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ABSTRACT  

The artificial grammar learning (AGL) task first introduced by Reber (1967) as well as 

similar paradigms (e.g., Jost et al., 2015) are thought to elicit implicit statistical learning (SL) of 

underlying patterns in typical readers. However, previous research has shown that individuals with 

dyslexia often show difficulty with such incidental learning, on AGL and other SL tasks (Kahta & 

Schiff., 2016; Singh, Walk and Conway, 2018). Because few studies have investigated this link 

between statistical learning and reading ability, the current study was designed to examine the 

neurophysiological and behavioral correlates in adults with and without a reading disorder 

diagnosis. Sixteen reading impaired and thirty-seven typically reading adults were recruited for 

the study and completed the AGL, and SL (visual-motor; auditory-motor) tasks, followed by 



completion of questionnaires eliciting awareness of underlying patterns. During these tasks, 

behavioral measures such as response times and grammaticality classifications were recorded. 

Additionally, event-related potentials (ERPs) were also acquired during the computerized tasks. 

Following this, normed assessments indexing cognitive, reading and spelling ability as well as 

basic musical ability were administered to participants. Prevalence of attention-deficit symptoms 

was also accounted for by administration of a checklist. The aim was to assess the underlying 

mechanisms of implicit-statistical learning such as transition-timing and chunking as well as 

grammaticality (algebraic patterns and ordinal knowledge) via varied task paradigms (SL and 

AGL respectively) and non-linguistic stimuli. Although behavioral results were comparable across 

groups, ERP amplitude differences vary in topology across groups – especially for grammaticality 

and chunk strength, but not so much for the transition timing paradigms. For atypical readers, 

correlations were only found between symbol search scores and ERP responses for grammaticality. 

Thus, overall, the current study highlights the need to assess participants in terms of overall 

learning capacity before investigating the link between implicit-statistical learning capacity and 

reading ability. Additionally, findings indicate that participants were not as sensitive to non-

linguistic items across learning paradigms as they might have been to purely linguistic items.  
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1 INTRODUCTION  

1.1 Statistical Learning 

We spend a good portion of our daily lives engaged in learning patterns that we discover in 

our immediate surroundings; sometimes this occurs so unconsciously we don’t even realize it until 

asked to report a sequence or pattern. For instance, when learning the rules of grammar in an 

unfamiliar language one may rely on implicit patterns between words and syllables that only 

become obvious over time. By virtue of exposure, the human brain picks up on sequences by 

capitalizing on repetitions, as in, a catchy tune frequently played on the radio. Another example is 

learning to play a musical instrument, in which certain motor sequences must be carried out to 

produce specific musical notes that ultimately result in a desired tune. In music, most of these non-

random sequences follow musical regularities that must be learned by the beginner. In this way, 

our environment is teeming with occurrences involving learning of statistical contingencies and 

non-random sequences; this learning often become automatic.  

There are two related research literatures that have focused on studying this phenomenon, 

namely statistical learning and implicit learning. Statistical learning refers to the ability to learn 

statistically structured patterns from the environment and is often considered to occur without 

explicit awareness of the underlying patterns (Perruchet & Pacton, 2006), although some amount 

of awareness appears to accompany learning in certain tasks (Singh, Daltrozzo & Conway, 2017). 

Statistical learning occurs when the observer is able to extract statistical probabilities from input 

(Saffran, Newport & Aslin, 1996) under incidental learning conditions. Such a high sensitivity to 

structure can also be seen as a prerequisite for language acquisition in general (Romberg & Saffran, 

2010) and for syntactic processing in particular (Kidd, 2012). Implicit learning as defined by Reber 

(1967) refers to the individual ability to express acquired knowledge through task performance 
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without awareness for such information. Implicit learning is manifested through experience with 

the environment via repeated encounters with stimuli and also by extracting statistical structure 

(i.e. categories, sequences) from the environment (Reber, 2013). Because of the implicit nature 

that is typical of statistical learning, the line between statistical learning and implicit learning is 

sometimes unclear.  

Research on statistical learning ability has extended to include its impact on other cognitive 

processes such as reading ability (Folia et al., 2008; Gabay, Thiessen & Holt, 2015). Dyslexia - a 

common learning disability that specifically impairs a person's ability to read – affects roughly 3% 

-7% of the population (Peterson & Pennington, 2012). Common characteristics among people with 

dyslexia are difficulty with phonological processing (the manipulation of sounds) and spelling 

(Gabrieli, 2009). Individuals with dyslexia show comorbidity with attention deficit hyperactivity 

disorder (ADHD), auditory processing disorder and in general, have trouble with learning (Fawcett 

& Nicolson, 2007; Habib, 2000).  

To explore the link between implicit-statistical ability and reading impairment further, the 

current project aims to investigate the neural and behavioral correlates of statistical learning 

associated with: (1) chunking (2) grammaticality and (3) predictability. The naming conventions 

surrounding these three learning variables has arisen from the literature and this is explained ahead, 

in line with information-extraction mechanisms outlined by Dehaene, Meyniel, Wacongne, Wang 

and Pallier (2015). The aim of the current study is to examine the acquisition of information 

captured by these variables in adults both with and without reading disorders. Before addressing 

the details of the current study, a brief overview of statistical learning and implicit learning 

research, followed by the types of information acquired via such learning, and the similarity of 

these two learning approaches are presented below. This is then followed by a chapter on reading 
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disability theories along with relevant findings related to implicit/statistical learning and reading 

ability. 

1.2 Overview of implicit learning and statistical learning research 

Implicit learning research originated with Reber’s (1967) studies using the artificial grammar 

learning paradigm. Artificial grammar learning is an established tool used to probe implicit 

learning abilities (Dienes, Broadbent, & Berry, 1991; Reber, 1967); more specifically it was used 

to investigate whether people could learn the grammatical patterns (order of letters) presented 

within letter strings simply by exposure to those stimuli. A typical artificial grammar learning task 

comprises of a familiarization phase involving exposure to sequences generated from an artificial 

grammar. Next, participants are presented with the test phase in which they are prompted to 

classify novel sequences as grammatical or not. Artificial grammar learning performance is 

sometimes measured in terms of two types of information that participants might learn, namely, 

‘grammaticality’ and ‘chunk strength’ (Knowlton & Squire, 1996). Grammaticality is the extent to 

which the training stimuli comply with the finite state grammar employed. Chunk strength refers 

to whether a test item is composed of previously encountered parts in the training phase; it also 

generally corresponds to similarity with items.  

Besides the artificial grammar learning task, a serial reaction time (SRT) task has also 

frequently been used to measure implicit learning (Nissen & Bullemer, 1987; Robertson, 2007). 

In this task the participant is repeatedly presented with stimuli which contain cues as to what 

response is to be made (button press). The participant is not informed about the structure 

underlying cue transition and that each cue follows another with some degree of predictability 

(repeated sequences). When participants learn these transitional probabilities, their response times 
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(RTs) decrease. This reduction in RTs is not just due to familiarity with the task or other practice 

effects; it is specific to the sequence /transitional probabilities that participants have learned. 

Landmark studies in the field of statistical learning began with Saffran et al., (1996). In this 

study researchers demonstrated that when 8-month old infants were exposed to an artificial 

language (with nonsense words) presented as continuous speech, they were capable of using 

sequential statistics to extract information regarding word boundaries. The first part of the study 

involved familiarizing infants to two minutes of the speech stream (example: 

‘bidakupadotigolabubidaku’). Statistical learning was then assessed by a test phase in which the 

infants were presented with words from the familiarization phase in addition to new non-words 

that were created with the same syllabic structure as in the familiarization phase but in a different 

order than before. Infants indicated learning by displaying a longer listening time for non-words 

compared to words. Since this first study contained frequently occurring syllables a second study 

was created (Saffran, 1996), using a more complex structure involving relatively lower transitional 

probabilities capable of alerting the listener to word boundaries. For instance, in the example, 

‘pretty#baby’ they wanted to investigate whether infants could break down word-internal syllabic 

structure from the external structure such as ‘ty#ba’. This second experiment was similar to the 

first, except now during test, infants heard both words and part-words created by combining a final 

word syllable to the first two syllables of another word. These could only be detected as novel if 

infants’ learning during familiarization was already robust enough to discriminate against those 

that crossed the word boundary. Infants did indicate an ability to discriminate between word and 

part-word stimuli with longer listening times for part-words. This statistical learning phenomenon 

has been replicated across children (Saffran et al., 1996; Vicari, Marotta, Menghini, Molinari & 
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Petrosini, 2003) and adults (Bennett, Romano, Howard & Howard, 2008; Du & Kelly, 2013) across 

visual (Fiser & Aslin, 2002) and auditory (Saffran et al., 1996) modalities. 

  Types of information acquired in statistical learning 

Although statistical learning and implicit learning have some obvious similarities, it could 

be that they are manifested (behaviorally and neurally) in different ways and might be associated 

with extraction of different types of information during learning. One type of information involved 

in statistical learning is probabilistic prediction-based learning or ‘transition-timing’ based and this 

term is referred to later in this section. Recent published studies using a probabilistic learning task, 

such as Daltrozzo et al., (2017) incorporated stimuli that were ascribed to a high, low or zero 

‘predictability’ (HP, LP, ZP, respectively) condition. This meant that in each of those conditions 

the probability of a target following a predictor stimulus was 90%, 20% or 0%. Participants’ 

reaction times exhibited quicker responses to the target when it was preceded by the HP compared 

to the LP condition, demonstrating learning of the predictor-target contingencies (Daltrozzo et al., 

2017; Jost, Conway, Purdy, Walk & Hendricks, 2015). Participants also exhibited a neural profile 

that distinguished the HP from the LP (i.e. there was a larger P300-like effect or positive centro-

parietal amplitude for the HP compared to the LP). An important feature of this task is that it is 

used to measure transition-timing / prediction-based learning (using RTs and ERPs). Additionally, 

in the case of this task, the ERPs are the best measure of prediction-based learning as learning is 

elicited based on the predictor, before the target occurs. 

On the other hand, in the artificial grammar learning task, participants are thought to 

acquire information and learn via chunking or fragment-based learning as well as pattern learning 

or learning to extract regularities dictated by the grammar. These information types are further 

broken down as per learning mechanisms described by Dehaene et al. (2015) and are discussed 
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later. It is important to note that learning in an artificial grammar learning paradigm has an 

additional layer of complexity in that, to perform efficiently, a participant must not only be able to 

learn grammar and chunk strength information but must also be able to consolidate that knowledge 

and successfully reapply it to new sequences, which is not the case in most other statistical learning 

or predictability-based learning paradigms.  

In Knowlton and Squire’s (1996) artificial grammar learning study a balanced chunk 

strength design was used. Associative chunk strength (average of individual item chunk strength) 

was defined by the chunk or bigram/trigram frequency during training. Grammatical and 

nongrammatical items contained an equal number of high and low chunk strength items. Thus, the 

balanced chunk strength design is important because the degree to which test items follow 

grammatical structure is balanced with the frequency of sequence appearance (bigrams and 

trigrams) in the training item set. This was done to avoid the underlying grammatical structure at 

test being confounded by exposure to individual chunk frequency at training. Test phase items can 

be created to conform to four types of items: (i) grammatical and high chunk strength; (ii) 

grammatical and low chunk strength; (iii) nongrammatical and high chunk strength and (iv) 

nongrammatical and low chunk strength. Grammatical items follow the grammar as opposed to 

the nongrammatical ones, which contain grammatical errors. 

In their study, Knowlton and Squire (1996) were interested in determining the influence of 

grammaticality and chunk strength knowledge on artificial grammar learning in amnesic patients 

vs. controls because amnesia has been linked to impaired declarative memory but intact non-

declarative memory (Squire, 1992). Thus, if their learning was intact then that would mean that 

declarative memory systems (medial temporal lobe/ hippocampus) were not integral to AGL. In 

Experiment 1, test items were constructed so that grammaticality (overall rules) were balanced 
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(unconfounded) with item frequency (between test items and training sets). This was done to 

examine whether grammaticality judgement was independently influenced by grammaticality and 

chunk strength. Findings form Experiment 1, indicated that both compliance with grammatical 

rules and chunk strength had similar influence on grammaticality judgment, in amnesiacs and 

controls. Despite controlling for chunk strength, both groups endorsed grammatical test items more 

than nongrammatical items. Additionally, an item's chunk strength separately influenced the 

tendency to endorse the item as grammatical or not, specifically observed only for nongrammatical 

items. Such findings support the notion that rule-based information influences classification 

judgments and the influence of exemplar-specific information is an additional contribution. 

Experiment 2, involved examining whether amnesic patients acquired sufficient knowledge about 

chunk strength to account for their intact grammatical classification ability. In contrast to 

experiment 1, findings from experiment 2 revealed that amnesic patients' recognition memory for 

letter chunks was severely impaired, indicating that successful classification performance by 

amnesic patients cannot be accounted for by their declarative knowledge about grammatically 

allowable chunks. This indicated that although their grammaticality knowledge was mediated by 

declarative memory, chunk strength knowledge (implicit) was associated with non-declarative 

systems. In Experiment 3, Knowlton and Squire (1996) examined the degree to which grammatical 

knowledge was abstract by investigating the ability of (controls and amnesia) participants to 

transfer grammatical knowledge to new letter sets. Findings indicated that when tested with a 

different letter set than the one used for training, both amnesic patients and controls exhibited 

transfer (event though better performance was observed when letter sets at test were the same as 

training). Thus, overall participants learned both types of knowledge in AGL and additionally, each 

type showed independent effects indicating that it was likely mediated by separate neurocognitive 
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systems. Neuroimaging evidence supports this general claim (Lieberman, Chang, Chiao, 

Bookheimer & Knowlton, 2004), indicating that rule-learning involves regions in the caudate 

nucleus whereas chunk strength learning is associated with regions of the medial temporal lobe.  

To summarize, there are three different learning variables that participants are assessed on 

during implicit learning and statistical learning tasks (chunking, grammar learning, and 

probabilistic predictability) and these represent extraction of different information types in a 

sequence. The evidence suggests that learning can be isolated by the use of different types of tasks. 

It is possible that these three types of learning manifest differently in different populations such as 

typical vs. atypical readers, which is why it is important to investigate all three possibilities in the 

current study. 

1.3 Are statistical learning and implicit learning the same phenomenon? 

The literature on statistical and implicit types of learning started to overlap in such a way 

that researchers began to question whether the two were in fact separate processes or just one 

entity. Perruchet and Pacton (2006) proposed that statistical learning and implicit learning might 

be conceptualized as two approaches underlying a single phenomenon. This division is dictated by 

an apparent preference for chunking and grammaticality variables to be assessed in artificial 

grammar learning tasks that often measure implicit learning, whereas statistical learning studies 

tend to emphasize the importance of statistical probability. Perruchet and Pacton (2006) 

additionally suggested that, irrespective of the approach, the phenomenon under study can be 

thought of as a single type of domain-general incidental learning. Additionally, whether stimulus 

features are visual, auditory or tactile might also affect learning outcomes (such as modality 

effects; Conway & Christiansen, 2005). Other noteworthy points from Perruchet and Pacton’s 

(2006) discussion include how associations between two or more units are formed, that is, whether 
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statistical probability and chunk information are two distinct processes or whether they occur in 

succession during learning.  

Apart from the views put forth by Perruchet and Pacton (2006), it is possible that implicit-

statistical learning reflects deeper layers involved in acquisition of implicit sequence knowledge 

and these are conceptualized in Figure 1.1. Information or knowledge acquired from the 

environment may be organized based on task demands, specifically the artificial grammar learning 

task and other tasks embedded with statistical regularities. As reviewed earlier, the first type of 

task is associated with the learning of grammaticality information as well as chunking, and the 

latter with predictability. However, information learned as evidenced by these indices can be 

broken-down further according to Dehaene et al. (2015). For instance, in the current context, 

grammaticality contains underlying knowledge of order as well as algebraic patterns whereas 

transition-timing knowledge can be attributed to predictability (SRT, Hebb tasks, etc.). 

 

Figure 1.1Diagram showing learning outcomes by task 

Artificial Grammar

Chunk StrengthGrammaticality

Knowledge Types

Tasks used to measure 
sequence knowledge

Learning Indices 
(operationalized in literature)

Sequences / Patterns / Regularities/ Repetitions

LEARNING

Embedded Statistical Regularities

ChunkingOrdinal Knowledge

Algebraic patterns

Learning 
Mechanisms(Dehaene et al., 
2015)

Transition-Timing

Predictive sequence
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Thus, in keeping with terms used in previous research on artificial grammar and other 

statistical learning tasks (involving statistical probabilities), learning variables associated with 

each task in the current study were ‘grammaticality’, ‘chunking’ and ‘predictability’. However, 

Dehaene et al. (2015) have proposed a taxonomy of five distinct neural mechanisms related to 

encoding of sequences, namely: transition-timing, chunking, learning ordinal information, 

learning algebraic rules, and learning nested tree structures. Dehaene et al. (2015) further suggest 

that these five mechanisms operate independently of one another, each exclusively focused on 

acquiring information from the incoming sequence.  

To sum up, there is a dearth of studies examining cognitive processes associated with 

statistical learning from the point of view of each type of statistical learning strategy (chunking, 

grammaticality, and predictability) in both typical and impaired readers. This study is designed to  

address these gaps in the literature between statistical learning and types of information learned 

based on the type of task used. Before addressing the details of the current study, a brief overview 

of theories of dyslexia along with previous findings on statistical learning and reading ability are 

presented in the next chapter. 

Henceforth, the term ‘implicit-statistical’ learning may be used to denote implicit/incidental 

pattern learning in the context of the current study; and when referring to types of knowledge 

obtained in each of the artificial grammar learning and other statistical learning paradigms, terms 

used are ordinal and algebraic pattern knowledge as well as transition-timing mechanisms, 

respectively (in line with Dehaene et al., 2015). 

2 STATISTICAL LEARNING IN TYPICAL AND ATYPICAL READERS 

This section includes a brief overview of prominent reading disability theories followed by a 

review of studies that examined statistical learning in adults and children with dyslexia. 
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2.1 Dyslexia: A Brief Description 

The term dyslexia is a one-word substitute for an array of impediments characterized by poor 

word recognition, decoding, and spelling abilities. According to the diagnostic criteria of the DSM-

5 (American Psychiatric Association., 2013), dyslexia would fall under the broader classification 

of ‘specific learning disorder’ (SLD). To be included within this category an individual must 

experience difficulties in learning and using academic skills, at least 1.5 standard deviations below 

norm for a given age level (Prelock, Hutchins & Glascoe, 2008), in areas such as mathematics, 

reading, or written expression. Thus in lieu of one single diagnosis, a person could be a candidate 

for a SLD diagnosis, but with added stipulations such as ‘impaired reading’, which could include 

problems with one or all of the following: word reading accuracy, reading rate or fluency, and 

reading comprehension. Unlike naturally emerging developmental milestones (e.g., speaking), 

academic skills (e.g., reading, spelling) are taught and deliberately learned. However, SLD (and 

dyslexia) is not defined as a result of poor instruction but occurs when there is a breakdown in 

typically acquired academic skills, despite sufficient opportunity for learning to occur.  

Individuals with dyslexia appear to have systematic functional differences in their neurological 

composition (Norton, Beach & Gabrieli, 2015). For example, Shaywitz and Shaywitz (2008) 

explained that individuals with dyslexia have a distinct neural signature compared with good 

readers. The brain networks concerned with typical reading include three main regions: (1) an 

anterior system in the inferior frontal gyrus (Broca’s area), associated with articulation and word 

analysis; (2) one posterior system in the parieto-temporal region, associated with word analysis, 

and (3) another posterior system in the occipitotemporal region (the word-form area) associated 

with rapid and automatic word identification. In impaired readers, whereas the anterior system is 

slightly overactivated, the two posterior systems are underactivated (Shaywitz & Shaywitz, 2008). 
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This left lateralized posterior underactivation is known as the neural signature for dyslexia.  

Dyslexia is most often found to be comorbid with other cognitive disabilities such as arithmetic 

learning disability (Dirks, Spyer, Lieshout & de Sonneville, 2008; Gross-Tsur, Manor & Shalev, 

1996), attention deficit hyperactivity disorder (Pennington, Willcutt & Rhee, 2005; Gilger, 

Pennington & DeFries, 1992), specific speech disorder (Pennington & Bishop, 2009), specific 

language disorder (Catts, Adolf, Hogan & Weismer, 2005) and developmental coordination 

disorder (Kaplan & Norton, 1998). Thus, these patterns of comorbidity make it likely that, at least 

for some individuals with dyslexia, the problems are due to more general issues with attention, 

learning, memory, or other cognitive processes. A number of theoretical frameworks have been 

proposed to characterize the nature of reading difficulties in developmental dyslexia, which will 

be reviewed next. 

2.2 Prominent Reading Disability Theories 

The current view in the reading disability literature, especially that surrounding dyslexia, is 

that there is substantial support for the phonological deficit theory. This theory purports that 

atypical readers have an issue with the sound-to-phoneme mapping that typical readers learn 

during reading acquisition. The theory suggests that dyslexia is a language-based disorder 

characterized by difficulties in single-word decoding (Snowling, 1981) and phonological 

processing (Snowling, 2000). More specifically, phonological awareness is made up of phonemic 

awareness, which involves the ability to hear, extract and manipulate phonemes. It also requires 

an awareness of how well phonemes blend with other sounds [phonemes are the smallest units of 

sound (see the granularity theory by Ziegler and Goswami, (2005)]. This cognitive process, which 

occurs at the decoding level, warrants knowledge of letter-speech-sound associations (Froyen, 

Bonte, van Atteveldt & Blomert, 2009); and, as such, phonological awareness has been found to 
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be highly automatic in good readers but less automatic for those with dyslexia, even in tasks 

involving a visual letter-speech-sound interference paradigm including both letters and letter-like 

stimuli (Bakos, Landerl, Bartling, Schulte-Körne & Moll, 2017). However, this prominent theory 

cannot always account for other low-level visual, sensory, and motor coordination deficits that 

have also been associated with dyslexia. Apart from phonological reasoning skills in those with 

reading impairment, it is also important to consider the influence of orthographic, procedural 

learning and statistical learning abilities that could also be contributing to the disorder. 

The cerebellar deficit theory (Nicolson & Fawcett, 2001) assumes a very different way of 

conceptualizing reading impairments. Rather than suggesting a phonological deficit it postulates 

that a large majority of children with dyslexia show evidence of cerebellar abnormality as reflected 

by impairments in skill automatization, time estimation and most importantly, execution of an 

automatic sequence and error elimination.  

In a similar vein, according to the procedural learning hypothesis, automatization is affected 

by procedural learning impairments and is suggestive of a more domain general, procedural 

learning impairment in those with reading disorders (Gabay et al., 2015; see also Krishnan, 

Watkins and Bishop, 2016). Procedural learning extends to cognitive and motor skill acquisition 

and refers mainly to the processing of sequences as well as coordinating learned ones such that the 

sequences become predictable over time and practice (Ullman, 2004).  

The cerebellar and procedural learning deficit accounts seem to have some overlap; however, 

one way to distinguish cerebellar from procedural deficit accounts is that the former is primarily 

associated with cerebellar abnormality leading to problems with skill automatization, motor and 

articulatory issues - all resulting in either writing, reading or spelling difficulty (Nicolson, Fawcett 

& Dean., 2001) whereas the latter stems from issues with the procedural memory system as a 
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whole. This memory system extends beyond the cerebellum to the basal ganglia, prefrontal cortex 

and motor areas (Ullman, 2004). Despite its implication in implicit learning (Nicolson, Fawcett & 

Dean., 2001), the amount of cerebellar activation during implicit learning tasks is still debatable 

(Witt, Neuschman & Deuschl, 2002) and as such it is difficult to know the exact role the cerebellum 

plays in implicit learning and statistical learning processes. On the other hand, the procedural 

memory system as a whole could be thought of as a type of implicit learning. 

Finally, according to the temporal processing deficit account, children with dyslexia have 

trouble integrating sensory (visual) information, especially when it is presented rapidly (Conlon, 

Wright, Norris & Chekaluk, 2011). As a benchmark, Chiappe, Stringer, Siegel & Stanovich, (2002) 

have shown that skilled readers would require an inter-stimulus interval of at least 30ms to 

differentiate between two stimuli presented in rapid sequence. But studies involving participants 

who experience reading difficulties suggest a syntactic processing weakness for individuals with 

dyslexia during a fast-paced reading task (Breznitz & Meyler, 2002). More specifically, Cohen-

Mimran, (2006) reported accuracy differences depending on the inter stimulus intervals (ISI) 

during tasks. ISI is the time interval between the offset of one stimulus and the onset of another, 

typically during tasks where items are serially presented to the participant. They found 

significantly lower accuracy for children with dyslexia on a task with a short ISI (50ms) compared 

to a longer ISI (500ms).  

Thus, regardless of which theory the disability pertains to, problems with reading print might 

ensue at any point after lexical access, because deficits in those with reading disorders have been 

found at various points - at the auditory-only level (Wright, Bowen & Zecker, 2000) or even on 

tasks involving visual symbol search (Jones, Branigan & Kelly, 2008). One theme common to 

cerebellar, procedural and temporal deficit theories of reading disability is that these theories all 
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pertain to issues underlying sequence processing. Such pattern or sequence processing is clearly 

related to statistical learning. Hence, based on these theories and the link between reading ability 

and statistical learning, it would not be surprising if a statistical learning deficit was observed in 

individuals with reading disability. 

2.3 Literature Review with Statistical Learning Paradigms 

Recent review and empirical articles have summarized contemporary findings that very 

generally link SL with reading ability (Arciuli, 2018). However, some others have focused 

specifically on the relation between SL and dyslexia (Banai & Ahissar, 2018; Sawi & Rueckl, 

2018; Schmalz et al., 2017) some of these articles are discussed below. 

Figure 2.1 below shows details of participants in studies using paradigms that refer to 

patterned input as having either an artificial grammar or sequences with predictive probabilities 

(i.e., transitions and timing information) embedded within the task. Figure 2.1 also indicates 

whether children or adults were included in each study, the sensory modality engaged during the 

task, stimuli features and additional study design details; all studies compare typical to atypical 

readers. 

In Figure 2.1, the first column breaks down the ways in which studies may be categorized. 

For instance, (in order from top to bottom) studies can differ based on degree of impairment. Here 

the ‘other group differences’ pertains to studies which showed intact learning (i.e. no statistically 

significant group differences) but did mention instances of group differences such as slower RTs 

for impaired readers. This is followed by categorization based on sensory modality involved in the 

task and then the nature of the stimuli. Next, ‘input’ refers to the type of task used in the study, 

such as artificial grammar learning tasks or sequence related tasks from the family of SRT/ Hebb 
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(red) and other tasks also relying on transition and timing knowledge (blue). The final category 

refers to duration of study and indicates studies that were spread over more than one session. 

Research studies depicted in Figure 2.1, show that some studies have specifically used 

artificial grammar learning paradigms (e.g. Schiff, Katan, Sasson & Kahta, 2017; Kahta & Schiff, 

2016) and others have used other paradigms containing statistical regularities/transition-timing 

information (e.g. Bennett et al., 2008; Du & Kelly, 2013; Rüsseler, Hennighausen, Münte & Rösler, 

2003) and some have incorporated both paradigms (Laasonen et al., 2014; Nigro, Jiménez-

Fernández, Simpson & Defior, 2016). Whereas some studies in Figure 2.1 have shown 

impairments in participants with dyslexia compared to typically reading matched controls (e.g. Du 

& Kelly, 2013; Gabay et al., 2015; Howard, Howard, Japiske & Eden, 2005; Kahta & Schiff, 2016; 

Schiff et al., 2017), others have shown no impairments (e.g. Bennett et al., 2008; Inacio et al., 

2018; Roodenrys & Dunn, 2008; Rüsseler et al., 2006; Samara & Caravolas, 2017). A few studies 

also reported minor differences in performance across groups (e.g., slower RTs for those with 

dyslexia or other discrepancies) even though they found intact implicit-statistical learning 

otherwise (Bennett et al., 2008; Nigro et al., 2016). 

Additionally, studies can also be separated by stimulus type. For instance, some have used 

linguistic stimuli (Gabay et al., 2015; Vandermosten, Woters, Ghesquière & Golestani, 2018) and 

others have used non-linguistic symbols (Howard et al., 2005) or both (Bennett et al., 2008). But 

if broken down by stimulus used – there seems to be little conclusive evidence showing that 

linguistic stimuli yield a learning impairment more so than non-linguistic stimuli. For instance, of 

the tasks that used linguistic stimuli, some studies reported impaired learning (Jones et al., 2018; 

Kahta & Schiff., 2016) and some did not (Bennet et al., 2008). 
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Figure 2.1Empirical Literature Review of Implicit-Statistical Learning and Dyslexia Research 
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Similarly, some studies using non-linguistic stimuli showed impairment for atypical 

readers (Menghini et al., 2008; Pavlidou & Williams, 2014; Sigurdardottir et al., 2017; Singh et 

al., 2018; Vicari et al., 2003), or no impairment at all (Pothos & Kirk., 2004; Roodenrys & Dunn., 

2008; Rüsseler et al., 2006; Staels & van der Broeck, 2017). Of particular relevance to the present 

investigation are findings reported by Nigro et al. (2015), who found no advantage for either 

linguistic or non-linguistic stimuli despite conducting one experiment using both types of stimuli 

to investigate statistical learning impairment in typical vs. atypical readers. Additional studies 

using non-linguistic stimuli in study designs might help clarify whether individuals with reading 

disability have an impairment specifically for linguistic material or whether it extends to non-

linguistic input as well. 

On inspecting Figure 2.1, there seems to be a higher number of visual and visual-motor 

paradigms compared to tasks focusing on other domains. All but one study (Staels & van den 

Broeck., 2015 had two task versions) that reported no impairments were based on visual and 

auditory task paradigms. Also, a majority of the AGL paradigms were administered in the visual 

(compared to auditory) domain. This shows that modality type could also be influencing statistical 

learning ability but more research across all the domains equally, is required before drawing such 

a conclusion.  

With regards to experimental groups based on (non-overlapping) diagnostic criteria only 

Laasonen et al., (2014) accounted for a separate group with ADHD symptoms --- while this may 

help account for the influence of attention deficits, is not necessarily the only way to study learning 

in a reading disordered population. This is because it is also possible to view deficit on a continuum 

from poor to excellent as is evident in the reorganization of neurodevelopmental disorders within 

DSM-5. In fact, it seems hard to isolate the influence of all other cognitive deficits and focus solely 
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on reading difficulties. It is perhaps even contradictory to the multi-etiological nature of dyslexia 

(within the framework of SLDs) because controlling for one type of comorbidity does not solve 

the issue of other comorbid diagnoses. It should be mentioned that Pothos et al. (2004) did check 

for the presence of ADHD symptoms as well. Also, worth noting, is that in the studies that did not 

report any impairments for adults, intact learning could be due to the fact that these adults had 

received some remediation and have slightly improved reading ability compared to children.  

Some additional studies not included in Figure 2.1, because they did not specifically 

compare individuals with and without dyslexia, are nonetheless worth mentioning. Ise, Arnoldi, 

Bartling and Schulte-Körne, (2012) showed a learning deficit for children with a spelling disability, 

during an artificial grammar learning task. They found that poor readers had difficulty recognizing 

old letter strings (from the familiarization phase). These poor readers showed impaired learning 

for frequent letter chunks especially in strings that were phonologically accessible. However, they 

created a grammar different from the Knowlton and Squire (1996) grammar and did not use a 

balanced chunk strength design. Rosas et al. (2010) recreated a child-friendly version of an 

artificial grammar learning task with non-linguistic visual stimuli and investigated grammaticality 

but not chunk strength. They found that group differences (between those with and without 

ADHD) were observable at the electrophysiological level as well as for behavioral RTs, but not 

for accuracy. In fact, children with ADHD outperformed those without an attention deficit. In 

addition, van Witteloostuijn, Boersma, Wijnen & Rispens, (2017) conducted a metanalysis on 

learning in dyslexia across the developmental lifespan. A sub-section of the studies represented in 

Figure 2.1 comprises their analyses. They concluded that individuals diagnosed with dyslexia 

showed a greater impairment than those without dyslexia, particularly in children (compared to 

adults). Another metanalysis (Lum, Ullman & Conti-Ramsden, 2013) showed that individuals with 
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dyslexia showed poorer learning abilities than controls, as indexed by sequence learning on the 

SRT task. Also, noteworthy, is that some studies (as is indicated in Figure 2.1) also incorporated 

more than one experimental session compared to others. This indicates that not all studies are equal 

in terms of consolidation between sessions and that this may have influenced learning over time.  

Thus far only a few studies have centered on neurophysiological indices of learning when 

investigating the link between statistical learning and dyslexia. For instance, Singh et al. (2018) 

used a visual statistical learning paradigm to examine learning of serial transition probabilities 

with electroencephalography (EEG) recordings. They found that the children with dyslexia 

exhibited a different neural signature than the typical readers. This meant that when participants’ 

neural responses to a given stimuli of interest (event related potentials; ERPs) were averaged --- 

they displayed a very different learning pattern from their counterparts, suggesting delayed 

statistical learning. The P300 --- or neural signature reported by Singh et al. (2018) has been 

associated not only with learning but also the ability to predict an upcoming stimulus. Also 

noteworthy is the fact that the behavioral results indicated relatively intact statistical learning for 

both groups (Singh et al., 2018). This highlights the fact that statistical learning outcomes might 

be manifested differently when assessed by behavioral vs. neurophysiological indices. One reason 

for this is that the children with dyslexia in the study might have exhibited intact implicit-statistical 

learning but might have also had delayed attention-dependent predictive processing that 

manifested via ERPs. This is based on the sluggish attention allocation to stimuli cued by a 

predictive target (Hari, 2001). 

To conclude, there is clearly evidence for statistical-learning difficulty in those with reading 

disability across the developmental lifespan. However, there are not many studies designed to 



21 

examine the different types of information learned in each type of task. These points are briefly 

discussed in the next section. 

2.4 Unanswered Questions: Statistical Learning and Reading Ability 

Previous research has not fully investigated to what extent individuals with reading disability 

acquire different types of information as a function of the particular task that was used. For 

instance, it would be beneficial to incorporate tasks that each demand different learning indices, 

such as grammaticality and chunk strength from an artificial grammar learning task and 

predictability via alternative sequence-based learning paradigms. Here, as in Figure 1.1, 

grammaticality, chunk strength and predictability are just terms consistent with learning variables 

used in the current task but the information type underlying each variable is as per Dehaene et al. 

(2015); that is, grammaticality is associated with ordinal and algebraic pattern knowledge, chunk 

strength with chunking and predictability with transition-timing.  

Additionally, it is important to control for the type of stimuli (i.e., either linguistic or non-

linguistic) and perceptual domain (auditory or visual). Together, such a design could elucidate 

processes underlying implicit-statistical learning in individuals with a reading disability and help 

uncover whether acquisition of specific information types during learning might be more or less 

impaired than others. 

The added advantage of using non-linguistic material is that it will help to determine whether 

the deficits are due to general (non-linguistic) cognitive processing/learning vs. being specific to 

linguistic/phonological material. Findings from such a study would help pinpoint which (if any) 

learning strategy is atypical in dyslexia. In addition, although there is research suggesting that 

statistical learning ability is mediated by awareness levels (Kahta & Schiff, 2016; Singh et al., 

2017; Turk-Browne, Scholl, Chun & Johnson, 2009), few studies have examined whether 
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awareness levels during statistical learning might differ between those with and without reading 

disabilities. 

Finally, there is no known behavioral and ERP study involving administration of both types 

of tasks mentioned above in the same population of adults with and without reading disorders. Of 

the recent studies, only a few have used neurophysiological measures in addition to behavioral 

responses (Ahissar & Jaffe-Dax, 2018; Feng et al., 2017; Rüsseler et al., 2006; Schulte-Körne et 

al., 2004). In addition to behavior, it is important to investigate neural processes associated with 

statistical learning in atypical readers, as these brain measures will help inform our understanding 

of the disorder (and might even help disambiguate among the different theories of dyslexia). Often, 

behavioral and neural mechanisms complement each other but are manifested differently 

(Batterink et al., 2015). For instance, the temporal precision provided by ERPs, might indicate 

speeded target detection/motor response but corresponding behavioral responses might show poor 

accuracy or slow RTs. Thus, the literature would benefit from the collection of both behavioral as 

well as neurophysiological data.  

2.5 The Current Study Aims 

1. To examine whether adults diagnosed with a reading disorder show an implicit-statistical 

learning deficit using non-linguistic stimuli as measured by both behavioral RTs and ERPs, 

using: (a) a transition-timing and (b) an artificial grammar paradigm.  

2. To examine whether this deficit is specific to the type of learning occurring in each task: 

(a) Transition-timing, (b) grammaticality learning, or (c) chunk learning 

3. To examine whether implicit-statistical learning ability is correlated with reading ability 

scores from normed behavioral assessments. 
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4. To determine whether the learning deficit is more pronounced in any one modality (visual/ 

auditory) over the other. 

5. To examine whether implicit-statistical learning ability depends on awareness of the 

underlying patterns, i.e. whether learning is implicit or explicit and whether awareness 

levels differ between typical and atypical readers. 

2.6 Hypotheses  

1. For both learning tasks, indication of a learning deficit (for atypical readers) is expected, 

as measured by both behavioral RTs and ERPs respectively.  

2. Atypical readers are expected to show impairment on at least one but possibly all three 

learning outcomes/ variables. 

3. In line with previous studies (Bennett et al., 2008; Conlon et al., 2011 and Gabay et al., 

2015) findings should reveal significant correlations between statistical learning and 

performance on normed neuropsychological assessments suggesting that implicit-

statistical learning performance influences word reading ability. 

4. Awareness levels might differ between the two groups with reading disorders, which in 

turn might help determine whether learning impairments in those with reading disability 

are based on levels of awareness of the underlying implicit-statistical patterns.  

Because learning was indexed neurophysiologically by event related potentials (measured 

neural signals from the cortical surface, produced in response to a specific event/stimulus of 

interest). Additionally, learning was also indexed behaviorally by RTs. If participants indicate 

difficulty in learning statistical-sequential visual regularities by way of neural ERPs (compared to 

behavioral responses), it could mean that incoming information is being processed differently. 

ERPs can account for observed neurophysiological deficits – for example, indexing attention/ 
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explicit processing, whereas RTs might reflect more implicit processing (Batterink, Reber, Neville 

& Paller, 2015).  

3 METHODS 

3.1 Participants 

Participants were comprised of two main groups. The description for each group is presented 

below along with the exclusionary criteria for each group and the recruitment sources.  

 Atypical Readers: [Adults with a reading disorder + Comorbid symptoms] 

Sixteen English-speaking adult (20 to 65 years of age) participants were recruited mainly 

from the Regents Center for Learning Disorders’ (RCLD, at Georgia State University) database, 

as well as from the general public. These volunteers were compensated at $50 each for their 

participation. Participants were recruited on the basis of a reading disorder diagnosis (which also 

included comorbid diagnoses such as, but not limited to, attention deficit disorders, dyscalculia, 

bipolar disorder, depression, and anxiety disorder). Exclusionary criteria involved any visual or 

auditory impairment, a RCLD diagnosis more than 5 years old and inability to travel to the Georgia 

State downtown campus for participation.  

Initial RCLD recruitment comprised a database of approximately 100 participants that fit 

the inclusionary criteria. From this list of potential participants contacted by authorized personnel 

in the RCLD, 66 were willing to be contacted further for recruitment. From this new subset, only 

19 responded to correspondence regarding the study. Of these only 13 finally consented to 

participate in the experiment.  

Apart from the RCLD, participants were also recruited from the general public using the 

same inclusionary criteria described above. A study flyer was posted internally through Georgia 

State University’s psychology listserv for further recruitment purposes. Additionally, the study 
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was advertised through the Office of Disability Services on campus, as well as by word-of-mouth. 

These approaches resulted in recruitment of 3 more volunteers, which resulted in a total of 16 

participants. Appendix A.6 contains all participant-specific demographics. 

 Typical Readers 

For the typical-reader group, 37 English-speaking adults (18 to 29 years of age) with no 

diagnosis of a reading disorder or any other similar cognitive diagnoses were recruited from the 

SONA database (at Georgia State University) and matched with their counterparts on scores 

related to working memory (explained below). Of these, only 36 adults successfully completed the 

entire experiment. They were compensated with class credit for participation. Exclusionary criteria 

involved any visual or auditory impairment or other diagnoses (e.g., ADHD, etc.). 

Table 1 Demographic characteristics of the groups 
  Group 
    Typical   Atypical   
N  36  16  
Age in years1  19.990 2.672 31.795 14.177 
Digit Span1  26.611 4.486 24.812 4.415 
Sex2 Male 8 22.2% 6 37.5% 

 Female 25 69.4% 10 62.5% 
 Nondisclosed 3 8.3% 0 0% 

Handedness Left 0 0% 1 6% 
 Right 32 88.9% 11 68.8% 
 Ambidextrous 4 11.1% 4 25% 

1 Mean with standard deviation; 2 Frequency with percent. 

As is evident in Table 1, according to a non-parametric Mann-Whitney (Mann & Whitney, 

1947) test there was an age disparity between the two groups with the atypical readers being older 

on average than the typical readers [U = 41.00; p < .001]. Only 3 atypical participants were flagged 

as age outliers but even when removed, Mann-Whitney test results consistently indicated 

statistically significant group differences due to age variability amongst atypical readers [U = 
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41.000; p< .001]. Therefore, all atypical participants were retained in future analyses and, 

wherever possible, checked for age-related correlations against relevant outcome measures. For 

additional demographics on all participants, refer to Appendix A.1; the participant information 

questionnaire used to obtain these demographics is in Appendix B.1. 

3.2 Materials and Procedures 

All participants were administered Informed Consent documents. Upon granting consent 

to proceed they also completed a participant information questionnaire (Appendix B.1), the Adult 

ADHD Self-Report Scale (Kessler et al., 2005; Appendix B.2), the Brain Mapping Handedness 

Inventory (Appendix B.3), and the Ollen Musical Sophistication Index (Ollen, 2006; OMSI, 

Appendix B.4). These materials are briefly discussed below. 

All participants completed three computer-based learning tasks lasting approximately 30 

minutes each. In these tasks, each participant was presented with shapes on the screen or tones via 

computer speakers. After viewing/listening to these stimuli, participants either had to: (1) 

reproduce a certain string of shapes (via mouse clicks) and make a judgment regarding previous 

stimuli; (2) detect (via button press) a certain shape; or (3) detect (via button press) a certain tone. 

Descriptions of the computerized artificial grammar learning and the sequence based (transition-

timing) visual and auditory implicit-statistical learning tasks are presented below. The order of 

presentation of the three computerized tasks was counterbalanced across participants. 

 Computerized assessments were followed by the administration of a feedback 

questionnaire containing pattern awareness questions (see Appendix B.5), after which behavioral 

assessments were administered to participants individually by trained personnel. These 

assessments contained normed measures of reading, spelling and cognitive processing. During 

these assessments, electrophysiological data was not collected. 
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For both tasks, stimuli were presented electronically using E-Prime 2.0.8.90 software 

(Psychology Software Tools, Pittsburgh, PA), on a Dell Optiplex 755 computer. All visual and 

auditory stimuli (Figure 3.1) were non-linguistic. 

 

Figure 3.1 Stimuli used in the artificial grammar learning and visual and auditory implicit-
statistical learning tasks (Stimuli from Schapiro, Rogers, Cordova, Turke-Browne & Botvnick, 
2013) 

 

 Artificial Grammar Learning Task (Visual) 

This task used a balanced chunk-strength design (see Introduction; Knowlton and Squire, 

1996) in order to assess chunking as well as ordinal and algebraic-pattern learning. In a typical 

artificial grammar learning design (i.e., no control over chunk strength), chunk strength of 

grammatical items is higher than nongrammatical items because nongrammatical items contain 

(incorrect) chunks that do not occur during the training phase. However, to examine the effects of 

chunk strength and grammaticality independently of one another, test items were created in a 

balanced chunk-strength design such that grammatical and nongrammatical items had equivalent 

chunk strength. Thus, grammaticality and chunk strength of the test items were not confounded. 

AGL SL visual

261.62hz

SL auditory 

311.127hz 369.994hz 440.000hz
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 Materials  

Based on Knowlton and Squire (1997), the symbol strings were generated by a finite-state 

grammar that determined the order that different elements could occur in the sequence embedded 

in the stimulus presentation. Using this exact (Knowlton & Squire, 1997) grammar, but replacing 

the letters with symbols taken from Schapiro et al., (2013) shown in Figure 3.2— (randomly 

assigned for each participant)—23 training items and 16 test items were generated. The symbol 

strings were two to six items in length. The set of nongrammatical items were created by 

introducing an error into each of the sixteen grammatical items. Finally, 16 test items were 

generated, ensuring that chunk strength was equal across grammatical and nongrammatical items. 

In the current task, this original number was doubled to 32 (i.e., 32 trials per testing block). 

As per Knowlton & Squire’s (1997) calculations, test chunk strength was obtained by 

averaging associate strengths of each chunk in the items. The quantity of high and low chunk 

strength items among both grammatical and nongrammatical items were approximately equal. 

Average chunk strength was 7.2 For grammatical items and 7.0 for nongrammatical items. Figure 

3.2 lists the test items that were used within each of the four categories: (1) grammatical with high 

chunk strength, (2) grammatical with low chunk strength, (3) nongrammatical with high chunk 

strength, and (4) nongrammatical with low chunk strength.   



29 

 

Figure 3.2 Knowlton and Squire's, (1997) artificial grammar diagram used for item 
creation; Left Panel: Symbol Substitutions for letters and Abbreviations referred to in the table. 

 Procedure 

The artificial grammar learning task comprised of three phases: practice, exposure, and 

test. Practice was used to introduce the participant to the task.  Exposure was meant to familiarize 

the participant with symbol strings generated from the grammar. Test was designed to assess 

whether participants could discriminate between symbol strings that followed the rules of the 

grammar compared to those that did not. Symbols used in this task were chosen from a set of 

symbols created by Schapiro et al. (2013; see Figure 3.1). 

Presentation of each item (i.e., individual symbol within the string) during practice and 

training was self-paced; that is, participants were presented with each symbol string and were 

instructed to reproduce it via left mouse click. All trials were dark items presented on a white 

background. On every trial the four symbol options were always within view for the participant to 

refer to at the bottom of the screen. The participant only had to choose (by clicking) the desired 

symbol to reproduce each item above the pre-existing options. Upon reproduction the participant 

received feedback regarding accuracy of their response. After making their selection, the 

X V T J

Training Items
XXVT VXJJJJ XXVJ VJTVXJ

XXVXJJ XVT VJTVX XXXVX
VXJJ XXXVT VJTVJ VJTXVJ

XVJTVJ VJ XXXVTV XVXJ

XXVXJ XVXJJJ XVXJJ XXXXVX

XVX VJTVTV VT
Test Items

GH CS GL CS NGH CS NGL CS
XXXVXJ 10.4 VJTVT 6 VJTV 7 XXJJ 6.8

XVTV 6.8 VTVJJ 5.1 XXV 12.3 VXJTJ 4.9
VXJ 9.3 VTVJ 5.6 XVXV 10 XXVVJJ 6.2

XXVTV 8 XVJTVT 6.7 XVXVJ 9.1 JXVT 5

XVJTVX 7.4 VTV 5 XXVJJJ 7.8 XXTX 2.8

XXVTVJ 7.7 XVTVJ 6.7 XJJ 7 TVJ 6.7

VJTXVX 6.8 XVTVJJ 6.1 VXVJ 8.2 VXJJX 5.9

VX 12 VTVJJ 5.2 XVXT 7 VJJXVT 4.9
M 8.6 M 5.8 M 8.6 M 5.4

Abbreviations
Grammatical – High chunk 
strength (GH)
Grammatical – Low chunk 
strength (GL)
Non-Grammatical – High chunk 
strength (NGH)
Non-Grammatical – Low chunk 
strength (NGL)
chunk strength (CS).

Chart Substitutions
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participant could click one of two on-screen options: ‘enter’ or ‘cancel’. Clicking ‘enter’ meant 

submitting the response whereas ‘cancel’ was used to erase the most recently clicked item 

option(s). Once submitted, participants advanced to the next symbol string if their responses were 

accurate, but they received an error message and were prompted to reproduce the item once again 

if the responses were inaccurate. Thus, the participant was not permitted to move on to a 

subsequent symbol string without reproducing the current string accurately.  

The task began with eight practice1 trials during which the participant was familiarized 

with the task before the training phase. During practice, the participant was given instructions on 

how to respond via mouse click. Similarly, the subsequent training phase began with the 

presentation of a string of symbols (as in Figure 3.3) that the participant was asked to reproduce 

on the screen via mouse click. The number of total trials at training was four times that of the 

original Knowlton and Squire (1996) experiment to increase exposure before the test phase. 

Training comprised of 4 blocks of 23 trials (or a total of 92 self-paced trials) separated by three 

30-s breaks.  

After exposure, the test phase began. The participant was informed that items in the training 

item strings were created according to a structured “pattern”; and that they would then see new 

item strings (same items, new sequence combinations) regarding which they must make a 

judgment decision as to whether the item string was generated by the same rule or not. Every test 

trial began with a fixation cross for 500ms followed by a white screen for 100ms. This was 

followed by presentation of the novel symbol sequence for 2000ms after which the grammaticality 

judgment question was presented followed by the participant’s correctness rating. They first 

                                                
1 Each practice trial was made up of a string that was 6 items long, using the same symbols as the rest of the 

task but did not follow the Knowlton and Squire (1997) grammar and were designed only to help familiarize the 
participant with task demands. 
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indicated their grammaticality judgment response by pressing: (1) if the item followed the rule and 

(4) if it did not follow the rule. They then rated the confidence in their own judgments using the 

following numbered response button options: (1) I was guessing, (2) I was mostly guessing, (3) I 

was mostly sure or (4) I am sure. Participants did not have to memorize the response button 

(numbered) options for any of the questions as these instructions were always be present at the 

bottom of the screen. Testing comprised of 4 blocks of 32 trials (or a total of 128 self-paced trials) 

separated by three 30-second breaks. Test items were presented in a random order. See Figure 3.3 

(above) for a schematic representation of a single trial at training and test. During test, participants 

responded via button box. Numbered keys corresponded to the numbered options on-screen so 

participants did not need to memorize any pairings or combinations.  

 

Figure 3.3Artificial grammar learning task. Left panel: Schematic representation of 
training trial; Right panel: Schematic representation of test trial. 
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Shape substitutions above their corresponding letters  
taken from Knowlton & Squire’s (1996) grammar are 
presented below : 

X     V      T      J
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 Visual-motor Statistical Learning  

This task was meant to measure visual statistical transition-timing information and is and 

is similar to the task used by Jost et al., (2015), except the colored circles in Jost et al, (2015) were 

replaced by textured circles from Schapiro et al., (2013), and are presented in Figure 3.4 below. 

The task consisted of a few practice trials followed by the two main phases of testing. Practice was 

designed to introduce participants to the task. Phase 1 was meant to familiarize the participant with 

the probabilistic rules, or nonrandom task sequences. It was designed to assess whether participants 

had learned the predictor - target contingency rules (i.e., using RTs and ERPs to measure learning 

of the predictor-target contingencies) – during which the target stimulus would be preceded by a 

stimulus that was highly predictable (90%) or by a stimulus low in predictability (10%). During 

Phase 2, these predictability conditions switched to 50% probability and participants were assessed 

on their ability to detect the new equal predictability conditions as opposed to high/low 

predictability from Phase 1 training. 

 Materials 

Stimuli in this task (see Figure 3.4) followed a pre-defined structure based on statistical 

probability of appearance. On every trial, 1 to 7 standard stimuli could first appear, this was 

followed by any of two predictor stimuli: high and low. Predictor stimuli may or may not have 

been followed by a target stimulus. In the high predictability condition, a high probability (HP) 

predictor was followed by the target 90% of the time or by a standard stimulus 10% of the time. 

In the low predictability (LP) condition, the target/standard probabilities were reversed. The task 

had two parts or phases, explained below. Each stimulus was randomly assigned (as 

target/standard/HP/LP) for every participant. Target assignment was at the outset of the experiment 

and once selected, was applied across the entire experiment for that participant. 
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Figure 3.4 Probabilistic visual statistical learning task. Upper panel: Stimuli --- from 

Schapiro et al. (2013); Lower panel: Schematic representation of a training trial. 
 Procedure 

The participant first got acquainted with the task through four practice trials. Practice trials 

(for visual and auditory task versions) were randomly presented, always seven items long and 

made up of the same stimuli as the rest of the task and were designed only to help familiarize the 

participant with task demands. Participants were instructed to press a response button as soon as 

they saw the target shape (see Figure 3.4). Speeded and accurate responding was emphasized in 

the instructions.  

After practice, the participant began Phase 1. Each block comprised of 20 trials for a total 

of 60 trials that were presented across 3 blocks (10 trials per predictor). Within each block, trials 

were presented randomly and in a continuous fashion such that the participant was unable to 

distinguish one trial from another. A break lasting a minimum of 30s separated each block. All 

visual stimuli were presented in white in the center of the computer screen on a light background. 

Stimuli were displayed for 500ms, followed by a dark screen, which was displayed for an 

additional 500ms (inter-stimulus interval was 500 ms; stimulus onset asynchrony was 1000-ms). 

Phase 1 was followed by a Phase 2, during which the predictability conditions changed 

from training, so that the probability of a target following a predictor remained at 50% (see Figure 
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3.5). Each block comprised of 20 trials for a total of 120 trials that were presented across 6 blocks 

(10 trials per predictor). This means that in Phase 2, there were two types of trials: ones that were 

consistent with the probabilities to which participants had experienced during training, and ones 

in which there was a violation of expectation (LP occurred more frequently and HP occurred less 

frequently than in Phase 1, but both occurred with equal frequency in Phase 2). Trial presentation 

and participant responses were exactly the same as during training. Participants were never 

informed of the change in the probabilistic nature of the task, or even that there were statistical 

probabilities at all. Each block was followed by a 30s break. 

 
Figure 3.5 Probabilistic visual statistical learning task. Upper panel: Stimuli --- from 

Schapiro et al. (2013); Lower panel: Schematic representation of a test trial. 

 Auditory-motor Statistical Learning 

This task was created with the same structure as the visual-motor task above but with pure 

tones (Saffran et al, 1999) in place of the abstract circles. Similar to the previous tasks, practice 

trials were administered briefly to introduce participants to the task. Phase 1 was meant to 

familiarize the participants to the probabilistic regularities, and Phase 2 was designed to assess 

whether participants had learned the regularities during training and could detect violations of the 

predictability conditions that they had been exposed to during training. 
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 Materials 

 Similar to Saffran et al., (1999) stimuli were constructed out of four pure tones (261.62Hz, 

311.127Hz, 369.994Hz, and 440.000Hz) of the same octave (starting at middle C within a 

chromatic set), using the sine wave generator in Audacity 2.0.5. The pure tones (between 45dB 

and 60dB) were each the same length (0.5s) as each other and also corresponded to the duration of 

visual stimulus presentation (used in the previous task). Figure 3.6 shows the stimuli layout for 

the audio Phase 1 Figure 3.7 displays the layout for Phase 2. 

 

Figure 3.6 Probabilistic audio statistical learning task. Upper panel: Stimuli --- from 
Saffran et al. (1999); Lower panel: Schematic representation of a training trial. 

 

 

Figure 3.77Probabilistic audio statistical learning task. Upper panel: Stimuli --- from 
Saffran et al. (1999); Lower panel: Schematic representation of a test trial. 
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 Procedure  

The structure, trial presentation and participant responses (button press) for the auditory 

statistical learning task were exactly the same as for the visual-motor SL task. For this task, 

participants were instructed to press the button as soon as they heard the target sound. Auditory 

stimuli were presented at the same dB level for all participants via computer speakers on either 

side of the computer screen. Each stimulus was randomly assigned as target/standard/HP/LP for 

every participant. Target assignment was made at the outset of the experiment and once selected, 

was applied across the entire experiment for that participant. 

 Additional Design Features 

Non-linguistic stimuli such as pure tones and abstract shapes were intentionally chosen to 

examine implicit-statistical learning effects without the confound of phonological reasoning 

(sound-to-phoneme-mapping). The current task’s non-linguistic nature was designed not only to 

discourage any labeling of stimuli (for rehearsal) but also to be a fair test of pattern recognition 

and learning of symbols in general, versus the learning of specifically linguistic material.  

Additionally, in the absence of letter stimuli for both of these tasks it was possible to test 

directly whether adults with reading disorders have problems with implicit-statistical learning of 

structures at a basic level, beyond exposure to linguistic items. 

3.3 Feedback Questionnaire 

At the end of both computerized tasks, participants completed a brief questionnaire (See 

Appendix A) about their levels of awareness of the underlying statistical patterns. Only responses 

to questions that reflected pattern awareness were rated by two independent raters as either high 

or low awareness. Agreement ratings were then entered into any main analysis with pattern 
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awareness. Cohen’s κ was run to determine degree of inter-rater agreement (Landis & Koch, 1977); 

there was high agreement between the two rater’s judgements (κ = .712, p < .001). 

3.4 Normed Behavioral Assessments 

Each participant was administered standardized measures of: (1) selected subsections of 

the Wechsler Individual Achievement Test, 3rd Edition (WIAT-III, Psychological Corp., 2009); 

and (2) selected subsections of the Wechsler Adult Intelligence Scale 4th Edition (WAIS-IV, 

Wechsler, 2008). These measures were used as indices of cognitive, spelling and reading ability, 

in later analyses. Additionally, they also helped to better characterize the sample of participants. 

A short description of each subtest is provided below. 

 Reading Ability 

The Word Reading and Pseudoword-Decoding subtests measuring Reading ability were 

administered from the WIAT- III (Psychological Corp., 2009).  Word Reading was used to measure 

speed and accuracy of single word reading. The participant was instructed to read an entire list of 

words out aloud (but is not instructed to read quickly) and their score reflected words read in the 

first 30secs of reading.  Pseudoword-Decoding was used to measure speed and accuracy of 

decoding non-words. The participant was instructed to read an entire list of nonwords out aloud 

(but was not instructed to read quickly) and their score reflected nonwords read in the first 30secs 

of reading. 

 Spelling 

The Spelling subtest measuring orthography was also administered from the WIAT- III 

(Psychological Corp., 2009). This instrument was used to measure written spelling of single 

sounds and words from dictation. Each participant was instructed to spell dictated words, without 
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erasing. After having listened to a target word followed by the word within the context of a 

sentence, the participant was asked to write down the word. Their score reflected accurately spelled 

words. 

 Cognitive Ability 

The Digit Span and Symbol Search subtests measuring Reading ability were administered 

from the WAIS-IV (Wechsler, 2008).   

Digit Span (forward and backward) was used to measure the participant’s ability to recall 

a series of numbers in a specified order. The backward digit span is a commonly used measure of 

working memory and the forward digit span is typically used to measure verbal short-term 

memory. Participants heard a numeric sequence and were asked to recall the sequence in the correct 

order. The longest number of accurately remembered sequences represented the participant’s digit 

span or focus. No visual information was presented.  Symbol search was used to measure the 

participant’s ability to visually scan for items on paper. This subtest was time sensitive and was 

used to measure processing speed. In this paper and pencil task, the participant was required to 

quickly scan visual information on the page and make an informed decision about whether target 

symbols matched other symbol exemplars. This task required sustained focused attention for a 

total of two minutes. 

3.5 Additional assessments 

 The ADHD Checklist (Appendix B.2) 

All participants were rated as per the ADHD Checklist guidelines presented in the manual 

and could obtain a lowest possible score of 0, indicating a complete lack of ADHD self-reported 

symptoms. The highest possible score was 16. This is used as a screening and not a diagnostic 
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tool, and within the present context was used only as a means to assess prevalence of baseline 

ADHD self-reported symptoms. 

 The OMSI scale (Appendix B.4) 

The OMSI (Ollen, 2006) is a ten-item online questionnaire used to assess whether a 

participant was high or low on musical sophistication or musical ability (Hallam & Prince, 2003). 

Rather than a comprehensive assessment, it is a quick means to index the levels on which 

participants differed in musical ability (Ollen, 2006). 

Table 2 Descriptives for adults [besides ADHD and OMSI measures, all scores are 
scaled] 
  Group 
    Typical   Atypical   
N  36  16  
  Mean SD Mean SD 
Reading 105.500 5.516 98.000 10.782 
Pseudoword Decoding 97.194 8.510 87.750 14.510 
Spelling2 111.000 9.770 89.437 20.150 
Digit Span 9.166 2.480 8.375 2.250 
Symbol Search 9.250 2.480 7.812 2.830 
OMSI 126.027 113.53 157.500 141.78 
ADHD 4.638 4.300 7.250 4.540 

 

Mann-Whitney (Mann & Whitney, 1947) tests revealed that the groups differed in terms of 

their scores on reading [U = 153.500; p = .007], pseudo-word decoding [U = 158.500; p = .01] and 

spelling [U = 86.000; p < .001]. There was also variability across scores obtained from the ADHD 

checklist [U = 180.000; p = .031]. However, the two groups did not significantly differ with regards 

to scores on the digit span subtest [U = 252.000; p =.471], symbol search subtests [U = 212.500; 

p = .131] or the OMSI [U = 243.000; p = .372].  

                                                
2 N = 35 due to one outlier that will be excluded from future analyses with spelling scores. 
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In terms of pattern awareness, results were comparable across groups --- independent raters 

judged 67% of typical readers (N = 36) and 69% of atypical readers (N = 16) as having a high level 

of pattern awareness. 

3.6 Electroencephalography Acquisition 

For the artificial grammar learning task, ERPs were time-locked to the onset of each 

symbol sequence at test only. For the probabilistic statistical learning tasks, ERPs were time-

locked to the onset of the predictor.  

During the SL tasks, electroencephalography (EEG) data were taken from 256 scalp sites 

using an Electrical Geodesic Inc. (EGI) sensor net (Figures 3.8 and 3.9). Electrode impedances 

were kept below 50 kΩ. The EEG was acquired with a 0.1 to 100 Hz band-pass at 250 Hz with 

vertex reference and then re-referenced to the average reference of all sensors and low-pass filtered 

at 30 Hz. All experimental sessions were conducted in a 132 square foot double-walled, 

soundproof acoustic chamber. To analyze the effect of the cortical topologic, either nine brain 

regions of interests (ROIs; see Figure 3.9) were demarcated as: left (LAn), middle (FRz), and right 

anterior (RAn); left (LCn), middle (CNz), and right central (RCn); and left (LPo), middle (POz), 

and right posterior (RPo) regions or six ROIs (as in Figure 3.8). This is because, for the AGL 

tasks, ROIs were defined similarly to that of Silva et al., (2016) wherein electrodes from the central 

region were distributed equally between left and right regions. Rather than include all nine regions, 

this division (into six areas) was performed to ensure comparison between current results and Silva 

et al., (2016), who also used an artificial grammar learning task.  
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Figure 3.8 Electrical Geodesics Inc. sensor net with six ROIs highlighted for the AGL 

task 
 

 
Figure 3.9 Electrical Geodesics Inc. sensor net with nine ROIs highlighted for the visual-

motor and auditory-motor learning tasks 
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4 RESULTS 

4.1 Statistical Analyses 

Prior to any main analyses, the data were checked for outliers and whether the data followed 

an approximately normal distribution. All analyses were carried out after meeting basic 

assumptions of repeated ANOVA3, t-tests, non-parametric Mann-Whitney U tests and Spearman 

correlational analyses. Due to the unbalanced sample size between typical and atypical readers, 

for each task, results are first presented within each group separately. This is followed by non-

parametric tests to further investigate for any group differences.  

 Artificial Grammar Learning (AGL; Visual) 

Closely following Silva, Folia, Hagoort & Peterson, (2017), behavioral data analyses 

included a report of accuracy (percent correct) but the main analyses are centered on endorsement 

rates (proportion of items in a given category that were classified as grammatical, regardless of 

their actual status). Paired-sample two-tailed t-tests and repeated measures ANOVAs with 

significance thresholds of .05 were used to analyze the data. Factors for grammaticality were 

Grammatical (G) vs. Non-Grammatical (NG) and for chunk strength were high (HCS) vs. low 

(LCS). When collapsed across the factors this resulted in four main categories: GH, GL, NGH, 

NGL (see methods section for details). Learning based on grammatical status (or increased 

discrimination between G and NG) and chunk strength-based learning (increased discrimination 

between HCS and LCS) were both tested via difference scores for behavioral and ERP data.  

                                                
3 Statistical analyses include ANOVAs and not ANCOVAs with age/reading ability as covariate. This was 

because the current data violate one or more ANCOVA assumptions especially with regards to: (a) the presence of 
(age) outliers, (b) homogeneity of regression slopes and (c) linear relationship between covariate and dependent 
variable at each level of the independent variable (even after data transformation). 
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The EEG data from all trials were analyzed by way of repeated-measures ANOVAs. The 

comparisons of interest were based on the factor’s grammatical status (two levels, G vs. NG) and 

local subsequence familiarity (CS, two levels, HCS and LCS). Based on visual inspection and 

similar to previous research (Christiansen et al., 2012; Silva et al., 2016) mean voltages were 

computed at two different time windows of interest (500–700ms and 700–900ms). Electrode 

clusters resulted in six regions of interest, each comprising twenty-one electrodes (Figure 3.8 in 

Methods). This yielded factors such as caudality with three levels (Anterior, Central, Posterior) 

and laterality with two (Left, Right). When reporting main effects or interactions, Greenhouse-

Geisser corrections were applied in cases of non-sphericity (with Bonferroni corrections). Along 

with grand average waveforms, topological-plot views (at 100ms time window views) generated 

from difference scores for grammaticality (NG minus G) and chunk strength (LCS-HCS) are also 

presented below. 

To investigate the link between behavioral measures and ERPs and other 

neuropsychological measures, Spearman’s r correlations were computed between: (1) behavioral 

difference scores from endorsement rates (G-NG and HCS-LCS) and other reading/cognitive 

outcome measures; and (2) at ROIs chosen a-priori (irrespective of statistically significant 

differences between conditions) via mean voltage differences for grammaticality (NG-G) and 

chunk strength (LCS-HCS).  

 Behavioral Results 

4.1.1.1.1 Typical 

Paired t-tests for these typical adults (N = 22 only; due to one outlier and data loss from 

technical issues associated with this task) indicated that there was a statistically significant 

difference in accuracy between correctly classifying an item as G (M = 56.25; SD = 17.190) vs. 



44 

NG (M = 41.690; SD = 13.401), t(21) = 2.870; p = .009, with G being slightly above chance 

compared to NG (see Figure 4.1, left panel). Similarly, paired t-tests indicated a statistically 

significant difference between accurately classifying an item as HCS (M = 45.880; SD = 12.298) 

vs. LCS (M = 52.059; SD = 10.925), t(21) = -2.313; p = .031, with LCS being marginally above 

chance compared to HCS. When asked to rate their confidence of responses, participants were 

most likely to confirm that they were sure of their grammaticality classification (the most 

frequently selected response was option 4 --- “I am sure”, see Table in Appendix C.1). 

 

Figure 4.1 Left Panel: Endorsement accuracy for Grammaticality and CS by category; 
Right panel: Endorsement rates across Grammaticality X CS 

 

Using endorsement rates (See Figure 4.1, right panel; irrespective of accuracy, in line with 

Knowlton & Squire, 1996; Silva et al., 2017) the results from a repeated 2x2 (Grammaticality x 

chunk strength) ANOVA, revealed no statistically significant main effect of grammaticality 

F(1,21) = .243; p =.627; η2 = .011 or CS F(1,21) = .964; p =.337; η2 = .044. However, there was a 

significant interaction between Grammaticality and chunk strength, F(1,21) = 5.348; p =.031; η2 

= .203  (Figure 4.2). Consistent with previous research (Pavlidou & Williams, 2010) both 

grammaticality and CS influenced adult learning. Endorsement at test was higher for NG-High 

compared to NG-Low (similar to baseline for Silva et al., 2017).  
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Figure 4.2 Grammaticality by CS interaction for typical readers. 
 

4.1.1.1.2 Atypical 

Paired t-tests for atypical adults (N = 12 only; due to data loss from technical issues 

associated with this task) indicated that there was no statistically significant difference in accuracy 

between correctly classifying an item as G (M = 54.687; SD = 29.533) vs. NG (M = 47.786; SD = 

28.010), t(11) = .432; p = .674 (see Figure 4.3, left panel). Similarly, paired t-tests did not indicate 

a statistically significant difference between accurately classifying an item as HCS (M = 49.088; 

SD = 8.413) vs. LCS (M = 53.385; SD = 11.784), t(11) = -1.127; p = .284. When asked to rate their 

confidence of responses, participants were most likely to confirm that they were sure of their 

grammaticality classification (the most frequently selected response was option 4 --- “I am sure”, 

see Table in Appendix C.1). 

Repeated-mixed ANOVA with group (atypical readers) revealed no statistically significant 

main effect of grammaticality F(1,11) = .595; p =.457; η2 = .051 or CS F(1,11) = .831; p =.381; η2 

= .07; nor was there a significant interaction between the two factors and group F(1,11) = 3.152; 

p =.103; η2 = .223. 
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Figure 4.3 Left Panel: Endorsement accuracy for grammaticality (Grammaticality) and 
chunk strength (CS) by category; Right panel: Endorsement rates across Grammaticality X CS; 
both bottom panels show atypical reader data. 

 

 Between group non-parametric tests 

To investigate whether the two groups differed on each of the two grammaticality factors 

(G/ NG) and CS (High/ Low) in terms of endorsement accuracy or endorsement (irrespective of 

accuracy), non-parametric Mann-Whitney tests were performed. Results are as follows: No 

significant group differences were found between typical (N = 22) and atypical readers (N = 12) 

in terms of item endorsement accuracy on whether items were G, (U = 120.000; p = .683); NG (U 

=93.500; p = .168); HCS (U = 113.500; p = .511) or LCS (U = 112.000; p = .488). Similarly, in 

terms of item endorsement only, no significant group differences were found whether items were 

GH (U = 113.000; p = .511); GL (U = 115.000; p = .557); NGH (U = 129.000; p = .929); or NGL 

(U = 112.000; p = .488). 

Table 3 Percentage of participants below chance for endorsement accuracy 
  G NG HCS LCS 

Typical 41 82 64 55 

Atypical 50 42 58 33 
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Table 3 above shows that the participants differ in terms of learning at chance and that this 

is not considered in current analyses. Although separating participants into learners who scores 

above chance vs. those who scored below; as well as accounting for reading ability groups is 

beyond the scope of this study, this is a learning issue and is addressed in the discussion chapter. 

 ERP Results 

4.1.1.3.1 Typical 

Visually, grand averages (Figure 4.4, left panel) indicated lower amplitudes for GL in the 

left hemispheres and higher amplitudes for GH in the right. For NGH and NGL amplitudes no 

particular pattern was observable.  

Both time windows showed a main effect for laterality as well as an interaction of chunk 

strength x laterality. Only the last time window indicated a three-way interaction of grammaticality 

x caudality x laterality, F(1.27, 30.485) = 4.448; p = .035; η2 = .156, (displayed below in Figure 

4.4, right panel). This indicates consistently higher amplitudes in the right hemisphere for G 

compared to NG trials in posterior regions, but was inconsistent between left and right hemispheres 

for grammatical and non-grammatical sequences in anterior and central regions. Similar to Silva 

et al., (2016) current results do implicate effects of grammaticality in both time windows. 
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Figure 4.4 Left panel: Grand averages for the AGL task, for typical readers; Right panel: 
Results of the grammaticality X Caudality X Laterality interaction at 700-900ms 

 

Additionally, findings did reveal main effect for laterality across both time windows: (i) 

500–700ms [F(1,24 = 13.778; p=.001; η2 = .356] and (ii) 700–900ms [F(1,24 = 9.104; p=.006; η2 

= .275]. On average, amplitudes were higher for left compared to right hemispheres. 

Similarly, both time windows showed chunk strength x laterality interactions: (i) 500–

700ms [F(1,24 = 18.017; p < .001; η2 = .429] and (iv) 700–900ms [F(1,24 = 18.916; p <.001; η2 

= .441]. Pairwise comparisons indicated that amplitudes across the windows were always higher 

for low compared to high CS and were also higher for left compared to right hemispheres 

The topological views below (Figure 4.5) indicate greater amplitude differences in terms 

of grammaticality in right brain regions that builds up over time. Additionally, consistently greater 

CS amplitude differences in left brain regions were observed for typical readers. 
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Figure 4.5 Topological views for the grammaticality and CS difference scores over each 
time window, for typical readers. 

4.1.1.3.2 Atypical 

Visual inspection (Figure 4.6) revealed that the atypical group produced relatively lower 

amplitudes for GH and NGH in the left hemispheres and higher amplitudes in the right. In contrast, 

compared to GL and NGL amplitudes appeared lower in the right and higher in the left, especially 

in anterior regions. Visually, thy atypical readers’ waveforms showed a pattern similar to the 

typical readers.  
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Figure 4.6 Grand averages across ERPs for grammaticality and CS for atypical readers 

in the AGL task 

For the atypical readers, both time windows showed a main effect for laterality as well as 

an interaction of chunk strength x laterality x caudality. Results of the repeated measures ANOVAs 

are presented below. Both, the 500-700ms: F(1.254, 13.793)=12.746, p = .002, η2 = .537, as well 

as the 700-900ms time window: F(1.269, 13.962)=13.397, p = .002, η2 = .549 --- showed a 

significant interaction for chunk strength x laterality x caudality. This is depicted in Figure 4.7 

below. Across both time windows, amplitude differences were observable in anterior regions 

(more so than central and posterior) were right lateralized. 

Main effect for laterality was found across both windows: (i) 500–700ms [F(1,11 = 9.735; 

p=.010; η2 = .469] and (ii) 700–900ms [F(1,11 = 7.361; p=.020; η2 = .401].  

Both time windows also showed a chunk strength x laterality interaction: (i) 500–700ms 

[F(1, 11)= 5.126; p =.045; η2 = .318] and (ii) 700–900ms [F(1, 11) = 5.193; p = .044; η2 = .321]. 
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Figure 4.7 Interaction with caudality, laterality and CS for the AGL task for atypical 
reader; left panel: within 500 – 700ms and right panel: within 700 – 900ms. 

 

Figure 4.9 below captures the amplitude differences for grammaticality and CS across 

matched groups. Topological plots for grammaticality appear comparable across groups, but for 

CS, the typical group shows a greater amplitude difference at early left anterior regions compared 

to atypical readers. Instead, atypical readers’ topological plots show greater amplitude differences 

over all time windows for CS in left posterior regions. 
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Figure 4.8 Topological views for the grammaticality and CS difference scores over each 
time window, for atypical readers. 

 Between group non-parametric tests 

 To investigate whether the two groups differed on endorsement for each of the two 

grammaticality factors (G/ NG) and CS (High/ Low) in terms of ERP amplitudes, non-parametric 

Mann-Whitney tests were performed only in the LPo region in both time windows (based on 

ANOVA findings, above). Results between typical (N = 25) and atypical readers (N = 12) are as 

follows: (i) 500-700ms - GH (U = 79.000; p = .021); GL (U = 101.000; p = .117); NGH (U = 

90.000; p = .053); or NGL (U = 137.000; p = .689); (ii) 700 – 900ms - GH (U = 88.000; p = .045); 

GL (U = 115.000; p = .267); NGH (U = 103.000; p = .133); or NGL (U = 144.000; p = .860). 

Thus, in the first time window, the groups differed only in terms of GH and NGH item 

endorsement; and in the second time window, group differences were only observed for GH items. 

 Correlations 

Spearman’s rs correlation coefficients were computed between: (1) behavioral difference 

scores from endorsement rates (G-NG and HCS-LCS) and outcome measures (raw scores on 

Reading, Pseudoword decoding, spelling, digit span, symbol search, OMSI and pattern awareness 

scores); and (2) at ROIs (left and right, for anterior as well as posterior regions) mean voltage 
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differences (chosen based on visual inspection and are similar to exploratory analyses in Silva et 

al., (2017)] for grammaticality (NG-G) and chunk strength (LCS-HCS). Age was also entered to 

check for its potential influence in the between-groups analysis. Only correlations with the 

AGL/SL tasks for which p <.001 are discussed below; but all correlations are presented in 

Appendix C.1. 

No statistically significant (p <.001) correlations with the AGL tasks were found for 

typical readers. All correlation tables are presented in Appendix C.1. Atypical reader results 

showed that scores on symbol search were positively correlated with AGL scores (NG-G) at RPo 

regions, only during the 500-700ms time window --- (N = 12, rs =.711, p <.001). 

 Probabilistic Statistical Learning Task (Visual-motor) 

Both behavioral and ERP data were analyzed in a way similar to Jost et al., (2015). 

Behavioral data analyses included mean RTs for HP and LP conditions over the 2 phases within 

the task. Phase 2 was split into a first and second half, each half comprised of 3 blocks of trials, to 

track learning over the task. Thus, factors for predictability were (HP vs. LP), and for phase 

(1/2a/2b). Learning effects or learning based on predictability conditions (increased discrimination 

between HP and LP) across the phases was the main outcome of interest across behavioral and 

ERP findings. This is also referred to as transition-timing (Dehaene et al., 2015). 

The ERP data from all trials were analyzed using repeated-measures ANOVAs. The 

comparisons of interest were based on predictability (two levels, HP vs. LP) and phase (1/2a/2b). 

Following Jost et al. (2015), mean voltages were compared at 400–700ms and nine regions of 

interest were computed, each comprising fifteen electrodes (Figure 3.9). Caudality entered the 

analysis with three levels (Anterior, Central, Posterior) and laterality with three as well (Left, 

Middle, Right). Main effects of phase and predictability were reported with Greenhouse-Geisser 



54 

corrections in case of non-sphericity (with Bonferroni corrections). Along with grand average 

waveforms, topological-plot views generated from difference scores for predictability (HP-LP) 

and are also presented below. 

To investigate the link between ERPs and behavioral decision as well as ERPs and other 

neuropsychological measures, Spearman’s rs correlations were computed between: (1) behavioral 

difference scores from mean RTs (LP - HP) and other reading/ cognitive outcome measures; and 

(2) at ROIs containing mean voltage differences (HP vs. LP).  

4.1.2.1.1 Typical 

A repeated measures ANOVA was used to investigate whether there were statistically 

significant differences across average RTs by phase and predictability condition with the typical 

readers only. This is depicted in the left panel of Figure 4.10, showing the average RTs across 

phases. 

Results of the ANOVA revealed a significant main effect of predictability, F(1,33=11.035, 

p =.002, η2 = .251, but not phase, F(1,66)=.570, p =.515, η2 = .017.  There was a statistically 

significant interaction between phase and predictability, F(2,66)=1.629, p =.204, η2 = .047 (see 

Figure 4.10, right panel). In typical readers, across the phases, the expected learning effect (RTs 

for LP > HP) was observed.  
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Figure 4.9 Left: Average RTs by predictability over each phase: Right: interaction between 
predictability and laterality --- for typical readers 
4.1.2.1.2 Atypical 

Similarly, a repeated measures ANOVA was used to investigate whether there were 

statistically significant differences across average RTs by phase and predictability condition across 

atypical readers. The results are depicted in Figure 4.11. There was a significant main effect of 

predictability, F(1,11=16.066, p =.002, η2 = .594, main effect of phase was right at significance 

F(1.611,17.721) = 3.753, p =.052, η2 = .254; but no significant phase x predictability interaction 

was observed F(1.169, 12.86) =2.466, p =.138, η2 = .183, as was the case for typical readers. 

 

Figure 4.10 Average RTs, in ms, by predictability over each phase for atypical readers 
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 Between group non-parametric tests 

To investigate whether the two groups differed in terms of RTs within predictability 

condition (HP/ LP) across each phase (1/ 2a/ 2b), non-parametric Mann-Whitney tests were 

performed. Results are as follows: significant RT group differences were found between typical 

(N = 34) and atypical readers (N = 12) only for the LP condition at Phase 1, (U = 96.000; p = .007); 

but not for any other phases and predictability conditions. Non-significant results were as follows: 

Phase 1-HP, (U = 167.500; p = .361); Phase 2a-HP (U = 170.000; p = .395) and LP (U = 150.000; 

p = .177); Phase 2b-HP (U = 165.000; p = .329) and LP (U = 198.500; p = .891). 

 ERP Results 

4.1.2.3.1 Typical 

Visual inspection of the ERP waveforms (Figure 4.12; left panel) for the typical group 

indicate the presence of the typical learning effect (higher amplitudes for HP compared to LP) in 

Phase 1, where the statistical probability between predictor-target was either 90% or 10%. This 

difference is especially clear in the centro-posterior region/POz (Jost et al., 2015) within ~400-

700ms. This effect remains throughout both phases but lessens in amplitude difference and latency 

in Phase 2 within ~500-600ms, which would be in line with the task demands (switch to 50-50% 

predictor-target relationship). Additionally, amplitudes for HP (vs. LP) seem to be higher for left 

and central compared to right cortical regions.  

Similarly, topological-plots (Figure 4.12; right panel) show higher posterior amplitude 

differences across phases. Visually, this difference seems to decrease in Phase 2b ~ 500-600ms.  

Using a repeated ANOVA, with ERPs as dependent variable, findings showed that there 

was a main effect for predictability [F(1,33)=5.279; p=.028; η2 =.138], laterality 

[F(1.770,58.423)=16.751; p<.001; η2 =.337] and caudality [F(.109, 35.959)=25.928; p<.001; η2 
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=.440] as well as a predictability x laterality interaction [F(1.856, 61.242) = 7.445; p=.002; η2 

=.184] in the 400-700ms time window. This was indicative of higher amplitudes for HP (compared 

to LP) in left and central ROIs but not for the right hemispheres. 

 

Figure 4.11 Grand averages for each predictability condition over the three task phases; 
Right: Topological views of the difference scores (HP – LP) for each phase ---for typical readers 
in the 400-700ms time window 

4.1.2.3.2 Atypical 

Visual inspection of grand averages in Figure 4.13 for matched-typical readers reveals the 

same pattern as previously mentioned for the typical readers. However, atypical readers do not 

show a distinct HP > LP difference in any of the phases, especially not at POz. This is (visually) 

indicative of atypical learning of the predictor-target contingencies in this task.  

Result of a repeated ANOVA indicated that for atypical readers there was only a significant 

main effect for phase [F(1.79, 25.057)=3.373; p=.055; η2 =.194]. No further main effects or 

significant interactions were observed.  
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Figure 4.12 Grand averages for each predictability condition over the three task phases; 
Right: Topological views of the difference scores (HP – LP) for each phase ---for atypical readers 
in the 400-700ms time window 

 
Similar to the waveforms, the topological-plots depicted in Figure 4.13 show that 

amplitude differences were generally greater for the typical readers at Phase 1. Whereas atypical 

reader topological-plots show little change in amplitude difference by phase, the typical readers 

show overall greater amplitude differences at posterior areas, which was reduced between Phase 

2a and 2b and might be reflective of learning the predictability condition switch (from 90-10% to 

50-50% predictor-target rule). 

 Between group non-parametric tests 

To investigate whether the two groups differed in terms of ERP amplitude at POz only, 

within 400-700ms, across predictability condition (HP/ LP) and for each phase (1/ 2a/ 2b), non-

parametric Mann-Whitney U tests were performed. Statistically non-significant results are as 

follows: No significant group differences at POz were found between typical (N = 34) and atypical 
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readers (N = 15) for Phase 1 HP, (U = 248.000; p = .879) or LP (U = 239.000; p = .729); Phase 2a-

HP, (U = 248.000; p = .879) or LP (U = 198.000; p = .216); Phase 2b-HP (U = 243.000; p = .795) 

or LP (U = 208.000; p = .308). 

 Correlations 

No statistically significant (p <.001) correlations with the visual probabilistic task were 

found for typical readers. All correlation tables are presented in Appendix C.2. 

 Probabilistic Statistical Learning Task (Auditory-motor) 

Analyses were carried out in line with the visual-motor learning task above but with a 

smaller time-window of 500-700ms (based on visual inspection of the grand averages), yet is still 

similar to the analyses of Jost et al. (2015). For the behavioral RTs, Phase 1 did not yield sufficient 

data and was hence dropped from the analyses4. All ANOVA results are Greenhouse-Geisser 

corrected with Bonferroni adjustments. 

4.1.3.1.1 Typical 

Average RTs were first compared within typical readers only, to investigate whether there 

were statistically significant differences across average RTs by phase and predictability condition. 

Average RTs by phase and predictability are depicted in Figure 4.15 below. A repeated measures 

ANOVA with mean RTs as dependent variable and within factors of predictability (HP/LP) and 

phase (only phase 2a vs. phase 2b) revealed statistically significant main effects for phase. 

F(1,23)=.150; p=.702; η2 =.006, but nonsignificant main effect for predictability, F(1,23)=3.549; 

                                                
4 The lack of behavioral data stemmed from the fact that a majority of participants either did not respond 

accurately in the LP condition or their responses were not recorded because they were longer than 500ms. For this 
reason, it was impossible to compare HP and LP RTs at Phase 1. 
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p=.072; η2 =.134. There was no statistically significant interaction between phase x predictability, 

F(1,23)=.937; p=.343; η2 =.039, as was the case in the visual-motor task.  

 

Figure 4.13Average RTs by predictability and task phase for the typical readers. 
4.1.3.1.2 Atypical 

 Similar to the typical reader analyses, a repeated measures ANOVA for the atypical 

readers with mean RTs as dependent variable and within factors of predictability (HP/LP) and 

phase (only Phase 2a vs. Phase 2b) did not reveal statistically significant main effects for 

predictability [F(1, 9)=.003; p=.960; η2 =.000] or phase [F(1, 9)=.001; p=.979; η2 =.000]; nor was 

there a statistically significant interaction between phase x predictability [F(1, 9)=.131; p=.725; η2 

=.014]. Average RT’s across groups are depicted below in Figure 4.16. 

 

Figure 4.14 Average RTs (in ms) by predictability and task phase for the atypical readers 
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 ERP Results 

4.1.3.2.1 Typical 

Visual inspection of ERP waveforms presented in Figure 4.17 (left panel) did not indicate 

clear amplitude differences across phases. Additionally, waveforms reflect a barely observable 

POz amplitude difference. Topological views show greater HP-LP amplitude differences in 

anterior-central regions for Phase 1 and 2a but then shift to posterior regions in Phase 2b. 

 

Figure 4.15 Grand averages by predictability condition for each task phase; Right: 
Topological views of the difference scores (HP-LP) for each phase during the 500-700ms time 
window – for typical readers. 

 

ERP results for the 500 – 700ms time window showed a main effect for phase 

[F(1.442,41.832)=10.862; p =.001; η2 =.272], predictability [F(1,29)=6.668; p =.015; η2 =.187], 

laterality [F(1.659,48.122)=3.506; p =.046; η2 =.108] and caudality [F(1.199,34.785)=26.610; p 

<.001; η2 =.479] as well as a phase x predictability interaction, shown in Figure 4.16,  
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[F(1.397,40.515)=12.180; p<.001; η2 =.296] and a phase x caudality interaction 

[F(2.11,61.189)=4.266; p =.017; η2  =.128].  

 

Figure 4.16 Interaction between predictability condition and phase for typical readers 
 

The interaction above shows that in Phase 1 and Phase 2a, HP amplitudes were higher 

than LP but the reverse occurs in Phase 2b. This could be partly due to learning of the switch in 

probability that target saliency is transferred to LP from HP over time. 

4.1.3.2.2 Atypical 

Visual inspection of grand averages (depicted in Figure 4.17, below) showed higher LP 

compared to HP amplitudes in anterior and central regions at Phase 2a. Phase 2b amplitudes at 

POz reflect higher LP compared to HP amplitude. Visually, topological-views (Figure 4.17; right) 

indicate that atypical readers show higher amplitudes for LP that increase overtime in Phase 2 and 

have an anterior-posterior shift, whereas the typical readers show the opposite pattern. 
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Figure 4.17 Left: Grand averages by predictability condition for each task phase; Right: 
Topological views of the difference scores (HP-LP) for each phase during the 500-700ms time 
window – for atypical readers. 

 

A repeated ANOVA with ERP waveforms as dependent variable, for the atypical readers, 

within the 500 – 700ms time window revealed no significant main effects or interactions. Results 

for predictability and phase are as follows: predictability, F(1,14)=1.493; p =.242; η2 =.096; phase, 

F(1.459, 20.432)=.76; p =.442; η2 =.051; predictability x phase F(1.757,24.599) =.301; p =.715; 

η2 =.021. 

 Between group non-parametric tests 

To investigate whether the two groups differed in terms of ERP amplitudes between 500-

700ms at POz, across predictability condition (HP/ LP) across each phase (2a/ 2b), non-parametric 

Mann-Whitney tests were performed. Results are as follows: a significant group difference was 
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found between typical (N = 30) and atypical readers (N = 15) for Phase 1 HP only (U = 135.000; 

p = .030) but not for LP (U = 195.000; p = .470). Additional (non-significant) group differences 

were observed for: Phase 2a HP, (U = 185.000; p = .336); LP (U = 211.000; p = .736); Phase 2b-

HP, (U = 217.000; p = .8470) and LP (U = 216.000; p = .828). 

 Correlations 

No statistically significant (p <.001) correlations with the auditory probabilistic task were 

found. All non-significant correlation tables are presented in Appendix C.3. 

5 DISCUSSION 

4.2 General Overview 

The present study was designed to investigate different types of implicit-statistical learning 

in atypical readers. Using both RTs and ERP recordings, and two commonly used learning 

paradigms from the literature, it was anticipated that three basic variables could be used to assess 

learning. In sync with the literature, these variables were operationalized as grammaticality, chunk 

strength and predictability. However, consistent with Dehaene et al. (2015), information acquired 

during implicit-statistical learning involves more than what each of the variable names imply. 

Based on Dehaene et al.’s (2015) theoretical framework, additional underlying mechanisms also 

apply, including ordinal knowledge, algebraic patterns, chunking and transition-timing. The first 

two mechanisms pertain to grammaticality, chunking is connected to chunk strength, information 

and transition-timing knowledge is thought to underlie the transitional probabilities, predictive 

sequences or regularities encountered in SRT or other similar probabilistic learning tasks, which 

in the present context is termed predictability.  

The first aim of the current study was to examine whether adults diagnosed with a reading 

disorder showed an implicit-statistical learning deficit via RTs, accuracy endorsement and ERPs 
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in an artificial grammar as well as visual-motor and auditory-motor SL paradigms using non-

linguistic stimuli. Overall, behavioral results show comparable performance across groups for all 

task paradigms. In contrast, the ERP results indicated statistically significant group differences 

only for the artificial learning and auditory tasks. In addition, (visual) differences were also 

observable, such as overall longer RTs for the atypical readers. Group differences on the 

probabilistic/transition-timing based tasks might additionally have yielded statistical significance, 

were it not for the reduced sample size for (atypical) adults.  

The second aim was to examine whether any deficit was specific to the type of learning (i.e., 

grammaticality, knowledge of chunk strength or predictability) occurring in each task. A deficit, 

per se was not observable for any of the paradigms, although subtle waveform differences were 

observable across groups for each task. These differences are interpreted ahead for each task, 

especially when accuracy, for example, was at chance for one or both groups. Also, discussed are 

instances where learning was incongruent between behavioral and ERP findings. 

The third goal was to examine whether statistical learning ability was correlated with 

reading, spelling and cognitive ability scores from normed behavioral assessments. Only atypical 

reader waveform differences for grammaticality were found to be correlated with scores on 

cognitive ability. A more thorough explanation for this is discussed later. 

The fourth objective was to determine whether an observable learning deficit was more 

pronounced in any one modality. This is still unclear from the current results, mainly because only 

the probabilistic tasks (not the artificial grammar task) were tested in two modalities; that is, the 

visual domain was tested via each task paradigm, but the auditory modality only in the SL task. 

Interestingly, results (or lack of them) from the auditory-motor probabilistic task suggested that 

task difficulty might have been higher for this task. One justification for this conclusion is that 
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participants might not have being paying attention to the input for some reason, or could not 

discriminate between the different sounds. According to self-report, approximately 8% of adults 

rated the visual-motor SL task as difficult, compared to 33% who found the AGL task to be the 

hardest but 52% rated the auditory-motor SL task as the hardest task.  

The fifth aim was to examine whether statistical learning ability depends on awareness of 

the underlying patterns. It was found that the degree of implicit-statistical learning did not differ 

much across groups, at least after the fact. This issue is further discussed in the section on 

limitations. 

In sum, although the current results show minor differences across the groups, they are still 

informative. The study findings above are discussed by task (below), especially in terms of 

discrepancies between the behavioral and neural correlates of learning.  

4.3 Artificial Grammar Learning  

Overall, behavioral endorsement accuracy as well as endorsement alone for both typical and 

atypical readers show similar patterns, in that, they both reflect learning ‘at chance levels’ or 

slightly ‘above/ below chance’.  

One discrepancy between each within-group analysis was that, in terms of accuracy, the 

average typical reader’s ability favored grammatical over nongrammatical items (Knowlton & 

Squire, 1996, Pavlidou et al., 2014) but this was not reliably found amongst atypical readers.  

Additionally, with regards to endorsements (irrespective of accuracy), current results for 

non-grammatical items (similar to Silva et al., 2016) were indicative of (i) a preference for high 

(compared to low) CS within non-grammatical, but (ii) low (compared to high) CS within 

grammatical items. The former finding is the more expected outcome because it is in line with 

previous research (see Cleeremans, Destrebecqz & Boyer, 1998) where participants were more 
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likely to exploit fragment-based chunking and therefore more likely to endorse high CS over low 

CS non-grammatical items. The latter result was more surprising but not critical because 

grammatical items were consistently endorsed above chance level and did not differ significantly 

based on level of chunk strength. Thus, this shows that discriminating between CS was more 

important for non-grammatical than for grammatical items for typical readers. Within the atypical 

readers, this statistically significant difference amongst endorsement is less apparent, possibly due 

to the lower sample size. However, no reliable group differences were observed for behavioral 

data. 

Visually, typical and atypical reader ERP waveforms shared similar patterns. According to 

the findings, typical readers showed a topological difference in response to grammatical vs. non-

grammatical items in the final time window. Atypical reader waveforms on the other hand, 

revealed topological differences in amplitude in response to high vs. low CS items across both 

time windows. The only reliable group difference was for both grammatical and non-grammatical 

HCS items in the initial time window and for grammatical HCS items in the final time-window. 

Thus, within the AGL task, behavioral data show learning at chance for both groups, 

indicating that not all participants may have learned to leverage grammatical or CS knowledge 

while endorsing an item between training and test. This is addressed in the section on limitations. 

Additionally, although behavioral data were comparable across groups, ERP amplitudes show a 

connection with grammaticality for typical readers and a connection with CS for atypical readers. 

Overall, both groups showed amplitude differences for GH and NGH items but this effect persisted 

for GH items over time. In sum, currently a learning deficit can be ruled out but learning 

differences across groups may become more apparent with a larger sample size for both groups. 
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4.4 Probabilistic Learning (Visual-motor) 

Typical readers showed learning (i.e., quicker RTs to HP compared to LP) in the visual-

motor probabilistic learning task, in line with Jost et al. (2015). This learning effect of 

predictability remained statistically significant throughout all phases of the task. However, it was 

expected that the RTs in Phase 2a and 2b would change from Phase 1 to better reflect the 

predictability switch (from 90-10% to 50-50% predictability in task conditions) – at least in terms 

of direction of RTs. This might have been reflected by comparable LP and HP RTs, but instead it 

was observed that LP was continually greater than HP. One possible explanation for this 

unexpected but persistent effect over phases is that after exposure to HP in Phase1, participants 

may have retained the benefit of consistently quicker RTs to HP, well into Phase 2 even when 

predictability conditions switched. 

Atypical readers did have larger RTs overall, irrespective of predictability condition, which 

appeared to attenuate over time (although there was no statistically significant group difference by 

phase or condition). These findings are consistent with literature indicating a general temporal 

processing deficit for those with reading difficulty (Conlon et al., 2011), meaning individuals with 

reading/learning impairments would respond at a slower rate to stimuli in a serial visual 

presentation.  

Behavioral group differences were found only for the LP condition at Phase 1 indicating 

again that atypical readers had longer RTs than typical readers. However, in terms of learning in 

Phase 1, both groups were comparable. 

For the ERP results it was expected, based on Jost et al. (2015), that typical readers would 

show relatively higher amplitudes for HP compared to LP in Phase1, especially in posterior 

regions. This would be followed by a statistically significant change by phase and predictability, 
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as a result of having learned the predictability switch (i.e., HP ~ = LPs in RTs and in ERP 

amplitudes). The Jost et al. (2015) result was also observed in a subsequent study (Singh et al., 

2018) that compared children with and without dyslexia on a visual (non-linguistic) statistical 

learning task with unequal probabilistic predictability conditions throughout the task (akin to the 

current Phase 1 only; but no Phase 2 switch to equal predictability conditions). The study showed 

that although behavioral RTs reflected intact learning, children with dyslexia had atypical ERP 

waveforms suggestive of impaired (or altered) learning of the HP-LP-target rule (as in Phase 1 in 

the current experiment).  

In line with the hypothesized learning effect and Jost et al. (2015), current ERP results 

revealed that typical reader’s waveforms were characterized by relatively higher amplitudes for 

HP compared to LP in left and central brain regions. However, amplitude difference did not change 

reliably for predictability and phase across groups. Thus, there is only visual evidence that learning 

of the predictability condition at Phase 1 and the switch to equal probability in Phase 2 occurred 

for typical readers. This same pattern of learning by typical readers between Phase 1 and 2 was 

visually reflected via the higher amplitudes in posterior regions for HP (vs. LP) in Phase 1 but 

slowly attenuates across the three phases. Although present, this trend is less obvious for the 

atypical readers. However, there is no support for such learning (at central-posterior sites) in terms 

of significance tests.  

To sum up, the behavioral results did not reliably differ by predictability conditions, but RTs 

were much slower overall for the atypical readers. Thus, longer RTs indicate might slower learning 

for atypical compared to typical readers. Additionally, current ERP results did reveal group 

differences across phases, which rules out a visual statistical learning deficit, per se. However, 

with a balanced sample size it would be easier to clarify whether learning of the HP-LP target rule 
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at Phase 1 was intact for atypical readers. Currently this learning effect was only observed for 

typical readers but not for atypical readers, suggesting a possible learning discrepancy.  

4.5 Probabilistic Learning (Auditory-Motor) 

A difficulty with the behavioral data in this task resulted from the fact that a majority of 

participants either did not respond accurately in the LP condition or their response was not 

recorded because it was longer than 500ms, resulting in less RT data being retained. For this 

reason, it was not only impossible to get an estimate of RT performance (HP vs. LP) within Phase 

1, but also comparing Phase 2 performance with Phase 1 was not an option.  

Overall, RTs of typical readers reflected the learning effect (HP < LP) in Phase 2, similar 

to the visual task above and no statistically significant difference was observed for predictability 

conditions between the first and second half of Phase 2. However, the RTs for atypical readers, 

show minimal change, if any, across Phase 2 and no statistically significant group differences were 

observed for behavioral data. 

In terms of waveforms, typical readers showed a reversal from higher HP amplitudes in 

Phase 1 and Phase 2a to higher LP amplitudes in Phase 2b. This could be because, saliency for the 

LP target grew over time as the change in its probability of occurrence was encoded. The only 

reliable finding was a group difference at the central-posterior region for HP amplitudes in Phase 

1 only; but this informative of an amplitude difference not a learning difference across groups. 

Another interesting pattern is in the topological-plot views of matched groups within Phase 

2. Whereas the typical group topological-views reflect a shift from front-central to posterior in 

terms of higher HP amplitudes between first and second half, the atypical adults reveal exactly the 

opposite pattern. This could be indicative of a learning difference across groups in terms of 

encoding auditory information. This could have implications for the phonological theory of 
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dyslexia because phonological processing if understood in terms of sound-to-mapping, must rely 

on both auditory as well as visual cognitive processes. It could be that the atypical readers did not 

learn the HP-LP difference in Phase 1 and consequently the switch in predictability conditions in 

Phase 2 to the same degree as the typical readers because of poor sensitivity to sound statistics 

(Banai & Ahissar, 2018). According to their theory, Banai and Ahissar (2018) postulate that 

atypical readers encounter impaired categorical perception of continuous speech because (1) their 

implicit memory of previous stimuli decays at a faster rate than typical readers; and (2) that their 

stimulus-adaptation processes are shorter (in the present case, learning the predictability switch in 

Phase 2). 

Thus, unlike the visual-motor task, the current results revealed no group differences 

regarding predictability across phase. However, the atypical-reader results differed from their 

typical counterparts based on visual appearance of the RTs, which barely differed within Phase 2; 

and topological-plot views that indicated a posterior-anterior (HP-LP amplitude difference) shift 

in Phase 2 in contrast to typical readers. If findings from statistical analyses had been in line with 

the (visual) discrepancies across groups then the results of this task could be construed as a general 

auditory statistical learning deficit, one which indirectly influences phonological processing. 

However, in the absence of significant group differences, no deficit was explicitly observed for 

this task. 

4.6 Correlations 

Only scores on symbol search for atypical readers in the AGL task were found to be 

positively correlated with ERP amplitude differences of grammaticality. This correlation that was 

found in right posterior regions, during the 500-700ms time window only might suggest a that 
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cognitive processes recruited during the symbol search task were similar to those mechanism 

activated for grammatical vs. non-grammatical items in the AGL task. 

The absence of additional correlations could be due to the fact that the knowledge types 

indexed with current non-linguistic stimuli were not sensitive enough to be correlated with the 

other normed measures such as pseudoword decoding and digit span to name a few. 

4.7 Limitations 

An obvious weakness of the current study was the inability to match on age and/or reading 

ability as is typically done in the literature (Howard et al., 2006; Nigro et al., 2016). This limit was 

somewhat tempered by the fact that (1) participants were matched on their memory ability, and (2) 

only one correlation was found between age or reading scores and other behavioral/ ERP measures. 

Additionally, the low sample size for atypical readers did not help when comparing across groups 

for deficits in implicit-statistical learning. 

The artificial grammar learning task was only administered as a visual assessment and did 

not have an auditory counterpart. In a future study, it would be beneficial to have an auditory 

version of the task (similar to Silva et al., 2017) to be able to compare across sensory domains, 

especially because phonological skills function cross-modally.  

The number of trials in Phase 1 (for the predictability tasks) was less than the number of 

trials included in Phase 2a and 2b. Fewer trials in Phase 1 resulted in unequal exposure of the 

predictability conditions. However, increasing this exposure period to equate trial numbers across 

phases may also affect later learning in Phase 2a and 2b. To clarify, it is difficult to acquire balance 

between administering an optimal number of trials so that on the one hand, ensuring participants 

are able to learn the varying predictability of Phase 1, but at the same time also administering just 

enough trials so that participants quickly learn the switch to equal predictability in Phase 2, without 
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perseverating on Phase 1 (probabilistic) predictability conditions. Such is the dilemma in 

engineering learning tasks that require participants to learn and relearn new associations in a short 

period of time. Thus, the current design did capture learning (or lack thereof) but performance 

might be enhanced by an increased number of trials in Phase 1. 

Additionally, according to the majority of participants’ self-reports, the auditory-motor SL 

task was rated as the most difficult compared to the rest. This indicates that tasks may not have 

been perceived as equal in terms of difficulty level and a future study would address this issue 

accordingly. Although current stimuli design was based on established findings by Saffran et al., 

(1999), it could be that rate of decay of memory/attention for the tones used might vary across 

individuals and might not be the same as that of the visual task (both current tasks were equated 

for stimulus duration and ISI). One way to do this would be to present auditory stimuli that vary 

in stimulus intensity and duration, frequency or even inter-stimulus-onset to find optimal 

thresholds for auditory statistical learning in adults.  

One limitation that comes to mind post-hoc, would be to redo current analyses but with a 

learner vs. non-learner distinction instead of a typical vs atypical reader comparison. Because, for 

example, in the AGL task, learning seemed to hover around chance levels poor learning capacity. 

But it may be that some learned better than others. Separating learners from non-learners will first 

reveal at a basic level whether implicit-statistical learning across participants differed by paradigm 

as well as whether this learning was corroborated by both behavioral and neurophysiological data. 

A next step would then be to investigate whether a participant’s reading ability differed within the 

learner and non-learner group. 

The general lack of learning differences might be due to the fact that (a) learning, at least in 

the AGL paradigm, was not above chance for the typical group to begin with; and (b) the stimuli 
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were non-linguistic as opposed to linguistic. It could be that learning involving such non-linguistic 

stimuli was difficult for both groups and that a few hours of exposure were not enough to reflect a 

level of learning in line with a task using linguistic stimuli. 

Furthermore, in a future study, multiple sessions instead of a single experimental session 

would help illuminate the effects of consolidation on statistical learning. Such a study would be 

similar to Silva et al. (2017) who showed enhanced performance (for participants without reading 

difficulty) on artificial grammar learning tasks over time as do others even on tasks with embedded 

statistical regularities (Bennet et al., 2008; Du & Kelly, 2013). It is important to investigate 

whether consolidation affects the sequential-learning ability of adults with dyslexia, as this could 

have far-reaching implications for reading interventions and reading acquisition in general. For 

instance, if research supports the role of consolidation in learning, it may be beneficial for all 

individuals—but more so for atypical readers—to allow for consolidation with regards to implicit-

statistical learning (e.g., of syntax, spelling, reading, playing a musical instrument). Additionally, 

multiple sessions would also allow time for administration of more comprehensive normed 

assessments, such as those measuring musical aptitude, language, executive function, memory, 

attention, phonological and orthographical skills. This would generate a more holistic 

understanding of how such incidental learning is correlated with other cognitive processes. 

Also noteworthy is that the atypical readers were, on average, college-educated, older 

individuals who had prior experience with experimental testing, and a majority were referred for 

study participation after clinical intervention.  All of this may have influenced learning and the 

awareness of underlying patterns in the task used.  
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4.8 Conclusions 

In sum, no learning deficit was found when comparing typical and atypical readers. 

However, both task paradigms seem to have elicited other differences via behavioral responses 

and ERP waveforms, indicating potential differences in the influence of grammaticality and CS 

knowledge. In addition, (visual, but not statistical) differences in behavioral and ERP data were 

observed across groups. Among these observations were slower RTs overall and differences in the 

topology of waveform differences. However, results were comparable across groups.  

To ground all, or any, of these results in any one particular theory of dyslexia is difficult as 

there could be multiple reasons for the group differences observed in the present study. Overall, 

slower response times could be attributed to deficits in temporal processing (Conlon et al., 2011) 

and different trends in endorsement rates to differences in visual attention (Bosse, Tainturier & 

Valdois, 2007) as well as procedural-cerebellar functioning (Gabay et al., 2015; Nicolson et al., 

2001). A future study design would benefit from noting the limitations previously outlined in the 

present study along with the current findings. These could prove valuable for building on 

prominent and lesser-known theories as well as aid in further evaluating types of information 

acquired during implicit-statistical learning tasks across with both typical and atypical readers.  

This study was the first to investigate behavioral and neural mechanisms underlying implicit-

statistical learning with non-linguistic stimuli by using paradigms eliciting different types of 

knowledge, such as algebraic patterns, ordinal knowledge, chunking and transition-timing, in both 

typical and atypical readers. The statistical learning paradigm used to elicit transition-timing 

knowledge was administered in the visual-motor and auditory-motor domain and the other 

knowledge types pertain to the artificial grammar paradigm. It is important for future studies 
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further to investigate whether the current study findings are replicable across different samples of 

learners and non-learners with reading difficulty.  

Thus, overall, the current study highlights that learning is not the same across SL paradigms 

for typical and atypical readers and additionally, also tends to vary based on whether it is indexed 

behaviorally or neurophysiologically. Before making strong conclusions about learning, however, 

it is important for future studies focused on the nature of implicit-statistical learning to also test 

typical and atypical readers on underlying knowledge elicited by task type, but with both linguistic 

and non-linguistic stimuli on more than one session  



77 

REFERENCES 

Ahissar, M., & Jaffe-Dax, S. (2018). 101. Dyslexics' statistical inference is impaired due to fast 

decay of implicit memory. Biological Psychiatry, 83(9), S41-S42. 

doi:10.1016/j.biopsych.2018.02.119 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 

(DSM-5®). American Psychiatric Pub. 

Arciuli, J. (2018). Reading as statistical learning. Language, Speech, and Hearing Services in 

Schools, 49(3S), 634-643. 

Arciuli, J., & Simpson, I. C. (2012). Statistical learning is related to reading ability in children and 

adults. Cognitive science, 36(2), 286-304. 

Aslin, R. N., & Newport, E. L. (2012). Statistical learning: from acquiring specific items to 

forming general rules. Current directions in psychological science, 21(3), 170-176. 

Banai, K., & Ahissar, M. (2018). Poor sensitivity to sound statistics impairs the acquisition of 

speech categories in dyslexia. Language, Cognition and Neuroscience, 33(3), 321-332. 

Batterink, L. J., Reber, P. J., Neville, H. J., & Paller, K. A. (2015). Implicit and explicit 

contributions to statistical learning. Journal of memory and language, 83, 62-78. 

Bakos, S., Landerl, K., Bartling, J., Schulte-Körne, G., & Moll, K. (2017). Deficits in letter-Speech 

sound associations but intact visual conflict processing in dyslexia: results from a novel 

ERP-paradigm. Frontiers in Human Neuroscience, 11. 

Bennett, I. J., Romano, J. C., Howard Jr, J. H., & Howard, D. V. (2008). Two forms of implicit 

learning in young adults with dyslexia. Annals of the New York Academy of Sciences, 

1145(1), 184-198. 



78 

Bosse, M. L., Tainturier, M. J., & Valdois, S. (2007). Developmental dyslexia: The visual attention 

span deficit hypothesis. Cognition, 104(2), 198-230. 

Breznitz, Z., & Meyler, A. (2003). Speed of lower-level auditory and visual processing as a basic 

factor in dyslexia: Electrophysiological evidence. Brain and Language, 85(2), 166-184. 

Buchsbaum, B. R., Hickok, G., & Humphries, C. (2001). Role of left posterior superior temporal 

gyrus in phonological processing for speech perception and production. Cognitive 

Science, 25(5), 663-678. 

Catts, H. W., Adlof, S. M., Hogan, T. P., & Weismer, S. E. (2005). Are specific language 

impairment and dyslexia distinct disorders?. Journal of Speech, Language, and Hearing 

Research. 

Chiappe, P., Stringer, R., Siegel, L. S., & Stanovich, K. E. (2002). Why the timing deficit 

hypothesis does not explain reading disability in adults. Reading and Writing, 15(1), 73-

107. 

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. 

Trends in cognitive sciences, 2(10), 406-416. 

Cohen-Mimran, R. (2006). Temporal processing deficits in Hebrew speaking children with reading 

disabilities. Journal of Speech, Language, and Hearing Research, 49(1), 127-137. 

Cohen, M. (2018, January 01). Handedness Questionnaire. Retrieved from 

http://www.brainmapping.org/shared/Edinburgh.php 

Conlon, E. G., Wright, C. M., Norris, K., & Chekaluk, E. (2011). Does a sensory processing deficit 

explain counting accuracy on rapid visual sequencing tasks in adults with and without 

dyslexia? Brain and cognition , 76 (1), 197-205. 



79 

Daltrozzo, J., Emerson, S. N., Deocampo, J., Singh, S., Freggens, M., Branum-Martin, L., & 

Conway, C. M. (2017). Visual statistical learning is related to natural language ability in 

adults: An ERP study. Brain and language, 166, 40-51. 

Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, C. (2015). The neural representation 

of sequences: from transition probabilities to algebraic patterns and linguistic trees. 

Neuron, 88(1), 2-19. 

Dienes, Z., Broadbent, D., & Berry, D. C. (1991). Implicit and explicit knowledge bases in 

artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 17(5), 875. 

Dietz, N. A., Jones, K. M., Gareau, L., Zeffiro, T. A., & Eden, G. F. (2005). Phonological decoding 

involves left posterior fusiform gyrus. Human brain mapping, 26(2), 81-93. 

Dirks, E., Spyer, G., van Lieshout, E. C., & de Sonneville, L. (2008). Prevalence of combined 

reading and arithmetic disabilities. Journal of learning disabilities, 41(5), 460-473. 

Du, W., & Kelly, S. W. (2013). Implicit sequence learning in dyslexia: a within-sequence 

comparison of first-and higher order information. Annals of Dyslexia , 63 (2), 154-170. 

Fawcett, A. J., & Nicolson, R. I. (2007). Dyslexia, learning, and pedagogical neuroscience. 

Developmental Medicine & Child Neurology, 49(4), 306-311. 

Feng, X., Li, L., Zhang, M., Yang, X., Tian, M., Xie, W., ... & Ding, G. (2017). Dyslexic Children 

Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in 

Orthographic and Phonological Processing. The Cerebellum, 16(2), 496-507. 

Fiser, J., & Aslin, R. N. (2002). Statistical learning of new visual feature combinations by infants. 

Proceedings of the National Academy of Sciences, 99(24), 15822-15826. 



80 

Folia, V., Uddén, J., Forkstam, C., Ingvar, M., Hagoort, P., & Petersson, K. M. (2008). Implicit 

learning and dyslexia. Annals of the New York Academy of Sciences, 1145(1), 132-150. 

Froyen, D. J., Bonte, M. L., van Atteveldt, N., & Blomert, L. (2009). The long road to automation: 

neurocognitive development of letter–speech sound processing. Journal of Cognitive 

Neuroscience, 21(3), 567-580. 

Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental 

dyslexia. Journal of Speech, Language, and Hearing Research, 58 (3), 934-945. 

Gabrieli, J. D. (2009). Dyslexia: a new synergy between education and cognitive neuroscience. 

Science, 325(5938), 280-283. 

Gilger, J. W., Pennington, B. F., & DeFRIES, J. C. (1992). A twin study of the etiology of 

comorbidity: attention-deficit hyperactivity disorder and dyslexia. Journal of the American 

Academy of Child & Adolescent Psychiatry, 31(2), 343-348. 

Grodzinsky, Y., & Friederici, A. D. (2006). Neuroimaging of syntax and syntactic processing. 

Current Opinion in Neurobiology, 16(2), 240-246. 

Gross-Tsur, V., Manor, O., & Shalev, R. S. (1996). Developmental dyscalculia: Prevalence and 

demographic features. Developmental Medicine & Child Neurology, 38(1), 25-33. 

Hari, R., & Renvall, H. (2001). Impaired processing of rapid stimulus sequences in dyslexia. 

Trends in Cognitive Sciences, 5(12), 525-532. 

 Hagoort, P., Brown, C., & Groothusen, J. (1993). The syntactic positive shift (SPS) as an ERP 

measure of syntactic processing. Language and Cognitive Processes, 8(4), 439-483. 

Habib, M. (2000). The neurological basis of developmental dyslexia: an overview and working 

hypothesis. Brain, 123 Pt 12, 2373-2399.  



81 

Hallam, S., & Prince, V. (2003). Conceptions of musical ability. Research Studies in Music 

Education, 20, 2-22. 

He, X., & Tong, S. X. (2017). Quantity Matters: Children With Dyslexia Are Impaired in a Small, 

but Not Large, Number of Exposures During Implicit Repeated Sequence Learning. 

American Journal of Speech Language Pathology, 26(4), 1080-1091. 

doi:10.1044/2017_AJSLP-15-0190 

Henderson, L. M., & Warmington, M. (2017). A sequence learning impairment in dyslexia? It 

depends on the task. Research in Developmental Disabilities, 60, 198-210. 

 Horst, R. L., Johnson, R., & Donchin, E. (1980). Event-related brain potentials and subjective 

probability in a learning task. Memory & Cognition, 8(5), 476-488. 

Howard, J. H., Howard, D. V., Japikse, K. C., & Eden, G. F. (2006). Dyslexics are impaired on 

implicit higher-order sequence learning, but not on implicit spatial context learning. 

Neuropsychologia , 44 (7), 1131-1144. 

Inacio, F., Faisca, L., Forkstam, C., Araujo, S., Bramao, I., Reis, A., & Petersson, K. M. (2018). 

Implicit sequence learning is preserved in dyslexic children. Annals of Dyslexia, 68(1), 1-

14. doi:10.1007/s11881-018-0158-x 

Ise, E., Arnoldi, C. J., Bartling, J., & Schulte-Korne, G. (2012). Implicit learning in children with 

spelling disability: evidence from artificial grammar learning. J Neural Transmission 

(Vienna), 119(9), 999-1010. doi:10.1007/s00702-012-0830-y 

Jimenez-Fernandez, G., Vaquero, J. M., Jimenez, L., & Defior, S. (2011). Dyslexic children show 

deficits in implicit sequence learning, but not in explicit sequence learning or contextual 

cueing. Ann Dyslexia, 61(1), 85-110. doi:10.1007/s11881-010-0048-3 



82 

Jost, E., Conway, C.M., Purdy, J.D., Walk, A.M., & Hendricks, M.A. (2015). Exploring the 

neurodevelopment of visual statistical learning using event-related brain potentials. Brain 

Research.  doi: 10.1016/j.brainres.2014.10.017. 

Jones, M. W., Branigan, H. P., & Kelly, M. L. (2008). Visual deficits in developmental dyslexia: 

relationships between non-linguistic visual tasks and their contribution to components of 

reading. Dyslexia, 14(2), 95-115 

Kahta, S., & Schiff, R. (2016). Implicit learning deficits among adults with developmental 

dyslexia. Annals of Dyslexia, 66(2), 235-250. 

Kaplan, R. S., & Norton, D. P. (1998). Putting the balanced scorecard to work. The Economic 

Impact of Knowledge, 71(5), 315-24. 

Kessler, R. C., Adler, L., Ames, M., Demler, O., Faraone, S., Hiripi, E. V. A., ... & Ustun, T. B. 

(2005). The World Health Organization Adult ADHD Self-Report Scale (ASRS): a short 

screening scale for use in the general population. Psychological Medicine, 35(2), 245-256. 

Kidd, E. (2012). Implicit statistical learning is directly associated with the acquisition of syntax. 

Developmental Psychology, 48(1), 171. 

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit 

acquisition of both abstract and exemplar-specific information. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 22(1), 169. 

Krishnan, S., Watkins, K. E., & Bishop, D. V. (2016). Neurobiological basis of language learning 

difficulties. Trends in Cognitive Sciences, 20(9), 701-714. 

Korinth, S. P., Sommer, W., & Breznitz, Z. (2012). Does silent reading speed in normal adult 

readers depend on early visual processes? evidence from event-related brain potentials. 

Brain and Language, 120(1), 15-26. 



83 

Knowlton, B. J., & Squire, L. R. (1996). Artificial grammar learning depends on implicit 

acquisition of both abstract and exemplar-specific information. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 22(1), 169. 

Knowlton, B. J. and Squire, L. R. (1997). Correction to Knowlton and Squire (1996). Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 23: 220 

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. 

Biometrics, 33, 159-174. 

 Laasonen, M., Väre, J., Oksanen-Hennah, H., Leppämäki, S., Tani, P., Harno, H., ... & 

Cleeremans, A. (2014). Project DyAdd: Implicit learning in adult dyslexia and ADHD. 

Annals of Dyslexia, 64(1), 1-33. 

Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An 

event-related fMRI study of artificial grammar learning in a balanced chunk strength 

design. Journal of Cognitive Neuroscience, 16(3), 427-438. 

Lum, J. A., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired in 

dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in 

Developmental Disabilities, 34(10), 3460-3476. 

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is 

stochastically larger than the other. The Annals of Mathematical Statistics, 50-60. 

 Menghini, D., Hagberg, G. E., Petrosini, L., Bozzali, M., Macaluso, E., Caltagirone, C., & Vicari, 

S. (2008). Structural correlates of implicit learning deficits in subjects with developmental 

dyslexia. Annals of the New York Academy of Sciences, 1145(1), 212-221. 

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from 

performance measures. Cognitive Psychology, 19(1), 1-32. 



84 

Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: reuniting the 

developmental disorders? Trends in Neuroscience, 30(4), 135-141. 

doi:10.1016/j.tins.2007.02.003 

Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit 

hypothesis. TRENDS in Neurosciences, 24 (9), 508-511. 

Nigro, L., Jiménez-Fernández, G., Simpson, I. C., & Defior, S. (2016). Implicit learning of non-

linguistic and linguistic regularities in children with dyslexia. Annals of Dyslexia, 66(2), 

202-218. 

Norton, E. S., Beach, S. D., & Gabrieli, J. D. (2015). Neurobiology of dyslexia. Current opinion 

in neurobiology, 30, 73-78. 

Ollen JE (2006) A criterion-related validity test of selected indicators of musical sophistication 

using expert ratings. Doctoral thesis, Ohio State University: Ohio.  

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel, M. (2008). Bayesian learning of visual chunks by 

human observers. Proceedings of the National Academy of Sciences, 105(7), 2745-2750. 

Osterhout, L., & Holcomb, P. J. (1992). Event-related brain potentials elicited by syntactic 

anomaly. Journal of Memory and Language, 31(6), 785-806. 

Patel, A. D. (2006). Musical rhythm, linguistic rhythm, and human evolution. Music Perception: 

An Interdisciplinary Journal, 24(1), 99-104. 

Pavlidou, E. V., Louise Kelly, M., & Williams, J. M. (2010). Do children with developmental 

dyslexia have impairments in implicit learning? Dyslexia, 16(2), 143-161. doi:10.1002/dys 

Pavlidou, E. V., & Williams, J. M. (2010). Developmental Dyslexia and implicit learning: 

Evidence from an AGL transfer study. Procedia - Social and Behavioral Sciences, 2(2), 

3289-3296. doi:10.1016/j.sbspro.2010.03.503 



85 

Pavlidou, E. V., & Williams, J. M. (2014). Implicit learning and reading: Insights from typical 

children and children with developmental dyslexia using the artificial grammar learning 

(Artificial grammar learning) paradigm. Research in Developmental Disabilities, 35(7), 

1457-1472. 

Pennington, B. F., & Bishop, D. V. (2009). Relations among speech, language, and reading 

disorders. Annual Review of Psychology, 60. 

Pennington, B. F., Willcutt, E., & Rhee, S. H. (2005). Analyzing comorbidity. In Advances in child 

development and behavior (Vol. 33, pp. 263-304). JAI. 

Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, 

two approaches. Trends in cognitive sciences, 10(5), 233-238. 

Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning: Implicit rule abstraction or 

explicit fragmentary knowledge?. Journal of experimental psychology: General, 119(3), 

264. 

Peterson, R. L., & Pennington, B. F. (2012). Developmental dyslexia. The Lancet, 379(9830), 

1997-2007. 

Pothos, E. M., & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 

10(1), 61-76. 

Prelock, P. A., Hutchins, T., & Glascoe, F. P. (2008). Speech-language impairment: how to 

identify the most common and least diagnosed disability of childhood. The Medscape 

Journal of Medicine, 10(6), 136. 

Psychological Corporation. (2009). WIAT III: Wechsler Individual Achievement Test. San 

Antonio, Tex: Psychological Corp.  



86 

Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of verbal learning and verbal 

behavior, 6(6), 855-863. 

Reber, A. S. (1969). Transfer of syntactic structure in synthetic languages. Journal of Experimental 

Psychology, 81(1), 115. 

Reber, P. J. (2013). The neural basis of implicit learning and memory: a review of 

neuropsychological and neuroimaging research. Neuropsychologia, 51(10), 2026-2042. 

Roodenrys, S., & Dunn, N. (2008). Unimpaired implicit learning in children with developmental 

dyslexia. Dyslexia, 14(1), 1-15. 

Robertson, E. M. (2007). The serial reaction time task: implicit motor skill learning?. Journal of 

Neuroscience, 27(38), 10073-10075. 

Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acquisition. Wiley 

Interdisciplinary Reviews: Cognitive Science, 1(6), 906-914. 

Rosas, R., Ceric, F., Tenorio, M., Mourgues, C., Thibaut, C., Hurtado, E., & Aravena, M. T. 

(2010). ADHD children outperform normal children in an artificial grammar implicit 

learning task: ERP and RT evidence. Consciousness and cognition, 19(1), 341-351. 

Rüsseler, J., Hennighausen, E., Münte, T. F., & Rösler, F. (2003). Differences in incidental and 

intentional learning of sensorimotor sequences as revealed by event-related brain 

potentials. Cognitive Brain Research, 15 (2), 116-126. 

Saffran, J. R., Newport, E. L., & Aslin, R. N. (1996). Word segmentation: The role of distributional 

cues. Journal of memory and language, 35(4), 606-621. 

Saffran, J. R., Johnson, E. K., Aslin, R. N., & Newport, E. L. (1999). Statistical learning of tone 

sequences by human infants and adults. Cognition, 70(1), 27-52. doi:10.1016/S0010-

0277(98)00075-4 



87 

Samara, A., & Caravolas, M. (2017). Artificial grammar learning in dyslexic and nondyslexic 

adults: Implications for orthographic learning. Scientific Studies of Reading, 21(1), 76-97. 

Sawi, O. M., & Rueckl, J. (2019). Reading and the neurocognitive bases of statistical learning. 

Scientific Studies of Reading, 23(1), 8-23. 

Schacter, D. L. (1987). Implicit memory: History and current status. Journal of experimental 

psychology: learning, memory, and cognition, 13(3), 501. 

Schiff, R., Katan, P., Sasson, A., & Kahta, S. (2017). Effect of chunk strength on the performance 

of children with developmental dyslexia on artificial grammar learning task may be related 

to complexity. Annals of Dyslexia, 1-20. 

Schvaneveldt, R. W., & Gomez, R. L. (1998). Attention and probabilistic sequence learning. 

Psychological Research, 61(3), 175-190. 

Schulte-Körne, G., Deimel, W., Bartling, J., & Remschmidt, H. (2004). Neurophysiological 

correlates of word recognition in dyslexia. Journal of Neural Transmission, 111(7), 971-

984. 

Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia: A systematic 

review. Annals of Dyslexia, 67(2), 147-162. 

Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: the neurobiology of reading 

and dyslexia. Development and psychopathology, 20 (04), 1329-1349. 

Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B., & Botvinick, M. M. (2013). 

Neural representations of events arise from temporal community structure. Nature 

neuroscience, 16(4), 486-492. 



88 

Sigurdardottir, H. M., Danielsdottir, H. B., Gudmundsdottir, M., Hjartarson, K. H., 

Thorarinsdottir, E. A., & Kristjánsson, Á. (2017). Problems with visual statistical learning 

in developmental dyslexia. Scientific Reports, 7(1), 606. 

Silva, S., Folia, V., Hagoort, P., & Petersson, K. M. (2017). The P600 in implicit artificial grammar 

learning. Cognitive science, 41(1), 137-157. 

Singh, S., Walk, A. M., & Conway, C. M. (2018). Atypical predictive processing during visual 

statistical learning in children with developmental dyslexia: an event-related potential 

study. Ann Dyslexia, 68(2), 165-179. doi:10.1007/s11881-018-0161-2 

Singh, S., Daltrozzo, J., & Conway, C. M. (2017). Effect of pattern awareness on the behavioral 

and neurophysiological correlates of visual statistical learning. Neuroscience of 

Consciousness, 3(1). 

Snowling, M. J. (2000). Language and literacy skills: Who is at risk and why. Speech and language 

impairments in children: Causes, characteristics, intervention and outcome, 245-259. 

Snowling, M. J. (1981). Phonemic deficits in developmental dyslexia. Psychological research, 

43(2), 219-234. 

Sperling, A. J., Lu, Z. L., & Manis, F. R. (2004). Slower implicit categorical learning in adult poor 

readers. Annals of dyslexia, 54 (2), 281-303. 

Staels, E., & Van den Broeck, W. (2017). A specific implicit sequence learning deficit as an 

underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks. 

Neuropsychology, 31(4), 371. 

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, 

and humans. Psychological review, 99(2), 195. 



89 

Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of 

statistical learning: Efficient detection of visual regularities without awareness. Journal of 

cognitive neuroscience, 21(10), 1934-1945. 

Ullman, M. T. (2004). Contributions of memory circuits to language: The declarative/procedural 

model. Cognition, 92(1), 231-270. 

van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2017). Visual artificial grammar 

learning in dyslexia: A meta-analysis. Res Dev Disabil, 70, 126-137. 

doi:10.1016/j.ridd.2017.09.006 

Vandermosten, M., Wouters, J., Ghesquière, P., & Golestani, N. (2018). Statistical Learning of 

Speech Sounds in Dyslexic and Typical Reading Children. Scientific Studies of Reading, 

1-12. doi:10.1080/10888438.2018.1473404 

Vicari, S., Marotta, L., Menghini, D., Molinari, M., & Petrosini, L. (2003). Implicit learning deficit 

in children with developmental dyslexia. Neuropsychologia, 41(1), 108-114. 

Witt, K., Nühsman, A., & Deuschl, G. (2002). Intact artificial grammar learning in patients with 

cerebellar degeneration and advanced Parkinson’s disease. Neuropsychologia, 40(9), 

1534-1540. 

Wechsler, D. (2008). Wechsler adult intelligence scale–Fourth Edition (WAIS–IV). San Antonio, 

TX: NCS Pearson, 22, 498.  

Wright, B. A., Bowen, R. W., & Zecker, S. G. (2000). Nonlinguistic perceptual deficits associated 

with reading and language disorders. Current opinion in neurobiology, 10(4), 482-486. 

Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled 

reading across languages: a psycholinguistic grain size theory. Psychological bulletin, 

131(1), 3.  



90 

APPENDICES  

Appendix A: Additional Descriptives by experimental group for each participant 

number group age 
(Y/M) 

sex handedness ethnicity diagnoses  

9901 atypical 27.43 M R White learning disorder 
9902 atypical 24.43 F R Black/ African  

American 
9903 atypical 29.30 M A White learning disorder 
9904 atypical 30.75 F A White learning disorder 
9905 atypical 20.09 F R White  
9906 atypical 24.26 M L White  ADHD, dyslexia 
9907 atypical 38.06 F R Black/ African  

American 
learning disorder 

9908 atypical 26.38 F R White learning disorder 
9909 atypical 24.08 M R White Learning disorder, 

Language disorder, 
Speech Impairment and 
OCD, medication (Prozac 
30 mg a day) 

9910 atypical 23.24 M A White learning disorder 
9911 atypical 60.47 F R Other ADHD 
9912 atypical 65.64 F R White ADHD 
9913 atypical 48.37 F R Black/ African  

American 
learning disorder and 
auditory processing 
disorder  

9914 atypical 21.40 F A White  
9915 atypical 19.87 M R White  
9916 atypical 24.96 F R White  
9701 typical 18.61 F R Asian  
9702 typical 29.72 F R Black/ African  

American 
9703     Hispanic/ Latino  
9704 typical 23.89 F R Black/ African  

American 
9705 typical 18.85 F R American Indian/  

Alaska Native 
9706 typical 18.21 M A Asian  
9707 typical 19.54 M R Asian  
9708 typical 18.45 F R White  
9709 typical 18.05 F R White  
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9710 typical 18.79 M R Black/ African  
American 

9711 typical 18.33 F R Mixed race  
9712 typical 18.94 M R Hispanic / Latino  
9713 typical 18.69 F R Asian  
9714 typical 18.59 F R White  
9715 typical 19.33 F A Black/ African  

American 
9716 typical 22.67 F R Asian  
9717 typical 21.33 F R White  
9718 typical 22.46 F R White  
9719 typical 18.79 F R Black/ African  

American 
9720 typical 19.88 P A Mixed race  
9721 typical 18.73 F R Asian  
9722 typical 19.68 M R Black/ African  

American 
9723 typical 20.36 F R Asian  
9724 typical 20.12 M A White  
9725 typical 19.44 F R Hispanic/ Latino  
9726 typical 19.20 M R Black/ African  

American 
9727 typical 28.56 F R Hispanic/ Latino  
9728 typical 18.20 F R Hispanic/ Latino  
9729 typical 18.32 F R Black/ African  

American 
9730 typical 18.05 F R Hispanic/ Latino  
9731 typical 22.62 M R Other  
9732 typical 18.46 F R White  
9733 typical 18.54 P R Asian  
9734 typical 19.10 F R Black/ African  

American 
9735 typical 18.47 F R Hispanic/ Latino  
9736 typical 19.02 F R Hispanic / Latino  
9737 typical 19.68 P R White  

[Sex: F = female; M = Male; P = Prefer not to disclose; Handedness: L = left; R = right; A = 

ambidextrous]  
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Appendix B: Questionnaires Used 

Appendix B.1: Participant Information Questionnaire  

(*Required) 

 
1. Participant Number *__________ (filled by experimenter)  
 
2. Date of Birth * __________ (Example: December 15, 2012) 

3. Today’s Date * __________ (Example: December 15, 2012) 

4. I certify that I am 18 years old as of today. * 
o Yes 
o No 

 
5. Gender * 

o Male 
o Female 
o Prefer not to disclose 

 
6. I describe myself as * 

o American Indian or Alaska Native 
o Asian 
o Black or African American 
o Hispanic or Latino 
o Native Hawaiian or Other Pacific Islander 
o White 
o Mixed race 
o Other 

 
7. What is your native language? * 
 
8. Are you a fluent speaker of a language other than your native language? * 

o Yes 
o No (Skip to question 10) 

 
Language 
9. Please list all languages you speak along with fluency level (basic, intermediate, 

fluent) for each language * 
----------------------------------- 
 
Cognitive 
10. Are you deaf or hard of hearing? * 

o Yes 
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o No 
 
11. Do you use a hearing aid or hearing aids? * 

o Yes 
o No 

 
12. Do you have a visual impairment? * 
o Yes 
o No 

 
13. Do you use visual aids? (corrective lenses, reading glasses, etc.) * 
o Yes 
o No 

 
14. Please check if you been diagnosed with any of the following: 
o Autism 
o Learning disorder 
o Language disorder 
o Attention disorder (ADHD) 
o Blindness 
o Developmental Disability 
o Speech Impairment 
o Vision Impairment (not corrected by glasses/ lenses) 
o Other diagnosed disorder 

 
15. If you indicated 'other' diagnosed disorder in your previous response, please list the 

disorder(s) below 
----------------------------------- 

 
16. Are you currently under the influence of any prescription drug, illegal drug or 

      alcohol that might affect your performance in this experiment? * 
o Yes 
o No 

 
17. How much caffeine (coffee, tea, energy drinks, etc) have you consumed in the last 

5 hours? * 
o None 
o 1 - 2 cups coffee/ tea 
o 2 - 3 cups coffee/ tea 
o more than 3 cups coffee/ tea 
o 1 or more energy drinks 
o 1 or more caffeinated soft drinks/ sodas 

 
18. Reading 
o Do you like to read in your free time? * 
o Yes 
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o No (Stop filling out this form). 
 

19. Reading contd. 
o How often do you read? * 
o once or twice a year 
o once or twice a month 
o once or twice a week 
o daily 

 
20. How fast do you typically read? * 
o 2-3 mins a page 
o 5-6 mins a page 
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Appendix B.2: Adult ADHD Self-Report Scale (ASRS-v1.1) Symptom Checklist 

 
[Participants responded to the questions below by rating themselves using the options: Never, 

Rarely, Sometimes, often, very often] 
 
1. How often do you have trouble wrapping up the final details of a project, once the challenging 

parts have been done? 
2. How often do you have difficulty getting things in order when you have to do a task that requires 

organization? 
3. How often do you have problems remembering appointments or obligations? 
4. When you have a task that requires a lot of thought, how often do you avoid or delay getting 

started? 
5. How often do you fidget or squirm with your hands or feet when you have to sit down for a long 

time? 
6. How often do you feel overly active and compelled to do things, like you were driven by a 

motor? 
7.  How often do you make careless mistakes when you have to work on a boring or difficult 

project? 
8. How often do you have difficulty keeping your attention when you are doing boring or repetitive 

work? 
9. How often do you have difficulty concentrating on what people say to you, even when they are 

speaking to you directly? 
10. How often do you misplace or have difficulty finding things at home or at work? 
11. How often are you distracted by activity or noise around you? 
12. How often do you leave your seat in meetings or other situations in which you are expected to 

remain seated? 
13. How often do you feel restless or fidgety? 
14. How often do you have difficulty unwinding and relaxing when you have time to yourself? 
15. How often do you find yourself talking too much when you are in social situations? 
16. When you’re in a conversation, how often do you find yourself finishing the sentences of the 

people you are talking to, before they can finish them themselves? 
17. How often do you have difficulty waiting your turn in situations when turn taking is required? 
18. How often do you interrupt others when they are busy? 
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Appendix: B.3: Handedness Questionnaire 

 
Instructions: For each of the activities below, please indicate: 
Which hand so you prefer for that activity? 
Do you ever use the other hand for the activity? 
Which hand do you prefer to use when: 
 

Which hand do you prefer 
to use when:    

Do you ever use 
the other hand? 

  No pref  __Yes 
Writing Left__ __ __Right __Yes 
Drawing Left__ __ __Right __Yes 
Throwing Left__ __ __Right __Yes 
Using Scissors Left__ __ __Right __Yes 
Using a toothbrush Left__ __ __Right __Yes 
Using a knife(witout a fork) Left__ __ __Right __Yes 
Using a spoon Left__ __ __Right __Yes 
Striking a match Left__ __ __Right __Yes 
Opening a box (holding the 
lid) Left__ __ __Right __Yes 
     
Items below are not on the 
standard Inventory:     
Holding a computer mouse Left__ __ __Right __Yes 
Using a key to unlock a door Left__ __ __Right __Yes 
Holding a hammer Left__ __ __Right __Yes 
Holding a brush or comb Left__ __ __Right __Yes 
Holding a cup while drinking Left__ __ __Right __Yes 

     
 
 
This handedness questionnaire was adapted from: Oldfield, R.C. "The assessment and 

analysis of handedness: the Edinburgh inventory." Neuropsychologia. 9(1):97-113. 1971.  
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Appendix B.4: The Ollen Musical Sophistication Index (OMSI) 

Instructions: The OMSI is a tool to aid researchers in classifying their research participants 
as more or less musically sophisticated. To obtain your score, please indicate an answer for 
every question unless you are specifically directed to skip one: 
 

1. How old are you today? 
____ age in years 

 

2. At what age did you begin sustained musical activity? “Sustained musical activity” might 
include regular music lessons or daily musical practice that lasted for at least three 
consecutive years. If you have never been musically active for a sustained time period, 
please answer with zero. 
______ age at start of sustained musical activity 

 

3. How many years of private music lessons have you received? If you have received 
lessons on more than one instrument, including voice, give the number of years for the one 
instrument/ voice you’ve studied longest. If you have never received private lessons, answer 
with zero. 
______ years of private lessons 

 

4. For how many years have you engaged in regular, daily practice of a musical instrument 
or singing? ‘Daily’ can mean defined as 5 to 7 days per week. A ‘year’ can be defined as 10 
to 12 months. If you have never practiced regularly for fewer than 10 months, answer with 
zero. 
 

______ years of regular practice 

 

5. Which category comes nearest to the amount of time you currently spend practicing an 
instrument (or voice)? Count individual practice time only; no group rehearsals. 
o I rarely or never practice singing or playing an instrument 
o About 1 hour per month 
o About 1 hour per week 
o About 15 minutes per day 
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o About 1 hour per day 
o More than 2 hours per day 
 

6. Have you ever enrolled in any music courses offered at college (or university)? 
o Yes 
o No (go to question 8) 
 

7.  (If yes) How much college level coursework in music have you completed? If more than 
one category applies, select your most recently completed level. 
o 1 or 2 non major (e.g. music appreciation, playing or singing in an ensemble) 
o 3 or more courses for NON-members 
o An introductory or preparatory music program for Bachelor’s level work 
o 1 year of full time coursework in a Bachelor of Music degree program (or equivalent) 
o 2 years of full time coursework in a Bachelor of Music degree program (or equivalent) 
o 3 or more years of full time coursework in a Bachelor of Music degree program (or 

equivalent) 
o Completion of a Bachelor of Music degree program (or equivalent) 
o One or more graduate-level music courses or degrees 
 

8. Which option best describes your experience at composing music? 
o Have never composed any music 
o Have composed bits and pieces, but have never completed a piece of music 
o Have composed one or more completed pieces, but none have been performed 
o Have composed pieces as assignments or projects for one or more music classes; one or 
more of my pieces have been performed and/ or recorded within the context of my 
educational environment. 
o Have composed pieces that have been performed for a regional or national audience (e.g., 
nationally known performer or ensemble, major concert venue, broadly distributed 
recording) 
 

9. To the best of your memory, how many live concerts (or any style, with free or paid 
permission) have you attended as an audience member in the past 12 months? Please do not 
include regular religious services in your count, but you may include special musical 
productions or events. 
o None 
o 1 - 4 
o 5 – 8 
o 9 – 12 
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o 13 or more  
 

10. Which title best describes you? 
o Nonmusician 
o Music-loving nonmusician 
o Amateur musician 
o Serious amateur musician 
o Semiprofessional musician 
o Professional musician 
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Appendix B.5: Participant Awareness Questionnaire 

 
Circles (* Required) 

 
18. Think about the circles task you did. Describe what you remember about the task. 

* 
Symbols 
 
2. Think about the symbols computer task you did. Describe 

what you remember about the task. * 
 
Sounds 
 
3. Think about the sounds computer task you did. Describe what you remember about 

the task. * 
General Observations 
 
4. Did you ever notice a pattern in any tasks? * 
 
o Yes They all had patterns 
o Some of them had patterns but not all of them 
o There seemed to be no pattern at all (skip to question 9) 
 
Patterns 
 
18. Indicate possible pattern occurrence by task * 
 
 Very often Only 

sometimes 
Never 

Circles    
Symbols    

Sounds    
 
 
18. At what point did you notice the pattern? * 
 
 Start Middle End Not for this 

task 
Circles     

Symbols     
Sounds     

 
18. Did any one task help you to find a pattern in another? * 
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o No they all seemed very different (skip to question 9) 
o I didn’t really think about that (skip to question 9) 
o Yes definitely 
 

 
8. Explain how one or more tasks may have influenced your performance on another. 

Please be specific (list the task by name – Circles, Symbols, sounds). * 
 
Strategies 
 
9. Did you use a strategy to help you remember items in any task? * 
 
o Yes 
o No (skip to question 11) 
 
Strategy Explanation 
 
18. Explain the strategy you used * 
 
Labels 
 
18. In any task did you use mental labels to remember items as 

they were presented? (e.g. house, chair, triangle, etc.) * 
 
o Yes 
o No (skip to question 14) 
 
Indicate Labels 
 
18. List all labels you used by task. Please be specific (Circles, symbols, sounds) * 
 
Label use frequency 
 
13. How often did you use labels? * 
 Rarely Sometimes Very Often 

Circles    
Symbols    

Sounds    
 
General 
 
14. Rate task difficulty level * 
 Easy Difficult 

Circles   
Symbols   
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Sounds   
 
15. Did it ever seem like there were mistakes in any of the tasks? * 
 Yes No 

Circles   
Symbols   

Sounds   
 
16. Did you feel tired during any of the tasks? 
o Yes 
o No  

 
17. At what point did you feel tired? * 
 
 Start Middle End 

Circles    
Symbols    

Sounds    
 
 
18. Indicate how long the tasks seemed to you * 
 Short Not very 

long 
Long 

Circles    
Symbols    

Sounds    
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Appendix C: Supplemental Results 

Appendix C.1: Supplemental Results for the Artificial Grammar Learning Task 

Table 4 Typical: Sureness responses (%) in each grammatical category 
 

Sureness rating GH GL NGH NGL 
I was guessing 04 09 04 09 
I was mostly guessing 13 14 13 09 
I am mostly sure 39 26 35 22 
I am sure 44 48 48 61 

 

Table 5 Atypical: sureness responses per group (%) by grammatical category 
 

Sureness rating GH GL NGH NGL 
I was guessing 00 00 00 00 
I was mostly guessing 25 33 25 25 
I am mostly sure 17 08 25 17 
I am sure 58 58 50 58 
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Table 6 Correlations: Behavioral scores on AGL for Typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Gram1 CS2 

PA            
Age 0.022           
Reading -0.242 -0.057          

PWD -0.051 -0.365 .472*         

Spelling -0.235 -0.052 .475* .437*        

DS -0.213 0.204 -0.114 -0.103 0.353       

SS 0.066 -0.348 0.318 0.222 0.335 -0.045      
OMSI 0.248 -0.071 -0.085 -0.025 -0.174 -.454* -0.201     

ADHD 0.323 0.391 -0.015 -0.340 -0.233 -0.197 -0.131 -0.056    
Gram1 0.117 -0.033 -0.228 0.104 0.105 -0.040 -0.054 0.308 -0.310   
CS2 -0.285 0.050 -0.070 -0.402 -0.095 .489* -0.336 -0.260 -0.012 -0.161  

*Correlation is significant at the 0.05 level (2-tailed); N = 22; 1G-NG; 2HCS-LCS 
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Table 7 Correlations: ERP scores on AGL (500-700ms time window) for the typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Lan1 Lpo1 Lan2 Lpo2 Ran1 Rpo1 Ran2 

PA                 

Age -0.125                

Reading -0.165 0.098               

PWD -0.057 -0.267 .561**              

Spelling -0.296 0.008 0.388 .420*             

DS -0.200 0.128 0.108 0.065 0.391            

SS 0.216 -0.178 -0.067 0.005 0.009 0.063           

OMSI 0.023 0.280 0.053 0.009 -0.023 -0.283 -0.217          

ADHD 0.256 0.003 -0.289 -.427* -.434* -0.112 -0.206 -0.204         

Lan1 0.011 0.023 0.095 0.215 -0.036 0.048 -0.147 0.358 -0.117        

Lpo1 -0.283 -0.138 -0.014 -0.124 0.069 0.001 -0.300 0.136 0.264 -0.155       

Lan2 -0.034 -0.123 0.337 0.185 0.167 0.264 0.127 0.169 -0.351 0.110 .412*      

Lpo2 -0.136 -0.177 -0.154 -0.250 -0.233 -0.291 0.105 -0.161 0.264 -0.380 0.008 -0.297     

Ran1 0.328 0.096 -0.103 -0.087 -0.100 -0.022 0.130 -0.098 -0.255 0.055 -.843** -.421* -0.127    

Rpo1 -0.091 -0.165 -0.293 -0.199 -0.278 -0.099 -0.051 -0.004 0.381 -.451* .408* -0.194 0.292 -0.366   

Ran2 0.011 0.054 0.201 0.334 0.282 0.239 -0.085 0.262 -0.356 0.112 0.226 .477* -.802** -0.178 0.025  

Rpo2 -0.102 0.223 -0.092 -0.051 0.023 -0.188 -0.180 -0.072 0.176 0.016 -0.264 -.677** .516** 0.207 -0.039 -.695** 

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 25; 1 NG-G; 2 LCS-HCS    
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Table 8 Correlations: ERP scores on AGL (700-900ms time window) for the typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Lan1 Lpo1 Lan2 Lpo2 Ran1 Rpo1 Ran2 

PA                 

Age -0.125                

Reading -0.165 0.098               

PWD -0.057 -0.267 .561**              

Spelling -0.296 0.008 0.388 .420*             

DS -0.200 0.128 0.108 0.065 0.391            

SS 0.216 -0.178 -0.067 0.005 0.009 0.063           

OMSI 0.023 0.280 0.053 0.009 -0.023 -0.283 -0.217          

ADHD 0.256 0.003 -0.289 -.427* -.434* -0.112 -0.206 -0.204         

Lan1 0.045 0.066 0.142 0.185 -0.004 0.087 -0.146 0.372 -0.138        

Lpo1 -0.091 -0.024 .416* 0.225 0.218 0.261 0.049 0.157 -0.376 0.139       

Lan2 -0.317 -0.191 -0.014 -0.050 0.207 0.123 -0.289 0.024 0.176 -0.227 .434*      

Lpo2 -0.068 -0.229 -0.192 -0.188 -0.222 -0.314 0.086 -0.131 0.316 -0.358 -0.392 -0.078     

Ran1 0.306 0.126 0.034 -0.047 -0.124 -0.045 0.106 -0.039 -0.214 0.125 -.402* -.838** -0.038    

Rpo1 -0.011 0.083 0.155 0.287 0.253 0.239 -0.094 0.249 -0.367 0.110 .511** 0.278 -.796** -0.261   

Ran2 -0.068 -0.264 -0.353 -0.190 -0.290 -0.107 0.016 -0.103 0.373 -.461* -0.251 0.319 0.238 -0.395 0.058  

Rpo2 -0.045 0.142 -0.106 -0.003 -0.003 -0.151 -0.155 -0.077 0.215 0.097 -.665** -0.291 .512** 0.254 -.665** -0.018 

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 25; 1 NG-G; 2 LCS-HCS    
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Table 9 Correlations: Behavioral scores on AGL for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Gram1 CS2 

PA            
Age 0.051           
Reading 0.205 0.336          
PWD 0.077 -0.095 0.469         
Spelling 0.000 0.517 0.529 0.130        
DS 0.000 0.347 0.552 0.542 0.354       
SS -0.206 0.063 .587* .733** 0.312 0.408      
OMSI 0.051 -0.407 -.738** 0.028 -0.358 -0.382 -0.280     
ADHD 0.233 0.360 0.458 0.096 0.131 0.261 0.060 -0.250    
Gram1 0.129 -0.172 0.150 0.389 -0.503 0.016 0.198 0.203 0.412   
CS2 -.690* -0.297 -0.189 -0.263 -0.232 -0.382 0.000 0.062 -0.150 0.047  
*Correlation is significant at the 0.05 level (2-tailed); N = 12; 1G- NG; 2HCS-LCS 
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Table 10 Correlations: ERP scores on AGL (500-70ms time window) for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Lan1 Lpo1 Lan2 Lpo2 Ran1 Rpo1 Ran2 Rpo2 

PA                  

Age -
0.418 

                

Reading -
0.028 

0.254                

PWD -
0.252 

-
0.144 

0.576               

Spelling 0.084 0.210 0.493 0.158              

DS -
0.559 

0.291 0.565 0.324 0.084             

SS -
0.365 

-
0.007 

0.426 .689* 0.416 0.170            

OMSI 0.503 -
0.368 

-0.543 -
0.448 

-0.214 -
0.404 

-0.194           

ADHD -
0.281 

0.363 0.440 0.568 0.106 0.473 0.455 -0.154          

Lan1 -
0.139 

0.049 -0.042 0.060 0.126 0.144 -0.176 -0.105 -0.250         

Lpo1 0.307 -
0.343 

0.127 0.340 -0.357 -
0.246 

0.021 0.021 0.116 -
0.133 

       

Lan2 0.084 -
0.371 

0.289 0.460 0.189 0.151 0.106 -0.084 0.000 0.210 0.315       

Lpo2 -
0.084 

-
0.469 

-0.556 -
0.158 

0.014 -
0.144 

0.056 0.487 -0.222 0.406 -
0.105 

0.070      

Ran1 -
.585* 

0.350 -0.148 -
0.074 

-0.231 0.221 0.042 -0.245 0.286 -
0.434 

0.070 -0.133 -
0.140 

    

Rpo1 0.028 -
0.063 

0.387 0.442 0.385 0.189 .711** 0.151 .663* -
0.462 

0.056 -0.091 0.014 0.091    

Ran2 -
0.139 

0.007 0.324 -
0.147 

-0.007 0.347 0.120 -0.193 -0.106 -
0.392 

0.077 -0.273 -
0.224 

0.364 0.245   

Rpo2 -
0.195 

0.217 -0.134 -
0.284 

-0.189 -
0.130 

0.085 -0.130 -0.148 -
0.182 

-
0.007 

-
.839** 

-
0.056 

0.238 0.077 .580*  

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 12; 1Ngram-gram; 2LCS-HCS   
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Table 11 Correlations: ERP scores on AGL (700-90ms time window) for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Lan1 Lpo1 Lan2 Lpo2 Ran1 Rpo1 Ran2 Rpo2 

PA                  

Age -
0.418 

                

Reading -
0.028 

0.254                

PWD -
0.252 

-
0.144 

0.576               

Spelling 0.084 0.210 0.493 0.158              

DS -
0.559 

0.291 0.565 0.324 0.084             

SS -
0.365 

-
0.007 

0.426 .689* 0.416 0.170            

OMSI 0.503 -
0.368 

-0.543 -
0.448 

-0.214 -
0.404 

-
0.194 

          

ADHD -
0.281 

0.363 0.440 0.568 0.106 0.473 0.455 -0.154          

Lan1 0.139 -
0.140 

-0.077 -
0.137 

0.161 -
0.098 

-
0.331 

-0.084 -.653*         

Lpo1 0.418 -
0.322 

0.120 0.186 -0.343 -
0.242 

-
0.176 

0.074 -0.042 0.056        

Lan2 -
.697* 

0.273 -0.141 0.175 -0.182 0.158 0.239 -0.392 0.307 -0.420 0.000       

Lpo2 -
0.084 

-
0.007 

0.310 0.368 0.259 0.239 .648* 0.144 .684* -
.741** 

-
0.112 

0.294      

Ran1 0.028 -
0.343 

0.275 0.414 0.196 0.196 0.113 -0.060 -0.021 0.252 0.322 -
0.056 

-
0.091 

    

Rpo1 -
0.139 

-
0.441 

-0.521 -
0.081 

0.028 -
0.116 

0.113 0.438 -0.180 0.252 -
0.161 

-
0.042 

-
0.070 

0.161    

Ran2 -
0.251 

0.056 0.261 -
0.189 

0.014 0.442 0.056 -0.196 -0.138 -0.070 0.028 0.280 0.252 -0.175 -
0.189 

  

Rpo2 -
0.195 

0.217 -0.134 -
0.284 

-0.189 -
0.130 

0.085 -0.130 -0.148 -0.133 -
0.070 

0.238 0.063 -
.825** 

-
0.098 

0.517  

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 12; 1Ngram-gram; 2LCS-HCS   
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Appendix C.2: Supplemental Results for the Probabilistic Learning Task (Visual) 

Table 12 Correlations: Behavioral scores on VSL for Typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase 11 Phase 2a1 Phase 2b1 

PA             
Age -0.099            

Reading -0.145 0.087           

PWD 0.042 -0.141 .679**          

Spelling -0.177 0.191 .532** .471**         

DS -0.183 0.143 0.223 0.079 .388*        

SS 0.164 -0.136 0.031 0.018 0.083 0.048       
OMSI 0.119 0.085 0.152 0.008 -0.070 -0.223 -0.138      
ADHD 0.329 0.014 -0.175 -0.228 -0.146 -0.078 -0.048 -0.029     

Phase 11 0.195 -0.181 0.138 0.127 0.031 -0.183 -0.068 0.199 0.045    

Phase 2a1 -0.022 -.410* 0.141 0.166 -0.105 -0.200 0.119 0.154 -0.185 .597**   

Phase 2b1 0.051 -0.301 0.015 0.086 -.363* -0.253 -0.005 0.090 0.141 .425* .533**  

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 34; 1 LP - HP 
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Table 13 Correlations: ERP scores on VSL (400-700ms time window) for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase-11 Phase-2a1 

PA            

Age -0.059           
Reading -0.112 0.009          

PWD 0.063 -0.175 .547**         

Spelling -0.254 0.121 .472** .492**        

DS -0.221 0.138 0.199 0.107 0.319       
SS 0.115 -0.083 0.054 0.072 0.055 0.044      

OMSI 0.043 0.011 0.102 0.043 -0.063 -0.309 -0.176     
ADHD .341* 0.023 -0.115 -0.242 -0.186 -0.099 -0.063 -0.089    

Phase-11 -.368* -0.064 -0.040 -0.132 -0.111 0.105 -0.175 -0.027 0.024   

Phase-2a1 -0.191 0.033 0.250 0.083 -0.089 -0.121 .369* -0.026 -0.325 0.196  

Phase2-b1 0.007 -0.143 0.148 -0.015 0.090 -0.265 -0.147 0.339 -0.180 0.182 -0.205 
*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.001 level (2-tailed); N = 34; 1 HP-LP for 
POz        
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Table 14 Correlations: Behavioral scores on VSL for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase 11 Phase 2a1 

PA            
Age -0.051           

Reading 0 0.556          
PWD -0.283 -0.049 0.265         

Spelling 0.307 .706* 0.528 -0.042        
DS -0.514 .779** 0.445 0.176 0.225       
SS -0.284 0.092 0.43 0.48 0.328 0.163      

OMSI 0.205 .683* 0.564 0.116 0.382 .620* -0.067     
ADHD 0.18 -0.004 -0.371 0.025 0.281 -0.345 -0.265 -0.163    

Phase 11 .590* -0.441 -0.272 0.158 -0.266 -0.446 -0.36 0.13 0.1   
Phase 2a1 -0.257 -0.225 -0.201 0.203 -0.372 -0.085 0.271 -0.439 -0.299 -0.214  
Phase 2b1 -0.41 -0.196 -0.437 -0.316 -0.217 -0.028 0.286 -.637* -0.249 -0.406 0.554 
*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 12; 1LP - HP 
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Table 15 Correlations: ERP scores on VSL (400-700ms time window) for the atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase-11 Phase-2a1 

PA            
Age 0.035           

Reading 0.212 0.292          
PWD -0.070 -0.147 .531*         

Spelling 0.105 0.425 0.426 0.066        
DS -0.088 0.297 0.431 0.412 0.048       
SS -0.192 -0.093 0.466 .656** 0.356 0.163      

OMSI 0.000 -0.211 -.622* -0.244 -0.075 -0.241 0.033     
ADHD 0.105 0.266 0.315 0.339 0.090 0.202 0.250 0.032    

Phase-11 0.035 -0.125 -0.042 -0.295 -0.393 0.027 -0.329 -0.363 -0.007   
Phase-2a1 -.523* -0.307 -0.148 -0.050 -0.450 0.199 -0.002 -0.202 -0.317 0.418  
Phase2-b1 0.244 -0.211 0.348 -0.238 -0.007 -0.219 -0.200 -0.386 -0.241 0.121 0.168 
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Appendix C.3: Supplemental Results for the Probabilistic Learning Task (Auditory) 

Table 16 Correlations: Behavioral scores on ASL for Typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase 
2a1 

Phase 
2b1 

PA            
Age -0.122           
Reading -0.233 0.144          

PWD 0.061 -0.088 .631**         

Spelling -0.392 0.246 .599** 0.400        

DS -0.216 0.346 -0.052 -0.243 -0.043       
SS 0.043 0.106 -0.100 -0.030 0.139 0.102      
OMSI 0.067 -0.070 .426* 0.254 0.255 -0.035 -0.217     

ADHD 0.154 -0.036 -0.012 -0.095 -0.026 0.176 0.040 -0.210    
Phase 2a1 -0.110 -0.069 -0.114 -0.114 0.155 0.240 0.096 -0.169 0.177   

Phase 2b1 0.073 -0.141 0.059 -0.195 0.144 0.072 0.163 0.118 0.094 .493*  

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 24; 1 LP - HP 
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Table 17 Correlations: ERP scores on AGL (500-700ms time window) for the typical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase-11 Phase-
2a1 

PA            
Age -0.082           

Reading -0.053 0.031          

PWD 0.029 -0.212 .569**         

Spelling -0.177 0.115 .394* .401*        

DS -0.222 0.129 0.091 0.010 0.257       
SS 0.037 -0.133 0.165 0.098 0.137 0.032      

OMSI 0.184 0.112 -0.002 0.041 -0.105 -0.243 -0.140     
ADHD 0.271 0.050 -0.087 -0.275 -0.155 -0.073 -0.222 -0.143    

Phase-11 -0.098 0.291 -0.280 -0.313 -0.040 0.225 0.079 -0.131 -0.222   
Phase-2a1 0.204 -0.048 -0.257 -0.145 -0.172 -0.105 0.097 -0.055 0.023 0.344  
Phase2-b1 0.302 -0.130 0.069 0.063 0.083 0.049 -0.103 -0.044 0.076 -0.132 -0.298 
*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.001 level (2-tailed); N = 30; 1 HP-LP for 
POz                 

 
 

 

 

 



116 

Table 18 Correlations: Behavioral scores on ASL for Atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase 2a1 

PA           
Age 0.190          
Reading 0.269 0.387         
PWD -0.229 -0.329 0.426        
Spelling 0.266 0.394 .767** 0.061       
DS -0.344 -0.024 0.469 0.344 0.488      
SS -0.533 -0.207 0.517 .771** 0.158 .661*     
OMSI -0.076 -0.438 -0.597 -0.254 -.663* -0.159 -0.216    
ADHD 0.268 0.189 0.426 0.479 -0.012 0.304 0.355 -0.080   
Phase 2a1 -0.114 0.588 .706* 0.201 0.600 .634* 0.492 -.687* 0.457  
Phase 2b1 0.190 -0.079 0.092 -0.091 0.321 0.317 -0.079 0.413 -0.061 -0.212 
*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed); N = 10; 1LP - HP 
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Table 19 Correlations: ERP scores on AGL (500-700ms time window) for the Atypical group 
 

 PA Age Reading PWD Spelling DS SS OMSI ADHD Phase-11 Phase-2a1 

PA            
Age -0.070           

Reading 0.018 0.325          
PWD -0.263 -0.131 0.472         

Spelling 0.244 0.454 .550* 0.167        
DS -0.420 0.408 0.505 0.356 0.281       
SS -0.333 0.050 0.502 .626* 0.420 0.236      

OMSI 0.262 -0.313 -.630* -0.222 -0.195 -0.319 -0.128     
ADHD -0.053 0.357 0.431 0.380 0.142 0.380 0.360 -0.159    

Phase-11 -0.244 0.296 0.294 0.088 0.196 .573* -0.032 -0.257 0.083   
Phase-2a1 0.035 0.018 -0.088 -0.143 0.011 -0.068 0.106 0.073 -0.108 -0.093  
Phase2-b1 -0.140 0.343 .565* 0.366 0.507 0.349 0.447 -0.195 .542* 0.229 -.529* 

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.001 level (2-tailed); N = 15; 1HP-LP for POz 
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