tampered with.
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3.3.1 Evaluation of the platform

We evaluate our system for its ability to detect threats with high accuracy. We conduct

evaluations by analyzing data from two types of sources: (1) Data from a 6 node setup

in a lab sensor deployment, and (2) Using datasets from Thoreau [30] – a fully buried

Wireless Underground Sensor Network at the University of Chicago. In the former, we

intentionally tamper the temperature on a random set of temperature sensor nodes, and

track the performance of our system in detecting those attacks from sampled data. In the

latter, we analyze the the soil temperature datasets from Thoreau for potential threats and

investigate if a real threat may have happened to the sensor.

We measure the performance of our threat identification system through the precision,

recall and accuracy metrics, defined as,

• Precision = real−threats−detected
total−threats(+)false−positives

• Recall = real−threats−detected
real−threats−detected(+)threats−not−detected

• Accuracy = real−threats−detected
total−number−of−threats

The experimental setup in the laboratory involved 6 RaspberryPi 3 nodes, each inte-

grated with a temperature sensor (sampling in oF ). The sensors sample temperature at 10

samples/sec. The setup includes a 7th device which is a Dell IoT Edge gateway [31]. The IoT

gateway is set as the router node and also serves as a virtual sensor network deployment. We

setup the dell gateway to publish 44 simulated temperature values which would correspond

to the 44 virtual sensor nodes in the mesh network. In this network we treat that all the

50 devices (6 real+ 44 virtual) are in proximity to one another. All the nodes were set to

communicate with one another using WiFi and followed the connection topology depicted
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Figure (3.7) Integrity Threat Detection feasibility through LOFs for real sensor data from a
wireless mesh network.

in Figure. 3.5. We implemented our threat identification mechanism in this deployment and

set it to execute on the IoT gateway.

The threat identification was executed every 5min.The experiment consisted of manually

attacking a set of sensors in each 5min cycle for 100 cycles. The attack included manually

bringing a hot device like a candle or heating rod close to the temperature sensor on the

specific nodes. It was ensured that the attack in each cycle was made at the same time

on the selected sensors and there were atleast 2 sensors and a maximum of 6 sensors being

physically attacked in this way during the experiments.

Feasibility of Threat Detection: In Figure. 3.7, we plot the threat scores (LOF values)

for first 10 cycles, for all the 50 sensors. It seems that the two big spikes need immediate

action as they seem like outliers, the smaller spikes mean that they should be flagged for

further investigation. This feasibility test visually indicates that if there was one or many

attacks, it will show up in the threat score. A refined threshold can help improve the fidelity
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Figure (3.8) Number of threats detected compared to ground truth (blue line) at multiple
threshold levels.

of identification by the machine.

Levels of Threat Detection: We plot the comparison chart between the number of threats

detected and ground truth, for the 100 cycles, in Figure. 3.8. We set the µ+ ασ threshold

for x = 0.75, 1, 2, 3. At α = 0.75, it lists almost all threats, though not with 100% success.

At α = 3 it gets highly selective and tries to call out the threats that may matter the most.

We present the statistics of the threat detection performance for 100 cycles for the 50 nodes

in a tabular form in Figure. 3.9. We can observe that the accuracy is about 81% for α = 0.75

with about 90% precision and recall. This means that at α = 0.75 threshold for LOF, the

reliability of the system is atleast 80% with a high selectivity (precision) and sensitivity

(recall) to detect threats. As α increases, we can observe that the accuracy drops sharply,

which can be attributed to the loss of sensitivity. However, we observe that the selectivity

improves and is almost 100% at α = 3, which implies that the system is certain of detecting

threats, but which of the threats in time and which node will need further investigation.
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Figure (3.9) Threat detection performance for 100 cycle experiment for 50 nodes (6 nodes
physically attacked and 44 nodes virtually attacked by noise addition).

However, this sets up the stage for advanced intervention techniques if it were detected that

a system was at threat. It is important to note that such a threat monitoring system of

sensor values in real time for distributed IoT is largely missing.

Effectiveness of the Threat Detection Classification: In Figure. 3.10, we plot the threat

Receiver Operating Characteristic (ROC) curve for the 100 iteration cycle to assess the

effectiveness of the integrity detection classification algorithm. It plots the True Positive

Rate (TPR) to the False Positive Rate (FPR). An ROC curve demonstrates the tradeoff

between sensitivity and specificity (any increase in sensitivity will be accompanied by a

decrease in specificity). The closer the curve follows the left-hand border and then the top

border of the ROC space, the better the classification while the closer it comes to the 45-

degree diagonal of the ROC space, the worse it is and the area under the curve is a measure of

classification accuracy. Given these criteria, the curve in Figure. 3.10 shows a very effective

integrity detection classification algorithm.

• TruePositiveRate(Sensitivity/Recall) = Truepositive
TruePositive(+)FalseNegative

• FalsePositiveRate(1− Specificity) = 1− FalsePositive
FalsePositive(+)TrueNegative
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Figure (3.10) Integrity Threat Detection Classification Effectiveness using ROC curve.

Threat Detection Classification using Machine Learning : To detect threats without

assessing performance at multiple thresholds, we conducted a supervised classification on

the 100 iteration LOF data with the Random Forest classifier. The results are shown in

Figure. 3.11.

3.3.2 Thoreau Dataset Analysis

We measure the effectiveness of our approach with an external dataset from the fully

buried Wireless Underground Sensor Network, Thoreau, from the University of Chicago [30].

The sensors are spread across the university area as shown in Figure. 3.14. For analysis, we

picked the soil temperature datasets from 4 days in 2017; 1 day from each season, to find out

if there was any kind of threat on these sensors with anyone physically manipulating them

or possibly conditions drastically changing around them. The setup corresponding to the
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Figure (3.11) Integrity Threat Detection Classification Performance with Machine Learning

datasets involves a sensor pool with upto 20 sensors. The sensors are sampled almost every

30min and the time window Td for our accumulation was set to 2.5 hrs (at least 5 samples

for ensemble mean and variance of temperature in a cycle). Each iteration of the execution

conducts for every 2.5hrs sampled data.

Feasibility of Threat Detection: Figure. 3.12 shows the threat scores for each of the runs

for all sensors in the dataset over each of the selected 4 days. The number of iterations

(cycles) per day varies due to the variation in the dataset sizes for these days. Using a

heuristic threshold check based on the largest spikes, clearly, on 10/1/2017, values from

sensors s5 and s7 need further investigation; on 4/1/2017, s5 appears to stand apart from

the rest and needs to be investigated; on 1/1/2017, s4 at 2:30 appears to have spiked in a

clear deviation from the rest and needs attention; while 7/1/2017 appears almost normal

with no apparent large spikes.

Levels of Threat Detection: For a deeper dive into one of the scenarios, s2, s3 s5 and

possibly s7 on 4/1/2017 at 9:30 PM to 11:59 PM displays suspicious behavior as shown in

Figure. 3.13 where the threat identification is shown when multiple levels of thresholds are

used to identify the threat. Looking at the 4/1/2017 graph in Figure. 3.12, it is apparent

that both the sensors s5 and s3 have been consistently showing deviant behavior. These

correspond to sensor 1C78D4 at the GrahamSchool and 1C78D8 at IdaNoyes as shown in

Figure. 3.14. From investigation of the sensor data in the datasets, these two sensors are

showing temperature values of around 5.5oF , way below the rest of the sensors that are in

the 7-8oF . By applying the same technique across the rest of the list of the sensors, it is
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Figure (3.12) Thoreau Data Set: Threats by Season

possible to flag and identify most threats in the network.

3.4 Takeaways and Future work

In this chapter, we explored the problem of detecting integrity threats from physical

attacks on sensor nodes, through a usecase exploration of precision agriculture scenarios.

To address the problem, we designed a novel framework that uses Local Outlier Factor for

outlier detection with locality based mean and variance used as dimensions, and described

its usage across typical precision agriculture sensor deployment topologies. We implemented

a preliminary prototype with a 6-node IoT network using RaspberryPis and used additional

simluated values for effective cluster and threat creation. Through experimental evaluation

of a 6 sensor node setup and trace based analysis of a subset of data from the real world
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Figure (3.13) Threats on 4/1/2017 from 9:30 PM to 11:59 PM

underground sensor deployment (Thoreau), we showed the effectiveness of the model in

detecting integrity threats with reasonable accuracy and efficiency suitable for real-time

deployment.
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Figure (3.14) Threats on 4/1/2017 from 9:30 PM to 11:59 PM at the UC Campus
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PART 4

COLLABORATIVE PRIVACY INTELLIGENCE: USER PRIVACY

INTRUSION MODELING USING MACHINE LEARNING OF SMART

HOME IOT SENSORS DATA

The proliferation of smart Internet of Things (IoT) devices in our homes provides a level

of convenience in our day-to-day activities but also raises key privacy concerns. There is an

implicit concern among users that these devices storing important confidential information

about the user (identity, credit-card details, family profile, house information) could someday

go rogue leading to a doomsday question for user privacy. The general concern that, as

technology gets smarter by the day, the level of privacy gets weaker, is already being reflected

among users’ opinions today. With the array of smart sensors, assistants and perhaps robots

invading the smart home consumer market, majority of users are already raising concerns on

the need for constant monitoring (audio, video, indirect sensing) of the users. In a couple of

recent patents [32], Google imagines devices that would get a lot more intrusive than what’s

already available out there. We believe that it is only a matter of time before current day

smart home technology deployments potentially hit the tipping point for privacy intrusion.

Despite rising concerns of privacy, the reason smart home IoT devices exist is due to

the usefulness of data from them. For example, health insurers could use data from the

kitchen as a proxy for eating habits, and adjust their rates accordingly while landlords

could use occupancy sensors to see who comes and goes, or watch for photo evidence of

pets and life-insurance companies could penalize smokers caught on camera. It has been

shown[33] that using raw data from sensors as context information, it is possible to infer

users emotions as well, possibly advancing intervention mechanism for depression. In our

research, acknowledging the fact that there is a thin line between usefulness and privacy

intrusion of smart home sensor data, we explore the fundamental question of, when do the
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inferences generated about the user from the sensor data cross the line to being intrusive to

the user.

4.1 Towards Collaborative Privacy Intelligence

We aim to explore the level of privacy intrusion that can result from smart home sens-

ing deployments, and improve on our privacy intrusion paper [3] in various areas. We

focus our attention towards privacy questions and not security, and assume that the smart

home systems under consideration already have the typical communication and data security

frameworks in place. We acknowledge that systemic security vulnerabilities do exist in any

system and that the privacy issues can be amplified by them. However, in this work, we

take a step-wise approach to understanding privacy intrusion with focus only on the raw

and contextual data from the smart home sensors and devices. For example, can the system

infer if the user is working or relaxing based on the audio signature of keyboard clicking

and the motion sensing of the desk chair movement. Similarly, can the system locate the

exact position of the user in the house based on the sounds/noise produced? Can the system

infer the user’s mood based on the audio tone (high/low) and by extracting sentiments from

the transcribed texts? Can the smart camera extract your social pattern from the people it

detects and recognizes on a daily basis?

In this work, we posit that it is possible to determine the level of privacy intrusion

based on learning of the sensors’ data over time. We perform a privacy intrusion study

that combines data from smart home sensors, duplicates a user’s privacy posture, and helps

understand the level of privacy intrusion, along with an experimental evaluation of a single

user in a real-world environment with real interactions and activities. We focus on location

and emotional features that relate to the privacy of the person, however, we plan to include

in our future work, other dimensions of privacy intrusion, including finance, genealogy and

health data. The key novelties of this paper include:

1. Quantification and experimental validation of privacy intrusion from smart home sensor

data learning, and
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2. A dataset of smart home sensor monitoring labeled with location and emotion privacy

features.

4.1.1 Privacy Concerns and Dimensions

Outlined in Figure. 4.1 is the list of devices in a smart home that collect data of various

kinds. Available in Figure. 4.2 is the list of aspects of privacy that can be estimated or

conjectured by creatively combining data collected from all the smart devices. For instance,

higher energy consumption readings on the smarthub showing video workload patterns along

with sitting at the desk could potentially infer the individual watching a video. The time of

the show and the duration could throw light on the type of show the individual is watching.

From an analysis of the transcribed speech from the audio assistants, the emotional state of

the user could potentially be derived along with possible locations the user could be in, based

on the conversations and/or calendar entries. The list already shows that through simple

intuitive conjectures it may be possible to intrude a person’s privacy, where predictions are

moving from mere convenience to making a user’s behavioral, emotional, social and medical

patterns extremely vulnerable to exact duplication by predictive systems.

Figure (4.1) A subset of current day smart home devices
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Figure (4.2) A sample of privacy concerning inferences potentially derivable from smart home

sensors.

We conducted a survey of threat perception questions across 6 privacy dimensions listed

in Appendix A. Figure. 4.3 outlines the threat perception results by dimension. The actual

survey result numbers are available in Appendix A. It is important to note that the perception

of threat is very high when the users are aware of a system using all the data being collected

but is low when just made aware of all the data being collected with sensors. It is very likely

the sensors are associated with convenience than threat unless made aware of. This survey

validates the importance of understanding the privacy concerns and its implications.

Figure (4.3) Threat Perception by Privacy Dimension
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4.1.2 Related Work

We discuss related works from areas of privacy intrusion detection techniques based on

traffic patterns, privacy profiling techniques and tools, contextual analysis and Emotional

dimensional analysis.

Privacy Intrusion detection techniques based on traffic profiling and mitiga-

tion Abbas Acar et. al. [34], demonstrate how machine learning methods based on traffic

profiling of smart home IoT device communications can be used by an adversary to automat-

ically identify actions and activities of the IoT devices and its users in a victims smart home

with very high accuracy, even if only encrypted data are available. Noah Apthorpe et al.

[35] demonstrate that an ISP or other network observer can infer privacy sensitive in-home

activities by analyzing Internet traffic from smart homes containing commercially-available

IoT devices even when the devices use encryption and evaluate strategies for mitigating the

privacy risks associated with smart home device traffic, including blocking, tunneling, and

rate shaping. Bogdon Copos et. al, [36] study two popular smart home devices, the Nest

Thermostat and the wired Nest Protect (i.e. smoke and carbon dioxide detector) and show

that traffic analysis can be used to learn potentially sensitive information about the state

of a smart home. They show with a high degree of confidence when the thermostat transi-

tions between the Home and Auto Away mode and vice versa, based only on network traffic

originating from the devices. Noah Apthorpe et. al., [37] outline smart home IoT devices

presenting privacy challenges within the home. The focus is on Internet service providers or

neighborhood WiFi eavesdroppers measuring Internet traffic rates from smart home devices

and inferring consumers private in-home behaviors. There are four strategies proposed for

device manufacturers and third parties to protect consumers from side-channel traffic rate

privacy threats; blocking traffic, concealing DNS, tunneling traffic and shaping and injecting

traffic. Noah Apthorpe et. al, [38] demonstrate that a passive network observer can infer

private in-home activities by analyzing Internet traffic from commercially available smart

home devices even when the devices use end-to-end transport-layer encryption.
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Privacy profiling tools and techniques Eric Zeng et.al, [39] conduct in-depth,

semi-structured interviews with fifteen smart home users, studying how and why they use

smart home technologies, their mental models, their security and privacy concerns and the

mitigation strategies they employ. They find that most users are not concerned even as

they are aware of the concerns. From these findings, they make some recommendations for

the designs of future smart home platforms and devices. Earlence Fernandes et. al, [40]

conduct in-depth empirical security analysis of the Samsung-owned SmartThings emerging

smart home programming platform. They exploit framework design flaws to construct four

proof-of-concept attacks related to stealing door lock codes, disabling vacation mode of the

home and inducing a fake fire alarm. Djamel Djenouri et. al. [41] reviews 2 ML classes,

the first using activity recognition based on traffic analysis and the second using energy

profiling, an approach similar to our energy consumption profiling for Localization analysis.

Rixin Xu et. al. [42], analyzed the workflows of several 3rd-party platforms and found

that they share similarities in their potential to monitor a users daily life by obtaining the

states of devices that are not related to any apps, by getting redundant state records and

by continuously receiving measurements from sensors. The analysis was done in depth for

SmartThings due to the large user base it has. Researchers at Princeton University have

built a web app [43] that lets you (and them) spy on your smart home devices to see what

they are up to. The open source tool, called IoT Inspector is a simple tool for consumers

to analyze the network traffic of their Internet connected gizmos. Researchers at Gizmodo

conducted experiments with data collected from Smart Home devices [44] over a period of 2

months. These devices ranged from personal toothbrushes to televisions and coffee makers.

In addition to helping understand the usage patterns and habits of users, they all had one

thing in common, they were all sharing information they collected with the manufacturers.

All this information collected in the guise of providing recommendations has clearly crossed

the line from convenience into intrusion.



51

Contextual Analysis of Privacy Noah Apthorpe et. al [45] create a scalable survey

method based on the Contextual Integrity (CI) privacy framework that can quickly and effi-

ciently discover privacy norms. CI is a well established theory that defines privacy norms as

the generally accepted appropriateness of specific information exchanges in specific contexts.

The formulation makes it possible to thoroughly investigate the contextual information flows

and associated privacy norms. Understanding them will allow manufacturers to design de-

vices that consumers are comfortable incorporating into their homes and help government

regulators and consumer advocates identify and contextualize privacy violations. Serena

Zheng et. al [46], through surveys and empirical evidence provide evidence that users evalu-

ations of privacy risks from IoT devices are based on stereotypical views of these entities and

do not account for modern inference techniques applied to non-audio/visual data. It provides

qualitative descriptions of user thought processes and highlights convenience and trust as

driving factors in users decisions about incorporating IoT devices into their home. It syn-

thesizes survey responses into recommendations for IoT device manufacturers, researchers,

regulators, and industry standards bodies.

Emotional Dimension Analysis Iris Bakker et. al. [47] show that the three di-

mensions pleasure, arousal and dominance can be linked to the ABC Model of Attitudes:

Affective, Behavioural and Cognitive (ABC) aspects. In addition, connecting the three di-

mensions to the triad feeling, thinking and acting, can also help to improve our understand-

ing, interpretation and measurement of pleasure, arousal and dominance. Sven Buechel et.

al. [48] describe a corpus of 10k English sentences balancing multiple genres, with annotated

dimensional emotion metadata in the Valence-Arousal-Dominance (V/A/D) representation

format. It is a large scale text corpus that builds on the V/A/D model of emotion. The

National Research Council(NRC) Valence, Arousal, and Dominance (V/A/D) Lexicon [49]

includes a list of more than 20,000 English words and their valence, arousal, and dominance

scores. For a given word and a dimension (V/A/D), the scores range from 0 (lowest V/A/D)

to 1 (highest V/A/D). The lexicon with its fine-grained real-valued scores was created by
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manual annotation through surveys.

While traffic analysis patterns and profiling tools provide an external view into the lives

of individuals, the contextual and emotional dimension analysis can provide internal and

intricate models that capture aspects of privacy of an individual. Our contribution in this

paper through the study on privacy intrusion along Localization and Emotional dimensions

using actual sensor data payloads include (i) a mechanism to learn rules combining data

from multiple sensors, (ii) a framework to predict an individual’s localization and emotional

posture based on those generated rules and (iii) an evaluation of the effectiveness of the rule

generation and prediction mechanisms.

4.2 Privacy Dimensional Modeling

Figure (4.4) Our SmartHome Privacy Invasion Experimental Framework

As we design a mechanism to study privacy intrusion by learning through sensor data

in a user’s context, one of the key observations is that data from any one sensor may not be

sufficient to predict any of the activities or characteristics of a person. Any mechanism that

would aim to reverse engineer the privacy attribute from sensor data would need a way to

combine data from multiple sources creatively to arrive at patterns or rules. The framework

outlined in Figure. 4.4 aims to effectively combine data from multiple smart devices to arrive

at predictions. The effectiveness of these predictions translates to well someone’s privacy
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posture can be duplicated. We begin by understanding the key privacy attributes we target

from the sensor data.

• Localization within the smart space: This involves posture, internal position in the

office or home, the activity one is involved in, the posture and one’s disposition at any

point in time. The specific activities that can be tracked are sitting at one’s work desk,

pacing around in the smart space, standing at a board for discussion, brainstorming

with collegues, working from home instead of the office, having lunch, watching videos

as part of work and watching videos.

• Emotional Analysis: This involves understanding the emotional state of the individual;

if he/she is happy, sad, angry or disgusted.

4.2.1 Localization Overview

The Localization measurement begins with a rule learning methodology that can derive

patterns and rules from a given data set. The Rule Learning workflow has 3 main steps

as outlined in Figure. 4.5, Retrieve data, FrequencyDiscretization and RuleLearner. The

first step, ”Retrieve” accesses the data from its source to load into the dataflow engine that

feeds into the FrequencyDiscretization block. The second step, ”FrequencyDiscretization”

converts the selected numerical attributes into nominal attributes by discretizing the numer-

ical attributes into a user-specified number of bins. This step is necessary as most of the

tree learning schemes work less efficiently for numerical attributes. As outlined in [50], the

goal of discretization is to reduce the number of values a continuous variable assumes by

grouping them into a number of intervals or bins. There are 2 unsupervised discretization

techniques common for most datasets as outlined in [51]. ”Equal-width discretization” first

finds the minimum and maximum values of every variable, Xi, and then divides this range

into a number, mXi, of user-specified, equal-width intervals whereas ”Equal-frequency dis-

cretization” determines the minimum and maximum values of the variable, sorts all values

in ascending order, and divides the range into a user-defined number of intervals, in such

a way that every interval contains the equal number of sorted values. This is illustrated
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in Figure. 4.6. The third step, ”RuleLearner” learns a pruned set of rules from the given

dataset. The Rule learner works similar to ’Repeated Incremental Pruning to Produce Error

Reduction’ (RIPPER) [52]. Starting with the less prevalent classes, the algorithm grows it-

eratively and prunes rules until there are no positive examples left or the error rate is greater

than 50%. In the growing phase, for each rule greedily conditions are added to the rule until

it is perfect (i.e. 100% accurate). The procedure tries every possible value of each attribute

and selects the condition with highest information gain. In the prune phase, for each rule

any final sequences of the antecedents is pruned with the pruning metric p/(p+n).

Figure (4.5) Model to learn the rules from the dataset

Figure (4.6) Numerical To Categorical Binning/Discretization

Rule learners are often compared to Decision Tree learners. Rule Learners have the
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advantage that they are easy to understand, representable in first order logic and prior

knowledge can be added to them easily. The major problem with Decision Trees is overfitting

i.e. the model works very well on the training set but does not perform well on the validation

set while the above Rule Learner based on the RIPPER algorithm overcomes that constraint.

4.2.2 Emotional Dimension Overview

Voice assistants and internal video cameras can be extremely intrusive as they listen

and see everything. Once these are translated to real emotions, multiple aspects could be

targeted at people based on their emotions. In the current work, the voice assistant has been

simulated with a program that listens to all conversations, translates them to plain text and

converts them to a sentiment, optimistic, negative or anxious. Correlation with additional

indicators like facial expression detection, eating habits, etc. help in accurately assessing

the emotional state of a person. A person being bored or thoughtful is detected by patterns

of pacing around or watching videos, and the emotional dimensional analysis done using

voice data. As the activities increase and our interactions with the external world increases,

multiple domains like financial transactions or social interactions have a huge impact on

the emotional state of a person. This work aims to drive a deeper understanding of the

privacy intrusion into the emotional state of a person through a dimensional analysis of the

emotional state.

Models of emotion are commonly subdivided along categorical or dimensional lines. Di-

mensional models consider states to be described relative to a small number of independent

emotional dimensions: Valence (corresponding to the concept of polarity), Arousal (degree

of calmness or excitement), and Dominance (perceived degree of control over a situation);

the V/A/D model. Formally, the V/A/D dimensions span a three-dimensional real-valued

vector space as illustrated in [48]. Another articulation of the dimensions is: valence(V): op-

timistic/pleasure negative/displeasure, arousal(A): active/stimulated sluggish/bored, dom-

inance(D): powerful/strong powerless/weak. An example V/A/D emotion chart is shown

in Figure. 4.7 as referenced in [53].
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Figure (4.7) V/A/D Example - NRC Research Ethics Board (NRC-REB)

Alternatively, categorical models, such as the six Basic Emotions conceptualize emotions

as discrete states. As far as categorical models for emotion analysis are concerned, many

studies use incompatible subsets of category systems, which limits their comparability and

there is still no consensus on a set of fundamental emotions. Here, the V/A/D model has

a major advantage: Since the dimensions are designed as being independent, results remain

comparable dimension-wise even in the absence of others (e.g., Dominance).

We will use 2 data banks for the Emotional dimension analysis. The first one is Emobank

[48], a corpus of 10000 sentences with V, A, and D values associated with each from actual

surveys, and also, to the best of our knowledge, the largest corpus for dimensional emotion

models. The second one is the NRC V/A/D Lexicon [49], a corpus of 20000 words with

V, A and D values from actual surveys. Addressing several genres and domains of general

English was one of the main criteria for the Emobank corpus and the genres represented by

it are illustrated in Figure. 4.8. Our goal with this analysis is to assess how close we can

gauge one’s emotional state based on sentences heard by the voice assistants.
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Figure (4.8) Genre distribution of the EMOBANK corpus

Training Mode Both Emobank and NRC V/A/D lexicon are used to train the sys-

tem. To understand how the V/A/D values in the word corpus relate to the V/A/D values

in the sentence corpus, we tokenize the sentence and extract the V/A/D values for each word

in the sentence and take the min, max and avg function of the values. The function that is

closest to the actual V/A/D value of the sentence is chosen to calculate the V/A/D value of

the sentence during validation and testing. The series of steps used to train the system to

calibrate the emotional dimensions are outlined in Algorithm 2.

Algorithm 2 Valence-Arousal-Dominance Derivation Algorithm

// Algorithm derives sentences V/A/D values using Word Lexicon V/A/D values

Data: EmoBank Sentence Corpus with actual V/A/D values
Data: NRC Word Lexicon with actual V/A/D values
Result: Sequence for the derivation of V/A/D values
Result: Function choice for V/A/D derivation
foreach sentences do

Tokenize a sentence foreach Tokens of a sentence do
Extract the V/A/D values from the NRC Word Lexicon

end
Calculate Sum, Avg, Min, Max of V/A/D values

end
foreach Sum, Avg, Min, Max data series do

Calcuate difference between this series from Actual V/A/D values
Derive Mean and Standard Deviation for this series

end
Choose the function with the lowest Mean and Std deviation (as that function has the least
deviation from the actual V/A/D values) as illustrated in Figure. 4.9
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Figure (4.9) Function Choice for Dimensions of Emotion

Validation and Test Modes The series of steps used to validate emotional dimen-

sions are outlined in Algorithm[ 3]. It uses the below set of threshold rules to convert the

tuple <V, A, D> into one of the Emotional dimensions; Optimistic, Anxious and Nega-

tive.The range of values for V, A and D is 0 to 1.

• If V >= 0.5, dimension = Optimistic

• If V < 0.5 and A >= 0.5, dimension = Anxious

• If V < 0.5 and A < 0.5, dimension = Negative

The data set is created by having an AI system translate all voice content captured

from voice assistants and audio recorders at home to text. The series of steps used in test

mode are similar to the ones outlined in algorithm 3 except that the actual dimensions are

already given as an output of the surveys.

4.3 Privacy Intrusion Quantification

We evaluate our system for its ability to detect privacy threats with high accuracy.

We conduct evaluations by analyzing data from a multi-sensor setup in an office sensor

deployment. In the setup, we have orchestrated scenarios to simulate privacy intrusion on a
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Algorithm 3 Valence-Arousal-Dominance Validation /Test Sequence

// Algorithm validates sentence V/A/D values using Word Lexicon V/A/D values

Data: EmoBank Sentence Corpus with actual V/A/D values
Data: NRC Word Lexicon with actual V/A/D values
Result: Validation of V/A/D values
Result: Derivation of Emotional Dimension; Optimistic, Anxious, Negative
foreach sentences do

Tokenize a sentence foreach Tokens of a sentence do
Extract the V/A/D values from the NRC Word Lexicon

end
Calculate Avg of V/A/D values

end
Categorize Actual V/A/D values into dimensions using dimension threshold rules.
Categorize computed V/A/D values into dimensions using dimension threshold rules.

single individual. Initially, we collect data and learn the Rules through our workflow using

all the data collected over a week. Once all the Rules are available, we validate that against

a validation dataset derived from the same setup, but over a different week with a new set

of activities for that week. The effectiveness of the rules in predicting the localization and

emotional posture of an individual gives us an idea of the level of intrusion for the individual.

4.3.1 Experimental Setup and Methodology

Localization and Emotional analysis are the areas of focus for these experiments and

the various sensors have been arranged in the office room as shown in Figure. 4.10 and

Figure. 4.11. A wifi router acts as a gateway node and helps isolate this network of sensors

from the rest of the enterprise network. The office room has been used for the setup in lieu of

home as it is easier to choreograph and generate data during the week. During the first week

of data generation, the setup was tuned to ensure that all devices and device placements

were fully calibrated.



60

Figure (4.10) Image of the Office room setup with Activities

• Temperature sensor: A temperature sensor [54] (sampling in oC) has been integrated

with a RaspberryPi 3 node. It measures temperature with 1oC accuracy and samples

temperature every minute. The sensor has been placed on the arm rest of the chair so

that it can detect a person sitting on the chair in front of the desk, clearly detecting

when someone is working at the desk.

• Touch sensor: A RaspberryPi 3 node has been integrated with a Touch sensor. The

sensor, a low-power metal touch switch module of jog type [55] is a type of switch

that only operates when it’s touched by a charged body. The sensor sends a signal

asynchronously every time it is touched. The sensor has been placed under the mat in

front of the discussion whiteboard so that it can detect a person standing in front of
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the whiteboard during discussions.

• Motion sensor: A RaspberryPi 3 node has been integrated with a Motion sensor.

It is an infrared(IR) Obstacle Avoidance sensor [56] that uses the infrared reflection

principle to detect obstacles. When there is no object in front, the infrared receiver

receives no signals; when there is an object ahead which blocks and reflects the infrared

light, the infrared receiver will receive signals.The sensor sends a signal asynchronously

every time it detects motion. The sensor has been placed at the edge of the desk so it

can send a signal every time someone walks by the desk. If one is pacing in the office,

it keeps sending signals detecting the scenario.

• Electric Power consumption: The Smartplug, TPLink HS110 [57] helps measure the

power consumption in the office room. The power fluctuates as device connections to

the smartplug vary. The more the number of devices, higher the power consumption

and as devices disconnect, the power consumption drops. In addition to the number

of devices, the workloads that run on those devices determines the power consumption

as well. When we run heavy workloads or watch video streams on the laptop, the

power consumption increases noticeably. The power consumption differences can be

interestingly used to find when someone came to the office, when devices were con-

nected, when someone started executing some programs and when someone switched

to watching video streams. This metric can be extremely intrusive to one’s digital life.

• Voice Assistant: Alexa or Google Home or Google assistant can be very intrusive as

they listen to everything. This has been emulated with a program that listens to

all conversations, translates them to plain text and converts them to an emotional

dimensional score.
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Figure (4.11) Image of sensors across the Office room

A wifi router acts as a gateway node and helps isolate the network from the rest of

the enterprise network. All the above sensors are isolated in this network while at the same

time physically interfacing with all devices and things connected to a completely different

network.

We had 3 rounds of data collection and analysis. The first week, we collected data

from 8:30 am to 5:30 pm everyday from Monday to Friday. As the sensors and collection

frequencies were not fully calibrated or fine tuned, this was just a trial that helped us

test our constraints. The activities were randomized to ensure an equitable distribution

through the day. A snapshot of the schedule of activities is shown in Figure. 4.12. Based

on this randomized schedule of daily activities, we learned a few aspects that helped us

tune our setup in the second round (i) Data collected was sparse for any meaningful results

(ii) Sampling rate required for all data points on the machine learning setup (iii) Bias in

activities when conducting experiments and removal of those data points during controlled

experiments. During the second week, we collected data again through the entire day for
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a whole week with the sensors fully calibrated and tuned. Like any normal office week,

there were a lot of activities, some similar and some different, enough to create patterns,

association rules and outliers. This week corresponded to the Training phase. We collected

an additional 2 weeks of data later to add to this Training data set. So, effectively the

training data set comprised 3 weeks of data spread across a wider time range. To measure

the effectiveness of our approach, we generated the validation dataset, 2 week’s worth of

data with the same setup spread across a few weeks, but with a completely different set of

activities and schedules, typical of the differing work weeks at office. The data was again

collected over the entire day from 8:30 am to 5:30 pm everyday for the week. Also, one thing

to note is that the Voice assistant emulation that translated all voice to texts was used in

these experiments as that pertains more to the detection of emotions.

Figure (4.12) Training Schedule

4.3.2 Rule based Localization Evaluation

Training Phase: Rule Learning All data collected during the Training phase is

shown in Figure. 4.13. The sensors are synchronously sampled almost every minute while

some of the sensors like Touch and Motion asynchronously reported data whenever an event of

interest occurred. The scenarios that the measurements were correlated to for the individual

were

• Sitting at the desk working

• Standing at the whiteboard having a discussion

• Pacing around the room
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• Working from home instead of the office

• Watching videos

Figure (4.13) Ground Truth (Partial) collected during the Training/Learning process

The data collected during the learning process generated the following rules.

• Person is sitting: If Temperature in [33.762 - INF] then YES; If Motion in [-INF -

0.343] and At lunch = NO and if Electricity in [78.964 - 81.354]

• Person is standing at the board for a discussion: If Temperature in [INF - 26.46]

then YES; If Motion in [-INF - 0.343] and At lunch = NO and if Electricity in [78.964

- 81.354]

• Person is pacing around the room: If Sitting at Desk = YES then NO; Else if

Motion in [0.695 - INF] and Touch in [0.357 - 0.610] then YES; Else if Electricity in

[-INF - 78.789] and Touch in [-INF - 0.348] then YES

• Person is working from home: If Electricity less than 20, Sitting at Desk = NO,

Pacing About = NO, Standing = NO and On Friday, after 3:30 pm, YES

• Person is watching videos If Pacing About = NO, and Sitting = YES, and Elec-

tricity greater than 83, then YES
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Validation Phase: Office Dataset Analysis A snapshot of data collected during

the Validation phase is shown in Figure. 4.14. Once the rules are run against the valida-

tion data, inferences are generated and we measure the effectiveness of our privacy threat

identification mechanism through precision, recall and accuracy metrics, as defined below.

• Accuracy = TruePositives+TrueNegatives
TotalObservations

• Precision = TruePositives
TruePositives+FalsePositives

• Recall = TruePositives
TruePositives+FalseNegatives

Figure (4.14) Ground Truth (Partial) collected during the Validation process
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Figure (4.15) Evaluation of the Smarthome privacy across Localization parameters

We make an observation from the table in Figure. 4.15. For the scenario of ”Standing at

the whiteboard for discussions”, the precision was low due to the way the touch sensor was

placed near the whiteboard that could be activated by other weights in addition to the weight

of the individual, sometimes thus triggering False Positives. The Recall was high indicating

that whenever an individual stood at the whiteboard, it had very few False Negatives. Better

adjustment of the touch sensor near the whiteboard in the experimental setup will fix the

low Precision readings.

4.3.3 V/A/D based Emotional Evaluation

Training Phase: V/A/D Function Choice As outlined in Section 3.2, Emobank

[48], a corpus of 10000 sentences with V, A, and D values and NRC V/A/D Lexicon [49],

a corpus of 20000 words with V, A and D values are used during the training phase.

Using this we arrive at the choice of the function for V/A/D derivation for sentences using

individual V/A/D scores for words from the Lexicon as illustrated in Figure. 4.9. The

function determining the V/A/D of the sentence could be one of Min, Max or Avg of the

V/A/D values of the words in the sentence. This will help with identifying the emotional

state of a person along the 3 dimensions:

• Optimistic: Joy, Surprise

• Anxious: Anger, Disgust

• Negative: Fear, Sadness
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Validation Phase: EmoBank dataset analysis Validation phase uses the partial

EmoBank dataset. We measure the effectiveness of our privacy threat identification system

through precision, recall and accuracy metrics, as previously defined. There are a couple

of key points to note from the results in Figure. 4.16. First, all emotional dimensions are

identified with a high level of accuracy. Second, the dataset had more data on the Optimistic

dimension than others. This reflects reality as most data is normal or optimistic unless

negative or anxious moments change that.

Figure (4.16) Results for the Emobank Validation Dataset

Testing Phase: Survey dataset analysis Testing phase uses data collected by

voice assistants and converted to text. From all the voice/text collected, 52 sentences across

multiple topics were chosen and subjected to a survey across 30 participants to classify them

into Optimistic, Anxious and Negative dimensions. We did not collect the age, gender and

occupation of the person, however, based on our estimates, we believe the demographic

spread over ages 25-45, considering all the survey participants were employees of a company

and/or senior graduate students. The dataset and the survey are available at [58] and the ac-

tual dimensional classification based on survey, or rather people’s perception of the sentences

is shown in Figure. 4.17. The actual survey result numbers are available in Appendix B. At

this point, it is run through our algorithm to derive the V/A/D scores and classify into the 3

dimensions based on V/A/D values. Based on actual and derived V/A/D values, accuracy,

precision and recall are calculated to assess effectiveness.



68

Figure (4.17) Emotion Survey Dataset Characterization

Figure (4.18) Results for the Survey Dataset

4.4 Takeaways and Future work

A lot of privacy concerns exist in the Smart Home segment and we have categorized

them into multiple dimensions with each one having a different level of severity in case of a

breach. For instance, Financial category and Identity thefts are higher in priority than most

other dimensions. In this work, we have taken two of those categories, ”Localization” and

”Emotional State” and tracked an individual through all scenarios, like sitting and working at

his/her desk, standing at the whiteboard for a discussion, pacing around the room, being at

lunch, working from home or watching some videos while at the desk, being Optimistic(happy

and surprise), being Anxious(anger and disgust) and being Negative(Sadness and Fear).

Anyone having a good grasp of an individual’s medical needs, or emotional mood swings, or

daily activities and specific localization details, can target him/her from multiple angles for

nefarious reasons. Based on the above methodology, as we are able to track activities with

an accuracy of 76%, and high levels of Precision(62%) and Recall(53%), and track emotional
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states with an accuracy of 86% and high level of Precision(79%) and Recall(79%), we can

start to find some interesting patterns crossing dimensional boundaries. For instance, if one

is Negative and Pacing around, the person is extremely disturbed and is deep in thought.

Any kind of prediction is bad considering the level of intrusion that exists in each of the

parameters and these numbers could be interpreted as the risk factor. This was achieved by

having various sensors track all these activities. Anyone getting this level of detail on any

individual is clearly intruding on the individual’s privacy. Our mechanisms help quantify

the level of intrusion and the study outlines their effectiveness in predicting the various

aspects of the privacy posture. These results from our analysis of this preliminary

dataset show the possibility of invading a user’s privacy through inference with

significant accuracy.

As next steps, we will conduct structured interviews of 20 smart home users, to study

their usage patterns of these smart home technologies and their privacy concerns. This study

would help assign weights to the various privacy attributes. Associating different weights to

different categories and scenarios would help tune individual privacy intrusion scores and in

turn the mitigation levels and methodologies to be adopted.
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PART 5

CONCLUSION

The framework for Collaborative Edge Computing, Opportunistic collaborative resource

sharing for mobile IoT systems, drives a novel architecture that uses blockchains for collab-

oration. We developed a mechanism that enables opportunistically identifying available

resources and advertised services, and invoke or utilize them based on a collaborative con-

sensus. Through an experimental evaluation, we showed the feasibility of the collaborative

architecture with overall app execution latency comparable to the traditional centralized

edge approach and resource utilization much better.

The framework for Collaborative Edge Security addresses the problem of detecting in-

tegrity threats from physical attacks on sensor nodes, through a use-case exploration of preci-

sion agriculture scenarios. We designed a novel framework that uses Local Outlier Factor for

outlier detection with locality based mean and variance used as dimensions, and described its

usage across typical precision agriculture sensor deployment topologies. Through experimen-

tal evaluation and trace based analysis of a subset of data from the real world underground

sensor deployment (Thoreau), we showed the effectiveness of the model in detecting integrity

threats with reasonable accuracy and efficiency suitable for real-time deployment.

The framework for Collaborative Privacy Intelligence explored the idea of privacy profil-

ing of individuals in the Smarthome setting. We designed the privacy intrusion measurement

framework to understand the correlation of activities to the physical world of sensors and

digital assistants and the patterns across multiple activities. We used this to combine data

from smart home sensors, duplicate a user’s privacy posture, and quantify the level of pri-

vacy intrusion based on a generated rule-book. Through an experimental setup of a 5 sensor

network, we showed the feasibility of deriving Localization and Emotional postures from

sensors’ data and demonstrated the effectiveness of the approach.
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As part of our ongoing research efforts, we plan to explore our collaborative edge-

computing approach at scale in a 5G mobile IoT platform and our collaborative security

with the novel outlier detection approach at scale with another domain that exhibits spatio-

temporal characteristics. With respect to Collaborative Intelligence, we plan to assign

weights to various privacy attributes to help us tune the privacy posture better and drive

the right mitigation strategies. As the Edge gains prominence with decisions and computa-

tion moving closer to the source of data, the frameworks designed through this thesis will

drive key solutions at the Edge and will pave the way for more research in federation and

collaboration of mobile Internet of Things devices at the Edge in various domains.
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Appendix A

SURVEY: THREAT PERCEPTION BY PRIVACY DIMENSIONS

• Localization: Does an AI system that identifies if you are sitting/standing in a

room/home seem to invade your privacy?

• Localization: Does an AI system that identifies if you are moving/not moving in a

room/home seem to invade your privacy?

• Localization: Does an AI system that identifies if you are at home or at work seem to

invade your privacy?

• Identity: Does an AI system that identifies your daily habits seem to invade your

privacy?

• Identity: Does an AI system that identifies your driving habits seem to invade your

privacy?

• Identity: Does an AI system that recognizes your social identity seem to invade your

privacy?

• Emotion: Does an AI system that identifies that you are happy or surprised (very

positive) seem to invade your privacy?

• Emotion: Does an AI system that identifies that you are sad or fearful (very negative)

seem to invade your privacy?

• Emotion: Does an AI system that identifies that you are angry or disgusted (very

anxious) seem to invade your privacy?

• Finance: Does an AI system that identifies your online banking patterns seem to invade

your privacy?
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• Finance: Does an AI system that identifies the banks you deal with, seem to invade

your privacy?

• Finance: Does an AI system that recognizes the banking identities, seem to invade

your privacy?

• Genealogy: Does an AI system that recognizes the ancestral history seem to invade

your privacy?

• Genealogy: Does an AI system that recognizes the race of a person seem to invade

your privacy?

• Genealogy: Does an AI system that recognizes the descent of a person seem to invade

your privacy?

• Social Connections: Does an AI system that identifies a person’s social connections

seem to invade your privacy?

• Social Connections: Does an AI system that recognizes the intensity and nature of

social connections seem to invade your privacy?

• Social Connections: Does an AI system that recognizes the frequency and mode of

social interactions seem to invade your privacy?

• Sensors: Does the presence of a touch sensor at home seem to invade your privacy?

• Sensors: Does the presence of a motion sensor at home seem to invade your privacy?

• Sensors: Does the presence of a temperature sensor at home seem to invade your

privacy?

• Sensors: Does the presence of a smartplug that measures granular energy usage at

home seem to invade your privacy?

• Sensors: Does the presence of a voice assistant at home seem to invade your privacy?
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Figure (A.1) Results of the Privacy Intrusion Importance survey
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Appendix B
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SURVEY: EMOTIONAL DIMENSION CLASSIFICATION

Figure (B.1) Results of the Emotional Dimension Classification survey
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