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ABSTRACT 

The establishment of neuronal connections requires a sequence of orchestrated events 

including neuronal migration, axon guidance, synapse formation and elimination, and circuit 

fine-tuning.  Understanding the molecular signaling pathways that underlie these processes is 

fundamental to understanding how the nervous system is assembled and how it functions.  In this 

dissertation, I investigated the molecular mechanisms mediating the effects of visual experience 

in the development and plasticity of the visual pathway.  Each neuron receiving visual input 

responds to a specific area of the visual field- their receptive field (RF).  During early 

development RFs refine in size, an important property of visual acuity.  Utilizing the sensory 

deprivation model of dark rearing (DR) in Syrian hamsters (Mesocricerus auratus), I 



investigated the signaling mechanisms underlying RF refinement and plasticity.  Our lab has 

previously reported that the developmental refinement of RFs happens independently of visual 

experience in both superior colliculus (SC) and visual cortex (V1), but fails to be maintained 

without sufficient visual experience during an early critical period (CP).  Using a 

pharmacological approach, I show that BDNF/TrkB signaling is crucial for the maintenance of 

RF refinement in SC.  DR hamsters treated with a TrkB agonist during the CP for RF refinement 

maintenance (P33-P40) have mature RFs in adulthood.  Hamsters given visual experience, but 

treated with a TrkB antagonist during the CP have enlarged (unrefined) RFs in adulthood.  I also 

show that refined RFs are essential for enhancing both looming escape behaviors, and spatial 

discrimination of sinusoidal gratings.  How early visual experience prevents plasticity in 

adulthood (resulting in a loss of RF maintenance) is poorly understood, but reduced GABAergic 

inhibition is involved.  Using a molecular approach I identified several possible mechanisms 

mediating a loss of inhibition in SC of DR adults.  Ultimately it appears that reduced expression 

of the GABA neurotransmitter is primarily responsible for loss of RF maintenance, rather than 

any post synaptic modifications.  This work provides insight into the mechanisms of 

development and plasticity in the nervous system and could instruct therapies to prevent 

maladaptive plasticity in disease and to enhance recovery of function in adults. 

 

INDEX WORDS: Superior colliculus, Visual cortex, Receptive field, BDNF, TrkB, Critical 

period, Visual deprivation, Rodent, Inhibitory plasticity, Adult plasticity 
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1 INTRODUCTION  

Our experiences in life depend on the ability of our nervous system to provide us with a 

sense of the world around us.  As the nervous system grows and matures, we gain sensitivity to 

new stimuli in the environment along with the ability to process these stimuli in new ways.    

Intriguingly, this enhanced sensitivity is due in part to the environment exerting influence on the 

nervous system’s own development.  Sensory experiences allow the nervous system to adapt 

itself in order to optimally respond to features present within the environment.  However, after a 

certain time point in development, much of this flexibility is lost and adaptations require more 

effort or are no longer possible.  

These early windows in time where environmental experiences can shape the nervous 

system are called critical periods.  During development, critical periods facilitate the functional 

or structural maturation of neural systems (Hensch, 2004; Malik et al., 2013).  Once critical 

periods close, circuits stabilize and are prevented from returning to an immature state.  Often 

modality specific experiences during the critical periods are necessary for this stabilization to 

occur.  For example, neurons in primary visual cortex (V1) in cats are sensitive to the direction 

of motion of visual stimuli, but cats reared under a strobe light and thus deprived of motion 

stimuli, fail to develop this sensitivity (Cynader et al., 1973).   

Although sensory experience is clearly an important contributor to critical period 

regulation, the overall role of sensory experience in shaping neural circuits remains a major 

question in developmental neuroscience.  One commonly held interpretation of existing data is 

that normal circuit development requires modality specific input during critical periods, without 

which the circuit fails to form at all.  Another possibility is that sensory circuits form 

independent of sensory instruction, but experience during the critical period reinforces and 
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maintains those circuits throughout life.  The goal of this introduction is to provide a context for 

how these alternatives have been examined thus far, why the study of experience-dependent 

development is critical to our understanding of the brain, and to provide a background for the 

research presented in Chapters 2 and 3. 

 

1.1 The visual nervous system 

Due to the relative ease of controlling an organism’s environmental experiences, sensory 

systems are popular for studying experience-dependent development.  The visual system is 

especially useful because it receives both spontaneously generated and sensory-evoked (visual) 

neural activity.  It has been extensively studied over the last seventy years because visual activity 

can be manipulated by surgical, pharmacological, and rearing environment interventions.  In this 

section I review current data on the anatomical and functional development of the visual system, 

on the contributions of spontaneous and evoked activity, and on what is known about the 

regulation of critical periods in mammalian visual systems.  I then synthesize the state of 

knowledge and propose possible mechanisms that could account for visually driven circuit 

development. 

 

1.1.1  Retinal circuits and cell types 

The transduction of visual stimuli into the electrical currency of the nervous system 

begins within the retina, a stratified network of cells.  Photoreception occurs in the rods and 

cones in the outermost layer of the retina.  Rods function best in low-light conditions and vastly 

outnumber the cones (20 to 1) in most mammalian organisms (Curcio et al., 1990), although 

cones, which are located in the center of the retina (fovea or visual streak), are responsible for 
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high visual acuity and color perception.  After light is transduced to a chemical signal by the 

photoreceptors, the information is converted into electrical signals and filtered through a series of 

interneurons (bipolar, horizontal, and amacrine cells) in the adjacent layers of the retina.  The 

filtered signals are then transmitted to the retinal ganglion cells (RGCs) at the innermost layer of 

the retina.  The RGCs are the only centrally-projecting neurons in the retina and their axons form 

the optic nerve, which carries visual information to the brain.  There are currently over 30 

different known types of RGCs, each optimally responding to a different aspect of visual stimuli 

(Baden et al., 2016).  (For a comprehensive review of different RGCs and their relative 

contributions to visual processing see Masland, 2001; Dhande and Huberman, 2014; Dhande et 

al., 2015; Sanes and Masland, 2015; Rheaume et al., 2018).  

 

1.1.2 Visual brain areas, ocular dominance, and retinotopic mapping 

The optic nerve decussates at the optic chiasm, after which it is referred to as the optic 

tract.  Information from each eye projects almost exclusively to the contralateral side of the brain 

in rodents, but in carnivores and primates, the tracts carry both ipsi- and contralateral RGC 

axons, thus each eye innervates both sides of the brain to varying extents.  These axons innervate 

many brain structures including the lateral geniculate nucleus (LGN) of the thalamus and the 

superior colliculus (SC) of the dorsal midbrain, two areas that have specialized functions, and 

influence cortical responses differently (Schneider, 1969; Stein et al., 2016; Ito and Feldheim, 

2018).   
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1.1.2.1 Lateral geniculate nucleus 

The dorsal LGN functions as the principal relay for sending retinal information to the 

cortex, where higher visual processing takes place (Grubb et al., 2003).  However, the retina only 

accounts for a small percentage of total LGN input, with approximately 95% coming from V1, 

SC, thalamic reticular nuclei, pretectum, and local interneurons (Guillery and Sherman, 2002).  

These inputs provide secondary processing (clarifying and enhancing visual feature 

discrimination) feedforward, and feedback signaling.  RGCs from the contralateral eye innervate 

the majority of the territory in dLGN of mammals with minimal binocular overlap, including 

rodents. In carnivores and primates, ipsilateral and contralateral RGCs are segregated into 

different laminae within dLGN (Muir-Robinson et al., 2002; Huberman et al., 2003; Jaubert-

Miazza et al., 2005; Howarth et al., 2014).  The LGN is divided into six layers (1-6) in humans 

and non-human primates, with the ventral 2 comprising the magnocellular (M) layers, and the 

dorsal 4 parvocellular (P) layers.  Between each P/M layer are additional types of neurons that 

make up the koniocellular layers.  The outgoing axons from LGN fan out and travel through the 

internal capsule, with the majority ultimately terminating in V1 (Hubel and Wiesel, 1972; 

Henderickson et al., 1978). 

 

1.1.2.2 Primary visual cortex (V1) 

Primary visual cortex, also known as area 17, striate cortex, or V1, is the first cortical 

area to receive visual input and is perhaps the visual area of the brain that is most studied by 

developmental neuroscientists.  This may be because V1 houses the brain circuits that allow for 

binocular vision.  Most of the axons from dLGN innervate layer 4.  It is within layer 4 that ocular 

dominance columns (ODCs) - a cortical feature discovered in classic studies of cat and primate 
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V1 (Hubel and Wiesel, 1962, 1969) - can be most readily observed.  These ODCs can be 

described as alternating stripes of right or left eye dominated cortical territories in most primates, 

but in many carnivores and rodents they are better described as patchy, and in mice they fail to 

form at all (Drager, 1975).   

From layer 4 (also called the granular layer due to its small cells) axons project to layers 

2 and 3, which send signals horizontally within and between cortical areas.  Layer 2/3 neurons 

receive convergent input from both eyes, and are thus the first point of binocularity in the visual 

pathway.  Changes in binocularity and ODCs have been extensively examined in studies of 

ocular dominance plasticity (ODP).  These studies attempt to explain how early sensory 

deprivation can exert a persistent and devastating effect on visual function (Jacobson et al., 

1981).  Although the mechanisms underlying ODP are not directly examined in this dissertation, 

the concepts revealed from work studying the critical period of ODP have been quite influential 

(see Hensch, 2005b for review).  

Axons from layer 2/3 (supergranular layers) also send signals to layers 5 and 6, which in 

turn form several excitatory projections extending outside of V1.  Layer 6 provides feedback to 

LGN, and layer 5 projects to SC and other subcortical targets.  V1 also projects to several other 

cortical areas for higher processing (Marshel et al., 2011; Garrett et al., 2014), which in turn 

often project back into and feed processed information back into V1 (Felleman and Van Essen, 

1991).  Although the underlying structure of V1 has been extensively studied, much remains to 

be learned about the mechanisms governing the development of the intracortical and extrastriate 

connections outlined in this section. 
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1.1.2.3 Superior colliculus 

The retina also projects directly to the SC, also known as the optic tectum in non-

mammalian vertebrates.  The SC is a multimodal sensorimotor midbrain area that orients the 

head and eyes toward stimulus locations in the environment (Mort et al., 1980; Isa, 2002) but 

also receives auditory and somatosensory input (Stein and Arigbede, 1972; Gharaei et al., 2018).  

The optic tract enters the stratum opticum layer of anterior SC and retinal terminals innervate 

neurons in the superficial gray layer (SGS), in which the cells process visual stimuli exclusively.  

Much like in dLGN, ipsilateral projections from the retina are segregated in anterior SC but 

contralateral projections project throughout SC (Dräger and Olsen, 1980; Godement et al., 1984).  

The SC also receives corticocollicular projection from layer 5 of V1 (Rhoades and Chalupa, 

1978), whereas the more ventral layers of SC receive input from other sensory modalities and 

deep layers provide motor commands.   

One interesting characteristic of the SC is how variable the architecture and functions are 

between different species.  For example, in mice ~90% of RGCs project to the SC (Ellis et al., 

2016), a stark contrast to the ~10% of RGCs that project to SC in primates (Perry and Cowey, 

1984).  Indeed, the proportional size of SC can vary greatly between species.  In primates, the 

massive expansion of the cerebral cortex is associated with a reduction in the relative size of the 

SC (as a percentage of the entire brain), and a reduction in overall importance because many 

aspects of visual processing are taken over by cortex (Northcutt, 2002).  In non-mammalian 

vertebrates, which do not have a cerebral cortex, the tectum (SC) is one of the largest structures 

in the brain, and is responsible for a great deal of the visual, auditory, and somatosensory 

processing.  For example, in snakes, nearby infrared radiation is transduced via the trigeminal 
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nerve, but is then processed like other parts of the visual pathway in the optic tectum (Naumann 

et al., 2015). 

 

1.1.2.4 Retinotopic mapping 

In mammalian species LGN, SC, and V1 contain a topographic representation of the 

retinal surface, also known as a retinotopic map (Wang and Burkhalter, 2007; Garrett et al., 

2014).  Retinotopic maps arise from the spatial pattern of RGC projections to their targets, and 

visual acuity is related to the degree of axonal convergence that the innervating axons have on 

the post synaptic neurons.  Retinotopic maps are aligned across the various layers of LGN and 

V1, as are the connections between them.   

Retinotopic maps begin to form early in postnatal development, and are initially directed 

by axon guidance factors and then refined by patterned spontaneous activity.  The mapping of 

the RGCs onto the brain is instructed at least in large part by the chemorepulsive signaling of the 

ephrin system.  The EphA receptors for ephrinAs, located on the RGC growth cones, are 

repulsed by the ephrin A ligand gradient expressed throughout SC and dLGN (Henkemeyer et 

al., 1996; Brückner et al., 1997; Wang et al., 1999).  Eliminating ephrinA ligands in early 

development has been shown to disrupt retinotopic map formation along the azimuthal axis in 

mammals (Feldheim et al., 1998; Cang et al., 2005a; Pfeiffenberger et al., 2006; Cang et al., 

2008).  EphrinBs are implicated in the mapping of the elevation axis of the retina, though their 

role appears to be more complex than for ephrinAs.  For example, Wnt/Ryk signaling has been 

shown to either complement or replace ephrinBs in mapping the medial-lateral axis of 

retinotectal maps in mice (Schmitt et al., 2006).  Although the role of the ephrin system in 
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retinotopic mapping has been widely studied, much work remains to be done about which 

ephrins are essential and which are supportive in the process.   

Neural activity has also been shown to play an active role in retinotopic map refinement 

(Leary et al., 1986; Cline and Constantine-Paton, 1989).  Surprisingly, RF refinement is 

underway before most mammals can open their eyes (and before photoreceptors are fully wired 

into the retina), suggesting that this activity is not coming from visual sensory experience, but 

rather is spontaneously generated (Galli and Maffei, 1988; Meister et al., 1991).  Retinal waves 

(initially generated by spontaneous nicotinic cholinergic synapse transmission (Feller et al., 

1996) and then by glutamate (Maccione et al., 2014) propagate from the RGCs to the SC, dLGN, 

and V1 (Ackman et al., 2012) and help to refine topographic maps.  Any interference with this 

spontaneous signaling pattern results in a disrupted RF refinement (Huberman et al., 2003; 

McLaughlin et al., 2003; Pfeiffenberger et al., 2006; Xu et al., 2011; Burbridge et al., 2014).   

The topographic maps in V1 arise from the dLGN and SC axonal projections and are 

guided by chemotropic factors similar to those mapping the retinogeniculate and retinocollicular 

projections (Ackman et al., 2012; Zhao et al., 2013b).  Reciprocally projecting corticothalamic 

neurons may also contribute to the targeting/mapping of dLGN projections to V1 (Molnár and 

Blakemore, 1995).  The topographic organization of extrastriate visual areas is presumably 

mapped by projections from V1 and (Marshel et al., 2011; Garrett et al., 2014), however little 

work has been done in this area of research.   

1.1.3 Receptive fields, what are they and why do they matter? 

Visual receptive fields (RFs) are the currency that sensory neurons in the brain use to 

represent our world.  Each neuron in the brain that receives visual input is responding to a small, 

restricted part of the visual field and the visual regions of the brain knit each of these individual 
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parts into the coherent image of our visual world.  This coherent image is informed by a number 

of the aspects of the visual system that have already been discussed including retinotopic 

mapping, binocularity, and parallel processing of the various features of visual stimuli.  RFs 

encode/represent each of these properties and are as crucial to our visual display of the world 

around us as are pixels displaying an image on a digital screen.  

Neurons throughout the visual pathway have RFs that differ in size, structure, and 

complexity.  The structure of RFs in the retina and thalamus can be described as two concentric 

circles with two alternating forms of a center-surround functional organization.  On-center/off-

surround RFs detect spots of light surrounded by a darkened background such as the fireflies in a 

dark field, and off-center/on-surround RFs detect dark spots surrounded by bright backgrounds 

such as a distant bird in the daytime sky (Kuffler, 1953).  This organization allows them to detect 

discontinuities in the dispersion of light detected across the retina and is primarily useful for 

identifying the edges of objects (Deaglan, 2015).  RFs with a center-surround organization are 

commonly detected in neurons in LGN and SC, but rarely detected in V1. 

In V1, RFs are more complicated and have greater diversity than in the retina or 

thalamus.  Rather than being concentric and circular, RFs in V1 are elongated and parallel, and 

can be classified as belonging to either simple or complex cells (Hubel and Wiesel, 1959, 1962) 

(see (Martinez and Alonso, 2003) for review).  The RFs of neurons in V1 selectively detect many 

characteristics of visual stimuli, including; luminance contrast, stimulus velocity, stimulus size, 

color, direction of movement, line orientation, retinal disparity, and spatial frequency (frequency 

of dark and light contrasting stripes in a degree of visual space).  V1 neurons can have RFs that 

are either sharply tuned (fail to detect selective stimuli if they are slightly off from the preferred 

detection criteria) or broadly tuned (respond to a wide range of detection criteria).  The 
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development of these RF tuning properties is essential for normal visual function, and is an area 

of extensive study for the visual neuroscience community. 

 

1.1.4 Distinct functional circuitries and processing streams 

Beginning in the retina, unique features of visual scenery are processed in parallel by 

independently activating any one of the 30+ subtypes of RGCs (Baden et al., 2016).  As 

previously described, these RGCs optimally respond to the presence of certain visual features 

and can then project to several different subcortical areas (Huberman et al., 2008b; Dhande et al., 

2015).  After innervating those distant targets, RGCs are further sorted (by cell type) into the 

distinctive layers of LGN or SC.  This ordering, in conjunction with the laminar specific 

organization of target neuron dendrites, cell bodies, or both, in SC and dLGN, results in a robust 

parallel processing system for different visual features across all locations within the retinotopic 

map. 

 

1.1.4.1 Retinal ganglion cell classes and subtypes 

RGCs are classified by their morphology and function, and the nomenclature is often 

found to be species specific, perhaps due to species differences in eye architecture.  For example, 

in cats the three main classes of RGC in the retina are called W, X, or Y cells defined by the 

differences in their response properties (Enroth-Cugell and Robson, 1966).  Descriptions of RGC 

morphology resulted in 3 categories called α, β and γ cells (Boycott and Wässle, 1974).   In 

primates three functional classes of RGCs were described and referred to as P, M, and 

bistratified cells (De Monasterio and Gouras, 1975).   
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X|P|β: 55% of total |medium sized cells (10-15 μm) | small dendritic fields | transmits 

color, detailed form information 

Y|M|α: 5% of total | largest type (>35 μm) | broad dendritic fields | responds to rapid 

changes in spatial information 

W|K| γ: 40% of total | smallest type (<10 μm) | broadest dendritic field | responds to 

directional movement 

 

1.1.4.2 Parallel processing in the visual pathways 

In most mammals, RFs of RGCs and LGN neurons exhibit a center-surround 

organization (on-center off-surround/off-center on-surround) (Hubel and Wiesel, 1959; 

Briggman et al., 2011).  These simple On/Off discrimination parameters are carried through the 

visual pathway where additional features of the detected object, such as orientation and direction 

of movement are coded.  Although stimulus direction and orientation are encoded later on (V1 

and higher extrastriate areas) in primates (Scholl et al., 2013), recent evidence suggests that some 

RGCs in mice may also be orientation selective (Nath and Schwartz, 2016), suggesting that some 

neurons in dLGN may receive that property directly from the retina, rather than or in addition to 

feedback or post processing from V1.   

Surprisingly, orientation tuning maps that do not derive from V1 have also been recently 

discovered in SC in mice.  Indeed, large patches of retinotopic columns are tuned to specific 

orientations (Feinberg and Meister, 2014), though the maps do not appear to represent all 

orientations evenly.  The purpose of these orientation columns has yet to be discerned, though 

logic would suggest that they might enable orientation hotspots (areas responsive to certain 

stimulus orientations in the visual field) that direct eye or head movement.   
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1.1.4.3 Two-streams model 

Higher (extrastriate) cortical processing of visual information has been described by the 

two-stream theory in non-human primates (Livingstone and Hubel, 1988; Goodale and Milner, 

1992).  This model argues for two distinct visual systems functioning as parallel pathways; the 

ventral “what” pathway for visual object identification and recognition, and the dorsal “where” 

pathway for processing spatial location and motion.  Some interaction does occur in order to 

provide an integration between the two disparate systems (Milner and Goodale, 2006), and the 

tuning of individual neurons is not as strictly dichotomous as initially proposed (Malpeli et al., 

1981; for review see Schiller, 1996). 

The ventral stream receives its primary input from the P cell layer of the LGN and 

projects to layers 4, 3, and 2 in V1 (Lamme et al., 1998).  From there the ventral stream projects 

to extrastriate areas V2 and V4 of the inferior temporal cortex, with each visual area containing a 

full representation of the visual field, and with each step of processing conferring more detail to 

the perceived visual image.  Ventral stream processing is significant for providing an overall 

description of the visual world, but it is perhaps most important for processing the significance of 

the individual elements comprising it.  Damage to the ventral stream signaling pathway can 

result in the impaired identification of faces, or facial expressions (Tsao and Livingstone, 2008; 

Kravitz et al., 2013).  Surprisingly, individual neurons in the inferior temporal cortex can 

respond selectively to stimulus identity, for example to a familiar face, or even to the written 

name of the identified stimulus (Quiroga et al., 2005). 

The dorsal stream connects retina/LGN/V1 to the parietal cortex and is primarily 

important for spatial awareness and the guidance of physical actions (such as reaching) within 
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visual space.  Spatial attention is another critical function of the parietal cortex; lesions to the 

parietal cortex result in contralateral neglect of visual, auditory, and tactile stimuli (Mishkin et 

al., 1983). Like the ventral stream, the dorsal stream can aid in object recognition, but only for 

objects that are novel, unconventional, or challenging in some way (Chao and Martin, 2000; 

Konen and Kastner, 2008; Almeida et al., 2010) Shape recognition and stimuli/purpose 

association are at the core of this recognition process, although the ventral stream also seems to 

have a role in mediating shape recognition and may influence this processing in the dorsal stream 

(Sereno and Maunsell, 1998).   

Interestingly, it appears that some forms of visual perception can bypass V1 and the 

dorsal/ventral stream signaling pathways altogether.  Postrhinal cortex (POR) is a part of the 

visual cortex responsible for discriminating moving stimuli (Glickfeld and Olsen, 2017), and 

receives input from V1.  Surprisingly, inactivating V1 via optogenetic light pulses in mice does 

not impair visual responses in POR, suggesting that input directly from the SC, rather than V1 

through the traditional visual circuit, drives activity in POR (Beltramo and Scanziani, 2019).  

These findings could have implications for understanding the phenomenon “blindsight” in which 

people become perceptually blind because of damage to V1 but are still able to interpret the 

position of objects and navigate obstacles even though they cannot consciously perceive them 

(Leopold, 2012).   

 

1.1.5 Activity independent and dependent development in the visual system  

An important question in developmental biology concerns the relative contributions of 

intrinsic factors and the external environment to individual traits.  Studies of the mammalian 

visual system have provided several examples of activity-dependent and -independent events 
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during development.  For the visual system, activity can come from spontaneous firings of 

neurons or from visual stimuli.  Experience-independent and -dependent developmental 

processes largely correspond to two different stages of development: the inceptive patterning of 

circuits prior to eye opening, and their subsequent maturation and refinement, respectively. 

 

1.1.5.1 Defining the roles of activity  

The roles played by activity in shaping the visual system are varied.  Instructive 

activity: can be either spontaneous or stimulus driven, is necessary to either establish or alter a 

neuronal structure or function, and is influenced by activity levels (more activity drives more 

change).  For example, kittens reared in a single orientation environment develop with a higher 

percentage of cortical area representing the experienced orientation compared to other 

orientations (Blakemore and Cooper, 1970; Sengpiel et al., 1999), suggesting that visual 

experience instructs orientation selectivity in V1.  Permissive activity: can affect structural or 

functional development only if a specific threshold of activity is reached, but further increases in 

activity beyond that threshold do little to influence or instruct development.  Direction selectivity 

is not present at birth in ferret V1, but cells are biased to weakly respond to certain directions of 

stimulus movement (Li et al., 2008).  Raising ferrets so that they only experience a single motion 

of direction enables cells biased to the experienced direction of motion to increase their direction 

selectivity (Van Hooser et al., 2012).  Indeed, brief unpatterned optogenetic activity in ferret V1 

is sufficient to elicit the rapid emergence of direction selectivity (Roy et al., 2016), suggesting 

that direction preference is already present in cells and activity is permissive for its development,  
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1.1.5.2 Intrinsic (experience independent) development 

The timeline for visual system development is useful for understanding experience-

independent, spontaneous activity dependant, and experience dependent development.  Logically 

this timeline should have roughly the same sequence as the signaling pathway for translating 

visual sensory information into a perceived image.  The anatomical and physiological maturation 

of the retina (Firth et al., 2005) precede the architectural formation of the LGN (Weliky and 

Katz, 1999), which precedes the structural and functional development of V1 (Wong, 1999; Katz 

and Crowley, 2002).  This timeline leads to the possibility that the LGN requires some form of 

input from the retina and correspondingly, V1 organization is directed by signals from LGN, 

otherwise they could form simultaneously.   

During the early stages of visual development, RGCs and other retinal cells are born, 

differentiate, and project – both within the retina and toward the brain – without any experience 

driven activity (Young, 1985; Wetts and Fraser, 1988; Turner et al., 1990).  RGC axons migrate 

away from the eyes and are held together in a close bundle by inhibitory guidance cues Sema5A 

and Slit2 secreted from intrafascicular glial cells of the optic nerve (Silver, 1984; Plump et al., 

2002; Oster et al., 2003).  The optic nerve is guided by chemo-attractive signaling at the optic 

chiasm (Plump et al., 2002; Plachez et al., 2008) where the majority of RGCs cross the midline 

to the contralateral side (Kennedy et al., 1994; Erskine et al., 2011).  From there the RGCs are 

guided along the optic tract towards their major targets – the SC and LGN – by a number of 

chemoaffinity molecules (Ringstedt et al., 2000; Ichijo and Kawabata, 2001; Becker et al., 2003; 

Gordon et al., 2010).  After reaching their targets the innervating RGCs topographically map 

themselves via the ephrin system as has previously been discussed, and further segment 

themselves into the layers of the LGN.  Thalamocortical connections are made in layer 4 of V1, 
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forming the ocular dominance bands.  Although these examples of visual development all 

happen in an experience-independent manner (before the onset of visually evoked activity), they 

also require intrinsic, spontaneously generated activity (Goodman and Shatz, 1993).   

 

1.1.5.3 Spontaneous activity in development 

Spontaneous activity in the visual system begins early in postnatal life.  In mammals, a 

wave of spontaneous activity propagates across the retina of each eye approximately every 

minute (Wong et al., 1993; Wong, 1999).  There are 3 types of these “retinal waves”, the first of 

which to appear are Stage I waves, which are propagated through gap junctions and occur before 

birth (Firth et al., 2005).  Stage II waves are dependent on nicotinic cholinergic receptors, 

initially propagate over large areas, then become smaller and more dense as inhibitory signaling 

begins to mature around P7 (Feller et al., 1996; Maccione et al., 2014; Arroyo and Feller, 2016).  

At Stage III (after P10), glutamatergic synapses are responsible for retinal waves that persist 

until a few days after eye opening.  Spontaneous activity continues throughout life in the visual 

system, but the activity is no longer structured in propagating waves. 

Retinal waves are important for many aspects of normal development of the visual 

system.  Retinal waves appear to instruct the lamination of the LGN (Stellwagen and Shatz, 

2002), and are necessary for them to form correctly in the first place.  Blocking all spontaneous 

and visually-evoked activity in the retina using localized tetrodotoxin (TTX) injections results in 

disrupted (but not absent) topographic map formation (Thompson and Holt, 1989) and RGC 

layer segregation in LGN (Shatz and Stryker, 1988).  Genetically deleting the β2-subunit of the 

nicotinic acetylcholine receptor (nAChR) disrupts the Stage II waves without affecting Stage I or 

III, and yet results in targeting errors and expanded terminal branches in SC (McLaughlin et al., 
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2003), LGN (Grubb et al., 2003), and V1 (Cang et al., 2005b), leading to enlarged RFs.  Stage III 

waves result from the sequential recruitment of adjacent RGCs with opposing light responses 

(On vs Off) (Kerschensteiner and Wong, 2008), a process that suggests an overall role for Stage 

III waves in forming on-off RF sub-regions in the retina. Although a causal relationship has yet 

to be established, orientation selectivity in V1 (which is thought to depend on separate on-off RF 

sub-regions) matures rapidly around the time of eye opening and is independent of vision in 

rodents (Sarnaik et al., 2014; Hoy and Niell, 2015), suggesting a role for Stage III retinal waves 

in their development.   

 

1.1.5.4 Experience-dependent development 

Stimulus-evoked activity is limited early in visual development.  Very little light 

penetrates the mammalian uterus (Rao et al., 2013), and many animals are born with their eyes 

closed.  Although some stimulus-evoked activity can occur through the eyelids (Krug et al., 

2001; Colonnese and Khazipov, 2010), significant visual experience does not occur until  eye 

opening (P10-14 in mice and many other rodents, approximately P30 in ferrets), after most of the 

early retinofugal connections are made in SC and LGN, and geniculocortical connections are 

made to V1.  This timeline of development suggests that stimulus-evoked activity may play a 

more significant role in shaping the visual pathway at levels higher than SC and LGN.  

Once the initial patterning of the visual system has been established by intrinsic 

spontaneously generated activity, the fine tuning of the topographic maps and pruning of RF 

response properties are guided by visual stimuli present in the environment.  For example, in V1, 

orientation selective maps (columns of cells that respond to particular stimuli orientation) can 

form without any vision (Crair et al., 1998; White et al., 2001), although the final level of 
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maturation can vary between species, especially in the absence of vision (Buisseret and Imbert, 

1976; Chapman and Stryker, 1993; White et al., 2001).  Similarly, orientation selective cells in 

rodent V1 (which lacks a distinct columnar organization) also develop without vision (Rochefort 

et al., 2011; Ko et al., 2013; Sarnaik et al., 2014), but substantially mature in the weeks 

immediately following eye-opening (Rochefort et al., 2011; Hoy and Niell, 2015).  In all studied 

species orientation selectivity requires experience for proper maintenance (Fagiolini et al., 1994; 

Crair et al., 1998; Kang et al., 2013a), is plastic to changes induced by both artificial visual 

stimulation (Weliky and Katz, 1997; Kreile et al., 2011), and environments expressing only a 

single orientation (Sengpiel et al., 1999).  Further evidence supporting experience-driven fine-

tuning is that vision is required during the formation of ocular dominance columns in V1 to 

enhance and maintain the corresponding orientation preference from each eye that is already 

present at eye opening (Wang et al., 2010; Wang et al., 2013; Sarnaik et al., 2014), and the 

development of visual acuity in binocular V1 is delayed by dark rearing (Kang et al., 2013a).  

These results suggest that experience can play an instructive role in modifying the orientation 

preference of RFs in V1, and is essential for fine tuning the previously established circuits. 

Although visual experience is important for development, the quality of that experience 

can have a substantial effect on how neural circuits are shaped.  Studies that prevented visual 

experience using binocular eyelid suture in place of dark rearing quickly found that, rather than 

blocking all light, the procedure merely blocks only patterned visual stimulation (no visual edges 

are experienced) (Mower et al., 1981a).  This kind of visual experience resulted in enlarged 

(unrefined) RFs, reduced visual responsiveness, (Mower et al., 1981a), a misalignment of the 

eyes (Sherman, 1972), and disrupted orientation tuning (Crair et al., 1998).  Dark rearing results 

in a less profound retardation of visual development, and can often lead to some recovery of 
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function later in development, whereas binocular eyelid suture results in permanent detrimental 

changes that cannot be overcome (Mower et al., 1981a).  These results suggest that diffuse visual 

activity is not sufficient for mediating experience-dependent development of the visual system, 

but rather that patterned visual activity is required (Ruthazer and Aizenman, 2010).  

 

1.1.6 Critical vs. sensitive periods 

A key issue in studying the effects of environmental experience on development is to 

understand how and when exposure is the most influential.  This concept is generally referred to 

as a critical or sensitive period.  Although “critical periods” and “sensitive periods” are often 

used interchangeably, they differ in fundamental ways.  For example, the sensitive period is a 

broad term that is often used to describe the effects that experience has on the brain during 

limited periods in development (Knudsen, 2004).  Notably, if a key experience is absent during a 

sensitive period, it may be difficult, without extraordinary effort, to redirect development along a 

normal course; even then, function in the affected modality may not fully recover. In contrast, if 

a key experience fails to occur during a critical period, development and function can be 

permanently affected, whereas some functional recovery is possible with sensitive period-

dependent development. 

Although the term “critical period” has persisted throughout the popular science lexicon, 

it’s important to note that the majority of phenomena it is used to describe throughout the 

entirety of cognitive/behavioral development are likely reflective of sensitive periods.  In 

contrast, the development of the visual system has several examples of true critical periods that 

have been extensively studied.  Monocular deprivation during early development results in a 

major shift (98%) in V1 neuron responses from the deprived eye to the non-deprived eye (Wiesel 
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and Hubel, 1963b), suggesting a competitive process of ocular dominance column formation in 

V1.  Importantly, follow up studies identified that these effects were restricted to the first 3 

weeks of development, the “critical period” for ocular dominance plasticity.  Even a short period 

(3-4 days) of monocular deprivation during this critical period leads to a lasting and largely 

irreversible decline in the responses to the deprived eye, whereas far longer periods of monocular 

deprivation in an adult cat have little to no physiological impact (Hubel and Wiesel, 1970).  

Although it is important to distinguish between sensitive and critical periods, the mechanisms 

differentiating them are not well understood and require further examination.   

It is important to note that critical periods occur in a parallel (between modalities) and 

sequential (within modalities) manner during development; thus, there will be multiple, 

cascading critical periods for different neural circuits that may overlap. Sequential critical 

periods occur in cases that “lower” brain areas (those proximal to stimulus detection) mature 

before “higher” areas (those upstream involved with higher order processing).  For example, in 

the mouse visual system, retinocollicular connections stabilize their orientation tuning before V1 

neurons do (Seabrook et al., 2017).  In auditory development, development of tonotopy (the 

topographical mapping of sound frequencies in auditory cortex) precedes language acquisition in 

humans, because the maturation of upstream areas involved with basic sound perception are 

required before those sounds can be comprehended as words (Werker and Hensch, 2015).  

Interestingly, some modes of higher order processing do not seem to be dependent on experience 

during early critical periods.  For example, congenitally blind children who are surgically given 

sight do not have innate face schemas, but are able to learn to differentiate faces with a high 

degree of proficiency through natural visual experience (Gandhi et al., 2017).   
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It is well accepted that critical periods function as windows in time in which synaptic 

connections are fine-tuned.  After critical periods close, synaptic connections are resistant to 

change, even with significant changes to the environment (Hensch, 2004).  Although critical 

periods can be a time of progress, they are also a time of vulnerability.  For example, failure to 

correct congenital cataracts or a “lazy eye” in early life can lead to amblyopia (permanent 

cortical blindness of retinal input from the affected eye) even though the eye itself is healthy.  

Similarly, loss of auditory input from chronic ear infections during an early critical period can 

detrimentally affect language acquisition in children (Werker and Hensch, 2015).  These 

consequences highlight the terminal nature of critical periods, along with the importance of 

quality sensory experiences during early windows in neural development.  However, the 

mechanisms controlling the onset and closure of critical periods are not yet understood.  

Identifying these mechanisms will illuminate our understanding of the negative outcomes 

associated with failures in these processes, and generate insights into how these outcomes can be 

treated.    

1.1.7 Role of activity in receptive field refinement 

RFs are a critical feature for visual stimulus detection, perception, and higher order 

processing.  RFs of neurons are organized topographically throughout the visual pathway and 

organize neuronal response properties that allow selective detection of certain aspects of visual 

stimuli.  These response properties can be inherent to the neuron - forming independent of 

activity, or they can be influenced by its inputs.  Either way, classic studies have demonstrated 

that molecular cues and spontaneous activity are both essential in the early formation of RF 

properties, but the refinement and maturation of RFs is guided by visual experience.  However, 
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much work remains to be done in order to elucidate the mechanisms underlying the processes 

stabilizing RFs in adulthood.   

Many RF properties have already been discussed throughout this chapter, including 

orientation and direction selectivity; however the overall discrimination of these (and other) 

visual features is ultimately limited by visual acuity.  Acuity is an important limiting factor for 

processing  binocular disparity and identifying high frequency contrast stimuli, , especially in V1 

(Sceniak et al., 1999; Nienborg et al., 2004).  Visual acuity is poor in mammals at eye opening; 

rats, for example, double their overall cortex-dependent visual acuity between eye opening and 

adulthood (Fagiolini et al., 1994), a sequence that coincides with the refinement of RF size.   

The progressive refinement of RF size is an activity dependent process (Thompson and 

Holt, 1989; Huang and Pallas, 2001a; Chandrasekaran et al., 2005), and several early reports 

suggested that RFs in SC and V1 fail to refine in dark reared (DR) rodents (Fagiolini et al., 1994; 

Gianfranceschi et al., 2003).  Behavioral measures in DR adults also show reductions in visual 

acuity (Timney et al., 1978).   In contrast, previous work by my research group determined that 

these early findings were misinterpreted due to a failure to examine earlier ages.  

In contrast to the critical role of visual experience for several features of RF 

development, vision is not necessary for RFs to refine in size in hamster SC (Carrasco et al., 

2005) or V1 (Balmer and Pallas, 2015a).  In hamsters that have been DR from birth, RFs refine 

normally by P60, but refinement is not maintained and they re-enlarge by P90.  Providing brief 

(35 hours) visual experience during an early critical period (P33-P40) is sufficient to maintain 

RFs of DR hamsters in their refined state beyond P90, but experience outside of the critical 

period cannot rescue RFs that have already re-enlarged as a result of dark rearing (Carrasco and 

Pallas, 2006; Balmer and Pallas, 2015a).    
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Loss of RF refinement in DR hamsters was accompanied by a loss of inhibition in SC and 

V1 (Carrasco et al., 2011).  In the adult brain, inhibitory signaling is caused by the 

neurotransmitter gamma-Aminobutyric acid (GABA), and its two high affinity receptors; the 

ligand-gated ion channel GABAA and the metabotropic GABAB receptor.  Chronic dark rearing 

results in reduced GABA expression and decreased GABAA receptor mediated inhibitory 

signaling in adult SC (Carrasco et al., 2011).  Further work also revealed a dysregulation in 

GABAB receptor-dependent short-term depression in the SC of DR adults (Balmer and Pallas, 

2015b).   

These results provided us with a compelling reason to examine the mechanisms 

underlying the initial effect of visual-evoked activity during the critical period (Chapter 2) and 

[missing verb] how visual experience could be mediating the maintenance of refined RFs in 

adulthood (Chapter 3).   

 

1.2 Proposed role of neurotrophins in RF development 

Sensory activity could influence development via the activity-dependent expression of 

neurotrophic factors.  Neurotrophic factors (aka neurotrophins) are a family of proteins that 

promote the survival, development, and function of neurons throughout the central nervous 

system (CNS) (Barbara, 2006; Reichardt, 2006; Park and Poo, 2013a).  In the mammalian CNS, 

neurotrophins include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4) (Huang and Reichardt, 2001).  These growth 

factors are secreted by target tissues and typically function by activating tropomyosin-related 

kinase (Trk) receptors;- NGF:TrkA, BDNF:TrkB, NT-3/NT-4:TrkC- that prevent the associated 

neuron from initiating programmed cell death – allowing neuronal survival (Bothwell, 1995; 
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Arevalo and Wu, 2006).  In addition, BDNF is well known to be a regulator for the maturation of 

inhibitory synapses (Rutherford et al., 1997; Hanover et al., 1999; Gao et al., 2014). 

Environmental enrichment (a means of increasing sensory-motor activity, social 

interactions, and general cognitive activity) promotes the expression of BDNF throughout the 

brain (Bartoletti et al., 2004; Sale et al., 2007), which is advantageous for learning and recovery 

of lost function (Tognini et al., 2012; Peruzzaro et al., 2013).  BDNF is essential in regulating 

neuronal plasticity (Allen et al., 2013) and is a major focus of research in treating ailments of the 

brain such as Alzheimer’s disease (Nagahara et al., 2009), stroke (Schäbitz et al., 1997), and 

traumatic brain injury (Blaha et al., 2000).  Experience-driven activity could be selective or 

permissive for RF maintenance via the activity-dependent expression of BDNF. 

The overexpression of BDNF in young mice rescues adult V1 from the detrimental 

effects of chronic dark rearing  (including RF refinement) (Gianfranceschi et al., 2003), and can 

promote the recovery of visual acuity in adult rats that were monocularly deprived in 

development  (Tognini et al., 2012).   These experiments suggest that activity-driven BDNF 

synthesis is an important modulator of development in V1; however, its regulatory effects in 

different parts of the visual pathway have yet to be examined.  In Chapter 2 I address this issue 

by studying how increased BDNF/TrkB activity during the critical period for RF size 

maintenance affects RFs in adult SC.  I also examine several visually dependent behaviors that 

could be affected by the loss of RF refinement, and differentiate between the necessity of RF 

refinement and visual experience in mediating those differences. 
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1.3 Proposed mechanisms of receptive field size maintenance 

The question of how visual experience during an early critical period can contribute to 

the stability of RFs several weeks later in development relates to how plasticity is restricted in 

adulthood.  Once visual circuits are established and fine-tuned, plasticity could be detrimental to 

normal function.  Reduced plasticity is useful in preventing sensory circuits from regressing, but 

also places limits on the potential recovery from injury and neurodegenerative disease. Studying 

how visual experience establishes and maintains refined RF circuits in SC in adulthood will 

inform novel theories about critical period regulation, how it can be reopened, and how 

maladaptive plasticity can be prevented.  

 

1.3.1 The maintenance of inhibition could maintain RFs 

Inhibition has an essential role in the developmental plasticity of V1.  The role of 

inhibition in ocular dominance plasticity in particular has been extensively studied (Fagiolini and 

Hensch, 2000; Hensch, 2005b; Kuhlman et al., 2013) and changes in inhibition have been shown 

to affect both the opening and closing of its critical period (Fagiolini and Hensch, 2000).  Dark 

rearing reduces inhibition in V1 (Benevento et al., 1992; Benevento et al., 1995; Morales et al., 

2002), and extends the critical period into adulthood so that monocular deprivation can lead to 

changes in ocular dominance plasticity well beyond the normal juvenile critical period (He et al., 

2006).  This critical period prolongation can be halted by the artificial augmentation of GABA 

(Iwai et al., 2003) (Huang et al., 2010), which results in normal levels of inhibition, or 

accelerated by artificially inducing the decay of GABA signaling (Fagiolini et al., 2004).  The 

critical period can also be extended indefinitely by delaying the maturation of GABA (Hensch et 

al., 1998), or reopened in adulthood by reducing GABAergic inhibition pharmacologically 



26 

(Harauzov et al., 2010).  Together these results suggest that inhibition can play a large role in the 

maintenance of RFs during and after normal development. Identifying the mechanism(s) 

responsible for the loss of inhibition in DR adult SC is essential for understanding how to 

prevent maladaptive plasticity in adulthood.   

Long-term synaptic plasticity is a phenomenon that occurs routinely throughout the brain 

(Malenka and Bear, 2004) where synaptic strength is altered and remains that way for at least 30 

minutes and up to several hours.  Long term plasticity involves two types of change in synaptic 

strength: long term potentiation (LTP) - an increase in synaptic strength, and long term 

depression (LTD) - a decrease in synaptic strength.  Typically LTP and LTD occur via 

coincidence detection of activity between a pre and postsynaptic neuron mediated by N-methyl-

d-aspartate (NMDA)-type glutamate receptors (Malenka, 1994).  LTP occurs when a presynaptic 

cell “repeatedly and persistently” excites a postsynaptic cell (Hebb, 1949; Hebb, 2005), and LTD 

logically appears in the opposite manner, where a “reduction in frequency in the use of one set of 

synapses permits the other to take complete charge” (Stent, 1973).  For example, in monocular 

deprivation studies, LTD has been observed occurring in V1 when deprived eye responsiveness 

is lost (Kirkwood et al., 1996; Frenkel and Bear, 2004; Crozier et al., 2007), and LTP occurs 

during the strengthening of the non-deprived eye responses (Kirkwood and Bear, 1994; Heynen 

and Bear, 2001), with interference in the molecular mechanisms underlying LTP disrupting this 

process (Hensch, 2005a).  Although reliant on Hebbian signaling (LTP/LTD), a fair amount of 

synaptic scaling and homeostatic regulation is also necessary for changes in ocular dominance to 

occur (Espinosa and Stryker, 2012).  

LTP is essential for the initial refinement of RFs in V1 early on in development, 

(Kirkwood et al., 1995; Maffei and Turrigiano, 2008), and appears to follow the overall pattern 
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of RF plasticity.  For example, it is can be restricted in adult V1  by early visual experience 

(Kirkwood et al., 1996), main its ability to be expressed in adulthood by dark rearing (Kirkwood 

et al., 1995; Kirkwood et al., 1996), and is modulated by the strength of inhibitory signaling 

(Artola and Singer, 1990).  Although one would assume LTP and LTD to be likely mechanisms 

underlying plasticity in SC, we previously found that dark rearing through the critical period 

reintroduced plasticity but did not generate any additional LTP or LTD (Balmer and Pallas, 

2015b).  Instead it reduced short-term (but not long-term) depression of excitatory synapses, 

suggesting a decrease in the availability of neurotransmitters for release.  Recent work may 

provide an alternative explanation for our inability to detect LTP in DR adults.  Brief visual 

exposure following sensory deprivation promotes the emergence of a NMDAR-independent 

form of LTP governed by mGlurR5 signaling (Li et al., 2017a).  This NMDAR-independent LTP 

is suggested to play a role in the establishment of normal RF properties, but it is transient and 

disappears shortly after novel visual experience, making it unclear at what age it is most relevant 

and how it may affect the long term stability of V1.  Although these reports could potentially 

explain how RF plasticity returns in adulthood, they do not explain the decreased responses to 

inhibitory neurotransmitter previously observed in DR adult SC (Carrasco et al., 2011).  Many 

possible explanations for the reduced inhibitory responses in DR adults are studied in Chapter 3 

of this dissertation.   

 

1.3.1.1 GABAA receptor subunit composition 

GABAARs belong to the superfamily of Cys-loop ligand-gated ion channels that 

comprises nicotinic acetylcholine (nACh) receptors, strychnine-sensitive glycine receptors and 5-

hydroxytryptamine type-3 (5-HT3) receptors.  Receptors belonging to this family are 



28 

heteropentameric glycoproteins comprised of corresponding subunits that specifically recognize 

each other and conform around an intrinsic ion channel, which for GABAARs are permeable to 

Cl- and to a limited extent, bicarbonate anions (Unwin, 1993).  The composition/configurations 

of the individual subunits making up GABAARs can affect how well they function and is an avid 

area of research.   

GABAA receptors cause fast acting inhibition in neurons by acting as a ligand-gated 

channel for Cl- into the cell.  Our previous work indicates that these fast responses to a GABA 

receptor agonist were severely diminished in adult SC after dark rearing from birth (Carrasco et 

al., 2011).  This loss of function could result from several changes in the development of the 

subunits comprising the pentameric structure of the GABAA receptors.  Five subunits (out of six-

alpha, three-beta, three-gamma, one-delta, one-epsilon, and one-pi discovered so far) are 

arranged around a central pore with the primary configurations including 2 alpha, 2 beta, and a 

gamma subunit (Farrant and Nusser, 2005).  During early development (dependent on species 

but in general – P20-30), a switch from the dominant alpha two to alpha one subunit reduces the 

delay in receptor activation and recovery time, significantly increasing inhibitory signaling 

strength (Okada et al., 2000).  This development may provide a means of stabilizing inhibitory 

circuits in SC, and if this process were disrupted by early sensory deprivation it could potentially 

lead to maladaptive adult plasticity in adulthood.    

Alternatively, subunit composition can affect receptor accumulation and membrane 

trafficking at inhibitory synapses (Jacob et al., 2008), potentially shifting phasic (synapse 

localized) receptors towards a more tonic (extrasynaptically localized) role.  This would result in 

reduced total fast acting inhibition.  Alpha1,2,3, beta2/3 and gamma2 incorporating GABAARs 

are predominantly mediating phasic inhibition, and are thus synaptically localized.  It is 
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important to note however, that these receptors have dynamic mobility and go through a rapid 

exchange between extrasynaptic and synaptic receptor clusters (Jacob et al., 2005; Thomas et al., 

2005).  The alpha5 subunit is unique because it is localized and enriched extrasynaptically 

(Brünig et al., 2002) and is thus a conductor of tonic inhibition.  Indeed, the deletion of alpha5 

subunit will eliminate tonic conductance entirely in cultured hippocampal neurons (Caraiscos et 

al., 2004).  Changes in alpha5 subunit expression and tonic inhibition in adulthood could account 

for the losses in GABAAR function observed in SC and V1 after early dark rearing (Carrasco et 

al., 2011; Balmer and Pallas, 2015a).  

 

1.3.1.2 Intracellular trafficking of GABAA receptors 

GABAA receptor trafficking is partially regulated by endocytosis: the controlled removal 

of receptors in the membrane.  They are subsequently reinserted into the membrane or undergo 

lysosomal degradation after longer periods (Kittler et al., 2004).  Interactions between GABAAR 

β1–3 subunits and huntingtin associated protein 1 (HAP1) determine whether endocytosed 

GABAARs are recycled or reinserted (Kittler et al., 2004).  This process of endocytosis can have 

a great deal of influence on inhibitory and excitatory signaling in neuronal networks (Kanematsu 

et al., 2007; Leidenheimer, 2008).  It is unknown whether dysregulation of GABAA receptor 

endocytosis and reinsertion is present during experience-driven maturation of sensory circuits; 

however it is linked with several degenerative diseases that involve failings in GABAergic 

inhibition, much like the loss of RF maintenance in DR adults.  For example, in a mouse model 

of Parkinson’s disease, the reduction of the trafficking protein kinesin binding 1 (Trak1) (a 

homolog of HAP1) (Li et al., 1995), results in marked reductions in the expression of GABAARs 

in the CNS (Gilbert et al., 2006).  In studies of Alzheimer’s disease, GABAARs are less sensitive 
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to GABA (Limon et al., 2012), and amyloid-β (a hallmark pathology in Alzheimer’s disease) 

weakens synaptic inhibition by down-regulating GABAARs through endocytosis (Ulrich, 2015).   

An increase in the rate of GABAA receptor endocytosis in primary neurons in SC could also 

underlie the loss of inhibition observed in dark reared adult hamsters.  

The equilibrium between the lateral diffusion, insertion, internalization and recycling of 

GABAAR in the plasma membrane governs the strength of GABAergic synapses.  Flaws in 

GABAAR trafficking have been indicated as triggers of GABAergic dysfunction in several 

neuronal pathological conditions (for review see Hines et al., 2012).  Studying the mechanisms 

that lead to stabilizing GABAA receptor trafficking in development could be instrumental in 

designing treatments for psychiatric and neurodegenerative diseases. 

 

1.3.2 Membrane scaffolding proteins 

One mechanism influencing the accumulation and confinement of GABAA receptors at 

postsynaptic sites is the membrane scaffolding protein gephyrin (Kneussel et al., 1999; Sun et al., 

2004; Jacob et al., 2005; Tretter et al., 2008).  Decreased expression of gephyrin results in less 

clustering of GABAA receptors (Essrich et al., 1998) and more overall mobility at the synapse 

(Jacob et al., 2005).  Increasing gephyrin expression chemically in vitro and by an experience-

dependent plasticity protocol in vivo in developing V1 neurons results in greater GABAA 

receptor accumulation at synapses and increases inhibitory LTP (Petrini et al., 2014).  There is 

also evidence of gephyrin-independent clustering, as gephyrin KO mice still possess clustered 

GABAA receptors along with miniature IPSCs (postsynaptic responses to passive (non-action 

potential) neurotransmitter release) (mIPSCs) (Kneussel et al., 2001; Levi et al., 2004; Zita et al., 

2007).  Nevertheless, if gephyrin expression was decreasing in SC following sensory 
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deprivation, it could be responsible for reduced clustering of GABAA receptors and lower levels 

of GABAergic inhibition.  

 PSD-95 is the primary excitatory (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA)) receptor scaffolding protein in neurons, and functions largely in the same way as 

gephyrin does for GABA receptors.  Although it does not have a direct impact on GABAA 

receptor function, PSD-95 has been shown to have an influence on visual plasticity.  For 

example, PSD-95 expression in SC increases rapidly at eye opening and is crucial for the 

emergence of N-methyl-D-aspartate receptors (NMDAR)-dependent LTP (Zhao et al., 2013a), a 

feature that requires the unsilencing (insertion of AMPA receptors) of silent synapses (synapses 

that only have NMDA receptors along the postsynaptic membrane).  In addition, mice lacking 

PSD-95 have lifelong ocular dominance plasticity in V1 that results from an increase in the 

overall expression of silent (AMPA-free) synapses, but completely normal inhibitory tone 

(Huang et al., 2015b).  Considering the role PSD-95 plays in silent synapse maturation and 

critical period gating it deserves recognition as a possible mechanism underlying maladaptive RF 

plasticity in the adult visual system.   

 

1.3.3 NMDA receptor subunit composition 

Excitatory plasticity may also contribute to enlargement of RFs during DR (Huang and 

Pallas, 2001b).  LTP and LTD are two of the most extensively studied models of synaptic 

regulation underlying experience-dependent cortical plasticity (Tsumoto, 1992; Bliss et al., 

2003).  In V1, LTP and LTD have been studied within all cortical layers, though their 

mechanisms, consequences, and rules of induction have been mainly studied in layer 2/3 

pyramidal cells (Artola and Singer, 1987; Taniguchi et al., 1989; Kirkwood and Bear, 1994; 
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Heynen and Bear, 2001; Wang and Daw, 2003; Cooke and Bear, 2010).  These studies 

established that LTP/LTD induction is Hebbian (cells that fire together wire together), depends 

on NMDAR activation (Bear et al., 1992; Kirkwood and Bear, 1994), and is guided by visual 

experience.  Visual deprivation from birth enhances NMDAR-dependent LTP in layers 2/3 of V1 

(Kirkwood and Bear, 1994; Kirkwood et al., 1995; Guo et al., 2012).  A developmental switch 

from the NR2B to NR2A subunit of NMDARs occurs alongside the decline in visual plasticity in 

V1 (Gordon and Stryker, 1996; Erisir and Harris, 2003).  Dark rearing also disrupts the 

substitution of the NR2A subunit for the NR2B subunit that normally occurs postnatally in V1, 

limiting NMDAR-dependent excitatory plasticity (due to the shorter open time of NR2A) 

(Carmignoto and Vicini, 1992b; Philpot et al., 2001).  Thus, examining changes in the 

NR2A/NR2B subunit composition could provide an explanation for how early visual experience 

prevents adult plasticity in adulthood and maintains RF refinement.  Reduced NR2A expression 

relative to NR2B could cause RFs to expand through potentiation of excitatory synapses. 

 

1.3.4 Chloride pump ratio 

Inhibitory GABAergic signaling in neurons is dependent upon the intracellular chloride 

(Cl-) concentration.  The K+ Cl- co transporter (KCC2) is responsible for regulating intracellular 

Cl- in mature adult neurons via an outward K+ current (Rivera et al., 1999), and also regulates the 

formation, function, and plasticity of glutamatergic synapses  (Li et al., 2007; Gauvain et al., 

2011; Chevy et al., 2015).  Early in development GABAA receptors are excitatory because the 

Na+-K+-2Cl− co transporter 1 (NKCC1) (which mediates Cl- uptake) is dominant, and during the 

first several weeks after birth is replaced by KCC2 as the dominant Cl- pump in the brain, 

causing GABAA receptor activation to hyperpolarize neurons.  Recent findings reveal that in V1, 
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the developmental switch from NKCC1 to KCC2 occurs at the same time as a period of 

BDNF/TrkB mediated synaptic imbalance – a crucial critical period for the transition of 

immature neurons to a more mature state of functionality (Zhang et al., 2018).  There is also 

evidence linking alterations in chloride homeostasis to the impairment of GABAergic inhibition 

(Rivera et al., 2004).  Down-regulation of KCC2 results in increased intracellular Cl- and thus, 

generates a positive shift in the reversal potential for GABAA receptors, a phenomenon linked to 

epilepsy in hippocampal slices.  Indeed, in human studies, the presence of a rare variant of KCC2 

increases the risk of developing epilepsy (Kahle et al., 2014; Puskarjov et al., 2014) and other 

degenerative diseases.  If the ratio of KCC2:NKCC1 was decreasing in DR adult SC, then 

GABAA receptors would have less driving force and provide reduced inhibition, perhaps 

resulting in a re-expansion in RFs in adulthood  

 

1.4 Why investigate Syrian hamsters? 

Syrian hamsters have been extensively studied in the field of developmental 

neurobiology for the last fifty years (Schneider, 1969; Chalupa and Rhoades, 1978; Rhoades and 

Chalupa, 1978; Mort et al., 1980), and especially so for studies of the SC and visual development 

(Mort et al., 1980; Udin and Schneider, 1981; Pallas and Finlay, 1989; Thompson and Holt, 

1989; Choi et al., 2009) .  The original work examining the necessity for visual experience in 

maintaining, rather than facilitating RF refinement in SC (Carrasco et al., 2005) and V1 (Balmer 

and Pallas, 2015a) was accomplished in Syrian hamsters.  Compared to other commonly studied 

lab mammals, Syrian hamsters have the shortest gestation period (15-18 days) (Bond, 1945) and 

are thus more immature in their development at birth.  Syrian hamsters also have a large litter 

size and have little problem reproducing in a laboratory environment (Fritzsche et al., 2006).  
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These reproductive factors and the high visual acuity of hamsters compared to other rodent 

species (Langley, 1985) make Syrian hamsters a favorable species for studying visual 

development and the experience dependent maintenance of RF maturation.   

1.5 Clinical importance 

Much of our adult function and behavior reflects the neural circuits sculpted by 

experience in early development.  At no other time in life does the surrounding environment so 

potently shape brain function including basic motor skills, sensation, and even higher cognitive 

processes like language or emotion.  This ability to shape learning waxes and wanes with age 

and carries an impact far beyond neuroscience, including how we approach education, the 

treatment of developmental disorders, and strategies for recovery from traumatic brain injury. 
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2.1 Abstract  

During a critical period in development, spontaneous and evoked retinal activity shape 

visual pathways in an adaptive fashion.  Interestingly, spontaneous activity is sufficient for 

spatial refinement of visual receptive fields in superior colliculus (SC) and visual cortex (V1), 

but early visual experience is necessary to maintain inhibitory synapses and stabilize RFs in 

adulthood (Carrasco et al. 2005, 2011; Carrasco & Pallas 2006; Balmer & Pallas 2015a).  In 

visual cortex (V1), brain-derived neurotrophic factor (BDNF) and its high affinity receptor TrkB 

are important for development of visual acuity, inhibition, and regulation of the critical period 

for ocular dominance plasticity (Hanover et al., 1999; Huang et al., 1999; Gianfranceschi et al., 

2003).  To examine the generality of this signaling pathway for visual system plasticity, the 

present study examined the role of TrkB signaling during the critical period for RF refinement in 

SC.  Activating TrkB receptors during the critical period (P33-40) in DR subjects produced 

normally refined RFs, and blocking TrkB receptors in light-exposed animals resulted in enlarged 

adult RFs like those in DR animals.  We also report here that deprivation- or TrkB blockade-

induced RF enlargement in adulthood impaired fear responses to looming overhead stimuli, and 

negatively impacted visual acuity.  Thus, early TrkB activation is both necessary and sufficient 

to maintain visual RF refinement, robust looming responses, and visual acuity in adulthood.  

These findings suggest a common signaling pathway exists for the maturation of inhibition 

between V1 and SC. 

2.2 Significance Statement 

Receptive field refinement in superior colliculus (SC) differs from more commonly 

studied examples of critical period plasticity in visual pathways in that it does not require visual 

experience to occur; rather spontaneous activity is sufficient.  Maintenance of refinement beyond 
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puberty requires a brief, early exposure to light in order to stabilize the lateral inhibition that 

shapes receptive fields.  We find that TrkB activation during a critical period can substitute for 

visual experience in maintaining receptive field refinement into adulthood, and that this 

maintenance is beneficial to visual survival behaviors.  Thus, as in some other types of plasticity, 

TrkB signaling plays a crucial role in RF refinement. 

2.3 Introduction 

As sensory pathways transition from a highly plastic state early in life to a stable state in 

adulthood, stimulus tuning properties are progressively sharpened through neural activity-

dependent plasticity and are then maintained in that state.  Much of the investigation into the 

regulation of critical periods has centered on the development of visual system connectivity, 

particularly on the developmental increase of GABAergic inhibition.  Development of inhibition 

in primary visual cortex (V1) is controlled by experience driven BDNF signaling through its high 

affinity receptor TrkB (Huang et al., 1999; Huang and Reichardt, 2003; Jiang et al., 2005; Gao et 

al., 2014), and has been shown to substitute for experience in the context of ocular dominance 

tuning in transgenic mice (Gianfranceschi et al., 2003).  Here we address the generalizability of 

TrkB signaling as a mechanism underlying critical period regulation across different tuning 

properties and visual regions.   

Receptive field (RF) refinement is an essential step in visual system development.  Visual 

experience is required for development of acuity in monkeys (Regal et al., 1976; Teller et al., 

1978), cats (Timney et al., 1978; Derrington and Hawken, 1981), and rats (Fagiolini et al., 1994), 

but not in V1 of mice  (Prusky and Douglas, 2003; Kang et al., 2013b).  Our previous studies in 

Syrian hamsters demonstrated that early visual experience is not necessary for RF refinement in 

superior colliculus (SC) or V1, but is required to maintain refined adult RFs (Carrasco et al., 
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2005; Balmer and Pallas, 2015a).  Chronic dark rearing (DR) beyond postnatal day (P) 60 results 

in expansion of RFs to juvenile size (Carrasco et al., 2005).  Light exposure during an early 

postnatal critical period protects RFs against this later loss of refinement (Carrasco and Pallas, 

2006; Balmer and Pallas, 2015a).  Thus, in contrast to RF refinement in cats and primates (see 

Shatz, 1996, for review), development of refined RFs in hamster SC and V1 is independent of 

sensory experience, and requires vision only for maintenance. These results counter the common 

view that vision is required for development but not maintenance of visual receptive field 

properties (see Shatz, 1996, for review).  They caution against over-generalization across 

features and species, and raise the possibility that RF refinement in hamster SC and V1 may 

occur through a distinct mechanism.   

Because RF expansion in SC of DR adults results from a loss of inhibition (Carrasco et 

al., 2011; Balmer and Pallas, 2015b) we asked whether RF refinement and maintenance might 

occur through a mechanism other than TrkB directed inhibitory plasticity.  We find, however, 

that TrkB activation during the critical period for RF refinement is necessary and sufficient to 

maintain refined RFs in SC and V1 of adults.  Thus, BDNF-TrkB activity seems to be a common 

path through which visual experience influences the development and maturation of inhibition in 

the visual pathway.  These findings raise the possibility that manipulating TrkB activity could 

reactivate plasticity in adults for therapeutic purposes, and could provide insight into the 

development of disorders that similarly involve the breakdown of mature connectivity stemming 

from an early developmental error. 
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2.4 Materials and Methods   

2.4.1 Subjects 

A total of 137 adult Syrian hamsters (Mesocricetus auratus) of both sexes was bred in-

house and used in this study (see Table 1).  Hamsters provide a valuable model for studying the 

developing visual system due to their robust and well-characterized visual responses and short 

gestation time (Pratt and Lisk, 1989). Hamsters were housed in social groups of up to 5 adults 

per cage in standard rodent cages, with enrichment items including nestlets and chew toys.  All 

animals were provided ad libitum access to food and water 24 hours per day.   

Twenty-four adult mice (C57BL/6) of both sexes were bred in-house and used in the 

visual looming behavioral assay only.  Mice are a valuable model for perceptual tasks because 

they are commonly used in behavior experiments and are widely studied animal model in visual 

neuroscience.   

2.4.2 Surgery 

Electrophysiological recordings were made in sedated animals as described previously 

(Carrasco et al., 2005).  In brief, animals were deeply anesthetized with intraperitoneal injections 

of urethane (2g/kg, split into 3-4 doses).  Surgical levels of anesthesia were confirmed via 

withdrawal reflexes, respiration rate, and muscle tone, with supplemental ¼ doses of urethane 

given as needed.  Preoperative doses of atropine (0.05 mg/kg) were administered after the onset 

of anesthesia to stabilize breathing and reduce secretions in the respiratory tract.  A single 

injection of dexamethasone (1mg/kg) was used as a prophylactic anti-inflammatory.  The 

surgical site was then shaved and cleaned with 70% ethanol, and the head was stabilized with a 

bite-bar restraint.  A midline incision was made in the scalp to expose the skull, followed by an 

approximately 5mm bilateral craniotomy extending from bregma to lambda, and retraction of the 
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meninges.  The cortex and hippocampus were aspirated unilaterally to expose the underlying SC.  

Removal of cortex has no observable effect on SC neuron RF properties in hamsters, except for 

impairments in cortically-mediated direction tuning (Chalupa, 1981; Ahmadlou et al., 2017).  

2.4.3 Experimental design and statistical analysis 

Light treatment groups  Normally reared hamsters or mice were housed in a 12/12 hour, 

reversed light-dark cycle.  DR animals were housed in a darkroom, within which were several 

light-tight housing cabinets.  Pregnant dams of DR subjects were transferred into DR housing 

approximately 3 days before parturition.  During drug administration and for general husbandry 

purposes, they were briefly exposed to dim red light at a wavelength not visible to Syrian 

hamsters (Huhman and Albers, 1994).  

To test the effect of TrkB receptor blockade on RF maintenance, strobe light exposure 

was used rather than a 12/12 light cycle because of the likelihood that the injected antagonist 

would not be effective throughout the 12-hour daily light exposure.  Strobe-exposed animals 

were placed in a small enclosure containing a light flashing at approximately 25 Hz for 5 hours a 

day on each day of the critical period (7 days total).  The timing of strobe exposure overlaps the 

6 hour effective dose curve of the TrkB antagonist (Cazorla et al., 2011).  This method exposed 

test subjects to a total duration of light exposure similar to the amount that was sufficient to 

maintain RF refinement in SC (Carrasco et al., 2005). 

Drug treatment groups  In order to test the hypothesis that TrkB activation is necessary 

and/or sufficient for adult maintenance of RF refinement, all animals were administered a daily 

injection of either a TrkB agonist (Andero et al., 2011), a TrkB antagonist (Mui et al., 2018), or 

vehicle during the critical period for RF maturation in SC (P33-40) under dim red light 

conditions (Carrasco et al., 2005).  Specifically, treatment consisted of an intraperitoneal 
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injection of either the TrkB agonist 7,8-Dihydroxyflavone (7,8-DHF) (98% Sigma Aldrich 

CAS#: 38183-03-8) (10mg/kg) or the antagonist ANA-12 (Sigma Aldrich #SML0209) 0.15g/ml, 

made fresh daily, dissolved in diluted dimethylsulfoxide (60% DMSO in DI water), or DMSO 

alone as a negative control.  Animals were weighed prior to each daily injection to ensure that 

the 1 mg/kg dose of drug or vehicle remained consistent throughout the treatment phase.   

Statistical analysis  A Student’s t-test or a One-Way Analysis of Variance (ANOVA), 

followed by post-hoc Bonferroni tests were used to compare parametric data with equal variance 

between groups and a normally distributed data set.  Descriptive statistics for these analyses are 

provided as mean ± standard error of the mean (SEM).  For data not meeting these criteria, a 

Mann-Whitney rank sum test or a Kruskal-Wallis One-way ANOVA on ranks was used, 

followed by a Dunn’s post hoc test, with data presented as median ± interquartile range (IQR). 

2.4.4 Western blotting 

Animals were euthanized with a sodium pentobarbital-and phenytoin sodium-containing 

mixture (Euthasol >150 mg/kg IP).  Brains were immediately extracted and flash frozen in cold 

2-methylbutane on dry ice, then stored at -80°C or immediately dissected for preparation of 

lysates.  Individual left and right tecta were excised and lysed in RIPA buffer (150mM NaCl, 

150mM Tris, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) containing 2% Halt protease 

inhibitor (ThermoFisher Scientific).  Proteins were visualized using SuperSignal West Pico 

Chemiluminescent Substrate kits (Life Technologies) and imaged on an ImageQuant LAS4000 

mini imaging system (GE Healthcare Life Sciences), or IRdye fluorescent secondaries (Li-Cor), 

imaged on an Odyssey CLx fluorescent imaging system (Li-Cor).  Protein levels were quantified 

as the optical density of the phosphorylated TrkB proteins relative to the optical density of total 

TrkB protein using ImageJ.  No difference was detected between the two imaging methods using 
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identical membranes, thus the data were combined.  To assess the effectiveness of the TrkB 

agonist and antagonist, 33 animals received the drug doses IP, and then either remained in their 

DR habitat or were exposed to strobe conditions for 2 hours, followed by euthanasia and tissue 

harvest. Rabbit anti-pTrkB (Y817) (1:1000, Abcam Cat # ab81288), and rabbit anti-pan (total) 

TrkB (80G2, 1:500, Cell Signaling Technologies Cat# 4607 ) were used to confirm that the drugs 

were having the expected effect on TrkB phosphorylation in in vivo.  The Y817 phosphorylation 

site was chosen because it is a BDNF phosphorylation site (Liu et al., 2014) and its 

phosphorylation is a reliable marker for calcium release (Hubbard and Miller, 2007).  

Phosphorylation of Y817 also activates protein kinase C (PKC), which is associated with activity 

dependent synaptogenesis in visual cortical development (Zhang et al., 2005).  Negative controls 

included lanes with primary antibody but no protein to confirm specificity of the bands identified 

at the targeted molecular weight.  

2.4.5 Assessment of pre- and post-synaptic inhibitory signaling strength 

To characterize and compare treatment dependent changes in inhibitory signaling in 

adulthood we examined levels of GAD-65 and GABBAR 1 protein using antibodies (mouse 

anti-GAD-65 1:10 (Developmental Studies Hybridoma Bank-University of Iowa GAD-6), and 

rabbit anti-GABAAR 1 1:1000 (Abcam ab33299)).  Negative controls included lanes without 

protein and lanes without primary antibody.   

2.4.6 Electrophysiology 

Single unit extracellular recordings were obtained with Teflon coated, glass insulated 

microelectrodes (Kation Scientific, Catalog: W1011-7, 2-2.3 MΩ). The electrode was positioned 

perpendicular to the exposed SC, and lowered into the tissue using a Kopf Model 650 

micropositioner.  All recordings were obtained within 200 µm of the surface of the SC to ensure 
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they were made from the superficial, retino-recipient layers.  Electrical signals were amplified, 

filtered (10,000x; 0.5-3kHz; Bak Electronics A-1), and digitized at 20 kHz using Spike2 software 

and CED hardware (Micro 1401-2; Cambridge Electronic Design).   

2.4.7 Visual stimulus presentation 

In order to measure RF size, we used a visual stimulus presented on a CRT monitor 

(60Hz refresh rate) positioned 40 cm from the left eye.  The monitor was maintained at its 

highest contrast and brightness settings for each experiment.  Visual stimulus generation was 

accomplished using custom MATLAB (Mathworks) software with the PsychToolBox-3 

application.  The visual stimulus consisted of a bright white square traveling from dorsal to 

ventral visual field at 14°/s across a black background.  The stimulus size was 1 degree in 

diameter and each vertical traverse shifted 2° along the x axis of the monitor after each 

presentation, with a 3 second inter-stimulus interval, as in (Balmer and Pallas, 2015a).  

 

Figure 2.1: Graphical description of experimental procedure for measuring visual RF sizes 

with in vivo, extracellular, single-unit recordings of stimulus-evoked action potentials in SC. 
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2.4.8 Analysis of RFs 

Spike2 software (Cambridge Electronic Design) was used for offline spike sorting of 

single units (approximately four unique visually responsive neurons were isolated per recording 

site).  Analysis of RF size was completed by a researcher blind to treatment group.  Receptive 

field diameter along the azimuthal axis was measured by plotting the visual field location from 

which spiking responses were produced as the stimulus vertically traversed the monitor, from 

nasal to temporal visual field.  A uniform fraction of the peak response (20%) was defined as the 

minimum stimulus-evoked response threshold, as in a previous study (Balmer and Pallas, 

2015a). Responses were normalized by setting the peak response of each single unit to 1.0 to 

account for differences in response strength between individual units.  RF size data were 

compared between treatment groups to quantify the effect of TrkB manipulation vs. vehicle 

treatment.  Data for LR Control and DR Control groups were taken from our previously 

published study, using the same methods (Carrasco et al., 2005). 

2.4.9 Looming response task 

An open-top box with dimensions of 58.7cm long x 42.9cm wide and 32.4cm in height 

was used to test the fear reflex to an expanding spot approaching from above.  The test subjects 

were light and dark reared Syrian hamsters and C57BL/6J mice, aged >P90, housed either in 

12h:12h light:dark cycle or in 24h dark.  Five trials were conducted under white light, in the 

animals’ subjective daytime between the hours of 1900-2200.  Both groups were exposed to 

white light for less than 90 minutes per trial.  Alcohol (70%) was used to clean the apparatus 

before and between each trial, to eliminate olfactory cues.  A plastic cup was spray painted black 

and offered as a hiding chamber.  Each subject was placed in the center of the apparatus with the 

white monitor screen above and given at least 10 minutes for acclimation.  The visual stimuli 
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were programmed and displayed using the Psychtoolbox module for MATLAB.  A spherical, 

black, looming stimulus on a white background was initiated once the subject was out of the 

hiding chamber and in the center of the arena.  The stimulus expanded from 3.5 degrees of visual 

angle to 56.5 degrees in 2.35 seconds, remained at that size for 250ms, and then restarted the 

sequence with a 250ms delay.  The fear response was considered positive if the subject either 

froze or fled into the cup within 5 seconds of the stimulus initiation.  The fear response was 

considered negative if the subject did not demonstrate any freezing or fleeing behavior. 

2.4.10 Visual water maze task 

A two-alternative, forced-choice visual discrimination task was used to assess the spatial 

acuity of Syrian hamsters across all treatment groups.  The task consisted of a trapezoidal shaped 

Y maze half- submerged in a pool with 15cm of tepid (22°C) water.  A hidden escape platform 

that was submerged in one of the two distal arms of the maze was separated by an opaque divider 

40cm in length, with the far end of the divider marking the decision line.  Identical monitors 

(Dell Model 1707FPt) placed side by side and above the distal ends of the maze displayed either 

a gray screen or a sinusoidal grating of vertical black and white bars.  The maximum detectable 

number of grating cycles (cycles per degree – cpd) that occurred throughout the span of a single 

visual degree for the subjects was calculated and used as a measure of visual acuity.  Screen 

reflections on the surface of the water hid the platform when viewed from water level.  Hamsters 

were trained to escape from the Y maze by swimming toward the screen displaying the gratings, 

where the hidden platform was located.  Visual acuity was determined by increasing the number 

of grating cycles across the screen (adding 1 complete cycle for each progressive set of trials).  

The escape platform location was randomly determined before each set of trials.  When an 

incorrect choice was made, the animal would be assayed over several more trials to determine an 
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overall success rate at that cpd.  If the animal fell below a 70% success rate then its preliminary 

visual acuity was determined to be the total cpd of the previous trial set.  The final visual acuity 

value for each animal was progressively narrowed down over the course of several days and 

approximately 60 trials per animal.   

2.4.11 Data sharing information 

Intellectual property rights are set by Georgia State University Policy No. GSU: 4.00.08.  

Data will be embargoed only until publication, unless the University requests a delay in public 

dissemination if necessary to permit the University to secure protection for Intellectual Property 

disclosed to it by the PI.  After publication, we are willing to share any of the data used to 

generate our manuscripts as long as the PI and members of the Pallas lab involved in generating 

the data and the funding sources receive proper attribution.   

2.5 Results  

The developmental transition from plastic to stable receptive field properties maintains 

the activity driven changes that occur in early life.  Early visual experience is required for refined 

RFs to be stabilized and thus maintained into adulthood (Carrasco et al., 2005), but it remains 

unclear what molecular changes are responsible.  BDNF protects against degradation of visual 

acuity in visual cortex of dark reared mice (Gianfranceschi et al., 2003), and we examined 

whether BDNF-TrkB signaling might also be protective of acuity in SC of dark reared hamsters, 

in which case it may be a general mechanism through which sensory experience has its 

maturational effects across species and brain area.  Alternatively, adult maintenance of RF 

refinement in Syrian hamsters may occur through a different signaling pathway.  
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2.5.1 7,8-DHF and ANA-12 are both effective modulators of TrkB receptors throughout the 

visual midbrain  

In the study on the effects of visual deprivation on visual cortical development of mice 

mentioned above (Gianfranceschi et al., 2003), a genetic approach was used for constitutive 

over-expression of BDNF.  We asked a more time-limited question- whether increasing signaling 

through the TrkB BDNF receptor only during an early critical period would have a similar effect.  

To accomplish this, we used a pharmacological approach that allowed us to control the timing of 

TrkB manipulation.  We reasoned that if increased TrkB signaling that is limited to the critical 

period could rescue receptive field properties from the effects of visual deprivation, it would 

suggest that a common mechanism exists for stabilizing inhibitory synapses across different 

visual brain areas and species, despite the differences in timing.  Systemic injection of the 

isoflavone 7,8-DHF as a TrkB receptor agonist (Andero et al., 2011; Liu et al., 2014), and ANA-

12 as an antagonist (Lawson et al., 2014; Ren et al., 2015) have been used to manipulate TrkB 

activation in previous studies.  In order to determine whether we could use these drugs to achieve 

a level of TrkB activation during the critical period that would be comparable to that provided by 

light exposure, we assayed their ability to phosphorylate and dephosphorylate TrkB receptors at 

the same site that is phosphorylated by light exposure and BDNF binding (Y817) (Poo, 2001; 

Hubbard and Miller, 2007; Liu et al., 2014).  Test subjects from each treatment group (7,8-DHF 

+ DR, n=9; Strobe + ANA-12, n=5; Strobe alone, n=7; Vehicle + DR, n=11) were euthanized 3 

hours after receiving treatment, and the brains were collected for processing..  We then used 

Western blotting to measure the amount of activated (pTrkB) relative to total TrkB from V1, SC, 

and hippocampus (as a non-retinorecipient control region).  We found that the pharmacological 

manipulations intended to stimulate TrkB receptors were working as intended, in that 
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immunoblotting with antibodies against phosphorylated (activated) and total TrkB receptors 

revealed strong, treatment-induced increases in TrkB phosphorylation at Y817 throughout the 

brain (Figure 2.2).  In all three areas 7,8-DHF had a robust effect on increasing TrkB 

phosphorylation in DR subjects well beyond that of the Vehicle + DR injection group; SC 

(F(3,24) = 12.503, p < 0.001, ANOVA) V1 (F(3,12) = 24.757 p <0.001, ANOVA), hippocampus 

(F(3,12) = 6.070 p = 0.009, ANOVA).  Visual experience (strobe) also induced increases in 

pTrkB in both visual brain areas compared to vehicle: SC (0.523 ± 0.0916, p = 0.046, n=5), V1 

(0.529 ± 0.0812, p = 0.004, n=4), but not in hippocampus, as expected for a non-visual area.  

Conversely, treatment with the TrkB antagonist ANA-12 + strobe reduced pTrkB levels in 

relation to total TrkB in both SC (0.132±0.243, p = 0.034 n=3) and V1 (0.098±0.0265 p<0.001 

n=4).  These findings support our claim that pharmacological activation of TrkB agonists can 

modulate TrkB activity in hamster SC, similar to short, stroboscopic light treatments, whereas 

antagonist treatment can reduce TrkB activation, mimicking visual deprivation.  

 
Figure 2.2: Drug treatments were effective at modulating TrkB activity in SC, V1, and 

hippocampus.  
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7,8-DHF administration from P33–P40 increased TrkB receptor activation, and ANA-12 

treatment blocked TrkB activation, in all brain areas assayed. A–C, Example blots of treatment 

groups generated using 20 μg of protein per lane. All presented lanes are from the same gels, 

with nonadjacent lanes revealed by vertical lines between them. D–F, Densitometric analyses of 

Western blots generated from SC (D), V1 (E), or hippocampus (F) lysates prepared from 

juvenile hamsters (∼P33) receiving the TrkB receptor agonist (7,8-DHF), visual experience 

(strobe light for 1 h), strobe light + the TrkB antagonist ANA-12, or vehicle injection revealed 

differences in activation levels of TrkB receptors between groups. Agonist and strobe light 

exposure greatly increased levels of phosphorylated (p)TrkB in SC compared with vehicle. 

Analysis of ANA-12 treatment on TrkB phosphorylation during 1 h of strobe light exposure 

revealed that the antagonist is effective in preventing visual experience-evoked TrkB activation. 

The density of the anti-pTrkB (Y817) band is normalized to the anti-total TrkB (80G2) protein 

band to measure differences in TrkB activity. Data are mean ± SEM. *p< 0.05, **p < 0.01, ns, 

not significant. 

 

2.5.2 Elevating TrkB receptor phosphorylation levels during the critical period maintains SC 

receptive field refinement into adulthood 

In SC and V1, refinement of RFs during postnatal development occurs independently of 

visual experience, but maintaining refined RF size into adulthood requires visual experience 

during an early critical period (Carrasco et al., 2005; Balmer and Pallas, 2015a).  Because 

genetically increasing BDNF expression throughout life rescues RF size in dark reared visual 

cortex of mice (Gianfranceschi et al., 2003), we reasoned that early BDNF signaling might also 

be involved in RF maintenance in adult superior colliculus.  To investigate whether TrkB 
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activation during the critical period for RF plasticity has the same effect on RF size as visual 

experience, we pharmacologically manipulated TrkB activation during the critical period and 

measured RF sizes in adult superior colliculus (>P90).    Data for LR Control and DR Control 

groups were taken from our previously published study, using the same methods (Carrasco et al., 

2005).  Our approach was to dark rear hamsters from <P0 to >P90 and provide daily treatment 

with the TrkB agonist 7,8-DHF throughout the critical period (P33-P40).  As predicted, DR 

hamsters that were treated with the agonist maintained a significantly smaller RF size (12° ± 6°, 

n = 92) compared to vehicle injected control animals (18° ± 4°, p<0.05, n = 84) (H(3)  = 120.118 

p = <0.001, Kruskal Wallis One-Way ANOVA on Ranks) (Figure 2.3).  Importantly, these are 

measurements of single unit RF sizes, and not overlapping, adjacent RFs that might be measured 

from multiunit extracellular recordings.  These results support the hypothesis that TrkB 

activation during the critical period is sufficient to maintain RF refinement in SC into adulthood. 
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Figure 2.3: TrkB activation during the critical period maintains RF refinement into late 

(>P90) adulthood. 

A, Experimental design and summary of findings. B, RF sizes for each experimental group 

measured in visual degrees and plotted as individual data points. LR and DR control data are 
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from Carrasco et al. (2005). Open pair of eyes across the top of graph indicates the group was 

given visual experience. Closed eyes indicate group was DR throughout development. Data are 

median ± IQR. *p < 0.05. 

 

2.5.3 Decreasing TrkB phosphorylation levels during the critical period prevents 

maintenance of SC receptive field refinement into adulthood 

Next, we tested whether TrkB activation is a requirement for maintenance of refined RFs.  

Our approach was to use the TrkB antagonist ANA-12 to block the light-induced 

phosphorylation of TrkB receptors that occurs during visual experience.  ANA-12 was 

administered during a stroboscopic presentation of light for 5 hr/day throughout the critical 

period (P33-P40), followed by return to the dark room until adulthood (>P90).  This stroboscopic 

light treatment was sufficient to maintain RF refinement in SC into adulthood (Figure 2.4).  

Single-unit recordings from SC neurons in animals receiving the antagonist revealed 

significantly larger RFs (20° ± 4° (n=82 neurons)) than in neurons from strobe light treated 

animals (12° ± 4° (n=29 neurons)) (Figure 2.4B) and interestingly, larger RFs than in vehicle 

injected, light exposed subjects (18° ± 4° n = 84)(H(3) = 153.50, p = < 0.001, Kruskal Wallis 

One-Way ANOVA on Ranks).  We further compared the effects of all treatments on adult RF 

size across different quadrants of the SC and observed no significant differences between strobe, 

vehicle + DR, or ANA-12 + strobe, suggesting that no regions of the SC are particularly 

susceptible to DR.  Note that the plot includes data from LR Control and DR Control groups in 

our previously published study (Carrasco et al., 2005).  Interestingly, we did observe more 

refinement in RFs located in the rostral (10° ± 2.5°, n= 21) and medial (10° ± 4°, n=17) 

quadrants of the SC compared to the caudal (14° ± 4°, n=29) and lateral (14° ± 4°, n=  28) 

http://www.jneurosci.org.eu1.proxy.openathens.net/content/39/23/4475#ref-12
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quadrants (Figure 2.5), consistent with recent findings that certain visual stimulus features may 

be sampled more robustly at different regions of the visual field (El-Danaf and Huberman, 2019).  

These findings further supports the hypothesis that TrkB activity is responsible for maintenance 

of RF refinement, because blocking TrkB activity during the critical period resulted in enlarged 

RFs in adulthood, despite adequate visual experience for maintenance of refined receptive fields.   
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Figure 2.4: TrkB blockade during the critical period blocks the protective effects of visual 

experience for SC RF refinement in adulthood (>P90). 

DR animals were given sufficient stroboscopic visual experience during the critical period to 

maintain RF refinement in SC, but TrkB blockade during that time period blocked the protective 

effects of light. A, Experimental timeline for treatment and resulting RF changes during 

development. B, RF sizes for each experimental group measured in visual degrees and plotted as 

individual data points. LR and DR control data are from Carrasco et al. (2005). Symbols are as 

in Figure 2.3. Data are median ± IQR. *p < 0.05.

 

Figure 2.5: Analysis of treatment effect on RF size across quadrants of SC. 

http://www.jneurosci.org.eu1.proxy.openathens.net/content/39/23/4475#ref-12
http://www.jneurosci.org.eu1.proxy.openathens.net/content/39/23/4475#F3
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In the 7,8-DHF groups, the RFs in SC neurons representing the rostral and medial quadrants of 

the visual field were smaller than those in the caudal and lateral quadrants. In adult hamsters, 

these regions receive topographic input from the nasal and dorsal visual fields, respectively. No 

other treatment elicited a quadrant specific effect on RF size. Data are median ± IQR. *p < 0.05, 

ns, not significant. 

2.5.4 TrkB activity during the critical period preserves RF refinement by maintaining adult 

levels of inhibition 

Results from our previous investigations suggested that loss of inhibition could account 

for the RF enlargement in adult DR animals (Carrasco et al., 2011; Balmer and Pallas, 2015a).  If 

TrkB is the pathway through which visual deprivation leads to a loss of lateral inhibition in SC 

and thus enlarged RFs in adulthood, then reduced TrkB activation should result in reduced 

inhibition.  Thus we examined how altering TrkB activation affected GABA and GABAA 

receptor levels.  Examinations of the GABA precursor enzyme (GAD65) levels and GABAAR 

receptor expression levels in TrkB agonist and antagonist-treated hamsters were used to examine 

any potential changes in adult inhibition.  Assays of GAD65 and GABAA receptor levels allowed 

us to address if increasing TrkB activity during the critical period in DR hamsters would 

maintain adult levels of lateral inhibition in SC in the same manner as visual experience, or if 

TrkB activity is affecting RF refinement in SC through a different mechanism.   

We measured adult (>P90) levels of GAD65 and GABAAR 1 receptor subunit protein in 

drug-treated and control animals using Western blotting.  Agonist (7,8-DHF/DR) treated animals 

had higher relative cytoplasmic GAD65 expression (0.216 ± 0.006, n = 7 animals) compared to 

vehicle /DR treated (0.104 ± 0.0121, n = 5), and antagonist (ANA-12/strobe) treated hamsters 

(0.085 ±  0.0092, n=4) (F(4,28) = 102.747, p < 0.001, One-Way ANOVA).  Normally reared and 
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DR control groups performed as expected, with normally reared hamsters having much higher 

GAD65 expression compared to DR hamsters (Normal: 0.242 ± 0.0057, n = 6; DR: 0.0737 ± 

0.0048, n=4; One-Way ANOVA, p<0.001) (Figure 2.6A).  In contrast, drug treatment had no 

effect on GABAAR 1 expression (p = 0.97) (Figure 2.6B).  Presynaptic GAD65 expression was 

reduced in groups in which RFs had become unrefined (Vehicle, DR, ANA-12/Strobe), whereas 

post-synaptic receptor function was not affected.  These results suggest that visual experience 

and TrkB activity are not functioning via unique signaling pathways. 

 

Figure 2.6: Early TrkB expression is both necessary and sufficient to maintain increased 

presynaptic inhibition in adult SC. 

A, Adult GAD65 expression levels were maintained in TrkB agonist-injected animals but 

decreased in DR, vehicle, and ANA-12-injected animals. B, GABAAR α1 expression remained 

constant across all treatment groups and rearing conditions. Data are mean relative optical 

density ± SEM. *p < 0.001. 
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2.5.5 Dark rearing impairs fear responses to looming visual stimuli 

RF refinement is critical for the development of visual acuity and environmental 

awareness.  DR animals have a number of visual deficits in cortex such as poorer visual acuity 

and broader orientation and direction tuning (Fagiolini et al., 1994), but deficits in SC have 

rarely been characterized.  In rodents, the retino-SC pathway is arguably more relevant to visual 

behavior than the geniculocortical pathway (Sherman and Spear, 1982; Li et al., 2015; Beltramo 

and Scanziani, 2019), especially compared to predators.  We hypothesized that refined RFs are 

necessary for SC dependent visual behaviors to function in adulthood, and predicted that groups 

with enlarged RF’s (DR/Vehicle, ANA-12/Strobe) would have impaired task performance.  We 

tested this hypothesis in adult hamsters by examining differences in fear responses (escape or 

freezing behavior; see Methods) to visual looming stimuli (Figure 2.7A, B), an SC dependent 

behavior (Zhao et al., 2014; Shang et al., 2018) that is dependent on input from retinal W3 cells 

(Zhang et al., 2012).  We found that DR (40% ± 6%, n=8), vehicle (23% ± 8%, n=7), and ANA-

12/strobe (26% ± 4%, n=7) treated hamsters were less likely to respond to overhead looming 

stimuli than normally reared (78% ± 6%, n=8), or 7,8-DHF treated (70% ± 4%, n=6) hamsters 

(Figure 2.7C, E) (F(4, 35) = 17.73, p<0.001, One-way ANOVA)..  Dark rearing/larger RFs had 

a particularly robust effect on the escape (“flight” to shelter) behavior, with very few occurrences 

of flight in groups in which RFs have expanded in adulthood (Figure 2.7C).  These data suggest 

that the failure to maintain RF refinement in adult SC has a negative impact on instinctual fear 

responses to a looming visual object.  
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Figure 2.7: DR and subsequent enlargement of RF size in SC reduces fear responses to 

looming stimuli in hamsters and mice. 

A, Schematic of apparatus. A box with a monitor (M) suspended above it projecting the looming 

stimulus, and a shelter (S) placed at the far end. Animals responded to looming stimuli either by 

fleeing (FL) into the shelter or freezing (FR) in place. Unresponsive animals continued 

exploratory behavior (EB). B, Expansion of the looming stimulus from the start of a cycle to the 
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end (∼2 s). C, D, Occurrences of each response type to looming stimuli per animal in each 

experiment group for 5 s after stimulus presentation in hamsters (C) and mice (D). Responses 

were determined on an ascending scale from exploratory behavior (EB) < freezing < flight, with 

only the highest observed behavior reported for each trial. E, F, The frequency of an escape 

response (freezing/flight) to looming stimuli compared between normally reared and DR groups 

in hamsters (E) and mice (F). Data are mean fear response ± SEM (E) and median ± IQR (F). 

*p < 0.05. 

It is important to address the possibility of species-specific responses to light deprivation.  

Because hamsters are a crepuscular species (Apfelbach and Wester, 1977) and as such encounter 

their environment in both light and darkness, the effects of light deprivation may not be as 

detrimental as on a nocturnal species that is less reliant on vision for survival.  To test this 

hypothesis, we carried out the same visual perceptual test on mice that had been normally reared 

or DR.  We found that the effect of DR on the frequency of fear responses to looming stimuli 

was similar between mice and hamsters.  As with DR hamsters, DR mice were less likely to 

respond to overhead looming stimuli (20%± 20%, n=12) than normally reared mice (80% ± 30%, 

n=12) ( T=220, n(small)=12, n(big)=12, p<0.001 Mann-Whitney Rank Sum Test,)..  

Surprisingly, the decrease in fear responses in DR mice was even greater than the decrease in DR 

hamsters (Figure 2.7D, F), contrary to what might be predicted in a nocturnal species like mice.  

These data suggest that both hamsters and mice are susceptible to DR induced disruptions of 

visual perception in SC.  They also support our contention that RF size refinement is an 

important event in visual development and could have a detrimental effect on behaviors that are 

important for survival. 
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2.5.6 TrkB activity during the critical period for RF refinement is both necessary and 

sufficient for visual acuity improvements to persist into adulthood 

In rats, cortex-dependent visual acuity at eye opening, as assessed by visual evoked 

potentials, is less than half that in adulthood (Fagiolini et al., 1994).   In both SC and V1 of 

hamsters, chronic DR impairs the stability of the refined RFs, resulting in RF expansion in 

adulthood (Carrasco et al., 2005; Balmer and Pallas, 2015a) We hypothesized that TrkB activity 

during the critical period for RF refinement would be both necessary and sufficient for adult 

visual acuity to be preserved.  To test this hypothesis, we compared the proficiency of hamsters 

in performing a spatial discrimination task in adulthood across treatment groups (7,8-DHF/DR, 

ANA-12/Strobe, Strobe, DR, and Vehicle/DR) (Figure 2.8A,B).  We found that visual acuity 

was similar between strobe treated (0.695 cpd ±0.01, n=9), and 7,8-DHF/DR  treated (0.704 cpd 

± 0.01, n=6) hamsters, but was reduced in Vehicle/DR (0.473 cpd ± 0.01, n=7), DR (0.481 ± 

0.01, n=11), and ANA-12/Strobe treated hamsters (0.516 ± 0.01, n=7, F(4,35) = 42.31, p < 

0.001, One-Way ANOVA)  (Figure 2.8C,D).  These results demonstrate that TrkB activity 

during the critical period for RF refinement is both necessary and sufficient for high visual acuity 

in adulthood, and that RF size refinement is important for overall visual acuity and for survival 

behaviors such as the looming response. 
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Figure 2.8: TrkB activity during the critical period for RF refinement maintains adult levels of 

visual acuity. 

A, Schematic of apparatus from two vantage points. A trapezoidal Y maze filled with 15 cm of 

water was used in a forced choice behavioral assay. Monitors placed above each arm displayed 

either a vertically oriented sine-wave grating to indicate the location of the escape platform or a 

gray screen, in random order. B, Progression of trials testing visual discrimination against 

increasing frequencies of sine-wave gratings. Animals with larger RFs are expected to have 

poorer visual discrimination ability. C, Acuity performance curves were applied to each 



63 

treatment group. Each point represents the average success rate at the indicated spatial 

frequency. Acuity was determined by identifying the point where the curve crossed the 

horizontal line indicating a 70% success rate. D, Comparison of visual acuities in cycles per 

degree across all treatment groups. Symbols are as in Figure 2.3. Data are mean ± SEM. ***p < 

0.001. 

Together, these results demonstrate that TrkB activation can substitute for visual 

experience during the critical period of RF plasticity, and they support the hypothesis that TrkB 

activation is both necessary and sufficient for the maintenance of RF refinement in SC (Fig. 9).  

Our results also provide evidence that this early increase in TrkB expression reduces presynaptic 

GAD65 expression in adult SC.  In addition, RF refinement in SC is important for visual 

behavior, in that larger RFs result in impaired responsivity to looming visual stimuli, and poorer 

discrimination of spatial gratings.    

 

 

 

 

http://www.jneurosci.org.eu1.proxy.openathens.net/content/39/23/4475#F3


64 

 

2.6 Discussion 

Previously we reported that spontaneous activity alone is sufficient for RF refinement in 

SC and V1 (Carrasco and Pallas, 2006; Balmer and Pallas, 2015a).  However,  light exposure for 

Figure 2.9: Summary. Diagram showing findings regarding the dependence of RF size 

maintenance in adult SC on early visual experience, and the role that TrkB activation plays 

within that process. 
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several days during an early critical period is necessary for maintaining refinement into 

adulthood (Carrasco et al., 2005).  These results were surprising for two reasons; first because 

vision is thought to be necessary for development but not for adult maintenance of function, and 

secondly because early deprivation did not have any detectable effect until adulthood.  These 

previous results provided the rationale for the current study of the mechanism through which 

early visual experience maintains RF size past puberty and into adulthood.   

Visual deprivation can permanently impair the development of some stimulus tuning 

properties, yet have little effect on others, depending on species.  For example, orientation 

selectivity in visual cortex will begin to appear in juvenile DR ferrets (Chapman and Stryker, 

1993; Chapman et al., 1996; Chalupa and Snider, 1998; Issa et al., 1999; White et al., 2001) but 

fails to sharpen to mature levels  (Huberman et al., 2008a) and direction selectivity in V1 fails to 

develop at all (Li et al., 2006; Van Hooser et al., 2012).  Additionally, ocular dominance columns 

in V1 form in DR cats (Wiesel and Hubel, 1974; Horton and Hocking, 1996), but ocular 

dominance plasticity is prolonged into adulthood as a result (Mower et al., 1981b; Cynader, 

1983).  In contrast, some RF properties  develop without visual experience in mice (Rochefort et 

al., 2011), but continued deprivation degrades tuning in adult mice and rats (Hensch, 2005).  This 

suggests that one role of early visual experience may be to fine tune and then  stabilize 

previously established connections in their mature state.  This maturation is often associated with 

increased GABAergic inhibition (Hensch et al., 1998; Fagiolini et al., 2004) initiated by 

increases in visually evoked BDNF and subsequent TrkB receptor activation (Huang et al., 

1999). Recent work further connects early visual experience, BDNF activity, and cortical 

maturation persisting into adulthood (Zhang et al., 2018), though BDNF was reported to have an 

inverse relationship with early cortical maturation during the critical period (P23-28).  We report 
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that increasing TrkB phosphorylation during a critical period can substitute for visual experience 

and forestall the negative effects of visual deprivation on RF refinement.  These findings clarify 

the requisite role of experience-driven TrkB activity in stabilizing adult RFs and preventing 

deleterious adult plasticity.  They suggest that TrkB receptor signaling is the convergence point 

through which visual activity drives the maturation of inhibition in the superior colliculus and 

visual cortex, at least in hamsters and mice (Gianfranceschi et al., 2003; Balmer and Pallas, 

2015a).  

2.6.1 TrkB signaling mediates activity-dependent maturation of visual processing circuits in 

V1 and SC 

Development of ocular dominance columns is subject to a critical period during which 

monocular deprivation can shift the  representation of cortical cells away from the closed eye 

(Wiesel and Hubel, 1963c, 1965).  Dark rearing causes a prolongation of the critical period for 

ocular dominance plasticity, perhaps as a result of prolonged immaturity of NMDA receptors 

(Carmignoto and Vicini, 1992a) and GABAergic neurons (Jiang et al., 2005).  In contrast, RF 

refinement in SC and V1 of hamsters and rats is unaffected by visual deprivation, and early 

experience is necessary only for stabilizing RFs in adulthood.  Visual experience is thought to 

influence ocular dominance development through a BDNF-mediated signaling pathway that 

promotes maturation of inhibitory synapses and regulation of critical period plasticity.  Visual 

input drives NMDA receptor activity, increasing BDNF levels and thus triggering maturation of 

inhibition (Castren et al., 1992; Greenberg et al., 2009; Park and Poo, 2013b).  Transcription 

factors such as Npas4 regulate genes associated with plasticity, including BDNF (Lin et al., 

2008; Van Hooser et al., 2012; Bloodgood et al., 2013).  BDNF in turn binds to and activates 

TrkB receptors (Pollock et al., 2001; Viegi et al., 2002), promoting the expression of GAD, 
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GABA, and GABAA receptors throughout the brain (Rutherford et al., 1997; Huang et al., 1999; 

Jovanovic et al., 2004; Porcher et al., 2011; Sanchez-Huertas and Rico, 2011).  Critical period 

closure and the ensuing restriction of visual cortical plasticity are associated with visual 

experience-induced changes in NMDA and GABA receptor composition (Carmignoto and 

Vicini, 1992a; Fox et al., 1992; Stocca and Vicini, 1998; Chen et al., 2001; Li et al., 2017a), 

increases in GABA expression (Jiang et al., 2005), and perineuronal net development (Sur et al., 

1988; Bavelier et al., 2010b; Beurdeley et al., 2012; Ye and Miao, 2013; Wen et al., 2018).   

Spontaneous activity is not sufficient to drive these changes in the context of ocular dominance 

plasticity (Sur et al., 1988; Huberman et al., 2008a; Chalupa, 2009).   

The similar effects of TrkB signaling on RF refinement in both SC and V1 are surprising 

for a number of reasons.  V1 requires several more days (P33-P40) of visual experience (12:12 

hours light cycle) to stabilize adult RF refinement (>P90) than SC (P37-P40) (Balmer and Pallas, 

2015a).  V1 also has different GABAergic cell classes than SC,  and very few of the parvalbumin 

positive interneurons (Mize, 1992; Choi et al., 2009; Villalobos et al., 2018) that are essential in 

V1 ocular dominance plasticity (Hensch, 2005b).  Thus, it seems likely that there are some 

undiscovered differences in the TrkB signaling pathway downstream of TrkB activation. 

2.6.2 How does early TrkB signaling maintain RF refinement? 

Visual experience-regulated TrkB activity may function in either a permissive or an 

instructive role at different stages of visual system development.  In the permissive role scenario, 

(Huang et al., 1999; Seki et al., 2003) experience driven activity increases overall BDNF 

production and subsequent TrkB activity.  The TrkB activity would then permit maturation of the 

GABAergic synapses necessary to develop or stabilize RF properties.  In the instructive role 

scenario (Kossel et al., 2001), visual experience would drive TrkB activity to form specific 
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ensembles of visual neurons that respond to different types of visual input.  Our finding that 

early TrkB activity maintains RF refinement in adult SC suggests that the BDNF-TrkB signaling 

pathway plays more of a permissive than an instructive role.  This view is supported by our 

previous result that RF refinement will occur without any visual experience in SC (Carrasco et 

al., 2005) and in V1 (Balmer and Pallas, 2015a) and that the loss of refinement in DR adults 

coincides with reductions in GABA expression and postsynaptic GABA receptor function.  Thus 

RF refinement does not require instructive signaling from the BDNF-TrkB signaling pathway to 

occur, but rather requires permissive signaling to maintain its stability long term.   

 

2.6.3 How does early visual experience contribute to survival? 

In early life, most mammals have underdeveloped sensory and motor capabilities, and 

require intensive parental care to survive.  As they age, sensory and motor abilities mature in 

response to intrinsic maturational processes as well as in response to environmental stimuli, 

leading to improved overall function and independent survival in adulthood.  Vision is one of the 

most important senses for many mammals, because it facilitates object and feature detection for 

purposes of conspecific and interspecific interactions, as well as for feeding and locomotion 

(Thinus-Blanc, 1996).  Improvements in visual acuity, as well as orientation, size, and motion 

tuning, are all important for identifying objects in the environment, and require varying amounts 

of early visual experience to develop (see Huberman et al., 2008a, for review).  In SC, the 

multisensory integration of vision with other senses considerably enhances the salience of a 

sensory event (Meredith and Stein, 1983; Frens and Van Opstal, 1998) and is important for 

orientation behaviors (Stein et al., 1989).  Among these behaviors, looming stimulus detection 

and fear responses allow the avoidance of aerial predators (Yilmaz and Meister, 2013).  



69 

Although the function of looming detection is well understood, the contribution of TrkB activity 

to development of this behavior during early development has yet to be explored.  Our results 

show how early visual experience, increased TrkB signaling, and refined RFs in SC are essential 

for the performance of looming stimulus detection and the defensive behaviors associated with it.  

Surprisingly, our results indicate that looming response behaviors in mice, a nocturnal species 

with presumably less reliance on vision, were more detrimentally affected by dark rearing 

compared to hamsters.  This could be due to poorer overall visual acuity, or perhaps reduced 

dorsal visual field coverage in mice, something we will explore in future work.  Interestingly, of 

the two different fear response behaviors assessed here, the freezing response was reduced, and 

the escape response was nearly eliminated in DR animals.  Freezing is uniquely effective as a 

defense from aerial predators (Eilam, 2005; De Franceschi et al., 2016), and our finding that it 

becomes the dominant response for DR animals raises the possibility that it could be a more 

instinctual behavior than escape responses.  Another possibility is that dark rearing alters the 

downstream processing pathway that facilitates the behavioral response.  For example, the SC-

ventral midline thalamus connection processes the overall reaction to visual threats (Salay et al., 

2018), and could be affected by downstream TrkB activity.  Future experiments will address 

these unanswered questions and further our understanding of TrkB signaling during early 

development.   
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3.1 Abstract 

RFs in superior colliculus (SC) and visual cortex (V1) refine normally in DR hamsters, but 

RF size can only be preserved in adulthood with brief light exposure during a CP.  RF 

enlargement in SC is caused at least in part by a loss of lateral inhibition, but previous results 

suggested a loss of efficacy in GABAA receptors as an additional component of this detrimental 

form of adult plasticity.  To address this hypothesis we examined GABAA receptor levels, 

location, and subunit composition using Western blotting.  In addition, we assayed the GABAA 

receptor anchoring protein gephyrin.  To test the alternate hypothesis that adult RFs enlarge as a 

result of immature NMDA receptors, we examined NR2A/2B ratios and levels of the anchoring 

protein PSD-95.  We further examined the expression of chloride pumps KCC2 and NKCC1 to 

identify whether differences in the chloride gradient may account for GABAA receptor efficacy 

losses. We found that DR induced RF enlargement does not result in alterations in GABAA 

receptor endocytosis or subunit composition, nor does it change the expression of gephyrin, 

PSD-95, or the chloride pumps KCC2 and NKCC1.  Our results suggest that postsynaptic 

modifications may not be as important for regulating RF refinement as total GABA expression is 

in SC.   

3.2 Introduction 

During brain development, synaptic strength and selectivity mature together and are 

influenced by early spontaneous and sensory-evoked neural activity (review Wong and Ghosh, 

2002; Ruthazer and Cline, 2004; review Blankenship and Feller, 2010).  Sensory experience is 

vital during early “critical periods” for neural circuits to develop normally.  The visual pathway 

is one of the most extensively studied systems for understanding critical period regulation (see 

Hensch, 2005b for review).  In this study, we address the influence of early visual experience 
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and the effects of visual deprivation on the long-term stability of excitatory and inhibitory  

postsynaptic elements in superior colliculus (SC) of an altricial rodent species (Syrian hamsters).   

Receptive field (RF) refinement involves the progressive contraction in RF size from 

early in development, and is critical for sharpening visual acuity (Daw, 2006) Although visual 

experience was thought to be necessary for this process (Teller et al., 1978; Timney et al., 1978; 

Fagiolini et al., 1994), we found  that in chronically dark reared (DR) Syrian hamsters, RF 

refinement occurs normally in both SC (Carrasco et al., 2005) and V1 (Balmer and Pallas, 

2015a).  However, visual experience is required to maintain RF refinement in adulthood (>P60).  

unless light exposure is provided during an early critical period (P33-P40) (Carrasco and Pallas, 

2006).  Without early visual experience, RFs expand and visual acuity is decreased (Mudd et al., 

2019).  RF re-expansion results at least in part from a loss of GABAergic inhibition within 

(Carrasco et al., 2011; Balmer and Pallas, 2015b).  However our previous study of changes in 

inhibitory signaling following RF re-expansion also described decreases in GABA receptor 

efficacy in visually deprived adults.  Here we explore whether the stability of GABAA receptor 

function in adulthood requires light exposure during a critical period. 

Synaptic inhibition throughout the visual pathway is primarily mediated via the 

neurotransmitter γ-aminobutyric acid (GABA).  GABA signaling is mediated by fast acting 

chloride (Cl-) channels (GABAA receptors) (Pfeiffer et al., 1982; Sigel et al., 1982), or by slow 

moving metabotropic G-protein coupled receptors (GABAB receptors) (Couve et al., 2000; 

Bettler and Tiao, 2006).  GABAA receptors are part of the cys loop ligand-gated ion-channel 

family and are comprised of a pentameric structure in which five subunits are arranged around a 

central pore.  The subunit composition of GABAA receptors can affect their functional properties 

(Farrant and Nusser, 2005), location, and membrane trafficking (Jacob et al., 2005).   In the 
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present study we tested whether early visual experience is required for normal GABAA receptor 

composition, trafficking across the membrane, and anchoring at the postsynaptic membrane 

using Western blots to assay levels of receptor subunits and other postsynaptic components of 

inhibitory and excitatory synapses in SC and V1.    

We find that the subunit composition, synaptic and extrasynaptic localization, and 

endocytosis of GABAA receptors remain functionally unchanged in adult dark reared hamsters 

with re-expanded RFs.  We further find that levels of the synaptic scaffolding proteins gephyrin 

and PSD-95 remain unchanged, as does the adult expression levels of Cl- pumps (KCC2/NKCC) 

and NMDA receptor subunits (NR2A/NR2B).  These findings suggest that the loss of RF 

refinement in adulthood may be primarily mediated by reductions in overall GABA expression.   

 

3.3 Materials and Methods 

3.3.1 Subjects 

A total of (42) adult Syrian hamsters (Mesocricetus auratus) of both sexes were bred 

within our animal facility and used as subjects in this study.  Hamsters As a model for studying 

the developing visual system, Hamsters are valuable due to their robust and well-characterized 

visual responses and short gestation time (Pratt and Lisk, 1989).  Hamsters were housed in social 

groups of up to 5 adults per cage in standard rodent cages with a variety of enrichment items that 

were changed regularly, along with bedding and cage.  All animals were provided with ad 

libitum access to food and water.   

3.3.2 Treatment groups 

All animals were bred in-house to control sensory experiences from P0.  Dams of dark 

reared subjects were transferred into a completely dark room 1-3 days before parturition.  The 
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dark room was comprised of a standard facility housing room with all sources of normal light 

removed.  An antechamber and light-impenetrable black curtain separated the housing room 

from the hallway, ensuring any accidental openings of the hallway doors did not affect the 

housing room.  Within the dark room, animals were housed inside light-tight stackable cages 

with a standard HVAC filtration system consistent with the other animal rooms in the animal 

facility.  During general animal husbandry purposes the hamsters were exposed to dim red light 

at a wavelength not visible to Syrian hamsters (Huhman and Albers, 1994).  Light-exposed (LE) 

hamsters were transferred into a standard 12/12 light cycle room for the duration of the critical 

period for RF refinement maintenance in SC and V1 (P33-P40) (Carrasco et al., 2005; Balmer 

and Pallas, 2015a).  Subjects were then transferred back into the dark room and housed there 

until >P90.   

3.3.3 Western blotting 

Animals were euthanized with a sodium pentobarbital-and phenytoin sodium-containing 

mixture (Euthasol >150 mg/kg IP).  Brains were immediately extracted and frozen in 2-

methylbutane on dry ice, then stored at -80°C or immediately dissected for preparation of lysates.  

Individual left and right superficial SC were excised and lysed in RIPA buffer (150mM NaCl, 

150mM Tris, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) containing 2% Halt protease 

inhibitor (ThermoFisher Scientific).  Lysates were centrifuged at 16,000g for 15 minutes at 4°C, 

with the resulting supernatant saved as the cytosolic fraction of the lysed cells.  The pellet was 

resuspended in 2mM HEPES buffer and ultracentrifuged at 70,000 rpm for 45min at 4°C with 

the supernatant discarded and the pellet resuspended in 0.5mM HEPES buffer and saved as the 

membrane fraction.  Protein bands were labeled using IRdye fluorescent secondaries (Li-Cor) 

and imaged on an Odyssey CLx fluorescent imaging system (Li-Cor).  Protein expression levels 
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were quantified as the optical density of the labeled protein normalized against the optical 

density of the housekeeping protein such as GAPDH or β-actinusing ImageJ.   

Primary antibodies used in this study included: Rabbit anti-GABAARα1 (1:1000, Cat#: 

AGA-001, Alomone Labs); Mouse anti-KCC2 supernatant (1:50, Cat#: 75-013, NeuroMab/UC 

Davis); Mouse anti-NMDAR2B (1:1000, Cat#: ab93610, Abcam); Rabbit anti-NKCC1 (1:1000, 

Cat#: ab59791, Abcam); Mouse anti-PSD-95 (1:500, Cat#: ab2723, Abcam); Rabbit anti-

NMDAR2A (1:1000, Cat#: ab133265, Abcam). 

3.3.4 Statistical Analysis 

A Student’s t-test was used to compare parametric data with equal variance between 

treatment groups and a normally distributed data set.  Descriptive statistics for these analyses are 

provided as mean ± standard error of the mean (SEM).   

3.4 Results 

Normal brain function relies on the precise regulation of excitatory and inhibitory 

neuronal activity.  Although neurological signaling is initiated by excitatory neurotransmission 

(glutamate), inhibitory neurotransmission (GABA) is arguably more important for shaping 

activity-dependent events in development – primarily because it prevents circuits from becoming 

overexcited (Hensch et al., 1998; Bannai et al., 2009; Huang, 2009).  The circuits underlying RFs 

in SC and V1 require experience to maintain their maturational refinement in adulthood 

(Carrasco et al., 2005; Balmer and Pallas, 2015a), and this maintenance has been shown to 

involve changes in overall GABA expression and GABAA receptor function (Carrasco et al., 

2011), but the exact nature of these changes is unknown.  The results presented in this study 

examine several possible ways that visual deprivation during a critical period for RF refinement 

could affect inhibitory signaling in adult SC.   
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3.4.1 Dark rearing does not affect the subunit composition of GABAA receptors in adult SC 

GABAA receptors function as the primary mediator of phasic inhibition in the adult brain.  

They are built as a pentameric receptor of five subunits grouped around a central chloride ion 

pore, and the functional characteristics of the receptor largely depend upon the composition 

(Sigel et al., 1990) and organization (Minier and Sigel, 2004) of the subunits.  Of the many 

subunit arrangements, alpha1 and 2 subunits have been primarily associated with synaptically 

localized receptors, however they function differently and are expressed at different points in 

development.  In rats, receptors containing the alpha2 subunit are widely expressed at birth, 

whereas alpha1 has low expression and is restricted to a few brain areas (Fritschy et al., 1994).  

During the first several postnatal weeks, alpha1 expression sharply increases, coinciding with a 

reduction in alpha2 expression.  This alpha2-alpha1switch in dominant subunit expression 

underlies a developmental decrease in inhibitory post synaptic current (IPSC) decay time and an 

increase in IPSC amplitude in thalamus (Okada et al., 2000).  We reasoned that could the alpha2-

alpha1 switch, if recapitulated in adulthood, underlie the reduction in GABAA receptor function 

that we have previously observed in our studies of RF refinement loss in SC and explored the 

possibility by examining the expression of each inin DR adults.  Hamsters in the visual 

deprivation group were dark reared (n=5) from birth and hamsters in the LE control group (n=6) 

were moved to normal 12:12 housing during the critical period for adult RF refinement 

maintenance (P-33-P40).  We then allowed the subjects to continue developing in a DR 

environment until adulthood (>P90), then used Western blotting to measure the amount of 

membrane-bound alpha1 and alpha2 GABAA receptor expression in adult SC.  We found that 

there were no significant differences in either the overall expression of alpha2 (LE: 1.25 ± 0.089, 

n=8) (DR: 1.155 ± 0.249, n=8) (T=74, n(small)==8 n(big)=8 p=0.574 Mann-Whitney Rank Sum 
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Test) (Figure 3.1A,), or the ratio of alpha1/alpha2 expression in the SC between adult DR (1.624 

± 0.171, n=2) and LE (1.144 ± 0.131, n=2) (T=3.0, n(small)=2, n(big)=2, p=0.333)  hamsters 

(Figure 3.1C).  These findings suggest that there is no change in the normal developmental 

transition from alpha2 to alpha1 dominant expression in the experience dependent maintenance 

of RF refinement maintenance in adult SC.   

GABAA receptors can also be expressed extrasynaptically, where they can be activated 

by ambient GABA derived from synaptic spillover or other non-neuronal sources.  This low 

concentration GABA activity generates “tonic” inhibition (Farrant and Nusser, 2005), and 

constitutes a significant (75%) percentage of the total inhibitory forces acting on neurons in 

hippocampus (Mody and Pearce, 2004; Magnin et al., 2019).  Alpha5 subunit containing 

receptors are primarily expressed extrasynaptically and have been implicated in regulating the 

induction of synaptic plasticity for memory in hippocampus (Saab et al., 2010; Zurek et al., 

2012; 2014).  To investigate the possible role of alpha5 levels in adult RF maintenance we 

performed Western blotting and compared between DR (0.492 ± 0.071, n=12) and LE hamsters 

(0.554 ± 0.0549, n=11)  (t (21)= 0.687, p=0.5, t-test) (Figure 3.1B).  We found no significant 

differences between groups in alpha5 protein levels.  We also compared the ratio of 

alpha5/alpha1 between LE (1.027 ± 0.082, n=10) and DR (0.995 ± 0.0926, n =9) hamsters and 

found no differences between these groups (t(17)=0.259, p=0.799, t-test) (Figure 3.1D). These 

results taken together suggest that the alpha1/2/5 subunit expression of GABAA receptors in SC 

is not being modulated by early visual experience, and does not impact adult receptor function.   
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3.1: Adult GABAA receptor subunit composition is not affected by early dark rearing. 

Example blots of LE and DR treatment groups generated using 20 µg of SC protein per lane and 

densitometric analyses of the differences in labeled proteins.  GABAAR subunits measured and 

compared include: (A) GABAARα5 protein comparison, (B) GABAARα2 comparison, (C) 

GABAARα5 : GABAARα1 ratio, (D) GABAARα2 : GABAARα1 ratio.  All presented lanes are 

from the same gel(s), and each measured protein was normalized against GAPDH as a loading 

control.  Data presented as mean ± SEM.   
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3.4.2 The endocytosis-mediated rate of trafficking synaptic and extrasynaptic GABAA 

receptors is similar in normal and dark reared adult SC 

The regulation of GABAA receptors at the synapse is pivotal for maintaining correct 

levels of inhibitory synaptic transmission and overall physiological function (Jacob et al., 2008).  

Impaired trafficking of GABAA receptors could affect their synaptic localization in SC and thus 

their overall response to synaptically released GABA.  GABAA receptor trafficking is partially 

regulated by endocytosis: the controlled removal of receptors from the membrane.  Receptors are 

subsequently reinserted into the membrane or undergo lysosomal degradation after longer 

periods (Kittler et al., 2004).  We reasoned that if endocytosis were dysregulated, either by 

decreased receptor reinsertion, or increased receptor degradation, it could negatively impact the 

efficacy of GABAA receptors at the synapse.  We examined this possibility by comparing the 

ratio of membrane-bound to cytosolic alpha1 subunit containing receptors between our treatment 

groups.  We observed no differences in the membrane/cytosolic ratio of alpha1 expressing 

receptors between DR (0.768 ± 0.044, n=7) and LE (0.778 ± 0.1, n=6) adult hamsters (t(11)= 

0.948, p=0.926, t-test) (Figure 3.2A).   

We also examined the possibility that extrasynaptic alpha5 receptor endocytosis-

mediated trafficking may be dysregulated and responsible for changes in tonic GABAA 

inhibition.  Again we found no differences in DR (1.320 ± 0.198, n=8) and LE (1.753 ± 0.449, 

n=6) groups (t(12)=0.968, p=0.352, t-test) (Figure 3.2B).  These results indicate that the overall 

endocytosis-mediated trafficking of alpha1 (synaptic) and alpha5 (extrasynaptic) subunit 

expressing GABA receptors is not responsible for the decreased efficacy of GABAA receptors 

observed in RFs that fail to maintain refinement following dark rearing.   
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3.2: Endocytosis of synaptic and extrasynaptic GABAA receptors is not affected by early dark 

rearing. 

(A) Adult levels of the intracellular/membrane attached ratio of GABAARα5 and (B) 

GABAARα1 expression was not affected by early light deprivation.  Example blots represent 

bands of labeled intracellular and membrane bound proteins from the same animal, measured as 

a ratio and compared between LE and DR groups.  Loading control measured against GAPDH 

(lower band).  Data presented as mean relative optical density ± SEM. 

3.4.3 Inhibitory and excitatory scaffolding proteins in SC are not affected by dark rearing 

One factor influencing the accumulation and confinement of GABAA receptors at 

postsynaptic sites is the membrane scaffolding protein gephyrin (Kneussel et al., 1999; Sun et al., 

2004; Jacob et al., 2005; Tretter et al., 2008).  Decreased expression of gephyrin results in less 

clustering (Essrich et al., 1998) and more overall mobility of GABAA receptors at the synapse 

(Jacob et al., 2005).  We surmised that decreased gephyrin expression could be responsible for 

the weaker GABAA receptor signaling we have observed in neurons with RFs that fail to 
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maintain refinement.  Using Western blotting we compared membrane-bound gephyrin 

expression between DR and LE adults.  DR adults (0.786 ± 0.124, n=17)were similar toLE adults 

(0.736 ± 0.158, n=16) (t(31)=-0.247, p=0.806, t-test) (Figure 3.3A), a surprising result 

considering our understanding that dark rearing reduces overall GABAergic inhibition.  This 

result indicates that adult gephyrin expression is not affected by dark rearing during the critical 

period for RF refinement maintenance, and that if GABAA receptor accumulation and trafficking 

is being affected, then it is in a gephyrin-independent manner.   

PSD-95 is the primary excitatory (AMPA and NMDA) receptor scaffolding protein in 

neurons (Chen et al., 2015), and functions in a similar way as gephyrin does for GABA 

receptors.  Although it does not have a direct impact on GABAA receptor function, PSD-95 has 

been shown to have an influence on visual plasticity.  For example, mice lacking PSD-95 have 

lifelong ocular dominance plasticity in V1 that results from an increase in the overall expression 

of silent (AMPA-free) synapses, but completely normal inhibitory tone (Huang et al., 2015b).  

We examined the possibility that the plasticity involved with the dark rearing-induced re-

enlargement of RFs could also be mediated by a reduction in adult PSD-95 expression.  We 

found that PSD-95 was not significantly different in DR (0.613± 0.96) compared to LE adult 

hamsters (0.486 ± 0.868) (t(17)=-0.978, p=0.342, t-test) (Figure 3.3B).  These results suggest 

that a PSD-95 mediated return to silent synapses does not underlie the re-enlargement of RFs in 

SC following early dark rearing.    
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3.3: Adult gephyrin and PSD-95 expression is not affected by early dark rearing. 

(A) Gephyrin and (B) PSD-95 expression was consistent between adult (>P90) LE and DR 

groups.  GAPDH and β-actin were used as loading controls.  Data presented as mean relative 

optical density ± SEM. 

 

3.4.4 NMDA receptors in adult SC have normally matured subunit compositions following 

dark rearing 

Excitatory plasticity could also contribute to enlargement of RFs during DR (Huang and 

Pallas, 2001b).  In V1, dark rearing disrupts the substitution of the NMDA receptor NR2A 

subunit for the NR2B subunit that normally occurs postnatally, limiting NMDAR-dependent 

excitatory plasticity (due to the shorter open time of NR2A) (Carmignoto and Vicini, 1992b; 

Philpot et al., 2001).  Thus, lower NR2A expression relative to NR2B could cause RFs to expand 

through potentiation of excitatory synapses.  Our results indicate that the total expression of 

NR2A in LE (0.680 ± 0.073, n=8) and DR (0.798 ± 0.109, n=6) adult hamsters are similar, as are 

the expression levels of NR2B (LE: (0.431 ± 0.0445, n=8) DR: (0.484 ± (0.0406)) (t(12)=-0.842, 
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p=0.416, t-test) (Figure 3.4A,B).  The ratio of NR2A/NR2B expression between DR (1.829 ± 

0.186, n=5) and LE hamsters (1.440 ± 0.112, n=6) was also similar in adult SC (t(9)=-1.862, 

p=0.095, t-test) (Figure 3.4C).   

 

3.4: Adult NMDAR subunit compositions are not altered by early dark rearing. 

Western blot examples and densitometric analyses of (A) NR2A, (B) NR2B, and (C) the ratio of 

NR2A/NR2B expression in adult (>P90) LE and DR hamsters.  Data presented as mean relative 

optical density ± SEM. 

 

3.4.5 Chloride pumps maintain normal development ratios in adult dark reared subjects 

Inhibitory GABAergic signaling in neurons is dependent upon the intracellular chloride 

(Cl-) concentration.  The K+ Cl- co transporter (KCC2) is responsible for regulating intracellular 

Cl- in mature adult neurons by using an outward K+ current (Rivera et al., 1999), and also 

regulates the formation, function, and plasticity of glutamatergic synapses  (Li et al., 2007; 

Gauvain et al., 2011; Chevy et al., 2015).  Early in development GABAA receptors are excitatory 

because the Na+-K+-2Cl− co transporter 1 (NKCC1) (which mediates Cl- uptake) is dominant, 

and during the first several weeks after birth is replaced by KCC2 as the dominant Cl- pump in 

the brain, shifting GABAA receptors to become inhibitory (Rivera et al., 1999).Recent findings 
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reveal that in V1, the developmental switch from dominant NKCC1 to dominant KCC2 occurs at 

the same time as a period of BDNF/TrkB mediated synaptic imbalance – a crucial critical period 

for the transition of immature neurons to a more mature state (Zhang et al., 2018).  We surmised 

that a shift in the ratio of KCC2:NKCC1 could underlie the reopening of plasticity for RF size 

refinement in adulthood, leading to re-enlargement of RFs in SC.  We examined the expression 

of KCC2 and NKCC1 in adult SC neurons and observed no significant differences between our 

treatment groups.  LE and DR hamsters had no differences in either KCC2 (t(14)=0.082, 

p=0.936, t-test) (Figure 3.5A) or NKCC1 (t(14)=-0.339, p=0.740, t-test) (Figure 3.5B), or in the 

ratio of the two chloride pumps within groups (t(8)=1.096, p=0.305, t-test) (Figure 3.5C).   

 

3.5: Adult chloride pump expression is not affected by early dark rearing. 

Western blot examples of LE and DR samples labeled against chloride pumps (A) KCC2 and (B) 

NKCC1, (C) and a comparison of the within subject ratio of KCC2:NKCC1 in LE and DR adult 

(>P90) hamsters.  Data presented as mean relative optical density ± SEM.  

 

3.5 Discussion 

Critical period plasticity is generally regarded as a balancing act between excitation and 

inhibition, where both excitatory and inhibitory circuits are shaped by sensory experiences after 
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the critical period opens. As the critical period closes, inhibitory circuitry matures and places 

brakes on the established synaptic connections to stabilize them throughout life.  In visual 

development, the GABAergic inhibitory system modulates the development of several RF 

detection properties, such as direction selectivity, orientation selectivity, and ocular dominance 

plasticity in the visual cortex (V1) (Wolf et al., 1986; Iwai et al., 2003; Hensch and Stryker, 

2004).  Previous experiments have established a correlation between RF refinement maintenance 

and GABA expression in SC (Carrasco et al., 2011; Mudd et al., 2019) and V1(Balmer and 

Pallas, 2015a), however the specific changes in circuitry had not been extensively examined.  

We report that RF refinement maintenance in SC does not appear to involve changes in 

GABAAR subunit composition, inhibitory or excitatory scaffolding protein expression, chloride 

pump ratios, or the subunit composition of coincidence detecting NMDARs.  These findings 

exclude several possible mechanisms that could explain the reduced GABAAR signaling reported 

in DR adult SC (Carrasco et al., 2011), and emphasizes that sustained GABA expression is the 

primary mechanism underlying TrkB mediated RF refinement maintenance (Mudd et al., 2019).   

3.5.1 GABA expression in maintaining RF refinement in adulthood 

GABA-GABAAR interaction is known to regulate various downstream signaling 

pathways and a major regulator of GABA signaling is BDNF-TrkB signaling. These data suggest 

a positive excitatory feedback loop between GABA and BDNF expression during early 

development, where GABA facilitates BDNF expression, and BDNF facilitates the synaptic 

release of GABA. Signaling via the MAPK cascade and the transcription factor CREB appear to 

play a substantial role in this process (Obrietan et al., 2002).  In early development, GABA and 

TrkB pathways are active in conjunction with each other and affect multiple cellular actions 

including proliferation, migration, and synaptic plasticity (Porcher et al., 2011). 
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BDNF-TrkB interaction leads to dimerization and auto-phosphorylation of the receptor, 

thereby triggering MAPK, PLCgamma and PI3K pathways (Yoshii and Constantine-Paton, 

2007).  These pathways in turn lead to the activation of a multitude of downstream effectors and 

mediators to finally initiate a CREB-dependent transcription process that leads to the increase in 

GABAAR subunits as well as more BDNF production. In addition to this, an increase in the 

GABAAR surface levels is mediated BDNF-dependent inhibition of receptor endocytosis and the 

continued and unaffected reinsertion of the receptor into the membrane (Porcher et al., 2011). 

This positive feedback regulation is critical in developing neurons and hence constituted a major 

part of this work. The GABAAR subunit composition in neither the synapse nor the extrasynaptic 

regions was affected due to dark rearing; nor did the NMDA receptors or Chloride channels 

change in number. This leads to one possibility that probably GABA expression levels alone are 

a key factor in RF re-enlargement, as our previous works have indicated (Carrasco et al., 2011; 

Mudd et al., 2019).  

Since BDNF signaling is known to elicit proliferation and synaptic plasticity-associated 

responses via multiple pathways resulting in the activation of cAMP-responsive element-binding 

protein (CREB), actin-binding proteins, and mammalian (mechanistic) target of rapamycin 

(mTOR), synaptic plasticity-associated downstream cellular targets like molecules involved in 

actin polymerization like Tiam1, Rac1, eIF4E and 4EBP1 should also be investigated.  A key 

finding of this work is that the presynaptic and the postsynaptic scaffold proteins PSD-95 and 

gephyrin did not have altered expression levels in adulthood following early sensory deprivation, 

suggesting that changes in inhibitory function are likely not caused by a gross change in 

glutamatergic or GABAergic synaptic density.   Alternatively,  the clustering of GABAARs at 

inhibitory synapses in SC may happen in a gephyrin-independent manner (Zita et al., 2007), or 
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total gephyrin expression may not be as important as the formation of gephyrin nanodomains 

within inhibitory synapses (Pennacchietti et al., 2017).  Future studies with different techniques 

would be required to determine if changes in receptor clustering may be occurring and to what 

extent gephyrin or PSD-95 may have in mediating such effects.   
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4 DISCUSSION 

Sensing the environment and executingbehaviors relies on fine-tuned neuronal 

connectivity.  Understanding the molecular and cellular mechanisms that underlie the 

experience-dependent establishment of neuronal connectivity is a strong first step toward 

understanding how the nervous system is organized.  In my dissertation, I chose the visual 

system of the vertebrate brain as a model to study the basic principles governing neural circuitry 

formation, refinement, and stabilization, largely because of the relatively simple organization of 

these neural tissues and the availability of reliable visual behaviors.  The overarching goal of my 

dissertation work was to identify the molecular mechanisms governing the effects of early visual 

experience on RF refinement maintenance, and how those early signaling mechanisms ultimately 

stabilized mature RFs by preventing maladaptive plasticity in adulthood.   

In this dissertation, I investigated the mechanisms underlying the experience-dependent 

maintenance of RF refinement in SC.  Similar to what has been reported in V1, the activation of 

the TrkB signaling pathway during an early critical period was sufficient for RFs in SC to 

maintain a smaller (mature) size into adulthood, even after dark rearing from birth.  I also go on 

to examine the necessity of TrkB signaling in RF refinement maintenance.  Additionally, I 

showed how RF size is crucial to both SC and V1-dependent visual behaviors in adults.  My 

work also explored the possible mechanisms governing the adult maintenance of RF refinement 

and provides evidence supporting the overall stability of total GABA expression as a principle 

force in restricting adult plasticity in SC.  In sum, I found that the TrkB signaling pathway is 

crucial for the experience-dependent maintenance of RFs in adulthood, that maintaining RF 

refinement ensures proper visual behavior (even absent prior visual experience), and that 
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maintaining adult levels of GABA expression is important for preventing TrkB-mediated adult 

plasticity in the visual system.   

4.1 Early TrkB activity is both necessary and sufficient for maintaining visual RF 

refinement in SC 

My dissertation work addressed a long-standing question in the field of visual 

neuroscience: how does early sensory experience regulate the development and stability of the 

visual system?  Important advances in this area of research suggest a significant role for the 

experience-driven maturation of adult inhibition in the formation of matured visual circuits 

(Hensch et al., 1998; Gao et al., 1999; Morales et al., 2002; Maffei et al., 2006)  and their 

stabilization throughout adulthood (Carrasco et al., 2011; Balmer and Pallas, 2015a).  This 

phenomenon has been extensively studied in V1, where the maturation of inhibition appears to 

be regulated, at least in part, by early experience-driven BDNF/TrkB signaling (Rutherford et al., 

1997; Huang et al., 1999; Yoshii and Constantine-Paton, 2010).  Studies have reported that 

BDNF is essential for changes in inhibitory synapse strength to occur in early development (Gao 

et al., 2014) and that it can be protective against the negative effects of dark rearing on V1 

function (Gianfranceschi et al., 2003).  However, it remains unknown whether early BDNF/TrkB 

signaling is an important signaling mechanism throughout the entire visual pathway, or if its role 

stabilizing circuit maturation is limited to V1.   

To study the role of TrkB signaling on visual development outside of V1, we chose to 

examine the maintenance of RF refinement in SC, but rather than simply utilizing a transgenic 

animal model to indiscriminately increase endogenous BDNF expression from birth, we chose to 

pharmacologically manipulate TrkB activation during exclusively throughout the critical period.  

We find that activating TrkB receptors during the critical period in DR hamsters is sufficient to 
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prevent adult plasticity in SC, resulting in mature RFs persisting into adulthood, a finding 

consistent with previous reports in V1 (Gianfranceschi et al., 2003).  We go on to find that 

providing visual experience during the critical period fails to prevent adult plasticity when TrkB 

receptor activity is blocked, resulting in enlarged RFs in adulthood.  These results support the 

hypothesis that TrkB activity may serve as a common signaling mechanism promoting 

experience-driven development throughout the visual circuit.   

We also find that TrkB mediated prevention of adult plasticity results in mature (higher) 

levels of GABA expression in adult SC a finding consistent with the effects of early visual 

experience (Carrasco et al., 2011), and suggests that they both express similar levels of 

GABAergic inhibition in adults.  In support of this, we also observe that modulating TrkB 

activity during the critical period also does not alter the expression of synaptic GABAA receptors 

in adult SC, a finding that is consistent with visual experience-mediated prevention of adult 

plasticity (Balmer and Pallas, 2015a), but also leads us to question why DR adults have reduced 

GABAA responses in SC when exposed to receptor agonists and antagonists (Carrasco et al., 

2011).  Several possibilities exist and are explored in Chapter 3 of this dissertation.   

Sensory deprivation, such as dark rearing from birth affects the maturation of several RF 

properties, and can significantly reduce responses throughout the visual pathway (Teller et al., 

1978; Cynader and Mitchell, 1980; Mower, 1991; Fagiolini et al., 1994; Prusky et al., 2000).  

One element that has been largely overlooked in this area of study is the changes in visually-

dependent behaviors associated with the loss of (or reduced sensitivity of) individual response 

properties.  Although some recent work has suggested that sensory experience is not necessary 

for the establishment of mature visual circuits (Kang et al., 2013a), researchers fail to account for 

deficits that are not expressed until later in life (>P90) when some mature circuits (such as those 
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for RF refinement) fail after experiencing early sensory deprivation (Carrasco et al., 2005).  We 

compared the necessity of refined RFs in mediating the learning of and execution of two visual 

behaviors.  We showed that refined RFs are sufficient to improve both SC-dependent looming 

responses, and V1-dependent visual discrimination of spatial frequency gratings.  Our results 

suggest that early visual experience is not actually required for attaining normal (and sharpened) 

behavioral responses to overhead “predatory” stimuli, and reinforces the notion of refined RFs 

translates to improved visual acuity in adults.   

My experiments reveal that early experience-dependent TrkB activity acts as a trigger, 

preventing the onset of maladaptive plasticity in SC in adulthood, thus allowing RFs to stabilize 

in a mature (refined) state.  These findings, in conjunction with the established link of TrkB 

signaling in the development of V1 (Gianfranceschi et al., 2003), suggests a widespread role for 

TrkB signaling in mediating the maturation of visual circuits throughout the visual pathway.  I 

also provide evidence supporting the conclusion that the maturation of RF size in SC improves 

SC-dependent visual behaviors, such as the looming response.  This work should provide a 

foundation for future experiments studying the downstream mechanisms involved with 

mediating the effects of early sensory experience on the development and fine-tuning of sensory 

circuits in the brain.   

 

4.1.1 BDNF/TrkB signaling in critical period plasticity 

Critical period plasticity has been studied in detail for decades, but the biological factors 

contributing to the opening and closing of critical periods are still disputed.  The excitatory-

inhibitory (E/I) balance is crucial for the onset of critical periods (Hensch and Fagiolini, 2005), 

but much remains to be learned about how and why.  If an organism fails to receive the 
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appropriate sensory experience during this time then it may be difficult or impossible to develop 

related sensory functions later in life.  Functions that are critical to survival, like language, vision 

(Wiesel and Hubel, 1963a), hearing (Kral et al., 2002), and psychological imprinting (Lorenz, 

1958), are especially dependent on environmental experience during a critical period.   

There are two major premises regarding critical period plasticity in rodents: one is that 

the development and maturation of GABAergic inhibition are crucial for opening and closing 

them and second, that increases in GABAergic inhibition are dependent on the increased 

expression of BDNF during this time period (Hanover et al., 1999; Huang et al., 1999).  In rat 

V1, BDNF mRNA and protein increases following eye opening, crests during the critical period 

(P15-P30), and remains elevated until adulthood (Castrén et al., 1992; Bozzi et al., 1995; Rossi et 

al., 1999; Tropea et al., 2001; Patz and Wahle, 2006), a timetable that overlaps with the 

maturation of GABergic inhibition in V1 (Hensch, 2005b).  Interestingly, recent evidence 

suggests that BDNF/TrkB signaling may in fact, reverse its effects during the critical period for 

V1, so that a decrease rather than an increase in TrkB activity causes an increase in GABAergic 

inhibition (Zhang et al., 2018).  Although this phenomenon has not been studied throughout 

other parts of the visual system, it has been observed in brainstem nuclei during brief (2 day) 

windows where the rat respiratory system is at its most vulnerable point in development (Liu and 

Wong-Riley, 2002; Wong-Riley and Liu, 2008; Gao et al., 2011).  TrkB and downstream ERK 

signaling also appear to play a role in regulating GABAergic synapse plasticity in cortical 

neurons during the transition period from GABAAR depolarizing excitation to hyperpolarizing 

inhibitory signaling (Brady et al., 2018), but whether this modulator relationship exists in 

adulthood has not been studied.   
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How can our results be reconciled with previous conclusions? BDNF/TrkB activity 

during early critical periods appears to be essential for the persistent stability, but not the initial 

refinement of RFs and inhibitory circuits in both SC and V1.  If experience-driven signaling 

during the critical period functions through increased BDNF expression, we would expect an 

increase, rather than the reported decrease in GABAergic signaling during the critical period 

(Zhang et al., 2018), although it is important to note that the studied critical period in V1 P15-

P30 precedes the critical period for RF refinement that was examined in this dissertation (P33-

P40).  This could indicate that BDNF/TrkB signaling is first used to “prime” the visual pathway 

prior to the opening of the critical period for RF refinement maintenance. The decreased 

inhibition could simply allow for hastened excitatory synapse formation, which is then followed 

by the experience-dependent flourishing of inhibitory synapses to stabilize refined RFs.  A 

species difference could also exist in the facilitation of GABAergic maturation by BDNF 

signaling.  Although RFs initially refine and are subsequently stabilized by visual experience in 

both hamsters (Carrasco et al., 2005) and mice (Kang et al., 2013a), rats may have different 

needs.  Work examining this possibility is ongoing in the Pallas lab.   

 

4.2 Explored mechanisms of adult RF maintenance and prevention of plasticity 

My dissertation work also begins to address the visual neuroscience question: how does 

early visual experience stabilize lateral inhibition in adulthood?  As described in chapter 2, 

BDNF/TrkB signaling is essential for triggering the maintenance of RF refinement in SC and 

V1, but the exact mechanisms governing that maintenance beyond P60 are poorly understood.  

Excitatory synapses develop and mature earlier than inhibitory ones in rat V1 (Sutor and 

Luhmann, 1995), a process likely supported and enhanced by BDNF.  However, the refinement 
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of those excitatory connections requires the development and maturation of GABAergic 

inhibition.  GABAergic inhibition is involved with the development of orientation selectivity, 

direction selectivity, receptive field substructure, and ocular dominance in V1 neurons (Wolf et 

al., 1986; Hensch and Stryker, 2004), and is implicated in the maintenance of RF refinement in 

SC (Carrasco et al., 2011) and V1 (Balmer and Pallas, 2015a), making it a likely candidate for 

preventing adult plasticity.  Studying how early sensory experience and TrkB signaling can 

sustain mature GABAergic inhibition into adulthood is critical for scientists to understand how 

maladaptive plasticity can be prevented, and how it could possibly be utilized for therapeutic 

purposes.   

 

4.2.1 GABAA receptor changes in subunit composition, trafficking, and internalization 

My experiments focused on identifying the cause of the reduced functional responses we 

have previously observed in GABAARs when exposed GABA agonists and antagonists in adult 

DR hamster SC (Carrasco et al., 2011).  One possibility for this observation was a structural 

change in the GABAA receptor/channel, resulting in a reduced conductance.  To identify the 

possible compositional changes in GABAA receptor subunits we conducted an analysis of the 

transmembrane receptors present in DR hamsters and compared them against those that received 

light-exposure (LE) during the critical period.  We find that synaptically localized GABAARs 

with an alpha1 subunit are not significantly different between our treatment groups (Mudd et al., 

2019), a finding that is consistent with previous reports in our lab (Balmer and Pallas, 2015a).   

We considered that if total mature GABAAR expression was not changing, then perhaps 

there was a dysregulation in the developmental switch of alpha2 dominant synaptic receptors to 

alpha1dominant subunits, which normally happens around the end of the critical period (Davis et 
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al., 2000; Jacob et al., 2008).  Indeed, some reports indicate that failure in this maturational 

development can lead to synaptic dysregulation and result in neuronal dysfunction (Poulter et al., 

1999).  We find however that there was no significant difference between our treatment groups, 

suggesting that the phasic GABAA alpha1 receptors are maturing normally.  It appears that early 

visual experience-driven activity does not regulate adult plasticity by ensuring the maturation of 

phasic GABAARs. 

We further examined possible differences in tonic inhibition by comparing GABAA 

alpha5 receptors that are primarily specific to extrasynaptic sites.  Activation of extrasynaptic 

GABAARs increases the membrane conductance restricting cellular excitability (Lee et al., 

2006), the induction of synaptic plasticity (Smith, 2013; Groen et al., 2014), and dendritic 

integration (Groen et al., 2014).  Surprisingly we found that the expression of alpha5 receptors 

was not significantly different, and indeed, trended higher in the dark reared animals.  This result 

unexpected because recent studies have shown that even a brief (2 day) period of sensory 

deprivation (dark exposure) is sufficient to reduce tonic inhibition in juvenile (postnatal day 12-

27) mouse V1 (Huang et al., 2015a).  Our studies also focused on adult plasticity, rather than 

critical period plasticity, so the possibility exists that the reported DR induced reduction in tonic 

inhibition early on (P27-P40) may not persist into adulthood, but may provide enough plasticity 

for RFs to begin to re-enlarge.  Alternatively, it could be that a different extrasynaptic GABAAR 

subunit, such as delta, could be regulating tonic inhibition in SC, or that posttranslational 

modifications other than subunit composition could be affecting the function of GABAARs.    

It is also possible that the significant differences in GABAergic architecture between SC 

and V1 result in different mechanisms governing tonic inhibition.  For example, in all areas of 

cerebral cortex studied thus far, as well as striatum and hippocampus, parvalbumin positive (PV) 
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interneurons are almost entirely a subpopulation of GABAergic neurons (Gonchar et al., 2008; 

Klausberger and Somogyi, 2008; Tremblay et al., 2016).  PV interneurons exhibit fast-spiking 

patterns and form immediate inhibitory synapses with the proximal dendrites, somata, and initial 

segments of pyramidal neurons (Kawaguchi and Kubota, 1993; Gupta et al., 2000; Markram et 

al., 2004; Taniguchi, 2014; Tremblay et al., 2016), thus giving them a key role intrinsic 

inhibitory microcircuits in subcortical and cortical brain areas (Cardin et al., 2009; Sohal et al., 

2009; Chen et al., 2017), and in mediating the onset of critical period plasticity (Fagiolini et al., 

2004).  In SC however, PV interneurons appear to have a number of distinct functions including 

projecting to thalamus, (Casagrande, 1994; Mize, 1996), the parabigeminal nucleus which in turn 

projects to amygdala in a signaling pathway for fear responses, (Shang et al., 2015), and acting 

as local mediators of direct and feedforward GABAergic synaptic responses as well as excitatory 

glutamatergic synapses (Villalobos et al., 2018).  These reports support the possibility that PV 

neurons in SC are specialized for a variety of circuit functions rather than forming a homogenous 

GABAergic interneuron subtype as they do in the rest of the brain, and provides a possible 

explanation for why we were unable to observe the same tonic inhibition changes observed in 

V1.  Future experiments in the Pallas lab will be examining these possibilities.  

Our final experiment regarding GABAA receptors examined the possibility that the rate 

of endocytosis could be reintroducing adult plasticity by reducing the number of GABAARs 

present for reinsertion into the synaptic membrane.  GABAARs go through regular exchanges in 

a constant cycle between the plasma membrane and intracellular compartments (Jacob et al., 

2008; Mele et al., 2016).  This exchange process regulates total cell surface expression of 

GABAARs and plays a key role in the postsynaptic receptor pool size and the overall strength of 

GABAergic inhibition (Mele et al., 2016).  Internalization of GABAARs has been shown to be a 
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mechanism underlying the development of epilepsy (El-Hassar et al., 2007), autism spectrum 

disorder (Ali Rodriguez et al., 2018), and Rett syndrome (Gataullina et al., 2019).  The neuronal 

hyperexcitability present in these disorders is theorized to occur because of a reduced rate of 

GABAAR reinsertion into the membrane at the synapse (Goodkin et al., 2005).  Interestingly, 

there are also reports of increased extracellular tonic GABA currents in cases of epilepsy (Naylor 

et al., 2005), suggesting that changes in the endocytosis rates of both synaptic and extrasynaptic 

GABAARs could be mediating a loss of inhibition we observe in SC in DR adults.  We examined 

both alpha1 and alpha5 subunit expressing GABAARs and found that the intracellular/plasma 

membrane expression of both was consistent in both DR and LE adult hamster SC.  These results 

suggest that the rates of endocytosis are not mediating the reductions in inhibition that appear to 

underlie the reintroduction of adult plasticity in SC following early sensory deprivation.   

 

4.2.2 Scaffolding proteins in mediating synaptic plasticity 

Having found no differences in the composition or localization of GABAARs, we 

analyzed the role played by the inhibitory synapse anchoring protein gephyrin in mediating adult 

maladaptive plasticity.  As the most well studied post synaptic density protein for GABAARs, 

gephyrin presents a promising subject for studying the effects of synaptic clustering and loss of 

inhibition.  Gephyrin is necessary clustering GABAARs at inhibitory synapses (Essrich et al., 

1998; Kneussel et al., 1999; Levi et al., 2004; Jacob et al., 2005), but only for receptors 

possessing the alpha2 subunit.  Gephyrin-independent clustering has also been reported (Zita et 

al., 2007), suggesting that other mechanisms likely contribute to restricting GABAARs at 

inhibitory synapses.  Our study provides an opportunity to study long term changes in gephyrin 

expression following the onset of adult plasticity and the re-enlargement of RFs.  We find that 
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the total expression of gephyrin throughout the cellular membrane in SC was not significantly 

affected by early sensory deprivation.  One potential explanation for our finding is the recent 

discovery that total gephyrin expression may not be indicative of functional gephyrin-dependent 

clustering of GABAARs.  Instead, the formation of clustered gephyrin nanodomains provides a 

stabilizing effect on GABAergic currents (Pennacchietti et al., 2017), providing a rationale for 

how total gephyrin expression may not be as important as its local organization at post synaptic 

sites.  Future work could examine this possibility in adult SC and V1 by utilizing super 

resolution imaging to identify the synaptic clustering of gephyrin microdomains in adults.  

We studied whether early visual experience may stabilize glutamatergic synapses in 

adulthood by maintaining the maturation of PSD-95 expression in SC.  Despite the evidence for 

the crucial role of inhibition in stabilizing developing sensory circuits, recent studies have found 

that the maturation of excitatory synapses may play a more dominant role.  The maturation of 

silent synapses, which involves the insertion of AMPA receptors into dormant (NMDA receptor-

only) synapses by the presence of PSD-95, can account for the closure of the critical period for 

ocular dominance plasticity in mice without any changes in inhibitory tone (Huang et al., 2015b).  

By negating PSD-95 after critical period closure AMPAergic synapses were forced back into a 

silent state and ocular dominance plasticity reopens permanently (Huang et al., 2015b).  One 

attractive element of this theory is that BDNF/TrkB signaling is required for silent synapse 

maturation to occur (Itami et al., 2003), which when taken with our findings from Chapter 2, 

make this a strong candidate for explaining the loss of RF refinement in adulthood.  

Unfortunately, our results show that PSD-95 expression was no different between DR and LE 

adults, suggesting that decreased expression of PSD-95 was not responsible for loss of RF 

maintenance in adult SC.  In light of our results, it would appear that early visual deprivation 
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does not affect the adulthood expression of the primary scaffolding proteins governing the 

accumulation of excitatory (AMPA) and inhibitory (GABA) receptors at synapses in SC.  Our 

research suggests that if inhibition is underlying loss of RF refinement, then it may be gephyrin-

independent, and likely has little to do with silent synapse stability in adulthood.  

 

4.2.3 NMDAR subunit composition changes in plasticity 

We also examined the expression of NMDAR in adults to determine if dysregulation in 

the developmental change in the dominant NR2B/NR2A could underlie the loss of RF 

refinement in DR adult SC.  The E/I balance represents a functional barrier which limits 

plasticity in adulthood (Bavelier et al., 2010a; Levelt and Hübener, 2012; Ganguly and Poo, 

2013).  Certain manipulations in V1, such as dark rearing, environmental enrichment, and PSD-

95 KO can restore ODP in adult mice (He et al., 2006; Greifzu et al., 2014; Huang et al., 2015b), 

suggesting that adult plasticity is not gone, so much as it is gated.  NR2A and NR2B have 

distinct impacts on synaptic plasticity and receptor properties (Cull-Candy et al., 2001; Paoletti 

et al., 2013) and could thus be a potential mechanism gating plasticity in adulthood by 

modulating E/I homeostasis.  Our results indicated a minor (but non-significant) increase in both 

NR2A and NR2B expression, but no relative difference in the ratio of each receptor between DR 

and LE adult SC.  Surprisingly, our results mirror a recent study which identified that that NR2B 

has no effect on plasticity restored via pharmacologically induced reductions in cortical 

inhibition (Liu et al., 2015).  However, they also report a distinct role for NR2B in restoring 

ODP in adult mice by increasing glutamatergic excitation using oral magnesium treatments, 

suggesting that both an NR2B dependent and NR2B independent mechanism may exist for 
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reopening plasticity in V1.  Our results suggest that early visual experience does not induce 

changes in NMDAR subunit expression in SC.  

4.2.4 Chloride transporter pumps 

We explored the possibility that changes in the intracellular Cl- gradient in SC might 

account for the weaker GABAAR responses observed in DR adults with enlarged RFs (Carrasco 

et al., 2011).  Dysregulation of the KCC2/NKCC1 ratio has been reported in several disorders 

that involve loss of GABAergic signaling in adulthood, such as epilepsy (Kahle et al., 2014; 

Puskarjov et al., 2014), Schizophrenia (Hyde et al., 2011), Rett syndrome (Tang et al., 2016), and 

even ischemia (Galeffi et al., 2004; Jaenisch et al., 2010).  Cl- homeostasis regulation is essential 

for normal brain function.   

We measured the adult expression levels of KCC2 and NKCC1 to determine if early 

sensory experience is necessary for the KCC2 pump to stay dominant.  Irregularities in 

KCC2/NKCC1 ratios are indicated in several neurological disorders and are an active area of 

research.  KCC2 KO mice display increased seizure susceptibility (Woo et al., 2002) stemming 

from reduced GABergic inhibition and increase primary neuron excitability.  Schizophrenia 

presents with a lower KCC2/NKCC1 ratio in hippocampus (Hyde et al., 2011), and a reduction 

in GABAergic inhibition which is correlated with visual hallucinations and cognitive delusions 

(Gonzalez-Burgos and Lewis, 2008).  Interestingly KCC2 appears to regulate dendritic spine 

formation in hippocampus in a BDNF-dependent manner (Awad et al., 2018), suggesting that it 

may also be an effective modulator of plasticity in other brain areas.  Surprisingly, we found no 

differences in the expression of either Cl- pump or in their expressed ratio between DR and LE 

adults.  Our results reveal that early sensory deprivation does not affect adult chloride pump 
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expression in SC and that KCC2 remains dominant and should maintain a mature Cl- gradient 

across the membrane.   

 

4.3 Clinical implications 

The majority of the human brain stops producing new neurons a few weeks into 

embryonic development (Malik et al., 2013).  Thus, any circuits formed abnormally in juvenile 

development, or damage acquired from injury or disease cannot be addressed by the natural 

regrowth/replacement of the afflicted tissues as is done for skeletal, organ, and muscle injuries.  

Instead, neural circuits need to be reorganized along proper developmental trajectories so that the 

brain can function normally.   

4.3.1 Plasticity in recovery of sensory and motor function  

Early in development, the brain is able to reorganize specific neuronal pathways and 

synapses in response to injury; however adult brains are less plastic and have only limited 

functional recovery potential.  The maturation of GABAergic inhibitory signaling places limits 

on the excitability of neural circuits, and understanding how this system is maintained in adults 

provides insight into new therapeutic possibilities.  Studies confirming the possibility of 

modulating GABAergic inhibition and reactivating plasticity in adulthood provide hope for 

possible treatments addressing brain function loss throughout life. 

The visual system may be more flexible in adults than has been previously believed.  

Adolescents and teenagers undergoing surgical cataract removal well beyond the critical period 

often exhibit marked improvements to contrast sensitivity (Ostrovsky et al., 2006; Ganesh et al., 

2014), suggesting that some plasticity remains in adults.  Finding ways to enhance the remaining 

plasticity can elicit greater functional recovery in sensory circuits.  Short-term inverse occlusion 
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and physical exercise are both effective means of boosting visual recovery (Lunghi et al., 2019) 

in amblyopic patients, as are video games (Li et al., 2011; Vedamurthy et al., 2015; Gambacorta 

et al., 2018).  Our results suggest that pharmacological modulation of BDNF/TrkB signaling 

could also be useful in promoting V1 plasticity in adulthood by reducing inhibition.  Indeed, 

recent reports show that intranasal BDNF administration promotes visual recovery in adult 

amblyopic rats (Sansevero et al., 2019).  

Plasticity also aids in recovery after damage produced from events such as stroke or 

traumatic brain injury.  Environmental enrichment has been shown to increase cortical plasticity 

(van Praag et al., 2000) and aid in the recovery of motor and cognitive functions following brain 

injury in adults (Peruzzaro et al., 2013; Bondi et al., 2014; Lajud et al., 2018).  Other promising 

therapies such as exercise, deep brain stimulation, non-invasive brain stimulation, and cognitive 

training are based on increasing plasticity in the brain (Cramer et al., 2011) and could perhaps be 

enhanced by BDNF/TrkB signaling.  In rodents a TrkB enhancer (CN2087) has been reported to 

be useful in reducing memory deficits and promoting complex auditory processing (Marshall et 

al., 2017).  Even some of the therapeutic benefits in neurological recovery associated with 

acupuncture have been attributed to TrkB signaling (Li et al., 2017b).   

 

4.3.2 Plasticity in GABAergic circuitry and disease 

Our work has shown that visual plasticity in adult SC is likely governed by total GABA 

expression rather than post synaptic modifications of receptors, scaffolding proteins, or chloride 

pumps.  Dysregulation of the GABAergic system has been implicated in several neurological 

disorders and our work could inform how to approach treatment for adults.  Epilepsy (Kang et 

al., 2015; Huang et al., 2017), autism spectrum disorder (Pizzarelli and Cherubini, 2011; Howell 
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and Smith, 2019), Alzheimer’s disease (Limon et al., 2012), Parkinson’s disease (Meder et al., 

2019), and Huntington’s disease (Yuen et al., 2012) all report symptoms that can be traced to 

GABAergic dysfunction and treated with drugs targeting GABA signaling (Brichta et al., 2013; 

Lee et al., 2017).  Anxiety disorders and depression are also linked to altered GABA function 

(Levinson et al., 2010; Nuss, 2015) , with an increased risk of severe symptoms as the GABA 

system becomes less regulated at later stages in life (Kim and Yoon, 2017).   

It is interesting to note that BDNF/TrkB signaling also appears to be dysregulated in 

psychiatric disorders (see Tejeda and Díaz-Guerra, 2017 for review).  For example, decreased 

BDNF signaling is reported to result in the hyperpolarization of tau proteins (associated with 

Alzheimer’s disease) (Elliott et al., 2005), with decreased full length TrkB isoform expression in 

post mortem patient brains (Allen et al., 1999).  Treatment of disorders with BDNF has shown 

limited results in humans mostly due to poor blood brain barrier penetration of most 

neurotrophins, tissue diffusion, and a short half life of the delivered serum (Thoenen and 

Sendtner, 2002).  New techniques to improve BDNF delivery include transplantation of BDNF-

releasing cells, gene therapy with BDNF-encoding viral vectors, and nanoparticle mediated 

transport (reviewed in Géral et al., 2013).  Exercise (Cotman and Berchtold, 2002) and 

monoamine based antidepressants (Hashimoto et al., 2004) are both capable of increasing 

endogenous BDNF production and relieve the symptoms of many neurodegenerative diseases.  

Small molecule TrkB agonists such as 7,8DHF have been shown to be useful in for treatment in 

animal models of Alzheimer’s disease (Zhang et al., 2014) Parkinson’s disease (Jang et al., 2010) 

and amyotrophic lateral sclerosis (Korkmaz et al., 2014).   

It is important to note however that adult plasticity can be maladaptive, as we have shown 

in the destabilization of refined RFs in SC and V1 (Carrasco et al., 2011; Balmer and Pallas, 
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2015a).  Although modulation of GABAergic inhibition and the TrkB signaling system can 

provide therapeutic benefits, they can also result in dysfunction.   Too much BDNF can also be 

detrimental to learning and memory (Cunha et al., 2009), interfere with activity-dependent 

plasticity, and even induce epilepsy (Binder et al., 2001).  Thus, caution must be taken when 

utilizing any means of restoring plasticity in adult brains so that well established circuits are not 

disrupted when attempting to treatment to impaired ones.   
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