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ABSTRACT 

 

Sickle cell trait (SCT), sickle cell disease’s carrier status, is a common genetic 

variant found in many people of African, South Asian, Middle Eastern and Mediterranean 

descent.  While overall considered a benign carrier status, it has been associated with an 

increased risk of several diseases, including exertional rhabdomyolysis (ER), and chronic 

kidney disease.  While epidemiological evidence links SCT with ER, the actual 

pathophysiological mechanism less understood.  Additionally, while there is an increased 

prevalence of atrial fibrillation (AF) documented in people with sickle cell disease, 

studies in individuals with SCT are lacking. 

 The objectives of this thesis are twofold:  The first chapter is a literature review 

of studies to examine the physiological mechanisms linking SCT and exertional 

rhabdomyolysis.  The second chapter is original research into the associations of SCT 

with AF. 

The first chapter reviews studies that identify aggravating factors that may 

promote ER.  It then reviews observed pathophysiological changes in people with SCT 

that may increase the risk of ER.  It summarizes studies that assess mitigating factors that 

decrease the risk of ER. It then presents a postulated pathway of mechanisms that 

associate SCT with ER.  

The second chapter uses data from African-American participants in the REasons 

for Geographic and Racial Differences in Stroke (REGARDS) study to assess the 

association of SCT with prevalent AF (by electrocardiogram or medical history) using 

logistic regression models adjusting for age, sex, income, education, history of stroke, 

myocardial infarction, diabetes, hypertension, and chronic kidney disease.   In 10,409 

participants with baseline ECG data and genotyping, 778 (7.5%) had SCT and 811 

(7.8%) had prevalent AF.   After adjusting for age, sex, education and income, SCT was 

associated with AF, OR 1.32 (95% CI 1.03-1.70).  SCT remained associated with 

prevalent AF after adjusting for potential factors on the causal pathway such as 

hypertension and chronic kidney disease suggesting alternate mechanisms for the 

increased risk. SCT was associated with a higher prevalence of AF and a non-

significantly higher incident AF over  a 9.2 year period independent of AF risk factors.   
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CHAPTER 1: SICKLE CELL TRAIT AND EXERTIONAL 

RHABDOMYOLYSIS: A REVIEW OF THE KNOWN 

PATHOPHYSIOLOGICAL MECHANISMS 

 

1.1. Introduction 

 

Sickle Cell Trait (SCT) is the carrier condition in which individuals carry one 

abnormal allele of the hemoglobin beta-chain gene (encoding β-globin), hemoglobin S 

(HbS).  SCT has a prevalence of 7.3 % among African Americans, 0.7% of Latinos, and 

0.3% of Caucasians in the United States and 10-40% across equatorial Africa (Ojodu et 

al., 2014).  As individuals with SCT carry one allele for one normal β-globin and one 

sickle hemoglobin, it is also termed hemoglobin AS (Hb AS).  Sickle Cell Disease (SCD) 

occurs when an individual inherits two abnormal β-globin genes. Traditionally, SCT has 

been considered a benign condition and is known to be associated with a decreased risk 

of developing complications from falciparum malaria (Williams et al., 2005), and is 

prevalent in the same geographic distribution as falciparum malaria.  There is however 

moderate to strong epidemiological evidence that now links SCT to an increased risk of 

developing chronic kidney disease, venous thromboembolism, and exertional 

rhabdomyolysis (R. P. Naik et al., 2018). 

The purpose of this review is to evaluate the current understanding of the 

pathophysiological mechanisms linking SCT and exertional rhabdomyolysis as well as 

the real and perceived implications for individuals with SCT. Individuals with SCT have 

historically been, and can currently be, excluded from sports and military service.  

Exertional rhabdomyolysis is on the postulated causal pathway between SCT and sudden 
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death, with a reported relative risk of sudden death of 28 in military recruits (Kark, 

Posey, Schumacher, & Ruehle, 1987) and 37 in NCAA athletes (Harmon, Drezner, 

Klossner, & Asif, 2012) for SCT individuals . However, recent epidemiological research 

with military personnel has documented a lower risk of exertional rhabdomyolysis with 

SCT (hazard ratio [HR], 1.54; 95% confidence interval [CI], 1.12 to 2.12), and finding no 

firm association between SCT and sudden death (HR, 0.99; 95% CI, 0.46 to 2.13) 

(Nelson et al., 2016).  It is unclear if these discordant clinical observations are due to 

methodologic limitations or from the implementation of better preventative measures 

over time.  An understanding of the mechanistic causes of SCT-associated 

rhabdomyolysis will help to make changes to decrease the risk of adverse events and 

better inform policy decisions like universal screening of SCT in NCAA athletes and 

service members. 

The first association with SCT and its protective effects from complications of 

plasmodium falciparum Malaria was noted in the late 1940s when there were significant 

differences in the levels of parasitemia noted in individuals with and without SCT 

(Allison, 1954; Beet, 1946).   

Multiple case reports and small case series were published documenting adverse 

clinical outcomes in SCT carriers, including splenic infarcts, hematuria and bacteriuria 

beginning in the 1960s and 1970s (Sears, 1978). It was noted at the time that there was no 

evidence for decreased overall survival and that properly controlled studies were lacking.  

Nevertheless, this led to SCT screening and exclusion from some forms of service in the 
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US military due to concerns about sudden death and developing complications at high 

altitude (Brodine & Uddin, 1977).  These concerns were later rescinded.  

Clinical research in the past 10 years has progressed as more rigorous, prospective 

cohort studies have been published.  A recent systematic review noted that there are 

multiple studies published with a high level of evidence that there is an association with 

SCT and developing venous thromboemboli, proteinuria, chronic kidney disease, but 

only a moderate level strength of evidence associating exertional rhabdomyolysis with 

SCT and a low strength of evidence with sudden death (R. P. Naik et al., 2018).  

Rhabdomyolysis is a life-threatening syndrome resulting from skeletal muscle 

breakdown and release of cellular contents into the circulatory system.  This includes 

creatine kinase, myoglobin, and electrolytes including potassium (Visweswaran & 

Guntupalli, 1999).  While there are multiple known causes of rhabdomyolysis, the final 

pathway leading to muscle breakdown and release of intracellular contents is the same.  

Muscles are reliant on adenosine triphosphate (ATP) to maintain low intracellular sodium 

and potassium levels.  If ATP is depleted, these intracellular gradients cannot be 

maintained.  High amounts of intracellular sodium and potassium in the cell lead to 

increased activity of proteolytic enzymes which release intracellular contents (Khan, 

2009).  Excessive muscle activity is thought to trigger rhabdomyolysis by depleting ATP 

so production cannot keep up with demand (Sharma, Winpenny, & Heymann, 1999).  

Trauma and burns which cause direct muscle injury, muscle ischemia, drugs and toxins, 

and genetic disorders affecting glycogen metabolism such as McArdle’s disease, are also 

associated with rhabdomyolysis (Khan, 2009). 
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HbS is a variant on the β-globin gene that results from a substitution of valine for 

glutamic acid at the sixth amino acid position causing a missense mutation (Ashley-

Koch, Yang, & Olney, 2000).  HbS polymerizes when hemoglobin is in the deoxygenated 

state (Eaton & Hofrichter, 1990).  Polymerization of HbS leads to decreased red blood 

cell flexibility, increased adhesion of red cells to vascular endothelium, as well as 

increased inflammation, coagulation and nitric oxide scavenging (Eaton & Bunn, 2017).  

The lifespan of RBCs containing HbS is shorter than RBCs without HbS, but varies 

significantly depending on the concentration of fetal hemoglobin (HbF) present (Franco 

et al., 1998).  The extent to which HbS polymerizes correlates to the clinical and 

hemolytic severity in people with SCD (Brittenham, Schechter, & Noguchi, 1985). 

1.1.1. Determinants of HBS percentage in SCT carriers. 

   

Individuals with SCT typically have 35-40% HBS on hemoglobin electrophoresis 

(Angastiniotis et al., 2013).  While there are equal numbers of genes present to produce 

equal amounts of HbA and HbS, HbS accounts for less than half of the total amount of 

hemoglobin present in carriers because HbS chains are less negatively charged and do not 

bind as readily to the α-subunit of hemoglobin (Forget & Bunn, 2013).  The HbS 

percentage is further reduced when people with SCT also carry a 1 or 2 α-globin gene 

deletion (α -thalassemia silent carriers or α-thalassemia trait), conditions found in up to 

30% of African-Americans (Steinberg & Embury, 1986).  One study (Steinberg & 

Embury, 1986) showed progressive decreases in hemoglobin S percentage as the number 

of α-globulin gene deletions increased; those with 0, 1, or two α-globulin gene deletions 

had HbS percentages of  35-45%, 30-35% and 25-30% respectively.   
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1.2. Postulated causal pathway linking SCT and ER 

 

The mechanism by which exertional rhabdomyolysis in SCT carriers occurs is not 

clear but is thought to be due to a combination of factors that increase the risk of muscle 

microvascular occlusions and muscle ischemia.  Factors associated with exertion that 

increase this risk include metabolic acidosis, local hypoxemia around the capillaries of 

exercising muscles as well as high intensity exercise.  A combination of these factors in 

turn causes increased viscosity of blood, release of inflammatory and vascular adhesion 

molecules, vascular remodeling and oxidative stress.  These physiological changes are in 

turn thought to cause microvascular occlusions that lead to muscle ischemia, triggering 

ATP depletion, and rhabdomyolysis.  Mitigating factors include degree of physical 

Figure 1: Postulated mechanism of sickle trait and rhabdomyolysis 
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fitness, the presence of alpha thalassemia trait, and adequate hydration.  These 

mechanisms are shown in figure 1.  

It is not clear if cells need to be in a sickled state per se in order to cause 

endothelial damage and capillary occlusion (Eichner, 2010) or if damage from RBC 

sickling is only one of several mechanisms that lead to microvascular occlusions and 

ischemia (Tripette et al., 2013).  When blood from SCT carriers collected at rest was 

exposed to acidic and deoxygenated in vitro environments to a similar degree to that seen 

in strenuous exercise, a significantly increased RBC rigidity was detected that further 

increased in an acidic environment relative to control blood even though no sickling was 

observed (Xu et al., 2016). 

1.2.1. Aggravating factors 

 

1.2.1.1. Hypoxemia 

 

A study of otherwise healthy SCT carriers and controls underwent arterial and 

venous blood sampling before and after performing maximal arm crank exercises, once at 

an altitude of 1,270 meters (PiO2 =127 mmHg), and again at a simulated level of 4000 

meters (PiO2=85 mmHg).  Even though there was a wide range of sickling, a significant 

increase was found in the percentage of sickled cells in venous blood drawn from the arm 

performing exercise.  There was no association between exercise performance and degree 

of sickling, and no significant difference in pH recorded at or after peak exercise between 

the different simulated altitudes., There was, however,  a significant increase in sickling 

in blood from an exercising limb at 1,270 m and even more sickling in the limb at the 
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simulated 4000 m elevation, suggesting that differences in PiO2 rather than pH 

contributed to sickling (Martin, Weisman, Zeballos, & Stephenson, 1989). 

1.2.1.2. Acidosis 

 

In contrast, there is also evidence that metabolic acidosis independently 

contributes to increased RBC rigidity.  An in vitro study (Xu et al., 2016) used a 

microfluidic system that was capable of controlling oxygen and pH levels separately to 

study RBC rigidity.  They measured the degree of RBC stiffness by measuring the 

change in RBC shape during and after shear stress was applied.  They found that at 

baseline, RBCs from healthy SCT volunteers were stiffer than those from controls, but 

the stiffness increased further when RBC samples were measured under acidic 

environments meant to match the local pH level of strenuous exercise.  Of note, the 

degree of rigidity in this study did not change under deoxygenated states; even in the 

acidic environment, decreasing the local oxygen level did not change the level of 

stiffness. 

1.2.1.3. Intensive exercise  

 

Intensive exercise can increase the blood viscosity in both healthy individuals and 

SCT carriers.  A study (Philippe Connes et al., 2006) measured blood viscosity, RBC 

rigidity and hematocrit in both healthy subjects and SCT carriers during intense 

exercising using a cycle ergometer conducted to maximal oxygen uptake (100% VO2 

max) and 110% VO2 max.  They found that SCT carriers had both elevated levels of 

blood viscosity and RBC rigidity at baseline.  Viscosity increased in both groups with 
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maximal and supramaximal exercise, and the increase in viscosity was maintained in 

SCT carriers and continually stayed higher with exercise relative to controls. There was 

no difference in plasma viscosity (as opposed to total blood viscosity) between the two 

groups.  RBC rigidity did not change with or without exercise.   

1.2.2. Observed pathologic changes 

 

1.2.2.1. Increased blood viscosity  

 

Blood viscosity in SCT carriers increases with exercise. A study (Diaw et al., 

2014) involving 11 otherwise healthy male SCT carriers and 11 controls showed that 

while blood viscosity in SCT carriers was higher at baseline relative to controls, during 

vigorous exercise with and without access to water, the SCT carriers’ blood viscosity 

decreased below resting values to the same level as controls, whereas when exercising 

without water, blood viscosity rose over baseline.  

1.2.2.2. Oxidative stress.   

 

Reduced nitric oxide (NO) availability and dysregulated NO homeostasis is 

known to play a role in the development of SCD complications (Kato, Gladwin, & 

Steinberg, 2007).  In SCD, hemolyzed RBCs release intravascular hemoglobin which 

consumes NO, decreasing the availability of NO in the endothelium which in turn can 

reduce vascular relaxation, increase platelet activation and expression of cell adhesion 

molecules.  While SCT carriers do not experience hemolysis to the extent that people 

with SCD have, autoxidation also occurs with HbS molecules of SCT carriers which can 

also contribute to oxidative stress (Barodka et al., 2014).  
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Though exercise in SCT is not associated with hemolysis, one study (Fasmall io et 

al., 2012) noted that there were increased markers of oxidative stress in subjects with 

SCT relative to normal controls.  Interestingly, in subjects with both SCT and alpha 

thalassemia, these effects were mitigated, with no significant changes in markers of 

oxidative stress compared to people without SCT with or without α-thalassemia. 

Another method to measure oxidative stress is to measure concentrations of the 

heme degradation products oxyhemoglobin and methemoglobin (Nagababu, Fabry, 

Nagel, & Rifkind, 2008).  One study (Barodka et al., 2014) evaluated levels of heme 

degradation products and levels of RBC deformability among four groups of children and 

young adults: those with SCT, those with SCD who were not currently suffering a sickle 

cell crisis, those currently in crisis, and healthy controls.  The groups with SCT and SCD 

all had significantly higher levels of heme degradation products and significantly lower 

levels of deformability compared to healthy controls, with the patients in sickle cell crisis 

being the most markedly abnormal, followed by the other patients with SCD currently in 

a steady state, followed by the group with SCT. α-thalassemia status was not evaluated. 

In contrast, a separate study (Tripette, Connes, et al., 2010) measuring adhesion 

molecules, oxidative stress and nitric oxide markers after exercise in sickle cell trait 

carriers with age-matched controls (and excluding people with α -thalassemia) did not 

show any differences in markers of oxidative stress. 

1.2.2.3. Increased RBC adhesion and release of inflammatory molecules.   
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Cellular adhesion interactions are known to be augmented with epinephrine 

release in people with SCD (Hines et al., 2003).  A study by Maciaszek et al(Maciaszek, 

Andemariam, Huber, & Lykotrafitis, 2012) found that epinephrine increases the 

frequency and strength of adhesion events between adhesion molecules on RBCs of SCT 

carriers via BCAM/Lu and Intercellular adhesion molecule 4 (ICAM-4).   BCAM/Lu, 

also known as Lutheran group and basal cell adhesion molecule, antigens are present on 

RBCs and adhere to the endothelial basement membrane (El Nemer et al., 2007).  ICAM-

4 is also found on RBCs and had an increased frequency and strength of adhesion in SCT 

RBCs relative to wild-type controls.    Of note, in the study, areas of increased adhesion 

were able to be spatially mapped on the surface of RBCs, and adhesion molecules were 

noted to be more heterozygously distributed on the hemoglobin of SCT carriers relative 

to normal controls. This led the authors to speculate that HbS may disrupt the structure of 

the RBC membrane resulting in aggregation when exposed to epinephrine.   

There are significantly higher levels of vascular adhesion molecules in SCT 

carriers with low amounts of physical activity compared to physically active SCT carriers 

as well as controls when undergoing strenuous exercise.  Aufradet et al (Aufradet et al., 

2010) performed a study measuring levels of soluble vascular cell adhesion molecule-1 

(sVCAM), P-selectin and other markers of inflammation in a group of 32 subjects, half of 

whom were SCT carriers. Half of the SCT carriers exercised regularly and half had 

sedentary lifestyles.  They performed measurements of these markers before and after 

exercising, and found that while other inflammatory markers were not significantly 

different between groups, the sedentary SCT carrier group had significantly higher levels 
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of sVCAM relative to the other three groups: active SCT carriers, active controls and 

sedentary controls, none of whom differed significantly from each other.  

A similar study evaluated levels of adhesion molecules in athletes with SCT with 

α-thalassemia trait, athletes with SCT but no without α-thalassemia trait, and athletes 

with neither SCT or α-thalassemia.  Athletes who had SCT but no α-thalassemia had 

higher levels of sVCAM-1 at baseline.  All three groups had significant increases in 

sVCAM-1 with exercise, but the elevated levels persisted longer during recovery in 

people with SCT and no α-thalassemia.  Participants with both SCT and α-thalassemia 

had similar levels to the control group (Monchanin et al., 2008). 

1.2.2.4. Vascular remodeling.   

 

SCT carriers have a different skeletal muscle capillary structure compared to fitness-

matched controls.  In a study by Vincent et al of 30 Cameroonian volunteers, 10 of whom 

had normal hemoglobin, 5 with alpha thalassemia, 6 with SCT carrier status and 9 with 

both SCT and α-thalassemia, significant differences were noted between groups (L. 

Vincent et al., 2010).  SCT carriers had a lower capillary density, and lower capillary 

tortuosity.  SCT carriers also had a significantly increased number of wider capillaries.  

Participants with both SCT and α thalassemia trait had a significantly higher capillary 

tortuosity relative to SCT carriers without α thalassemia.   The study also measured 

various endothelial markers and noted no differences in levels of soluble ICAM-1 

(sICAM-1), sVCAM-1, sE-selectin, sP-selectin, IL-8, or IL-10 between SCT carriers and 
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controls. A limitation of this study was that the participants were sedentary and blood 

samples were not collected during exercise.  

In a separate study by the same group, the researchers found that capillary density 

increased with exercise in SCT carriers, however the differences between SCT carriers 

and controls remained despite this increase (Lucile Vincent et al., 2012). 

1.2.2.5. Microvascular occlusions.   

 

Increased RBC rigidity, increased viscosity, RBC adhesion, inflammation and 

vascular remodeling are all pathologic changes thought to contribute to microvascular 

occlusions.  There is also evidence that there are higher levels of coagulation activation 

and inflammation markers in individuals with SCT.  A study of individuals from Saudi 

Arabia showed significantly elevated levels of D-dimer and lower levels of protein C, 

protein S, and fibrinogen in individuals with SCT relative to normal controls (Adam et 

al., 2008).  D-dimer levels were also elevated in African American SCT carriers in the 

Jackson Health Study relative to African American participants without SCT, with a 

median D-dimer concentration of 0.55 μg/mL compared to 0.38 μg/mL (Rakhi P. Naik et 

al., 2016). 

However, actually observing microvascular occlusions in SCT carriers has been 

only rarely reported, and even then, only in organs other than muscles.  Anzalone et al. 

reported the autopsy results of a 19 year old male SCT carrier who died after collapsing 

during college football training who had focal packing of sickled red blood cells in the 

spleen (Anzalone et al., 2010).  Wirthwein et al. reported autopsies of three young SCT 
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carriers who died following physical exertion, and they noted occlusions in the 

microvasculature of the heart, kidneys, and spleen (Wirthwein, Spotswood, Barnard, & 

Prahlow, 2001).   

In contrast, in studies of SCD, microvascular occlusions have been observed in 

multiple settings: in autopsy specimens (Niraimathi, Kar, Jacob, & Basu, 2016), biopsy 

specimens of SCD patients of both the microvasculature (Lipowsky, Sheikh, & Katz, 

1987), and larger vessels (Stockman, Nigro, Mishkin, & Oski, 1972), and in mouse 

models (Kaul, Fabry, & Nagel, 1989; Kaul, Finnegan, & Barabino, 2009; Manwani & 

Frenette, 2013).   

There is a well-documented association of venous thromboembolism risk with 

SCT (Austin et al., 2007).  However, it is not clear if the mechanisms and risk factors that 

would trigger a venous thromboembolism would also cause microvascular occlusions. 

1.2.3. Mitigating factors 

 

1.2.3.1. Physical fitness 

 

Markers of oxidative stress associated with exercise was decreased in SCT 

carriers that exercise regularly relative to inactive SCT carriers.  A study by Chirico et al. 

(Chirico et al., 2012) studied levels of malondialdehyde (MDA, a byproduct of lipid 

peroxidation and a marker of oxidative stress), antioxidant enzymes (superoxide 

dysmutase, gludathione peroxidase, and catalase) as well as markers of nitric oxide 

metabolism among SCT carriers that were sedentary, SCT carriers that played sports at 

least 8 hours a week, and normal controls who exercised regularly or were sedentary.  
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The study observed that anti-oxidants and products of nitric oxide metabolism were 

significantly increased in active SCT carriers.  The greatest magnitude of difference was 

from changes in plasma MDA. There was a significant increase in MDA in the sedentary 

SCT participants during and after exercise, whereas none of the other subgroups 

experienced any significant changes from baseline 

1.2.3.2. Adequate hydration   

 

Adequate hydration is important in mitigating the effects of heavy exercise at 

least in part by decreasing blood viscosity.  A study by Tripette et al (Tripette, Loko, et 

al., 2010) evaluated 12 SCT carriers and 12 controls and had them exercise for 40 

minutes of submaximal exercise.  Both the SCT carrier group and the control group 

performed the same exercise twice, once with water offered ad libitum and again without 

water.  Both blood viscosity and RBC rigidity were elevated in SCT carriers at baseline 

relative to controls, but viscosity and RBC rigidity both decreased to the same level as the 

control group when the exercise was performed while hydrated.  The non-SCT control 

group who did not hydrate during exercise did not experience any change in RBC rigidity 

and had only a non-significant increase in blood viscosity with exercise and this 

decreased to baseline in the recovery phase.   

1.2.3.3. Alpha Thalassemia.   

 

In addition to have having a lower hemoglobin S percentage as mentioned above, 

people who co-inherit both a single or double loss of an α-globin gene and SCT have 

fewer physiological abnormalities than do SCT carriers without any degree of α 
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thalassemia, as seen in the study on capillary tortuosity as by (L. Vincent et al., 2010) and 

levels of adhesion molecules (Monchanin et al., 2008).  MDA levels in the study by 

Chirico et al (Chirico et al., 2012) were higher in SCT carriers without α-thalassemia 

after undergoing strenuous exercise, as well as a significantly lower change in nitrogen 

oxide metabolism from baseline.    

1.3. Conclusion 

 

Under certain circumstances, SCT can provoke rhabdomyolysis.  The most 

commonly postulated mechanism by which this happens is via changes to the red blood 

cell that increase adhesion, blood viscosity, and the activity of inflammatory molecules.  

This is thought to lead to vascular and endothelial changes which ultimately increase the 

risk of micro-occlusions in the musculature which lead to muscle necrosis and release of 

intracellular components.  Mitigating this is the presence of α-thalassemia trait, physical 

fitness, and adequate hydration which appear to downregulate his process.   

Arguing against this mechanism is the paucity of data demonstrating actual 

microvascular occlusions in SCT carriers as well as more recent vigorous 

epidemiological data suggesting that the association of exertional rhabdomyolysis with 

SCT is lower than was once thought (Nelson et al., 2016).  An alternative explanation for 

the association of SCT and exertional rhabdomyolysis is the co-inheritance of other 

genetic abnormalities with SCT, such as glucose -6-phosphate dehydrogenase deficiency 

or differences in intra-cellular calcium receptors (P. Connes, Harmon, & Bergeron, 

2013).   
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More research is needed into the pathophysiology of rhabdomyolysis in SCT 

carriers, specifically in the development of microvascular obstruction or muscle ischemia.  

The recent characterization of a mouse model of SCT may be helpful with this (Zappia et 

al., 2017) given the ethical problems this would pose in testing human volunteers.  The 

fact that the exact mechanism remains difficult to prove may be good news for SCT 

carriers as it suggests that exertional rhabdomyolysis is a rare event, and supports the 

American Society of Hematology’s recommendations against universal SCT testing in 

athletic participation (Thompson, 2013). 
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CHAPTER 2: ASSOCIATION OF SICKLE CELL TRAIT WITH ATRIAL 

FIBRILLATION: THE REGARDS COHORT 

 

2.1. Introduction 

 

Sickle cell trait (SCT) is the heterozygous, purportedly asymptomatic carrier state 

for sickle cell disease (SCD) and is present in approximately 8% of African-Americans 

(Ojodu et al., 2014).  SCD profoundly affects individuals’ quality of life and leads to 

painful vaso-occlusive crises and progressive disability leading to early death.  Once 

thought to be a benign condition (Motulsky, 1973), SCT is associated with an increased 

risk of chronic kidney disease (CKD) (R. P. Naik et al., 2014; R. P. Naik & Haywood, 

2015), and other medical conditions (Austin et al., 2007; Davis, Mostofi, & Sesterhenn, 

1995; Harmon et al., 2012; Kark et al., 1987; Tsaras, Owusu-Ansah, Boateng, & 

Amoateng-Adjepong, 2009).  Previous studies have shown no evidence to date that SCT 

leads to a lower life expectancy (Ashcroft & Desai, 1976; Stark, Janerich, & Jereb, 1980), 

or stroke (H. I. Hyacinth, Carty, Seals, & et al., 2018), and there are mixed data on the 

association with coronary artery disease (Bucknor, Goo, & Coppolino, 2014; Hyacinth I 

Hyacinth et al., 2016; Nelson et al., 2016). Prior studies have not examined associations 

between arrhythmias such as atrial fibrillation (AF) and SCT.   

AF has been documented in SCD patients in multiple studies (Bode-Thomas, 

Hyacinth, Ogunkunle, & Omotoso, 2011; Garadah, Gabani, Alawi, & Abu-Taleb, 2011; 

Holloman, Johnson, & Haywood, 1987; Upadhya et al., 2013).  In contrast to SCD, there 
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are no similar studies documenting AF in SCT carriers.  Cardiac problems in people with 

SCT have focused on athletes and sudden cardiac death (Key, Connes, & Derebail, 2015; 

Tsaras et al., 2009).  We evaluated the association with SCT and AF as AF is a common 

condition with an increasing prevalence (Piccini et al., 2012) especially as the population 

ages and is a risk factor for ischemic stroke and heart failure (Zoni-Berisso, Lercari, 

Carazza, & Domenicucci, 2014).   

Naik et al. demonstrated an association of SCT with an increased risk of CKD in 

several cohorts, including the REasons for Geographic and Racial Differences in Stroke 

(REGARDS) study (R. P. Naik et al., 2014; R. P. Naik & Haywood, 2015).  CKD and 

hypertension are known risk factors for AF (Watanabe et al., 2009), and SCT may be 

associated with AF by other poorly defined mechanisms beyond simply exacerbating 

other known risk factors.  Thus we hypothesized that SCT would be associated with an 

increased risk of prevalent and incident AF in African-Americans.   

2.2. Methods 

 

2.2.1. Study Cohort  

 

REGARDS recruited 30,239 black and white men and women over 45 years old 

from 2003-2007, with the principal aim of identifying causes of racial and regional 

disparities in stroke incidence and mortality in the United States.  The detailed study 

design has been published (Howard et al., 2005).  REGARDS recruited individuals from 

a commercially available list of U.S. residents. Participants were excluded if they could 

not speak English, had a self-reported race other than black or white, were on a waiting 
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list for a nursing home, or had active cancer in the past year.  Using a computer-assisted 

telephone interview, interviewers obtained demographic information and a cardiovascular 

medical history, including a physician diagnosis of AF. Consent was obtained initially on 

the telephone and subsequently in writing during an in-person evaluation 3-4 weeks later. 

During the visit, staff obtained blood and urine samples, medication history, and 

performed a resting ECG. ECGs were centrally interpreted for factors including prevalent 

AF.  Participants were followed every 6 months by telephone for possible stroke and 

other outcomes (Soliman et al., 2012).   A second in-home visit was performed an 

average of 9.2 years later among available REGARDS participants, where participants 

gave their health history and a second ECG was performed, and similarly interpreted for 

AF.   

SCT status was determined by direct genotyping for rs334 using TaqMan® 

(Hyacinth I Hyacinth et al., 2016; R. P. Naik & Derebail, 2017). 

Genotyping for SCT was not performed on participants who self-reported as 

white.  For this analysis, REGARDS participants were excluded if they did not self-

identify as black, did not have stored DNA or consent for genetics research, or if they had 

hemoglobin SS (SCD) or hemoglobin SC disease (a related sickling hemoglobinopathy).  

REGARDS was approved by the institutional review boards of all participating 

institutions and was conducted according to the provisions of the Declaration of Helsinki. 

2.2.2. Outcomes 
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For the cross-sectional analysis, as previously reported (Soliman et al., 2011), AF 

was defined at baseline as ECG evidence of AF at the time of the in-home physical exam 

or as a self-reported physician diagnosis of AF.  For the incident AF analysis, incident 

AF was defined as a self-reported physician diagnosis of AF or ECG evidence of AF in 

those free of AF by ECG or self-report at baseline and was assessed in the form of a 2nd 

in-home visit. 

2.2.3. Definitions 

 

Age was specified as age at the time of entry into the REGARDS cohort.  Income 

was categorized as <$20,000, $20,000-34,999, $35,000-74,999, or ≥$75,000 annually, 

and education as less than high- school, high-school graduate, some college, and college 

and above.  Cardiovascular disease (CVD) was defined as a self-reported physician 

diagnosis of prior myocardial infarction or stroke.  Hypertension was defined as the use 

of antihypertensive medications, or a resting in-home systolic blood pressure reading of 

≥140 mmHg.  Diabetes was defined as a prior self-reported physician diagnosis of 

diabetes, or the use of oral medications or insulin, excluding gestational diabetes.  CKD 

was stratified into four groups (stage 0-1, 2, 3, 4+) according to the Kidney Disease: 

Improving Global Outcomes 2012 Clinical Practice Guidelines (Levey et al., 2011) 

incorporating estimated glomerular filtration rate from the CKD-EPI equation (Levey & 

Stevens, 2010) and urine albumin concentration. 

2.2.4. Statistical analysis 
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Baseline characteristics were compared by SCT status using chi-square analysis 

and t-tests for continuous variables. Staged logistic regression models were used to 

calculate odds ratios (ORs) of AF by presence of SCT.  Covariates were added in three 

steps: 

Model 1: adjusted for age, sex, income, and education 

Model 2: Model 1 + body mass index, history of CVD, and diabetes  

Model 3: Model 2 + CKD and hypertension 

 

The purpose of Model 3 was to test for possible mediation of the association by 

CKD and hypertension, given the known association of SCT with CKD (R. P. Naik et al., 

2014).  In addition to model 3, to control for population substructure, 10 principal 

components (PC) of genetic ancestry were generated in Eigenstrat (Tran et al., 2015) and 

added to Model 3.  PC of genetic ancestry were measured in a case-control study and 

available in 67 percent of African-American REGARDS participants.  As PCs were not 

available in all individuals, we assessed the association of SCT with AF only in those 

with PCs of ancestry available, excluding those without data.  Additionally, a sensitivity 

analysis using electrocardiogram documented AF only was performed.  Unadjusted 

baseline associations were also compared using Chi square analysis.  All two-sided p 

values < 0.05 were considered significant.   

The above analyses were repeated in those who had a 2nd home visit by 

REGARDS investigators who were free of AF at the initial visit to determine the OR of 

incident AF based on AF status at the second examination.  Given that it is not possible to 
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estimate the precise timing of developing AF based on ECG evidence seen on the 2nd 

home visit, cox proportional hazard models could not be used  

All analysis was performed using STATA v 14.1 (StataCorp. 2015. Stata 

Statistical Software: Release 14. College Station, TX: StataCorp LP.) 

2.3. Results 

 

There were 10,433 African-American REGARDS participants who had 

genotyping for SCT as well as ECG and complete medical history (83% of the 12,514 

African Americans in the study).  Ten individuals homozygous for hemoglobin SS (sickle 

cell anemia) (0.09%) and 14 (0.13%) with hemoglobin SC disease were excluded from 

the analysis.  There were 778 participants with SCT (7.5%).  Figure 2 outlines how many 
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participants were excluded or had missing data at each stage of the analysis.   

 

Figure 2: Summary of participant exclusions and missing data 

 

Overall, 811 (7.8%) of these participants had either a medical history and/or ECG 

evidence of AF at baseline.  Table 1 summarizes the baseline characteristics of 

participants with and without SCT. 
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Table 1: Baseline characteristics of African American REGARDS participants by Sickle Cell Trait 

Status 

 No Sickle Cell 

Trait 

Sickle Cell 

Trait 

p-

value 

Mean Age (SD) 64 (9) 63.5 (9) 0.14 

Female 61% 64% 0.10 

Income < $20,000/year 38.9% 40.9% 0.28 

Less than high school education  19.7% 19.2% 0.84 

Mean BMI (SD) 30.8 (6.7) 30.7 (6.8) 0.72 

History of cardiovascular disease 13.7% 13.5% 0.85 

Diabetes 30.3% 32.2% 0.25 

Stage 4 or higher chronic kidney disease 1.4% 2.9% 0.001 

Hypertension 66% 63% 0.07 

Mean Systolic Blood Pressure (SD) 131 (17) 132 (17.7) 0.26 

Atrial Fibrillation 7.3%  9.5% 0.02 

 

The mean baseline age was 64 years (range 45-96).  Twice as many participants 

with SCT had stage 4 kidney disease by KDIGO criteria (2.9% vs 1.4% for people with 

and without SCT respectively, p=0.001).   

Table 2 outlines the main results of the cross sectional analysis. Overall, SCT was 

associated with an approximately 1.3-fold increased odds of AF in all models (lower limit 

of the 95% CI >1.0).  In Model 1 (the demographic model) the OR (95% CI) was 1.32 

(1.03-1.70).  Further adjustment for AF risk factors (Model 2) or for CKD and 

hypertension (Model 3) did not attenuate or strengthen the association of SCT with AF.   

  



25 
 

Table 2 Odds Ratios (ORs) and 95% Confidence Intervals (CIs) of prevalent atrial fibrillation with 

sickle cell trait 

 N N with prevalent AF OR   (95% CI) 

Model 1 10,409 811 1.32 (1.03, 1.70) 

Model 2 10,295 797 1.33 (1.03, 1.71) 

Model 3 10,241 793 1.32 (1.02, 1.70) 

Model 1: adjustment for age, sex, income and education.  Model 2: Model 1 + 

adjustment for body mass index, cardiovascular disease history, diabetes.  Model 3: 

Model 2 + adjustment for chronic kidney disease and hypertension. 

 

At the second in-home visit, an average 9.2 years after baseline, 4,836 participants 

with baseline known AF status and genotyping had an ECG.  There was a similar 

association with incident AF and SCT as seen in prevalent AF with the OR in model 3 

being 1.25 but the 95% confidence intervals were wider and crossed 1 (0.77, 2.03) (Table 

3).   

Table 3: Odds Ratios (ORs) and 95% Confidence Intervals (CIs) of incident AF over 9.2 years by 

sickle cell trait 

 N N with incident AF OR (95% CI) 

Model 1 4,836 208 1.25 (0.77, 2.03) 

Model 2 4,795 206 1.27 (0.78, 2.07) 

Model 3 4,764 206 1.28 (0.78, 2.08) 

Model 1: adjustment for age, sex, income and education.  Model 2: Model 1+ 

adjustment for body mass index, cardiovascular disease history, diabetes.  Model 3: 

Model 2 + adjustment for chronic kidney disease and hypertension. 

 

In a sensitivity analysis classifying prevalent AF as AF present at either 

REGARDS exam, the association of SCT with AF was stronger than in analysis from the 



26 
 

baseline visit, with an OR of 1.39 (1.01, 1.92) for model 3 (Table 4).  In this analysis, the 

total prevalence of ever having reported a history of AF or ever having ECG evidence of 

AF in the participants available for a 2nd in-home visit was slightly higher than the main 

cohort, at 10.1%.  

Table 4 Odds Ratios (ORs) and 95% Confidence Intervals (CIs) of cross-sectional analysis of all 

prevalent AF at 2nd in-home visit by sickle cell trait 

 N N with prevalent AF OR (95% CI) 

Model 1 4,836 490 1.43 (1.05, 1.97) 

Model 2 4,795 483 1.41 (1.03, 1.94) 

Model 3 4,764 482 1.39 (1.01, 1.92) 

Model 1: adjustment for age, sex, income and education.  Model 2: 

Model 1+ adjustment for body mass index, cardiovascular disease 

history, diabetes.  Model 3: Model 2 + adjustment for chronic kidney 

disease and hypertension 

 

In an additional sensitivity analysis of the odds of prevalence of ECG evidence of 

AF, the association of SCT with AF was greater, with ORs of 1.7-1.8 in all three models, 

while the association was weaker for AF defined by history alone (OR of 1.26 in all three 

models), but in both instances the 95% CIs included 1.0.  When we restricted the analysis 

to individuals with PCs of genetic ancestry available, there was no association of SCT 

with AF in this subset (OR 1.01; 95% CI 0.71, 1.44), as such we did not further pursue 

adjusting for PC of genetic ancestry in additional models.   

2.4. Discussion 

 

The main findings of this study were a 32% higher odds of prevalent AF in 

African Americans with SCT after adjusting for age, gender, education, income, and 

cardiovascular disease.  Additional adjustment for CKD or hypertension did not attenuate 
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this association.   There was also a 26% higher odds of incident AF, though this finding 

was not statistically significant. 

 

To our knowledge, the association of SCT with AF has not been reported before.  

We had hypothesized that SCT could be associated with AF by acting through the 

intermediaries of CKD (Watanabe et al., 2009) which in turn may be associated with 

hypertension (Kannel, Abbott, Savage, & McNamara, 1982).  Arguing against CKD and 

hypertension mediating the association of SCT with AF is that after adjusting for CKD, 

hypertension, and known cardiovascular disease, the association of SCT with AF did not 

meaningfully change.  These data are confusing but consistent with the surprising but 

robust recent epidemiological research demonstrating that SCT was not independently 

associated with risk of  ischemic stroke among African Americans in the United States 

(H. I. Hyacinth et al., 2018), even though ischemic stroke is associated with CKD and 

SCT is associated with risk of CKD. 

 

While we have previously shown the substantial accuracy of self-reported 

AF(Soliman et al., 2011), a strength of this study includes the ability to capture AF data 

by both medical history and ECG.  Medical history reported by REGARDS participants 

has also been validated by comparing it with Medicare claims data in other 

cardiovascular diseases (Colantonio et al., 2017) and it provides a better capture of 

paroxysmal or persistent AF.  These are conditions which are still associated with 

thromboembolism and that require anticoagulation (Ganesan et al., 2016) as well as 
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rhythm-controlled AF, and reported history of AF has been found to be a significant risk 

factor in developing ischemic stroke (Soliman et al., 2011).  Furthermore, when a more 

strict definition of AF by ECG criteria alone was used, the direction of the association 

was similar with a greater magnitude.  Additionally, the fact that there was a similar 

prevalent and incident association is helpful in that is provides an internal replication of 

results. 

This study has several limitations. While data on prevalent AF at the time of entry 

into the study is robust, the data on incident AF was less so: medical histories and a 

second in-home ECG were available from only about half of the participants, with 

approximately 12% dying between visits, 21% withdrawing from the study, and 21% not 

assessed for other reasons.  The number of participants with incident AF was relatively 

small so our power was limited.  Finally, when we looked at the subset of participants 

with PC of genetic ancestry available there was no association between SCT and AF.  PC 

data was available in only a subset of the cohort, and as there were significantly more 

participants with AF in the subset that did not have PC data available, it appeared to be 

non-random, rather than a simple loss of power.  In theory, SCT could be a marker of 

another nearby mutation and adjusting for population substructure may have attenuated 

this association.  While possible, this would be unlikely due to the known pathologic 

implications of SCT and SCD as well as lack of attenuation of SCT with adverse 

outcomes after adjusting for PC of genetic ancestry for other diseases in other 

populations (H. I. Hyacinth et al., 2018; R. P. Naik et al., 2014). Finally, as genotyping 
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for SCT was limited to African American participants in REGARDS, these findings may 

not be generalizable to people of other races or living in other regions.  

 

2.5. Conclusion 

 

SCT was associated with AF independent of risk factors for AF.  The mechanism 

does not appear to act through CKD and hypertension, known risk factors for AF and 

conclusions regarding a proposed mechanism cannot be drawn from the data.  Given the 

association of hypertension and CKD with AF, these data support the need to better 

understand the clinical consequences of SCT as well as other polymorphisms which may 

impact the association of SCT with cardiovascular diseases.  These data add AF to the 

potential diseases associated with SCT and demonstrate the keen need to understand the 

health consequences of SCT as it seems less and less to be an asymptomatic carrier state 

of a common genetic disease. 
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