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ABSTRACT 

Propionate 3-nitronate (P3N) is a natural toxin that irreversibly inhibits mitochondrial 

succinate dehydrogenase. P3N poisoning leads to a variety of neurological disorders and even 

death. Nitronate monooxygenase (NMO) from Cyberlindnera saturnus (CsNMO) and 

Pseudomonas aeruginosa PAO1 (PaNMO) serve as paradigms for Class I NMO, which catalyze 

the oxidation of P3N involving single electron transfer. In this dissertation, the crystallographic 

structure of CsNMO was solved and demonstrated a highly conserved three-dimensional structure 

and active site with respect to NMO from PaNMO. The role of conserved residues in the active 

site of Class I NMO, e.g. Y109, Y254, Y299, Y303, and K307 in PaNMO in substrate binding 

and catalysis were investigated using site-directed mutagenesis, steady-state kinetics and pH 



effects on the UV-visible absorption spectrum. The study revealed that a protonated tyrosine is 

required for binding of the negatively charged P3N substrate. We also report that PaNMO can 

stabilize both the neutral and anionic semiquinones anaerobically for hours, providing a constant 

protein environment to study their photochemical and photophysical properties. 

Choline oxidase catalyzes two-step oxidation of choline to glycine betaine with betaine 

aldehyde as an intermediate. The FAD cofactor is covalently attached to the choline oxidase via 

H99 through an 8α-N3-histidyl linkage. In the active site of choline oxidase, S101 and H466 are 

located on two extent loops, ~ 4 Å from the flavin C4a atom. In this dissertation, a charge-induced, 

reversible C4a-S-cysteinyl-8α-N3-histidyl FAD was engineered by replacing S101 with a cysteine. 

The mechanistic rationale for the stabilization of de novo C4a-S-cysteinyl-flavins was illustrated 

with rapid kinetics, pH, kinetic isotope effects and proton inventory.  A photoinduced transient 

C4a-N-histidyl-8α-N3-histidyl FAD in choline oxidase wild-type was also observed with the aid 

of fluorescence excitation spectroscopy. Site-directed mutagenesis, solvent equilibrium isotope 

effects and pH effects on the stoke shifts of flavin in choline oxidase wild-type demonstrated H466 

as the adduct on the C4a atom of flavin upon excitation, and provided a mechanistic rationale 

involving photoinduced electron transfer (PET) for the formation of the novel photoinduced 

transient flavin C4a adduct. 
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1 CHAPTER 1: INTRODUCTION 

(This chapter has been published verbatim in Su, D., and Gadda, G. (2019), in Handbook of 

foodborne diseases. Boca Raton: Taylor & Francis.) 

1.1 Chemical Properties of 3-NPA 

3-NPA is a weak nitrocarbon acid with two ionization equilibria for the carboxylate and 

the α-carbon atom adjacent to the nitro group (Figure 1.1). A pKa of 9.1 defines the equilibrium 

between the protonated and unprotonated α-carbon atom. The ionization of the α-carbon atom of 

3-NPA, which results in the formation of P3N, is atypical in two aspects. First, it occurs with a 

pKa value that is considerably lower than the pKa values of ~50-60 typically observed for carbon 

atom ionizations in alkanes 10,11. Second, the deprotonation of the α-carbon atom occurs slowly 

and reaches equilibrium over several hours instead of occurring on the femto-picosecond timescale 

as commonly observed for O, N and S atoms 12. These processes have been extensively studied 

with nitroalkanes and are known as the principle of nonperfect synchronization 12,13. Nonperfect 

synchronization occurs when multiple physical-chemical processes, such as bond formation and 

cleavage, charge localization or delocalization, reactant solvation or desolvation, or changes in 

molecular orbital hybridization, are not synchronized in the transition state that defines the process 

12,13. In the case of 3-NPA and other nitro compounds the presence of the nitro group delocalizes 

the electrons between the nitrogen and the deprotonated α-carbon atoms (Figure 1.1), resulting in 

a thermodynamic stabilization of the nitronate anion that is not synchronized with the ionization 

process. Hence, the pKa values of nitro alkyl compounds are typically between 5.0 and 10.0 11, and 

the second-order rate constants for the deprotonation of nitroalkanes are between 2 and 6 M-1s-1 

while those of the protonation of the conjugate base (nitronate anion) range from 15 to 75 M-1s-1 

11,14. 
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Figure 1.1 Ionization of 3-NPA (left) to P3N (right). 

 

1.2 Natural Occurrence of 3-NPA 

3-NPA was isolated for the first time in 1920 following the hydrolysis of the plant 

glucoside hiptagin (Figure 88.2) from the bark of Hiptage madablota 1. Other ester derivatives of 

3-NPA have been identified afterwards in a wide range of plants and in leaf beetles; it also has 

been found in free form in fungi and plants 1,10,15-23. 

 

 

Figure 1.2 Chemical structures of select compounds containing 3-NPA moieties (in red). 
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In plants, 3-NPA and its ester derivatives have been found in Leguminosae (Fabaceae), 

Corynocarpaceae, Malpighiaceae and Violaceae 1,18,24-31. In the Leguminosae family 3-NPA is 

widely spread  among more than 500 species from the genera Astragalus, Coronilla, Hippocrepis, 

Indigofera, Lotus, Securigera and Scorpiurus 18. High concentrations of 3-NPA occur primarily in 

the plant shoots, where the compound can exceed 100 μmol g-1 fresh weight, accounting for a 

significant portion (>7%) of the total soluble fixed nitrogen, but not in the roots 18. Based on its 

known toxicity 6,7,32 and tissue localization 18 3-NPA is proposed to serve as a defense mechanism 

against herbivores in plants. The presence of both 3-NPA and enzymatic activities that oxidize it, 

or its conjugate base P3N, in a number of legumes supports the notion that 3-NPA may be an 

intermediate in the nitrification process 18. The introduction of the Astragalus species to revegetate 

areas of the Western United States previously depleted by overgrazing or mining has been 

associated with poisoning of livestock 33. Cases of poisoning by ingestion of plants containing 3-

NPA have been widely documented in domestic livestock while anecdotal reports of human 

intoxication by ingestion of plants containing 3-NPA are confined to New Zealand and the 

Chatham Islands due to the consumption of the fruit kernel of the karaka tree (Corynocarpus 

laevigatus) by the Maori tribes 5,7,27,32. The fruit of the karaka contains karakin, a glucoside with 

three molecules of 3-NPA 27 (Figure 88.2). 

 3-NPA and its ester glucosides and glucose esters have been found in leaf beetles from the 

subfamily Chrysomelinae 19,34-37. A 3-NPA ester of 3-isoxazolin-5-one glucoside (Figure 88.2) has 

been detected in all life stages of Chrysomela populi and Phaedon cochleariae, being present as a 

major secondary metabolite in the eggs, the larval hemolymph, and the pupae and the adult 

hemolymph, as well as their defensive secretions 19,34-37. 3-NPA ester of 3-isoxazolin-5-one 

glucoside allows for the storage of high amounts of 3-NPA in leaf beetles as it was shown that it 
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is non-toxic to the organism in the hemolymph 34. Diverse esters of glucose containing up to three 

3-NPA moieties have been identified by analysis of the adult secretions of the leaf beetle species 

Plagiodera versicolora distincta, Gastrophysa atrocyanea, Chrysomela vigintipunctata costella 

and Gastrolina depressa 38. The 3-NPA derivatives in Chrysomelinae leaf beetles are described as 

allomone secreted with other chemical aposematic repellent for self-defense 19.  

In fungi, the free form of 3-NPA has been identified in Arthrinium, Aspergillus, Penicillium 

genera as well as in the endophytic species Diaporthe citri, Phomopsis sp. usia5 and mfer5 

16,20,24,39,40. The ester form 4-hydroxyphenethyl 3-nitro-propanoate (Figure 88.2) was also isolated 

from Phomopsis sp. PSU-D15 41. The capability of endophytic fungi to produce 3-NPA gives rise 

to a debate as of whether 3-NPA in some plants is actually generated by symbiotic fungi 16. The 

physiological role of 3-NPA in fungi remains unestablished. However, due to its potent 

antimycobacterial activity 16,42, 3-NPA may be utilized by fungi for colonization of ecological 

niches. The 3-NPA produced by endophytic fungi may be the source of protection against 

herbivores for their plant hosts 16,42. The naturally occurring 3-NPA from fungi accounts for most 

of the reported cases of human poisoning. Economically valuable fungi used in the food industry, 

e.g. Aspergillus sp. and A. soyae, were reported to introduce 3-NPA to miso, katsuobushi and 

cheese 43-45. At least 884 cases of sugarcane poisoning have been documented in the Northern 

regions of China from 1972 to 1989 5, with the 3-NPA produced by Arthrinium genus in 

improperly stored sugarcane being responsible for the mass poisonings 46. 

1.3 Toxicity of 3-NPA 

Acute toxicity studies in rats demonstrated a consistent LD50 for 3-NPA administered either 

orally or intraperitoneally, ranging from 70 mg/kg to 80 mg/kg 47,48. The subcutaneous LD50 

determined was in a range from 20 mg/kg to 30 mg/kg 49. Bossi et al. administered 30 mg/kg (LD50 
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dose) 3-NPA subcutaneously to different age groups of rats and observed that dose was the LD50 

in the age group of 11-14 weeks, but not lethal  in the age groups of 3-6 weeks and 7-10 weeks 50. 

James et al. fed cattle with different doses of 3-NPA containing plants Astragalus. A single dose 

of dried Astragalus (200 mg NO2/kg body weight) to a cow led to no effects while another cow 

exhibited foaming of the mouth and weakness after a single dose of 275 mg NO2/kg body weight. 

A third cow died after a single dose of 350 mg NO2/kg body weight. Upon a single dose of free 

synthetic 3-NPA (15 mg NO2/kg body weight), cattle experienced a series of intoxication 

symptoms including incoordination, nervousness, weakness and eventually death 6. Acute toxicity 

experiments with either free or diets of plants containing 3-NPA were also carried out in animal 

models sheep 6, chicken 51 and pigeons 52. In all cases, 3-NPA was demonstrated to be lethal.  

The intensive research on 3-NPA toxicity is primarily driven by the economic losses of 3-

NPA poisoning on the agricultural industry in the Western regions of the United States, Canada 

and Northern Mexico 5,7,32. The impact of 3-NPA poisoning as the result of grazing on 3-NPA 

containing plants is severe. One case in New Mexico gave rise to 3% mortality and 20% morbidity 

in cattle foraging in affected pastures 32. Most of the livestock losses are due to the consumption 

of milkvetch (Astragalus sp.), creeping indigo (Indigofera endecaphylla) and crownvetch 

(Coronilla viria). The long-term effects of 3-NPA consumption by humans through food prepared 

using fungi or unintentionally contaminated by fungi further justify the studies on the toxicity of 

3-NPA 23,43-45. 

Three intertwined modalities for the in vivo toxicity of 3-NPA can be considered: 

impairment of energy metabolism, oxidative stress, and excitotoxicity. 
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1.3.1 Impairment of Energy Metabolism by 3-NPA 

At pH values relevant to physiology 3-NPA is in equilibrium with its conjugate base P3N 

(Figure 1.1). At pH 7.4 for instance, ~2% of the 3-NPA is in the nitronate, P3N form. P3N is an 

analog of succinate and acts as a potent irreversible inhibitor of mitochondrial succinate 

dehydrogenase. This inactivation is the primary biochemical basis for 3-NPA toxicity as it 

effectively shuts down energy production in all aerobes 2-4. Succinate dehydrogenase catalyzes the 

oxidation of succinate to fumarate in the citric acid cycle and is the second complex that transfers 

electrons in the respiratory chain for oxidative phosphorylation in mitochondria. A time-

dependent, irreversible inhibition of succinate oxidation was observed when P3N was added into 

isolated rat liver mitochondria incubated with succinate 2. The inhibition of succinate 

dehydrogenase was not observed upon the addition of 3-NPA, demonstrating that P3N is the 

inhibitory agent 2. The inhibited succinate dehydrogenase could not be reactivated by washing or 

centrifugation, suggesting irreversible inactivation of the enzyme 2. Alston et al. proposed an 

inhibitory mechanism involving the formation of an irreversible adduct between P3N and the N(5) 

atom of the enzyme cofactor bound to the enzyme 2, analogous to the oxidation of nitroethane with 

D-amino oxidase proceeding via a transient N(5) adduct with the flavin cofactor 53,54. However, a 

subsequent study on the purified enzyme from beef heart by Coles et al. demonstrated that the 

inactivation of succinate dehydrogenase does not occur via the formation of an irreversible flavin 

N(5) adduct, based on the features seen in the UV-visible absorption spectrum of the inactivated 

enzyme. An alternative mechanism explaining the available data proposes that 3-nitroacrylate is 

first produced by the flavin-dependent oxidation of P3N catalyzed by succinate dehydrogenase, 

followed by its reaction with a cysteine thiolate that inactivates the enzyme 3. A crystallographic 

structure of succinate dehydrogenase from avian heart mitochondria was reported in 2006 in 
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complex with different inhibitors, including P3N 4. The chemical modification on the flavin 

cofactor was not observed in the structure of the inactivated enzyme with P3N, consistent with the 

lack of a flavin N(5) adduct 4. Instead, the crystal structure unveiled a cyclic adduct between the 

sidechain of arginine 297 and P3N 4, but no mechanism was proposed. Hence, while the toxicity 

of 3-NPA, through its conjugate base P3N, is unequivocally due to the irreversible shut down of 

the citric acid cycle and the respiratory chain in mitochondria by the action of P3N on succinate 

dehydrogenase, the molecular mechanism is still unresolved.  

1.3.2 Oxidative Stress Induced by 3-NPA 

Oxidative stress due to increased generation of reactive oxygen species (ROS) is 

considered one of the mechanisms underlying 3-NPA toxicity in mitochondria. The oxidative 

stress associated with mitochondrial dysfunction has a central role in cognitive decline associated 

with aging 55 and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 

amyotrophic lateral sclerosis and Huntington’s disease 56. Increases in ROS induced by 3-NPA 

have been reported in several studies. An increase of free radical signal was observed in rat liver 

from 15 min after oral administration of 80 mg/kg 3-NPA by electron paramagnetic resonance 

(EPR) 57. An increase in ROS was also detected by EPR in rat brains treated with 3-NPA 58. A 

concomitant increase in activities of antioxidant enzymes, e.g. catalase, glutathione peroxidase and 

superoxide dismutase, in rat hippocampus 59 and mice ovarian tissues treated with 3-NPA has been 

reported 60. Furthermore, systemic administration of 3-NPA introduces more striatal harm to 

glutathione peroxidase knock-out mice than in the wild-type mice, indicating that oxidative stress 

has an important role in 3-NPA toxicity 61. Although 3-NPA induced oxidative stress is 

physiologically important, the mechanism of oxidative stress induction has not been fully 

established yet. Studies on the oxidation of P3N, as well as nitroethane, by flavin-dependent 
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enzymes, e.g. nitronate monooxygenase, P3N monooxygenase and glucose oxidase, demonstrate 

that the nitronate form of the organic substrate readily donates a single electron to the enzyme-

bound flavin, producing a flavosemiquinone radical that can potentially reduce dioxygen to 

superoxide 62-66. The resulting superoxide could subsequently initiate a free radical chain oxidation 

of the nitronate that propagates oxidative stress 67. However, further studies are required to 

corroborate the involvement of flavin-dependent enzymes in the mitochondrial generation of ROS 

induced by 3-NPA. 

1.3.3 Excitotoxicity of 3-NPA 

3-NPA belongs to a class of mitochondrial toxins that include cyanide, carbon monoxide, 

rotenone, manganese and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which cause 

neuropathology selectively in the basal ganglia upon peripheral exposure, despite a general 

impairment of energy metabolism throughout the entire body and brain 68. The neurotoxicity of 3-

NPA has been extensively studied because the toxin induces pathological and clinical symptoms 

that closely resemble Huntington’s disease 8,9. Basal ganglia damages and hippocampal lesions 

have been reported in rats and mice treated with 3-NPA 8,69,70. After chronic administration of 3-

NPA baboons and macaques developed symptoms including orofacial and extremities dyskinesia, 

dystonia, and choreiform movements 8. Lesions induced by 3-NPA treatment in primates were 

observed in the caudate and putamen by magnetic resonance imaging (MRI) 8; furthermore, 

histologic evaluations revealed a series of Huntington’s disease-like changes, e.g., a depletion of 

calbindin neurons, astrogliosis, sparing of NADPH-diaphorase neurons and growth-related 

proliferative changes in dendrites of spiny neurons 8. Children accidentally poisoned by moldy 

sugarcane developed an acute encephalopathy followed by dystonia 11-60 days after ingestion, 

with bilateral hypodensities determined by computerized tomograghy scans in the putamen and to 
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a lesser extent in the globus pallidus 8,71. Knowledge and insights on the pathogenesis and cell 

biology associated with the phenotypes and neurotoxicity induced by 3-NPA have been accrued 

over the past twenty years and the field is currently active, and exemplifies well the intertwining 

of impairment of energy metabolism, oxidative stress, and excitotoxicity. Hindrance of energy 

metabolism in neurons treated with 3-NPA produces a partial depolarization of the neuronal cell 

membrane that arises from a lower intracellular concentration of ATP acting on ATP-sensitive ion 

pumps and channels 72. Neuronal depolarization relieves the Mg2+ block on the N-methyl-D-

aspartate receptor, a glutamate receptor and ion channel protein located in nerve cells 8,73-76, 

allowing for an influx of Ca2+ and Na+. The increase in the intracellular concentration of Ca2+ has 

two primary effects. On the one hand, it activates several cytosolic enzymes, including xanthine 

dehydrogenase, nitric oxide synthase and phospholipase A2, which can generate ROS or other 

deleterious pathways, e.g., nitric oxide-mediated neurotoxicity 77,78, thereby promoting oxidative 

stress. On the other hand, because mitochondria are the main organelle sequestrating Ca2+ 79, 

during Ca2+ overload of the cytosol there is an accumulation of Ca2+ in the mitochondrial matrix 

that promotes Mitochondrial Permeability Transition (MPT) 79-83. MPT leads to a spectrum of 

processes that decrease the biosynthesis of ATP, promote the generation of ROS in mitochondria 

79, and release apoptogenic factors into the cytosol 75,83-85, which further exacerbate neuronal cell 

damage and stimulate apoptosis. 

1.4 Biosynthesis of 3-NPA 

1.4.1 Biosynthesis of 3-NPA in Fungi 

Studies on the biosynthesis of 3-NPA were first carried out in fungi by the incorporation 

of 14C-, 15N- and 18O-labeled substrates in growing cultures of Penicilllium atrovenetum followed 

by mass spectrometric and NMR analyses on 3-NPA and its derivatives. These studies 
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demonstrated that L-aspartate as well as metabolites associated with the citric acid cycle, e.g. 

acetate and pyruvate, could be precursors for 3-NPA 86-90. By administering L-[4-14C]-aspartate in 

growth media, 14C was incorporated into the C-1 position of 3-NPA. NMR analyses of 

biosynthesized 3-NPA when [2-13C,15N]-DL-aspartate was present in the fungal growth media 

established that the C-N bond of aspartate is preserved in the biosynthesis 89. These studies 

supported the notion that both the amino group and the carbon skeleton of L-aspartate are the direct 

precursors for 3-NPA biosynthesis in P. atrovenetum. Additionally,  cell-free extracts of P. 

atrovenetum contain a highly specific NADPH-dependent 3-nitropropanoate dehydrogenase that 

reduces 3-nitroacrylate to 3-NPA 88. Based on these results, Alston et al. proposed a mechanism 

for 3-NPA biosynthesis with a six-electron oxidation of an amino group to a nitro group and 

decarboxylation from the α-carbon atom of aspartate (Figure 1.3) 91. In this mechanism, 3-

nitroacylate is the final intermediate yielding to 3-NPA by an NADPH-dependent enzymatic 

reduction 91. However, further experiments using a combination of stable isotope methods 

conducted by Baxter et al. indicated a biosynthetic pathway for 3-NPA that involves a stepwise 

oxidation of L-aspartate to L-nitrosuccinate followed by the decarboxylation of the nitrosuccinate 

to 3-NPA (Figure 1.4) 39. Evidence in support of the proposed mechanism shown in Figure 88.4 

came from the incorporation of 15N from DL-diethyl-[15N]-nitrosuccinate to 3-NPA and the lack 

of 3-nitropropanoate dehydrogenase activity during the first 82 h of penicillium growth, while 3-

NPA could be detected from 48 h onwards 39. 
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Figure 1.3 Proposed biosynthetic pathway for 3-NPA from aspartate in the fungus 

P.atrovenetum. 

 

 

 

Figure 1.4 Alternative proposed biosynthetic pathway for 3-NPA from aspartate in the 

fungus P. atrovenetum. 

 

1.4.2 Biosynthesis of 3-NPA in Plants 

Studies on the biosynthesis of 3-NPA with cuttings and intact plants of Indigofera spicata 

suggested that higher plants may use different pathways than those used by fungi 92. Indeed, no 

radioisotope incorporation was observed in 3-NPA when radiolabeled aspartate or any of the citric 

acid cycle intermediates were used in feeding experiments 92. Based on experiments indicating 

increased production of 3-NPA in the presence of [2-14C]-malonate or the putative biosynthetic 
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intermediate [2-14C]-malonyl monohydroxamate were used both in root and stem feeding 

experiments 92. 14C was incorporated into  both the C-2 and C-3 positions of the 3-NPA product 

92, but to a low extent of ≤0.1% 92. Thus, it was concluded that malonate and malonyl 

monohydroxamate do not serve as the direct precursors for the biosynthesis of 3-NPA in plants. 

An alternative direct biosynthetic pathway to produce 3-NPA from valine that includes β-alanine 

as an intermediate has been proposed and it awaits experimental validation in plants 92,93. 

1.4.3 Biosynthesis of 3-NPA in Insects 

Research on the biosynthesis of 3-NPA and its derivatives in leaf beetles was first carried 

out with the species Chrysomela tremulae 37,94. With the aim to understand the 3-NPA biosynthetic 

routes, C. tremulae adults were fed with leaves covered with [4-14C]-aspartate for a week, followed 

by radioactivity analysis on 3-isoxazolin-5-one glucoside and the 3-NPA ester of 3-isoxazolin-5-

one glucoside (Figure 88.2), which are the major components found in the adult defensive 

secretion of the beetle 37.  Radioactivity was detected in both glucosides, but not in the glucose 

moiety separated after acidic hydrolysis of 3-isoxazolin-5-one glucoside and the 3-NPA ester of 

3-isoxazolin-5-one glucoside 37. Hence, it was concluded that aspartate serves as a joint precursor 

for both 3-NPA and the 3-isoxazolin-5-one moiety 37. However, later feeding experiments carried 

out on Phaedon cochleariae larvae reported random incorporation of fragments of [4-13C,15N]-

aspartate into the 3-NPA ester of 3-isoxazolin-5-one glucoside by mass spectrometry 95. Since β-

alanine had been previously proposed to be involved in 3-NPA biosynthesis in plants and it can be 

sequestered from valine via propanoate as an intermediate, P. cochleariae larvae were fed with [3-

13C,15N]-β-alanine, [5-13C,15N]-valine or [3-13C]-propanoate. In all cases, the incorporation of an 

intact carbon skeleton of the administered precursors was established by mass spectrometry, with 

aspartate displaying a low incorporation of ~0.02% and β-alanine and propanoate of ~2% and 
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~17%, respectively 95. These data support the notion that the biosynthesis of 3-NPA in leaf beetles 

may occur through β-alanine or valine, through its conversion to propanoate and β-alanine, but not 

from aspartate. 

1.5 Detoxification of 3-NPA 

Due to the widespread distribution of 3-NPA, different protective and nutritional 

mechanisms have been evolved in various organisms that are exposed to the toxin. Enzymes that 

catalyze the oxidation of 3-NPA or its conjugate base P3N have been isolated and studied from 

fungi, plants, and bacteria 21,22,42,63,96-98. In all cases, a single flavin mononucleotide (FMN) is non-

covalently bound to each protein subunit, irrespective of the oligomerization state of the enzyme. 

Biochemical characterization of nitronate monooxygenase (NMO) from the fungi 

Neurospora crassa and Cyberlindnera saturnus has been carried out 64,97,99,100. These NMOs, 

which were previously classified until 2010 by the IUBMB as 2-nitropropane dioxygenase, have 

large kcat (450-770 s-1) and kcat/Km (~106 M-1s-1) values with P3N as a substrate at pH 7.4, 

atmospheric oxygen and 30oC, consistent with a detoxifying role for the fungal enzyme 42. In 

agreement with this conclusion, the Km value for P3N (0.3 mM) in both enzymes lies in the 

physiological range of P3N concentrations found in fungi and plants 23. Indeed, the 3-NPA 

concentration in Arthrinium growing in sugarcane juice is 15 mM, corresponding to a P3N 

concentration of 0.3 mM at pH 7.4 61. An enzyme that oxidizes 3-NPA was purified from P. 

atrovenetum, for which a stoichiometry of reaction was established as: 0.8 malonate semialdehyde, 

0.4 nitrite and 0.7 nitrate produced for each 1.0 P3N and 0.9 oxygen consumed 21. The nonintegral 

stoichiometry of the reaction, along with the known reactivity of superoxide with nitronates 67, is 

consistent that the oxidation of P3N in P. atrovenetum primarily occurring through a non-

enzymatic free-radical chain reaction that is initiated by the formation and release of superoxide 
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in the active site of the enzyme reacting with P3N. A nonenzymatic oxidation of P3N has not been 

observed with the N. crassa and C. saturnus NMOs, for which no release of superoxide was 

established 63,64, consistent with the oxidation reactions catalyzed occurring exclusively in the 

active site of these enzymes.  

An enzymatic oxidation of 3-NPA was reported in the leguminous plant H. comosa 98. The 

enzyme was named 3-NPA oxidase due to the detection of hydrogen peroxide and the preference 

for 3-NPA as a substrate (≥30 fold) with respect to its conjugate base P3N 98. Nitrate and nitrite 

were produced via a combination of enzymatic and non-enzymatic free-radical chain oxidation of 

the organic substrate as indicated by a nonintegral stoichiometry of hydrogen peroxide produced 

and 3-NPA consumed 98. 

The NMO that is best characterized to date in its ability to oxidize P3N is the enzyme 

purified from Pseudomonas aeruginosa PAO1, for which kinetic, structural, and bioinformatics 

information is available. The enzyme is active on P3N with kcat and kcat/Km values of 1,300 s-1 and 

107 M-1s-1, respectively, but cannot oxidize 3-NPA. The X-ray crystallographic structure of the 

enzyme to a resolution of 1.44 Å revealed a TIM barrel-fold and an FMN cofactor in the active 

site of the enzyme 62. Based on the structural, biochemical and bioinformatics analysis of the 

bacterial NMO, four motifs in common with the biochemically characterized NMO from C. 

saturnus were identified, defining Class I NMO 62,63. A P3N monooxygenase (P3NMO) belonging 

to Class I NMO has also been isolated from P. aeruginosa strain JS189 96. By carrying out an 

oxygen-dependent oxidation of P3N into malonic semialdehyde, nitrate and nitrite, P3NMO allows 

the bacteria to exploit 3-NPA and P3N as a sole source of carbon and nitrogen 96. The four motifs 

of Class I NMO are conserved in 475 sequences of putative NMOs belonging primarily to bacteria 

and fungi, with only 2 from animals 62. The widespread presence of NMO in bacteria and fungi 
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suggests the importance of the enzyme for the detoxification of P3N and possibly other 

physiological roles, such as the use of the toxin as a carbon and nitrogen source. An involvement 

of rumen bacteria as a protective mechanism for detoxification of P3N in cattle has been proposed 

based on the findings that 10 strains out 33 tested of rumen bacteria showed the ability to degrade 

3-NPA 101. The detoxification of 3-NPA by rumen bacteria is proposed to occur through the 

oxidation of 3-NPA to nitrite, which is then reduced to ammonia 101.  

In insects that feed on leguminous plants, e.g. Melanoplus species and Spodoptera 

littoralis, it was shown that the detoxification of 3-NPA occurs through the formation of conjugates 

of 3-NPA with glycine, alanine, threonine, and serine 102. The amino acid conjugates are then 

excreted via malphigian tubules of the insects 102. In the case of leaf beetles, the mechanism for 

preventing self-poisoning by 3-NPA involves the formation of the 3-NPA ester of 3-isoxazolin-5-

one glucoside (Figure 1.2) 37. 

1.6 Specific Goals 

This dissertation aims to characterize the spectroscopic and mechanistic properties of 

flavin-dependent Class I nitronate monooxygenase (NMO, E.C. 1.13.12.16) and choline oxidase 

(E.C.1.1.3.17) to gain insight on the chemical versatility of flavin.  

Class I NMO catalyzes the oxidation of nitronates with molecular oxygen. The previous 

crystallographic study on PaNMO establishes four conserved motifs and conserved residues in the 

active site of Class I NMO, i.e., Y109, Y299, Y303, and K307, with Y254 being conserved in ~ 

70% of the amino acid sequences. It is speculated that one or more of these residues participated 

in binding the carboxylate group of P3N as a hydrogen bond donor. To elucidate the role of these 

residues, the individual replacement of the conserved active site tyrosine residue(s) with a 

phenylalanine or the lysine residue with methionine were prepared and purified. The steady-state 
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kinetics on the variant enzymes, and pH effects on the steady-state kinetic parameters and the UV-

visible absorption spectrum of the wild-type enzyme were determined to establish which of the 

conserved amino acid residues in the active site of Class I NMO is important for binding the P3N 

substrate. The details will be described in Chapter 2 and 3.  

A recent study on PaNMO showed that the anaerobic mixing of the enzyme-bound flavin 

with P3N yielded anionic flavin semiquinone at pH 7.5. The small absorbance between 550 nm 

and 700 nm suggested that there might be small amounts of FMNH• as well. The stabilization of 

both neutral and anionic flavin semiquinones in PaNMO was investigated by anaerobic reduction 

of PaNMO with its substrate P3N using UV-visible absorption spectroscopy. The fluorescence 

emission and excitation properties of the enzyme-bound flavin semiquinone in its neutral and 

anionic states were determined and interpreted with the aid of time-dependent density functional 

theory (TD-DFT) calculations. The details will be discussed in Chapter 4. 

Choline oxidase catalyzes two-step, flavin-dependent oxidation of choline to glycine 

betaine, with betaine aldehyde as an intermediate. In the crystallographic structure of choline 

oxidase, S101 and H466 were located ~ 4 Å from the flavin C4a atom on flexible peptide loops, 

which is similar to light-responsive LOV domain where a flavin C4a adduct is formed with the 

proximal cysteine upon excitation. Choline oxidase thus serves in this study as a model system to 

study the charge or photo-induced flavin C4a adduct. A reversible C4a-S-cysteinyl-flavin linkage 

in choline oxidase was engineered by mutagenesis, rapid kinetics, and mechanistic probes such as 

pH, kinetic isotope effects and proton inventories. A transient C4a-N-histidyl-flavin linkage was 

observed with the aid of fluorescence excitation spectroscopy. The mechanistic rationale will be 

presented in Chapter 5 and 6. 
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2 CHAPTER 2: CRYSTAL STRUCTURE OF YEAST NITRONATE 

MONOOXYGENASE FROM CYBERLINDNERA SATURNUS 

(This chapter has been published verbatim in Agniswamy, J., Reis, R.A.G., Wang, Y.F., 

Smitherman, C., Su, D., Weber, I., and Gadda, G. (2018) Proteins 86: 599-605.The author’s 

contribution involves determination of steady-state kinetic parameters of NMOs in the presence of 

PEG and structural comparison of two NMOs.) 

 

2.1 Abstract 

Nitronate monooxygenase (NMO) is an FMN-dependent enzyme that oxidizes the 

neurotoxin propionate 3-nitronate (P3N) and represents the best-known system for P3N 

detoxification in different organisms.  The crystal structure of the first eukaryotic Class I NMO 

from Cyberlindnera saturnus (CsNMO) has been solved at 1.65 Å resolution and refined to an R-

factor of 14.0%. The three-dimensional structures of yeast CsNMO and bacterial PaNMO are 

highly conserved with the exception of three additional loops on the surface in the CsNMO enzyme 

and differences in four active sites residues. A PEG molecule was identified in the structure and 

formed extensive interactions with CsNMO, suggesting a specific binding site; however, 8% PEG 

showed no significant effect on the enzyme activity. This new crystal structure of a eukaryotic 

NMO provides insight into the function of this class of enzymes.  

2.2 Introduction  

Propionate 3-nitronate (P3N) is a toxic nitro acid compound commonly found in ester 

glucosides in legumes1, fungi2-6, and leaf beetles7-9. Upon hydrolysis by glucosidases P3N is 

released from the esters and exists in a pH-dependent equilibrium with 3-nitropropionic acid (3-

NPA)2, 10. The toxin acts as a potent irreversible inhibitor of mitochondrial succinate 

dehydrogenase11-13. Inhibition of succinate dehydrogenase, which is a key enzyme of both the 

Krebs cycle and the oxidative phosphorylation pathway, compromises the energetic metabolism 
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in cells and leads to a variety of neurological disorders in livestock and humans and even death at 

sufficiently high concentrations14. Based on the observation that P3N is found in plant shoots and 

leaves but not in roots, the compound has been proposed to act as a defensive mechanism against 

herbivores1. In small amounts (i.e., 20 mg/kg), P3N is used in laboratories to poison mitochondria 

in animal models, such as rats15, macaques and baboons16, to induce symptoms that mimic 

Huntington’s disease for the development and testing of potential treatments11-15, 17-20.  

Several P3N-producing bacteria, fungi, and plants, have developed enzymes that 

metabolize P3N as a self-protection mechanism14. The most well-known system for P3N 

detoxification is represented by nitronate monooxygenases (NMO, E.C. 1.13.12.16). NMOs are 

FMN-dependent enzymes that quickly and efficiently catalyze the oxidation of P3N, with kcat 

values ≥800 s-1 and kcat/Km values ≥106 M-1s-1 at atmospheric oxygen and pH 7.514, 21-23. NMOs also 

oxidize alkyl nitronates of various lengths, although with lower catalytic efficiency as compared 

to P3N20-23. Two classes of NMOs were recently established based on a bioinformatics, 

mechanistic, and structural study on the NMO from the prokaryote Pseudomonas aeruginosa 

(PaNMO)22. Class I NMOs, are defined by the presence of four consensus structural motifs and 

contain approximately 450 NMO gene products from primarily bacteria and fungi, and two from 

animals22. Enzymes in Class I oxidize exclusively P3N and its nitronate analogues, but not 3-NPA 

and the nitroalkane analogues22. Class II NMOs, a smaller group consisting of ten fungal gene 

products22, contain only parts of the motifs identified in Class I NMO. Class II oxidizes both 

nitronates and nitroalkanes24, although the latter with lower efficiency. Biochemical studies on 

Class II NMO are limited to the Neurospora crassa enzyme using nitronates and nitroalkane 

analogues21, 22. In regards to Class I NMOs, mechanistic studies with P3N as a substrate are 

available for the eukaryotic CsNMO from the yeast Cyberlindnera saturnus. The enzyme 
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mechanism has been investigated using steady-state kinetics, solvent viscosity effects, pH effects, 

rapid reaction kinetics, and time-resolved absorption spectroscopy23.  The enzymatic mechanism 

is initiated by a single electron transfer from P3N to the enzyme-bound flavin, yielding an enzyme-

bound flavosemiquinone, which is then oxidized by dioxygen to form superoxide. The superoxide 

and P3N radical react in the active site of the enzyme to form 3-peroxy-3-nitro-propanoate, which 

subsequently decays to products. Alternatively, the peroxynitro acid can arise from the reaction of 

radical P3N with the superoxide formed in the reduction of dioxygen by the flavosemiquinone23. 

While there is no three-dimensional structure currently available for the eukaryotic CsNMO, a 

structure of the prokaryotic Class I PaNMO to a resolution of 1.44 Å has been recently solved22. 

However, due to an amino acid sequence identity of 34% shared by the CsNMO and PaNMO 

enzymes, correlations of the available structural and mechanistic data are limited and should be 

exerted with caution because the two enzymes may have significant structural differences.    

In the present study, the crystal structure of CsNMO was solved to 1.65 Å resolution, 

demonstrating an overall fold similar to that of bacterial PaNMO, conservation of most of the 

active site residues and some differences in surface loops. The structure of CsNMO revealed a 

PEG molecule neatly bound on the surface of the enzyme. The new structural information for the 

fungal NMO can be combined with the detailed enzymatic characterization to build a full picture 

at a molecular level of NMO function. 

2.3 Materials and Methods 

Materials. 3-Nitropropionic acid was from Sigma-Aldrich (St. Louis, MO). Similar to 

primary and secondary nitroalkanes, the α-carbon atom of 3-nitropropionic acid has a pKa value of 

9.1 and undergoes slow deprotonation with a strong base2. P3N, the conjugate base of 3-

nitropropionic acid, was thus prepared in water by incubating the nitro compound with a 2.2 molar 
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excess of KOH for 24 h at 4 oC, as previously described23. Addition of KOH was slow to avoid 

sample boiling and possible decomposition of P3N, which was then used within a week. 

Crystallography trays, cover slips, and supplies used for the crystallization of the enzyme were 

purchased from Hampton Research (Aliso Viejo, CA). All other reagents were of the highest purity 

commercially available.  

Recombinant Protein Production. Recombinant CsNMO from C. saturnus was obtained 

through expression and purification methods previously described25. 

Crystallization. The recombinant CsNMO was dialyzed against 50 mM potassium 

pyrophosphate, pH 7.4, and concentrated to 5 mg mL-1. The enzyme concentration was estimated 

based on the molar extinction coefficient of the enzyme-bound FMN25. Crystals were grown at 

room temperature in hanging drops using 2:2 µL protein to reservoir, equilibrated against 500 µL 

reservoir solution. Yellow crystals were obtained in presence of 21% (w/v) PEG 3350, 70 mM 

sodium citrate at pH 4.0 and 100 mM ammonium acetate within 5 days.  

Data Collection and Processing. The crystals were cryo-cooled in the mother liquor with 

25% (v/v) glycerol. X-ray diffraction data were collected at 100 K on beamline X4A of the 

National Synchrotron Light Source at Brookhaven National Laboratory. The data were collected 

for 262° with an oscillation angle of 1° per frame. The X-ray data were integrated and scaled with 

HKL200026. The crystal was solved in space group P21 with unit cell dimensions of a = 44.82, b 

= 68.43, c = 58.37 Å. The Matthews coefficient calculated with the CCP4i suite27 suggested one 

monomer in the asymmetric unit.  

Structure Determination. The structure of yeast CsNMO was solved by molecular 

replacement employing PHASER28, 29 and using the coordinates of bacterial PaNMO (PDB ID: 

4Q4K)22, which has a sequence identity of 34% with CsNMO, as the initial search model. 
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Successful structure solution of CsNMO by molecular replacement was obtained by pruning the 

six N-terminal residues and the five C-terminal residues of PaNMO, and substituting serine for 

the dissimilar amino acids in the bacterial PaNMO sequence compared with the CsNMO sequence. 

The CsNMO structure model was constructed from the molecular replacement phases using the 

Arp/wArp30, 31 program, which fitted 90% of the sequence into the electron density map. The 

model was subjected to several rounds of refinement in REFMAC32 with manual map inspection 

and model building performed in COOT33. Solvent molecules were inserted at stereochemically 

reasonable positions in peaks of 2Fo-Fc and Fo-Fc maps contoured at 1 and 3 sigma (σ) levels, 

respectively. The final Rwork and Rfree values were 14.0 % and 17.9 % for the refined structure. All 

structural figures were produced using PyMol (www.pymol.org). Refined atomic coordinates and 

experimental structure factors have been deposited in the Protein Data Bank (PDB entry 6BKA). 

Effect of PEG 3350 on the Apparent Steady-state Kinetic Parameters of Yeast CsNMO 

with P3N. Enzymatic assays were carried out using a computer-interfaced Oxy-32 oxygen-

monitoring system (Hansatech Instruments, Inc., Norfolk, England) by monitoring the initial rates 

of oxygen consumption. Apparent steady-state kinetic parameters of CsNMO with P3N as 

substrate (0.03-0.80 mM) were measured in the absence of PEG 3350 and in presence of 8% PEG 

3350 in 50 mM sodium phosphate, pH 7.5 and 30 oC, at atmospheric oxygen (i.e., 0.23 mM O2). 

Solution of PEG 3350 was prepared in water just prior to use. Initial rates of the reactions were 

calculated based on the concentration of enzyme-bound flavin using previously determined 

extinction coefficients: ɛ446nm = 13,100 M-1s-1 for CsNMO25. The enzyme was allowed to incubate 

in the oxygen electrode vessel with PEG 3350 for 30 s prior to the start of the enzymatic reaction 

by addition of P3N to the reaction mixture. Apparent steady-state kinetic data were fit with 

Sigmaplot (Systat. Sofware Inc. Richmond, CA, USA) software. 
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2.4 Results and Discussion 

Overall Structure of Yeast CsNMO. Yeast CsNMO was crystallized in the monoclinic 

space group P21 with one molecule per asymmetric unit. The structure was refined to 1.65 Å with 

an Rfactor of 14.0% and Rfree value of 17.9%. The data collection and refinement statistics are 

reported in Table 1. The overall structure of CsNMO contained an FMN-binding domain (residues 

1-79, 122-271 and 356-374), and a separate substrate-binding domain (residues 80-121 and 272-

355) (Figure 2.1A). An FMN was present in the FMN-binding domain of CsNMO (Figure 2.1A). 

The N- and C-termini of the enzyme are positioned on the same side of FMN binding domain and 

are separated by 20.7 Å. The FMN-binding domain adopted a TIM barrel-fold, while the substrate-

binding domain had 3 helices connected by loops (Figure 2.1A). The active site of CsNMO was 

located at a cleft formed by the FMN-binding domain and the substrate-binding domain. Residues 

M23, A24, N77, F79, Y119, H147, H197, Y321, Y325, and L348, line the active site surrounding 

the isoalloxazine ring of FMN (Figure 2.2). 
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Table 2.1 X-ray Diffraction Data Collection and Refinement Statistics 

 

Data Collection  

Wavelength (Å) 1.1 

Space group P21 

Unit cell parameters (Å, deg) a = 44.82, b = 68.43, c = 58.37,  = 106.3 

Number of molecules per asymmetric unit 1 

Resolution range (Å) 50.0 – 1.65 (1.71-1.65)a 

Total observations 198467 

Unique reflections 39464 

Completeness (%) 96.0 (72.6) 

<I/(I)> 18.3 (2.6) 

Rmerge (%) 7.8 (47.8) 

Wilson B-factor (Å2) 11 

Refinement  

Refinement resolution range 50 – 1.65 

Rcryst (%) 14.0 

Rfree (%) 17.9 

RMS deviations from ideality  

Bond lengths (Å) 0.021 

Angles (º) 2.1 

Number of atoms  

Protein 3100 

Water  273 

Average B-factor (Å2)  

Protein 18.3 

Water 25.9 

FMN 10.8 

Glycerol 31.7 

PEG 34.3 

Ramachandran analyses   

Outliers (%) 0 

Favored regions (%) 96 

Allowed regions (%) 4 
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Figure 2.1 Structure of yeast CsNMO (PDB ID 6BKA). (A) Cartoon representation of the 

overall structure. A central barrel composed of eight parallel β strands illustrated in pink is 

surrounded by eight α-helices illustrated in blue. Stick representation of the prosthetic FMN group 

and PEG, carbon atoms are colored in yellow and orange, respectively. (B) PEG 3350 binding site 

in CsNMO (PDB ID 6BKA). Residues interacting with PEG in the binding pocket of CsNMO. 

Carbon atoms are colored in orange for PEG and in yellow for residues of CsNMO, and the water 

molecules interacting with PEG are shown as red spheres. The 2Fo-Fc electron density map of PEG 

contoured at 1.3σ is shown in blue. 
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Figure 2.2 Close-up view of the FMN binding-site showing the residues around FMN. 

Protein side chains are displayed in sticks with carbon atoms colored in gray. 

 

FMN Binding Site and Active Site Interactions. The phosphate group of FMN in CsNMO 

was buried deep within the FMN-binding domain and formed hydrogen bonds with the main chain 

amide groups of G240, G261, and T262 (Figure 2.2). In addition, the phosphate group of FMN 

also formed a hydrogen bond with the side chain hydroxyl group of T262 (Figure 2.2). The ribityl 

group of the cofactor was held in place by hydrogen bonds between the Nɛ2 atom of Q190 and the 

O3’ atom of FMN and the Nɛ2 atom of Q259 and the O2’ atom of FMN. The si face of the 

isoalloxazine ring was exposed to the substrate-binding cavity, whereas the re face formed a van 

der Waals contact with the C atom of M23 (Figure 2.2). The isoalloxazine ring exhibited a 

butterfly bend of 169o along the C6-N5-C4 atoms. The N5 and O4 atoms of FMN had van der 

Waals contacts with the main chain amide group of A24 (Figure 2.2). H147 was located 3.9 Å 

from the N1 atom of the cofactor. The O2 and N3 atoms of FMN formed hydrogen bonds with the 



32 

 

side chain of N77, and the O4 atom participated in a hydrogen bond to the main chain amide of 

A24. L265 (5.3 Å) and H276 (7.7 Å) made the closest contacts with the C7 and C8 atoms of the 

isoalloxazine ring (Figure 2.2).  

PEG-binding Site and Effect of PEG 3350 on Apparent Steady-state Kinetics. An 

extended PEG molecule from the crystallization solution was observed lying between a surface 

loop composed of residues 67-73 and a crevice composed of two helixes in the FMN-binding 

domain of CsNMO (Figure 2.1B). The PEG molecule was separated by 21.6 Å from the FMN 

when measured at the closest distance, which was between the O1 atom of the PEG and the N5 

atom of the flavin. The PEG polymer bound to the enzyme was composed of 11 ethylene units 

(Figure 2.1B). Six of the eleven ethylene units formed a helical turn around a central water 

molecule held in place through hydrogen bonding with the side chain of D69 (Figure 2.1B). The 

conformation of the protein loop defining the PEG-binding site was anchored by an ion pair of 

R72 and D64 and hydrogen bonding between the guanidinium group of R72 and the carbonyl 

oxygen atom of L139. The PEG molecule also formed additional interactions with side chain atoms 

of T34, R37, and D69. The PEG curls around the side chain of R37 forming a hydrogen bond with 

the guanidinium head of R37, while the side chains of T34, D69 and backbone carbonyl oxygen 

of R37 contacted PEG via water-mediated hydrogen bonds. In addition, the PEG molecule formed 

several van der Waals contacts with E13, T34, R37, D69, E364 while L38, V67, and I73 provide 

hydrophobic patches conducive for interactions with aliphatic segments of the bound PEG. The 

PEG molecule was bound at the interface between four symmetry-related subunits of CsNMO, as 

shown in Figure 2.3. In spite of the extensive interactions of PEG with one subunit of CsNMO, it 

has only four van der Waals contacts with symmetry-related subunits of the enzyme, suggesting 

that PEG binding is unlikely to be an artifact of crystal packing contacts. The steady state kinetics 
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parameters of CsNMO with P3N as a substrate were measured in the presence and absence of 8 % 

PEG, and showed similar appkcat values of 610 ± 50 s-1 and 620 ± 10 s-1, and appKm values of 70 ± 

20 µM and 50 ± 10 µM s-1, respectively. Although PEG had no significant effect on enzyme 

catalysis, the observation of 12 ethylene units interacting with the enzyme suggest the presence of 

a putative binding site for an unknown molecule of similar structure. Polyethylene glycols used as 

precipitants during crystallization have been previously observed bound to substrate/ligand 

binding sites and allosteric sites of proteins.  In the recently solved crystal structure of muscarinic 

acetylcholine M4 receptor, PEG 300, which was used as a precipitant in concentrations above 1M, 

was observed bound at the allosteric site of the inactive-state receptor34.  In attempts to derive the 

crystal structure of human type 5 17-hydroxysteroid dehydrogenase in complex with its inhibitor 

EM1404, PEG 4000 used as precipitant was found bound at the substrate binding site35.  Similarly, 

in the crystal structure of odorant binding protein, AgamOBP1 from  A. gambiae mosquitoe, PEG 

8000 was found bound at a long binding site whose real ligand was unknown36.  Subsequent 

research led to the identification of indole as the ligand for AgamOBP137. 
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Figure 2.3 CsNMO crystal packing around PEG molecule. 

 

Comparison of CsNMO with PaNMO. Previous studies have shown that yeast CsNMO 

and bacterial PaNMO are similar in terms of kinetic properties. When the steady-state kinetic 

parameters are compared, no differences on the kcat/KP3N and kcat/Koxygen values are observed (Table 

2.2)22, 23. The kcat value for CsNMO is only 2-fold slower than the kcat value for PaNMO (Table 

2.2)22, 23. Regarding the structural comparison, CsNMO and PaNMO can be superposed with a 

root mean square difference (RMSD) of 1.6 Å on 339 equivalent Cα atoms using secondary 

structure matching38 in CCP4i27, 39. Hence, the overall structures of the two NMOs are similar 

despite an increase in length of 23 amino acids in CsNMO, i.e., 378 vs. 355 amino acids. The N-

terminus of CsNMO, specifically, had a three-residue extension in comparison to PaNMO. Five 

other additions of two or more residues in surface loops of the FMN-binding domain of CsNMO, 

with the largest insertions of 3 to 7 amino acids occurring in the loops formed by residues 67-73, 

124-131, and 224-234 (Figure 2.4). A PEG molecule is observed to be bound at one of these amino 

acids insertion sites in the FMN binding domain, the loop formed by residues 67-73. This loop 
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adopts a different conformation from the corresponding loop in PaNMO and moves out by ~4.8 

Å, facilitating the formation of the PEG binding groove (Figure 2.1B).  

 

Figure 2.4 Comparison of the three-dimensional structure of CsNMO (light-blue, PDB ID 

6BKA) with PaNMO (gray, PDB ID 4Q4K). The boxes show the three surface loops highlighted 

in red in CsNMO that differ in the two enzymes, with loop 67-73 of CsNMO being the site of PEG 

binding to the enzyme. The amino acid sequences of the three loops are shown in boxes. 
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Table 2.2  Comparison of Steady-State Kinetic Parameters of CsNMO and PaNMO 

 

Kinect Parameter CsNMOa PaNMOb 

kcat, s
-1 800 ± 100 1450 ± 10 

kcat /KP3N, M-1 s-1 (10 ± 1) x 106 (10.8 ± 0.2) x106 

         kcat /Koxygen, M
-1 s-1 (15 ± 5) x 106 (19.0 ± 0.3) x106 

aSteady-state parameters were measured at varying concentrations of 

both P3N and oxygen at 30°C. aNo pH effects on the steady-state kinetic 

parameters between pH 5.5 and 10.5 were observed (from ref 23). bThe assay 

was performed at pH 7.5 (from ref 22).  

  

Residues M23, A24, N77, F79, H147, H197, L265, H276, Y321, Y325, and L348, line the 

active site surrounding the isoalloxazine ring of FMN, corresponding to residues M20, L21, N69, 

F71, H133, H183, V243, Y254, Y299, Y303, and W325 in bacterial PaNMO22 (Figure 2.5). The 

interaction of the phosphate and ribityl groups of FMN in CsNMO is identical to that of PaNMO 

but striking differences are observed in the residues interacting with the isoalloxazine head of 

FMN. Although the FMN of CsNMO has a slight bent along the C6-N5-C4, the angle is less acute 

than seen for FMN in PaNMO, i.e., 169o and 156o, respectively.  
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Figure 2.5 Comparison of the active site residues of CsNMO (blue with first residue in 

label) and PaNMO (gray with second residue in label). The significant changes are labeled in red. 

 

As observed in PaNMO, the H147 in CsNMO is located 4 Å from the N1 atom of the 

cofactor. The presence of histidine in this location differs from about 20 other FMN-binding TIM 

barrel proteins where an arginine or lysine is present at 3 Å distance. The pH profile of the steady 

state kinetic parameters of CsNMO exhibits two orders of magnitude higher kcat/Km and kcat at 

acidic pH over alkaline pH with ethynitronate23 which suggests the presence of positive charge in 

the active site. H147 in the proximity of the N1 atom is envisaged to enhance the catalysis in 

CsNMO. The O2 and N3 atoms of FMN form hydrogen bonding interactions with the side chain 

of N77. The O4 atom of FMN is hydrogen bonded to the main chain amide of A24. The interactions 

of O2, N3 and O4 of FMN in CsNMO are identical to those observed for PaNMO. However, the 

O4 of FMN in CsNMO is more accessible than in CsNMO due to the proximity of A24 instead of 

leucine in PaNMO.  Except for A24, the interactions at the pyrimidine moiety of the isoalloxazine 

group of FMN in CsNMO are like those of PaNMO, however, major differences in interactions 

occur at the dimethylbenzene moiety of the flavin. The C7 atom of FMN in PaNMO has a C-
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H…O (3.1Å) interaction with the side chain hydroxyl group of Y254 in PaNMO. However, the 

corresponding residue in CsNMO is H276, which has no contact with the C7 atom of FMN with 

the shortest interatomic distance of 7.7 Å (Figure 2.5). The C7 atom of FMN also interacts with 

hydrophobic residues W325 and V23 in PaNMO, while these residues are replaced with the 

smaller residues L348 and A26 in CsNMO. These substitutions result in loss of interactions and 

increased space around the C7 atom of FMN CsNMO. 

2.5 Conclusion 

In the current study, the crystal structure of the first eukaryotic Class I NMO from the yeast 

C. saturnus has been resolved.  Despite extensive characterization of the catalytic behavior of 

CsNMO with P3N as a substrate, no three-dimensional structure was available previously for this 

enzyme. The new crystal structure gives information about the particularities of the eukaryotic 

enzyme that can be combined with the detailed enzymatic characterization available, allowing 

insights into functional difference between eukaryotic and prokaryotic NMOs. 

The three-dimensional structures of yeast CsNMO and bacterial PaNMO are highly 

conserved. Three additional surface loops and differences in several active site residues in the 

CsNMO enzyme may lead to functional differences between the eukaryotic and prokaryotic 

enzymes in Class I NMOs. A PEG molecule was identified on the surface of the yeast CsNMO 

enzyme structure, suggesting the presence of a putative binding site for an unknown molecule of 

similar structure. No effect was observed in terms of the steady state kinetics parameters of 

CsNMO in the presence of 8% of PEG. Further studies are needed to determine if this putative 

binding site is specific to yeast CsNMO or occurs in other eukaryotic NMOs. 
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3 CHAPTER 3: CHARACTERIZATION OF CONSERVED ACTIVE SITE RESIDUES 

IN CLASS I NITRONATE MONOOXYGENASE 

(This chapter has been published verbatim in Su, D., Aguillon, C., and Gadda, G. (2019) Archives 

and Biochemistry and Biophysics. The author’s contribution involves the preparation and 

purification of the variant enzymes, and determination of steady-state parameters.) 

 

3.1 Abstract 

Propionate 3-nitronate (P3N) is a natural toxin that irreversibly inhibits mitochondrial 

succinate dehydrogenase. P3N poisoning leads to a variety of neurological disorders and even 

death. Nitronate monooxygenase (NMO) from Pseudomonas aeruginosa PAO1 was the first NMO 

characterized in bacteria and serves as a paradigm for Class I NMO. Here, we hypothesized that 

the carboxylate group of P3N might form a hydrogen bond with one or more of the four tyrosine 

or a lysine residues that are conserved in the active site of the enzyme. In the wild-type enzyme, 

the kcat value was pH independent between pH 6.0 and 11.0, while the kcat/KP3N value decreased at 

high pH, suggesting that a protonated group with a pKa value of 9.5 is required for binding the 

anionic substrate. A pH titration of the UV-visible absorption spectrum of the enzyme showed an 

increased absorbance at 297 nm with increasing pH, defining a pKa value of 9.5 and a ∆297 nm of 

2.4 M-1cm-1, consistent with a tyrosine being important for substrate binding. The N3 atom of the 

oxidized flavin, instead, did not ionize likely because its pKa was perturbed by the ionization of a 

tyrosine in the active site of the enzyme. The Y109F, Y254F, Y299F, Y303F, and K307M, 

substitutions had small effects (i.e., <3.5-fold) on the steady-state kinetic parameters of the 

enzyme. With all mutated enzymes, the kcat/KP3N value was less than 2.5-fold different from the 

wild-type enzyme, suggesting that none of the residues is solely important for substrate binding.  

 



43 

 

3.2 Introduction  

Nitronate monooxygenase (NMO, E.C. 1.13.12.16) is an FMN-dependent enzyme that uses 

molecular oxygen to oxidize propionate 3-nitronate (P3N) 1-4.  P3N exists in equilibrium with 3-

nitropropionic acid (3-NPA), which in plants 5, 6, fungi 7, 8, and insects9, 10, is stored in a number of 

glycosidic esters and is released upon acidic hydrolysis 6, 11. P3N is a potent inhibitor of 

mitochondrial succinate dehydrogenase, resulting in ATP depletion and heightened oxidative 

stress 11, 12. Livestock and human intoxication by P3N manifest in foaming of the mouth, 

respiratory distress, neurological impairment, and often times death 1, 13, 14. Two classes of NMOs 

have been established using a combination of biochemical and structural analyses, and 

bioinformatics 2. Class I NMO includes ~500 enzymes from bacteria, fungi, and two animals, 

including a biochemically characterized prokaryotic NMO from Pseudomonas aeruginosa PAO1 

(PaNMO) and a eukaryotic NMO from Cyberlindnera saturnus (CsNMO) 2, 4. Class II NMO 

comprises ~10 enzymes 2, and includes a biochemically characterized eukaryotic NMO from 

Neurospora crassa (NcNMO) 1, 15, 16 . 

The enzymatic oxidation of P3N in Class I NMO begins with substrate binding (Step A in 

Scheme 3.1), followed by a single electron transfer from P3N to the enzyme-bound FMN (Step 

B), forming a P3N radical species and a flavin semiquinone 2, 3. PaNMO is the only enzyme for 

which thermodynamic stabilization of both neutral and anionic semiquinones with a ratio that is 

pH-dependent has been demonstrated to date 17. The P3N radical is proposed to react directly with 

molecular oxygen to generate a 3-peroxy-3-nitropropanoate radical (Step C). A subsequent 

electron transfer from the flavin semiquinone to the 3-peroxy-3-nitropropanoate radical gives 3-

peroxy-3-nitropropanoate (Step D), which would decay to the products. Alternatively, the flavin 

semiquinone would donate an electron to molecular oxygen yielding superoxide anion (Step E), 
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which subsequently reacts with P3N radical to form 3-peroxy-3-nitropropanoate (Step F). 

Consistent with the reductive and oxidative half-reactions involving single electron transfers, the 

steady-state kinetic parameters kcat/KP3N and kcat/KO2 are unusually large for a flavin-dependent 

monooxygenase, with values in the 106-107 M-1s-1 range 2, 3. Enzyme turnover at saturating 

concentrations of P3N and oxygen is also fast with a kcat value of 1,300 s-1 at pH 7.5 and 30 oC 2, 

3. The crystallographic structures of PaNMO and CsNMO have been solved previously to 

resolutions ≤1.65 Å 2, 4, demonstrating a collection of fully conserved residues in the active site of 

the prokaryotic and eukaryotic enzymes. While the available structures provide a platform to 

hypothesize roles for active site residues, no mutagenesis studies have been reported to establish 

which amino acid residues participate in substrate binding and catalysis. 

 

 

Scheme 3.1 Minimal reaction mechanism of PaNMO with P3N and O2 as substrates. 
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In the active site of Class I NMO there are three fully conserved tyrosine residues, Y109, 

Y299, and Y303 (numbering for PaNMO) (Figure 3.1). A fourth tyrosine is conserved in ~70% of 

the amino acid sequences, being replaced with a histidine in ~25% of the sequences and 

phenylalanine and tryptophan in the remaining cases. Another fully conserved residue in Class I 

NMO is K307, which is located at the entrance of the active site. It is conceivable that at least one 

or more of these residues participate as a hydrogen bond donor for binding the carboxylate group 

of the P3N substrate. Thus, we hypothesize that the individual replacement of a conserved active 

site tyrosine residue(s) with a phenylalanine or the lysine residue with methionine would 

negatively impact substrate binding. In this study, we have used mutagenesis, steady-state kinetics 

on the mutant enzymes, and pH effects on the steady-state kinetic parameters and the UV-visible 

absorption spectrum of the wild-type enzyme to establish which, if any, of the conserved amino 

acid residues in the active site of Class I NMO is important for binding the P3N substrate.  

 

 

 

Figure 3.1 Conserved active site residues in PaNMO (PDB entry 4Q4K). The carbon 

atoms of the FMN cofactor are shown as yellow sticks, whereas those of select protein residues 

are displayed as tan sticks; nitrogen and oxygen atoms are colored in blue and red, respectively.  
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3.3 Materials and Methods  

Site-Directed Mutagenesis and Purification of PaNMO Variants. The genes for nitronate 

monooxygenase variants Y109F, Y254F, Y299F, Y303F, and K307M were prepared using the 

pET20b(+) plasmid harboring the wild-type gene PA4202 as a template and mutagenic primers 

containing the corresponding site mutation. Upon mutagenesis, the mutant genes were sequenced 

at Macrogen Inc (Rockville, MD). Plasmids were purified using kits from Qiagen Inc. (Valencia, 

CA). The constructs containing the correct mutation were transformed by heat shock into 

Escherichia coli strain Rosetta(DE3)pLysS competent cells for protein expression 18. The 

expression and purification of NMO mutant enzymes Y109F, Y254F, Y299F, Y303F, and K307M, 

followed the protocol of wild-type enzyme as previously described 2. 

Enzymatic Assays. 3-Nitropropionic acid was from Sigma-Aldrich (St. Louis, MO). 

Similar to primary and secondary nitroalkanes, the α-carbon atom of 3-nitropropionic acid has a 

pKa value of 9.1 and undergoes slow deprotonation with a strong base 19. P3N, the conjugate base 

of 3-nitropropionic acid, was thus prepared in water by incubating the nitro compound with a 2.2 

molar excess of KOH for 24 h at 4 oC, as previously described 2, 3. Addition of KOH was slow to 

avoid sample boiling and possible decomposition of P3N, which was then used within a week 20. 

Enzymatic activity was measured by monitoring initial rates of oxygen consumption using 

a computer-interfaced Oxy-32 oxygen-monitoring system (Hansatech Instruments, Inc., Norfolk, 

England). The steady-state kinetic parameters for wild-type and variant enzymes were obtained by 

varying concentrations of P3N and oxygen. The experiment was carried out in the presence of 50 

mM potassium phosphate at pH 8.0 and 30 oC. The assay reaction mixture was equilibrated with 

an O2/N2 gas mixture to reach a desired oxygen concentration for at least 5 min before initiating 

the reaction with the addition of enzyme then P3N. Since the second-order rate constants for 
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protonation of the nitronates are in the range 15-75 M-1s-1 21, 22, enzymatic activity assays were 

initiated with the addition of the nitronate to the reaction mixture to ensure that a negligible amount 

of the neutral species of the nitronate was present during the time required to acquire initial rates 

of reaction (typically ~30 s). The pH dependence of the steady-state kinetic parameters of the wild-

type enzyme were determined in 50 mM sodium pyrophosphate in the pH range between 6.0 and 

11.0, with the exception of pH 8.0 where 50 mM sodium phosphate was used. 

UV-visible Absorption Spectroscopy. UV-visible absorption spectra were recorded using 

an Agilent Technologies model HP 8453 PC diode-array spectrophotometer (Santa Clara, CA). 

The extinction coefficients of the enzyme-bound FMN for the variant enzymes were determined 

by heat denaturation 23. The enzymes were passed through a PD-10 desalting column equilibrated 

with 50 mM potassium phosphate at pH 7.0, before heat denaturation at 100 °C for 30 or 40 min. 

The denatured protein was removed by centrifugation at 20,000  g, and the concentration of 

released FMN was measured using a molar extinction coefficient ε450 nm of 12,200 M-1 cm-1 for 

free FMN 24. The total protein concentration was determined by using the Bradford assay with 

bovine serum albumin as standard 25. For the pH dependence of the UV-visible absorption 

spectrum, the wild-type enzyme was passed through a PD-10 desalting column equilibrated with 

20 mM sodium phosphate and 20 mM sodium pyrophosphate, pH 7.8. A 2-mL enzyme solution 

with a concentration of enzyme-bound FMN of 10 μM was used to record the absorption spectra. 

Serial additions of 1-10 μL of 1 M NaOH were placed into the enzyme solution with a 10 μL 

syringe while stirring until the pH was incrementally changed to ~10.4. After each careful and 

slow addition of the base the enzyme solution was let equilibrate until no changes in the pH value 

and absorbance were observed, which typically required 2-3 min.  

 



48 

 

Data Analysis. Steady-state kinetic data were fit using KaleidaGraph software (Synergy 

Software, Reading, PA) or Enzfitter (Biosoft, Cambridge, UK) software. When initial rates of 

reaction were determined at varying concentrations of P3N and oxygen, the kinetic data were fit 

to Eqs 1 and 2. Eq 1 is for a sequential steady-state kinetic mechanism where vo represents the 

initial velocity, e is the concentration of the enzyme, kcat is the first-order macroscopic rate constant 

for enzyme turnover at saturating concentration of both P3N and oxygen, KP3N and KO2 are the 

Michaelis constants for P3N and oxygen, respectively, and Kia is a kinetic constant that accounts 

for the intersecting line pattern in the double reciprocal plot. Eq 2 represents a sequential steady-

state kinetic mechanism of the type described by Eq 1 when Kia is not significantly different from 

zero. Data for each variant enzyme were fit to both equations and the equation providing the best 

fit (R2) was used to determine the kinetic parameters.  

The pH dependence of the kcat/KP3N value for the wild-type enzyme was determined with 

Eq 3, which describes a pH profile with a limiting value (C) at low pH and a slope of -1 at high 

pH. 

The pH dependence of the UV-visible absorption spectrum of the wild-type enzyme was 

fit to Eq 4, which describes a curve with one pKa value and two limiting values at high pH (A) and 

low pH (B).  

νo

e
 = 

kcat [P3N][O2]

KP3N[O2] + KO2[P3N]+ [P3N][O2]+ KiaKO2
      (1) 

νo

e
 = 

kcat [P3N][O2]

KP3N[O2] + KO2[P3N]+ [P3N][O2]
      (2) 

log (kcat KP3N⁄ ) = log ( 
𝐶

1+10(𝑝𝐻−𝑝𝐾𝑎))     (3) 

𝑌 =  
𝐴+𝐵×10(𝑝𝐾𝑎−𝑝𝐻)

1+10(𝑝𝐾𝑎−𝑝𝐻)         (4) 
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3.4 Results  

Purification and Spectral Properties of PaNMO Variants. The mutated enzymes Y109F, 

Y254F, Y299F, Y303F, and K307M, were purified to high levels following the same protocol 

previously used for the wild-type enzyme 2. The UV-visible absorption spectra of the variant 

enzymes showed the characteristic features of oxidized flavoproteins with maximal absorbance at 

~370 nm and ~443 nm (Figure 3.2). All variant enzymes showed <10% differences in the 

absorption intensity at ~443 nm, and up to a 23%-increase in the absorption intensity at ~370 nm 

compared to the wild-type enzyme (Table 3.1). These changes agree well with an increase in the 

hydrophobicity of the protein environment surrounding the flavin introduced in the enzyme by the 

replacement of tyrosine and lysine with phenylalanine and methionine, respectively 26. In all cases 

the FMN/protein stoichiometry was low, but comparable with that of the wild-type enzyme 

purified from heterologous expression in E. coli (Table 3.1).    
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Figure 3.2 UV-visible absorption spectra of wild-type and mutated PaNMO. The UV-

visible absorption spectra were recorded in 50 mM potassium phosphate, pH 8.0. Enzymes: wild-

type (A), Y109F (B), Y254F (C), Y299F (D Y303F (E), and K307M (F). Insets show the difference 

absorption spectra of variant enzyme minus the wild-type enzyme. 
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Table 3.1 UV-Visible Absorption Maxima and FMN/Protein Stoichiometry of Wild-Type and 

Mutated PaNMO 

 

 WT Y109F Y254F Y299F Y303F K307M 

amax, nm 370, 443 371, 443 371, 443 372, 445 372, 446 370, 445 

a (mM-1cm-1) 8.4, 12.5 10, 12.7 10.3, 13.1 9.1, 11.4 9.7, 12.4 10, 12.5 

bFMN/protein 0.25 0.21 0.17 0.16 0.16 0.14 

a Spectra were recorded in 50 mM potassium phosphate, pH 8.0 and 15 oC. 

b Molar ratio. 

 

pH-Profiles of Steady-state Kinetic Parameters for Wild-type PaNMO. The pH 

dependence of the steady-state kinetic parameters of the wild-type enzyme was determined to 

establish possible ionizations of active site residues involved in substrate binding and the half-

reactions catalyzed by the enzyme. To this end, initial rates of reaction were determined with an 

oxygen electrode at varying concentrations of both P3N and oxygen in the pH range from 6.0 to 

11.0, as illustrated in the example of Figure 3.3A. At all pH values tested, the best fit of the steady-

state kinetic data was obtained with Eq 2, consistent with a value for the Kia constant being 

negligible when compared to the KP3N and KO2 values (Table 3.2). As shown in Figure 3.3B, the 

kcat value was independent of pH with an average value of 1200 (±200) s-1, consistent with no 

ionizable groups being involved in kinetic steps that determine the overall turnover of the enzyme 

saturated with both substrates. The kcat/KP3N had a maximal value of 4.5 × 106 (±1 × 106) M-1s-1 up 

to pH 9.0 and decreased at higher pH values yielding a pKa value of 9.5 (±0.1), consistent with the 

requirement for a group to be protonated in the reductive half-reaction catalyzed by the enzyme 

(Figure 3.3B). In contrast, the kcat/KO2 value was pH-independent with an average value of 4.4 × 

106 (±2.7 × 106) M-1s-1, consistent with absence of ionizable groups being relevant in the oxidative 
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half-reaction catalyzed by the enzyme (Figure 3.3B). The steady-state kinetic parameters of 

PaNMO in the pH-independent region were comparable with those previously reported for 

eukaryotic CsNMO, showing pH-independent values for kcat = 1,450 (±10) s-1, kcat/KP3N = 10.8 × 

106 (±0.2 × 106) M-1s-1, and kcat/KO2 = 19.0 × 106 (±0.3 × 106) M-1s-1 3.  

 

Table 3.2 Effects of pH on Steady-State Kinetic Parameters of Wild-Type PaNMO 

pH kcat/KP3N, M-1s-1 kcat/KO2, M-1s-1 kcat, s-1 KP3N, mM KO2, mM 

6.0 3.7 (±0.5) × 106 4.2 (±0.6) × 106 1500 (±20) 0.41 (±0.01) 0.36 (±0.01) 

7.0 4.2 (±0.3) × 106 5.2 (±0.6) × 106 1300 (±50) 0.31 (±0.02) 0.25 (±0.02) 

8.0 5.7 (±0.5) × 106 10.0 (±1.2) × 106 1200 (±100) 0.21 (±0.01) 0.12 (±0.01) 

9.0 3.0 (±0.4) × 106 3.0 (±0.4) × 106 1100 (±100) 0.37 (±0.04) 0.37 (±0.04) 

10.0 9.9 (±0.1) × 105 4.1 (±0.2) × 106 820 (±100) 0.83 (±0.01) 0.20 (±0.01) 

10.5 4.3 (±1.9) × 105 1.7 (±0.9) × 106 1300 (±400) 3.0 (±1.0) 0.77 (±0.36) 

11.0 1.2 (±0.1) × 105 2.8 (±0.1) × 106 1200 (±20) 9.7 (±0.4) 0.43 (±0.02) 

 

 

Figure 3.3 Effect of pH on the steady-state kinetic parameters of wild-type PaNMO. (A) 

Initial rates of reaction with varying [P3N] and [oxygen] determined in 50 mM potassium 

phosphate, pH 8.0 and 30 °C. [Oxygen] were 28 ( ), 50 ( ), 88 ( ), 145 ( ), and 241 ( ) M. (B) 

pH-Profiles of the kcat ( ), kcat / KP3N (▲), and kcat / KO2 (▽) values. Data for the kcat/KP3N value 

were fit Eq 3. 

 

pH Effects on the UV-Visible Absorption Spectrum of Wild-Type PaNMO. The N3 atom 

of flavin in the oxidized state or the side chain of one of the active site tyrosine residues could be 
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responsible for the pKa of 9.5 seen in the pH-profile of the kcat/KP3N value. In either case the active 

site would acquire a negative charge that would hinder binding of the anionic substrate P3N, 

resulting in a decrease of the kcat/KP3N value. Both ionizations of flavin and tyrosine are associated 

with large spectral changes in the UV-visible absorption spectrum, with deprotonation of flavin 

yielding changes at ~490 nm 27, 28 and tyrosine at ~300 nm 29, 30. Thus, the determination of the pH 

effects on the UV-visible absorption spectrum of wild-type PaNMO is an effective tool to establish 

the nature of the group responsible for the pH effect on the observed kcat/KP3N value. As shown in 

Figure 3.4A, large spectral changes were seen in the near UV-region of the electromagnetic 

spectrum of the enzyme when the pH was incrementally raised from 7.8 to 10.4, whereas the 

visible region of the spectrum was not affected. The maximal spectral changes were centered at 

297 nm as seen when the UV-visible absorption spectrum at pH 7.8 was used as a reference and 

the difference spectra were computed (Figure 3.4B). A plot of the ∆297 nm versus pH yielded a 

maximal spectral change ∆297 nm of 2.4 (±0.1) M-1cm-1, consistent with deprotonation of a tyrosine 

residue 29. A pKa value of 9.5 (±0.1) could be determined, in perfect agreement with the pKa value 

determined kinetically on the kcat/KP3N value.  
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Figure 3.4 Effect of pH on the UV-visible absorption spectrum of wild-type PaNMO (A) 

Enzyme in the range from pH 7.8 (blue) to pH 10.4 (red). (B) Difference UV-visible absorption 

spectra between the species seen at higher pH values minus the species at pH 7.8. Inset: plot of the 

∆ 297 nm (▽) and ∆ 487 nm (▲) as a function of the pH; the curves are the fit of the data to Eq 4. 

The extinction coefficients for the protein absorption band at ≤320 nm were normalized with 

respect to the flavin absorption bands at ≥320 nm based on the experimentally determined 

FMN/enzyme stoichiometry of 0.25. 

 

Steady-state Kinetic Parameters of PaNMO Variant Enzymes at pH 8.0. To characterize 

the effect of each mutation on substrate binding and catalysis during the oxidation of P3N 

catalyzed by PaNMO, the steady-state kinetic parameters of the variant enzymes were measured 

and compared to the wild-type enzyme. To avoid artifactual conclusions stemming from pH 

effects, pH 8.0 was chosen because the kinetic parameters of the wild-type enzyme determined in 

this study were pH-independent (Figure 3.3B). As for the case of the wild-type enzyme, the best 

fit of the kinetic data for the Y254F, Y303F, and K307M enzymes was obtained with Eq 2. Small, 

but not negligible, Kia values were instead determined with the Y109F and Y299F enzymes (Table 

3.3). With all variant enzymes, the kcat values differed from the wild-type PaNMO by less than 

1.5-fold, the kcat/KP3N values by less than 2.5-fold, and the kcat/KO2 values by less than 3-fold. 

 



55 

 

Table 3.3 Steady-State Kinetic Parameters of Wild-Type and Mutated PaNMO at pH 8.0 
enzyme kcat/KP3N, M-1s-1 kcat/KO2, M-1s-1 kcat, s-1 KP3N, mM KO2, mM Kia, mM 

WT 5.7 (±0.5) × 106 10 (±1) × 106 1200 (±100) 0.21 (±0.01) 0.12 (±0.01) - 

Y109F 14.0 (±1.0) × 106 14 (±1) × 106 1400 (±60) 0.10 (±0.01) 0.10 (±0.01) 0.02 (±0.01) 

Y299F 8.6 (±0.6) × 106 32 (±8) × 106 1300 (±20) 0.15 (±0.01) 0.04 (±0.01) 0.10 (±0.02) 

Y303F 8.8 (±0.8) × 106 14 (±2) × 106 970 (±10) 0.11 (±0.01) 0.07 (±0.01) - 

Y254F 6.4 (±0.4) × 106 26 (±6) × 106 1020 (±10) 0.16 (±0.01) 0.04 (±0.01) - 

K307M 2.4 (±0.3) × 106 13(±2) × 106 1900 (±100) 0.8 (±0.08) 0.15 (±0.02) - 

 

3.5 Discussion  

The active site of PaNMO contains a lysine and four tyrosine residues that are fully or 

highly conserved among ~500 sequences belonging to Class I NMO, suggesting that one or more 

of these residues may be important for substrate binding or catalysis. The mutagenesis and kinetic 

study presented here provides evidence demonstrating that the substrate can bind to the active site 

only when the side chains of the tyrosine residues are in the protonated rather than anionic state, 

but none of the conserved residues is solely essential for substrate binding. Furthermore, the 

reductive and oxidative half-reactions catalyzed by the enzyme are not affected by the individual 

substitution of the conserved tyrosine residues with phenylalanine or lysine with methionine, for 

which evidence is provided below. 

The side chains of the tyrosine residues in the active site of PaNMO must be protonated 

for binding of the negatively charged P3N substrate. Evidence for this conclusion comes from the 

pH-profiles of the steady-state kinetic parameters and the UV-visible absorption spectrum of the 

wild-type enzyme. The group with a pKa value of 9.5 seen in the pH-profile of the kcat/KP3N value 

must participate in substrate binding because the pH-profile of the kcat value did not show 

ionization of any group between pH 6.0 and 11.0. This conclusion stems from the fact that while 

both kinetic parameters report on the kinetic step of flavin reduction from P3N, the kcat/KP3N value 

also includes the reversible step of substrate binding yielding a Michaelis complex competent for 
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catalysis 31.  The participation of a tyrosine residue as being the group responsible for the pKa of 

9.5 comes from the pH-profile of the UV-visible absorption spectrum of the enzyme, showing an 

increase in absorbance in the 297 nm region of the electromagnetic spectrum that is indicative of 

the presence of tyrosinate at high pH values. The ∆297 nm value of 2.4 M-1cm-1 seen in PaNMO is 

consistent with deprotonation of a single tyrosine residue, as previously established for tyrosine in 

solution with a ∆295 nm value of 2.8 mM-1cm-1 and in the active site of a ketosteroid isomerase 

D40N mutant with a ∆295 nm value of 2.6 mM-1cm-1 29. We have made no attempts to determine 

which tyrosine residue is responsible for the pH effects seen in PaNMO because in the confined 

space of the enzyme active site any of the four tyrosine residues would deprotonate irrespective of 

which single tyrosine to phenylalanine mutation would be tested. To our knowledge this is the first 

instance in which deprotonation of an active site tyrosine residue rather than the N3 atom of the 

oxidized flavin has been reported in a flavin-dependent enzyme. Many flavin-dependent enzymes 

have one or more tyrosine residues in the active site 32-37. Because the absorption changes in the 

near-UV region of the electromagnetic spectrum attributable to tyrosine ionization are small with 

reference to the strong protein absorbance and the focus is typically on the visible region associated 

with the flavin, tyrosine ionizations may have been overlooked in previous studies. 

The reductive half-reaction in which the enzyme-bound FMN is reduced to the 

semiquinone state through a single electron transfer from the P3N substrate is not affected by the 

individual replacement of any of the tyrosine residues with phenylalanine or the lysine with 

methionine. Evidence to support this conclusion comes from the comparison of the kcat/KP3N values 

determined with P3N and oxygen as substrates for the wild-type and the mutant enzymes at pH 

8.0. With the Y254F, Y299F, Y303F, and K307M, the kcat/KP3N value was ≤2.5-fold than in the 

wild-type enzyme. In contrast, replacement of Y109 with phenylalanine yielded a 2.5-fold increase 
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in the kcat/KP3N value. When one considers the energetics associated with the changes in the 

kcat/KP3N value, the mutant enzymes differ from the wild-type by ~0.1 kJ/mol or less, consistent 

with negligible contributions of the side chains of the lysine and tyrosine residues towards the 

capture of P3N into an enzyme-substrate complex the proceeds to catalysis. These data, in turn, 

indicate that none of the conserved lysine or tyrosine residues in the active site of the enzyme are 

essential for either substrate binding or the electron transfer reaction yielding the reduction of the 

flavin by P3N.  

The oxidative half-reaction in which the enzyme-bound FMN is oxidized is not affected 

by the individual replacement of any of the tyrosine residues with phenylalanine or the lysine with 

methionine. This conclusion stems from the comparison of the kcat/KO2 values determined with 

P3N and oxygen as substrates for the wild-type and the mutant enzymes at pH 8.0. With all mutant 

enzymes the kcat/KO2 value is between 1.3- and 3.2-fold larger than in the wild-type enzyme, with 

values between 1.4 × 107 M-1s-1 and 3.2 × 107 M-1s-1. As for the case of the reductive half-reaction, 

the corresponding energetic contribution associated with the individual replacement of lysine with 

methionine or tyrosine with phenylalanine in the active site of the enzyme is negligible, with at 

the most the electron transfer that results in flavin oxidation being favored by a mere 0.2 kJ/mol 

in the mutant enzymes as compared to wild-type PaNMO. 

3.5 Conclusion 

In summary, the results presented in this study demonstrate that the tyrosine residues in the 

active site of PaNMO must be in the protonated form to allow binding of the anionic P3N substrate 

and catalysis. However, the replacement of any of the four tyrosine residues, i.e., Y109, Y254, 

Y299, and Y303, with phenylalanine or K307 with methionine does not affect substrate binding 

or the electron transfer reactions yielding the flavin-mediated oxidation of P3N with oxygen. Thus, 
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the compelling question of why these residues are conserved among ~500 proteins in the active 

site of Class I NMO remains unattended. One can speculate that because substrate oxidation in 

NMO does not involve a hydride transfer between NAD(P)H and the enzyme-bound flavin, the 

geometry and special arrangement of the reactive centers in the enzyme-substrate complex to allow 

electron transfer from P3N and flavin is less critical than in other flavin-dependent 

monooxygenases. Thus, having multiple hydroxyl groups in the active site would ensure P3N 

binding. Alternatively, it is possible that NMO might catalyze other biochemical reactions, besides 

the very efficient oxidation of P3N, and that the tyrosine and lysine residues have been conserved 

in the active site due to an unknown selective pressure. This study also offers the first example of 

a flavin-dependent enzyme in which tyrosine/tyrosinate equilibrium has been demonstrated 

spectroscopically in the active site of the enzyme, rather than the classical ionization of the N3 

atom of the flavin at high pH values. 

3.6 References  

[1] Francis, K., Gadda, G., The nonoxidative conversion of nitroethane to ethylnitronate in 

Neurospora crassa 2-nitropropane dioxygenase is catalyzed by histidine 196. Biochemistry 

2008;47:9136-44. 

[2] Salvi, F., Agniswamy, J., Yuan, H., Vercammen, K., Pelicaen, R., Cornelis, P., Spain, J.C., 

Weber, I.T., Gadda, G.,  The combined structural and kinetic characterization of a bacterial 

nitronate monooxygenase from Pseudomonas aeruginosa PAO1 establishes NMO class I and 

II. J. Biol. Chem. 2014;289:23764-75. 

[3] Smitherman, C., Gadda, G., Evidence for a Transient Peroxynitro Acid in the Reaction 

Catalyzed by Nitronate Monooxygenase with Propionate 3-Nitronate. Biochemistry 

2013;52:2694-704. 

[4] Agniswamy, J., Reis, R.A.G., Wang, Y.F., Smitherman, C., Su, D., Weber, I.T., Gadda, G., 

Crystal structure of yeast nitronate monooxygenase from Cyberlindnera saturnus. Proteins 

2018;86:599-605. 

[5] Gorter, K., Hiptagin, a new glucoside from Hiptage madablota. Bull. Jard. Bot. Buitenz. 

1920;2:187. 

[6] Hipkin, C.R., Simpson, D.J., Wainwright, S.J., Salem, M.A., Nitrification by plants that also 

fix nitrogen. Nature 2004;430:98. 

[7] Chomcheon, P., Wiyakrutta, S., Sriubolmas, N., Ngamrojanavanich, N., Isarangkul, D., 

Kittakoop, P., 3-Nitropropionic acid (3-NPA), a potent antimycobacterial agent from 



59 

 

endophytic fungi: is 3-NPA in some plants produced by endophytes? J. Nat. Prod. 

2005;68:1103-5. 

[8] Andolfi, A., Boari, A., Evidente, M., Cimmino, A., Vurro, M., Ash, G., Evidente, A., 

Gulypyrones A and B and Phomentrioloxins B and C Produced by Diaporthe gulyae, a 

Potential Mycoherbicide for Saffron Thistle (Carthamus lanatus). J. Nat. Prod. 2015;78:623-9. 

[9] Pasteels, J.M., Braekman, J.C., Daloze, D., Ottinger, R., Chemical defence in chrysomelid 

larvae and adults. Tetrahedron 1982;38:1891-7. 

[10] Randoux, T., Braekman, J.C., Daloze, D., Pasteels, J.M., De novo biosynthesis of Delta(3)-

Isoxazolin-5-one and 3-Nitropropanoic acid derivatives inChrysomela tremulae. 

Naturwissenschaften 1991;78:313-4. 

[11] Francis, K., Smitherman, C., Nishino, S.F., Spain, J.C., Gadda, G., The biochemistry of the 

metabolic poison propionate 3-nitronate and its conjugate acid, 3-nitropropionate. IUBMB 

Life 2013;65:759-68. 

[12] Brouillet, E., Jacquard, C., Bizat, N., Blum, D., 3-Nitropropionic acid: a mitochondrial toxin 

to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's 

disease. J. Neurochem. 2005;95:1521-40. 

[13] Su, D., Gadda, G., 3-Nitropropionate in Handbook of foodborne diseases. Boca Raton: Taylor 

& Francis; 2019. 

[14] James, L.F., Hartley, W.J., Williams, M.C., Van Kampen, K.R., Field and experimental 

studies in cattle and sheep poisoned by nitro-bearing Astragalus or their toxins. Am. J. Vet. 

Res. 1980;41:377-82. 

[15] Francis, K., Nishino, S.F., Spain, J.C., Gadda, G., A novel activity for fungal nitronate 

monooxygenase: Detoxification of the metabolic inhibitor propionate-3-nitronate. Arch. 

Biochem. Biophys. 2012;521:84-9. 

[16] Francis, K., Russell, B., Gadda, G., Involvement of a flavosemiquinone in the enzymatic 

oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase. J. Biol. Chem. 

2005;280:5195-204. 

[17] Su, D., Kabir, M.P., Orozco-Gonzalez, Y., Gozem, S., Gadda, G., Fluorescence Properties of 

Flavin Semiquinone Radicals in Nitronate Monooxygenase. ChemBioChem 2019 

[18] Inoue, H., Nojima, H., Okayama, H., High efficiency transformation of Escherichia coli with 

plasmids. Gene 1990;96:23-8. 

[19] Bush, M.T., Touster, O., Brockman, J.E., The production of beta-nitropropionic acid by a 

strain of Aspergillus flavus. J. Biol. Chem. 1951;188:685-93. 

[20] Lewis, R.J., Sax’s Dangerous Properties of Industrial Materials. 9th ed. New York: Van 

Nostrand Reinhold; 1996. 

[21] Goodall, D.M., Long, F.A., Protonation of nitroalkane anions by acetic acid in mixed water-

deuterium oxide solvents. J. Am. Chem. Soc.1968;90:238-43. 

[22] Nielsen, A.T., Nitronic acids and esters. In the Chemistry of the Nitro and Nitroso Groups. . 

New York: Intersciene Publishers; 1969. 

[23] Aliverti, A., Curti, B., Vanoni, M.A., Identifying and quantitating FAD and FMN in simple 

and in iron-sulfur-containing flavoproteins. Methods in molecular biology (Clifton, NJ) 

1999;131:9-23. 

[24] Whitby, L.G., A new method for preparing flavin-adenine dinucleotide. Biochem. J. 

1953;54:437-42. 

[25] Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities 

of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248-54. 



60 

 

[26] Orozco-Gonzalez, Y., Kabir, M.P., Gozem, S., Electrostatic Spectral Tuning Maps for 

Biological Chromophores. J. Phys. Chem.B 2019. 

[27] Su, D., Yuan, H., Gadda, G., A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-

Flavin in Choline Oxidase Variant S101C. Biochemistry 2017;56:6677-90. 

[28] Macheroux, P., Massey, V., Thiele, D.J., Volokita, M., Expression of spinach glycolate 

oxidase in Saccharomyces cerevisiae: purification and characterization. Biochemistry 

1991;30:4612-9. 

[29] Schwans, J.P., Sunden, F., Gonzalez, A., Tsai, Y., Herschlag, D., Uncovering the determinants 

of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase. Biochemistry 

2013;52:7840-55. 

[30] Latovitzki, N., Halper, J.P., Beychok, S., Spectrophotometric Titration of Tyrosine Residues 

in Human Lysozyme. J. Biol. Chem. 1971;246:1457-60. 

[31] Cleland, W.W., The kinetics of enzyme-catalyzed reactions with two or more substrates or 

products: I. Nomenclature and rate equations. Biochim.Biophys. Acta.  - Specialized Section 

on Enzymological Subjects 1963;67:104-37. 

[32] Murray, M.S., Holmes, R.P., Lowther, W.T., Active site and loop 4 movements within human 

glycolate oxidase: implications for substrate specificity and drug design. Biochemistry 

2008;47:2439-49. 

[33] Wohlfahrt, G., Witt, S., Hendle, J., Schomburg, D., Kalisz, H.M., Hecht, H.J., 1.8 and 1.9 A 

resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases 

as a basis for modelling substrate complexes. Acta. Crystallogra. D 1999;55:969-77. 

[34] Xia, Z.X., Mathews, F.S., Molecular structure of flavocytochrome b2 at 24 Å resolution. J. 

Mol. Biol. 1990;212:837-63. 

[35] Fu, G., Yuan, H., Li, C., Lu, C.D., Gadda, G., Weber, I.T., Conformational changes and 

substrate recognition in Pseudomonas aeruginosa D-arginine dehydrogenase. Biochemistry 

2010;49:8535-45. 

[36] Sobrado, P., Fitzpatrick, P.F., Identification of Tyr413 as an active site residue in the 

flavoprotein tryptophan 2-monooxygenase and analysis of its contribution to catalysis. 

Biochemistry 2003;42:13833-8. 

[37] Schreuder, H.A., van der Laan, J.M., Hol, W.G.J., Drenth, J., Crystal structure of p-

hydroxybenzoate hydroxylase complexed with its reaction product 3,4-dihydroxybenzoate. 

Journal of Molecular Biology 1988;199:637-48. 
  



61 

 

4 CHAPTER 4: FLUORESCENCE PROPERTIES OF FLAVIN SEMIQUINONE 

RADICALS IN NITRONATE MONOOXYGENASE 

(This chapter has been published verbatim in Su, D., Kabir, M.P., Orozco-Gonzalez, Y., Gozem, 

S., and Gadda, G. (2019), Chembiochem 20: 1646-1652. The author's contribution involves the 

enzyme purification and spectroscopic characterization.) 

 

4.1  Abstract  

 Fluorescent cofactors like flavins can be exploited to probe their local environment with 

spatial and temporal resolution. While the fluorescence properties of oxidized and two-electron 

reduced states of flavins have been studied extensively, this is not the case for the one-electron 

reduced state. Both the neutral and anionic semiquinones have proven particularly challenging to 

examine, as they are unstable in solution and are transient, short-lived species in many catalytic 

cycles. Here, we report that nitronate monooxygenase from Pseudomonas aeruginosa PAO1 

(NMO) is capable of stabilizing both semiquinone forms anaerobically for hours, enabling us to 

study their spectroscopy in a constant protein environment. We find that in the active site of NMO 

the anionic semiquinone exhibits no fluorescence while the neutral semiquinone radical shows a 

relatively strong fluorescence, with a behavior that violates Kasha-Vavilov’s rule. The 

fluorescence properties are discussed in the context of TD-DFT calculations, which reveal low-

lying dark states in both systems. 

4.2 Introduction  

Studies of flavins and flavoproteins have a long history dating back to 1933 with the 

discovery of Old Yellow Enzyme by Warburg and Christian and the identification of its cofactor 

as FMN in 1935 by Theorell.1, 2 The relatively recent discovery in 1993 of flavin-dependent 

photoreceptors has drawn renewed interest in the photophysics and photochemistry of flavins.3-6 

Flavin-dependent light-responsive proteins and enzymes, notably DNA photolyases, 
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cryptochromes, light-oxygen-voltage (LOV) and blue-light sensing using FAD (BLUF) domains, 

participate in many critical biological processes, including DNA repair, photoregulation of 

circadian rhythms, and gene expression.4, 6-10 

Flavins adopt three different redox states: oxidized quinone, one-electron reduced 

semiquinone, and two-electron reduced hydroquinone. In each redox state, a flavin can exist in 

multiple protonation states depending on the pH, with anionic and neutral species being 

biochemically relevant at the pH values between 3 and 12 at which most proteins are stable and 

functional (Scheme 4.1). The photophysics and photochemistry of oxidized flavins11-13 and 

hydroquinones14-16 have been studied both in solution and in numerous proteins. The oxidized 

flavin is fluorescent in solution, but nearby electron donors can act as quenchers,8, 17-19 a feature 

responsible for the lowered fluorescence intensity typically observed in flavoproteins.20, 21 

Hydroquinone usually displays weak fluorescence in solution, but upon confinement in a rigid 

protein environment, or at low temperature, it shows enhanced fluorescence.14, 22 In contrast, the 

understanding of the photophysics and photochemistry of flavin semiquinones has lagged because 

they are not stable in solution23 and are transient, short-lived species in many catalytic cycles. 

Flavin semiquinones are essential intermediates in the photocycle of light-responsive 

flavoproteins. An electron transfer from the excited reduced FAD (FADHˉ) to the damaged DNA 

yields a neutral FAD semiquinone (FADH•), initiating the catalytic repair of pyrimidine dimers in 

DNA photolyase.8, 24, 25 A photoinduced proton-coupled electron transfer reduces the oxidized 

FAD to FADH• in plant cryptochromes, initiating signal transduction in the plant photocycle.26, 27 

Photoreduction to generate the anionic FAD semiquinone (FAD•ˉ) occurs in animal Type 1 

cryptochrome.17, 28 In analogy with cryptochromes, LOV and BLUF domains function by 

photoinduced electron transfer (PET) to oxidized flavins, generating flavin semiquinones in their 
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photocycles.29, 30 Despite flavin semiquinones participate in the photocycle of flavin-dependent 

photoreceptors and enzymes, we have limited knowledge of the fluorescence properties of the 

excited state of flavin semiquinones. To date, there are only two reports on the emission spectra of 

FMNH• in flavodoxin from Desulfovibrio vulgaris, FADH• in DNA photolyase, and FAD•ˉ in 

insect Type 1 cryptochrome from Anopheles gambiae and Antheraea pernyi.31, 32 

 

 

Scheme 4.1 Redox states of flavins. 

 

The lack of a single protein system capable of thermodynamically stabilizing both the 

anionic and neutral forms of flavin semiquinone is a fundamental problem that prevents the direct 

comparison of the photophysical properties of the flavin semiquinone in different ionized states 
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due to the effects exerted by the surrounding protein environment.32, 33 Glucose oxidase is the only 

known case in which both neutral and anionic flavin semiquinones can be transiently formed by 

photoreduction.34-37 However, the rapid disproportionation of the neutral flavin semiquinone at 

low pH 35, 36 prevents its photophysical characterization due to contamination with oxidized FAD 

and hydroquinone.  

A recent study on nitronate monooxygenase (NMO; E.C. 1.13.12.16) from Pseudomonas 

aeruginosa PAO1 showed that the anaerobic mixing of the enzyme-bound flavin with propionate 

3-nitronate (P3N) yielded FAD•ˉ at pH 7.5 (34). P3N is a potent toxin that irreversibly inhibits 

mitochondrial succinate dehydrogenase.38, 39 Mechanisms underlying the toxicity of P3N involve 

impairment of energy metabolism, oxidative stress, and excitotoxicity,38, 40 and have been 

reviewed recently.41 

In this study, we demonstrated that the enzyme stabilizes the neutral form of flavin 

semiquinone. A pH titration of the UV-visible absorption spectrum of the one-electron reduced 

form of NMO allowed for the determination of the pKa value for the ionization of the flavin 

semiquinone in the active site of the enzyme. The fluorescence emission and excitation properties 

of the enzyme-bound flavin semiquinone in its neutral and anionic states were determined, and 

time-dependent density functional theory (TD-DFT) calculations were used to obtain insights on 

the absorption and fluorescence properties of flavin semiquinone. There have been a number 

of computational studies that model the spectra of flavins in the gas phase,42-50 solution, 42-47, 51-

54 or in proteins.55-57 Most of these studies have modeled the spectroscopy of flavin in the 

oxidized state, or in just a few cases also the reduced state. However, far fewer computational 

studies have investigated the semiquinone flavin.58 These studies have been limited to the lowest 

excited state. 
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4.3 Materials and Methods   

Materials. 3-Nitropropionic acid was purchased from Sigma-Aldrich (St. Louis, MO). 

Escherichia coli strain Rosetta(DE3)pLysS was from Novagen (La Jolla, CA). Recombinant NMO 

from P. aeruginosa PAO1 was expressed and purified as described in a previous study. P3N was 

prepared in water by incubating 3-nitropropionic acid with a 2.2 molar excess KOH for 24 h, at 4 

oC, as previously described.  

Experimental Methods. Anaerobic reduction of NMO with P3N was recorded with an 

Agilent Technologies diode-array spectrophotometer Model HP8453 PC equipped with a 

thermostated water bath at 15 oC. Just prior to use, NMO was gel-filtered into 20 mM piperazine, 

0.1 M NaCl for pH 5.5, or 20 mM sodium pyrophosphate, 0.1 M NaCl, 10% glycerol in the pH 

range from 6.0 to 8.9 by desalting chromatography through a PD-10 column. At pH 5.0, 20 mM 

piperazine, 0.1 M NaCl with 20% glycerol was used to stabilize NMO. The concentration of 

oxidized NMO was calculated by the enzyme-bound flavin with an experimentally determined ε443 

nm = 12,500 M-1cm-1. Samples were made anaerobic by at least 20 cycles of flushing with ultra-

pure argon and applying vacuum in an anaerobic cuvette with two side arms; 20 µM NMO was 

loaded in the cuvette together with 1 µM glucose oxidase; 1 mM P3N was loaded into one of the 

side arms while 5 mM glucose was added into the other one. Glucose was mixed with the 

NMO/glucose oxidase mixture before P3N to ensure the complete removal of traces of oxygen. 

UV-visible absorption spectra were recorded until no further changes were observed.  

Fluorescence characterization of NMO in different redox states was carried out in a 

Shimazu model RF-5301 PC spectrofluorophotometer at 15 oC. FMNH•/ FMN•ˉ were prepared by 

mixing 5 µM final concentration of NMO with 1 mM P3N in 20 mM piperazine, 0.1 M NaCl, 20% 

glycerol at pH 5.0 and 10.0, respectively, after removal of oxygen in an anaerobic fluorescence 
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cuvette. UV-visible absorption spectra of FMNH•/ FMN•ˉ were recorded before the fluorescence 

characterization to determine the complete reduction of the enzyme bound flavin to the 

semiquinone state. The fluorescence emission spectra of 5 µM oxidized enzyme were recorded in 

the same condition. The same buffer solution with 1mM P3N without NMO after the removal of 

oxygen was used as the blank and subtracted from emission and excitation spectra of NMO. The 

excitation spectra of different flavin redox states were recorded when the emission was set at peaks 

of emission spectra.   

Computational Methods. All DFT and TD-DFT energy calculations and optimizations in 

this work were performed using the B3LYP functional and cc-pVTZ basis set. TD-B3LYP has 

been shown in multiple computational studies to accurately reproduce the spectra of oxidized LF. 

In fact, the LFH• and FL•ˉ spectra computed using TD-B3LYP in this work also reproduce the 

experimental spectral features very well. Therefore, it is our method of choice due to the 

reasonable computational cost in the modeling of vertical and adiabatic energies in a system the 

size of flavin. Calculations were performed using a PCM solvent model with a dielectric constant, 

,  of 6 to simulate the weak field of the protein. Calculations on LFH• were also repeated in the 

gas phase and in PCM solvents for argon, cyclohexane, ethanol, and water to study the effect of 

changing the solvent environment. Adiabatic energies were computed for each state by optimizing 

the geometry on that state and computing the energy difference between the minima of the excited 

states and that of the ground state. The adiabatic energies reported in Table 2 also include zero-

point vibrational energy corrections. Franck-Condon factors (i.e., accounting for the vibronic 

excitations by computing overlaps in the ground and excited state vibrational wave functions) 

were computed using ezSpectrum. The vibronic peaks were then broadened using Gaussian 

functions with a full width at half maximum of 0.25 eV. The relative peak heights depend on the 
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relative oscillator strengths of the different transitions and were not scaled otherwise. Electronic 

structure calculations in this work were performed with Gaussian 16 on SDSC Comet and GSU 

ACoRE supercomputers. 

Data Analysis. KaleidaGraph software (Synergy Software, Reading, PA) was used to fit 

the data. The pH effect on the UV-visible absorption spectrum of NMO in the semiquinone state 

was determined with equation 1, which describes a curve with one pKa value and plateaus at both 

low and high pH values.  

 𝑌 =  
𝐴

1+10(𝑝𝐻−𝑝𝐾𝑎) +
𝐵

1+10(𝑝𝐾𝑎−𝑝𝐻)   (1) 

4.4 Results and Discussion  

Mixing NMO and 1 mM P3N anaerobically at pH 5.0 yielded FMNH•, as indicated by the 

broad absorbance between 550 nm and 700 nm (Figure 4.1A). The extinction coefficients of the 

enzyme-bound FMNH• determined at 333 nm (10,200 M-1cm-1), 488 nm (3,600 M-1cm-1), and 584 

nm (4,900 M-1cm-1) were comparable to those typically reported for the neutral flavin semiquinone 

bound to other proteins (Figure 4.1A).73, 74 In a previous study, the anaerobic reduction of NMO 

with P3N at pH 7.5 yielded FMN•ˉ(Figure 4.1A).59 Thus, NMO can stabilize both anionic and 

neutral flavin semiquinones in its active site. As a reference, 10 µM PaNMO was mixed 

anaerobically with 5 mg sodium borohydride in 200 mM piperzaine, pH 10.0 and 15 oC. Flavin 

was fully reduced to the anionic 1,5-hydroquinone as indicated by the depletion of the absorbance 

at 439 nm peak and the development of 345 nm maximum, with extinction coefficient of 5.1 mM 

-1cm-1 (Figure 4.1A)75, 76. 
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Figure 4.1 Stabilization of anionic and neutral flavin semiquinones in NMO. (A) The UV-

visible absorption spectrum of the oxidized enzyme (black curve) was recorded in 20 mM 

piperazine, 0.1 M NaCl, at pH 10.0 and 15 oC; those of the enzyme in the neutral (blue curve) and 

anionic (red curve) semiquinone states in 20 mM piperazine, 0.1 M NaCl, 20% glycerol at pH 5.0 

and 10.0, respectively, after anaerobic reduction with 1 mM P3N at 15 oC; that of the enzyme in 

the hydroquinone state (dashed curve) in 200 mM piperazine, pH 10.0, after anaerobic reduction 

with 5 mg sodium borohydride at 15 oC. (B) Anaerobic reduction of NMO with 1 mM P3N at pH 

5.0, 5.4, 6.1, 6.5, 7.0, 7.9 and 8.9, 15 oC, with the inset showing the dependence of the 584 nm value 

as a function of pH; the curve is the fit of the data to equation 1. 

 

To establish the pKa value for the equilibration of the neutral and anionic flavin 

semiquinones in the active site of NMO, the enzyme was reduced anaerobically with 1 mM P3N 

in the pH range from 5.0 to 8.9 at 15 oC. As shown in Figure 4.1B, there was a progressive decrease 

in the absorbance between 550 and 700 nm and the appearance of distinct peaks at 370 nm, 402 

nm, and 485 nm with increased pH values, consistent with a pH-dependent equilibration of the 

neutral and anionic flavin semiquinones in the active site of NMO.35, 36 A pKa value of 6.3 ± 0.1 

was calculated for the equilibration of FMNH•/FMN•ˉ bound to NMO by plotting the absorbance 

at 584 nm versus pH and fitting the data to equation 1. At all pH values tested, the flavin 

semiquinone was stable over at least 8 h, consistent with thermodynamic stabilization of both 

anionic and neutral flavin semiquinones in the active site of the enzyme. The pKa value of 6.3 in 
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NMO agrees reasonably well with the pKa value of ~8.3 kinetically determined for flavin 

semiquinone in aqueous solution using potentiometry and pulse radiolysis61, 77, 78 and ~7.3 in the 

active site of glucose oxidase using kinetic determinations of the second order rate constant for 

semiquinone oxidation with molecular oxygen.35, 36 

The emission and excitation spectra of the enzyme-bound flavin (5 µM) in the oxidized 

and semiquinone state were measured at 15 oC at pH 5.0 and 10.0. The emission intensity of 

oxidized FMN (2 µM) in bulk solution was also acquired and used to normalize the relative 

emission intensity of each flavin species when bound to the enzyme. Oxidized FMN in bulk 

solution had a maximal emission wavelength at 531 nm at both low and high pH, but the 

fluorescence intensity was ~2.5-times smaller at high pH (Table 4.1) likely due to ~50% of the 

flavin being anionic at pH 10.0 because the N3 atom of FMN with a pKa value of ~10.0 is partially 

ionized and the anionic species has lower fluorescence quantum yield.12, 79 A high emission 

intensity concomitant with a 7 nm hypsochromic shift at pH 10.0 compared to pH 5.0 was also 

observed for the FMN bound to NMO (Figure 2A, Table 4.1). Irrespective of the pH, the 

fluorescence intensity of FMN in the enzyme active site was ≥120-times smaller than free FMN 

(Table 4.1), presumably due to quenching of the oxidized flavin in the active site of NMO by 

photoinduced electron transfer (PET) from a nearby aromatic residue. NMO contains four 

tyrosines, two phenylalanines, and one tryptophan59 in the active site that could potentially quench 

the fluorescence of the flavin. 
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Table 4.1 Fluorescence properties of FMN in bulk solution and bound to NMO at 15°Ca 

 pH Excitation peaks 

(nm) 

Emission peaks 

(nm) 

Relative 

intensityb 

Free oxidized FMN 5.0 379, 463 531 2400 

 10.0 378, 459 531 920 

Oxidized FMN in PaNMO 5.0 380, 464 530 20 

 10.0 373,463 523 2 

Neutral semiquinone in PaNMO 5.0 574, 586 628 280 
a Conditions: anaerobically in 20 mM piperazine, 0.1 M NaCl with 20% glycerol. 
b Intensity at the emission peaks are reported. Intensity of 2 µM free oxidized FMN was experimentally 

measured and converted to the intensity corresponding to 5 µM free oxidized FMN due to the instrument 

limit. Intensity of enzyme-bound FMN in different redox states was determined with 5 µM NMO. 

 

 

Figure 4.2 Fluorescence emisison of NMO in the oxidized (A) and neutral semiquinone 

(B) states. UV-visible absorption sepctra are shown as solid curves, and fluorescence emission 

spectra as dashed curves. The spectra of the oxidized NMO were recorded in 20 mM piperazine, 

0.1 M NaCl, 20% glycerol at pH 10.0 and 15 oC; those for the neutral semiquinone in 20 mM 

piperazine, 0.1 M NaCl, 20% glycerol at pH 5.0 and 15 oC. The arrows and wavelngths in panel B 

refer to the ex used to excite the enzyme-bound FMN. 

 

As shown in Figure 4.2B, FMNH• in NMO had maximal fluorescence emission at 628 nm 

when excited at 575 nm, with an intensity of ~12% that of oxidized FMN in bulk solution at pH 

5.0 (Table 4.1). Thus, the flavin bound to NMO was ~15-times more fluorescent as a neutral 

semiquinone than in the oxidized state. The higher fluorescence intensity of the neutral 

semiquinone as compared to the oxidized flavin is consistent with a higher excited-state reduction 
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potential of FMNH• compared to FMN, which would make a PET from a nearby aromatic residue 

more difficult to the semiquinone than the oxidized state. This makes the FMNH• radical one of 

only a few families of fluorescent radical species.80 The intensity of fluorescence emission of 

FMNH• in NMO decreased when the excitation wavelength was reduced from 575 nm to 545 nm 

(Figure 4.2B), and there was no fluorescence emission upon exciting at wavelengths ≤488 nm. 

Note that FMNH• is similar in chemical structure to 4a-hydroxy FMN (FMNHOH), the putative 

fluorophore of bacterial luciferase that exhibits strong emission as well.81, 82 FMNHOH has an -

OH substituent instead of the radical center at the 4a carbon of FMNH•. However, the two 

molecules have different electronic structure, as demonstrated by their very different absorption 

and emission spectra.83 

The FMN•ˉ bound to NMO at pH 10.0 did not emit fluorescence irrespective of the 

wavelength at which the flavin was excited, i.e., 370 nm, 402 nm, and 485 nm. The only other 

study of the fluorescence properties of a protein-bound anionic flavin semiquinone reported weak 

fluorescence at 525 nm upon excitation at 450 nm of the FAD in insect Type 1 cryptochrome.31, 32 

Fluorescence processes of flavin in the oxidized state typically yield excitation at 450 nm and 

emission at 525-535 nm, suggesting that small traces of oxidized flavin may have been present in 

the cryptochrome sample.84-87 Alternatively, a more dynamic protein environment surrounding the 

flavin anionic semiquinone in NMO than in Type 1 cryptochrome may explain the lack of 

fluorescence emission in NMO.32, 33   

The excitation spectrum of FMNH• in NMO featured a single sharp band between 500 nm 

and 610 nm instead of mimicking the general shape of the UV-visible absorption spectrum of 

FMNH• (Figure 4.3A), as expected.88, 89 This phenomenon was not observed with the oxidized 

flavin of NMO, for which the excitation spectrum resembles the shape of the UV-visible 
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absorption spectrum (Figure 4.3B). Thus, the fluorescence of FMNH• bound to NMO violates the 

Kasha-Vavilov rule, which assumes that internal conversion between excited states are faster than 

any competing excited-state processes.88-90 Some known exceptions to the Kasha-Vavilov rule, 

such as blue shifts of emission spectra when excited to higher excited states, occur when the rates 

of emission decay from high excited states are comparable or faster than internal conversion to the 

lowest excited state.91  

 

 

Figure 4.3 Fluorescence excitation of NMO in the oxidized (A) and neutral semiquinone 

(B) states. The excitation spectra are shown as solid curves, the emisison spectra as dashed curves. 

The spectra of the oxidized NMO were recorded in 20 mM piperazine, 0.1 M NaCl, 20% glycerol 

at pH 10.0 and 15 oC; those for the neutral semiquinone in 20 mM piperazine, 0.1 M NaCl, 20% 

glycerol at pH 5.0 and 15 oC.  

 

To gain insight on the unusual fluorescence properties of the flavin semiquinone in NMO 

(vide supra), we performed TD-DFT calculations. Since the π-electron conjugation responsible for 

fluorescence emission and absorbance localizes exclusively on the isoalloxazine ring, we used 

lumiflavin as a computational model (LFH•, Scheme 1) instead of FMN to minimize computational 

cost. A polarizable continuum model (PCM) with a ε value of 6 was used to crudely mimic the 

weak dielectric field of a general protein environment.68 Figure 4.4A shows the UV-visible 
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absorption spectrum of LFH• computed with TD-DFT/PCM. The comparison of the absorption 

spectra of the calculated LFH• and the experimental FMNH• bound to the enzyme shows good 

agreement (Figure 4.4A), implying minimal perturbation of the electronic character of the excited 

states of the flavin by the protein environment around the flavin. The computed absorption 

spectrum is based on adiabatic excitation energies and includes vibronic excitations computed 

using Franck-Condon factors. We found that neither the vertical nor adiabatic computed excitation 

energies are representative of the UV-visible absorption spectrum. Our results are in keeping with 

a previous computational study on oxidized lumiflavin,56, 65 reinforcing the importance of 

incorporating vibronic excitations to reproduce the experimental absorption spectrum. 
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Figure 4.4 A. Simulated PCM TD-DFT UV-visible absorption spectrum (solid blue line) 

and emission (dashed blue line) spectra of LFH•, shown in comparison to the experimental FMNH• 

UV-visible absorption spectrum in PaNMO (solid black line). B.  Simulated PCM TD-DFT UV-

visible absorption spectrum (solid red line) of LF•-, shown in comparison to the experimental 

FMN•- UV-visible absorption spectrum in PaNMO (solid black line). C. The active site of PaNMO 

(PDB entry 4Q4K). The carbon atoms of the FMN cofactor are shown as yellow sticks, whereas 

those of select protein residues are displayed as tan sticks; nitrogen and oxygen atoms are colored 

in blue and red, respectively. D. A scheme showing the relative energies of ground and excited 

states given by PCM TD-DFT calculations. E. A scheme showing the relative energies of ground 

and excited states given by gas-phase TD-DFT calculations. The gas-phase calculations support a 

possible mechanism that can explain the violation of the Kasha-Vavilov rule in FMNH•. Computed 

vertical excitation energies (and adiabatic excitation energies in parentheses) are labeled for each 

state in units of eV. 
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The first vertical excited state of the neutral semiquinone (D1) is a bright ππ* state and is 

responsible for the absorbance in the 550-700 nm region of the spectrum and the emission at 628 

nm (Figure 4.4A, Table 4.2). The D2 and D3 states are also ππ* states, but with a weaker absorbance 

and contribute to the absorption feature in the 450-550 nm region of the spectrum. The fourth 

excited state (D4) is a dark nOπ* state and does not contribute to the absorption spectrum (Table 

4.2). D4 lies close in energy to and overlaps with the bright D2 and D3 states in the TD-DFT/PCM 

calculation carried out with aεvalue of 6. D5 and D6 are responsible for the shoulder at ~380 nm, 

while D9 and D10 contribute to the strong absorbance at ~330 nm. 

 

Table 4.2 Computed vertical and adiabatic energies for LFH• and LF•ˉ at the B3LYP/cc-

pVTZ/PCM level of theory 

 
LFH• 

State Vertical Excitation, 

eV (nm) 

Oscillator 

Strengtha 

Adiabatic Excitation,  

eV (nm)b 

Charactera 

D1 2.132 (582) 0.127 1.808 (686) ππ* (67b → 68b) 

D2 2.792 (444) 0.008 2.402 (516) ππ* (68a → 69a) 

D3 2.875 (431) 0.057 2.489 (498) ππ* (66b → 68b) 

D4 3.045 (407) 0.000 2.501 (496) noπ* (65b → 68b) 

D5 3.441 (360) 0.093 3.170 (391) ππ* (68a → 70a) 

D6 3.495 (355) 0.022 3.199 (388) ππ* (64b → 68b) 

D9 3.860 (321) 0.094 3.715 (334) ππ* (61b → 68b) 

D10 4.204 (295) 0.090 3.992 (311) ππ* (68a → 71a) 

LF•ˉ 

State Vertical Excitation, 

eV (nm) 

Oscillator 

Strength 

Adiabatic Excitation, eV 

(nm) 

Character 

D1 2.204 (562) 0.003 1.835 (676) ππ* (68a → 69a) 

D2 2.712 (457) 0.003 2.404 (516) ππ* (68a → 70a) 

D3 2.834 (438) 0.142 2.555 (485) ππ* (67b → 68b) 

D4 3.109 (399) 0.000 2.632 (471) nNπ* (65b → 68b) 

D5 3.304 (375) 0.081  ππ* (66b → 68b) 

D6 3.467 (358) 0.297 3.155 (393) ππ* (68a → 71a) 
a Oscillator strengths and electronic character are shown here for the vertical excitation. 
b Adiabatic excitation energies reported here also account for zero-point vibrational energies. 

 

To obtain insights on the effect of the PCM environment, we also performed the same level 

of TD-DFT calculation in different PCM solvents ranging from ε values of 0, which is equivalent 
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to the gas phase, to 78.36, which corresponds to water (Table 4.3). While the energetics of the D1 

ππ* excitation depends minimally on the ε value, with a ∆eV of 0.035 between gas phase and water, 

the excitation energy of the nOπ* state is highly influenced by the ε value, with a ∆eV of 0.44 

between gas and water. Note that this is not the case for the nNπ* state in anionic semiquinone, 

which is less sensitive to the solvent polarity (Table 4.3). This suggests that while the absorption 

spectrum of FMNH•, which is dominated by ππ* transitions, is minimally modulated by the protein 

environment surrounding the flavin, its photophysics and fluorescence properties are strongly 

influenced by a protein environment due to the sensitivity of the nπ* energies to the environment. 

The gas-phase TD-DFT calculation yields a significantly more stable nOπ* excited state, which 

becomes the second vertical excited state instead of the fourth and has an adiabatic energy that is 

comparable with that of the fluorescent ππ* D1 excited state (Figure 4.4E). 

 

Table 4.3 Solvent effect on the computed energies of D1 ππ* and nOπ* for LFH• and D1 ππ* and 

nNπ* for LF•ˉ. 
Dielectric 

constant 

D1 ππ*
 

(eV) 

nOπ* (eV) Difference 

(eV) 

D1 ππ*
 (eV) nNπ* (eV) Difference 

(eV) 

0.000 2.121 2.714 0.593 2.109 2.950 0.841 

1.430 2.110 2.801 0.691 2.135 2.979 0.844 

2.017 2.102 2.877 0.774 2.163 3.022 0.859 

6.078 2.132 3.045 0.913 2.204 3.109 0.905 

32.613 2.150 3.130 0.980 2.222 3.159 0.937 

78.355 2.156 3.151 0.995 2.227 3.173 0.946 

 

The excitation spectrum of the neutral flavin semiquinone (Figure 4.3B) indicates that 

fluorescence only occurs when the flavin is excited to the D1 state directly, whereas excitation to 

any electronic state above D1 does not lead to fluorescence. Three possible processes not mutually 

exclusive could explain the fluorescence emission of the neutral semiquinone excited to the D1 

state, but not to higher electronic states: internal conversion through a dark nOπ* state, PET from 

nearby aromatic donors, or intersystem crossing (ISC) to a quartet nOπ* state. One could 
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reasonably conjecture that due to the dielectrics of the protein surrounding the flavin the dark nOπ* 

state is the lowest adiabatic excited state but is not accessible from the D1 state, as qualitatively 

suggested by the trend seen in the TD-DFT calculation in different PCM solvents. Thus, excitation 

of FMNH• to any energetic state higher than D1 would populate the dark nOπ* state (Figure 4.4E) 

and produce no fluorescence. Direct excitation to the D1 state would result in fluorescence 

emission because the dark nOπ* state would not be energetically accessible. Alternatively, if 

ultrafast PET to the excited state D2 or higher states occurred on a time-scale faster than the 

nonradiative decay from high excited states to D1, fluorescence emission would be allowed only 

from the excited state D1. Ultrafast PET was reported for zinc porphyrins, for which the excited 

states S1 and S2 are well separated, i.e., by ca. 0.8 eV and internal conversion is therefore slow 

compared to PET.92 In the active site of NMO, there are several potential electron donors within 4 

Å from the isoalloxazine ring of FMN, including Phe71, Tyr254, and Trp325. Additionally, Tyr109, 

Phe134, Tyr299, and Tyr303 lie within 10 Å from the isoalloxazine ring of FMN (Figure 4.4C).59 PET 

in the picosecond timescale to the lowest excited state of FADH• was previously reported for E. 

coli DNA photolyase and a Type 1 cryptochrome mutant protein.24, 31 However, in all these 

reported cases PET involves the lowest excited state of FADH• and occurs on a picosecond 

timescale; a timescale that may be too slow to compete with the internal conversion between the 

D2 and D1 of the neutral flavin semiquinone, which are separated by 0.66 eV (Table 4.3). ISC to 

the dark nOπ* state could also explain the lack of fluorescence from states energetically higher 

than D1 in the neutral flavin semiquinone bound to NMO. ISC of a flavin semiquinone from the 

doublet to the quartet nπ* state, consistent with El-Sayed rules,93 was previously reported in DNA 

photolyase within ~100 ps of excitation.94 Irrespective of whether internal conversion through a 

dark nOπ* state, PET, or ISC to a quartet nOπ* state, quenches the fluorescence emission of the 
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neutral flavin semiquinone, TD-DFT/PCM calculations provide support for the spectroscopic 

assignments of the UV-visible absorption bands and reveal the existence of a low-lying dark nOπ* 

state, whose properties can now be investigated further.  

TD-DFT calculations on the anionic lumiflavin semiquinone (LF•ˉ) show that the D1 and 

D2 states are weakly absorbing ππ* state (Table 4.2). The lack of observed emission can be 

attributed to the low oscillator strength for D1, which is 0.003, compared to 0.082 for LFH• at the 

D1 optimized geometry. A similar conclusion was recently drawn by Ai et al. in a gas phase 

CASPT2//CASSCF study of a reduced model of FMN•ˉ.58 The strong absorption features of FMN•ˉ 

are consistent with absorbance to the bright D3, D5, and D6 ππ* excited states in LF•ˉ. We were 

unable to optimize D5 since it is very close in adiabatic energy to the D6 state, so it is not shown 

in Figure 4.4B. If it were to be included, it might add a little to the peak intensity at ~350 nm. 

However, the computed peak energies are in excellent agreement with the experiment. Note that 

in this case there is a low-lying D4 nπ * state as well, although it is an nNπ* state, while the LF•ˉ 

nOπ* state lies higher in energy.  

4.4 Conclusion 

In conclusion, NMO can stabilize FMN in several redox and protonation states and is a 

useful model system for studying the spectroscopy and photophysics of each of these states in a 

constant protein environment. In this work, we focus on FMNH• and FMN•ˉ, which are both 

stabilized in NMO. FMNH• in NMO yields a strong fluorescence that violates the Kasha-Vavilov 

rule, while we do not observe any fluorescence in FMN•ˉ. TD-DFT calculations are used to assign 

the absorption and fluorescence peaks and provide insight into the photophysics of these two 

radicals. Specifically, the calculations show that the first excited state in FMN•ˉ is a ππ* state with 

low oscillator strength, while in FMNH• the lowest excited state is a bright emissive ππ* state. A 
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dark nOπ* state exists in FMNH• above the fluorescent D1 ππ* state that is likely responsible for 

its anti-Kasha behavior. The lack of fluorescence of FMN•ˉ is likely due to the existence of D1 and 

D2 ππ* states with low oscillator strength. A complete understanding of the photophysics of the 

FMNH• will require further investigation, e.g., using accurate multi-configurational quantum 

chemical methods and hybrid quantum/molecular mechanical models to account for the effect of 

the protein environment and describe the ππ*, doublet nπ*, and quartet nπ* states on an equal 

footing.  
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5 CHAPTER 5: A REVERSIBLE, CHARGE-INDUCED INTRAMOLECULAR C4A-S-

CYSTEINYL-FLAVIN IN CHOLINE OXIDASE VARIANT S101C 

(This chapter has been published verbatim in Su, D., Yuan, H.L., and Gadda, G. (2017), 

Biochemistry 56: 6677-6690. The author's contribution involves data analysis and interpretation.) 

 

5.1 Abstract  

Choline oxidase serves as a paradigm for alcohol oxidation catalyzed by flavin-dependent 

enzymes. In its active site, S101 is 4 Å from the flavin C4a atom on an extended loop. Enzyme 

variants substituted at S101 were generated in a previous study and investigated mechanistically 

[Yuan, H., Gadda, G. (2011) Biochemistry 50, 770-779]. In this study, the typical UV-visible 

absorption spectrum of oxidized flavin was observed for the S101C enzyme in HEPES, TES or 

sodium phosphate, whereas an absorption spectrum suggesting the presence of a Ca4 flavin adduct 

with cysteine was obtained in Tris-Cl at pH 8.0. pH titrations of the UV-visible absorption 

spectrum of the wild-type, S101A, S101C, and H99N enzymes in the presence and absence of Tris 

allowed for the determination of two pKa values that define a pH range in which the C4a-S-

cysteinyl flavin is stabilized. Inhibition studies and stopped-flow kinetics demonstrated that 

binding of protonated Tris in the active site of the S101C enzyme is required to form the C4a-S-

cysteinyl flavin. Deuterium kinetic isotope effects and proton inventories on the S101C enzyme 

mixed in a stopped-flow spectrophotometer with Tris established a mechanism for the reversible 

formation of the C4a-S-cysteinyl flavin. The study provides a detailed mechanistic analysis for the 

reversible formation of a bicovalent C4a-S-cysteinyl-8α-N3-histidyl flavin in choline oxidase, 

identifying an optimal pH range and a mechanistic rationale for the stabilization of de novo C4a-

S-cysteinyl-flavins. Moreover, it presents an example of an intramolecular reaction of an enzyme-

bound flavin without a substrate. 
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5.2 Introduction  

An increasing number of flavoproteins have the flavin cofactor covalently linked to the 

protein moiety, despite 85-90% are estimated to have the flavin tightly bound but not covalently 

associated with the protein.1, 2 The first reported enzyme with a flavin covalently attached to the 

protein moiety was mammalian succinate dehydrogenase in 1970.3 Most of the covalent 

attachments of the flavins to the proteins occur at either the 8α-CH3 group or C6 atom of the 

isoalloxazine, irrespective of whether the flavin is FMN or FAD.1, 2 The residues that have been 

found covalently linked to the 8α-CH3 of the isoalloxazine are histidine, cysteine, tyrosine, and 

aspartate, yielding 8α-N1-histidyl-, 8α-N3-histidyl-, 8α-S-cysteinyl-, 8α-O-tyrosyl-, and 8α-O-

aspartidyl-flavins, respectively.1, 2, 4 Instead, only 6-S-cysteinyl-flavin linkages have been found 

thus far for the linkage at the C6 atom of the flavin.1, 2 Recently, bicovalent 8α-N1-histidyl- and 6-

S-cysteinyl-FAD linkages were found in glucooligosaccharide oxidase,5, 6 hexose oxidase,7 

aclacinomycin oxidoreductase 8 and the berberine bridge enzyme.9, 10 The first example of an 

engineered bicovalently-linked flavoprotein is 6-hydroxy-D-nicotine oxidase, where mutation of 

H130 to cysteine yielded a new 6-S-cysteinyl-flavin linkage besides the naturally occurring 8α-

N1-histidyl linkage.11 The engineered 6-S-cysteinyl-flavin bond could be cleaved by treatment 

with performic acid of the denatured 6-hydroxy-D-nicotine oxidase, but no attempts were reported 

to cleave the bond in the folded and active enzyme.11 In general, covalent linkages of the flavin to 

the protein serve to stabilize protein structure,12-14 prevent loss of the flavin cofactor,15 modulate 

the redox potential of the flavin cofactor,14-19 facilitate electron transfer reactions 20 and quantum 

mechanical transfers of hydride ions from the substrate to the flavin,21 or contribute to substrate 

binding.14 In all cases, the covalent linkages between the 6 or 8α positions of the isoalloxazine and 

the protein are irreversible and preserved during the functional cycles of the enzymes.  
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Transient, covalent flavinylation to active site cysteine residues is also known to occur at 

the C4a atom of the isoalloxazine. A well-known example is the C4a-S-cysteinyl-flavin with C140 

in a mercuric ion reductase variant in which C135, C558, and C559, were replaced with alanine 

residues.22 Based on mechanistic and biochemical studies, similar C4a-S-cysteinyl-flavin species 

have been proposed for other members of the flavoprotein disulfide reductase enzymes of which 

mercuric ion reductase is a member, such as pig heart lipoamide dehydrogenase,23, 24 glutathione 

reductase,25 and thioredoxin reductase.26 UV-Visible absorbance, Fourier Transform Infrared 

Spectroscopy, and X-ray crystallography, provided unequivocal evidence for a C4a-S-cysteinyl-

flavin adduct in the LOV domain of bacterial and fungal and plant photoreceptors.27-30 Typically, 

the C4a-S-cysteinyl-flavins are kinetically competent intermediates in the flavoprotein disulfide 

reductases and participate in signal transduction through the light-dark cycle of photoreceptors.22, 

27-31 To the best of our knowledge, reversible C4a-S-cysteinyl-flavins have not been engineered in 

flavoproteins, irrespective of whether the flavin is already noncovalently or covalently bound to 

the protein moiety. 

In the X-ray, crystallographic structure of choline oxidase, the FAD cofactor is covalently 

attached to the protein via H99 through an 8α-N3-histidyl linkage (Figure 5.1). The enzyme, which 

catalyzes the oxidation of choline to glycine betaine through two FAD-associated oxidation 

reactions, has been characterized in its biochemical, mechanistic, and structural properties,21, 32-48 

becoming a paradigm for the oxidation of alcohols catalyzed by flavoproteins.49-51 A recent study 

in which S101 was substituted with alanine, cysteine, threonine or valine, demonstrated the 

importance of the hydrophilic character of the serine residue for the hydride transfer reaction 

catalyzed by choline oxidase.37, 38 A crystallographic structure of the S101A variant of choline 

oxidase to 2.2 Å resolution showed that the active site residues are in the same positions and 



89 

 

orientations in the mutant and wild-type enzymes, with no significant differences observed 

between the backbone atoms of the two enzymes with an rmsd value of 0.41 Å for 527 equivalent 

Cα atoms.38 In the active site of the wild-type enzyme, the hydroxyl O atom of S101, which is part 

of an extended flexible loop, points toward the flavin C4a atom at <4 Å distance (Figure 5.1).35, 44 

 

Figure 5.1 The active site of choline oxidase wild-type with the reaction product glycine 

betaine bound (PDB entry 4MJW). The C atoms of the FAD cofactor are displayed as yellow 

sticks, whereas those of select protein portions and of glycine betaine are shown as tan sticks; N 

and O atoms are colored in blue and red, respectively. GB, glycine betaine; except for W61 and 

W331, amino acid residues shown have been previously characterized with mutagenesis. 

 

Following upon an initial serendipitous observation of an unusual UV-visible absorption 

spectrum of the S101C variant of choline oxidase in Tris buffer (Hongling Yuan and Giovanni 

Gadda; unpublished data), in this study the S101C enzyme variant was characterized using UV-

visible absorption spectroscopy in various buffers and pH values, inhibition studies using steady-

state kinetics, solvent kinetic isotope effects and proton inventory using rapid kinetics. The 

assignment of the pKa values for the ionizations of the various species involved in the reversible 

formation of the engineered C4a-S-cysteinyl-flavin in the S101C enzyme was aided by 

determining the pH effects on the UV-visible absorption spectra of the wild-type, H99N, and 
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S101A enzymes. A mechanism for the reversible formation of the extra C4a-S-cysteinyl-flavin 

linkage in the S101C enzyme is presented along with the evidence in its support. 

5.3 Material and Methods 

Materials and Instruments.  The H99N, S101C, and S101A variants and the wild-type 

form of choline oxidase were purified according to the procedures described in.21, 37, 38 Choline 

chloride was from ICN Pharmaceutical Inc.; Tris was from Fisher Scientific. All other reagents 

were of the highest purity commercially available.  

UV-visible absorption spectra of the enzyme-bound flavin were recorded using an Agilent 

Technologies model HP 8453 diode array spectrophotometer equipped with a thermostated water 

bath. The enzymatic activity of choline oxidase was measured polarographically using a computer-

interfaced Oxy-32 oxygen monitoring system (Hansatech Instrument, U. K.). Stopped-flow 

experiments were carried out using a Hi-Tech SF-61 Double Mixing Stopped Flow system.  

UV-visible Absorption Spectroscopy. For the pH dependence of the UV-visible absorption 

spectra, the enzymes were gel filtered just prior to use through a desalting PD-10 column 

equilibrated with 20 mM sodium phosphate and 20 mM sodium pyrophosphate in the presence or 

absence of 20 mM Tris at a pH adjusted to ~6.0. The enzyme solution (2 mL) was placed in a 

cuvette with a concentration of enzyme-bound flavin ~10 μM and the absorption spectrum was 

recorded. The UV-visible absorption spectra of the enzyme solution were recorded after serial 

additions of 1M NaOH (1-10 μL) under stirring until the pH was incrementally changed to ~12.0. 

After each careful and slow addition of the base the enzyme solution could equilibrate until no 

changes in the pH value and absorbance were observed, which typically required 2-3 min.  
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Enzyme Kinetic Assays. Reversible inhibition studies were carried out by varying the 

concentrations of both choline and Tris in air-saturated 50 mM potassium phosphate, pH 6.0, by 

monitoring the rate of oxygen consumption with a computer-interfaced Oxy-32 oxygen-

monitoring system (Hansatech Instrument, U. K.) thermostated at 25 oC. The reversible formation 

of the C4a-S-cysteinyl-flavin adduct was monitored directly in an SF-61DX2 Hi-Tech KinetAsyst 

high performance stopped-flow spectrophotometer thermostated at 25 oC by monitoring the 

decrease in absorbance at 456 nm upon mixing the enzyme solution with an equal volume of Tris 

solution. The solutions of both the enzyme and Tris were prepared in 50 mM potassium phosphate, 

pH 8.0, or 50 mM sodium pyrophosphate, pH 8.5 or 9.0. The pH of the Tris solution was adjusted 

after dissolving the compound in the buffer to avoid pH effects. The apparent rate constants were 

determined under pseudo-first order conditions by mixing equal volumes of an enzyme solution 

(~10 µM after mixing) and varying concentrations of Tris (2.5-100 mM after mixing). When D2O 

was used instead of water, the pD value of the buffered solutions containing the enzyme and Tris 

were adjusted using NaOD or DCl based on the empirical relationship of eq 1, which describes the 

correction of the pH-meter reading and the pD value at varying mole fractions of D2O (n) and 

accounts for the isotope effect on the ionization of the buffer.52 Solvent viscosity effects were 

measured in the presence of 9% glycerol as viscosigen in both the solutions containing the enzyme 

and Tris, which yielded a relative viscosity of 1.25 that was equivalent to that of D2O.53 

(ΔpH)n = 0.076n2 +0.3314n              (1)  

Data Analysis.  Data were fit with KaleidaGraph software (Synergy Software, Reading, 

PA) and the Hi-Kinetic Studio Software Suite (Hi-Tech Scientific, Bradford on Avon, U.K.). The 

kinetic data with inhibitor were fit to eq 2, which describes a competitive inhibition pattern of the 
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inhibitor versus choline; I is the concentration of inhibitor and Kis is the inhibition constant for the 

slope term.  

Stopped-flow traces were fit to eq 3, which describes a double-exponential processes for 

the decrease in absorbance of the enzyme-bound oxidized flavin; kobs1 and kobs2 represent the 

observed first-order rate constants associated with the decrease in absorbance at 456 nm, t is time, 

At is the absorbance at 456 nm at any given time, A1, and A2 are the amplitudes of the absorption 

changes, and A∞ is the absorbance at infinite time. 

The rapid kinetics parameters were extracted from the dependence of the observed rate 

constant on the concentration of Tris by using eq 4; kobs1 is the observed first-order rate constant 

for the fast phase of absorbance decrease at 456 nm (see Results for a rationale for the use of the 

fast phase), k3 is the limiting first-order rate constant for the formation of the C4a-S-cysteinyl-

flavin adduct at saturating concentrations of Tris, k4 is the first-order rate constant for the reverse 

of the formation of the C4a-S-cysteinyl-flavin adduct, and 𝐾𝑑
𝑎𝑝𝑝

 is the concentration of Tris at 

which half-maximal formation of the C4a-S-cysteinyl-flavin adduct is observed. 

The effect of pH on the UV-visible absorption spectra of the various variants of choline 

oxidase was determined with eqs 5-7 to establish the pKa values for the ionizations relevant to the 

8α-N3-histidyl-FAD of choline oxidase; because all the enzyme variants yielded a high pKa value 

>11.3 that was separated ≥2 pH units from other lower pKa values, the data at low and high pH 

values were fit independently; isosbestic points were chosen when available for the determination 

of the pKa values involving the ionizations of other flavin associated group. Eq 5 describes a curve 

with one pKa value and plateau regions at both low and high pH values; eq 6 describes a curve 

with two pKa values and three plateau regions at low, middle, and high pH values, and eq 7 

describes a curve with slopes of 1 and -1 and three plateau regions at low, middle, high pH values. 
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𝑣

𝑒
=  

𝑘𝑐𝑎𝑡𝐴

𝐾𝑎(1+ 
𝐼

𝐾𝑖𝑠
)+𝐴

  (2) 

At = A1exp(-kobs1t) + A2exp(-kobs2t) + A∞  (3) 

𝑘𝑜𝑏𝑠1 =  
𝑘3𝐴

𝐾𝑑
𝑎𝑝𝑝

+𝐴
+  𝑘4  (4) 

𝑌 =  
𝐴

1+10(𝑝𝐻−𝑝𝐾𝑎)
+

𝐵

1+10(𝑝𝐾𝑎−𝑝𝐻)
 (5) 

𝑌 =  
𝐴

1+10(𝑝𝐻−𝑝𝐾𝑎1) +
𝐵

1+10(𝑝𝐻−𝑝𝐾𝑎2) +
𝐶

1+10(𝑝𝐾𝑎2−𝑝𝐻)   
  (6) 

𝑌 =
𝐴×10−𝑝𝐾𝑎1+𝐵×10−𝑝𝐻

10−𝑝𝐾𝑎1+10−𝑝𝐻
+

𝐶×10−𝑝𝐾𝑎2+𝐴×10−𝑝𝐻

10−𝑝𝐾𝑎2+10−𝑝𝐻
  (7) 

 

5.4 Results 

Effect of Tris on the UV-Visible Absorption Spectrum of the S101C Enzyme. The UV-

visible absorption spectrum of the S101C enzyme was acquired at pH 8.0 and 25 oC in various 

buffers. In 20 mM Tris-Cl, a broad absorption band with a peak at 376 nm was observed (Figure 

5.2A), consistent with the enzyme being in a mixture of a C4a flavin adduct and the oxidized state. 

The same enzyme variant in 20 mM sodium phosphate, TES, or HEPES, showed the typical 

maxima of the oxidized flavin at 371 nm and 456 nm (Figure 5.2A). In contrast, the wild-type, 

S101T, and S101A enzymes in 20 mM Tris-Cl displayed flavin maxima in the near-UV and visible 

regions typical of oxidized flavins (Figure 5.2B). Thus, a C4a-S-cysteinyl-flavin is stabilized in 

the choline oxidase variant with C101 in the presence of Tris at pH 8.0. 
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Figure 5.2. Effect of Tris on the UV-visible absorption spectrum of the S101C enzyme. 

(A) S101C enzyme in 20 mM Tris-Cl (black), TES (red), HEPES (blue), and sodium phosphate 

(purple), pH 8.0 and 25 °C. (B) UV-visible absorption spectra of the S101C (black), S101T (blue), 

S101A (purple), and wild-type (red) enzymes in 20 mM Tris-Cl, pH 8.0 and 25 °C. 

 

Effect of pH on the UV-Visible Absorption Spectrum of the S101C Enzyme with Tris. 

The effect of pH on the UV-visible absorption spectrum of the S101C in the presence of 20 mM 

Tris was determined to establish the pKa values for ionizations relevant to the stabilization of the 

C4a-S-cysteinyl-flavin. In the presence of Tris at pH 6.2, the S101C enzyme exhibited absorption 

maxima at 371 nm and 455 nm indicative of the flavin being in the oxidized state (blue species in 

Figure 5.3A); both maxima decreased with increasing pH from 6.2 to 8.7 with a concomitant 

increase of absorbance at 410 nm, yielding a C4a-S-cysteinyl-flavin (black species in Figure 5.3A). 

Further increasing pH to 10.2 resulted in an oxidized flavin with the two maxima at 354 nm and 

448 nm (red species in Figure 5.3A). 

The determination of the pKa values for the equilibria involving the C4a-S-cysteinyl-flavin 

required establishing the isosbestic points between the oxidized flavin species at low and high pH 

values, which were determined by plotting the difference spectra between the species at pH 10.2 
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minus the species seen at the other pH values (intersecting points between the blue and red species 

in Figure 5.3B). A plot of the ∆(438 nm - 402 nm) as a function of the pH value yielded two pKa values 

of 6.8 ± 0.1 and 9.5 ± 0.1 for an unprotonated group and a protonated group that are required for 

the stabilization of the C4a-S-cysteinyl-flavin, respectively (Figure 5.3B inset). 

Further increasing pH to more alkaline values yielded a hypsochromic shift of the flavin 

high-energy band to 344 nm, and a concomitant bathochromic shift of the low-energy band to 455 

nm, with a set of isosbestic points at 367 nm and 428 nm (Figure 5.3C). A pKa3 value of >11.3 was 

established by plotting the differences between the positive peak at 380 nm and the negative peak 

at 340 nm of the difference spectra as a function of pH (Figure 5.3D). Thus, the individual analysis 

of the absorption spectra of the S101C enzyme in the presence of Tris identified three equilibria 

of the enzyme versus pH, involving three forms of oxidized enzyme and a form of the enzyme 

with a C4a-S-cysteinyl-flavin (eq 8). 

(eq 8) 

A global fitting of the data from pH 6.2 to pH 12.0 using the Specfit32 software to an 

equilibrium model of four species (eq 8) in the S101C enzyme in the presence of Tris returned 

three pKa values of 6.9, 9.3, and >11.1 (Figure 5.3E), in good agreement with the results obtained 

from the individual analysis of the difference spectra. The UV-visible absorption spectra of the 

four enzyme-species extracted from the global fitting analysis were in good agreement with the 

species seen experimentally (Figure 5.3F). 
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Figure 5.3 Effect of pH on the UV-visible absorption spectrum of the S101C enzyme with 

20 mM Tris in 20 mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) S101C 

enzyme in the range of pH 6.2 (blue) to pH 10.2 (red). (B) Difference UV-visible absorption 

spectra between the species at pH 10.2 minus the species seen at lower pH values in panel A. Inset: 

plot of the ∆(438 nm - 402 nm) as a function of the pH, the curve is the fit of the data to eq 7. (C) S101C 

enzyme in the range of pH 10.2 (red) to pH 12.0 (green). (D) Difference UV-visible absorption 

spectra between the species at pH 10.2 minus the species seen at higher pH values in panel C. 

Inset: plot of the ∆(380 nm - 340 nm) as a function of the pH, the curve is the fit of the data to eq 5. (E) 

Global fitting of the data from pH 6.2 to pH 12.0 using the Specfit32 software to an equilibrium 

model of four species shown in eq 8. (F) Simulated UV-visible absorption spectra extracted from 

the global fitting analysis. 

 

Effect of pH on the UV-Visible Absorption Spectra of the S101C, S101A, and Wild-type 

Enzymes. In the absence of Tris, the UV-visible absorption spectrum of the S101C enzyme at pH 

6.3 displayed two maxima at 370 nm and 457 nm (Figure 5.4A). Increasing pH yielded two sets 

of spectral changes, which identified two well-separated pKa values of 8.0 ± 0.1, which was 

associated with hypsochromic shifts of both bands of the oxidized flavin (Figure 5.4A-B), and of 

>12.0, which was associated with spectral changes like those seen at high pH in the S101C enzyme 

with Tris (Figure 5.4C-D). No flavin species resembling a C4a-S-cysteinyl-flavin was observed in 

the pH titration of the S101C enzyme without Tris. 
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Figure 5.4 Effect of pH on the UV-visible absorption spectrum of the S101C enzyme in 

20 mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) S101C enzyme in the range 

of pH 6.3 (blue) to pH 9.8 (red). (B) Difference UV-visible absorption spectra between the species 

at pH 9.8 minus the species seen at lower pH values in panel A. Inset: plot of the ∆(416 nm - 494 nm) 

as a function of the pH, the curve is the fit of the data to eq 5. (C) S101C enzyme in the range of 

pH 9.8 (red) to pH 12.0 (green). (D) Difference UV-visible absorption spectra between the species 

at pH 9.8 minus the species seen at higher pH values in panel C. Inset: plot of the ∆(384 nm - 341 nm) 

as a function of the pH, the curve is the fit of the data to eq 5. 

 

The pH titrations of the wild-type and S101A enzymes were also carried out as controls. 

Both the wild-type and S101A enzymes in the absence of Tris yielded results like those of the 

S101C enzyme without Tris (Figure 5.5 and 5.6), with spectral changes associated with 
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hypsochromic shifts of the bands of the oxidized flavin at low pH values and a large hypsochromic 

shift of the flavin high-energy band at more alkaline pH values. The pKa values associated with 

the spectral changes in the wild-type enzyme were 8.2 ± 0.1 and >11.6 (Figure 5.5), and 8.6 ± 0.1 

and >12.0 for the S101A enzyme (Figure 5.6). 

 

Figure 5.5 Effect of pH on the UV-visible absorption spectrum of the wild-type enzyme 

in 20 mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) Wild-type enzyme in the 

range of pH 6.0 (blue) to pH 10.1 (red). (B) Difference UV-visible absorption spectra between the 

species at pH 10.1 minus the species seen at lower pH values in panel A. Inset: plot of the ∆(419 

nm - 493 nm) as a function of the pH, the curve is the fit of the data to eq 5. (C) Wild-type enzyme in 

the range of pH 10.1 (red) to pH 12.1 (green). (D) Difference UV-visible absorption spectra 
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between the species at pH 10.1 minus the species seen at higher pH values in panel C. Inset: plot 

of the ∆(378 nm - 336 nm) as a function of the pH, the curve is the fit of the data to eq 5. 

 

 

Figure 5.6 Effect of pH on the UV-visible absorption spectrum of the S101A enzyme in 

20 mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) S101A enzyme in the range 

of pH 6.0 (blue) to pH 10.5 (red). (B) Difference UV-visible absorption spectra between the species 

at pH 10.5 minus the species seen at lower pH values in panel A. Inset: plot of the ∆(418 nm - 495 nm) 

as a function of the pH, the curve is the fit of the data to eq 5. (C) S101A enzyme in the range of 

pH 10.5 (red) to pH 12.0 (green). (D) Difference UV-visible absorption spectra between the 

species at pH 10.5 minus the species seen at higher pH values in panel C. Inset: plot of the ∆(378 

nm - 338 nm) as a function of the pH, the curve is the fit of the data to eq 5. 
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Effect of pH on the UV-Visible Absorption Spectrum of the Wild-type Enzyme with Tris. 

In the presence of Tris, the pH dependence of the UV-visible absorption spectrum of the wild-type 

enzyme was like that without Tris (Figure 5.7), but in the pH range from 6.0 to 10.5 two ionizations 

were present instead of the single one seen when Tris was absent (Figure 5.7B). A pKa of 7.3 ± 

0.1, which accounted for ~80% of the change in the ∆(417 nm - 493 nm) as a function of pH, and a pKa 

of 8.9 ± 0.1, which accounted for ~20% of the change in the ∆(417 nm - 493 nm) as a function of pH, 

were established.  
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Figure 5.7 Effect of pH on the UV-visible absorption spectrum of the wild-type enzyme 

with 20 mM Tris, in 20 mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) Wild-

type enzyme in the range of pH 6.0 (blue) to pH 10.5 (red). (B) Difference UV-visible absorption 

spectra between the species at pH 10.5 minus the species seen at lower pH values in panel A. Inset: 

plot of the ∆(417 nm - 493 nm) as a function of the pH, the curve is the fit of the data to eq 6. (C) Wild-

type in the range of pH 10.5 (red) to pH 12.1 (green). (D) Difference UV-visible absorption spectra 

between the species at pH 10.5 minus the species seen at higher pH values in panel C. Inset: plot 

of the ∆(378 nm - 338 nm) as a function of the pH, the curve is the fit of the data to eq 5.  

 

Effect of pH on the UV-Visible Absorption Spectrum of the H99N Enzyme. The effect of 

pH on the UV-visible absorption spectrum of the H99N enzyme, in which the flavin is tightly but 

not covalently bound to the protein 21, was determined to establish which spectral changes and pKa 
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value were associated with the ionization of the N3 atom of the flavin. As expected, only a single 

ionization was observed with the H99N enzyme, with a hypsochromic shift of the high-energy 

band from 395 nm at pH 7.5 to 358 nm at pH 11.9 (Figure 5.8A). As shown in Figure 5.8B, a 

single pKa value of 10.0 ± 0.1 was determined.  A small perturbation of the UV-visible absorption 

spectrum of the H99N enzyme that could not be fit due to its negligible magnitude was also 

observed between pH 7.5 and pH 9.1 (Figure 5.8A), probably due to a pH-dependent change in 

the microenvironment around the flavin.  

 

Figure 5.8 Effect of pH on the UV-visible absorption spectrum of the H99N enzyme in 20 

mM sodium phosphate, 20 mM sodium pyrophosphate, 15 °C. (A) H99N enzyme in the range of 

pH 7.5 (blue) to pH 11.9 (green). (B) Difference UV-visible absorption spectra between the species 

at pH 11.9 minus the species seen at lower pH values in panel A. Inset: plot of the ∆(398 nm - 

348 nm) as a function of the pH, the curve is the fit of the data to eq 5. 

 

Competitive Inhibition of Choline Oxidase by Tris. A previous study established that 

many ternary amines are competitive inhibitors of choline oxidase with choline as a substrate.54 

The effect of Tris as an inhibitor of choline oxidase was studied here by determining the initial 

rates of reaction in a Clark-type electrode equilibrated at atmospheric oxygen with choline as a 

substrate for wild-type choline oxidase in 50 mM sodium phosphate, pH 6.0 and 25 oC. As shown 



104 

 

in Figure 5.9, a double reciprocal plot of the initial rates of reaction versus the concentration of 

choline acquired at fixed concentrations of Tris yielded lines intersecting on the y-axis. These data 

are consistent with Tris being a competitive inhibitor of choline in wild-type choline oxidase. 

 

Figure 5.9. Double reciprocal plot of the inhibition of the wild-type enzyme by Tris with 

choline as a substrate. Initial rates were measured in air-saturated 50 mM sodium phosphate, pH 

6.0 and 25 oC. Tris concentrations were 0 (▲), 2 (▼), 5 (△) and 10 mM (▽). Data were fit with 

eq 2. 

 

Glycine Betaine Titration of the S101C Enzyme-Tris Complex. The active site of choline 

oxidase is sufficient to accommodate a single glycine betaine molecule, as shown in the crystal 

structure of the enzyme-glycine betaine complex recently reported (Figure 5.1).35 Thus, if Tris 

binds at the active site of the enzyme it should be displaced by increasing concentrations of glycine 

betaine. A shown in Figure 5.10A, with increasing concentration of glycine betaine the S101C 

enzyme in 20 mM Tris-Cl, pH 8.0 and 25 oC, showed a progressive decay of the C4a-S-cysteinyl-

flavin and formation of oxidized flavin, as indicated by the decrease in absorbance in the 400 nm-

region and concomitant increases in absorbance in the 370 nm and 450 nm regions of the 



105 

 

electromagnetic spectrum. Figure 5.10B shows the computed UV-visible absorption spectrum of 

the C4a-S-cysteinyl-flavin, which was obtained by subtracting the spectrum corresponding to 

40%1 oxidized S101C enzyme from the mixture spectrum of the S101C enzyme at 0 M glycine 

betaine. The resulting computed UV-visible absorption spectrum of the C4a-S-cysteinyl-flavin 

exhibited an absorbance maximum at 399 nm (ε399 = 8.6 mM-1cm-1).  

 

Figure 5.10 Glycine betaine titration of the S101C enzyme-Tris complex in 20 mM Tris-

Cl, pH 8.0 and 25 °C. (A) The UV-visible absorption spectrum of the S101C enzyme in the 

presence of glycine betaine ranging from 0 M (red) to 1.3 M (blue). (B) Calculated UV-visible 

absorption spectrum of the C4a-S-cysteinyl-flavin (black) obtained from the difference spectrum 

of the enzyme in the absence of glycine betaine (red) minus 40% spectrum1 of the enzyme in the 

presence of 1.3 M glycine betaine (blue) and normalized back to 100%. 

  

Stopped-flow Kinetics for Formation of the C4a-S-cysteinyl-flavin. The S101C enzyme 

was mixed with varying concentrations of Tris in 50 mM sodium phosphate, at varying pH values 

around the pKa value of Tris (i.e., pKa = 8.1) in a stopped-flow spectrophotometer to establish 

                                                 
1 The macroscopic dissociation constant for the enzyme-Tris complex that results in the formation 

of the C4a-S-cysteinyl-flavin (𝐾𝑑
𝑎𝑝𝑝

) determined in this study is ~14 mM at pH 8.0 (Table 1). The glycine 

betaine titration of the S101C enzyme-Tris complex shown in Figure 10 was conducted in 20 mM Tris-Cl, 

corresponding to ~60% of the S101C enzyme being in complex with Tris and ~40% being in the oxidized, 

free form. 
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whether the protonated, unprotonated or both species of Tris were responsible for the formation of 

the C4a-S-cysteinyl-flavin and its kinetics. As shown in Figure 5.11A for the case of pH 8.5, the 

oxidized flavin in the S101C enzyme was converted to the C4a-S-cysteinyl-flavin within 2 s after 

mixing the enzyme with Tris. The absorbance of the enzyme-bound flavin at 456 nm decreased in 

a biphasic fashion, with a fast phase accounting for 95% of the absorbance change, followed by 

a slow phase that accounted for 5% of the total absorbance change. The observed rate constant 

for the fast phase of the absorbance decrease of the flavin at 456 nm increased hyperbolically with 

increasing concentration of Tris yielding a y-axis intercept (Figure 5.11B), allowing for the 

determination of the first-order rate constant for the formation of the C4a-S-cysteinyl-flavin at 

saturating Tris (k3), the first-order rate constant for the reverse reaction of formation of the C4a-S-

cysteinyl-flavin (k4), and the macroscopic dissociation constant for the enzyme-Tris complex that 

results in the formation of the C4a-S-cysteinyl-flavin (𝐾𝑑
𝑎𝑝𝑝

). The observed rate constant for the 

slow phase for the decrease at 456 nm was independent of the concentration of Tris with an average 

value of 0.7 s-1 and a relative amplitude 5% of the total absorption change, possibly due to a small 

fraction of enzyme not being fully functional. 
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Figure 5.11 Stopped-flow kinetics for formation of the C4a-S-cysteinyl-flavin in the 

S101C enzyme with Tris in 50 mM sodium phosphate pH 8.5 and 25 oC. (A) UV-Visible 

absorption spectrum of the S101C enzyme prior to (blue) and after reacting for 2 s with 100 mM 

Tris. Inset: absorbance decreasing traces of the flavin at 456 nm with 2.5 mM (black), 5 mM (red), 

10 mM (blue), 25 mM (purple), 50 mM (green), 100mM (cyan) and 200 mM (brown) Tris. All 

traces shown were obtained from averages of five shots and fit to eq 3. Time indicated is after the 

end of the flow, i.e. 2.2 ms. (B) Observed rate constants of the absorbance decrease at 456 nm as 

a function of Tris concentration in H2O (solid) and D2O (empty). Averages of five replicates of 

each data points were shown and fit to eq 4.  

 

Similar results were obtained when the S101C enzyme was mixed in the stopped-flow 

spectrophotometer with Tris at pH 8.0 or 9.0. As reported in Table 1, the k3 and k4 values did not 

change between pH 8.0 and 9.0, with values of ~11 s-1 and ~5 s-1, respectively, establishing this 

range as being pH independent. The 𝐾𝑑
𝑎𝑝𝑝

  had similar values between pH 8.0 and 9.0 when the 

concentration of protonated Tris was used in the calculation, but not when the concentration of the 

unprotonated Tris or the total concentration of Tris were used (Table 5.1), consistent with 

protonated Tris being responsible for the observed effects.  
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Table 5.1 Kinetic rate constants for the reversible formation of the C4a-S-cysteinyl-flavin in the 

S101C enzyme with Tris a.  
pH 𝐾𝑑

𝑎𝑝𝑝
, mM k3, s-1 k4, s-1 

Total b protonated b deprotonated b                           

8.0 14 ± 4 9 ± 3 5 ± 1 10.2 ± 0.5 4.7 ± 0.7 

8.5 21 ± 5 7 ± 2 14 ± 3 10.6 ± 0.4 4.8 ± 0.4 

9.0   42 ± 10 6 ± 1 36 ± 9 12.3 ± 0.8 5.5 ± 0.3 

Average   NAc 7 ± 3    NAc 11.0 ± 0.6 5.1 ± 0.5 
a Conditions: 50 mM sodium pyrophosphate and 25 oC; b Concentrations of protonated and 

unprotonated Tris were calculated from the total concentration of Tris based on the pKa value of 

8.1 for Tris in bulk solvent; c NA, not applicable.  

 

Deuterium Kinetic Isotope Effects and Proton Inventories on the Reversible Formation 

of the C4a-S-cysteinyl-flavin. The effects of deuterated solvent on the stopped-flow kinetics were 

determined to establish whether solvent exchangeable protons were in flight in the transition states 

for the reaction of reversible formation of the C4a-S-cysteinyl-flavin. The S101C enzyme was 

mixed with Tris in a stopped-flow spectrophotometer in protiated or deuterated aqueous 50 mM 

sodium phosphate, pL 8.5 and 25 oC. Qualitatively the stopped-flow data in D2O were identical to 

those in H2O, but large solvent kinetic isotope effects >6.0 were determined for both the D2Ok3 and 

D2Ok4 values (Table 5.2). A control experiment assessing the effect of 9% glycerol, which has a 

microviscosity equivalent to that of D2O at 25 oC, yielded glycerol effects on all the measurable 

kinetic rate constants that were not significantly different than one (Table 5.2), ruling out potential 

solvent viscosity effects. When the solvent kinetic isotope effect and glycerol effect were repeated 

at pL 8.8, the results were like those obtained at pL 8.5 (Table 5.2), as expected because both pL 

8.5 and pL 8.8 are in the pL-independent region (Table 5.1). 

Table 5.2 Solvent kinetic isotope effects on the reversible formation of the C4a-S-cysteinyl-

flavin in the S101C enzyme with Tris a. 
pL D2Ok3 D2Ok4 glycerolk3 glycerolk4 

8.5 6.3 ± 0.2 7.3 ± 0.4 1.0 ± 0.1 1.1 ± 0.1 

8.8 6.1 ± 0.3 7.8 ± 0.6 1.0 ± 0.1 1.1 ± 0.1 
a Conditions: 50 mM sodium pyrophosphate and 25 oC. 
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The number of solvent exchangeable protons responsible for the large deuterium kinetic 

isotope effects associated with the reversible formation of the C4a-S-cysteinyl-flavin was 

determined by mixing the S101C enzyme with Tris in buffered solutions at pL 8.8 with varying 

mole fractions of D2O. As shown in Figure 5.12, both proton inventories of k3 and k4 were linear, 

consistent with a single proton in flight in the transition state for the reversible formation of the 

C4a-S-cysteinyl-flavin in choline oxidase.  

 

Figure 5.12 Proton inventories of kfor (▼) and krev (△) of the reversible formation of the 

C4a-S-cysteinyl-flavin in the S101C enzyme in 50 mM sodium phosphate, pL 8.8 and 25 oC. Five 

replicates of each data point were performed. 

 

5.4 Discussion  

In this study, a reversible, bicovalently-linked flavin was formed in choline oxidase with 

the introduction of a novel C4a-S-cysteinyl-flavin linkage in addition to the naturally occurring 

8α-N3-histidyl linkage between the FAD and the side chain of H99. This was achieved through the 

replacement of the S101 residue proximal to the C4a atom of the enzyme-bound FAD with cysteine 
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and the incubation of the resulting S101C enzyme with protonated Tris. The effects of pH on the 

UV-visible absorption spectrum of the enzyme-bound flavin were used to extract information on 

the pKa values for the ionizations of groups required for the stabilization of the C4a-S-cysteinyl-

flavin. This information, along with the results of mechanistic probes, such as rapid kinetics, 

deuterium kinetic isotope effects and proton inventories, was employed to elucidate the mechanism 

of formation of the C4a-S-cysteinyl-flavin at the optimal pH range.  

pKa Values of the Flavin N3 Atom and the Hystidyl N1 Atom in Wild-type Choline 

Oxidase. In choline oxidase, the ionization of the N3 atom of the flavin in the oxidized state has 

a pKa value of ≥11.6, and the ionization of the N1 atom of H99, which is the site of covalent 

attachment of FAD to the protein through an 8α-N3-histidyl linkage, has a pKa value of 8.2. 

Evidence for this conclusion comes from the comparison of the pH profiles of the UV-visible 

absorption spectra of the wild-type and H99N enzymes. Because the H99N enzyme lacks the 

histidyl linkage with the flavin and consequently does not have an ionization at the N1 atom of 

H99, the pKa value of 10.0 observed in the pH titration of the H99N enzyme could be 

unequivocally assigned to the ionization of the N3 atom of the flavin (Scheme 5.1A). Upon 

deprotonation of the flavin N3 atom there is an increase in absorbance and a hypsochromic shift 

of the high-energy band from 395 nm to 358 nm at high pH (Figure 5.8), as typically observed for 

the ionization of the N3 atom in other flavoproteins and model systems.55-57 The spectral changes 

in the H99N enzyme were like those seen at alkaline pH values with the wild-type enzyme, 

allowing for the assignment of the pKa values >11.6 seen in Fig. 5 to the ionization of the N3 atom 

of the flavin in the wild-type form of choline oxidase. The ionization of the flavin N3 atom is 

maintained in the enzyme with S101 replaced with alanine or cysteine (Scheme 5.1B). 
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The second pKa value of 8.2 seen in the pH titration of the wild-type enzyme in the absence 

of Tris (Figure 5.5) could be assigned to the ionization of the N1 atom of H99 of choline oxidase 

(Scheme 5.1B), since this is the only other pH-sensitive site expected to alter the absorbance of 

the flavin. The deprotonation of the N1 atom of H99 is associated with a large hypsochromic shift 

of the high-energy band of the flavin from 370 nm to 353 nm concomitant with a decrease in 

absorbance, and a small hypsochromic shift of the low-energy band of the flavin (Figure 5.5). As 

expected, the ionizations of the N3 atom of the flavin and the N1 atom of H99 were present also 

in the enzymes in which S101 was replaced with alanine or cysteine (Scheme 5.1B), and the wild-

type enzyme in the presence of Tris, although with pKa values slightly different due to the 

replacement of an amino acid residue close to the flavin or the presence of Tris bound at the active 

site of the enzyme (see below). For comparison, in 8α-N-imidazolyl-riboflavin free in solution the 

N3 atom of the flavin has a pKa value of ~9.7 and the N atom of the 8α-imidazole has a pKa value 

~6.0,58, 59 further underscoring the modulation of the hystidyl-flavin by the protein 

microenvironment surrounding the flavin in choline oxidase. Consistent with the notion of the 

protein microenvironment surrounding the flavin modulating the equilibrium for the ionization of 

the hystidyl-flavin, pKa values of 5.4 and 6.2 were previously reported for cholesterol oxidase from 

Schizophyllum commune and Gleocystidium chrysocreas, respectively.60 
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Scheme 5.1 Ionization of the N3 atom of the flavin in the H99N enzyme (A), and in the 

wild-type, S101A, and S101C enzymes (B), and of the histidyl N1 atom of the 8α-N3-histidyl-

FAD in the wild-type, S101A, and S101C enzymes (B). 

 

Effect of Tris Binding on the pKa Value of the Hystidyl N1 Atom in Wild-type Choline 

Oxidase. Binding of Tris in the active site of wild-type choline oxidase lowers the pKa value for 

the ionization of the N1 atom of H99 by ~1 pH unit. Evidence for this conclusion comes from the 

effect of Tris on the pH titration of the UV-visible absorption spectrum of the wild-type enzyme 

and the inhibition of its catalytic activity with choline as a substrate exerted by Tris. In the presence 

of 20 mM Tris, the wild-type enzyme showed two pKa values in the pH range from 6.0 to 10.5 

(Figure 5.7), as compared to a single pKa value observed without Tris (Figure 5.5). The pKa value 

of 7.3 seen in the wild-type enzyme with Tris is assigned to the N1 atom of H99 (Scheme 5.2), 

based on the hypsochromic shifts of the flavin bands and the large magnitude of the spectral 

changes accounting for ~80% of the total change observed (Figure 5.7). On the other hand, the 
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small spectral changes associated with the pKa value seen at 8.9, which account for ~20% of the 

total absorption changes in the wild-type enzyme with Tris, are consistent with a perturbation of 

the flavin absorbance due to a nearby molecule but not of the hystidyl-flavin itself, for which much 

bigger changes would be expected. Thus, the pKa value of 8.9 is assigned to Tris when the molecule 

is bound at the active site of the enzyme (Scheme 5.2). Alternatively, one would have to envision 

an altered absorbance of the flavin in the active site of the enzyme due to a change in the ionization 

of Tris when free in solution and at a low concentration of 20 mM, which is unprecedented and 

highly unlikely. The competitive inhibition pattern seen with Tris versus choline as a substrate for 

the wild-type enzyme is consistent, although by itself it does not prove, with Tris competing with 

choline for binding at the active site of the enzyme. In this regard, a previous study established 

that trimethylamine, dimethylethylamine, and diethylmethylamine, which have structures 

resembling that of Tris, act as competitive inhibitors versus choline as a substrate for choline 

oxidase.54 The protonated state of Tris is favored when the compound is bound to choline oxidase 

as compared to bulk solvent, as suggested by the increase of the pKa value for Tris from 8. in 

solution to 8.9 in the active site of the enzyme.  

 

 

Scheme 5.2 Ionization of the histidyl N1 atom of H99, the flavin N3 atom of the 8α-N3-

histidyl-FAD, and Tris, in wild-type choline oxidase when Tris is present. 

 

Stabilization of the C4a-S-cysteinyl-flavin in the S101C Enzyme. A C4a-S-cysteinyl-

flavin is stabilized in the choline oxidase variant S101C when protonated Tris is bound at the active 
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site of the enzyme in the pH range ~7.0 and ~9.52. The involvement of C101 in the C4a-S-

cysteinyl-flavin is established by the detection of an absorbance spectrum consistent with a flavin 

C4a-adduct only with the S101C enzyme, but not with the wild-type or other S101 variants of the 

enzyme that contain an alanine or a threonine (Figure 5.2). The requirement for Tris to stabilize 

the C4a-S-cysteinyl-flavin is supported by the comparison of the UV-visible absorption spectrum 

of the S101C enzyme in Tris buffer and in other buffers such as TES, HEPES or sodium phosphate, 

showing that a flavin species with broad maximal absorbance at 376 nm is seen only when Tris is 

present (Figure 5.2). Both the wavelength of maximal absorbance and the intensity of the peak of 

the C4a-S-cysteinyl-flavin in choline oxidase (ε399 = 8.6 mM-1cm-1, Figure 5.10B) agree with the 

features of C4a-S-cysteinyl-flavins previously observed in a triple mutant of mercuric ion 

reductase (ε382=7.5 mM-1cm-1),22 lipoamide dehydrogenase (ε384 =8.7 mM-1cm-1) ,23 and the LOV 

domain of phototropin (ε378 = 8.7 mM-1cm-1).27 

Evidence for protonated Tris, rather than its unprotonated species, being the effector for 

the formation of the C4a-S-cysteinyl-flavin comes from the rapid kinetics data with the S101C 

enzyme and Tris determined in the stopped-flow spectrophotometer. The observation that the 

𝐾𝑑
𝑎𝑝𝑝

 had the same value at pH 8.0, 8.5, and 9.0, only when the concentrations of protonated Tris 

was used in the calculations, but not the concentrations of unprotonated or total Tris (Table 5.1), 

unequivocally establishes the former as the active species required for the formation of the C4a-

S-cysteinyl-flavin in the S101C enzyme. Further support for placing Tris at the active site of 

choline oxidase is provided by the glycine betaine titration of the S101C enzyme-Tris complex at 

pH 8.0, resulting in the decay of the C4a-S-cysteinyl-flavin (Figure 5.10) due to the displacement 

                                                 
2 Because the pKa values obtained in the pH titration of the S101C enzyme in the presence of Tris through 

a global fitting of the data (Fig. 3E) and those obtained with eq 7 were slightly different but in agreement 

with each other, i.e., 6.8-6.9 and 9.3-9.5, the approximate values of ~7.0 and ~9.5 are considered. 
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of the Tris upon binding of glycine betaine in the active site of the enzyme. The competitive 

inhibition pattern of Tris versus choline as a substrate for the wild-type enzyme, and the 

perturbation of the electromagnetic spectrum of the enzyme-bound flavin yielding an extra pKa 

value of 8.9 when the wild-type enzyme is in the presence of Tris (see above), corroborate the 

ability of choline oxidase to bind Tris in its active site. The requirement for a positively charged 

ligand for the formation of a C4a-S-cysteinyl-flavin has been reported in previous studies on other 

enzymes. Binding of NAD+ promotes the formation of the C4a-S-cysteinyl-flavin in a 

monoalkylated derivative of pig heart lipoamide dehydrogenase 23 and the formation of the C4a-

S-cysteinyl-flavin in the mercuric ion reductase triple mutant only occurs in the presence of 

NADP+.22  

In the pH titration of the UV-visible absorption spectrum of the S101C enzyme with Tris, 

a coupled system involving the deprotonation of H99, C101, and the bound protonated Tris, as 

well as the protonation of the N5 atom of the flavin, contributes to the observed macroscopic pKa1 

of ~7.0 associated with the formation of the C4a-S-cysteinyl linkage. The assignment of the pKa 

of ~9.5 to the N5 atom of the C4a-S-cysteinyl-flavin is instead because its deprotonation will allow 

a redistribution of the valence electrons between the N5 and C4a atoms of the flavin with 

consequent cleavage of the C4a-S bond.  An apparent pKa of ~6.8 was previously assigned to the 

side chain of C140 involved in the formation of the C4a-S-cysteinyl-flavin in the mercuric ion 

reductase triple mutant by pH titration on the UV-visible absorption spectrum of the enzyme.22 A 

recent study on the C2 component of the two-component monooxygenase using rapid kinetics 

established a similar value of ~9.5 for the ionization of the N5 atom of the flavin in the C4a-

hydroperoxo-flavin bound to the enzyme.61 Scheme 5.3 illustrates the three pH-dependent 

equilibria that are established between the C4a-S-cysteinyl-flavin and the three oxidized forms of 
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the S101C enzyme when Tris is present (Figure 5.3), where the two equilibria at pH ~7.0 and ~9.5 

define the optimum range of pH for stabilization of the C4a-S-cysteinyl-flavin, and that at pH 

≥11.1 is for the ionization of the N3 atom of the flavin.  

 

Scheme 5.3 Stabilization of the C4a-S-cysteinyl-flavin in the S101C enzyme with Tris. 

The ionization of H99 of the C4a-S-cysteinyl-flavin is based on the behavior of the wild-type 

enzyme in the presence of Tris, showing a pKa value of 7.3. The ionization of Tris is based on the 

pKa value of 8.9 as determined in the complex with the wild-type enzyme. In the S101C enzyme 

with Tris, these pKa values were not directly established. The ionization of C101 above pH 9.5 is 

arbitrarily assigned here based on chemical reasoning but without experimental evidence. 

 

Mechanism of Formation of the C4a-S-cysteinyl-flavin in the S101C Enzyme with Tris. 

The minimal mechanism of Scheme 5.4 illustrates the biochemical details for the reversible 

formation of the C4a-S-cysteinyl-flavin elicited by protonated Tris in the S101C enzyme under 

optimal pH, i.e., between pH ~7.0 and ~9.5. Upon formation of a complex of the oxidized enzyme 

and protonated Tris, the side chain of C101 deprotonates; the resulting thiolate forms the C4a-S-

cysteinyl-flavin through a nucleophilic reaction with the C4a atom of the flavin; the protonated 

Tris donates a proton to the N5 atom of the flavin. Evidence for the mechanism of Scheme 5.4 

comes from the rapid kinetics data of the S101C enzyme with Tris, the associated deuterium kinetic 

isotope effects and proton inventories, and the thermodynamic titrations of the UV-visible 

absorption spectrum of the S101C, wild-type, and other variants of choline oxidase as a function 

of pH discussed above.  
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Scheme 5.4 Minimal mechanism for the reversible formation of the C4a-S-cysteinyl-flavin 

in the S101C enzyme with protonated Tris in the pH range 8.0-9.0. The kinetic parameters shown 

in parenthesis are from the average values in Table 1. 

 

Formation of a complex of the oxidized enzyme with Tris is established by the hyperbolic 

pattern of the observed rate constant for the absorbance decrease at 456 nm (kobs1) as a function of 

the concentration of Tris upon mixing the S101C enzyme and Tris in a stopped-flow 

spectrophotometer (Figure 5.11). As discussed above, the observation that the 𝐾𝑑
𝑎𝑝𝑝

 value for the 

formation of the complex has the same value irrespective of the pH when the concentration of 

protonated Tris is used for the calculation demonstrates that Tris must be protonated to elicit its 

effect. Several lines of evidence for binding of Tris at the active site of the enzyme, either the 

S101C or the wild-type form, have been presented above. The 𝐾𝑑
𝑎𝑝𝑝

 value of ~7.0 mM determined 

here for binding of protonated Tris to the S101C enzyme is comparable to the inhibition constants 

previously determined for other tertiary amines that act as competitive inhibitors versus choline in 

wild-type choline oxidase, with Kis values between 2.4 mM and 9.0 mM determined at pH 8.0 with 

trimethylamine, dimethylethylamine, and diethylmethylamine.54 

Formation of a complex between the enzyme and protonated Tris in the active site of the 

S101C enzyme results in the rapid deprotonation of the thiol side chain of C101 that triggers the 

nucleophilic reaction of C101 with the C4a atom and the protonation of the N5 atom of the flavin 

by Tris, with the latter being rate-limiting for the process with a rate constant of ~11 s-1 at the pH 
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optimum of 7.0-9.5 (step k3 in Scheme 5.4). The proton inventory establishes that a single proton 

is in flight in the transition state for the formation of the C4a-S-cysteinyl-flavin (Figure 5.12). The 

large solvent deuterium kinetic isotope effect of ~6.2 (Table 5.2) determined on k3 is consistent 

with a symmetrical transition state for a proton transfer between the two N atoms of Tris and the 

flavin (Scheme 5.4).62 Further evidence for a rate-limiting proton transfer from Tris to the flavin 

comes from the equilibrium isotope effect of ~1.2 computed for D2Ok4/
 D2Ok3 at pL 8.5-8.8, which 

also rules out the alternative possibility of a proton transfer involving C101 for which an inverse 

equilibrium isotope effect of ~0.55 is expected. Deprotonation of the cysteine thiol must be 

induced by binding of protonated Tris in the active site of the enzyme because in the absence of 

Tris the S101C enzyme does not stabilize the C4a-S-cysteinyl-flavin. This is perhaps due to C101 

being protonated at least up to pH 9.53 in the active site of the enzyme in the absence of protonated 

Tris possibly due to an electrostatic effect of E312, which is not neutralized by binding a positively 

charged ligand in the free enzyme as it occurs with Tris. The possibility that a conformational 

change of the loop harboring C101 arising from the binding of the positively charged Tris in the 

active site of the enzyme is (partially) responsible for the deprotonation of C101 that results in the 

formation of the C4a-S-cysteinyl-flavin cannot be ruled out. E312 was previously shown to be 

important for binding the trimethylammonium group of ligands with mutagenesis, substrate 

analogs and competitive inhibitors.39, 45 The interaction of the side chain of E312 with the positive 

charge of the ligand in the active site of choline oxidase was directly observed in the 

crystallographic structure of the wild-type enzyme in complex with glycine betaine (Figure 5.1).35 

The lowering of the pKa value of the hystidyl-flavin H99 from 8.2 to 7.3 in the wild-type choline 

                                                 
3Above pH 9.5, the deprotonation of the N5 atom of the C4a-S-cysteinyl-flavin triggers the 

cleavage of the C4a-S bond yielding oxidized flavin, as discussed below. 
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oxidase in the presence of Tris is consistent with stabilization of unprotonated species for groups 

that ionize in the active site of the enzyme, thus indirectly supporting the notion that a similar 

modulation of the pKa value may occur for the thiol side chain of C101. It is worth noting that an 

alternate mechanism for the formation of a C4a-S-cysteinyl-flavin from a protonated thiol was 

proposed for mercuric ion reductase based on the observation that the C4a-S-cysteinyl-flavin is 

formed below a pKa of ~6.8, which the authors assigned to the thiol participating in the formation 

of the flavin adduct.22 

Formation of the C4a-S-cysteinyl-flavin is reversible, with a rate constant for the reverse 

reaction of ~5 s-1, as indicated by the y-intercept being significantly different from zero in a plot 

of the kobs1 value as a function of the concentration of protonated Tris (Figure 5.11). The reverse 

reaction is triggered by the deprotonation of the N5 atom of the C4a-S-cysteinyl-flavin by Tris 

base, which is associated with a large solvent deuterium kinetic isotope effect of ~7.5 determined 

on the rate constant for the reverse formation (k4) of the C4a-S-cysteinyl-flavin (Table 5.2). A 

single proton is in flight in the transition state for the reverse formation of the C4a-S-cysteinyl-

flavin, as suggested by the proton inventory on the k4 value (Figure 5.12). A pKa of ~8.9 is assigned 

to Tris when bound at the active site of the wild-type enzyme (Scheme 5.2), which is close to the 

pKa of ~9.5 of the N5 atom of the C4a-S-cysteinyl-flavin. Thus, the forward and reverse steps of 

the formation of the C4a-S-cysteinyl-flavin are controlled by proton transfers between 

acid/conjugate base of nearly-matched acidities, consistent with the similar value of k3 and k4 

(Table 5.1), and a symmetrical transition state for proton transfer that results in isotope effects for 

the forward and reverse reactions close to 7.62 
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5.5 Conclusion  

In summary, we have used mutagenesis, rapid kinetics, and mechanistic probes such as pH, 

kinetic isotope effects and proton inventories, to engineer a reversible, C4a-S-cysteinyl-flavin 

linkage in choline oxidase. Formation of the C4a-S-cysteinyl-flavin linkage between the side chain 

of C101 and the 8α-N3-histidyl flavin in the active site of the S101C enzyme is triggered by the 

binding of protonated Tris in the active site of the enzyme, and it occurs on a timescale that is 

amenable to investigation by using a stopped-flow spectrophotometer. The pH titration data of the 

UV-visible absorption spectrum of the enzyme-bound flavin have established that the C4a-S-

cysteinyl-flavin is stabilized between pH ~7.0 and ~9.5, in which the side chain of C101 is 

unprotonated and the N5 atom of the C4a-S-cysteinyl-flavin is protonated. The presence of Tris 

bound at the active site of the enzyme is required to deprotonate the cysteine and to trigger the 

formation of the C4a-S-cysteinyl-flavin, and for the stabilization of the C4a-S-cysteinyl-flavin, as 

indicated by the decay of the C4a-S-cysteinyl-flavin when the bound Tris is replaced by glycine 

betaine. This study establishes that the de novo engineering of a reversible bicovalent C4a-S-

cysteinyl-8α-N3-histidyl flavin is feasible in a flavoprotein; it provides a detailed mechanistic 

analysis for the reversible formation of the engineered linkage between the flavin and the protein, 

identifying an optimal pH range and a mechanistic rationale for the stabilization of the C4a-S-

cysteinyl-flavin. Finally, this study presents an example of an intramolecular reaction of an 

enzyme-bound flavin with the side chain of an active site residue that does not involve a substrate 

but rather it is triggered by the binding of an exogenous ligand in the active site of the enzyme.  
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6 CHAPTER 6: A TRANSIENT, PHOTOINDUCED INTRAMOLECULAR C4A-N-

HISTIDYL-FLAVIN IN CHOLINE OXIDASE 

(The author’s contribution involves spectroscopic characterization of wild-type and S101A 

enzyme, data analysis and interpretation.) 

 

6.1 Abstract  

Fluorescence excitation spectrum is a powerful tool to investigate transient photoinduced 

intermediates and energy transfer of fluorophores over the course of excite states. Flavin 

fluorescence emission is widely used to study numerous biochemical and biophysical processes in 

flavoproteins due to its high sensitivity to environments. In comparison, flavin fluorescence 

excitation spectroscopy does not receive much attention in the study of flavoproteins including 

four classes of flavin-dependent photoreceptors. In this study, we report a photoinduced transient 

C4a-N-histidyl-FAD in choline oxidase with the aid of fluorescence excitation spectroscopy. Site-

directed mutagenesis, solvent equilibrium isotope effects and pH effects on the stoke shifts of 

flavin in choline oxidase wild-type demonstrated H466 as the adduct on the C4a atom of flavin 

upon excitation, and provided a mechanistic rationale involving photoinduced electron transfer 

(PET) for the formation of the novel photoinduced transient flavin C4a adduct. Moreover, it 

presents an example of the application of flavin fluorescence excitation spectroscopy in the 

understanding of excited-state processes in a flavin-dependent light-sensitive protein. 

6.2 Introduction  

Flavins are highly reactive molecules utilized by a wide-array of enzymes to carry out a 

variety of  biological processes such as detoxification, oxidation, biosysnthesis, and DNA damage 

repair.1 Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are capable of 

carrying out a wide array of chemical reactions due to the versatility of the isoalloxazine ring by 
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catalyzing single and double electron transfers and nucleophilic and electrophilic attacks.1, 2 The 

reactivity of the flavin is readily detectable due to the spectral characteristics of the conjugated 

isoalloxazine ring. The redox state of the flavin is easily followed based on distinct spectral 

signature in each oxidation and reduced state.3 A distinct biophysical characteristic of flavin 

cofactors are the ability to fluoresce when excited. Flavin emission is sensitive to the environment 

with changes in wavelength, intensity and life time being observed due to changes in confinement, 

pH, temperature and solvent.4-9 The high sensitivity of emission allows it being a powerful tool to 

investigate the biochemical and biophysical processes in flavoproteins. The life time, wavelength, 

intensity and quantum yield of the flavin fluorescence emission are often exploited to follow ligand 

binding, catalysis, conformational changes and excited-state processes in flavoproteins.9-13 

Fluorescence excitation spectroscopy, on the other hand, is also a useful tool especially for the 

investigation of transient intermediates and energy transfer over the course of excited-state process 

but not commonly utilized in study of flavoproteins. 

Flavin, upon light excitation, can serve as either an electron donor or acceptor through 

photoinduced electron transfer (PET), which quenches the flavin fluorescence.9, 11 The polarity 

and ionization states of the isoalloxazine ring are altered affecting the proton affinity at both the 

N1 and N5 atoms in excited state.14-16 The excited-state proton transfer (ESPT) could thus occurs 

between nitrogen atom in flavin, resulting in a red shift of the emission spectrum.14, 17 Due to its 

reactivity in excited states, flavin is utilized by four classes of photoreceptors, e.g. cryptochrome 

blue-light photoreceptors, blue-light BLUF domains, DNA photolyase, and LOV domains. The 

photocycles of cryptochromes and BLUF domains are triggered by photoinduced electron transfer 

from adjacent tryptophans or tyrosines to the excited oxidized FAD.18-20 The catalytic repair of 

pyrimidine dimer or (6-4) photoproducts by DNA photolyases is initiated by photoinduced 
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electron transfer from the excited reduced FAD hydroquinone to the damaged DNA.21, 22 The 

signal transduction cascading from LOV domains involves the formation of a C4a-S-Cysteinyl-

FMN with a proximal cysteine. The well accepted mechanism for the flavin adduct formation in 

LOV domains also involves photoinduced electron transfer from the proximal cysteine to FMN, 

followed by a radical recombination of the yielded FMN semiquinone and cysteine radical.23, 24 

To our knowledge, C4a-S-Cysteinyl-FMN in LOV domain is the only photoinduced flavin C4a 

adduct being reported and well characterized. 

In the crystallographic structure of choline oxidase, the FAD cofactor is covalently bound 

to protein via H99 through an 8α-N3-histidyl linkage (Figure 6.1).25 The enzyme catalyzes the 

oxidation of choline to glycine betaine following two FAD-dependent oxidation reactions.26 

Previous study carried out on a glutamine variant have shown that H466 was the catalytic base that 

activated the substrate for catalysis through the abstraction of a hydroxyl proton.27 In a recent study, 

a reversible, charge-induced C4a-S-cysteinyl-flavin was engineered in choline oxidase by 

replacing Serine 101 with a cysteine (Figure 6.1).28 The formation of the C4a-S-cysteinyl-flavin is 

initiated by binding protonated Tris, which is required to deprotonate the cysteine and to trigger 

the nucleophilic addition of cysteine thiolate to the C4a atom of the flavin.  

In this study, a transient photoinduced flavin C4a adduct was observed in choline oxidase 

wild-type by fluorescence excitation spectroscopy. The choline oxidase wild-type was 

characterized using UV-visible absorption spectroscopy and fluorescence spectroscopy in various 

pH values, and solvent equilibrium isotope effects. The investigation of the residue involved in the 

formation of the C4a-N-histidyl-FAD was aided by determining the pH effects on the stoke shifts 

of the wild-type, H466N and S101A enzymes. A mechanism for the formation of the transient 

photoinduced C4a-N-histidyl-FAD is discussed with the evidence in its support. 
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Figure 6.1 The active site of choline oxidase wild-type (PDB 4MJW). The C atoms of 

the FAD cofactor are shown in yellow, whereas those of H99, S101, C102 and H466 are 

displayed in tan; N, O, and S are colored in blue, red and yellow respectively 

 

6.3 Material and Methods 

Materials. Recombinant choline oxidase wild-type and variant enzymes were obtained 

through methods previously described.29-31 Flavin adenine dinucleotide, glucose oxidase, and 

glucose were purchased from Sigma Aldrich (St. Louis, MO). Glycerol was purchased from Fisher 

(Pittsburgh, PA). Deuterium oxide was obtained from Cambridge Isotope Co. (Andover, MA). All 

other reagents were of the highest purity commercially available.  

Spectroscopic Studies. All enzymes were prepared fresh just prior to measurements by gel-

filtration through PD-10 desalting columns (General Electric, Fairfield, CT) into buffers ranging 

from pH 6.0 to 10.0. UV-visible absorption spectra were recorded in buffers at 15 oC, using an 

Agilent Technologies diode-array model HP 8453 spectrophotometer (Agilent Technologies, 
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Santa Clara, CA). Fluorescence excitation and emission spectra were recorded in corresponding 

buffers at 15 oC, with a Shimadzu Spectrofluorometer Model RF-5301 PC. Wavelength accuracy 

of the spectrofluorometer was ± 1.5 nm with a response time of 20 ms and a sampling interval of 

1 nm. Flavin excitation wavelengths were initially determined through excitation scanning at 3 

nm/min upon setting the emission wavelength to 520 nm. The sample was diluted to a final FAD 

concentration of 2.0 μM using the extinction coefficients experimentally determined previously.29-

31 Samples were excited at λmax value as determined from the excitation scan measured from 300 

to 500 nm and the emission scan was measured from 475 to 650 nm. Enzyme samples that were 

prepared in deuterated buffers underwent the same gel-filtration procedure used for protiated 

buffers with an adjusted pD value for the isotope effect observed from the pH electrode.32 

Anaerobic fluorescence spectra were measured in 20 mM sodium pyrophosphate, pH 6.0 

and 10.0, at 15 oC using an anaerobic fluorescent cuvette (FireflySci, Brooklyn, NY). The 

anaerobic cuvette contained 7 mM glucose in buffer whereas S101A variant (2 μM in flavin 

content) and glucose oxidase (1µM final concentration) enzymes were contained in the side arm. 

The cuvette apparatus was made anaerobic by a 15-minute treatment of flushing with oxygen-free 

argon flush. Once the flushing had completed, the enzymes were mixed with glucose to ensure 

complete scavenging of oxygen traces prior to measuring the fluorescence excitation and emission 

spectra.  

Data Analysis. Data were fit with KaleidaGraph software (Synergy Software, Reading, 

PA). The pL effects on ∆λ (λem – λex) of choline oxidase wild-type enzyme was determined with 

eq.1 to establish the pKa value for the ionizations relevant to the formation of the photoinduced 

flavin species. Eq.1 describes a curve with one pKa value and plateau regions at both low and high 

pH values. 
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∆𝜆 =  
∆𝜆lim1+∆𝜆lim2(

10−p𝐾a

10−pH )

1+ 
10

−p𝐾a

10−pH

    (1) 

6.4 Results 

Effect of pH on the Fluorescence Spectra of FAD in Free Solution. The fluorescence 

excitation and emission spectra of FAD in free solution and choline oxidase wild-type were 

measured in the pL range from 6.0 and 10.0 to investigate photoinduced species present in choline 

oxidase and ionizations relevant to the stabilization of photoinduced species. At pH 6.0, the UV-

visible absorption spectrum of FAD in free solution demonstrated two peaks (λabs) at 375 nm and 

450 nm. The excitation spectrum of FAD in free solution mimicked the general shape of its 

absorption spectrum with two maxima (λex) at 374 nm and 454 nm, consistent with the Kasha-

Vavilov’s rule (Figure 6.2 A). The emission spectrum demonstrated a single band with the peak 

(λem) at 526 nm. At pH 10.0, the spectral behavior of FAD in free solution did not differ by more 

than 2 nm from those at pH 6.0, with λabs at 373 nm and 451 nm, λex at 373 nm and 453 nm, and 

λem at 527 nm respectively (Figure 6.2B).  
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Figure 6.2 Fluorescence and absorption spectroscopy of FAD in free solution and choline 

oxidase. Spectra are for absorbance (black), fluorescence excitation (blue), and fluorescence 

emission (red) in 20 mM sodium pyrophosphate at the pH or pD indicated, 15 oC. FAD in free 

solution at pH 6.0 (A); free solution at 10.0 (B); wild-type enzyme at pH 6.0 (C); wild-type enzyme 

at pH 10.0 (D); wild-type enzyme at pD 6.0 (E); wild-type enzyme at pD 10.0 (F).  
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Effect of pL on the Fluorescence Spectra of FAD in Choline Oxidase Wild-type Enzyme. 

The spectral behavior of FAD in choline oxidase wild-type at pH 6.0 resembled those of FAD in 

free solution. The fluorescence excitation spectrum with peaks at 364 nm and 468 nm followed 

the general shape of its UV-visible absorption spectrum with maxima at 375 nm and 456 nm. The 

emission spectrum showed a band with peak at 526 nm (Figure 6.2C). At pH 10.0, the increase in 

pH yielded hypsochromic shifts of both bands in the UV-visible absorption spectrum to 352 nm 

and 448 nm, associated with the ionization of N1 atom of covalently linked H99.28 The 

fluorescence excitation spectrum showed only one broad band centered at 399 nm, instead of two 

bands observed for FAD in free solution and in choline oxidase at pH 6.0. The distinct excitation 

spectrum of FAD in choline oxidase with respect to its UV-visible absorption spectrum alluded to 

the formation of a transient photoinduced flavin species. A single band with peak at 528 nm was 

determined for the emission spectrum (Figure 6.2D). A similar spectral behavior was observed for 

FAD in choline oxidase wild-type prepared in D2O at pD 6.0 and 10.0 with respect to those 

prepared in H2O. (Figure 6.2E and F).  

The determination of the pKa value for the equilibria involving the photoinduced flavin 

species was achieved by plotting the difference (∆λ) between the band maxima of the lowest 

energy/longest wavelength of the excitation spectra (λex) and the band maxima of the emission 

spectra (λex), which essentially represent the same electron transition, as a function of the pH value 

from 6.0 to 10.0.  In choline oxidase wild-type prepared in H2O, ∆λ of FAD increased from a 

limiting value of 58 ± 2 nm at acidic pH to 127 ± 2 nm at basic pH, with a pKa value of 7.3 ± 0.1 

(Figure 6.3). The pD-dependence of ∆λ in choline oxidase demonstrated no significance difference 

with respect to pH-dependence of ∆λ, measuring a pKa value of 7.3 ± 0.1 with limiting values of 

60 ± 2 nm and 132 ± 2 nm, respectively (Figure 6.3). The pH-dependence of ∆λ of FAD in free 
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solution was also determined. As no photoinduced species was detected for FAD in free solution, 

there was no pKa being observed (Figure 6.3), with an average ∆λ of 73 nm. 

 

Figure 6.3 Effect of pL on ∆λ (λem – λex) of FAD in free solution and wild-type enzyme in 

20 mM sodium pyrophosphate and 20 mM sodium phosphate at 15 oC. FAD in free solution 

prepared in H2O (□); wild-type enzyme prepared in H2O (Δ); wild-type enzyme prepared in D2O 

(▼). pL represents the negative logarithm of the concentration of protium or deuterium ions. Data 

for wild-type enzyme were fit with Eq 1. 

 

Effect of pH on the Fluorescence Spectra of FAD in Choline Oxidase H466N Enzyme. 

The histidine residue at the 466 position is located on an extended flexible loop composed of thirty 

amino acids on the si face of the flavin cofactor, approximately 4.0 Å from the C4a atom (Figure 

6.1). The same experimental method as described with choline oxidase wild-type was carried out 

with the H466Q variant enzyme to probe the role of histidine in the formation of the photoinduced 

flavin species. UV-visible absorption, excitation and emission spectra were measured from pH 6.0 

to 10.0 at 15 oC with the spectra at pH 10.0 shown in Figure 6.4A. Fluorescence excitation spectra 

exhibited red shifts across the entire pH range reflecting minimal peak shifts as compared to the 
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UV-visible absorption spectra. Due to all spectral peaks (i.e. λabs, λex, λem) being similar in value at 

each pH value tested, only the average values are reported. The average values for λabs, λex, λem are 

453, 469, and 520 nm, respectively. In D2O as a buffered solvent, values of λabs, λex, λem were 453, 

464, and 521 nm, respectively. Lack of a pL effect on ∆λ were consistent with the absence or lack 

of the photoinduced flavin species in the H466Q variant.  

 

Figure 6.4 Fluorescence and absorption spectroscopy of H466Q variant enzyme. (A) 

Spectra are for absorbance (black), fluorescence excitation (blue), and fluorescence emission (red) 

in 20 mM sodium pyrophosphate at pH 10.0, 15 oC.  (B) Effect of pH on ∆λ (λem – λex) of FAD in 

H466Q variant enzyme in 20 mM sodium pyrophosphate and 20 mM sodium phosphate prepared 

in H2O ( ) in at 15 oC.  

 

Effect of pH on the Fluorescence Spectra of FAD in Choline Oxidase S101A Enzyme. 

The serine residue at the 101 position is located on a loop comprising eight amino acids with the 

hydroxyl oxygen atom pointing toward the flavin C4a atom at a ~ 4.3 Å distance (Figure 6.1). The 

involvement of the serine residue in the formation of the C4a flavin adduct was probed using 

choline oxidase variant in which the serine was mutated to an alanine residue. The excitation and 

emission spectra are shown in Figure 6.5. The fluorescence excitation spectrum was very similar 
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to the observed spectrum of choline oxidase wild-type at pH 10.0 in which a single peak was 

observed at 396 nm and a pronounced shoulder at 417 nm. The flavin was excited at 396 nm and 

emitted maximum fluorescence at 526 nm and, again, excited at 417 nm with emission maximum 

at 528 nm. The similarity in fluorescence between choline oxidase S101A and wild-type indicated 

the absence of serine 101 in the formation of the photoinduced FAD species. 

 

Figure 6.5 Fluorescence and absorption spectroscopy of S101A variant enzyme. Spectra 

are for absorbance (black), fluorescence excitation (blue), and fluorescence emission (red) in 20 

mM sodium pyrophosphate at pH 10.0, 15 oC. 

 

Anaerobic Fluorescence Spectroscopy of S101A Variant. Fluorescence spectra of S101A 

were measured with oxygen removed from the enzyme system to investigate the participation of 

oxygen in the formation of the photoinduced flavin species. The excitation spectrum of S101A 

variant at pH 10.0 showed a single broad spectrum with a major and minor peak too close in 
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wavelength to be resolved into two separate peaks at 395 and 420 nm. The fluorescence emission 

yielded a λmax at 529 nm with excitation set to 395 nm. The spectral peaks in an anaerobic 

environment were not different from the peaks measured in the presence of oxygen, which ruled 

out the involvement of oxygen in the formation of the photoinduced flavin species. 

6.5 Discussion  

The spectroscopic investigation on choline oxidase presented in this study provides 

evidence that a photoinduced C4a-N-histidyl-FAD is formed in choline oxidase wild-type. At basic 

pH, excitation with light from ~ 300 nm to ~ 550 nm promotes the FAD cofactor to the excited 

singlet state (Step a in Scheme 6.1). A subsequent electron transfer rapidly occurs from the 

proximal deprotonated H466 to the excited FAD (Step c), quenching its deactivation to the ground 

state through fluorescence (Step b). The two highly reactive radical species, FAD semiquinone 

and histidine radical, then either follow charge recombination to oxidized ground-state FAD and 

histidine (Step d) or react with each other to yield C4a-N-histidyl-FAD (Step e). The C4a-N-

histidyl-FAD instantaneously ( 10-15 s) absorbs photon to its excited singlet state (Step f),33 

followed by the excited state deactivation through fluorescence which is observed in the 

fluorescence excitation spectrum (Step g). The oxidized ground-state FAD and histidine are 

recovered upon the breakage of the C4a-N-histidyl bond (Step h). The evidence is presented and 

discussed below. 
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Scheme 6.1 Schematic representation of excited state reaction in choline oxidase wild-

type. The oxidized FAD in choline oxidase was excited to singlet excited state by photons (a). At 

basic pH, the excited-state decay of FAD through fluorescence (b) was quenched by the 

photoinduced electron transfer from the active site H466 to excited-state FAD (c). The yielded 

FAD semiquinone and histidine radical could either follow charge recombination back to ground-

state oxidized FAD and histidine (d), or form C4a-N3-histidyl FAD through radical combination 

(e). The C4a-N3-histidyl FAD was excited to singlet excited state (f) and decayed through 

fluorescence (g), which was observed as the fluorescence excitation spectrum of the flavin C4a 

adduct. The break of C4a-N3-histidyl bond yielded the oxidized FAD and histidine (h). At acidic 

pH, the protonated H466 impeded the photoinduced electron transfer. Upon photon excitation (i), 

the excited-state FAD decayed to ground state through fluorescence (j), which was observed as the 

fluorescence excitation spectrum of oxidized FAD. 

 

A transient photoinduced flavin species was detected at basic pH and consistent with a C4a 

flavin adduct as evidence by the formation of a single spectral peak at ~400 nm in fluorescence 

excitation spectrum. According to the Kasha-Vavilov rule, which assumes the internal conversion 
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from higher excited states to the lowest excited state are much faster than any other competing 

excited-state processes, the fluorescence excitation spectrum of a fluorophore should mimic its 

absorption spectrum.33-36 Some exceptions to the Kasha-Vavilov rule for flavin are known, such 

as blue shifts or quenching of emission when flavin is excited to higher excited states.3, 9, 11 But in 

both cases, the excitation spectra of flavin still resemble the overall, or low-energy portion of its 

UV-visible absorption spectra. In this study, the distinct excitation spectra of FAD in choline 

oxidase wild-type with respect to its UV-visible absorption spectra at basic pH (Figure 6.2 D and 

F) were indicative of the formation of a photoinduced flavin C4a adduct, instead of reflecting the 

electron transitions of the oxidized FAD. An alternative flavin species that exhibits a single 

absorption peak at ~ 400 nm is the protonated cationic oxidized flavin.14, 37 However, the pKa value 

of the equilibrium of cationic and neutral oxidized flavin is low, with a value of ~ 0.1 in the ground 

state and ~ 1.8 in the excited state, which is not consistent with the formation of the transient 

photoinduced species at basic pH.1, 14 Besides, the broad emission centered at ~ 660 nm of cationic 

oxidized flavin was not observed.14  

The transient photoinduced flavin C4a adduct in choline oxidase wild-type at basic pH is 

a C4a-N-histidyl-FAD with H466. The involvement of H466 in the photoinduced C4a-N-histidyl-

FAD is established by the absence of fluorescence excitation spectrum consistent with a flavin 

C4a adduct in the H466N variant enzyme and the pH effect on the formation of the C4a-N-histidyl-

FAD in the wild-type enzyme. The pKa value of ~7.3 for the observation of the photoinduced flavin 

C4a adduct accorded with the pKa value of ~ 7.5 of the previously determined catalytic base 

H466.27 The lone electron pair on the N atom of the deprotonated histidine at basic pH facilitates 

the photoinduced electron transfer from the histidine to the excited oxidized FAD, thus quenches 

the fluorescence of the oxidized FAD (Figure 6.2 D and F) and leads to the formation of the 
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photoinduced C4a-N-histidyl-FAD. Consistently, the quenching rates of excited 3,3′,4,4′-

benzophenonetetracarboxylic acid (TCBP) through electron transfer were determined to be a 

magnitude faster by deprotonated histidine and N-acetylhistidine with respect to their protonated 

counterparts.38 The involvement of the adjacent S101 and molecular oxygen in the photoinduced 

flavin C4a adduct can be ruled out because the characteristic spectrum of the photoinduced flavin 

C4a adduct was observed anaerobically in the S101A variant enzyme. In LOV domain, the 

photoinduced C4a-S-cysteinyl-flavin is generated in the signal state with a proximal cysteine.23, 24 

It is worth nothing that a cysteine located at 102 position is close to the FAD in choline oxidase 

(Figure 6.1). However, the side chain of C102 points away from the C4a atom of the FAD and its 

mobility is limited by the rigidity of the peptide bond, preventing C102 forming a covalent linkage 

with C4a atom of the FAD. Further evidence for H466 being involved in the photoinduced flavin 

C4a adduct comes from the solvent equilibrium isotope effect of ~1.0 calculated for the division 

of pKa determined in H2O over that in D2O , which also rules out the possibility of participation of 

C102 for which an inverse isotope of ~0.55 is expected.39 

A mechanism involving photoinduced electron transfer for the formation of the C4a-N-

histidyl-FAD is supported by the efficient quenching of the fluorescence of the oxidized FAD in 

choline oxidase at pH 10.0. The quenching of flavin fluorescence via photoinduced electron 

transfer from proximal electron donors have been well studied in free solution and proteins. In free 

solution, the intrinsic lifetime of the excited isoalloxazine ring of oxidized FAD in the open 

conformation is ~ 2.5 ns. The electron transfer from the adenine moiety to the excited isoalloxazine 

ring in the stacked conformation occurs in ~ 9.2 ps, a much faster process that accounts for the 

fluorescence quenching of FAD with respect to that of oxidized FMN without the adenine moiety.9 

An ultrafast photoinduced electron transfer within ~ 1 ps from a proximal tryptophan triad to 
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excited oxidized FAD was determined in Type 1 cryptochromes and DNA photolyase.11 

Photoinduced electron transfer also underlies the fluorescence quenching mechanism of 

nonfluorescent and weakly fluorescent flavoproteins including flavodoxin, riboflavin binding 

protein, glucose oxidase, medium-chain Acyl-CoA dehydrogenase and D-amino acid oxidase-

benzoate complex.40-42 H466 is located 4 Å from the FAD in choline oxidase, allowing for electron 

transfer dynamics in 1-10 ps estimated at such a distance.43 Alternative mechanism explaining the 

fluorescence quenching of the oxidized FAD and the formation of the C4a-N-histidyl-FAD in 

choline oxidase involves a nucleophilic addition on the excited flavin C4a atom. However, density 

function theory calculation on lumiflavin does not support this mechanism by revealing a negative 

charge increase on C4a atom in excited state compared to ground state.16 In addition, an efficient 

fluorescence quenching of the oxidized FAD requires an excited-state process much faster than 

the radiative deactivation through fluorescence. Although bond breaking and making could occur 

in femtosecond to sub-nanosecond time scale,44 the nucleophilic addition of H466 on the C4a atom 

requires a geometric optimization of H466 and FAD to accommodate the change in hybridization 

of the C4a atom from sp2 to sp3 (Figure 6.1), which is not kinetically comparable to the radiative 

deactivation of the oxidized FAD through fluorescence.   

6.6 Conclusion  

In conclusion, a transient C4a-N-histidyl-FAD was observed using fluorescence 

spectroscopy in choline oxidase and investigated by mutagenesis, pH effects and equilibrium 

isotope effect. Formation of the C4a-N-histidyl-FAD linkage between the side chain of H466 and 

the 8α-N3-histidyl flavin in the active site of choline oxidase is triggered by the excitation of the 

oxidized FAD by light within its absorption spectrum, and it is followed by an electron transfer 

that quenches the excitation deactivation of the oxidized FAD through fluorescence. The yielded 
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FAD semiquinone and histidine radical react through radical recombination to give the C4a-N-

histidyl-FAD, which is instantaneously excited by light and deactivates through fluorescence. This 

study established a new example of flavin-dependent light-sensitive protein that forms a transient 

covalent linkage with an active-site histidine; it also illustrates the strong application of 

fluorescence excitation spectra in understanding transient excited-state reactions in light sensitive 

flavoproteins besides the well-recognized tool of fluorescence emission. 
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7 CHAPTER 7: GENERAL DISCUSSION AND CONCLUSIONS 

 

This dissertation focuses on the spectroscopic and mechanistic investigations of flavin-

dependent nitronate monooxygenase and choline oxidase, with the aid of mutagenesis, rapid 

kinetics, steady-state kinetics, kinetic isotope and pH effects, and spectroscopic probes such as 

UV-visible absorption and fluorescence spectroscopy. These studies allowed the understanding 

the role of conserved residues in Class I nitronate monooxygenase (NMO) in substrate P3N 

binding and catalysis. The capability of thermodynamically stabilizing both the anionic and neutral 

forms of flavin semiquinone in NMO from Pseudomonas aeruginosa (PaNMO) provided a single 

protein system to compare the photophysical properties of the flavin semiquinone in two ionization 

states without the effects exerted by different surrounding protein environments. The mechanism 

for both charge and photo-induced flavin C4a adducts were investigated in choline oxidase, 

underscoring the chemical versatility of flavin-dependent protein. 

Class I NMO catalyzes the oxidation of nitronates with molecular oxygen. It has been 

previously characterized by biochemical, structural, and bioinformatic approaches.1, 2 The results 

demonstrated that the enzymatic oxidation of propionate 3-nitronate (P3N) in Class I NMO begins 

with a single electron transfer from P3N to the enzyme-bound FMN, forming a P3N radical species 

and a flavin semiquinone. The P3N radical is proposed to react directly with molecular oxygen to 

generate a 3-peroxy-3-nitropropanoate radical. A subsequent electron transfer from the flavin 

semiquinone to the 3-peroxy-3-nitropropanoate radical gives 3-peroxy-3-nitropropanoate, which 

would decay to the products. Alternatively, the flavin semiquinone would donate an electron to 

molecular oxygen yielding superoxide anion, which subsequently reacts with P3N radical to form 

3-peroxy-3-nitropropanoate.2 Previous crystallographic study of PaNMO established that in Class 
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I NMO there are three fully conserved tyrosine residues, Y109, Y299, and Y303 (numbering for 

PaNMO).1 A fourth tyrosine is conserved in ~70% of the amino acid sequences, being replaced 

with a histidine in ~25% of the sequences and phenylalanine and tryptophan in the remaining 

cases. Another fully conserved residue in Class I NMO is K307, which is located at the entrance 

of the active site. 

The crystallographic structure of the eukaryotic CsNMO from Cyberlindnera saturnus 

(CsNMO) was resolved to 1.65 Å. The three-dimensional structure of CsNMO is highly conserved 

compared to the prokaryotic PaNMO with the exception of three additional loops on the surface 

of CsNMO. Conserved residues Y119, H276, Y321, K329 and Y325 line the active site and 

entrance of CsNMO, corresponding to Y109, Y254, Y299, K307 and Y303 in bacterial PaNMO. 

The role of the conserved active-site residues in Class I NMO were investigated in PaNMO by 

site-directed mutagenesis, steady-state kinetics and pH effects on the UV-visible absorption 

spectroscopy. The results demonstrate that one of the active-site tyrosines in PaNMO with the pKa 

value of 9.5 is required to be protonated for binding of the negatively charged substrate P3N. 

However, the replacement of any of the four tyrosine with phenylalanine or lysine with methionine 

does not affect substrate binding or catalysis involving electron transfer reactions.  

Flavin semiquinones are essential intermediates in the photocycle of light-responsive 

flavoproteins, e.g. cryptochrome blue-light photoreceptors,3, 4 blue-light BLUF domains,5 DNA 

photolyase,6, 7 and LOV domains.8 However, the understanding of the photophysics and 

photochemistry of flavin semiquinones has lagged because they are not stable in solution9 and are 

transient, short-lived species in many catalytic cycles.  This dissertation established that PaNMO 

could stabilize FMN in several redox and protonation states, including both neutral and anionic 

forms of flavin semiquinone. PaNMO thus serves as a useful model system for studying the 
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spectroscopy and photophysics of each of these states in a constant protein environment. Neutral 

FMN semiquinone (FMNH•) in PaNMO yields a strong fluorescence when excited to the first 

excited state (S1), but no fluorescence at higher excited states. The resulting fluorescence 

excitation spectrum of FMNH• does not mimic the general shape of its UV-visible absorption 

spectrum, which violates the Kasha-Vavilov’s rule. Time-dependent density functional theory 

(TD-DFT) calculations reveal that in FMNH• the lowest excited state is a bright emissive ππ* state. 

A dark nOπ* state exists in FMNH• above the fluorescent D1 ππ* state that is likely responsible for 

its anti-Kasha behavior. The fluorescence of anionic FMN semiquinone (FMN•ˉ) in PaNMO is not 

observed. The lack of fluorescence of FMN•ˉ is likely due to the existence of D1 and D2 ππ* states 

with low oscillator strength based on the TD-DFT calculations.  

Choline oxidase serves as a paradigm for alcohol oxidation catalyzed by flavin-dependent 

enzymes. It carries out two-step oxidation of choline to glycine betaine, with betaine aldehyde as 

an intermediate.10 In the crystallographic structure of choline oxidase, the FAD cofactor is 

covalently bound to protein via H99 through an 8α-N3-histidyl linkage.11 8α-N-histidyl adduct has 

been previously studied and reported to increase the redox of oxidized flavin.12 The histidine 

residue at the 466 position is located on an extended flexible loop composed of thirty amino acids 

on the si face of the flavin cofactor, approximately 4.0 Å from the C4a atom. The serine residue at 

the 101 position is located on a loop comprising eight amino acids with the hydroxyl oxygen atom 

pointing toward the flavin C4a atom at a ~ 4.3 Å distance. The redox activity and structural 

resemblance to light-responsive LOV domain allow choline oxidase being a model system to 

engineer a variant that could potentially be inhibited by light through the formation of a C4a flavin 

adduct.13 
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First, a charge-induced, reversible C4a-S-cysteinyl-flavin was engineered in the choline 

oxidase by replacing S101 with a cysteine. Formation of the C4a-S-cysteinyl-flavin linkage 

between the side chain of C101 and the 8α-N3-histidyl flavin in the active site of the S101C 

enzyme is triggered by the binding of protonated Tris in the active site of the enzyme. The 

presence of protonated Tris bound at the active site of the enzyme is required to deprotonate the 

cysteine and to trigger the formation of the C4a-S-cysteinyl-flavin, and for the stabilization of the 

C4a-S-cysteinyl-flavin, as indicated by the decay of the C4a-S-cysteinyl-flavin when the bound 

Tris is replaced by glycine betaine. The pH titration data of the UV-visible absorption spectrum of 

the enzyme-bound flavin have established that the C4a-S-cysteinyl-flavin is stabilized between pH 

~7.0 and ~9.5, in which the side chain of C101 is unprotonated and the N5 atom of the C4a-S-

cysteinyl-flavin is protonated. This study establishes that the de novo engineering of a bicovalent 

C4a-S-cysteinyl-8α-N3-histidyl flavin is feasible in a flavoprotein. 

Then a transient photoinduced C4a-N-histidyl-FAD was observed with fluorescence 

excitation spectroscopy at basic pH values. Formation of the C4a-N-histidyl-FAD linkage between 

the side chain of H466 and the 8α-N3-histidyl flavin in the active site of choline oxidase is triggered 

by light absorption of oxidized FAD. It is followed by photoinduced electron transfer from the 

adjacent deprotonated H466, which quenches the excitation deactivation of the oxidized FAD 

through fluorescence. Subsequently, the yielded FAD semiquinone and histidine radical react to 

give C4a-N-histidyl-FAD through radical recombination. The C4a-N-histidyl-FAD 

instantaneously ( 10-15 s) absorbs a photon to its excited singlet state,14 followed by the excited 

state deactivation through fluorescence which is observed in the fluorescence excitation spectrum. 

The mutagenesis and solvent equilibrium isotope effects suggest the involvement of H466 in the 

formation of C4a-N-histidyl-FAD. The efficient quenching of the oxidized FAD fluorescence in 
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choline oxidase at basic pH support a mechanism involving photoinduced electron transfer for the 

formation of the C4a-N-histidyl-FAD. This study establishes that a photoinduced flavin C4a 

adduct could be formed in choline oxidase and illustrates the strong application of fluorescence 

excitation spectroscopy in understanding transient excited-state reactions in light-sensitive 

flavoproteins. 

Overall in this dissertation, the studies on nitronate monooxygenase and choline oxidase 

have provided insight into the chemistry versatility of flavoproteins. NMO catalyzes the oxidation 

of nitronates involving a single electron transfer chemistry and represents the first flavoprotein 

capable of stabilizing both neutral and anionic flavin semiquinones thermodynamically. The 8α-

N3-histidyl flavin in choline oxidase not only serve as an electrophile in its ground state to form a 

C4a-S-cysteinyl-flavin linkage with a proximal cysteine, but also mediate photoinduced electron 

transfer in its excited state leading to the formation of a transient C4a-N-histidyl-flavin. These 

studies will provide useful information on the mechanistic, photochemical and photophysical 

properties of flavin in different redox states. 
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