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ABSTRACT 

DNA-minor groove binding small molecules have been extensively developed to achieve 

higher binding affinity and specificity. Polyamides are a class of small molecules that can be 

programmed to target any predetermined DNA sequence. The development of hairpin polyamides 

along with introduction of β-alanine substituents, has greatly enhanced the DNA binding properties 

of these molecules. Yet the correlation between β-insert and binding properties remains unclear. 

On the other hand, the design of small-size, fluorescent hybrid polyamides has facilitated cell 

studies due to their ease of observation. There is a strong need to expand the DNA recognition 



sites of such molecules and extend their biological applications. This dissertation has explored the 

systematic design and synthesis of eight-ring hairpin polyamides as well as the modified Pyr-

AzaHx hybrid polyamides. Comprehensive biophysical and biochemical tools were employed to 

evaluate their binding properties. The effects of β-alanine and N-terminal cationic groups on 

hairpin polyamides-DNA binding have been discussed. The binding properties of modified Pyr-

AzaHx polyamides were explored. Altogether, the work provided fundamental guidance for the 

prediction of binding properties of similar molecules as well as strategies for the design of more 

competitive molecules. 

Transcription factors bind to specific DNA sequences in the major groove and regulate 

gene expression. Abnormal expression of transcription factors is involved in the development of 

many serious diseases. Precise control of gene expression by targeting transcription factors can be 

an alternative therapeutic approach. Polyamides bind to DNA with affinities comparable to 

proteins, empowering them with the ability to interfere with transcription factors at specific DNA 

binding site and consequently altering the gene expression level. In this dissertation, the effect of 

polyamides on the binding of transcription factor PU.1 was studied. Abnormal expression of PU.1 

is involved in the development of acute myeloid leukemia (AML). A positive correlation was 

established between eight-ring polyamide binding affinity and inhibition efficacy for PU.1. A non-

inhibitor polyamide FH1024 was identified and the mechanism of action among polyamide, DNA 

and PU.1 was explored. The studies showed strong evidence of the capability of polyamides 

serving as drug agents. This work also established solid basis for the further cell studies.   

 

INDEX WORDS: DNA minor groove, Small molecules, Polyamide, ETS transcription factors, 

PU.1, AzaHx, SPR   
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LIST OF ABBREVIATIONS 

 

PA                             polyamide  

Py                              N-methylpyrrole  

Im                              N-methylimidazole 

β                                β-alanine 

Hp                             N-methyl-3-hydroxypyrrole  

γ-turn                        γ-aminobutyric acid   

Dp                             3-(dimethylamino)propylamine  

Ta                             3,3’-diamino-N-methyldipropylamine 

TMG                        tetramethylguanidine  

P                               pyrrole 

I                               imidazole 

f                               formamide 

Hx                            2-(p-anisyl)-benzimidazole 

AzaHx                     2-p-(anisyl)-4-aza-benzimidazole 

Pyr-AzaHx              pyridyl-aza-benzimidazole 

TF                           transcription factor 

ETS                        E26 transformation specific 

PU.1                       purine rich box 1 

AML                      acute myeloid leukemia  

SPR                        surface plasmon resonance 

Tm                         thermal melting 

CD                         circular dichroism 
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EMSA                    electrophoresis mobility shift assay 

ESI-MS                  electrospray ionization mass spectrometry 

NMR                      nuclear magnetic resonance 
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1 INTRODUCTION 

DNA carries genetic information in living organisms and usually assumes a B-form, right-

handed double helical structure (1). The genetic information is delivered through a series of 

cellular events like DNA replication, transcription and translation. Among those, transcription is 

the process of converting DNA into messenger RNA, during which a range of proteins, including 

transcription factors, are recruited to facilitate and regulate the process. The precise operation of 

transcription is essential for maintaining cellular homeostasis (2). In fact, abnormal regulation of 

gene transcription is found to be involved in a number of devastating health issues such as cancer 

and infectious diseases (3). Transcription factors play an important role in gene regulation and 

their activities are often altered in cancer cells due to mutations, abnormal signaling, and 

posttranslational modifications (4). Therefore, transcription factors are an attractive therapeutic 

target point in drug development. Useful molecular tools that enables the accurate control of gene 

expression by directly or indirectly targeting transcription factors can be a potential approach to 

treating those serious conditions. Binding of transcription factors to specific DNA sequences is a 

crucial step to recruiting accessory proteins and the subsequent transcriptional activities (2). 

Specific DNA-binding small molecules can be used as anti-cancer agents to interfere with 

transcription factor-DNA interactions and thus rectify the abnormal gene expression.  

1.1 DNA minor groove-targeting small molecules 

1.1.1 Development of β-alanine inserted hairpin polyamides 

N-methylpyrrole (Py), N-methylimidazole (Im) polyamides (PAs) are a class of 

programmable synthetic small molecules that interact with DNA by binding to the minor groove 

of specific DNA sites. Polyamides are originally derived from the naturally existing antibiotics: 

netropsin and distamycin A (5, 6). These natural molecules are composed of two or three pyrrole 
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heterocycles linked with amide binds (Figure 1.1) and bind the AT rich regions of DNA 

preferentially in a 1:1 ratio (7, 8). These molecules interact with DNA through hydrogen bonding, 

van der Waals forces and electrostatic interactions to achieve stability and specificity of the 

complex. Based on the X-ray analysis of netropsin-DNA complex, Dickerson and coworkers 

established the molecular foundation of the base specificity of netropsin. That is, the binding 

preference of netropsin to four or more consecutive AT base pairs is achieved not by hydrogen 

bonding but by the close van der Waals contacts between C3-H of pyrrole and C2-H of adenine. 

They further proposed that replacement of pyrrole with imidazole, that is changing C3-H to N, 

would enable the modified new molecule to recognize a G/C base pair, and therefore, any short 

DNA sequences (9). This work is fundamental for the development of polyamides that are capable 

of expanding the DNA recognition site. Wemmer and coworkers later found in an NMR 

experiment that titration of DNA with distamycin A at high drug to DNA ratio (>1:1) generated a 

single, stable drug-DNA complex that was different from the complexes formed at low drug to 

DNA ratio (< 1:1). Their NMR structure revealed that distamycin A formed a 2:1 antiparallel 

stacked dimer with DNA (10). These discoveries have laid solid foundation for the evolution of 

polyamides. Subsequently, Lown, Devan, Wemmer and coworkers were able to synthesize a 

netropsin analogue that incorporated imidazole at the N-terminus and demonstrated that the new 

molecule was able to recognize mixed A/T and G/C sequences as a 2:1 antiparallel side-by-side 

dimer (11-13). The result not only proved the previous hypothesis but also significantly facilitated 

the formation of the widely-recognized DNA binding rules. Briefly, Py/Py recognizes A/T or T/A 

base pairs; Py/Im recognizes C/G base pairs; Im/Py recognizes G/C base pairs. Since Py/Py cannot 

distinguish A/T from T/A, Dervan and coworkers introduced an N-methyl-3-hydroxypyrrole (Hp) 

moiety by replacing C3-H with C3-OH on the pyrrole unit of polyamides. Although Hp was able 
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to bind to T through hydrogen bonding and enable the molecule to distinguish T/A from A/T, it is 

not widely used due to the difficulty in synthesis and its instability in both solid and solution form 

(14-19). Based on the DNA recognition rules, we are able to design polyamides that can target any 

short DNA sequences.  

Inspired by the dimer mode of binding as well as to enhance the binding affinities, 

polyamides have been developed into various forms, for example, hairpin, H-pin, U-pin and cyclic 

polyamides (20-23). Among these structures, hairpin polyamides are most commonly used in 

research because of their versatility and ease of synthesis (23). Hairpin polyamides consist of two 

polyamide strands that are covalently linked by γ-aminobutyric acid (γ-turn) from the C-terminus 

of one polyamide to the N-terminus of the other (24, 25). (Figure 1.2) Binding of hairpin 

polyamides can assume two orientations: N-terminus of polyamide aligns with 5’ side of DNA 

(forward binding) or 3’ side of DNA (reverse binding) (24, 26-28). Hairpin polyamides bind to 

DNA following the recognition rules with significantly enhanced affinity (almost 100-fold higher 

compared to the naturally existing distamycin A) and specificity. This modification has 

empowered polyamides to achieve DNA-binding affinities comparable to those of DNA-binding 

proteins (28).  

In order to expand the length of the DNA recognition site and therefore, to achieve higher 

specificity, hairpin polyamides have to be elongated accordingly by increasing the number of Py 

and Im heterocycles. Studies have shown that the limit of the number of rings on either polyamide 

strand is five for the DNA to tolerate (23). Hairpin polyamides longer than that become over curved 

(compared to the curvature of the B-form double strand DNA helix) and too stringent to 

accommodate themselves to the DNA minor groove. As a result, both binding affinity and 

specificity are sacrificed. This issue was tackled by introducing β-alanine (β) into the hairpin 
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polyamide building block as a flexible motif to replace one or more Py rings. Incorporation of β-

alanine relaxes the overall polyamide structure and can restore both the binding affinity and 

specificity (29, 30). β-alanine functions as a Py and forms hydrogen bonds with A and T.  

The recognition activity of small molecules is primarily determined by their structures. 

Until now, the molecular basis of the interactions between β-containing hairpin polyamides and 

DNA is still unclear. The number and position of β in polyamides largely affect their binding 

affinity, specificity as well as orientation. Bashkin and coworkers found that not all β-inserted 

polyamides enhance binding affinity (31-33). Hence, a thorough investigation of the effects of the 

composition of hairpin polyamides on their DNA binding activities is in great need.  

1.1.2 Development of short Pyr-AzaHx hybrid polyamides 

Polyamides are developed to realize their optimal biological functions in living organisms, 

which requires efficient cell uptake and nuclear localization. The cell permeability of prototypical 

polyamides varies depending on the cell types, polyamide structure, composition, and size (34-

37). Typically, hairpin polyamides are considered to be associated with poor nuclear localization 

due to their larger size, lower solubility and stability (38). On the other hand, cell study of the 

biological effects of polyamides requires conjugation of fluorescent dyes due to its lack of intrinsic 

fluorescence. Although significant progress has been made using this method, molecules that could 

enable the direct observation of nuclear localization would eliminate extra concerns about the 

effect of fluorescent dyes on the overall structure and function of polyamides (39-44).  

Lee, Wilson and coworkers sought an alternative approach based on the molecular 

recognition of triamides (45) (Figure 1.3), by attaching an intrinsically fluorescent Hx moiety (2-

(p-anisyl)-benzimidazole) to a consecutive I-P, P-P or P-I heterocycles (Figure 1.3) The resulted 

hybrid Hx-amides bind to DNA as a stacked, side-by-side, antiparallel dimer. Hx expands along 
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two continuous dinucleotides and behaves predictably similarly to P-P or f-P (46, 47). The novel 

small-sized hybrid polyamides retained the binding affinity and specificity and also exerted better 

solubility and cell uptake activities. More importantly, these polyamides greatly facilitated the 

direct observation of nuclear localization with their fluorescent properties. The Lee, Wilson group 

further built upon the solid Hx base, an AzaHx moiety (2-(p-anisyl)-4-azabenzimidazole), to 

extend the DNA recognition repertoire (48) (Figure 1.3). AzaHx differentiates itself from Hx in 

that it mimics P-I or f-I and can target AG, TG or CG dinucleotides. Of the most importance is 

that this modification extended the recognition of central bases from CG to GC as well. 

1.2 DNA major groove-targeting transcription factors 

Transcription factors are of vital importance in the first level of regulation of transcription. 

The process requires the binding of transcription factors to defined promoter or enhancer regions 

to recruit subsequent transcription machinery (2, 49). ETS (E26 transformation specific) family of 

transcription factors are a group of functionally diverse proteins that share a conserved 85-residue 

domain, which specifically recognizes purine rich sequences containing a 5’-GGA(A/T)-3’ 

consensus core (50). Of those proteins, PU.1 (Purine rich box 1) is expressed selectively on B 

cells, myeloid cells and macrophages and regulates several genes that are involved in cell 

differentiation and the immune system (51). Over- or under- regulation of PU.1 expression is 

associated with the induction of acute myeloid leukemia (AML) (52-55). Regulating PU.1 

expression level in a controllable way, therefore, has been considered a feasible approach for the 

treatment of AML. 

The B motif of the Ig2-4 enhancer (B promoter site: 5’-

CCAAATAAAAGGAAGTGAAACCAAG-3’) has been widely used in research as the classical 

PU.1 binding cognate site. Stability of PU.1-DNA complex is a crucial determining factor of the 
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transcriptional efficacy in vivo. Studies have shown that the promoter activity is strongly correlated 

with the binding affinity of PU.1 (56). In a sequence selectivity study, Poon demonstrated that the 

binding affinity of PU.1-DNA is affected by flanking sequences up to three bases upstream and/or 

two bases downstream of the core consensus, using B site as reference. While most of the mutated 

sequences lowered the binding affinity, the 3’ side mutants generated the poorest binding of all 

(50).  

Small molecules have been used to target the flanking sequences of the promoter region 

and to allosterically compete or cooperate with transcription factors binding to DNA. In the case 

of PU.1, most studies have focused on the AT rich region at the 5’ side of the 5’-GGAA-3’ 

sequence. Applications of natural agent distamycin as well as a class of small heterocyclic 

diamidines have been shown to successfully inhibit PU.1 from binding to the cognate site (57, 58). 

To this date, there has hardly been any report on the effect of the 3’ side binding molecules, 

provided that the 3’ side is of equal or even more importance to the binding of PU.1.  

1.3 Objectives 

This dissertation took the effort to systematically design and synthesize a set of eight-ring 

hairpin polyamides with modifications not only in the arrangement of β-alanine but also the N-

terminus charged motif. By evaluating the DNA binding properties of these molecules, this work 

established a general binding pattern for eight-ring hairpin polyamides, which expanded our 

understanding of the molecular recognition of hairpin polyamides as well as provided clear 

guidance for the optimization of rational polyamide design in the future. 

With the aim of expanding the DNA recognition repertoire of fluorescent small hybrid 

polyamides, this dissertation attempted to recognize 5’-GGCC-3’ DNA sequence by designing a 

set of pyridine-AzaHx polyamides.  Assessment of their binding properties revealed that the Pyr-
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AzaHx polyamides do not recognize the desired GG dinucleotides, but behave similarly to AzaHx 

polyamide with significantly enhanced binding affinity. 

Over the years of development, modified polyamides are able to achieve DNA-binding 

affinities that rival those of DNA-binding proteins (34, 35). Binding of polyamides has also been 

shown to cause DNA conformational change in a way that the minor groove is widened while the 

major groove is compressed (22, 59). This dissertation took the pioneering effort in investigating 

the effect of a set of eight-ring hairpin polyamides that target the 3’ side immediate flanking 

sequence of the PU.1 binding site, on the binding of PU.1. The work established a positive linear 

correlation between the binding affinity and inhibition efficacy of polyamides. More importantly, 

it discovered and characterized a close analogue of the polyamide that potentially enhances PU.1 

binding to DNA. This property of polyamides has never been characterized before.  

In summary, this dissertation employees a wide selection of biochemical and biophysical 

techniques including SPR, ESI-MS, thermal melting, EMSA, CD, DNase I footprinting and so on, 

for the exploration of the binding properties of two different types of polyamide derivatives. Both 

the established binding pattern of the classical hairpin polyamides and the enhanced binding of the 

small-sized Pyr-AzaHx hybrid polyamides are valuable references for the development of design 

strategies of molecules with improved DNA binding properties and biological performance. The 

investigation of PU.1-DNA, polyamide-DNA interactions uncovers possibly new molecular 

mechanisms of the mode of action of these interactions, which can significantly expedite the design 

of biologically relevant agents when understood thoroughly.  
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Figure 1.1 Structures of netropsin and distamycin. 
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Figure 1.2 Structure of hairpin polyamide and its recognition to DNA (25).  

Figure 1.3 Structures of triamide (f-IPI) and hybrid polyamides.  
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2.1 Abstract 

Minor-groove binding hairpin polyamides (PAs) bind specific DNA sequences. Synthetic 

modifications can improve PA-DNA binding affinity and include flexible modules, such as β-

alanine (β) motifs to replace pyrroles (Py), and increasing compound charge using N-terminal 

cationic substituents. To better understand the variations in kinetics and affinities caused by these 

modifications on PA-DNA interactions, a comprehensive set of PAs with different numbers and 

positions of β and different types of N-cationic groups was systematically designed and 

synthesized to bind their cognate sequence, the λB motif. The λB motif is also a strong binding 

promoter site of the major groove targeting transcription factor PU.1. The PA binding affinities 

and kinetics were evaluated using a spectrum of powerful biophysical methods: thermal melting, 

biosensor surface plasmon resonance and circular dichroism. The results show that β inserts affect 

PA-DNA interactions in a number and position dependent manner. Specifically, a β replacement 

between two imidazole heterocycles (ImβIm) generally strengthens binding. In addition, N-

terminal cationic groups can accelerate the association between PA and DNA, but the bulky size 

of TMG can cause steric hindrance and unfavourable repulsive electrostatic interactions in some 

PAs. The future design of stronger binding PA requires careful combination of βs and cationic 

substituents. 

2.2 Introduction 

Polyamides (PA) are heterocyclic cations that consist of N-methylpyrrole (Py) and N-

methylimidazole (Im) aromatic rings linked by amide bonds (1-4). They are potentially useful in 

applications such as gene therapeutics and inhibiting protein-DNA interactions (5-7). Derived 

from the natural DNA minor groove binding agents, netropsin and distamycin, PAs have been 

developed extensively over the years to enhance their DNA-binding affinity and specificity. Even 
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though targeting the relatively narrow DNA minor groove, distamycin was found to form 2:1 

antiparallel stacked dimer complexes with AT-rich DNA (8). The finding led to the concept of 

covalently linking two PA monomers by a flexible linker that can mimic the bend of a hairpin. 

Therefore, hairpin PAs can form a 1:1 side-by-side complex with the two strands of DNA minor 

groove at higher affinity and specificity than traditional PAs (1, 9-11). Based on the hydrogen 

bonding interactions of the complex and its pairwise heterocycle stacking properties, general PA-

DNA recognition rules were developed and have advanced molecular design (3, 10, 12). However, 

challenges still exist, since elongating hairpin PAs to eight or more rings leads to an over-curved 

structure which no longer matches the minor groove shape of B-form DNA. The resulting shape 

mismatch for long PAs causes a loss of hydrogen bonding strength that erodes both binding affinity 

and specificity (13, 14). Incorporating a flexible motif such as β-alanine (β) to serve as a 

replacement of internal Py moieties has been reported to help compensate for the structural 

incompatibility and improve binding (15-18). However, some literature results show a variety of 

binding affinity effects of β-inserts, including a decrease in binding affinity of some PAs by the 

introduction of βs. It is quite important to notice that the insertion of β at different positions of the 

same molecule has been shown to have very diverse effects on binding affinity (17, 19-21). It is 

essential, therefore, to understand the complex role of β insertion in PA-DNA interactions to guide 

the molecular design of better PAs.  

    Another challenge of large size hairpin PAs which contain more than six heterocyclic 

rings is aggregation and low solubility at high concentrations (20, 22, 23). The natural product, 

netropsin, contains a cationic guanidine moiety at its N-terminus, which presumably enhances both 

the solubility and its affinity to anionic DNA sequences (24). A previous study has demonstrated 

that the replacement of the monocationic Dp group [3-(dimethylamino)propylamine] by a 
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dicationic Ta group (3,3’-diamino-N-methyldipropylamine) could maintain the DNA binding 

mode and affinity of eight-ring hairpin PAs as well as significantly reduce PA aggregation (20). 

Bashkin and coworkers have also reported that guanidinyl-substituted PAs have better antiviral 

activities against human papillomavirus (HPV) than traditional PAs (25). Thus, it is important to 

incorporate cationic substituents into PA, explore their effects on PA-DNA binding interactions, 

and better understand how to modulate the solution properties of PAs. 

2.2.1 Compound Design 

In order to evaluate the effects of β inserts and cationic substituents on PA-DNA 

interactions, a series of hairpin PAs was systematically designed that covered reasonable internal 

exchanges of Py to β (Fig. 2.1A). In parallel, cationic substituents were also added to each 

counterpart with the exception of two molecules that have β inserts close to the C-terminus (Fig. 

2.1A, KA2114 and KA2115). This is because β-alanine confers more flexibility to PAs when 

inserted close to a terminus than when positioned internally. With one positive charge at the N-

terminus and two positive charges at the C-terminus, strong electrostatic repulsions would be 

expected to disrupt stacking of PA heterocycles and interfere with binding to the targeted DNA 

site. For this reason, KA2114 and KA2115 do not have cationic substituted counterparts.  

The molecules in Fig. 2.1A are categorized into two groups: β-alanine inserts and cationic 

substituents, based on their modifications. To further assist data interpretation, all the heterocycles 

were numbered from 1 to 8 starting from the N-terminus. The parent PA, KA2035, contains eight 

heterocyclic rings and an N-terminal formamido group that is identical to that found in natural 

product Distamycin A. In the β-alanine inserts group, analogs of KA2035 that contain a single β 

replacement (KA2034 at ring 3, KA2041 at ring 6, and KA2114 at ring 7) and two βs (KA2040 at 

rings 3 and 6, and KA2115 at rings 3 and 7) at three different Py positions have been developed 
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and synthesized. In the cationic substituents group: KJK6162 has the same heterocyclic rings as 

KA2035 but incorporates tetramethylguanidine (TMG) at the N-terminus. The TMG cationic N-

terminal containing molecules also include FH1026 and FH1028, both of which have a single β 

insert, but at rings number 6 and number 3, respectively. Another member in this group is FH1024, 

which possesses the same composition with KA2040 and a TMG at the N-terminus. 

The designed PA-DNA binding site is AGTGA. The binding site is contained in the λB 

promoter region, to which transcription factor PU.1 binds. Therefore, λB sequence is chosen as 

the target DNA sequence in this study to screen potential PU.1-DNA inhibitors in the future. This 

is important in that PU.1 is involved in many physiological diseases such as auto-immune diseases 

and acute myeloid leukemia (AML) (26, 27). Extensive biophysical studies were carried out with 

the systematically designed compounds and their cognate and mutant DNAs. The results showed 

that β-inserts affect PA-DNA binding affinity in a manner that is dependent on PA composition 

and β position.  For the current set of PA, a clear binding pattern between β-inserted PA and DNA 

was developed. The effects of flanking base pairs on PA-DNA binding were also investigated. 

2.3 Materials and Methods 

2.3.1 DNA and Compound synthesis 

All the DNA oligomers in this study were purchased from Integrated DNA Technologies, 

Inc. (IDT, Coralville, IA) and the purity is checked by ESI-MS. The DNAs used are shown below: 

λB DNA: 5’-Biotin-CCAAATAAAAGGAAGTGAAACCAAGCTCTCTTGGTTTCAC 

TTCCTTTTATTTGG-3’;SC1 DNA: 5’-Biotin-CGGCCAAGCCGGAAGTGAGTGCCTCTCG 

GCACTCACTTCCGGCTTGGCCG-3’; GAGA mutant DNA: 5’-Biotin- CCAAATAAAAGA 

GAGTGAAACCAAGCTCTCTTGGTTT CACTCTCTTTTATTTGG-3’ 

Short λB DNA: 5’-GGAAGTGAACCTCTGTTCACTTCC-3’ 
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Mutant 1: 5’-GGAAGAGAACCTCTGTTCACTTCC-3’ 

Mutant 2: 5’-GGAAGTGTACCTCTGTTCACTTCC-3’ 

Mutant 3: 5’-GGAAGTTAACCTCTGTTCACTTCC-3’ 

Mutant 4: 5’-GGAACTGAACCTCTGTTCACTTCC-3’ 

Mutant 5: 5’-GGAAGTCAACCTCTGTTCACTTCC-3’ 

The three long DNAs with biotin at 5’ were used for SPR experiments. The short λB DNA 

was used for Thermal melting and Circular Dichroism experiments. The five mutant sequences 

were used for Thermal melting. 

Compound Synthesis Boc-β-alanine-PAM resin was purchased from Peptides 

International.  Polyamide building blocks, monomers or dimers, were purchased from A Chemtek, 

Inc. (Worcester, MA) and purification of polyamides was done by the Boc-PAM solid phase 

method as reported (28), with some modifications. In particular, dimer building blocks were 

purchased from A Chemtek or were prepared in-house and used in place of sequential monomers.  

This was especially the case when monomer coupling would have involved the poorly-

nucleophilic imidazole amino group from the growing, resin-bound polyamide reacting with an 

active ester in solution, as per Dervan’s original recommendations (28). Application of dimer 

building blocks are indicated by parentheses in polyamide syntheses, as for FH1024: TMG-

(PyIm)-β-Im-γ-(Py-β)-(PyPy)-β-PAM resin. For example, (PyPy) indicates that the pyrrole-

pyrrole dimer was used. When unavailable commercially, dimer building blocks were made by 

standard methods as previously described (20). The final products were purified by reverse-phase 

HPLC and characterized with NMR and HR mass spectrometry. The TMG substituted PAs were 

synthesized by virtually identical solid phase methods up to the pyrrole group (4-amino-N-

methylpyrrole-2-carboxyamide). To generate the final building block where TMG is connected to 
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the H2N-Py moiety, HATU (29) has been used (30).  The PA concentration was determined by 

accurate weighting on a five place analytical balance and dissolving the compound in an 

appropriate volume of solvent. 

KA2034: HRMS calc’d for C56H71N21O11 1213.56452, found 1213.5574 

1H NMR (600 MHz, DMSO-d6) δ = 10.37 (s, 1 H), 10.35 (s, 1 H), 10.05 (d, J = 1.2 Hz, 1 

H), 9.93 (s, 1 H), 9.89 (s, 1 H), 9.89 (s, 1 H), 9.82 (s, 1 H), 9.31 (br. s., 1 H), 8.10 (d, J = 1.8 Hz, 

1 H), 8.05 (t, J = 5.9 Hz, 1 H), 8.02 (t, J = 5.7 Hz, 1 H), 7.97 (t, J = 6.2 Hz, 1 H), 7.88 (t, J = 6.2 

Hz, 1 H), 7.50 (s, 1 H), 7.40 (s, 1 H), 7.28 (d, J = 1.8 Hz, 1 H), 7.25 - 7.21 (m, 2 H), 7.17 (d, J = 

1.8 Hz, 1 H), 7.15 (d, J = 1.8 Hz, 1 H), 7.09 - 7.05 (m, 2 H), 6.98 (d, J = 2.1 Hz, 1 H), 6.88 (d, J = 

1.8 Hz, 1 H), 6.87 (d, J = 1.8 Hz, 1 H), 3.94 (s, 3 H), 3.91 (s, 3 H), 3.85 (s, 3 H), 3.84 (s, 3 H), 3.83 

(s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.52 (q, J = 6.7 Hz, 2 H), 3.42 - 3.35 (m, 2 H), 3.27 (q, J = 6.6 

Hz, 2 H), 3.12 (q, J = 6.5 Hz, 2 H), 3.04 - 2.97 (m, 2 H), 2.75 (d, J = 5.0 Hz, 6 H), 2.60 (t, J = 6.5 

Hz, 2 H), 2.35 (t, J = 7.2 Hz, 2 H), 2.27 (t, J = 7.5 Hz, 2 H), 1.83 - 1.77 (m, 2 H), 1.77 - 1.70 (m, 

2 H) 

13C NMR (151 MHz, DMSO-d6) δ = 172.5, 171.0, 169.0, 168.5, 161.2, 158.6, 158.5, 158.5, 

158.4, 158.0, 157.9, 157.8, 136.1, 135.8, 134.0, 133.6, 122.8, 122.7, 122.7, 122.7, 122.2, 122.2, 

122.1, 122.0, 122.0, 120.7, 119.3, 118.5, 118.4, 118.1, 117.9, 114.3, 113.6, 106.9, 104.8, 104.7, 

104.3, 103.9, 54.7, 42.3, 40.0, 38.1, 36.2, 36.0, 35.9, 35.6, 35.4, 34.9, 34.9, 34.7, 33.1, 25.6, 24.5 

KA2035: HRMS calc’d for C59H72N22O11 1264.57542, found 1264.5696 

1H NMR (600 MHz, DMSO-d6) δ = 10.31 (s, 1 H), 10.26 (s, 1 H), 10.07 (s, 1 H), 9.93 (s, 

1 H), 9.90 (s, 2 H), 9.89 (s, 1 H), 9.84 (s, 1 H), 9.24 (br. s., 1 H), 8.12 (d, J = 1.8 Hz, 1 H), 8.07 - 

7.99 (m, 4 H), 7.55 (s, 1 H), 7.50 (s, 1 H), 7.39 (d, J = 1.8 Hz, 1 H), 7.28 (d, J = 1.8 Hz, 1 H), 7.22 

(d, J = 1.8 Hz, 1 H), 7.22 (d, J = 1.8 Hz, 1 H), 7.17 - 7.15 (m, 2 H), 7.15 (d, J = 1.8 Hz, 1 H), 7.07 
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(s, 2 H), 7.00 (d, J = 1.8 Hz, 1 H), 6.88 (d, J = 1.2 Hz, 2 H), 3.98 (s, 3 H), 3.94 (s, 3 H), 3.87 (s, 3 

H), 3.85 (s, 3 H), 3.85 (s, 3 H), 3.84 (s, 3 H), 3.83 (s, 3 H), 3.80 (s, 3 H), 3.42 - 3.35 (m, 2 H), 3.30 

(q, J = 6.8 Hz, 2 H), 3.12 (q, J = 6.5 Hz, 2 H), 3.03 - 2.97 (m, 2 H), 2.75 (d, J = 4.7 Hz, 6 H), 2.35 

(t, J = 7.3 Hz, 2 H), 2.28 (t, J = 7.6 Hz, 2 H), 1.85 - 1.78 (m, J = 7.1, 7.1, 14.5 Hz, 2 H), 1.78 - 

1.71 (m, 2 H) 

13C NMR (151 MHz, DMSO-d6) δ = 171.0, 169.0, 161.2, 158.7, 158.6, 158.6, 158.5, 158.1, 

157.9, 155.7, 136.1, 135.9, 134.1, 134.1, 134.0, 122.8, 122.7, 122.7, 122.7, 122.2, 122.2, 122.1, 

122.0, 122.0, 121.2, 120.8, 119.3, 118.5, 118.1, 117.9, 114.7, 114.3, 105.5, 104.8, 104.8, 104.3, 

104.0, 54.7, 42.3, 40.4, 40.0, 38.0, 36.3, 36.2, 36.1, 35.9, 35.6, 35.4, 34.9, 34.9, 33.1, 25.6, 24.5 

EA calc’d for C59H72N22O11(3CF3CO2H)(9H2O):  C, 44.12%; H, 5.30%; N, 17.41%.  

Found:  C, 43.87; H, 4.92%; N, 17.13%. 

KA2040: HRMS: calc’d for C53H70N20O11 1162.55362, found 1162.5466 

1H NMR (600 MHz, DMSO-d6) δ = 10.37 (s, 1 H), 10.35 (s, 1 H), 10.05 (s, 1 H), 9.88 (s, 

1 H), 9.84 (s, 1 H), 9.75 (s, 1 H), 9.25 (br. s., 1 H), 8.10 (d, J = 1.5 Hz, 1 H), 8.07 - 8.03 (m, 2 H), 

8.02 (t, J = 5.7 Hz, 1 H), 7.96 (t, J = 6.0 Hz, 1 H), 7.89 (t, J = 6.0 Hz, 1 H), 7.50 (s, 1 H), 7.39 (s, 

1 H), 7.28 (d, J = 1.8 Hz, 1 H), 7.16 (d, J = 1.8 Hz, 1 H), 7.15 (d, J = 1.8 Hz, 1 H), 7.09 (d, J = 1.8 

Hz, 1 H), 6.98 (d, J = 2.1 Hz, 1 H), 6.86 (d, J = 1.8 Hz, 1 H), 6.85 (d, J = 1.8 Hz, 1 H), 6.63 (d, J 

= 1.5 Hz, 1 H), 3.94 (s, 3 H), 3.90 (s, 3 H), 3.83 (s, 3 H), 3.82 (s, 3 H), 3.80 (s, 3 H), 3.77 (s, 3 H), 

3.55 - 3.49 (m, 2 H), 3.45 - 3.40 (m, 2 H), 3.40 - 3.35 (m, 2 H), 3.28 - 3.22 (m, 2 H), 3.14 - 3.08 

(m, 2 H), 3.04 - 2.97 (m, 2 H), 2.74 (d, J = 5.0 Hz, 6 H), 2.60 (t, J = 6.6 Hz, 2 H), 2.52 - 2.47 (m, 

2 H), 2.35 (t, J = 7.2 Hz, 2 H), 2.24 (t, J = 7.5 Hz, 2 H), 1.81 - 1.70 (m, 4 H) 

13C NMR (151 MHz, DMSO-d6) δ = 171.0, 169.0, 168.5, 167.8, 162.7, 161.2, 161.2, 158.6, 

158.5, 158.4, 158.4, 158.1, 157.9, 136.1, 135.8, 133.9, 133.6, 122.7, 122.7, 122.7, 122.0, 122.0, 
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121.9, 120.7, 119.3, 118.1, 117.9, 117.6, 117.2, 114.3, 113.5, 104.8, 104.3, 104.0, 103.4, 54.7, 

42.3, 40.0, 38.1, 36.2, 36.0, 35.9, 35.9, 35.8, 35.6, 35.5, 35.4, 34.9, 34.9, 34.7, 33.1, 25.5, 24.5 

EA calc’d for C53H70N20O11(3CF3CO2H)(6H2O):  C, 43.92%; H, 5.31%.  Found:  C, 44.15; 

H, 4.95%. 

KA2041: HRMS: calc’d for C53H70N20O11 1162.55362, found 1162.5466 

1H NMR (600 MHz, DMSO-d6) δ = 10.31 (s, 1 H), 10.26 (s, 1 H), 10.07 (d, J = 0.9 Hz, 1 

H), 9.90 (s, 1 H), 9.88 (s, 1 H), 9.84 (s, 1 H), 9.77 (s, 1 H), 9.26 (br. s., 1 H), 8.12 (d, J = 1.8 Hz, 

1 H), 8.08 - 7.99 (m, 4 H), 7.55 (s, 1 H), 7.49 (s, 1 H), 7.39 (d, J = 1.5 Hz, 1 H), 7.28 (d, J = 1.8 

Hz, 1 H), 7.16 (d, J = 1.8 Hz, 1 H), 7.15 (d, J = 1.8 Hz, 1 H), 7.14 (d, J = 1.8 Hz, 1 H), 7.10 (d, J 

= 1.8 Hz, 1 H), 7.00 (d, J = 1.8 Hz, 1 H), 6.86 (d, J = 1.8 Hz, 1 H), 6.85 (d, J = 2.1 Hz, 1 H), 6.64 

(d, J = 1.8 Hz, 1 H), 3.98 (s, 3 H), 3.93 (s, 3 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 3.81 (s, 3 H), 3.79 (s, 

3 H), 3.78 (s, 3 H), 3.45 - 3.40 (m, 2 H), 3.40 - 3.35 (m, 2 H), 3.28 (q, J = 6.7 Hz, 2 H), 3.11 (q, J 

= 6.5 Hz, 2 H), 3.03 - 2.98 (m, 2 H), 2.74 (d, J = 5.0 Hz, 6 H), 2.51 - 2.48 (m, 2 H), 2.35 (t, J = 7.2 

Hz, 2 H), 2.25 (t, J = 7.5 Hz, 2 H), 1.79 (td, J = 7.3, 14.5 Hz, 2 H), 1.76 - 1.71 (m, 2 H) 

13C NMR (151 MHz, DMSO-d6) δ = 174.1, 172.1, 170.9, 164.4, 164.3, 161.8, 161.7, 161.7, 

161.5, 161.3, 161.1, 161.0, 160.9, 158.9, 139.2, 139.1, 137.2, 137.2, 125.9, 125.8, 125.3, 125.2, 

125.2, 125.0, 125.0, 124.3, 124.0, 122.5, 121.3, 121.1, 120.7, 120.1, 117.9, 117.4, 108.6, 107.9, 

107.4, 107.1, 106.5, 57.8, 45.4, 43.2, 41.2, 39.4, 39.4, 39.2, 39.1, 39.0, 38.7, 38.6, 38.5, 38.0, 38.0, 

36.2, 28.7, 27.6 

KA2114: HRMS: calc’d for C58H76N22O11  1256.6064, found 1256.6028 

1H NMR (600 MHz, DMSO-d6) δ = 10.31 (s, 1 H), 10.26 (s, 1 H), 10.09 (s, 1 H), 9.90 (s, 

1 H), 9.85 (s, 2 H), 9.83 (s, 1 H), 9.68 - 9.60 (m, 1 H), 8.12 (d, J = 1.2 Hz, 1 H), 8.10 - 8.00 (m, 5 

H), 7.89 (br. s., 4 H), 7.55 (s, 1 H), 7.50 (s, 1 H), 7.39 (d, J = 1.2 Hz, 1 H), 7.29 (d, J = 1.8 Hz, 1 
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H), 7.17 (d, J = 1.2 Hz, 1 H), 7.15 (d, J = 1.8 Hz, 2 H), 7.10 (d, J = 1.8 Hz, 1 H), 7.00 (d, J = 1.8 

Hz, 1 H), 6.85 (d, J = 1.2 Hz, 1 H), 6.84 (d, J = 1.2 Hz, 1 H), 6.67 (d, J = 1.8 Hz, 1 H), 3.98 (s, 3 

H), 3.94 (s, 3 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.77 (s, 3 H), 3.46 - 3.39 

(m, 2 H), 3.39 - 3.33 (m, 2 H), 3.29 (q, J = 6.7 Hz, 2 H), 3.21 - 3.14 (m, 1 H), 3.14 - 3.09 (m, 2 H), 

3.09 - 2.95 (m, 3 H), 2.91 - 2.82 (m, 2 H), 2.73 (d, J = 4.7 Hz, 3 H), 2.53 - 2.46 (m, 2 H), 2.34 (t, 

J = 7.0 Hz, 2 H), 2.28 (t, J = 7.3 Hz, 2 H), 1.96 - 1.86 (m, 2 H), 1.84 - 1.72 (m, 4 H) 

13C NMR (151 MHz, DMSO-d6) δ = 174.1, 172.2, 170.9, 165.8, 164.4, 164.3, 161.8, 161.7, 

161.7, 161.7, 161.5, 161.4, 161.2, 161.0, 161.0, 158.9, 139.2, 139.1, 137.2, 137.2, 125.9, 125.9, 

125.8, 125.3, 125.2, 125.2, 125.1, 125.0, 124.4, 124.0, 122.5, 121.2, 121.1, 120.8, 120.5, 118.6, 

117.9, 117.4, 108.6, 107.9, 107.3, 107.0, 106.7, 56.4, 55.2, 43.2, 41.2, 39.4, 39.4, 39.3, 39.2, 39.1, 

38.9, 38.7, 38.7, 38.6, 38.5, 38.0, 38.0, 36.3, 28.8, 27.1, 24.9 

EA calc’d for C58H76N22O11(4CF3CO2H)(7H2O):  C, 43.09%; H, 5.15%; N, 16.75%;.  

Found:  C, 43.10; H, 4.77%; N, 16.07% 

KA2115: HRMS: Calc’d for C55H75N21O11  1205.5954, found 1205.5932 

1H NMR (600 MHz, DMSO-d6) δ = 10.37 (s, 1 H), 10.35 (s, 1 H), 10.06 (s, 1 H), 9.85 (s, 

1 H), 9.84 (s, 1 H), 9.81 (s, 1 H), 9.71 - 9.60 (m, 1 H), 8.11 (d, J = 1.2 Hz, 1 H), 8.08 (t, J = 5.9 

Hz, 1 H), 8.06 - 8.00 (m, 2 H), 7.97 (t, J = 5.9 Hz, 1 H), 7.93 - 7.82 (m, 5 H), 7.50 (s, 1 H), 7.40 

(s, 1 H), 7.28 (d, J = 1.8 Hz, 1 H), 7.17 (d, J = 1.8 Hz, 1 H), 7.14 (d, J = 1.2 Hz, 1 H), 7.11 (d, J = 

1.8 Hz, 1 H), 6.98 (d, J = 1.8 Hz, 1 H), 6.85 (d, J = 1.8 Hz, 1 H), 6.84 (d, J = 1.2 Hz, 1 H), 6.67 

(d, J = 1.8 Hz, 1 H), 3.94 (s, 3 H), 3.91 (s, 3 H), 3.83 (s, 3 H), 3.81 (s, 3 H), 3.80 (s, 3 H), 3.78 (s, 

3 H), 3.52 (q, J = 6.5 Hz, 2 H), 3.47 - 3.40 (m, 2 H), 3.40 - 3.32 (m, 2 H), 3.27 (q, J = 6.8 Hz, 2 

H), 3.22 - 3.15 (m, 1 H), 3.15 - 3.09 (m, 2 H), 3.09 - 2.96 (m, 3 H), 2.92 - 2.82 (m, J = 5.9 Hz, 2 



27 

H), 2.73 (d, J = 4.7 Hz, 3 H), 2.60 (t, J = 6.5 Hz, 2 H), 2.53 - 2.46 (m, 2 H), 2.34 (t, J = 7.3 Hz, 2 

H), 2.26 (t, J = 7.3 Hz, 2 H), 1.96 - 1.85 (m, 2 H), 1.83 - 1.73 (m, 4 H) 

13C NMR (151 MHz, DMSO-d6) δ = 171.0, 169.1, 168.6, 167.8, 162.7, 161.3, 161.2, 158.7, 

158.6, 158.5, 158.4, 158.4, 158.4, 158.2, 158.0, 157.9, 136.1, 135.8, 134.0, 133.6, 122.8, 122.8, 

122.7, 122.1, 122.0, 122.0, 121.9, 121.1, 120.8, 119.4, 119.1, 118.8, 118.1, 117.9, 117.6, 116.9, 

115.0, 114.4, 113.6, 113.0, 104.8, 104.2, 103.9, 103.6, 53.3, 52.1, 40.0, 38.1, 36.3, 36.3, 36.2, 36.0, 

35.9, 35.8, 35.6, 35.6, 35.5, 35.4, 34.9, 34.9, 34.7, 33.1, 25.6, 24.0, 21.8 

EA calc’d for C55H75N21O11(5CF3CO2H)(6H2O):  C, 41.43%; H, 4.92%; N, 15.61%; F, 

15.12%.  Found:  C, 41.51; H, 4.48%; N, 15.34%; F, 14.40%. 

FH1024 1H NMR (500 MHz, DMSO-d6) δ =10.46(s, 1 H), 10.37(s, 1 H), 9.87(s, 1 H), 

9.85(s, 1 H), 9.76(s, 1 H), 9.67(s, 1 H), 9.44(br. s, 1 H), 8.09~8.02(m, 3 H),  7.96(t, J=5.84Hz, 1 

H), 7.84(s, 1 H), 7.81(t, J=5.85Hz, 3 H), 7.52(s, 1 H), 7.38(s, 1 H), 7.16(d, J=1.8Hz, 1 H), 7.15(d, 

J=1.8Hz, 1 H), 7.09(d, J=1.8Hz, 1 H), 6.90(d, J=1.8Hz, 1 H), 6.87(d, J=1.8Hz, 1 H), 6.81(d, 

J=1.8Hz, 1 H), 6.63(d, J=1.8Hz, 1 H), 3.94(s, 3 H), 3.9(s, 3 H), 3.87(s, 3 H), 3.81(s, 3 H), 3.79(s, 

3 H), 3.77(s, 3 H), 3.53(q, J=6.01Hz, 2 H), 3.4(m, 4 H), 3.25(q, J=6.28Hz, 2 H), 3.14(m, 4 H), 

3.04(m, 4 H), 2.91-2.87(m, 12 H), 2.74(d, J=5.03Hz, 4 H), 2.64(m, 1 H), 2.6(t, J=6.28Hz, 2 H), 

2.36(t, J=7.2Hz, 3 H), 2.24(t, J=7.14Hz, 2 H), 1.9(m, 2 H), 1.71(m, 4 H) 

FH1026 1H NMR (500 MHz, DMSO-d6) δ =10.46(s, 1 H), 10.25(s, 1 H), 9.88(s, 1 H), 

9.84(s, 1 H), 9.79(s, 1 H), 9.77(s, 1 H), 9.70(s, 1 H), 9.46(br. s, 1 H), 8.09~8.0(m, 4 H), 7.83(d, 4 

H), 7.57(s, 1 H), 7.49(s, 1 H), 7.37(d, J=1.53Hz, 1 H), 7.19(d, J=1.53Hz,  1 H), 7.15(d, J=1.53Hz, 

1 H), 7.10(d, J=1.53Hz, 1 H), 6.92(d, J=1.68Hz, 1 H), 6.86(d, J=1.53Hz, 1 H),  6.83(d, J=1.53Hz,  

1 H), 6.63(d, J=1.53Hz,  1 H), 3.99(s, 3 H), 3.96(s, 3 H), 3.93(s, 3 H), 3.89(s, 3 H), 3.82(s, 3 H), 



28 

3.80(s, 3 H), 3.78(s, 3 H), 3.44~3.26(m, 8 H), 3.173~3.00(m, 12 H), 2.99-2.87(m, 4 H), 2.74(d, 

J=4.9Hz, 4 H), 2.63(m, 1 H), 2.36(m, 3 H), 2.25(t, J=7.64Hz, 2 H), 1.91(m, 4 H), 1.71(m, 4 H) 

FH1028 1H NMR (500 MHz, DMSO-d6) δ =10.46(s, 1 H), 10.37s, 1 H), 9.92(s, 1 H), 

9.88(s, 1 H), 9.82(s, 1 H), 9.67(s, 1 H), 9.44(br. s, 1 H), 8.09 (t, J=5.76Hz, 1 H), 8.04 (t, J=5.76Hz, 

1 H), 8.00 (t, J=5.76Hz, 1 H), 7.81(m, 4 H), 7.52(s, 1 H), 7.39(s, 1 H), 7.21(d, J=1.8Hz, 1 H), 

7.20(d, J=1.8Hz, 1 H), 7.19(d, J=1.8Hz, 2 H), 7.09(d, J=1.8Hz, 1 H), 6.91(d, J=1.8Hz, 1 H), 6.87(d, 

J=1.8Hz, 1 H), 6.81(d, J=1.8Hz, 1 H), 3.93(s, 3 H),  3.91(s, 3 H), 3.87(s, 3  H), 3.86(s, 3 H), 3.85(s, 

3 H), 3.83(s, 3 H), 3.81(s, 3 H),   3.53(q, J=6.32Hz, 2 H), 3.38 (q, J=6.92Hz, 2 H), 3.27(q, 

J=6.62Hz, 2 H),  3.15~3.01(m, 8 H), 2.99-2.87(m, 10 H), 2.74(d, J= 4.9Hz, 4 H), 2.63(m, 1 H),  

2.59(t, J=6.62Hz, 2 H), 2.36(t, J=7.23Hz, 3 H), 2.25(t, J=7.53Hz, 2 H), 1.91(m, 4 H), 1.71(m, 4 H)  

KJK6162 1H NMR (300 MHz, DMSO-d6) δ =10.50(s, 1 H), 10.34(s, 1 H), 9.94(m, 2H), 

9.89(m, 2 H), 9.70(s, 1 H), 8.74(d, J=4.56Hz, 2 H), 8.51(d, J=8.45Hz, 2 H), 8.12(s, 1 H), 7.56(s, 1 

H), 7.50(q, J=4.42Hz, 4 H), 7.38(d, J=1.38Hz, 1 H), 7.23(d, J=1.83Hz, 1 H), 7.17(d, J=6.89Hz, 2 

H), 7.11(d, J=1.8Hz, 1 H), 7.04(d, J=1.83Hz, 1 H), 6.91(d, J=1.54Hz, 1 H), 6.86(d, J=1.97Hz, 

J=4.09Hz,  2 H), 6.80(t, J=1.97Hz, 1 H), 6.59(s, 1 H), 5.75(s, 5 H), 4.19(q, J=5.45Hz, 3H), 3.98(s, 

3H), 3.93(s, 3 H), 3.87(s, 3 H), 3.86(s, 3 H), 3.84(s, 3 H), 3.82(s, 3 H), 3.81(s, 3 H), 3.79(s, 3 H), 

3.67(s , 2 H), 3.60(s , 4 H), 3.17(s, 6 H), 3.15(s, 6 H), 3.08(t, J=0.73  Hz, 1 H), 2.88(t, J=1.90Hz, 

1 H), 2.68(s,  2H), 2.08(s, 2H), 1.22( m, 2 H), 1.16(t, J=7.38Hz, 2 H)      

2.3.2 Biophysical methods 

Surface Plasmon Resonance (SPR) SPR measurements were performed using Biacore 

T200 optical biosensor systems (GE Healthcare, Inc., Piscataway, NJ). Filtered and degassed 

HEPES buffer (10 mM HEPES, 400 mM NaCl, 1 mM EDTA and 0.05% v/v surfactant P20, pH 

7.4) was used in SPR experiments. The measurement process is the same as described previously 
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(21). A biotinylated hairpin DNA (5’-biotin-CCAAATAAAAGGAAGTGAAACCAAGCTCT 

CTTGGTTTCACTTCCTTTTATTT GG, Fig.2.1) was immobilized on the surface of a sensor chip 

pre-coated with streptavidin. A reference channel was prepared without DNA immobilization for 

baseline correction. To form the PA-DNA complex, an increasing concentration of PA was 

injected onto the chip surface at a flow rate of 100 µL/min for 210 seconds until a steady state was 

reached. This high flow rate was used to minimize mass transfer effects. The association was 

followed by a pure running buffer flow at the same rate, causing the complex to dissociate. At the 

end of each cycle, 1 M NaCl was used as regeneration solution and injected over the surface to 

completely wash off the residual PA and prepare the surface for the next cycle.  

    The kinetic analyses were performed using standard 1:1 global fitting model with mass 

transport parameters incorporated as described previously (31, 32). The equilibrium constant of 

some compounds were determined using a steady state fit, because the kinetic parameters went 

beyond the detection limit and were too fast to determine. This often features the weak binding 

compounds. 

Thermal Melting (Tm) Thermal melting studies were conducted on a Cary 300 Bio 

UV/visible spectrophotometer (Varian) in filtered buffer containing 10 mM HEPES (pH 7.4), 50 

mM NaCl and 1 mM EDTA. Samples were heated at a rate of 0.5 °C/min, and the corresponding 

absorbance at 260 nm was recorded and plotted against the temperature. The Tm of DNA was 

measured at 3 μM, and an equivalent amount of PA was added to obtain the Tm of PA-DNA 

complex. The difference between the Tm of DNA in the absence and presence of PA is thus a ∆Tm.  

Circular Dichroism Spectroscopy (CD) CD spectra were obtained using a Jasco J-810 

spectrometer (Jasco Inc., Easton, MD) with a scan range from 400 nm to 230 nm at 25 °C. The 

spectra were averaged over four scans with a scan speed of 50 nm·min-1 and a buffer blank 
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correction. A 5µM DNA solution was firstly scanned and the PAs were then titrated into the same 

cuvette at increasing concentration ratios. The complex was scanned under the same condition. A 

hairpin DNA without a biotin label (5’-GGAAGTGAACCTCTGTTCACTTCC-3’) was used and 

the experimental buffer is the same as that used in thermal melting study. 

2.4 Results 

2.4.1 Quantitative evaluation of PA-DNA binding kinetics and affinity 

β-inserts Biosensor-Surface Plasmon Resonance (SPR) is a label-free technique with 

excellent sensitivity that can quantitatively monitor biomolecular binding interactions in real time. 

Representative SPR sensorgrams are shown in Fig 2.2. It is noticeable that the dissociation rate is 

getting faster from strong to weak binders. The other sensorgrams are listed in Fig. 2.3. The kinetic 

rate constants and equilibrium binding affinities of eleven designed PAs were determined using 

SPR and summarized in Table 2.1. The six PAs in the β-insert group have a formamido (F) group 

at the N-terminus and β at different positions. KA2115, with two βs replacing Py rings at positions 

3 and 7, leads the group with the highest binding affinity (0.49 ± 0.01 nM). KA2040, another PA 

with two βs but at rings 3 and 6, binds to the cognate sequence essentially equally as strong (0.54 

± 0.01 nM). A single β inserted PA at ring 3, KA2034, displayed a slightly weaker but quite 

comparable binding affinity (0.67 ± 0.01 nM) to KA2115 and KA2040. These results suggest that 

the position and number of β inserts in the lower strand (rings 5-8) is not a dominant factor for this 

hairpin PA-DNA interaction, and do not contribute significantly to binding affinity enhancement. 

The unmodified parent molecule, KA2035, exhibits a moderate affinity (1.30 ± 0.01 nM) with 

regard to the last three molecules. This is primarily caused by its relatively lower association rate 

(ka). KA2035, however, has the second lowest dissociation rate (kd) among all the PAs tested, 

which compensated for its low ka and rendered KA2035 a relatively strong binder. KA2041, with 
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only one β-alanine at position 6, binds the cognate DNA with a higher ka but a much higher kd 

compared to KA2035, resulting in weakened overall interactions. Nonetheless, this situation 

worsened when the replacement was moved to position 7, as in KA2114. The kd of KA2114 is so 

high, around 20 times higher than the parent molecule KA2035, that it cannot obtain high binding 

affinity even with a higher ka value than KA2035.  

    Cationic substitutions Relative to the β insertion group, in which all molecules conserve 

an unmodified N-terminus, four PAs were designed with further modification at the N-terminus 

with the specific cationic substituent, tetramethylguanidinyl (TMG). The binding affinities and 

kinetics of these PAs have been evaluated (Table 2.1). FH1028, the PA with a single β insert at 

ring 3 and a TMG at the N-terminus leads all the other PAs in binding affinity to the cognate DNA 

(0.16 ± 0.02 nM). The high affinity is attributed to its high ka and relatively low kd. Compared to 

its analog KA2034 which has the identical β modification but different N-terminal substituents, 

FH1028 has a five-fold higher ka which contributes to the strengthened binding affinity. This result 

indicates that the TMG group can accelerate PA-DNA binding. Similarly, FH1024 (N-TMG) and 

KA2040 (N-F) were compared to each other because they have identical β-inserts at positions 3 

and 6. The N-TMG attached FH1024 has a ka that is around two times higher than KA2040 (N-F), 

but its drastically increased kd makes it non-competitive with KA2040. Interestingly, KJK6162, 

modified directly from the parent, KA2035, by substituting F with TMG at the N-terminus, binds 

the λB sequence so weakly (60 times weaker than KA2035) that its kinetic rate constant cannot be 

determined. Similarly, FH1026, the N-TMG analog of KA2041, has a 20 times weaker binding 

affinity than KA2041, well out-of-range kinetic constants by SPR. 
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2.4.2 Screening of relative binding affinities with cognate and mutant DNAs by 

Thermal Melting (Tm) 

Thermal melting is an effective way to evaluate the relative binding affinity and the 

selectivity of a particular PA among several DNA sequences.  Tm of the cognate DNA and DNA 

mutants and their complexes with PAs are determined at 1:1 molar ratio. The difference between 

Tm values of the complex and DNA, ΔTm, reflects the thermal stability of the complex, thus the 

binding affinity of PA. The values are listed in Table 2.2. 

The comparison of mutant DNAs are made with each PA-cognate DNA complex and are 

categorized according to their extent of binding. ΔTm values in ±5% relative to the ΔTm of cognate 

DNA are designated as equal and uncolored, dark gray means slightly stronger (≤120%, >105%), 

gray means slightly weaker (<95%, ≥80%), light gray is categorized as weaker (<80%, ≥50%) 

and lightest gray is much weaker (<50%). The determined ΔTm values of PAs with cognate DNA 

are in good agreement with the SPR results. 

The first mutant sequence evaluated is a Py recognizing T that is mutated to A. Both in β-

insert and the cationic substituent group, the affinity is not affected significantly and is either equal 

or slightly higher or lower, even for the molecules where Py is replaced by β (single-β or double-

β replacement). Particularly, KA2034 (f-PyImβIm-γ-PyPyPyPy-β-Dp) showed slightly weaker 

binding when β/Py targeting T·A is switched to A·T.  In a similar case, KA2041 (f-PyImPyIm-γ-

PyβPyPy-β-Dp) who has Py/β targeting T·A exhibited slightly higher affinity to the A·T mutant. 

These results indicate that T·A prefers β/Py to Py/β, and vice versa. The second mutant is made 

by switching the terminal amine recognizing A to T. In both groups, most molecules are not 

affected by this change and the binding affinity stays comparable to that of the cognate DNA. 

What is interesting is, KA2040 and FH1024, both of which have double-β replacement where 
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Py/Py is substituted by β/β, have slightly elevated binding affinities. The third mutant is considered 

as a more dramatic mutation, in which the Im recognizing G is mutated to T. As a result, an 

apparent drop of binding affinity is observed for most PAs. However, as a strong binder to cognate 

DNA, FH1028 and KA2115 still binds to mutant 3 quite strongly, ΔTm = 14.8, and 10.5, 

respectively. Interestingly, the binding of KA2041 and KA2114 to mutant 3 is comparable to that 

of cognate DNA, especially KA2114. This result indicates that even though Im recognizes G 

specifically, it can still tolerate T to some extent, so that the complex can still be formed. Mutants 

4 and 5 are made by switching G to C. Much weaker binding appeared at this level of mutation. 

Since in this case, Py is designated to target G, which is known with either one-β or two-β 

replacement, the Im/Py or Im/β combination is not very tolerant with C·G base pairs. 

2.4.3 Effect of N-terminal cationic group on PA selectivity of DNA flanking 

sequences 

To further evaluate the effect of the N-terminal cationic group on PA-DNA interactions, 

binding affinities of the same set of PAs to DNAs that have different mutated flanking sequences 

were measured and compared. The three DNAs used here are λB DNA (5’-Biotin-

CCAAATAAAAGGAAGTGAAACCAAGCTCTCTTGGTTTCACTT CCTTTTATTTGG-3’), 

SC1 DNA (5’-Biotin-CGGCCAAGCCGGAAGTGAGTGCCTCTCGGCACTCACTTCCGGC 

TTGGCCG-3’), and GAGA mutant DNA (5’-Biotin-CCAAATAAAAGAGAGTGAAACC 

AAGCTCTCTTGGTTTCACTCTCTTTTATTTGG-3’). In λB DNA, the PA binding site -

AGTGA- is surrounded by A on both 5’ and 3’ ends. The SC1 sequence has a G flanking at the 3’ 

side, while GAGA sequence has a G at the 5’ end. The binding to the DNAs was evaluated by SPR 

as described above and the SPR sensorgrams and binding results are shown in Fig. 2.4, Fig. 2.5 

and Table 2.3. By comparing binding of λB and SC1 DNA, the N-F molecules (KA2035 plus β-
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inserts group) have very similar binding affinities to both sequences. For the N-TMG molecules, 

the binding affinities to λB DNA are fairly strong. However, when tested against the SC1 DNA, 

their binding affinities significantly decreased, even to the point of no detectable binding. 

Interestingly, when we compare the binding to GAGA sequence with λB DNA, the N-TMG group 

of PAs show strong and comparable binding in general, and binding of FH1024 is even stronger 

to GAGA than λB DNA. Fig. 2.6B shows the binding affinity of PAs to λB, SC1 and GAGA 

mutant sequences.  It is clear that each PA in the β-inserts group has very close binding strength 

to all three DNAs, except that KA2115 has a slightly larger deviation. But in the cationic 

substitution group, hardly any traces of PA-SC1 binding (black column) can be seen. These results 

suggest that N-TMG PAs are quite sensitive and selective to the 3’ flanking base pairs of -AGTGA-

, but not 5’, and they prefer A to G. 

2.4.4 Evaluation of the PA binding mode by CD 

In Figure 2.7, the large positively induced CD signals upon PA-DNA binding at around 

300 nm to 370 nm, where PAs absorb while DNA signals do not interfere indicate a DNA minor 

groove binding mode as expected for hairpin PAs (33). 

2.5 Discussion 

2.5.1 Quantitative evaluation of PA-DNA binding kinetics and affinity 

SPR has greatly facilitated the quantification of kinetics between small molecules and 

DNA. As important, sequence-specific DNA minor groove binders, polyamides have been 

extensively studied over the decades and are seen as potential drug targets for antiviral, antitumor 

and antibacterial therapeutics. Yet the position and number dependence of β-modified PA-DNA 

interaction still have many uncertainties and their features play a critical role in designing more 

specific and stronger binding PAs.  
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    β-inserts As shown in Fig. 1B, along the λB sequence, the 5’ side of PU.1 binding site 

is an AT rich region. Previous literature has employed the A·T specific minor groove targeting 

compounds to bind to the 5’ side A·T base pairs in order to inhibit PU.1 binding (34). The efficient 

allosteric inhibition activity demonstrated by these compounds has encouraged us to further extend 

our target binding site to the 3’ side. A combination of 5’ side binding minor groove heterocyclic 

cations and 3’ targeting PAs should provide a very powerful inhibition potential. 

The parent PA, KA2035 was thus designed, according to the recognition rules, to target 

the 3’ side AGTGA sequence. The PA has a strong binding affinity of 1.30 nM, and was able to 

successfully and precisely recognize the target sequence. β-alanine is a building block that is 

incorporated into PAs to increase their flexibility. In a successful effort to improve binding affinity, 

KA2035 was modified by replacing internal Py at different positions with β inserts. The SPR 

binding affinities of modified PAs vary in a β insert number-and-position dependent manner.   

Specifically, when compared to KA2035, three PAs (KA2115, KA2040 and KA2034) have 

strengthened binding affinities. A common modification strategy adopted by all the three PAs is 

that Py heterocycle 3 is substituted by one β insert. It is highly likely that this position 3 β insert 

in the upper strand (rings 1-4) added the flexibility needed to the molecule to adjust to the cognate 

DNA minor groove curvature. However, this particular β also allows for relaxation and 

realignment of the PA to compensate for the different positions of H-bond donors and acceptors 

in Py and Im components of PAs, where Py uses an exocyclic amide NH as an H-bond donor to 

DNA (for A, T and C) and Im uses a cyclic N as an H-bond acceptor from G. The H-bonding 

locations on DNA are in register with each other, but those on the PA are not. Therefore, the 

locations of hydrogen bond donors and acceptors between PA and DNA are better oriented at more 

optimized distances and angles, resulting in strengthened hydrogen bonding with higher PA-DNA 
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binding affinity. On the other hand, a single β insert on the lower strand (rings 5-8), KA2041 and 

KA2114, gave no enhanced binding. This is due to the possibility that replacement of Py by a β at 

position 6 or 7 does not help the PA overcome its overall rigidity. Instead, a reduction of van der 

Waals contacts occurred when substituting Py 6 or 7 with a β. Interestingly, the β position in double 

β-substituted KA2115 (KD = 0.49 nM) is a combination of βs in the single β-substituted KA2034 

(KD = 0.67 nM) and KA2114 (KD = 4.1 nM), but the binding affinity of KA2115 is higher than 

either of the other two. Very similarly, the double β-substituted KA2040 (KD = 0.54 nM) also has 

higher binding affinities than the single β-substituted KA2034 (KD = 0.67 nM) and KA2041 (KD 

= 1.62 nM). This is probably because that the combination of upper strand and lower strand β 

inserts gives PA even better flexibility to arrange itself to the optimal orientation for hydrogen 

bonding upon interacting with DNA, and because that optimal β-β stacking can occur when 

binding to certain DNA sequence.   

The binding affinity is determined by the association and dissociation rate constants. From 

Table 2.1, it is clear that all PAs in the β-inserts group have higher association rate constants than 

the parent PA, KA2035. This is in contrast to a previous study in which the association rate 

constants of modified PAs were generally lower than those of unmodified compounds (20). Of 

note, the 2014 study focused on the dImImPyIm-γ-PyPyPyPy-β-Dp/Ta sequence and derivatives 

while the current work studies formamidoPyImPyIm-γ-PyPyPyPy-β-Dp/Ta and derivatives. The 

extra, in register H-bond provided by the potentially rotatable formyl group coupled with the 

disparate target sequences of the two studies and different minor groove widths may all contribute 

to fundamentally different binding kinetics. The opposite effects of β-alanine inserts on the 

association rate of these two (current and previous) sets of PAs indicate that changes in PA 

composition (Py and Im heterocycles arrangement and content) and targeted, cognate DNA 
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sequence respond differently to β inserts. After inserting β, the previous PAs were too flexible and 

needed time to adjust themselves to DNA upon binding, while the current set of β-inserted PAs fit 

better to the curvature of λB sequence than the parent molecule, resulting in more rapid binding. 

    The dissociation rate constants of those PAs with increased affinity are quite comparable 

to the parent PA, KA2035. For these tighter-binding PAs, as mentioned above, the upper strand β 

modification has greatly optimized hydrogen bond donor and acceptor orientations and thus 

strengthened hydrogen bonding between PAs and DNA (KA2034). But for the weak binding 

KA2041 and KA2114, their dissociation is so much faster that they can hardly maintain strong 

binding. It is noticeable that the single lower strand β replacement resulted in higher dissociation 

rate constant. Bashkin et al. built a docking model to compare a single-β-inserted PA2 (ImImβPy-

γ-PyImPyPy-β-Dp) with an all-ring eight-ring PA1 (ImImPyPy-γ-PyImPyPy-β-Dp), and found 

that Py is more effectively stacked with both the adjacent PA strand and the DNA backbone than 

β-alanine (19). Higher dissociation rate constants for some β derivatives might be a result of loss 

of hydrophobic interactions.  

    Cationic substitutions Since DNA is highly negatively charged, adding positive charges 

on PAs should help enhance the electrostatic interactions between the two. More charged groups 

can also improve the solubility of PAs. Therefore, in addition to β inserts, additional cationic 

groups are attached to the N-termini to facilitate PA-DNA binding. SPR results showed varied 

effects of cationic substitutions on PA-DNA interactions.  

    As shown in Fig. 2.6A, FH1024 and FH1028, compared to KA2040 and KA2034, their 

analogs with formamido N-termini (N-F), exhibited slightly different binding affinities. FH1024 

binds about three times weaker than KA2040 and FH1028 binds around three times tighter than 

KA2034. Interestingly, both TMG derivatives have higher association rate constants than their 
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formamido analogs. The results implied that N-TMG can help promote PA-DNA binding by 

adding extra charge-charge interactions. On the other hand, the binding affinities of N-TMG 

KJK6162 and FH1026 dropped to dramatically low values for eight-ring PAs and cannot compete 

with their N-F analogs. This is probably because when the formamido group is substituted by the 

bulky TMG at the N-terminus while not having β inserts on the top strand, molecules like FH1026 

and KJK6162 are not flexible enough to accommodate either the repulsive electronic interactions 

or the steric hindrance between the two termini. As a result, the free molecules tend to be less 

stacked, making it harder to form hairpin and conform ideally to the minor groove of cognate DNA 

upon binding. Interestingly, unlike KA2040 or KA2115, the affinity of the double β-substituted 

TMG compound FH1024 (KD = 1.65 nM) is between the two single-β-substituted FH1028 (KD = 

0.16 nM) and FH1026 (KD = 35 nM). The much higher dissociation constants of FH1024 than 

KA2040 plays an important role in lowering its binding affinity, indicating that the N-TMG can 

affect optimal β-β stacking and that the extra flexibility does not always optimally orient the PA 

upon binding to DNA, while the loss of hydrophobic interactions can overshadow the effort to 

enhancing hydrogen bonding strength.  

2.5.2 Effect of N-terminal cationic group on PA selectivity of DNA flanking 

sequences 

The selective properties of the cationic TMG group over the immediate flanking sequence 

of DNA binding site can be utilized as an important tool for drug design. The binding of the β-

insert group molecules to SC1 sequence are in good agreement with their binding to λB sequence, 

meaning that β inserts have similar effects on the binding to both DNA sequences.  However, the 

selective impacts of TMG overshadowed the β-insert effects in the cationic group, making it a 

determinant factor upon binding to SC1 sequence. For GAGA sequence, β modification did not 
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significantly increase the affinity among formamido group PAs, yet a single β replacement at 

position 3 (KA2034) still showed stronger binding than the parent PA, KA2035. Especially, both 

KA2115 and KA2040 showed weaker binding to GAGA than to the other two sequences, while 

the other molecules in the group have comparable affinities to all three sequences. The N-TMG 

FH1024, on the other hand, is around 12 times more favorable to GAGA sequence than λB 

sequence. The difference in binding strength of those molecules caused by alteration in flanking 

sequences, together with the selectivity of the TMG group, indicates that the DNA context can 

affect some PA-DNA binding, thus increasing the selectivity of those PAs. This provides a way to 

target one specific transcription factor among a transcription factor family, for which all proteins 

have consensus binding site with different flanking sequences for the different specific targets.  A 

larger DNA pool is required for further tests of this selectivity. 

2.6 Conclusions 

Taken together, a binding pattern has been developed that links the modification with 

binding affinity compared to the parent PA, KA2035: 1) For single-β-containing PA, β/Py 

increases binding affinity when targeting T·A; Py/β decreases binding affinity when targeting T·A. 

Im/β decreases binding affinity when targeting G·C. 2) For double-β-containing PA, Imβ/βPy 

increases binding affinity when targeting GT·CA. β/β can increase or decrease binding affinity 

when targeting T·A. 3) When compared to the TMG-PA KJK6162, any β modification can 

increase the binding affinity (in the above, a slash “/” separates pairs of PA building blocks from 

opposite strands of the hairpin).  

    Overall, when Py between two Im is replaced by β, the binding affinity tends to go up, 

while if β appears on a lower strand consisting of four Py, the binding affinity tends to go down. 

Fortunately, a combination of the two positions can bring the affinity back to even higher levels. 
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Sugiyama et al has shown that Im heterocycles are more planar than Py rings, which makes an Im-

derived molecule more rigid than a corresponding Py-polyamide, e.g. when binding to DNA (35). 

This could partially account for the slow association rate of the unmodified parent PA, KA2035. 

However, when we substitute the Py in the middle (number 3) with β, the whole molecule, 

especially the upper strand, becomes more flexible and more able to adjust to the curvature of 

DNA’s minor groove upon binding. The finding that replacing Py between two imidazoles with β 

increases affinity is consistent with Turner et al. results, where PA10 (ImβImPyPyPy-γ-

ImPyPyPyβPyβ-Dp) had ca. five times stronger binding affinity to its cognate DNA than the non 

β-inserted PA9 (ImPyImPyPyPy-γ-ImPyPyPyPyPyβ-Dp), and PA12 (ImβImPy-γ-ImβImPyβ-

Dp), with two ImXIm (X = β, Py) groups involved, is 100 times stronger than its unsubstituted 

analog PA11 (ImPyImPy-γ-ImPyImPyβ-Dp) in binding to its cognate DNA (17). Similarly, 

Dickinson et al. also showed an increase in affinity when substituting Py in PA1 (ImPyImPy-γ-

PyPyPyPy-β-Dp) with β in PA2 (ImβImPy-D-PyPyPyPy-β-Dp, where D denotes diaminobutyric 

acid) (36). Other studies also showed increased binding affinities of ImβIm to 5’-GCGC-3’ 

sequence than ImPyIm (37, 38). 

As for the bottom strand, the curvature of four Py fits nicely with that of DNA with optimal 

hydrogen bonding. Replacing Py with β on the other hand would reduce the van der Waals 

interaction between PA and DNA without allowing the PA to form better hydrogen bonds. This is 

also shown in Bashkin’s docking model (19). As a result, the overall binding is weaker than 

unmodified PA. Interestingly, when two of the above modifications are combined, the positive 

binding effects of the upper strand can reverse the negative binding effects of the lower strand, 

especially when Py/Py is replaced by β/β. 
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    The N-terminal cationic group can have a positive effect on accelerating the association 

process of PA and DNA. However, because of the bulky nature of TMG group, steric clash and 

sometimes repulsive electrostatic interactions are generated upon binding to DNA, resulting in 

impaired DNA binding affinity of PAs. Thus, the TMG group has to be carefully combined with 

β-alanine inserts to achieve optimal PA-DNA binding strength. 
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2.9 Tables and Figures 
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A) Systematically designed polyamides that are categorized into two modified groups: 

β-alanine inserts (red) and cationic substitutions (blue). The illustration above KA2035 

is the simplified representative of KA2035. The open and closed circles stand for pyrrole 

and imidazole, respectively. The diamond represents β-alanine. The numbering starting 

from N-terminus to C-terminus applies to all PAs. B) The biotinylated cognate binding 

sequence of the PAs: λB DNA. The predetermined PA binding site is highlighted in the 

green frame. 
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Figure 2.1 Systematically designed polyamides and DNA sequence. 
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KD = 0.67 nM KD = 1.62 nM KD = 4.1 nM

From left to right, there are strong (KD = 0.67 nM), intermediate (KD = 1.62 nM), and 

weak (KD = 4.1 nM), binders. The colored lines are experimental sensorgrams. The black 

overlays are 1:1 global kinetic fits. 

Figure 2.2 Representative SPR sensorgrams of PAs binding to λB DNA. 

Figure 2.3 SPR sensorgrams of PAs binding to λB DNA. 
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F
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KA2041

F

Dp

KA2035

F

Ta

KA2114

F

Ta

KA2115

F

Dp

KA2034

F

Dp

KA2040

TMG

Ta

KJK6162

TMG

Ta

FH1024

TMG

Ta

FH1028

TMG

Ta

FH1026

PAs in the β-inserts group are ranked according to their binding affinities from strong to weak. 

FH1026 and KJK6162 have very fast binding kinetics that are beyond the limitation of 

instrument detection. Thus no binding kinetics is reported here (ND). The equilibrium binding 

affinities were measured using steady state fitting. Note that KA2035 is included into β-inserts 

group for ease of comparison. Diamond, open circle and close circle represent β-alanine, 

pyrrole and imidazole respectively; Red diamond denotes β-alanine that replaced Py; F means 

formamido group and TMG means tetramethylguanidinyl group. Dp is short for 3-

(dimethylamino)propylamine and Ta is short for 3,3’-diamino-N-methyldipropylamine. 

Table 2.1 Kinetic rate constants and equilibrium binding constants for all PAs. 
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DNA

PA
AGTGA

Mutant 1

AGAGA

Mutant 2

AGTGT

Mutant 3

AGTTA

Mutant 4

ACTGA

Mutant 5

AGTCA

Tm (°C) of free 

DNA
68.3 66.0 68.4 63.7 68.8 69.4

KA2115 14.3 14.9 13.6 10.5 5.9 4.4

KA2040 10.1 9.0 11.6 4.5 3.9 2.4

KA2034 9.8 9.2 9.4 6.8 6.5 6.0

KA2035 9.7 9.5 9.4 4.9 3.9 2.6

KA2041 9.7 10.5 9.7 7.9 5.0 4.9

KA2114 7.7 7.2 7.7 7.5 3.0 3.6

FH1028 18.6 18.5 19.1 14.8 12.9 12.6

FH1024 9.6 8.5 11.7 7.0 4.4 5.4

FH1026 7.7 6.7 8.0 4.0 2.6 4.2

KJK6162 5.7 6.3 4.6 3.9 3.6 3.6

The error of the ΔTm values are within 5%, based on experimental reproducibility. 

Slightly 

stronger 
Slightly 

weaker  
Weaker Much 

weaker 
Equal 

Table 2.2 ΔTm values of PAs with cognate and five mutant sequences. 
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Figure 2.4 SPR sensorgrams of PAs binding to SC1 sequence. 
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λB (KD/nM)

AAGTGAA

SC1 (KD/nM)

AAGTGAG

GAGA (KD/nM)

GAGTGAA

β-alanine 

inserts
0.49 0.27 1.67

0.54 0.68 1.82

0.67 0.83 0.66

1.30 0.91 1.36

1.62 2.70 2.80

4.10 7.70 7.20

Cationic

substitution
0.16 18 0.51

1.65 No 0.14

35 No 43

79 277 75

F

Dp

KA2041

F

Dp

KA2035

F

Ta

KA2114

F

Ta

KA2115

F

Dp

KA2034

F

Dp

KA2040

TMG

Ta

KJK6162

TMG

Ta

FH1028

TMG

Ta

FH1026

TMG

Ta

FH1024

No means no binding was detected between PA and the corresponding DNA. Errors for 

these equilibrium constant values are standard errors for the fitting and are within 2% 

for kinetic fitting, within 6% for steady state fitting. 

B A 

Table 2.3 Equilibrium binding affinities of all PAs with DNAs that have mutated 

flanking sequences. 

 

Figure 2.6 A) Direct comparison of equilibrium affinities of all PAs binding to λB 

sequence. B) Binding affinities of all PAs to λB, SC1 and GAGA mutant sequences. 
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Figure 2.7 CD spectra of PA titration with short λB sequence. 
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3.1 Abstract 

DNA minor groove binding polyamides have been extensively developed to control 

abnormal gene expression. Establishment of the novel, inherently fluorescent Hx-amides has 

provided an alternative path for studying DNA binding in cells by direct observation of cell 

localization. Because of the 2:1 antiparallel stacking homodimer binding mode of these molecules 

to DNA, modification of Hx-amides to AzaHx-amides has successfully extended the DNA 

recognition repertoire, from central CG (recognized by Hx-I) to central GC (recognized by AzaHx-

P) recognition. To potentially target two consecutive GG bases, new modifications from AzaHx 

moiety to 3-Pyr-AzaHx and 2-Pyr-AzaHx moieties were developed. The newly designed 

molecules are also small-sized, fluorescent amides with Pyr-AzaHx connected to two conventional 

five-membered heterocycles. Complementary biophysical methods were carried out to investigate 

DNA binding properties of these molecules. The results showed that neither 3-Pyr-AzaHx nor 2-

Pyr-AzaHx was able to mimic I-I to specifically target GG dinucleotides. Rather, 3-Pyr-AzaHx 

functions like AzaHx or f-I or P-I as a antiparallel stacked dimer. 3-Pyr-AzaHx-PI (2) binds 5’-

ACGCGT’-3’ with improved binding affinity and high sequence specificity when compared to its 

parent molecule AzaHx-PI (1). However, 2-Pyr-AzaHx is detrimental to DNA binding because of 

an unfavorable steric clash upon stacking in the minor groove. 

3.2 Introduction 

Polyamides are a set of well-known DNA-minor groove targeting small molecules that 

consist of N-methylpyrrole (P) and/or N-methylimidazole (I) heterocycles (1). Modeled from 

naturally occurring DNA binding agents, Netropsin and Distamycin A (2, 3), these molecules can 

form 2:1 antiparallel side-by-side stacked dimers upon binding to the DNA minor groove (1, 4). 

These molecules interact with DNA by forming specific hydrogen bonds and van der Waals 
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contacts with different bases. Such polyamides can be programmed to target any DNA sequence 

based on the recognition rules developed by Dervan and coworkers (5, 6). The recent development 

of polyamides focuses largely on the synthesis of large hairpin molecules or tandem polyamides 

with increased specificity for longer sequences (7, 8) or modified polyamides conjugates that can 

serve as DNA probes and enable polyamide with various functions (9, 10). These polyamides 

exhibit the ability to manipulate gene expression, thus, advancing the role of polyamides in gene 

therapy. 

However, challenges still exist for efficient cell uptake. This calls for the development of 

small-size, soluble, and stable polyamides that are more easily synthesized. To improve cell 

uptake, solubility, stability, and more importantly, the feasibility for nuclear localization testing, 

we previously developed a novel class of inherently fluorescent small-size diamino polyamides by 

introducing 2-(p-anisyl)-benzimidazole (Hx) moiety to function as two consecutive pyrroles, ‘P-

P’ or formamido-pyrrole, ‘f-P’ (11, 12). These molecules are hybrids of Hx with two conventional 

5-membered heterocycles (P or I). The new Hx-amides can form a 2:1 side-by-side, antiparallel, 

stacked homodimer in the DNA minor groove and retain strong DNA binding affinity and 

specificity. In addition, the intrinsically fluorescent properties confer these molecules with the ease 

of cell study. In a recent study, an extra positive charge was added to Hx-IP at either P or I. These 

molecules have demonstrated to not only have higher binding affinity but also improved cell 

uptake in NIH3T3 mouse fibroblast cells and A549 cancer cells (13).  

To expand the DNA recognition repertoire of Hx-amides and enhance sequence specificity, 

we recently reported the design and synthesis of a second generation p-anisyl-AzaHx-amides 

(AzaHx-amides) (14). Derived from Hoechst 33258, the AzaHx-amides are structurally similar to 

Hx-amides but contain 2-(p-anisyl)-4-azabenzimidazole (AzaHx) moiety at the N-terminus. The 
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novel AzaHx moiety mimicked P-I or f-I in DNA recognition and consequently, enabled G/C base 

pair recognition of these molecules. Because of the side-by-side, antiparallel stacking manner of 

these molecules, introduction of the AzaHx moiety extended DNA site recognition from central 

CG (recognized by Hx-I) to central GC (recognized by AzaHx-P, Fig. 5), even CGCG recognition. 

Recognized selectively by AzaHx-PI (1), the 5’-ACGCGT-3’ sequence is of great importance, 

because it resides in the control region of the human Dbf4 gene promoter: the Mlu1 Cell Cycle 

Box (MCB) sequence. Expression of this gene is closely related to the development of several 

cancers (15-19).  

After successfully establishing that the fluorescent AzaHx moiety functions as f-I or P-I, 

we designed new molecules by introducing a pyridyl (Pyr) moiety in place of the p-anisyl moiety 

of p-anisyl-AzaHx-amides to further extend the recognition capability of AzaHx polyamides. The 

newly introduced pyridyl moiety can potentially function as a H-bond acceptor and target G as 

showed by previous literature (20-23). Consequently, we hypothesized that the resulting Pyr-

AzaHx could act as I-I and recognize two consecutive GG base alignments along a DNA sequence. 

It was thought that in a 2:1 antiparallel stacked manner, the new molecules would target a GGCC 

site. 

To test our hypothesis, three different Pyr-AzaHx-amides, namely, 3-Pyr-AzaHx-PI (2), 3-

Pyr-AzaHx-PP (3), and 2-Pyr-AzaHx-PP (4) (Fig. 3.1) were designed and synthesized. Excitation 

of a 1 µM aqueous solution of compound 2 at 310 nm (λmax in uv spectrum) produced a broad 

emission from 340 to 440 nm that maximized at about 380 nm. The position of the nitrogen in the 

pyridine ring was adjusted to identify the optimal position responsible for stronger binding. Their 

predicted cognate sequences are 5‘-ACGCGT-3‘ and/or 5‘-AGGCCT-3‘ for compound 2, 5‘-

ATGCAT-3‘ and/or 5‘-AGGCCT-3‘ for compound 3, 5‘-AGGCCT-3‘ and/or 5‘-ATGCAT-3‘ for 
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compound 4 and the binding schemes are presented in Fig. 3.1. The predicted binding site 

maintains central GC base alignment but the immediate flanking bases on both ends are GC rich. 

In this study, an extensive series of biophysical methods including DNase I footprinting, thermal 

melting (Tm), surface plasmon resonance (SPR), circular dichroism (CD), and Spartan 

calculations was employed to investigate the DNA-binding properties of these novel molecules. 

The results have provided us with new guidance for development of next stage molecules. 

3.3 Materials and Methods 

3.3.1 DNA preparation  

DNA oligomers were purchased from Eurofins Genomics (for footprinting studies) and 

from Integrated DNA Technologies, Inc. (IDT, Coralville, IA, USA) with HPLC purification and 

mass spectrometry characterization (for biophysical studies). The oligomers are provided below. 

The DNAs used in Tm and CD are short hairpin oligonucleotides, the predicted binding 

sites are highlighted in red and the hairpin is written in italic and underlined. 

5’-GCAACGCGTACTCTCGTACGCGTTGC-3’ (abbreviated as 5’-ACGCGT-3’)  

5’-GCAATGCATACTCCCGTATGCATTGC-3’ (abbreviated as 5’-ATGCAT-3’) 

5’-GCAAGGCCTACTTTTGTAGGCCTTGC-3’ (abbreviated as 5’-AGGCCT-3’) 

The DNAs used in SPR are hairpin oligonucleotides with biotin attached to the 5’ end, the 

predicted binding sites are highlighted in red and the hairpin is written in italic and underlined. 

5’-biotin-CCGACGCGTCGGCTCTCCGACGCGTCGG-3’ (abbreviated as 5’-ACGCG 

T-3’) 

5’-biotin-CGATGCATGCCTCTGCATGCATCG-3’ (abbreviated as 5’-ATGCAT-3’) 

5’-biotin-CGAGGCCTGCTCTCAGGCCTCG-3’ (abbreviated as 5’-AGGCCT-3’) 

DNA footprinting Each DNA fragment contains 131 base pairs with a [32P]-radiolabeled 

5’ end. Highlighted in red are the predicted cognate and non-cognate sites. 
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DNA fragment 1 (duplex) 

 

5’-ATGCTCCAGAAAGCCGGCACTCAGTCTACAAACGCGTCATCTTGATCACC 

GGTGTTCACAGAAATTTC 

3’-TACGAGGTCTTTCGGCCGTGAGTCAGATGTTTGCGCAGTAGAACTAGTGG 

CCACAAGTGTCTTTAAAG 

 

TCTAGATCTACACGTAACTCTAGTAGCGCTCTTCAAGCAAGTGGAGCTCTCCT

AACCGACTTT-3’ 

AGATCTAGATGTGCATTGAGATCATCGCGAGAAGTTCGTTCACCTCGAGAGG

ATTGGCTGAAA-5’* 

 

DNA fragment 2 (duplex) 

5’-ATGCTCCAGAAAGCCGGCACTCAGTCTACAAACGCGTCATCTTGATCATG 

CATGTTCACAGAAATTTC 

3’-TACGAGGTCTTTCGGCCGTGAGTCAGATGTTTGCGCAGTAGAACTAGTAC 

GTACAAGTGTCTTTAAAG 

 

TCTAGATCTACTGGTAACTCTAGTATCGATCTTCAAGCAAGTGGAGCTCTCCT

AACCGACTTT-3’ 

AGATCTAGATGACCATTGAGATCATAGCTAGAAGTTCGTTCACCTCGAGAGG

ATTGGCTGAAA-5’* 

 

DNA fragment 3 (duplex) 

 

5’-ATGCTCCAGAAAGCCGGCACTCAGTCTACAAACGCGTCATCTTGATCAGG 

CCTGTTCACAGAAATTTC 

3’-TACGAGGTCTTTCGGCCGTGAGTCAGATGTTTGCGCAGTAGAACTAGTCC 

GGACAAGTGTCTTTAAAG 

 

TCTAGATCTAGTCCTAACTCTAGTATCGATCTTCAAGCAAGTGGAGCTCTCCT

AACCGACTTT-3’ 

AGATCTAGATCAGGATTGAGATCATAGCTAGAAGTTCGTTCACCTCGAGAGG

ATTGGCTGAAA-5’* 

 

3.3.2 Compound synthesis and preparation 

3-Pyr-AzaHx-PI, (2) 4-Methoxy-3-pyrido-4-aza-benzimidazole-pyrrole-imidazole   

Nitro-PI polyamide (24) (60 mg, 0.16 mmol) was hydrogenated over 10% Pd/C in 

methanol (20 mL) at room temperature for 16 h. Removal of the catalyst and solvent gave an amine 

intermediate as a pale yellow solid that was co-evaporated with dichloromethane twice (5 mL). 3-
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Pyr-Aza-Hx-acid (25) (52 mg, 0.19 mmol) was dissolved in dry DMF (1.5 mL) and the flask was 

purged with nitrogen. To the clear solution was added EDCI.HCl (110 mg, 0.6 mmol) followed by 

dry triethylamine (0.11 mL, 0.8 mmol) and 1-hydroxybenzotriazole (HOBt) (87 mg, 0.6 mmol) 

and stirred for 10 min at room temperature. A solution of the above amine in dry DMF (2.0 mL) 

was added to the reaction mixture at room temperature and the flask was again purged with 

nitrogen. The reaction mixture was stirred at room temperature for 16 h. The solvent was removed 

under pressure (1 mm Hg at 50 °C) and the residue was purified by column chromatography using 

silica gel and 7% methanol in chloroform as the eluent system. Concentration of the desired 

fractions gave AzaHx-amide 2 as a yellow solid (20 mg, 17%), mp = >230 °C, Rf = 0.50 

(1.5:0.2:8.3 methanol: ammonium hydroxide:chloroform); FT-IR (KBr) 3269, 2954, 2825, 

1704, 1641, 1530, 1464, 1400, 1363, 1279, 1116, 1099, 1020, 963, 880, 792, 742, 662; 1H-NMR: 

(CD3OD)  9.04 (s, 1H), 8.50 (d, J = 8.0 Hz, 1H), 7.94 (s, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.12 (s, 

1H), 6.93 (d, J = 8.0 Hz, 1H), 4.02 (s, 3H), 3.99 (s, 3H), 3.97 (s, 3H), 3.49 (t, J = 7.0 Hz, 2H), 2.57 

(t, 2H, J = 7.0 Hz), 2.32 (s, 6H); LRMS (ES TOF+) m/z 294 (M+2H2+, 100%), 586 (M+H+, 90%); 

HRMS (M+H+) calcd for C28H32N11O4 m/z  586.2638, found  586.2642.   

3-Pyr-AzaHx-PP, (3) 4-Methoxy-3-pyrido-4-aza-benzimidazole-pyrrole-pyrrole  

The procedure for synthesizing AzaHx-amide 3 was essentially the same as the preparation 

of AzaHx-amide 2 except nitro-PP polyamide (24) (60 mg, 0.16 mmol) and 3-Pyr-Aza-Hx-acid 

(25) (52 mg, 0.19 mmol) were used. Purification of the crude product by column chromatography 

using silica gel and 6% methanol in chloroform as the eluent system gave the desired product 3 as 

a pale yellow solid (26 mg, 26%), mp = 240-244 °C, Rf = 0.49 (1.5:0.2:8.3 methanol: ammonium 

hydroxide:chloroform); FT-IR (KBr) 3160, 3045, 2927, 2887, 1620, 1586, 1460, 1397, 1278, 

1021, 812, 763, 660; 1H-NMR: (CD3OD)  8.98 (d, J = 4.0 Hz, 1H), 8.43 (dd, J = 4.0 Hz, 8.0 Hz, 
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1H), 8.02 (d, J = 8.0 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 2.0 Hz, 1H), 7.20 (d, J = 2.0 

Hz, 1H), 7.03 (d, J = 2.0 Hz, 1H), 6.96 ( , J = 8.0 Hz, 1H), 6.81 (d, J = 2.0 Hz, 1H), 4.00 (s, 3H), 

3.94 (s, 3H), 3.88 (s, 3H), 3.34 (t, J = 7.0 Hz, 2H), 2.43 (t, J = 7.0 Hz, 2H), 2.29 (s, 6H), 1.79 

(quint, J = 7.0 Hz, 2H); LRMS (EI) m/z 300 (M+2H2+, 100%), 599 (M+H+, 100%); HRMS (M+H+) 

calcd for C30H35N10O4 m/z  599.2842, found  599.2851. 

2-Pyr-AzaHx-PP, (4) 3-Methoxy-2-pyrido-4-aza-benzimidazole-pyrrole-pyrrole  

Synthesis of AzaHx-amide 4 followed the same procedure as the preparation of AzaHx-

amide 2 except nitro-PP polyamide (24) (60 mg, 0.16 mmol), 2-Pyr-Aza-Hx-acid (25) (48 mg, 

0.18 mmol), and a 6% methanol in chloroform solvent system was used to purify product 4, That 

was isolated as a pale yellow solid (32 mg, 35%), mp: 170-174 °C (decomposition), Rf = 0.22 

[MeOH: CHCl3 (80:20)]; FT-IR (KBr) 3305, 2920, 1738, 1717, 1680, 1655, 1635, 1576, 

1538, 1463, 1436, 1373, 1318, 1258, 1193, 1130, 1096, 1010, 888, 768; 1H-NMR: (DMSO-D6 + 

3 drops of D2O)  9.92 (s, 1H), 8.08 (s, 1H), 7.99 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 

7.40 (s, 1H), 7.21 (s, 2H), 6.84 (s, 1H), 4.00 (s, 3H), 3.88 (s, 3H), 3.81 (s, 3H), 3.16 (t, J = 8.0 Hz, 

2H), 2.24 (t, J = 8.0 Hz, 2H), 2.14 (s, 6H), 1.61 (quint, J = 6.5 Hz, 2H); LRMS (TOF ES+) m/z 300 

(M+2H2+, 20%);  599 (M+H+, 22%); HRMS (M+H+) calcd for C30H35N10O4 m/z  599.2842, found  

599.2849.  

Preparation of the compounds For the biophysical studies, each compound was initially 

dissolved in methanol, then three equivalent amount of HCl was added to the solution and the 

mixture was stirred for 10 min. The mixture was evaporated to dryness using argon gas before the 

residue was dissolved in double deionized water.  

The extinction coefficient of AzaHx-amides 3-Pyr-AzaHx-PI (2), 3-Pyr-AzaHx-PP (3) and 

2-Pyr-AzaHx-PP (4) were determined by UV-vis spectrometer at wavelengths 310 nm, 310 nm 
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and 316 nm, respectively. The determined extinction coefficient values are 22990 L/mole-1·cm-1, 

19853 L/mole-1·cm-1 and 10117 L/mole-1·cm-1, respectively. The buffer used for the determination 

contains 10 mM sodium phosphate, 1 mM EDTA, pH 6.2. 

For DNase I footprinting studies, each AzaHx-amide was dissolved in DMSO to give a 10 

mM stock concentration and stored at -20°C, and diluted to appropriate concentrations just before 

use. 

3.3.3 Biophysical experimental procedures 

Thermal melting (Tm) Thermal melting was carried out on a Cary 300 Bio UV/visible 

spectrophotometer (Varian) at a concentration of 6 µM ligand and 3 µM DNA. The samples were 

warmed up from 25 °C to 95 °C. All experiments were performed in 10-mm path length quartz 

cells. Tm values were determined at the reflection points of the melting curves. The ΔTm values 

are the difference between melting temperature of DNA-ligand complex and free DNA. The buffer 

used for Tm contained 10 mM sodium phosphate, 1 mM EDTA, at pH 6.2. 

Surface Plasmon Resonance (SPR) The binding study was conducted on a four-channel 

Biacore T200 surface plasmon resonance instrument. Three biotinylated DNAs (5’-biotin-

CCGACGCGTCGGCTCTCCGACGCGTCGG-3’, 5’-biotin-CGATGCATGCCTCTGCATGCA 

TCG-3’, 5’-biotin-CGAGGCCTGCTCTCAGGCCTCG-3’) are immobilized on a streptavidin 

functionalized sensorchip through the last three channels, respectively. The first channel has no 

DNA immobilized for baseline correction. The DNA immobilization procedure is the same as 

previously described. (26) The first 5 cycles are pure buffer injection serving as double baseline 

correction to remove any instrumental errors. Molecules are injected over the chip surface at an 

increasing gradient of concentration for 180 s each cycle, followed by a pure running buffer 

injection to dissociate the complex. The running buffer consists of 10 mM cacodylic acid, 100 mM 
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NaCl, 1mM ethylenediaminetetraacetic acid (EDTA) and 0.05% v/v surfactant Polysorbate 20 

(P20), pH 6.2. 1 M NaCl was used as regeneration buffer at the end of each cycle to fully dissociate 

the molecule and prepare the surface for the next cycle.  The binding kinetics were determined by 

1:1 global kinetic fitting with mass transfer correction incorporated.  In some cases, the kinetics 

were so fast that they went beyond the limit of detection. Affinities were then obtained through 

steady state fitting for those that had reached equilibrium during molecule injection.  

Circular Dichroism (CD) Circular Dichroism was performed on a Jasco J-810 spectrometer 

(Jasco Inc., Easton, MD) at ambient temperature with a scan range of 400-220 nm. A DNA 

concentration of 5 µM was firstly scanned followed by a titration of AzaHx-amides 2 and 3 in 

increments of 0.5 equivalents. The spectra were averaged over four scans with a scan speed of 50 

nm·min-1 and a buffer blank correction. All experiments were conducted in phosphate A PO40 

buffer (10 mM sodium phosphate, 1 mM EDTA, pH 6.2) 

Molecule Visualization Spartan´16 software was used to calculate the compounds. Energy 

profile method at ground state with density functional B3LYP/6-31G* in vacuum was applied for 

calculation. The molecules were then manually aligned for observation.  

DNase I footprinting The DNase I footprinting reactions were conducted in a total volume 

of 8 μL; the labelled DNA substrate (2 μL, 200 counts s-1 ) was incubated for 1 h at room 

temperature in 4 μL TN buffer (10 mM Tris-HCl, 10 mM NaCl, pH 7.0) containing the required 

polyamide concentration. Controlled digestion with RQ1 RNase-Free DNase I (Promega) was then 

initiated by the addition of 2 μL of DNase I solution (20 mM NaCl, 2 mM MgCl2 , 2 mM MnCl2 

, DNase I 0.02U, pH 8.0), mixed gently and allowed to proceed for 3 min at room temperature and 

terminated by snap freezing the samples on dry ice. The nuclease-digested samples were 

subsequently lyophilized to dryness and resuspended in 10 μL of formamide loading dye (95% 
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formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol). A purine specific 

DNA marker was prepared to allow identification of the guanine and adenine residues in the 

sequence. 3 μL of radiolabelled DNA substrate was heated at 90°C for 20 min in the presence of 

20 μL TN buffer and 5 μL of formamide loading dye. Alternatively, 10 μL of radiolabelled DNA 

substrate was incubated at room temperature for 5 min with 50 μL formic acid (Sigma-Aldrich), 

and then frozen on dry ice and lyophilized to dryness. 65 μL of piperidine (1 M; Sigma-Aldrich) 

was then added and the sample was heated at 90°C for 30 min before the reaction was terminated 

by snap freezing on dry ice and lyophilised to dryness. The DNA marker was then washed with 

distilled water, lyophilised and resuspended in 10 μL of formamide loading dye. 

The samples were denatured by heating at 90°C for 4 min, and then transferred on to ice 

before loading on a 10% denaturing polyacrylamide gel containing urea (UreaGel, National 

Diagnostics, UK). Electrophoresis was carried out for 2-4 h at 1650 V (~70W, 55°C) in 1x 

Trisborate EDTA buffer (TBE; Severn Biotech). The gel was then transferred onto Whatman 3MM 

paper and dried under vacuum at 80°C for 2 h using a GD 2000 gel dryer (Hoefer). The gel was 

exposed overnight to Fuji medical X-Ray film and developed using a Konica Medical Film 

Processor SRX-101A to visualise the radioactive signal. 

3.4 Results 

3.4.1 Determination of relative DNA binding strength of Pyr-AzaHx polyamides 

using thermal melting (Tm) 

To test the binding of these newly designed molecules to their predicted DNA sites, thermal 

melting experiments were carried out. ΔTm, the difference of melting temperature of the bound 

DNA complexes and melting temperature of DNA alone, reflects the extent to which DNA is 

stabilized by the molecules, and thus the relative binding strength. The ΔTm results of three 
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molecules and their predicted cognate DNAs are listed in Table 3.1. It is clear that 3-Pyr-AzaHx-

PI (2) binds to both 5’-ACGCGT-3’ and 5’-ATGCAT-3’ sequences quite strongly (15.9 °C and 

15.5 °C, respectively), but does not have high affinity for 5’-AGGCCT-3’ (8.8 °C). With 3-Pyr-

AzaHx-PP (3), strong binding to 5’-ATGCAT-3’ (14.5 °C) and weak binding to 5’-AGGCCT-3’ 

(7.8 °C) and 5’-ACGCGT-3’ (7.4 °C) were observed. These results suggest that the 3-Pyr-AzaHx 

moiety functions similarly to p-anisyl-AzaHx or f-I or PI and that the pyridine group does not 

make specific H-bond contacts with G. Thus, the observed target sequences of 3-Pyr-AzaHx-PI 

(2) and 3-Pyr-AzaHx-PP (3) are ACGCGT and ATGCAT, respectively.  

We then modified the 3-Pyr-AzaHx by relocating the nitrogen to meta-position (Fig. 3.1). 

The resulting 2-Pyr-AzaHx-PP (4) was tested against the three DNAs for its role in stabilization. 

Surprisingly, 2-Pyr-AzaHx-PP (4) showed hardly any affinity for all three DNAs. 

3.4.2 Determination of DNA selectivity of Pyr-AzaHx polyamides by DNase I 

footprinting 

DNase I footprinting was conducted to further investigate and compare the behavior of 

these molecules on a larger DNA scale. The binding affinity and selectivity of 3-Pyr-AzaHx-PI 

(2) was investigated using an engineered DNA fragment 1 that consists of the cognate sequence 

(based on Tm results): 5’-ACGCGT-3’, as well as four mutant/non-cognate sites: 5’-ACCGGT-

3’, 5’-AAATTT-3’, 5’-ACACGT-3’, and 5’-AGCGCT-3’ (Fig. 3.3A). The footprinting gel of 3-

Pyr-AzaHx-PI (2) showed a clear footprint beginning at 0.5 µM for the cognate sequence (Fig. 

3.3A), exhibiting a similar binding pattern to AzaHx-PI (1) (Fig. 3.5A) (14). Only a very weak and 

incomplete single mismatch protection site is shown at the sequence, 5’-ACACGT-3’, indicating 

a weak tolerance of 3-Pyr-azaHx as well as azaHx (Fig. 3.5A) for a “A” over its preferred “G”. 

No other significant protection sites were evident at concentrations of up to 20 µM with this DNA 
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sequence. The Tm and footprinting data together indicate that the 3-Pyr-AzaHx-PI (2) is very 

selective for the central GC dinucleotides recognition, with a selection factor of more than 40 fold 

according to the footprinting studies. 

The DNA binding property of 3-Pyr-AzaHx-PP (3) was evaluated using engineered DNA 

fragment 2 (Fig. 3.3B). The molecule is predicted to target 5’-WWGCWW-3’ (W = A or T). Two 

cognate sequences: 5’-ATGCAT-3’ and 5’-AAGCAA-3’, along with four non-cognate sites: 5’-

ACGCGT-3’, 5’-AAATTT-3’, 5’-ACTGGT-3’, and 5’-ATCGAT-3’ were present in DNA 

fragment 2. A clear footprint was visible at both consensus sequences starting at 3 µM. However, 

evident footprint was also detected at the non-cognate site containing flipped central GC pair: 5’-

ATCGAT-3’ at 3 µM. The equally strong protection of this non-cognate site and the featured 

central base pair indicates that the molecule might bind to the sequence in the reversed orientation, 

that is, N-terminus of the molecule is aligned with 3’ end of DNA. What also appeared on the gel 

was another footprint at 5’-ACTGGT-3’ at 10 µM (Fig. 3.3B). The footprinting result suggests 

that 3-Pyr-AzaHx-PP (3) not only binds weakly to its cognate 5’-ATGCAT-3’ sequence compared 

to 3-Pyr-AzaHx-PI (2), but also has poor sequence selectivity, as evidenced by the off-target 

binding sites. 

With the lack of binding according to the results from Tm studies, further investigation on 

2-Pyr-AzaHx-PP (4) was conducted using a broad spectrum of DNA sequences to determine 

whether it resembles AzaHx-PP, recognizing 5’-WWGCWW-3’, or IIPP, recognizing 5’-

WGGCCW-3’. DNase I footprinting of 2-Pyr-AzaHx-PP (4) binding to DNA fragment 2 that 

contains two 5’-WWGCWW-3’ sites (5’-ATGCAT-3’ and 5’-AAGCAA-3’) was carried out. No 

footprint was detected up to 25 µM (Fig. 3.4A). On another trial using the engineered fragment 3 

containing 5’-WGGCCW-3’ (5’-AGGCCT-3’), the results showed no binding up to 50 µM (Fig. 
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3.4B). These results agree with those collected from Tm studies, indicating that a change in the 

nitrogen position along with the attached methoxy unit at the 3-position of the pyridyl group at the 

N-terminus abrogated the binding of Pyr-AzaHx moiety, thus, making it incompetent structural 

element of design to target any DNA site. 

3.4.3 Determination of binding kinetics and affinity of Pyr-AzaHx polyamides by SPR 

SPR provides us with real-time information to quantitatively determine the interaction 

between molecules and DNAs. After confirming the corrected cognate DNA for each molecule 

and to assist evaluation of binding affinity and kinetics compared to previous work, SPR 

experiments were carried out with three predicted cognate DNA sequences that are immobilized 

on a sensorchip. The resulting SPR sensorgrams are shown in Fig. 3.6 and the kinetic and 

equilibrium binding constants are listed in Table 3.2.  The strongest binding was observed between 

3-Pyr-AzaHx-PI (2) and its cognate DNA, 5’-ACGCGT-3’ (KD = 0.75 ± 0.01 nM), followed by 

its interaction with 5’-ATGCAT-3’ (KD = 3.2 nM). The result shows that 3-Pyr-AzaHx-PI (2) is 

very specific to the central GC base alignment, but not very selective for the immediate flanking 

bases, especially among C, A or T. Strong interactions between 3-Pyr-AzaHx-PP (3) and its 

cognate DNA, 5’-ATGCAT-3’ were also confirmed by SPR with KD equals 1.1 nM. These results 

are in good agreement with both Tm and footprinting data within error range, indicating that the 

molecules are well stacked and form strong hydrogen bonding with DNA base pairs. The strong 

interactions are also featured by very slow dissociation rate (~10-4·s-1, Table 3.2, Fig. 3.6). On the 

other hand, 3-Pyr-AzaHx-PP (3) was found to bind very weakly to 5’-ACGCGT-3’ (KD = 1035 ± 

22nM), suggesting that a switch of the molecule structure from I to P is incompatible with G. Also 

consistent with the Tm result is the fact that 3-Pyr-AzaHx-PI (2) binds to the mismatched sequence 

5’-AGGCCT-3’, albeit with significantly reduced affinity compared to its cognate DNA. If 3-Pyr-
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AzaHx interacts with GG to some extent, then 3-Pyr-AzaHx-PP (3) should target 5’-AGGCCT-3’ 

according to the binding scheme depicted in Fig. 3.1. To our surprise, 3-Pyr-AzaHx-PP (3) 

exhibited around 10 times weaker affinity to 5’-AGGCCT-3’, indicating that the 3-Pyr-AzaHx 

moiety is not the determinant factor in this binding event. In an attempt to specifically recognize 

two consecutive GG base pairs, 3-Pyr-AzaHx was modified to 2-Pyr-AzaHx moiety and the 

binding of 2-Pyr-AzaHx-PP (4) was tested on SPR against the three DNA sequences. In agreement 

with the Tm data, 2-Pyr-AzaHx-PP (4) binds very weakly to 5’-ACGCGT-3’ and 5’-ATGCAT-3’ 

and showed no binding at all to 5’-AGGCCT-3’. Clearly, the relative position of the pyridine 

nitrogen along with the methoxy group is pivotal for binding. A close observation of the 

sensorgram shows that some fitting curves are diverged from experimental data. Especially, the 

experimental deviations are above the global fit. This indicates that non-specific binding begins to 

occur at higher concentrations. 

3.4.4 Confirmation of binding of Pyr-AzaHx polyamides in DNA minor groove by CD 

The binding mode of Pyr-AzaHx polyamides to their cognate DNA was evaluated by CD. 

Molecules that bind in the minor groove typically have positively induced band (25, 27-29). The 

Pyr-AzaHx molecules alone do not generate any peak. Upon titration of 3-Pyr-AzaHx-PI (2) and 

3-Pyr-AzaHx-PP (3) to their cognate DNA, strong positive signals are induced at 350 nm for both 

molecules (Fig. 3.7).This is typical for polyamides and Hx-amides and is indicative of DNA minor 

groove binding. 

3.5 Discussion 

Previous development of hairpin polyamides involved incorporation of benzimidazole (Bi) 

or imidazolepyridine (Ip) into the polyamide core structure and showed that the resulting 

molecules displayed strong binding affinity and sequence specificity (30-34). The need for more 
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soluble, smaller polyamides to improve cell uptake and biological functions requires new strategies 

to design the molecules. Our previously designed small-size p-anisyl-Hx-amides mimic f-P or P-

P, form antiparallel stacked dimer, and follow pyrrole-imidazole DNA recognition principles (1, 

4). Biological studies of Hx-amides, specifically, Hx-IP targeting the inverted repeat of CCAAT 

Box 2 on the topoisomerase IIα promoter to inhibit NF-Y binding, have shown increased cell 

uptake and enhanced subsequent biological activities in NIH3T3 and A549 cells compared to high 

molar mass polyamides, such as hairpins and H-pins (35-38). The improved cell permeability and 

DNA binding affinity from incorporating N-terminal p-anisyl-Hx moiety in small Hx-amides 

offers a promising way for designing small-size, soluble polyamides. However, the P-P like DNA 

binding property of p-anisyl-Hx is limited to A or T recognition. Especially, according to the 

central and terminal pairing rules (Fig. 3.8), the central two heterocycle pairs of a tri-amide or 

tetra-amide homodimer recognize the two central base pairs while the terminal formamido and 

imidazole/pyrrole (tri-amides) or the two “outer” heterocycles pairs (tetra-amides) specifically 

target the immediate flanking base pairs on either side of the central base pairs (39, 40). Therefore, 

by this recognition pattern, Hx-amides are restricted to central CG dinucleotide recognition and 

the subsequent target of biologically relevant sequences is constrained (Fig. 3.8). 

The novel development of AzaHx-amides showed strong binding affinity and additional 

GC selectivity. The AzaHx moiety functions as an alternative to f-I or P-I capable of forming an 

antiparallel dimer. According to the central and terminal pairing rule, AzaHx-amides are able to 

confer central and outer GC dinucleotide recognition (Fig. 3.8), thus greatly extending the 

sequence it can target. 

To further expand the recognition repertoire to GGCC, our new modification strategy is to 

replace the p-anisyl group in AzaHx-amdies with pyridyl groups to generate Pyr-AzaHx-amides. 
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The central GC dinucleotide is unchanged, as is the AzaHx moiety. The extra nitrogen of N-

terminal pyridyl moiety could provide an additional hydrogen bond acceptor for G recognition. To 

test this hypothesis, the DNA binding properties of the modified Pyr-AzaHx-amides are 

investigated by a complementary set of biophysical and biochemical methods. 

3.5.1 Tm results show that 3-Pyr-AzaHx functions similarly to AzaHx or P-I or f-I 

Tm studies were performed to initially screen the Pyr-azaHx complexes for binding DNA. 

The prediction was that Pyr-AzaHx would act similarly to two consecutive imidazole units, or I-I, 

to selectively recognize GG dinucleotides. But the low ΔTm value of 3-Pyr-AzaHx-PP (3) with 

5’-AGGCCT-3’ and high value with 5’-ATGCAT-3’ (Table. 3.1) suggested that 3-Pyr-AzaHx 

could not form extra hydrogen bonds with two consecutive GG dinucleotides to stabilize the 

molecule-DNA complex. Rather, the 3-Pyr-azaHx moiety behaved more akin to AzaHx or P-I or 

f-I, and it anchored itself in the minor groove of TG dinucleotides with strong hydrophobic 

contacts. Evidence of the high ΔTm value of 3-Pyr-AzaHx-PI (2) with 5’-ACGCGT-3’ and low 

value with 5’-AGGCCT-3’ further confirmed the similar functionality of 3-Pyr-AzaHx to AzaHx. 

It is highly possible that the more polar nitrogen atom of the pyridyl moiety, compared to the 

opposite methinyl group, is rotated away from the floor of minor groove or is not positioned 

properly for hydrogen bonding. Instead, similar to pyrrole binding units, the hydrophobic C-H 

units in the pyridyl group were directed more favorably toward the hydrophobic floor in the minor 

groove. Thus, the preferred cognate binding sites for 3-Pyr-AzaHx-PI (2) and 3-Pyr-AzaHx-PP (3) 

were 5’-ACGCGT-3’ and 5’-ATGCAT-3’, respectively. It was also noticeable that 3-Pyr-AzaHx-

PI (2) bound with high affinity to the mismatch site 5’-ATGCAT-3’, indicating that when G was 

not available, imidazole could tolerate an A/T base pair quite well, thus compromising its 

selectivity. This result agreed with our previous work that showed imidazole on imidazole stacking 
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in polyamides bound preferentially to T/G or G/T but it tolerated C/G and G/C base pairs (29, 41-

43).  

The extremely low ΔTm values of the modified 2-Pyr-AzaHx-PP (4) to any of the three 

sequences indicate that the position of the pyridine nitrogen along with the methoxy group can be 

quite important to DNA binding. In fact, to structurally visualize the relative position of the 

antiparallel stacked homodimer, Spartan´16 software was used for Molecular Mechanics 

calculation. Our models show that when two 2-Pyr-AzaHx-PP (4) molecules are anti-parallely 

stacked, the bulky 3-methoxy group attached to pyridine is sterically encumbered with the N-

methyl group of the C-terminal pyrrole (Fig. 3.9). On the other hand, if the nitrogen of pyridine is 

attracted toward the minor groove floor, the 3-methoxy group appears to be too big and it also 

affects the stacking of two molecules. It is difficult for the minor groove to accommodate 

favorably. Therefore, either way the nitrogen is pointing, the 3-methoxy-2-pyridyl moiety would 

encounter steric clash upon binding to DNA as stacked dimer, resulting in thermodynamically 

unstable molecule-DNA complex. 

3.5.2 Binding affinity and selectivity of 3-Pyr-AzaHx-amides 

The sequence specificity of the new AzaHx-amides was investigated by DNase I 

footprinting. 3-Pyr-AzaHx-PI (2) showed a clear footprint toward 5’-ACGCGT-3’ at 0.5 µM and 

more than 40-fold selectivity against the tested DNA fragment. This is very similar in terms of 

both affinity and selectivity, to its parent structure, AzaHx-PI (1), in which the AzaHx moiety 

contains p-anisyl instead of a pyridyl group. AzaHx-PI was previously reported to footprint at 5’-

ACGCGT-3’ using the same DNA fragment starting at 0.5 µM with at least 40-fold selectivity 

(Fig. 3.5A) (14). Since 3-Pyr-AzaHx is experimentally shown to function as AzaHx or P-I or f-I, 

two other AzaHx-amide analogs recognizing the same cognate DNA were also included into the 
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comparison (40, 44-46). On the same DNA fragment, f-IPI (44, 45), a N-formamido 

pyrrole/imidazole polyamide, generated a footprint at the cognate site, beginning at 0.05 µM. 

However, another clear footprint at 5’-AGCGCT-3’ is produced at 1 µM, suggesting that the 

sequence selectivity of f-IPI is reduced even though it has relatively high binding affinity. On the 

other hand, PIPI (44), a non-formamido pyrrole/imidazole polyamide, footprinted starting at 1 µM 

but showed comparable sequence selectivity to 3-Pyr-AzaHx-PI (2). 

With a slightly lower binding affinity than 3-Pyr-AzaHx-PI (2), 3-Pyr-AzaHx-PP (3) 

footprinted at 3 µM at its cognate site 5’-ATGCAT-3’. At the same concentration, another 

footprint appeared at 5’-ATCGAT-3’. Given the inverted central bases and the degenerate P/P 

recognition of A/T or T/A, it is likely that the molecule can bind in a reversed manner. Another 

footprint for 5’-ACTGGT-3’ at 10 µM indicates that 3-Pyr-AzaHx-PP (3) is not very selective. 

When compared to its analogs that target the same cognate DNA, AzaHx-amide 3 showed higher 

binding affinity. AzaHx-PP, which also contains p-anisyl instead of a pyridyl group, generated a 

footprint at 10 µM at the cognate site, but one other footprint at 5’-ATCGAT-3’ at 15 µM, 

indicating that AzaHx-PP could not differentiate the two sequences very well, either (Fig. 3.5B). 

For f-IPP, even though a clear footprint at the cognate sequence was evident at 3 µM, equally 

strong footprint also appeared at three non-cognate sequences (Fig. 3.5C). These results suggest f-

IPP has low selectivity. Taken together, 3-Pyr-AzaHx-PP (3) exhibited stronger binding affinity 

with slightly compromised selectivity compared to other structurally similar compounds. 

To more accurately compare the binding affinities, SPR was performed to obtain the 

binding kinetics and equilibrium binding affinities of the new molecules and three DNA 

sequences. The SPR results are in good agreement with Tm and footprinting data. Interestingly, 

the binding affinity of 3-Pyr-AzaHx-PI (2) (KD = 0.75 nM) is much higher than its analogs: AzaHx-
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PI (1) (KD = 400 nM) (14), f-IPI (KD = 19 nM) (39, 44), and PIPI (KD = 7100 nM) (44) on binding 

to the cognate sequence, 5’-ACGCGT-3’. These results reveal that 3-Pyr-AzaHx-PI (2) has 

drastically improved affinity, at least 20 times over its previously reported analogs. In particular, 

3-Pyr-AzaHx-PI (2) has much higher binding affinity than its closest analog and parent structure 

AzaHx-PI (1). When comparing 3-Pyr-AzaHx-PP (3) (KD = 1.1 nM) to its analogs AzaHx-PP (KD 

= 110 nM, data not published) and f-IPP (KD = 120 nM) (39), 3-Pyr-AzaHx-PP (3) showed around 

100 times higher binding affinity. These results together with the footprinting data suggest that the 

3-Pyr-AzaHx moiety helps to improve binding affinity while maintains a reasonable level of 

selectivity. 

Interestingly, in a separate study reported recently by us, adding an extra positive charge 

to Hx-amides showed that the resulting dicationic HxIP* and HxI*P have higher binding affinity 

but reduced selectivity toward their consensus site 5’-ATCGAT-3’ (ΔTm = 32 °C and 30 °C, 

respectively) than their mono-charged analog, HxIP (ΔTm = 15 °C) (13). Therefore, we suspect 

that the high affinity of 3-Pyr-AzaHx-amides is due to protonation of the nitrogen on the pyridyl 

moiety, thus contributing to an extra positive charge for stronger attraction to the negatively 

charged DNA. In fact, previous literatures have also shown that increasing positive charges can 

facilitate DNA binding (47-49). To test this idea, the binding of 3-Pyr-AzaHx-PI (2) to 5’-

ACGCGT-3’ was performed by SPR at pH 9.0. The resulting affinity was lowered by about 16 

times than that at pH 6.2 (Fig. 3.10), thus indicating that the increased binding affinity of 3-Pyr-

AzaHx-PI (2) could be attributed to the protonation of the pyridine nitrogen. Altogether, these 

results suggest that modification of the N-terminal p-anisyl to N-terminal pyridiyl, or converting 

AzaHx to 3-Pyr-AzaHx not only retained comparable selectivity but also significantly improved 

binding affinity under biological conditions. 
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3.6 Conclusion 

In this study, we have designed and synthesized a novel class of small-sized polyamides, 

aiming to expand the DNA recognition repertoire to GGCC sequence. Our complementary 

biochemical and biophysical studies have shown that although the newly designed Pyr-AzaHx 

amides do not specifically recognize GG dinucleotides, the 3-Pyr-AzaHx amides do possess 

improved functionality compared to previous analogs. Especially, the increased binding affinity 

under biological conditions could be due to protonation of the pyridine nitrogen. The results have 

greatly extended our knowledge on molecular interactions and thus compound modification and 

optimization. Meanwhile, challenges on designing GG dinucleotides targeting, fluorescent 

compounds with good cell uptake are still needed. 
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3.9    Tables and Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Structures and schematic presentation of predicted binding to DNA sites of 

three Pyr-AzaHx polyamides. 

Blue rectangles represent 3-Pyr-AzaHx moiety, empty squares represent pyrrole, filled 

squares represent imidazole, and orange rectangles represent 2-Pyr-AzaHx group. 2-

Pyr-AzaHx-PP has two predicted recognition sites. 
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Table 3.1 Thermal melting profile of three Pyr-AzaHx polyamides binding to their predicted 

cognate sequences and mutant sequences 

 

 

 

 

 

 

 CGCG TGCA GGCC 

Tm of DNAs ( °C) 68.8 61 67.2 

Polyamides ΔTm (°C) 

3-Pyr-AzaHx-PI (2) 15.9 15.5 8.8 

3-Pyr-AzaHx-PP (3) 7.4 14.5 7.8 

2-Pyr-AzaHx-PP (4) 1.2 0.8 0 

Figure 3.2 Synthetic schemes of compound 2-4. 
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3-Pyr-AzaHx-PI (2) 3-Pyr-AzaHx-PP (3) 

Figure 3.3 Autoradiograms of DNase I footprinting gels corresponding to 3-Pyr-AzaHx-

PI, 2 (A)  and 3-Pyr-AzaHx-PP, 3 (B). 
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The DNA binding properties of 2 and 3 were assessed using DNA fragment 1 and 2, 

respectively. The appropriated 32P-radiolabelled DNA fragment was incubated for 1 h 

at room temperature in TN buffer (10 mM Tris-HCl, 10 mM NaCl, pH 7.0) containing 

the required polyamide concentration. DNase I digestion was initiated by the addition 

of DNase I solution (20mM NaCl, 2mM MgCl2, 2mM MnCl2, DNase I 0.02U, pH 8.0) 

and was terminated after 3 min by snap freezing the samples on dry ice. Following 

lyophilization and resuspension in formamide loading dye (95% formamide, 20 mM 

EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol), the cleavage products of 

the DNase I digestion reactions were resolved on 10% polyacrylamide gels. The 

concentrations (μM) used are shown at the top of each gel. 0; controlled cleavage 

reaction, containing no drug. The cognate sequences are labelled red and the non-

cognate sites are also indicated. Asterisk marks the concentration (µM) at which 

footprints become evident. G+A represents a formic acid-piperidine marker specific 

for purines.  
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DNA fragment 2 DNA fragment 3 

Figure 3.4 Autoradiogram of the DNase I footprinting gel of 2-Pyr-AzaHx-PP on A) 

DNA fragment 2 and B) DNA fragment 3. 

The cognate sequences are labelled red and the non-cognate sites are also indicated. 

Asterisk marks the concentration (µM) at which footprints become evident. G+A 

represents a formic acid-piperidine marker specific for purines.   
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A B C 

Figure 3.5 Autoradiogram of the DNase I footprinting gel of A) AzaHx-PI on DNA fragment 

1 and B) AzaHx-PP and C) f-IPP on DNA fragment 2. 

The cognate sequences are labelled red and the non-cognate sites are also indicated. 

Asterisk marks the concentration (µM) at which footprints become evident. G+A represents 

a formic acid-piperidine marker specific for purines.   



89 

 

 

 

 

 

  

5’-Biotin-CCGACGCGTCGG   T
GGCTGCGCAGCC   C

C

T

5’-Biotin-CGATGCATGC   T
GCTACGTACG   C

C

T

5’-Biotin-CGAGGCCTG   T
GCTCCGGAC   C

C

T

Figure 3.6 SPR sensorgrams of Pyr-AzaHx polyamides binding to different DNAs. 

The DNA sequences are listed at the top of the column and the compounds are specified on 

each sensorgram. The whole sequences of the DNAs are listed in the Supporting Information. 

The colored lines are experimental data and the black overlays are kinetic fitting. The 

sensorgram at the bottom left corner was fitted with steady state fitting and bottom right corner 

sensorgram shows no binding. The buffer used for SPR is 10 mM cacodylic acid, 100 mM 

NaCl, 1mM EDTA and 0.05% v/v surfactant Polysorbate 20 (P20), pH 6.2, 25°C. 
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Table 3.2 Kinetic rate constants and equilibrium constants derived from SPR   

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound DNA ka (x104 M-1s-1) kd(x10-3s-1) KD (nM) 

3-Pyr-

AzaHx-PI 

ACGCGT 16 ± 0.3 0.12 ± 0.001 0.75 ± 0.01 

ATGCAT 40 ± 0.7 1.30 ± 0.01 3.20 ± 0.2 

AGGCCT 1.70 ± 0.5 6.60 ± 0.03 397 ± 17 

3-Pyr-

AzaHx-PP 

ACGCGT 3.30 ± 0.03 34 ± 0.04 1035 ± 22 

ATGCAT 35 ± 0.2 0.40 ± 0.001 1.10 ± 0.03 

AGGCCT 1.00 ± 0.01 40 ± 0.4 3996 ± 472 

2-Pyr-

AzaHx-PP 

ACGCGT ND[a] ND[a] 1420 ± 700 

ATGCAT 2.30 ± 0.02 16 ± 0.06 698 ± 237 

AGGCCT NB[b] NB[b] NB [b] 

[a] The values are too fast to be determined. [b] No binding is detected. 

 

Figure 3.7 CD spectra depicting 3-Pyr-AzaHx molecules (2) and (3) binding to their 

cognate DNAs, respectively. 

The DNA sequences are listed in Supporting Information. The buffer consists of 10 mM 

sodium phosphate, 1 mM EDTA, pH 6.2. 
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5’- A   T   C    G A   T  -3’

3’- T   A   G    C T   A  -5’

+

+

Hx-IP

Central

Terminal

5’- A   T   G    C   A   T  -3’

3’- T   A   C    G   T   A  -5’

+

+

AzaHx-PP

Central

Terminal

Figure 3.8 Central and terminal pairing rules illustrated by different binding of Hx-IP 

and AzaHx-PP. 

The central and terminal base pairs are indicated in pink and green boxes, respectively. 

3-Pyr-AzaHx-PP 
(3) 

2-Pyr-AzaHx-PP 
(4) 

3-Pyr-AzaHx-PI (2)  

Figure 3.9 Stacked models of all three molecules from Spartan calculations. 
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Figure 3.10 SPR sensorgrams and equilibrium binding constants of 3-Pyr-AzaHx-PI 

under different pH. 

The buffer used at pH 6.2 is consisted of 10 mM cacodylic acid, 100 mM NaCl, 1mM 

EDTA and 0.05% v/v surfactant Polysorbate 20 (P20), 25°C. The buffer at pH 9.0 

contains 50 mM Tris-HCl, 100 mM NaCl, 1mM EDTA and 0.05% v/v P20, 25°C. The 

whole sequence of 5‘-ACGCG-3‘ is listed in the Supporting Information. 
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4.1 Abstract 

Hairpin polyamides are synthetic small molecules that bind DNA minor groove sequence-

selectively and, in many sequences, induce widening of the minor groove and compression of the 

major groove. The structural distortion of DNA caused by polyamides has enhanced our 

understanding of the regulation of DNA-binding proteins via polyamides. Polyamides have DNA 

binding affinities that are comparable to those proteins, therefore, can potentially be used as 

therapeutic agents to treat diseases caused by aberrant gene expression. In fact, many diseases are 

characterized by over- or under-expressed genes. PU.1 is a transcription factor that regulates many 

immune system genes. Aberrant expression of PU.1 was associated with the development of acute 

myeloid leukemia (AML). We have, therefore, designed and synthesized ten hairpin polyamides 

to investigate their capacity in controlling the PU.1-DNA interaction. Our results showed that nine 

of the polyamides disrupt PU.1-DNA binding and the inhibition capacity strongly correlates with 

binding affinity. One molecule, FH1024, was observed forming a FH1024-PU.1-DNA trimer 

instead of inhibiting PU.1-DNA binding. This is the first report of a small molecule that is 

potentially a weak agonist that recruits PU.1 to DNA. The finding sheds light on the design of 

polyamides that exhibit novel regulatory mechanisms on protein-DNA binding.  

4.2 Introduction 

Polyamides (PAs) are sequence-selective DNA minor groove binders that are composed of 

N-methylpyrrole (Py) and N-methylimidazole (Im) heterocycles (1, 2). Hairpin PAs are formed by 

covalently linking two PA strands side-by-side, typically by using γ-aminobutyric acid (a γ-turn) 

to enhance DNA binding affinity and specificity (3, 4). Upon binding to DNA, Py/Py recognizes 

both T/A and A/T base pairs, while the Im/Py pair distinguishes G/C from C/G (5-8). PAs can be 

programmed to target selectively many predetermined DNA sequences according to the reported 
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binding rules, enabling very potent interactions with DNA that are comparable with or stronger 

than interactions of DNA-binding proteins (2, 5, 6, 8-11). In addition, hairpin PAs have also been 

shown to be cell permeable (12-15). Therefore, PAs are promising agents that can potentially alter 

the regulation of specific DNA-binding proteins for the treatment of diseases caused by aberrant 

gene expression (16, 17).  

As an ETS (E26 transformation specific) family member, PU.1 (Purine rich box 1) is a 

transcription factor involved in normal hematopoiesis and a growing list of diseases. PU.1 

regulates the expression of a large network of genes related to inflammation (18). For example, 

PU.1 controls the expression of receptors for IL-2Rγ and IL-7Rα, and also regulates expression of 

Toll-like receptors which may control the signaling pathways of certain auto-immune diseases (19-

23). In addition, down-regulation of PU.1 expression to 20% of normal cell levels is reported to 

induce acute myeloid leukemia (AML) in mice, whereas a decrease to 50% of normal cell 

expression retains normal hematopoiesis (24, 25). On the other hand, complete knock-down of 

PU.1 causes severe dysfunction of hematopoietic stem cells and leads to cell death (24-27). Thus, 

either raising PU.1 expression to normal functional levels or completely blocking the PU.1 

transcriptional activity in AML cells is potential approach to the treatment of AML.  

All ETS family transcription factors bind to DNA at the consensus binding site 5’-

GGAA/T-3’ with various flanking sequences. For example, the winged helix PU.1 targets the B 

motif of the Ig2-4 enhancer (B promoter site: 5’-CCAAATAAAAGGAAGTGAAACCAAG-3’, 

Fig. 1) and makes contacts with DNA by inserting a recognition helix into the major groove of the 

consensus site while keeping adjacent protein loops in touch with the backbone of flanking DNA 

sequences (28). The B DNA sequence is a template that has been widely used for the study of 
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PU.1-DNA interactions. Targeting the 5’-side AT track of the GGAA site using naturally existing 

distamycin demonstrated inhibition of PU.1 binding (29, 30). 

To date, activation of gene expression through PAs has been done by conjugating PAs with 

specific recruiting motifs like short peptides and protein-binding ligands (31-37). Previous studies 

showed that the 3’ flanking sequence plays a critical role in PU.1-B DNA binding, with an 

equilibrium (dissociation) constant KD = 2.68 ± 0.41 nM compared to KD = 240 ± 70 nM achieved 

by simple mutation of the 3’ flanking GTG of B to TGG (38). Therefore, we designed a set of 

PA analogs based on the recognition rules to bind to the 3’ flanking side (5’-GGAAGTGA-3’) of 

the PU.1 binding site, aiming to interfere allosterically with PU.1 binding to DNA (Fig. 4.1). These 

PAs are structurally modified and their binding properties to B DNA have been determined in 

previous literature (39). 

Herein, we report the cell-free studies of designed minor groove-binding PAs modulating 

the major groove targeting PU.1. Previously, tandem hairpin PAs displaced the major groove-

binding E2 protein of human papillomavirus from its cognate site. In that case, the viral protein 

bends DNA about 180 ° and the ability of the minor-groove binding PAs to displace the major 

groove-binding protein was attributed to (a) thermodynamics, since the PAs bind more tightly to 

DNA than the protein, and (b) dynamic equilibria, in which each DNA ligand associates and 

dissociates to its DNA target, allowing the tighter-binding ligand to bind the DNA no matter which 

ligand is bound first (17). Our results show that nine out of ten PAs allosterically disrupt the PU.1-

DNA interaction with a linear correlation between PA binding affinity and inhibition efficacy. One 

PA, FH1024, is not a PU.1 inhibitor and forms a FH1024-PU.1-B DNA trimer. Altogether, the 

results have offered new insights into the effects of DNA modulation by PAs, deepened our 

understanding of the molecular basis of small molecule-DNA-protein interactions and provided 
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guidance for optimizing molecular design and consequently improving the efficiency and accuracy 

of gene regulation in disease treatment.  

4.3 Materials and Methods 

4.3.1 DNA  

DNAs: 

The DNA oligomers in this study were purchased from Integrated DNA Technologies, Inc. 

(IDT, Coralville, IA) with HPLC purification. 

DNA sequence used for ESI-MS and EMSA: 

5’-CCAAATAAAAGGAAGTGAAACCAAGCTCTCTTGGTTTCACTTCCTTTTATT 

TGG-3’ 

The bold, underlined site is the PU.1 binding site, the PA target binding site is indicated in 

red. The hairpin is shown in italic. The same sequence is used for SPR experiments but with a 5’-

biotin. 

4.3.2 Polyamides synthesis and preparation 

Compounds are synthesized and prepared as previously described (39). 

4.3.3 PU.1 purification 

Recombinant PU.1 ETS domain (murine residues 167 to 272) was expressed and purified 

as reported previously (40, 41).The final protein product, which does not contain the His6 

purification tag, was stored at 4 ºC. The protein is stable for at least a few weeks under this 

condition. Protein concentration was determined by absorption at 280 nm using an extinction 

coefficient of 22,460 M-1 cm-1. 
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4.3.4 Surface Plasmon Resonance  

In addition to the binding experiments, we have developed a novel SPR procedure to study 

the effects of small molecules on protein-DNA interactions. The SPR experiments were carried 

out on a four-channel Biacore T200 optical biosensor system (GE Healthcare, Inc., Piscataway, 

NJ). The biotinylated DNA was immobilized on a sensor chip functionalized with streptavidin. 

The first channel was used as reference channel and does not have DNA immobilized. The samples 

contain a mixture of constant 50 nM PU.1 and different concentrations of PA. For the amount of 

immobilized DNA, 50 nM PU.1 can reach steady state binding and RUmax. The PA concentration 

(starting from 0 nM) increases as the number of the experimental flow cycle rises. In each cycle, 

the sample was injected over the sensor chip surface at a flow rate of 50 µL·min-1. During the 

sample flow, PU.1 and PA are competing or cooperating to form a complex with the DNA 

immobilized on the sensor chip. The sensorchip was washed with pure buffer at the end of each 

sample injection to help dissociate the existing complex. Then, 1 mM NaCl was injected as 

regeneration buffer to dissociate any remaining complex and prepare the chip for the next cycle. 

PA alone was injected in the last cycle for baseline subtraction and signal reference. The SPR 

sensorgrams were generated immediately after finishing the experiments and were presented as a 

function of response unit (RU) vs. time (Fig. 4.2). The resulting RU changes of PU.1 in the 

presence of PA at equilibrium were then plotted against PA concentration (Fig. 4.3). The IC50 

value, which represents inhibition efficacy, was determined at the PA concentration where 50% of 

PU.1 is inhibited from binding to DNA. This experiment was performed in phosphate buffer (25 

mM Na2HPO4, 400 mM NaCl, 1 mM EDTA and 0.05% v/v surfactant P20, pH 7.4, filtered and 

degassed), which is compatible with both PU.1 and the PA. 
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4.3.5 Electrophoresis Mobility Shift Assay 

Electrophoresis Mobility Shift Assay (EMSA) was carried out as a complementary and 

validation study. The samples were prepared in a buffer composed of 10 mM Tris (pH=7.4), 150 

mM NaCl, 0.1 mM EDTA, 100 ng/µL BSA, and 10% v/v glycerol. 25 nM PU.1was mixed with 

appropriate ratios of PA before 25 nM DNA was added. The samples were then loaded onto 12% 

native polyacrylamide gel and run in 1x TBE (Tris-borate-EDTA) buffer. The gel was run for 3 h 

at 120 V. It was then stained with SYBR Gold Nucleic Acid Gel Stain (Invitrogen, Carlsbad, CA) 

for 20 min before visualization on a Typhoon FLA 9500 laser scanner. 

4.3.6 Electrospray Ionization Mass Spectrometry 

Both PU.1 and DNA were dialyzed against 150 mM NH4CH3CO2 buffer, pH 6.8, for one 

week, with a total of three times buffer exchange. This step is carried out to eliminate the Na+ 

present in un-dialyzed DNA, which can form adducts resulting in complicated MS data that are 

not readily interpretable. A stock solution of 0.5 mM each compound was made by dissolving the 

compound in distilled deionized (DDI) water. The MS samples were prepared by mixing PU.1 and 

DNA at 1 to 1 ratio at the desired concentration. Compounds for titration  were prepared in separate 

tubes and added to the pre-mixed PU.1-DNA. Immediately prior to injection, 5 µL methanol was 

added to the sample to facilitate solution to gas phase transition. The total sample volume was 100 

µL. 

The MS experiments were performed on a Waters Micromass ESI-Q-ToF spectrometer 

(Waters Corporation, Milford, MA, USA). Data were collected and analyzed using MassLynx 4.1 

software. In positive ion mode, samples were injected at a rate of 5 µL·min-1 and scanned for m/z 

range from 300-3000. The last two minutes of the mass spectral data were averaged and the 

resulting spectrum was convolved to give the intact molecular mass. The instrument parameters 
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were as follows: capillary voltage of 2500 V, cone voltage of 20 V, extraction voltage of 2 V, 

desolvation temperature of 100 oC, and source temperature of 70 oC.  Nitrogen was used as 

nebulizing and drying gas. 

4.4  Results 

4.4.1 Quantitative evaluation of PU.1 inhibition by PA 

Cell-free studies of competitive binding of PAs and PU.1 to λB DNA were carried out by 

SPR. The SPR method developed by our group for inhibition studies is efficient, label-free, and 

acquires inhibition efficacies that agree with other methods (29). The inhibition of PU.1 by a PA 

was evaluated by injecting 50 nM PU.1 to establish a high molecular weight baseline, and injecting 

PA alone to establish a low molecular weight baseline. To determine binding and inhibition 

parameters, increasing concentrations of PA were injected onto the sensorchip surface, which had 

been immobilized with target DNA, while maintaining a fixed concentration of 50 nM PU.1. The 

signal or response unit (RU) generated in SPR is proportional to the molecular weight of the bound 

ligand, in this case, PU.1 or PA or both. Given that the molecular weight of PU.1 (12 kDa) is much 

larger than that of the present PA library (around 1250 Da on average), the RU caused by binding 

of PU.1 is much higher than that caused by the binding of PA. This molecular weight-dependent 

RU difference can lead to three different outcomes when a PA is present during PU.1-DNA 

binding: 1) the RU drops if PA replaces PU.1 upon binding DNA; 2) the RU stays the same if PA 

fails to compete with PU.1 for DNA; 3) the RU rises as the binding of PA increases if PA and 

PU.1 bind to DNA simultaneously or cooperatively.  

Sensorgrams reflecting the real-time binding activity of each sample (PA and PU.1 

mixture) were generated. As shown in Fig. 4.2, for each PA depicted there, the RU decreased as 

the concentration of PA increased, indicating that the PAs competed with and eventually replaced 
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PU.1 on the DNA. For strong inhibitors such as FH1028 and KA2115, the RU descended rapidly 

with a slight increase in PA concentration. On the contrary, much smaller RU changes were 

observed for the weak inhibitors, KA2114 and FH1026, even with large increases in PA 

concentration. It is noteworthy that for weak inhibitors like FH1026, the RU change plateaued as 

the PAs reached certain concentrations. This is likely due to the combination of specific and non-

specific binding of the molecules when presented in excess. Because the PU.1 binding site 

typically occupies 10-16 bp of the 23-bp DNA sequence, the additional, untargeted base pairs are 

exposed to excess PA. In addition, due to the degenerate recognition of A and T by pyrrole (5-8) 

as well as the tolerance of imidazole for interacting with bases other than G (39, 42-44), excess 

PA tends to bind non-specific DNA sites.  

To determine the IC50 value (inhibition efficacy), the PA concentration at which 50% of 

PU.1 binding is inhibited, the RU data were plotted as a function of PA concentration (Fig. 4.3). 

Table 4.1 is a summary of PAs with their binding affinities (previously determined (39)) as well 

as their corresponding inhibition efficacy (IC50) values. The PAs exhibited strong inhibition with 

a number of IC50 values in the single-digit nM range. As shown in Table 4.1, there is a strong 

correlation between the IC50 and KD values. To further quantify the correlation, the log values of 

IC50 were plotted as a function of log (KD), and showed a linear correlation between binding 

affinity and inhibition efficacy (Fig. 4.4). This linear correlation implies that these PA analogs 

bind to DNA in the same manner. More specifically, for eight-ring PAs that have no more than 

two β inserts, if the two β inserts are not next to each other on the same strand, the modified PAs 

still recognize the same  DNA sites. This finding removes our concern about future eight-ring PA 

design that the molecule might change its cognate binding site after β modification. 
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4.4.2 FH1024 is an outlier and does not inhibit PU.1-DNA binding 

FH1024 is a medium-affinity binding agent modified from the parent PA, KA 2035, with 

the Py/Py substituted by β/β and tetramethylguanidinium (TMG) as the N-terminus (Fig. 4.1). 

According to the correlation established (Fig. 4), FH1024 was anticipated to inhibit PU.1-DNA 

binding with moderate inhibition efficacy of IC50 ≈ 50 nM. To our surprise, when the mixture of 

FH1024 and PU.1 flowed through the sensorchip surface, the resulting RU did not decrease as it 

did with the other PAs under the same assay conditions. Instead, a RU increase occurred as the 

concentration of FH1024 increased (Fig. 4.5a). The observation leads us to suggest that FH1024 

is not a PU.1 inhibitor but can bind simultaneously to DNA with PU.1. Furthermore, the difference 

of RU (ΔRU) caused by binding of the mixture is more than the ΔRU resulting from FH1024 

binding alone, and this could indicate that FH1024 promotes additional PU.1-DNA binding. To 

further investigate the binding behaviors of PU.1-FH1024 mixture, different salt concentrations 

were used. As shown in Fig. 5a, within the salt concentration range used, the RU generated by 

flowing of FH1024-PU.1 mixture increased as the concentration of FH1024 went up, corroborating 

the assumption that FH1024 and PU.1 bind to DNA simultaneously. The idea of FH1024 

promoting PU.1 binding is strongly supported by the SPR results at 450 mM NaCl. Compared to 

the RU at lower salt concentrations, PU.1 binding was significantly reduced at 450 mM NaCl. 

When FH1024 was added, however, the binding RU value significantly increased and eventually 

reached saturation at essentially the same RU level (approx. 140 RU) as at the lower salt 

concentrations. This clearly indicates that FH1024 is a promoter or weak agonist of PU.1 binding. 

The slight variation of RU values at saturation in Fig. 4.5 is due to the gradually reducing binding 

capacity on the sensor chip with time and usage. 
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To investigate if simultaneous binding is sensitive to the order of addition, in other words, 

if PU.1 still binds when FH1024 pre-occupies its binding site, we switched the titration sequence 

by keeping the concentration of FH1024 constant at 50 nM while increasing the concentration of 

PU.1 in each flow cycle. If FH1024 inhibited the binding of PU.1, then the injection of PU.1 onto 

a sensor chip pre-occupied with FH1024 would hardly cause any change in RU, especially at low 

concentrations of PU.1. In this experiment, the PU.1 mixture sample was injected over the sensor 

chip pre-mixed with FH1024 and the resulting sensorgrams are shown in Fig. 4.5b. The steady 

increase in binding RU confirms that PU.1 binds to DNA in the presence of FH1024. Similarly, 

under a gradient of salt concentrations, RU consistently increased as PU.1 concentrations went up 

and the RU value at saturation stayed relatively constant, indicating potentially cooperative 

binding of PU.1 and FH1024 in the major and minor DNA grooves.  

4.4.3 Electrophoresis Mobility Shift Assay (EMSA) confirms that FH1024 is not 

inhibiting PU.1-DNA binding 

To test our observation further that PU.1 and FH1024 bind simultaneously to DNA, with 

enhanced PU.1 binding promoted by FH1024, the interactions of λB-PU.1, λB-FH1024, λB-PU.1-

FH1024, and λB-PU.1-FH1028 were explored on native polyacrylamide gels. FH1028 was used 

because it is structurally very similar to FH1024 and showed strong inhibitory activity in SPR, 

therefore is a good negative control for FH1024. As shown in Fig. 4.6, λB DNA gives a very thick 

band at the bottom (lane 1, red arrow). It is noticeable that in lane 1, there is an additional band 

(blue arrow) besides λB DNA. This is very likely a duplex of two hairpin λB DNAs with open 

hairpin. λB DNA and PU.1 formed a 1:1 complex (lane 2, green arrow); The duplex λB DNA and 

PU.1 complex resulted in two bands (blue arrows), one with PU.1 bound on one site, the other 

with PU.1 bound on both binding sites of the duplex DNA. There is also an additional band at the 
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top of the gel resulted from non-specific binding of PU.1. Because the molecular weight of FH1024 

is much smaller than λB DNA, the binding of λB and FH1024 did not result in any mobility shift 

of the complex from DNA alone at the experimental resolution (lane 3, red arrow); When λB DNA, 

PU.1, and FH1024 mixture ran through the gel (lanes 4-6), clear bands of λB DNA-FH1024 (red 

arrow) and λB DNA-PU.1 complex (green arrow) appeared. The fraction of bound λB DNA in 

lane 4 and 5 are approximately equal to that of lane 2, which is around 0.28. When we raise the 

FH1024 ratio to λB: PU.1:FH1024=1:1:4, shown in lane 6, the fraction bound increased to 0.34 

and the intensity of duplex λB DNA-PU.1 increased significantly (lane 6, blue arrow). These 

results suggest that FH1024 did not impede binding between λB and PU.1 and to some extent, 

promoted PU.1-DNA binding.  

On the other hand, when FH1028 was added to λB DNA and PU.1 mixture, the band of 

both λB-PU.1 and duplex λB-PU.1 complex disappeared almost completely even at ratio λB: 

PU.1:FH1028=1:1:1 (lane 7). At ratio λB: PU.1:FH1028=1:1:2, the band became even fainter, 

indicating that FH1028 is a strong inhibitor for PU.1, in agreement with SPR results. It is 

noteworthy that in the mixture of all three components (lanes 4-8), the DNA band started diffusing 

in the gel. This is probably because of the DNA conformation adjustment caused by the 

competition between PA and PU.1 binding and the occupation of the dye staining site on DNA by 

bound polyamide. Though we were unable to detect λB-PU.1-FH1024 trimer complex due to both 

small molecular weight of FH1024 and the low resolution of the gel, the consistent result validates 

the observation in SPR that FH1024 is not inhibiting PU.1-DNA binding. 
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4.4.4 Analyzing λB-PU.1-FH1024 using Electrospray Ionization Mass Spectroscopy 

(ESI-MS) 

ESI-MS was performed to further investigate the mechanism of action between PA and the 

PU.1-DNA complex. With high resolution, mass accuracy and sensitivity, mass spectrometry 

possesses the capability of distinguish between the PU.1-λB DNA dimer and PU.1-λB-PA trimer, 

despite the relatively small difference in molecular weight between the two complexes. Shown in 

Fig. 4.7a is the 1:1 mix of PU.1-λB DNA; no significant amount of free PU.1 or free DNA was 

detected. When we added FH1024 at ratio λB: PU.1: FH1024 = 1:1:1, a small peak corresponding 

to the total mass of λB+PU.1+FH1024 appeared (Fig. 4.7b), which is indicative of the presence of 

the trimer. The fact that no free PU.1 or free DNA showed up in the spectrum confirmed our other 

observations and indicated that FH1024 binding did not force PU.1 from the DNA. Furthermore, 

as the concentration of FH1024 increased, more trimer formed, as indicated by the increase in MS 

signal intensity of the trimer peak, while no free PU.1 or DNA was released from the complex 

(Fig. 4.7c-d). These results clearly demonstrated that FH1024 does not disrupt the interface of 

PU.1-DNA but forms λB-PU.1-FH1024 trimer when added to the protein-DNA complex.  

To compare the results of FH1024 with a PU.1-DNA inhibitor, samples consisting of λB, 

PU.1, and FH1028 were also prepared and examined through MS testing. At the ratio λB: PU.1: 

FH1028 = 1:1:1, both free PU.1 and PA-bound DNA were detected due to the strong inhibition 

efficacy of FH1028 (IC50=1.2 nM, Fig. 4.7e). Because FH1028 is a very strong DNA binder 

(KD=0.16 nM), all free DNA was occupied by FH1028 as the DNA-FH1028 complex shown in 

the mass spectrum. At ratio λB: PU.1: FH1028 = 1:1:2, free PU.1 and the DNA-FH1028 complex 

were obtained. The small peak corresponding to the total mass of λB+PU.1+FH1028 could be the 

result of non-specific binding of FH1028, since the concentration used in MS (10 µM) is much 
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higher than that in SPR (nM), 63,000 times the IC50, and PU.1 only occupies around 10-16 bp 

along the 25 bp λB. For a strong binder like FH1028, at such high concentration and with the 

availability of extra binding sites, non-specific binding is almost inevitable. Thus, with a 

combination of biophysical and analytical methods, we have proved that FH1024 is exceptional 

among the systematically designed PA analogs as it does not disrupt PU.1-DNA binding but is 

able to bind to DNA-PU.1 dimer complex in a manner that favors the formation of a DNA-PU.1-

FH1024 trimer complex.  

4.4.5 FH1024 binds to the same DNA site as other PA analogs 

We established previously that our systematically designed, inhibitory PAs bind to DNA 

at the same binding site and there is a positive linear correlation between their binding affinity and 

inhibition efficacy on PU.1. Given that FH1024 enhances PU.1 binding and binds to DNA 

simultaneously with PU.1, whether FH1024 kept the same DNA-binding site as the inhibitory PAs 

became a critical question to address. To probe this question, two competition-binding SPR 

experiments were conducted. The samples prepared for these two experiments were: (1) a mixture 

of 50 nM PU.1, 10 nM FH1028 and increasing concentrations of FH1024, and (2) 50 nM PU.1, 

50 nM FH1028 and increasing concentrations of FH1024. Since FH1028 is a strong binder (ten 

times stronger than FH1024) and an effective inhibitor, FH1024 at low concentration would not 

be able to bind to DNA in the presence of excess FH1028, whereas high concentrations of FH1024 

would have the capacity to overcome the inhibitory effect of FH1028. The sensorgrams of the two 

competition assays are shown in Fig. 8. As expected, in the presence of constant 10 nM FH1028, 

it takes at least 50 nM FH1024 to start binding to DNA. Meanwhile, for DNA pre-occupied by 50 

nM FH1028, more than 500 nM FH1024 is needed to overcome the inhibitory effect of FH1028. 

These results suggest the direct competition of FH1024 with FH1028 at the same DNA binding 
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site. This is expected since all of the PAs in Fig. 4.1 were designed to bind to the same site of the 

λB promoter DNA. Importantly, as shown on the sensorgrams, when FH1024 started binding to 

DNA, the RU began rising, meaning the molecule has the power, at high concentration, to reverse 

the strong inhibitory effect caused FH1028 and coexist with PU.1 on the DNA.  

4.5 Discussion 

4.5.1 Molecular basis of  PU.1 inhibition by PA 

Our ultimate goal is to apply small molecules such as PAs as therapeutic agents. It is, 

therefore, important to understand the biological/pharmacological activities of PAs to guide future 

drug design. The inhibitory effects of PAs have been explored in several biological systems (37, 

45-47). The conformational change of DNA upon PA binding can be classified into three 

categories: direct perturbation to the PA binding site in the minor groove, proximal allosteric 

perturbation in the major groove, and distal allosteric perturbation outside of the PA binding site 

(45). Good inhibitors of PU.1 are achievable at the 5’ side of the PU.1 binding site on λB promoter 

DNA. Yet no inhibitors at the 3’ side were explored and the 3’ side has been shown to be critical 

for PU.1 binding (38). Thus, the current PAs are designed to target the 3’ flanking sequence of the 

PU.1 binding site (Fig. 4.1). The PAs synthesized exhibit DNA binding affinities ranging from 

0.16 nM to 79 nM, very competitive to the major groove binding PU.1 (KD = 7 nM) under the 

same conditions. As the SPR results show, most of the PAs demonstrated very strong inhibition 

with nanomolar IC50 values, meaning that distal allosteric inhibition of PAs is relevant to the 3’ 

flanking bases of PU.1 binding site.  

Previous X-ray structure studies on hairpin PAs binding to the nucleosome core particle 

(NCP) revealed a large distortion distal to the PA binding sites and long-range perturbations in the 

structure of the NCP (48, 49). Another such study on the structure of an eight-ring, cyclic PA 
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bound to DNA demonstrated that the PA causes DNA distortion by widening the minor groove ~4 

Å while compressing the major groove, with an additional distortion seen as bend of the helix axis 

> 18º toward the major groove (45, 50). These types of large distortion in DNA conformation are 

likely the driving forces that disrupt the interface between PU.1 and its cognate site. Strong 

inhibitors such as FH1028 and KA2115 are able to anchor firmly inside the minor groove and 

induce a long-lasting (low dissociation rate, long residence time) DNA conformation change, 

whereas weak inhibitors such as KJK6162 and FH1026 have very fast on and off rates, making 

them uncompetitive with PU.1 for the DNA binding site. The fact that binding affinities of PAs 

are positively, linearly correlated with the inhibition efficacies leads us to suggest that the 

inhibitory PAs all bind at the same target site, the site they were designed for, and further indicates 

that all PAs bind in the same mode. 

4.5.2 Molecular basis of  FH1024-PU.1-DNA trimer formation  

The interaction between PU.1 and DNA is greatly dependent upon DNA micro structure. 

Observation of the FH1024-PU.1-DNA trimer indicates that the FH1024 complex is different from 

the other PAs in this study. Among those, KA2040 and FH128 are close analogs to FH1024, both 

of which are strong binder and inhibitors. FH1024 presents a lower binding affinity than its close 

analogs (KD =1.65 nM) primarily, we suspect, due to its high flexibility in the β/β composition 

which renders the inner structure more adaptable to a range of structures than its analogs. In 

addition, we must consider the electrostatic interactions generated by both the highly positively 

charged N- and C-termini and the bulk of the N-terminal tetramethylguanidinium found in 

FH1024, all of which may make the overall structure less able to form stable complexes with the 

target sequence. Though constrained by the hairpin linker, the two strands of FH1024 on the open 

side (the non-hairpin side) might well not be stacked. In a forward binding mode (where the N-
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terminal to C-terminal PA vector aligns with 5’-3’ DNA vector, Fig. 4.9), when buried in the minor 

groove, the positively charged, bulky TMG clashes not only with the minor groove wall, but it also 

reaches the exocyclic amine of guanine (Fig. 4.9) within the PU.1 binding site. Thus TMG is 

possibly exposed to repulsive electrostatic forces from both G (from DNA) and the C-terminal Ta 

tail. It is noteworthy that both the N-terminal TMG and C-terminal Ta tail extend into the minor 

groove of the central PU.1 binding site and are in close proximity to the middle bases (Fig. 4.9). 

For a well-stacked hairpin PA like FH1028, such binding forces a further widening of the minor 

groove due to the plasticity of DNA, making PU.1 binding unfavorable. For FH1024, which has 

flexible N- and C-termini that cannot fit into the minor groove in a well-stacked manner, in the 

presence of PU.1, the upper (N-terminal)  strand of bound FH1024 might float out of the minor 

groove or even flip away from the PU.1 binding site, leaving the lower (C-terminal) strand inserted 

in the minor groove. Therefore, the binding of FH1024 may not cause as significant a structural 

change as the inhibitory PAs, preventing it from disrupting the binding of PU.1 and DNA.  

It was reported previously (51) that the Dp tail of an eight-ring PA, when positioned in 

proximity to the cognate site of the transcription factor extradenticle (Exd), would facilitate Exd-

DNA binding, possibly because the charge and steric repulsion between Dp and exocyclic amine 

of guanine favor displacement of the bases toward Exd in the major groove (51). In our case, the 

Ta tail on the lower strand of FH1024 is placed in close proximity to the 5’-GGA-3’ bases of PU.1 

binding site, making similar contacts to the previously reported Dp with the minor groove floor. 

Thus, the binding of FH1024 does not disrupt the PU.1-DNA complex, but promotes binding of 

PU.1, owing in part to electrostatic and steric interactions between Ta and the exocyclic amine of 

the guanine (Fig. 4.9) in the minor groove.   
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4.6 Conclusion 

Many diseases are found to be likely caused by the aberrant expression of certain genes. 

Abnormal accumulation and/or depletion of transcription factors that are vital in regulating gene 

expression could be the key step in contracting such diseases. A breakthrough to probe this issue 

is the use of DNA-binding small molecules to modulate once-undruggable transcription factors. 

PAs have been studied for this purpose for many years and most of the PAs, if capable of affecting 

protein-DNA binding, are inhibitors unless conjugated with specific recruiting peptides or other 

ligands. Molecules that are small in size are generally more soluble, efficient in permeating cells 

and accessing chromosomes than large molecules. Smaller molecules are also economically more 

efficient in that they are easier to synthesize. In this work, we have reported the inhibitory effect 

on transcription factor PU.1-DNA binding of nine out of ten of the designed hairpin PAs. We have 

found that one of the PAs, FH1024, is not an inhibitor and appears to be among the first unmodified 

PAs to have such stimulatory effect. The molecule FH1024 binds to DNA simultaneously and 

potentially cooperatively with PU.1. The interactions likely require a particular binding mode of 

PA and appropriate register with the PU.1 binding site. More structural and computational studies 

are in need to better understand the molecular basis of these interactions, thus providing guidance 

for improving and optimizing the design of additional such molecules.  
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4.9    Tables and Figures 

 

2

5

1 4N 3

78C 6

β-alanine inserts Cationic substitutions

PA binding site

PU.1 binding site

λB DNA:

Parent PA

Figure 4.1 Schematic representation of a set of synthesized hairpin polyamides and λB DNA. 

The polyamides are classified into two modified groups: β-alanine inserts (red) and cationic 

substitutions (blue). The simplified representation of parent PA KA2035 is shown below its 

structure and the numbering scheme applies to all PAs.   
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Figure 4.2 SPR sensorgrams of PU.1 and PAs (exclude FH1024) binding to λB DNA. 

The black line on the top (highest RU) of each sensorgram represents the injection of 50 

nM PU.1. The silver line at the bottom (lowest RU) of each sensorgram represents the 

binding of PA alone. The legend indicates the concentrations of corresponding PAs. The 

sensorgrams are arranged in a manner by which inhibition efficacies decrease from left to 

right and from top to bottom. 
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Figure 4.3 Plots of fraction bound for PU.1 vs. polyamide concentration to determine IC50 values. 

KD (nM) IC50 (nM)

β-

alanine 

inserts

0.49 3.6

0.54 4.2

0.67 4.9

1.30 17.2

1.62 46.4

4.10 271

Cationic

substitu

tions

0.16 1.2

35 945

79 4340

F

Dp

KA2041

F

Dp

KA2035

F

Ta

KA2114

F

Ta

KA2115

F

Dp

KA2034

F

Dp

KA2040

TMG

Ta

KJK6162

TMG

Ta

FH1028

TMG

Ta

FH1026

Table 4.1 Comparison, for PAs, of DNA binding affinities vs. PU.1 inhibition efficacies (IC50 

values) on λB DNA. 
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Figure 4.4 Log-log plot establishes a linear correlation between DNA binding affinities of PAs and 

PU.1 inhibition efficacies (IC50 values) on λB DNA. 
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a 

b 

50 nM PU.1 

50 nM FH1024 

50 nM FH1024 

50 nM PU.1 

Figure 4.5 Simutaneous binding of FH1024 and PU.1 to λB DNA. 

a) Flow of increasing concentration of FH1024 mixed with constant 50 nM PU.1 onto 

immobilized DNA. The legend indicates the concentrations of FH1024. In each sensorgram of 

panel for a, the black line (before RU increases) represents binding of 50 nM PU.1 alone; the 

separated silver line at the bottom results from 50 nM of FH1024 binding alone. b) Flow of 

increasing concentration of PU.1 mixed with constant 50 nM FH1024 onto immobilized DNA. 

The legend indicates the concentrations of PU.1.  In the sensorgrams of panel b, the black line 

at the bottom represents binding of 50 nM FH1024 alone.  
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Lane 2 
1 

 

Lane 3 Lane 4 

 

Lane 5 Lane 6 Lane 7 Lane 8 

 

Lane 1 

λB λB+PU.1 λB+FH1024 λB+PU.1+FH1024 λB+PU.1+FH1028 
1:1 1:1 1:1:1 1:1:2 1:1:4 1:1:1 1:1:2 25nM 

λB duplex 

λB duplex+PU.1 (single site) 

λB duplex+PU.1 (double site) 

Non-specific binding 

Figure 4.6 Effect of FH1024 on PU.1-DNA binding. 

Lanes 4-6 show different ratios of FH1024 added to PU.1-λB DNA complex. Lanes 7-8 are 

comparisons with strong inhibitor FH1028. Red arrows indicate bands corresponding to λB 

DNA or λB DNA-PA complex. Green arrows point to bands from λB DNA-PU.1 complex.  

Blue arrows show the bands of duplex λB DNA-PU.1 complex with PU.1 on one or both 

binding sites. Black arrow indicates non-specific binding of PU.1 on DNA. 
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b e 

f 
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d 

Figure 4.7 ESI-MS showing: (b-d) the formation of the FH1024-DNA-PU.1 trimer and (e-f) the 

inhibition of the PU.1-DNA complex by FH1028. 
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Figure 4.8 Binding by SPR of FH1024 with fixed concentrations of PU.1 and FH1028. 

The bright green line represents FH1028. The legend indicates the concentrations of 

FH1024. In the left panel, FH1028 was kept at 10 nM. In the right panel, the 

concentration of FH1028 is 50 nM.  
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Figure 4.9 Schematic illustration of the relative positions of the cognate sites for 

PU.1 and FH1028.   
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5 CONCLUSIONS 

This dissertation has investigated the systematic design and synthesis of a set of eight-

ring hairpin polyamides as well as a new class of Pyr-AzaHx hybrid polyamides. Their DNA 

binding affinities and specificities of these molecules were evaluated. The effects of the eight-

ring hairpin polyamides on the transcription factor PU.1-DNA interactions were explored. 

The results altogether have deepened our understanding on the molecular recognition between 

small molecules and DNA and also broadened our view on the molecular interactions among 

small molecules, DNA, and PU.1. 

More specifically, the use of SPR in determining the DNA binding affinity and 

specificity of both polyamides and PU.1 with high accuracy has demonstrated that SPR is a 

well-established method that is applicable to such binding studies. Modifications of eight-ring 

hairpin polyamides by β-alanine and N-terminal cationic group have diverse effects on the 

DNA binding properties. Close comparison revealed a pattern of how the number and position 

of  β-alanine affect the binding affinity and specificity. The pattern can be used as reference 

when predicting the interactions of newly designed molecules. 

Design and synthesis of Pyr-AzaHx hybrid polyamides was carried out in order to 

expand the DNA recognition sites of small, fluorescent molecules to facilitate cell studies. 

Evaluation of the DNA binding properties of these molecules showed that the modification 

did not specifically recognize the proposed binding site, but exhibited enhanced binding 

affinity compared to the last generation of such molecules. Even though more efforts are in 

need to extend the DNA recognition repertoire, the enhanced binding properties of these 

modified molecules provide valuable guidance for the design of the next generation hybrid 

polyamides. 
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This dissertation investigated the effects of the eight-ring hairpin polyamides on the 

transcription factor PU.1-DNA interactions to prepare for the biological application studies of 

polyamides. Most of the polyamides either have no effect or inhibit the binding of PU.1 to 

DNA. The inhibition efficacy of polyamides was found to be positively correlated to their 

binding affinity. A potential PU.1 binding enhancer molecule was identified. Enhancing of 

protein binding is often achieved by attaching enhancing agents to polyamides and is rarely 

seen in polyamide alone. These encouraging results added to the driving force of our 

continuing understanding of the molecular mechanisms of action of these interactions. 

Polyamides are class of promising candidates for the treatment of cancer, viral, or 

bacterial infectious diseases. This dissertation undertook the fundamental work of furthering 

the understanding of polyamide-DNA interactions as well as polyamie-DNA-PU.1 

interactions to establish solid basis for the biological and clinical applications of polyamides. 

Their possession of high DNA binding affinity and specificity has enabled them to efficiently 

affect gene expression through interfering with transcription factors. In addition, unlike other 

peptide or chemical drugs, polyamides are resistant to the biological degradation by nucleases. 

Achieving efficient nuclear localization and low long-time toxicity would be greatly helpful 

to unleash the potential of polyamides as medicinal therapeutics.  
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