
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2019

Exploring the Modularity and Structure of Robots
Evolved in Multiple Environments
Collin Cappelle
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for
inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Cappelle, Collin, "Exploring the Modularity and Structure of Robots Evolved in Multiple Environments" (2019). Graduate College
Dissertations and Theses. 1091.
https://scholarworks.uvm.edu/graddis/1091

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/1091?utm_source=scholarworks.uvm.edu%2Fgraddis%2F1091&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu


Exploring the Modularity and
Structure of Robots Evolved in

Multiple Environments

A Dissertation Presented

by

Collin Cappelle

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Specializing in Computer Science

August, 2019

Defense Date: April 26th, 2019
Dissertation Examination Committee:

Joshua C. Bongard, Ph.D., Advisor
Charles J. Goodnight, Ph.D., Chairperson

James Bagrow, Ph.D.
Laurent Hébert-Dufresne, Ph.D.

Cynthia J. Forehand, Ph.D., Dean of Graduate College



Abstract

Traditional techniques for the design of robots require human engineers to plan
every aspect of the system, from body to controller. In contrast, the field of evolu-
tionary robotics uses evolutionary algorithms to create optimized morphologies and
neural controllers with minimal human intervention. In order to expand the capability
of an evolved agent, it must be exposed to a variety of conditions and environments.

This thesis investigates the design and benefits of virtual robots which can reflect
the structure and modularity in the world around them. I show that when a robot’s
morphology and controller enable it to perceive each environment as a collection of
independent components, rather than a monolithic entity, evolution only needs to
optimize on a subset of environments in order to maintain performance in the overall
larger environmental space. I explore previously unused methods in evolutionary
robotics to aid in the evolution of modularity, including using morphological and
neurological cost.

I utilize a tree morphology which makes my results generalizable to other mor-
phologies while also allowing in depth theoretical analysis about the properties rel-
evant to modularity in embodied agents. In order to better frame the question of
modularity in an embodied context, I provide novel definitions of morphological and
neurological modularity as well as create the sub-goal interference metric which mea-
sures how much independence a robot exhibits with regards to environmental stimu-
lus.

My work extends beyond evolutionary robotics and can be applied to the opti-
mization of embodied systems in general as well as provides insight into the evolution
of form in biological organisms.
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Chapter 1

Introduction

A continual challenge in robotics is the design of both the robot’s morphology

(i.e. body) and controller to adequately accomplish some set of tasks. An even more

difficult challenge is to create an algorithm which automatically designs a portion or

entirety of the robot based on the task or tasks at hand. One field which aims to

automate the design and creation of robots is Evolutionary Robotics (ER). Briefly, ER

uses heuristics taken from biological evolution (known as Evolutionary Computation)

and applies them to populations of robots in order to increase the ability of the robots

to accomplish a given task. One way to evolve more complex robots is to evolve them

in many different environments, thereby exposing the robots to a range of different

initial conditions. However, this leads to a tremendous increase in the number of

evaluations in a process which already requires a large number of assessments of

candidate solutions.

This thesis was born out of exploration into methods to increase the efficiency in

which robots are evolved in multiple environments.

Specifically, the focus of this thesis is the ability of evolved robots to break down
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their environment into unfamiliar combinations of familiar percepts. This means the

robot is able to break down the environment into the independent components or

modules which it has experienced before, possibly in a different organization. By

evolving robots which reflect the modularity and structure of the environment they

act within, this thesis finds a scalable path forward for increasing the complexity of

evolved robots while limiting the number of evaluation instances.

1.1 Evolutionary Computation

Evolutionary Computation is a class of optimization methods which draw inspi-

ration from the evolution of biological organisms [34, 43]. Using basic concepts such

as mutation, sexual recombination, and fitness based survival, Evolutionary Compu-

tation searches for increasingly better solutions for some desired problem.

One basic form of Evolutionary Computation is the Genetic Algorithm (GA). In

its most basic form, a GA starts with a population filled with random individuals

[64, 34]. The individuals are evaluated against some criteria in order to determine

their fitness. Next, parent selection occurs in which members of the population are

chosen to be parents of the next generation. Parents can be chosen randomly, based

on fitness, or based on some other heuristic. After parents are chosen, offspring are

created from the parents through the use of mutation and/or crossover.

When an individual undergoes mutation to create one or more offspring, the par-

ents genotype is slightly altered. For example, in many cases the genotype may be a

bit vector and a mutation is represented by a bit flip at a random location. Mutation

allows for the introduction of new genetic material into the population and generally
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occurs in a similar fashion to the mutation of DNA where a single base pair is altered.

This allows for more exploration of the search space.

Whereas mutation is a unary operator requiring only one parent to occur, crossover

is an n-ary operator combining genetic material from multiple sources [34]. Although

crossover can occur with more than two parents, it is generally used as a binary

operator. In this case, two parents are selected for crossover and a portion of each

parents genetic material is combined in some manner to create a wholly new individual

which maintains aspects of its genotype from its parents. This is similar to the way

sexual recombination works where the child has half its DNA from one parent and

half from the other. Going back to the example of the bit vector, one simple method

of crossover is single-point crossover. In single-point crossover, a location in the bit

vector is chosen splitting the vector into left and right portions. The offspring is then

created by combining the left portion of one parent and the right portion of another.

The goal of crossover is to maintain small, high-fitness portions of the genome, called

building blocks, and combine them with other building blocks in the genomes of other

individuals. Crossover is aimed to aid in the discovery of high-fitness solutions to the

original problem, whatever it might be.

While the work presented here mainly uses various forms of mutation operators

to evolve populations of robots controlled by neural networks, it does suggest how

successful crossover can occur for neural networks which is known to be a difficult

task [46, 102]. This thesis uses evolutionary algorithms to both present a scalable way

forward in the realm of evolutionary robotics as well as to propose possible pressures

for the evolution of modularity in biology.

Evolutionary Computation algorithms are primarily used in numerical or design
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problems, generally with little to to no relation to evolutionary biology. In this case,

the goal is not to answer deeper questions about the nature of evolution but rather use

general concepts from natural evolution to provide a heuristic method of optimization.

These algorithms and methods have been used in the design of antenna [52], to solve

symbolic regression tasks [3], and in the creation of art [97].

As a numerical optimization technique, two important factors to consider are

the rate of a convergence to a satisfactory solution and overall scalability to larger

problems [43]. This work addresses both issues by showing that modular robots which

correctly reflect the modularity of the environment and desired tasks are both more

evolvable on a given set of environments and more scalable when considering future

unknown environments.

Evolutionary Computation has also been used to answer general questions re-

garding evolutionary biology. Specifically, evolutionary methods have been used to

address the evolution of modularity [23, 36]. A more detailed explanation of modu-

larity and previous work is presented in Section 1.4. This work extends previous work

into the origins and evolution of modularity in organisms by considering embodied

agents represented by robots.

1.2 Evolutionary Robotics

Evolutionary Robotics applies Evolutionary Computation methods to the design

and construction of robots [82]. Evolution can be applied to any or all aspects of the

robots controller and morphological design.

In most cases researchers will start with a fixed morphology, already knowing the
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form of the robot they want to evolve, some of which are already physical robots

built by the researchers themselves [59] or bought off the shelf [77]. In these cases

the robots controller, which is generally represented by an artificial neural network,

is under evolutionary control. Even within these experiments there is a wide variety

of choice for how to evolve the robot [32]. In the most basic approaches only the

synaptic weights of the neural network are mutated over an evolutionary run [81].

This manner of evolution has proven effective for a variety of experiments [22, 41].

Although evolution plays a limited role in these experiments, there is still a general

need to simulate the robots in order to reduce the amount of computational time to

perform multiple independent trials [32]. Even in cases where only the controller is

being evolved, reducing the number of evaluations is crucial to ensure computation

times are not prohibitively long.

In 1994, Karl Sims introduced the first artificial evolution of both morphology

and control in order to create lifelike behavior in artificial agents [98]. This allowed

a wider variety of behavior and form while also tremendously increasing an already

large search space. The utilization of co-evolution of morphology and control has

continued with examples such as [71] which aimed to design body and control while

also creating a physical instance of the robot through the use of a 3D printer and

[20] which applied protection to genomes which recently underwent a morphological

change. All of these experiments focused on single simple tasks such as locomotion.

The agents found in these examples are not robust to changes in environment nor do

they even perceive the environment directly. Alterations in the environment or the

introduction of the robot to wholly new environments would have drastic impacts on

the robots behavior.
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Many ER experiments still limit robots to a single or a small number of envi-

ronments and tasks [32]. Even less actually address the long term scalability of the

evolved solutions to new environments. Although the original issues of scalability

were raised in 1996 [74], to date no long term plan has been proposed for the future

of ER to scale to large numbers of environments and tasks. This thesis presents a

first step to answer the original concerns raised by Matarić and Cliff [74]. Using

their characterization of the environment space, this thesis shows that not all envi-

ronments need to be evaluated during evolution, thereby increasing the scalability of

ER to larger sets of environments.

1.3 Characterization of Environments

When training any agent, embodied or otherwise, it is important to consider

the necessary information the agent needs to be exposed to in order to optimize

for adequate behavior. In image recognition tasks, this could be the number and

diversity of images needed in order to train a classifier to recognize the difference

between photos with and without a cat present [66]. In evolutionary robotics, the

information required to evolve adequate behavior is the environment in which the

robot is situated [50]. The environment of the real world exists in a continuum.

This is infeasible to replicate in simulation so instead the environments must be

discretized and simplified. One method is to describe the set of environments by the

free parameters and variations of said free parameters [74].

Free parameters are the qualities of the environment which vary independently of

one another. For example, consider the task of a robot moving towards an object.
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One free parameter could be the location of the object. Another free parameter

could be the color of the object. Both the location and color of the object can vary

independently without influencing the value of one another. The number of free

parameters in an environment is denoted f .

The variations of the free parameters are the specific quantities each free parameter

takes in a given environment. Following from the previous example, the object could

be located to the left or right of the robot and can be red or blue. Each free parameter

then has two variations. We denote the number of variations as n.

When both f and n have been ascertained, the resulting number of environments

is nf . The total environment space can be represented by a hypercube where each

dimension is a free parameter, each position along a dimension is a variation of that

free parameter, and hypervoxel is a single environment (Fig. 1.1).

The independent free parameters can be thought of as the independent modules

which exist in the environment. The overall goal is then for the robot to accurately

distinguish the modules in the environment.
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Figure 1.1: Sample environment space with four variations of three free parameters
{f1, f2, f3} resulting in 43 = 64 total environments. The red highlighted voxel represents
the single environment e consisting of πi variation of parameter f1, the πj variation of f2,
and the πk variation of f3.
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1.4 Modularity

The presence of modularity is ubiquitous in nature [16, 110]. From organelles

within cells to macro-scale interactions on the World Wide Web, modularity has

been used to describe natural and human phenomena.

While the specific definitions of modularity are limited to the domain they de-

scribe, most definitions rely on modularity requiring some level of independence and

separation. In networks, this independence comes from limited connections between

communities. This thesis expands beyond network approaches and explores embodied

approaches which require mechanical independence as one aspect contributing to a

robot’s modularity.

1.4.1 Network Approaches

The primary method of studying modularity in artificial agents has been through

the use of networks which represent the neural controllers of those agents. Networks

are powerful tools because they can represent social relationships [111, 96], infras-

tructure [29], and biological processes [51, 87].

The prevalence of networks in nature has led to a wealth of research into the

quantification of various network properties [83, 15, 89]. One such important metric

is Q [79]. Q is measured in two stages. First the network is split into groups of nodes

called the community partition, where each group is a separate community. Then this

partition’s score is assigned based on the fraction of internal community connections

compared to a random network with the same degree distribution. A network’s Q

value is the score given to the community partition which is maximal [79].
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Q has been widely implemented to measure the modularity present in various

types of networks [39, 61, 75, 100]. Most relevant to this thesis is the use of Q used

as a metric of modularity in the computational networks of artificial agents [57, 38,

23]. The retina task in particular played an important part towards the formation of

this thesis.

Retina Task

The retina task was set forth as a basic method to explore the evolution of mod-

ularity in networks (Fig. 1.2) [57].

The task consists of a network rewarded for evaluating logical functions of rec-

ognized patterns in the left and right of a 4 × 2 pixel array. Kashtan and Alon [57]

found that when the logical function was altered in a specific way, thereby exposing

the networks to modularly varying goals, modular networks adapted faster to the

change compared to non-modular networks, allowing the modular offspring drive the

latter to extinction.

Further work using the retina task has explored the use of connection cost to more

easily enable the evolution of modularity without the need for modularly varying goals

over time [24].

The use of Q to explore structural modularity is only relevant when the agent

can be perfectly described as a network. For a computational network with inputs

and outputs, Q’s measure of structural modularity may not align with the functional

modularity present (or not) as determined by the relationship between input and

output. One can imagine modules existing in a computational network which do not

connect to either input or output. Thereby Q can be fooled into showing modularity
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Figure 1.2: Retina Task. Diagram of the retina task and resulting modularity of an evolved
agent when the population is exposed to modularly varying goals (From [57])

.
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when there is no meaningful modularity present. That isQ can report high modularity

in an agent even though the agent may not exhibit any of the benefits of being

modular.

Q further fails to describe the impact of a computational network’s output if

the network is embodied. An embodied network’s motoric output has the potential

to influence future input sensations. For example, consider a global position sensor

on a humanoid robot. As the robot’s arms are actuated, it is unlikely that the

position of the robot’s torso will change, however if the legs are actuated there is a

complex relationship between the motoric output represented by the angles of the

joints in the legs and the reported position of the sensor in the torso. These complex

interactions defined by the motor to sensor relationship, as guided by the environment

the agent is situated in, are not captured by Q. Contrast this with the sensor to motor

relationship as defined by synaptic connections in the neural network of the agent

whose modularity is captured by Q. Figure 1.3 details four extremes of sensory-motor

independence in embodied networks, all of which potentially have high Q modularity.

The training of these embodied networks represent an embodied approach towards

artificial intelligence.

1.4.2 Embodied Approaches

Researchers have explored modularity within embodied agents, however it has

largely been limited to neural modularity [13]. The relationship between adaptable

morphology and the evolution of populations with high degrees of modularity has not

been directly explored.

In [1] robots were exposed to environments with varying degrees of difficulty and
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(a) (b)

(c) (d)

Figure 1.3: Four embodied networks displaying different levels of functional independence
while potentially all receiving high Q scores. White, yellow, and blue squares denote banks
of sensor, hidden, and motor neurons respectively. These banks may contain one or many
neurons each. Solid arrows between the squares represent direct synaptic connections be-
tween neurons contained in the squares. Dashed arrows represent the impact of a motors
actuation in the environment on the resulting sensation of the network. Networks (a) and
(b) have high sensor to motor independence because banks of sensors only have the potential
to impact a subset of motors. Alternatively, changes in sensor values in networks (c) and
(d) propagate to all motors indicating high sensor-to-motor dependence. Panels (a) and (c)
contain networks with high levels of motor-to-sensor independence while panels (b) and (d)
contain networks of low independence.
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as such, robots are evolved which reflect the complexity in the world. The robots were

tasked to move across an environment which contained blocks of low friction ice. The

larger and farther apart the the ice blocks were, the more complex the environment

was considered to be. These more complex environments led to the evolution of robots

with a more complex morphology. However, this work only considers populations

exposed to a single environment over the course of an evolutionary trial instead of

exposing the populations to many different environments.

Due to the aforementioned time complexity of evaluation in multiple environments

(i.e. O(nf )), many evolutionary robotics experiments limit evaluation to a single en-

vironment. This leads to robots which are fragile with regards to their environments:

as soon as any aspect of their environment is altered, it is highly likely they are unable

to exhibit the behavior for which they were evolved.

In pursuit of more robust controllers, novelty search and quality diversity (QD)

have proven to be effective methods [90, 67]. These methods discover controllers

which, when placed in novel environments, achieve comparatively high performance

when compared to controllers optimized for performance alone. In these experiments,

each environment was represented as a maze that the robot was tasked to solve by

reaching the end. The robustness to novel environments exhibited by the robot does

not indicate the robot can break apart and reconstruct each maze into its independent

parts, rather it shows that these mazes can all solved by a robot exhibiting a single

general maze-solving behavior.

No methods have yet explore the specialization of both morphology and control

of a robot with respect to environmental stimulus.

Further, past experiments do not address what it means to be morphologically
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modular. In many ways, morphological modularity can be thought of as mechanical

dexterity (here used as the ability to isolate independent movement within the body to

accomplish a task). By having a body which enables independent movement without

impacting sensation in other parts of the body, the robot is more able to break down

the environment along the lines of the free parameters.

1.5 Contribution Outline

Research in this thesis began by exploring methods to reduce the computational

complexity necessary to evolve robots in multiple environments. In order to accom-

plish this reduction, modularity in both body and brain were examined as methods

by which a robot is able to recognize the independence present in the free parameters

of the environment. Overall, this thesis provides an important novel framework for

discussing the relationship between morphology, control, and environment by first

providing definitions for morphological, neurological, and ecological modularity and

then tying them all together with the sub-goal interference metric I.

Chapter 2 provides the following definitions: Morphological Modularity and

Neurological Modularity. Armed with these definitions, it can be shown that a

robot which is morphologically and neurologically modular needs only be evolved in

a reduced subset of environments. Specifically this reduction is found to be from

exponential to linear (O(nf )→ O(n)) across multiple values of n.

Chapter 3 introduces and defines the novel concept of Ecological Modularity.

This work states that even if a robot is morphologically and neurologically modular,

it may not be able to independently recognize variations across independent free
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parameters. This limits the utility of the result in Chapter 2 by finding the reduction

in necessary training environments to be (O(nf ) → O(nf−m+1)) where m is the

maximum number of free parameters the robot can independently recognize.

In Chapter 4, in contrast to the previous chapters, evolution is able to alter the

relationship between neurons. Chapters 2 and 3 assume a fixed neural topology,

thereby fixing which sensor impacts which motor. Chapter 4 explores the impact of

having a developmental regime in which spatial relationships in the neural architecture

reflect the structure present in the task environment. Using embodied embeddings

for the well known algorithm HyperNEAT, embeddings which maintain the same

modular and hierarchical structure as the task environment are shown to be more

evolvable than those that do not.

Finally, Chapter 5 introduces the concept sub-goal interference and the corre-

sponding metric I. I gives insight into a robot’s perception to environmental stimulus.

A high value of I means that changes in one independent sub-goal impacts perfor-

mance in a different independent sub-goal. Therefore a high I indicates the robot

cannot break down the environment into its independent parts. A low value of I

means the robot perceives each independent sub-goal as independent. When com-

bined with a performance metric, I can be used to accurately determine how well a

robot specializes to the specific sub-goals present in the environment. Further, the

work of Chapter 5 introduces the use of morphological cost as an effective and

simple method by which to guide evolution towards highly modular embodied agents.
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Chapter 2

Morphological Modularity Can

Enable the Evolution of Robot

Behavior to Scale Linearly with

the Number of Environmental

Features

2.1 Abstract

In evolutionary robotics, populations of robots are typically trained in simulation

before one or more of them are instantiated as physical robots. However, in order to

evolve robust behavior, each robot must be evaluated in multiple environments. If an

environment is characterized by f free parameters, each of which can take one of n
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features, each robot must be evaluated in all nf environments to ensure robustness.

Here we show that, if the robots are constrained to have modular morphologies and

controllers, they only need to be evaluated in n environments to reach the same level

of robustness. This becomes possible because the robots evolve such that each module

of the morphology allows the controller to independently recognize a familiar percept

in the environment, and each percept corresponds to one of the environmental free

parameters. When exposed to a new environment, the robot perceives it as a novel

combination of familiar percepts which it can solve without requiring further training.

A non-modular morphology and controller however perceives the same environment

as a completely novel environment, requiring further training. This acceleration in

evolvability – the rate of the evolution of adaptive and robust behavior – suggests

that evolutionary robotics may become a scalable approach for automatically cre-

ating complex autonomous machines, if the evolution of neural and morphological

modularity is taken into account.

2.2 Introduction

Matarić and Cliff [74] pointed out that the time necessary to evolve robots grows

with the number of environments in which the robot should behave correctly. Fol-

lowing their work, let f be the number of free parameters in the environmental set

and let n be the number of features for each of these free parameters. So the total

number of environments is nf . (For example, if a robot must behave appropriately in

environments containing two objects (f = 2), and each object may be small, medium,

or large (n = 3), then there are nf = 32 = 9 possible environments in which the robot
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must perform correctly.) Thus, in order to evolve robots to perform complex behavior

(which means increasing n, f , or both) the number of environments the robot needs

to be evolved in scales exponentially.

[88] presented one way to reduce the number of environments evaluated in while

still obtaining robust and generalized controllers for evolved robots. Using the ProGAb

approach they were able to successfully obtain robust and successful controllers with

better generalization abilities in less time than other top methods.However, their

work did not look specifically at the structure of the controller and morphology as

methods to reduce the necessary number of environments, nor did it categorize which

environments should be trained on.

The work presented here demonstrates that morphological and neural modularity

is one possible way to reduce the number of environments needed for evolving robust

behavior.

Modularity is ubiquitous at all levels of biological organization, from cells to dis-

tinct species. Explaining why such modularity exists, and how it evolved, remains an

important question in biology. Much work has focused on how modularity evolves in

non-embodied systems, but relatively little work has focused on the impact of mod-

ularity in evolving embodied systems. The work presented here contributes to this

latter aim.

2.2.1 Non-embodied modularity.

[109] argued that a combination of directional and stabilizing selection, acting

on different parts of the organism’s phenotype, should lead to modular developmen-

tal programs. Such modularity would enable evolutionary changes to that part of
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the phenotype experiencing directional selection, while retaining the structure and

function of the other parts of the phenotype under stabilizing selection.

This theoretical argument was confirmed by a number of computational experi-

ments. [72] showed that environmental change can be a catalyst for the evolution of

modularity. That work was followed by experiments in which non-embodied Boolean

networks [38] or neural networks [57, 23] were evolved to perform various tasks. The

tasks and fitness functions were chosen in such a way as to favor networks that com-

puted partial results using separate genetic or neural modules; changes to the fitness

function over evolutionary time favored networks that could rapidly change how those

partial results were combined. Thus, stabilizing selection came to bear on the partial

results, while directional selection acted on how those partial results were combined.

More recently, it has been shown that selecting for sparse networks helps to favor

the evolution of modular networks. [38] accomplished this by formulating a biased

mutation operator that favors low in-degree network nodes. [23] used a multiobjective

approach in which one objective was to minimize the number of edges in the network.

[4] showed that this relationship between sparsity and modularity can be exploited

to enhance the evolution of modular networks by seeding the initial population with

sparse rather than random networks.

Modularity is a desirable property of artificial systems for a number of reasons, be-

yond just the desire to create biologically-inspired artifacts. First, modular systems

possess a form of robustness: modular systems can more rapidly adapt to certain

kinds of changes in their environments, compared to non-modular systems. Sec-

ond, modular neural networks are better able to avoid catastrophic forgetting than

non-modular networks [35]. Catastrophic forgetting [44] is a common problem in ma-
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chine learning whereby a learner must forget something in order to learn something

new. Third, complex predictive models and dense, non-modular networks can suffer

from the pathology of overfitting: they fail to generalize to novel environments [60].

Modular networks can avoid overfitting by internally reflecting the modularity in its

environment: it responds appropriately in a ‘new’ environment which is actually just

an unfamiliar combination of familiar percepts.

2.2.2 Embodied modularity.

A modular robot may likewise be robust, and avoid catastrophic forgetting and

overfitting, but there are additional challenges that arise when evolving embodied

agents compared to non-embodied networks and morphologies.

Embodied cognition is a particular approach to the understanding of intelligence

which holds that the body must necessarily be taken into any account of adaptive

behavior [14, 21, 86]. One repercussion of the embodied cognitive stance is that,

if neural controllers are evolved for artificial embodied agents (i.e. robots), a given

robot body plan may facilitate or hinder the evolution of desirable traits. In the

context of modularity, previous work showed that there do exist body plans in which

modular neural controllers will evolve [10].

Follow-on work demonstrated that, given appropriate conditions, evolution will

find such body plans [13]. However, in [13], the morphology itself was not modular,

only the neural networks that evolved to control it.

Here we investigate another aspect of the relationship between morphology and

modularity: For a given task environment, must both the body and neural controller

be modular, and if so, in what way? Before addressing these issues however, we must
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define both neural modularity and morphological modularity.

2.2.3 Neural modularity and morphological mod-

ularity

In this work we investigate robots controlled by artificial neural networks. A com-

mon approach to measuring the amount of modularity in a network is to investigate

its connectivity: a network that has dense connectivity within subsets of nodes, and

relative sparsity between those subsets, is said to be modular [79]. Following this

approach, we here investigate modular neural controllers in which subsets of sensor,

internal, and motor neurons are connected, but there are no synaptic connections

between these subsets. We compare these to non-modular networks in which any

sensor can influence any motor.

In a neural controller in which sensor information flows from sensor neurons to

internal neurons to motor neurons, this structural approach to modularity implies a

functional repercussion. If subsets of sensors and motors are completely structurally

independent, they will be functionally independent as well: changes to a subset of

sensors will only have an influence on a subset of motors.

Thus, we here define neural modularity in the following manner.

Neural modularity: A neural network with i sensor neurons S = {s1, s2, . . . , si}

and j motor neurons M = {m1,m2, . . . ,mj} is defined to be modular if every pos-

sible change to less than i of the sensors results in changes to less than j of the motors.
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Conversely, in a non-modular neural controller, it is possible for a change to fewer

than i sensors to influence the new values of all j motors. It is possible that a non-

modular neural controller may internally extinguish certain sensor dynamics from

reaching some motors, but we disregard this case in the present work. This results in

a simplified, binary definition of modularity: either a neural controller is modular or

it is not. Here, we investigate robots with both types of neural controller.

This approach to defining the modularity of robot neural controllers suggests a

similar approach for defining the modularity of a robot’s body plan:

Morphological modularity: A robot is defined to be morphologically modular if

a change in less than j of its motors results in a change in the state of the world

registered by at least one and strictly less than i of the robot’s sensors.

One common definition of morphology is any agent sub-system that mediates

between its controller and its environment. More specifically, when an agent acts,

it alters its relationship with its environment. If it is equipped with sensors, it can

register this change. The above definition of morphological modularity captures the

intuition that structural independence of the body, like structural independence of

a neural network, implies functional independence: if a robot moves one part of its

body that is independent of the rest of its body, local sensors will register the action,

but more sensors on other morphological modules will not.

Armed with these two definitions, one can investigate four classes of robots:

1. those that are morphologically and neurally non-modular;

2. those that are morphologically modular but neurally non-modular;
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3. those that are morphologically non-modular but neurally modular; or

4. those that are morphologically and neurally modular.

In this study we evolve robots belonging to the first, second, and fourth class. One

can deduce that robots which belong to the third class are functionally equivalent

to those which belong to the first class: If a morphologically non-modular robot

moves, its motion will affect all of its sensors. These sensors will then affect all

motors, regardless of whether its neural controller is modular or not. Further, for

this instance of the treebot, there is no design of a robot of the third class with a

completely modular controller where both leaf sensors influence the motor neuron. If

the controller was modular only one or none of the leaf sensors would influence the

motor neuron.

Although modular robots have been the focus of a number of studies [113, 40], here

we compare morphologically modular and non-modular robots to investigate a specific

and new question: if modular and non-modular robots are evolved in an increasing

number of environments, are the robots with modular controllers able to detect famil-

iar percepts combined in unfamiliar ways, and, with a modular morphology, respond

appropriately?

This question brings to light a challenge for modular, embodied agents that mod-

ular, non-embodied systems do not experience. Even if an embodied agent has a

modular neural controller with which it detects novel combinations of familiar per-

cepts in a new environment, once it moves, its perceptions will change, and the

environment may no longer ‘look’ modular. We show here that movement in a new

environment continues to appear modular from the robot’s point of view only if it

also has a modular morphology: it is free to move in response to independent per-
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cepts as it did previously, without disrupting the sensory signals arriving at other

morphological modules.

The methods employed for investigating this issue are described in the next sec-

tion. Section 2.4 reports our results, while sections 2.5 and 2.6 provide some analysis

and concluding remarks, respectively.

2.3 Material & Methods

This section describes the body plans of the simulated robots (Sect. 2.3.1), their

various controllers (Sect. 2.3.2), the task environments they operated within (Sect.

2.3.3), the evolutionary algorithm used to optimize their controllers in those environ-

ments (Sect. 2.3.4), and the experimental design (Sect. 2.3.5).

2.3.1 The robot morphologies.

Two robot morphologies were considered: one which is modular and one which

is non-modular. Figures 2.1a and 2.1b represent robots with modular morphologies

while Figure 2.1c represents the non-modular one.

Robots were instantiated as trees composed of hierarchically-branching segments.

Both robot morphologies considered here were composed of one root branch and two

leaf branches. Each branch had length one, and the leaf branches were placed at 45

degree angles from the base. The robot contained three joints: one connecting the

base branch to the environment itself (the base joint), and two that connect the base

of each leaf branch to the tip of the root branch (the leaf joints). In the modular

robot, the leaves were free to move independently of one another and the root was
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(a) M (b) MNM (c) NM

Figure 2.1: The controllers and morphologies for each of the three robots. The red diamonds
indicate that branches connected at that position are fixed relative to one another. Large
blue circles indicate that the branches rooted at the circles are free to move independently
of one another. Beige circles represent leaf tips. The small circles represent neurons: Blue
neurons represent motor neurons, white represent sensor neurons, and yellow represent
hidden neurons. The modular robot is represented by (a) on the left, the mod-nonmodular
(b) is in the middle and the non-modular robot is represented by (c) on the right. Blow
ups of the network structure are included. All hidden neurons and motor neurons have
recurrent self-connections which are not depicted. Further, all connections except those
with the sensor neurons are two-way.
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fixed, whereas in the non-modular robot the leaves were fixed and the root was free

to move.

In the non-modular robot, this was accomplished by instantiating the base joint as

a rotational hinge joint and the two leaf joints as fixed joints. In the modular robot,

the base joint was fixed and the two leaf joints were rendered as rotational hinge

joints. The base hinge joint movement was restricted to rotations of [−120o, 120o]

and the leaf hinge joints restricted movement to rotations of [−45o,+45o] around the

vertical axis. These angles are relative to the initial angle of the joint, which is treated

as zero degrees.

The robots were designed in this way such that a single parameter could dictate

how modular the robot’s body plan was. If we define [−45αo,+45αo] as the range of

rotation of the leaf joints, [−120(1 − α)o,+120(1 − α)o] as the range of rotation of

the base joint, and restrict α to [0, 1], then higher values of α create more modular

robots, with α = 0 and α = 1 corresponding to the maximally non-modular and

maximally modular robots investigated here. The robot with α = 0 is considered

morphologically non-modular according to the definition above, and any robot with

α > 0 is considered morphologically modular.

2.3.2 The robot controllers.

Three robot controllers were considered in this work. The first makes the robot

neurologically modular (Fig.2.1a) while the second and third makes the robot neuro-

logically non-modular (Fig. 2.1b,c). All controllers contain two distance sensors (the

small blue circles if Fig. 2.1), one in each of the two branches of the robot’s body

plan. These sensors emit a beam that enables the robot to sense the distance from a
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branch to any objects in the environment. The value returned by this sensor is the

length of the beam. The maximum length of the beam, if unobstructed, was set to

10 units so the largest value the sensor neuron could have is 10.

Controller M (Fig 2.1a) consists of a sensor neuron, a motor neuron, and four

hidden neurons in each leaf branch. The sensor feeds into all of the hidden neurons

which are completely interconnected with each other. All of the hidden neurons also

have connections to the motor neuron, which also is connected back to all of the

hidden neurons. Finally, all of the hidden neurons and the motor neuron are self

connected, giving the M robot a total of 12 neurons and 50 synapses.

Controller MNM(Fig2.1b) consists of two sensor neurons, seven hidden neurons,

and two motor neurons. The hidden neurons are in a two layer structure. The input

from the sensors is passed into each of the four neurons in the first hidden layer. They,

in turn, feed forward into the second hidden layer. The second layer has synapses

connected back to the first one and also forward to the motor neurons. The motor

neurons are also connected back to the second hidden layer. Finally all of the hidden

neurons and the motor neurons are self connected. Therefore MNM has 11 neurons

and 53 synapses.

Controller NM (Fig 2.1c) consists of two sensor neurons, seven hidden neurons,

and one motor neuron. The hidden neurons are organized in a two layer structure.

The sensor values input into the four neurons in the first layer which then feed forward

into the three neurons in the second layer. The second layer has synapses going back

to the first layer and forward to the motor neuron. The motor neuron is also connected

back to the second layer. Finally all of the hidden neurons and the motor neuron are

self connected. Therefore NM has 10 neurons and 46 synapses.
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During evaluation, each sensor neuron received the raw distance value from its

sensor. The hidden and motor neurons were updated using

ni = tanh
 ∑
nj∈Ini

wjinj

 (2.1)

where Ini
is the set of incoming synapses to neuron ni and wji is the weight of the

synapse from neuron nj to neuron ni. The hyperbolic tangent function limits the

hidden and motor neurons to floating point values in [−1,+1].

Movement was controlled using proportional difference control. The values output

by the motor neurons were scaled to the range [−45,+45] and treated as desired

angles. The rotational velocity of a branch at each time step was thus determined by

the difference between the desired angle determined by the value of the motor neuron

in that branch (or at the root) and the current angle of that branch (or root).

2.3.3 The task environments.

The robots were evolved for a simple embodied categorization task: the robots

were evolved to ‘point at’ Type A spheres and ‘point away’ from Type B spheres

(Fig. 2.2). Each environment that a robot was placed in contained a pair of spheres.

Following [74], this corresponds to two free parameters (f = 2): the object on the left

and the object on the right.

Three environment spaces were considered.

The first was the simplest consisting of a 2 × 2 environment space, giving four

separate environments (Fig. 2.3a). Each sphere could be Type A or Type B (n = 2).

For this environment the type A sphere had a radius of 3.5 and the type B sphere
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(a) Desired modular morphology behav-
iors

(b) Desired modular non-morphology be-
haviors

Figure 2.2: Drawings of desired behavior for the modular morphology (2a) and non-modular
morphology (2b) in each of the four environments in the 2× 2 environment space. Arrows
indicate desired movement away from the base position (the base position is shown in the
top left panels). Gray segments and arrows indicate other acceptable behaviors.

had a radius of 0.5.

The second environment space contained 3× 3 environments, meaning nine total

environments to consider (Fig. 2.3b). A sphere could be one of two instances of Type

A (either A or a) or Type B. For this environment space A had a radius of 3.5, a

had a radius of 0.5, and B was in the middle with a radius of 2.0. Thus, for this

environment space, n = 3.

Finally, the last environment space considered contained 4 × 4 = 16 different

environments (Fig. 2.3c). A sphere could be one of two instances of Type A (A or a)

or one of two instances of Type B (B or b). For this environment space, spheres of

type A, B, a, and b had radii of 3.5, 2.5, 1.5, and 0.5, respectively. Therefore, n = 4

for this environment space.

Open Dynamics Engine was used to simulate the robots and the environment. A
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(a) 2x2 (b) 3x3 (c) 4x4

Figure 2.3: The three environment spaces considered. A,B, a, b represent spheres positioned
on the left or right of the robot. Uppercase letters represent bigger spheres than their low-
ercase counterparts. Robots were evolved to ‘point’ at A={A, a} spheres and away from
B={B, b} spheres.

time step size of 0.05 was used.

2.3.4 Evolutionary optimization

The robots were trained using Age-Fitness Pareto Optimization (AFPO; [95]).

AFPO is a multi-objective optimization algorithm which is designed to maintain

diversity in an evolving population by periodically injecting new random individuals

into the population and restricting the ability of older individuals to unfairly compete

against younger individuals. In all of the experiments reported herein, a population

size of 40 was employed.

Mutations in the population occurred in the form of choosing a new weight for a

synapse from a normal distribution with mean of the current weight and a standard

deviation proportional to the absolute value of the current weight. This mutation

operator enables evolution to rapidly incorporate high magnitude weights if required,

while also being able to fine tune weights with low magnitude. Mutation rates were
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set to be the reciprocal of the number of synapses, thus yielding an average of one

synapse change per mutation.

The optimization function used was an error function which averaged the error of

the robot when exposed to each environment in the environment list E{}:

Err(E{}) = 1
||E{}||

∑
o`or∈E{}

e(o`or)− emin(o`or)
emax(o`or)− emin(o`or)

(2.2)

e(o`or) = g(o`) + g(or)
2 (2.3)

g(A) =


1, if d(A) > dmax(A)
d(A)−dmin(A)

dmax(A)−dmin(A) , otherwise
, g(B) =


0, if d(B) > dmax(B)
d(B)−dmin(B)

dmax(B)−dmin(B) , otherwise
(2.4)

where

• E{} is a single environment, e.g. (AA, bA,Bb, etc.)

• o` ∈ {A,B} indicates the type of the object on the left. Either (o` = A) or

(o` = B);

• or ∈ {A,B} indicates the type of the object on the right. Either (or = A) or

(or = B);

• e(o`or) indicates the robot’s error incurred in environment o`or during the last

time step;

• emin(o`or) and emax(o`or) indicate the minimum and maximum possible error

the robot can incur in environment o`or during any one time step, respectively.

These were calculated based on the environment present and the geometry of

the robot;
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• g(o`) and g(or) denote the errors incurred as a result of the left-hand and right-

hand objects, respectively;

• g(A) and g(B) denote the errors incurred as a result of the objects of each type.

• d(A) and d(B) denote the distances from the midpoint of the closest leaf to the

center of the object considered.

• dmax(A), dmin(A), dmax(A), dmin(B) denote the maximum and minimum dis-

tance values for the A and B environments. Because the motion range of

the modular and non-modular robots are inherently different, these values are

necessarily different. Further, the dmax(A) and dmax(B) values could be set

artificially lower than the actual maximums in order to create weighting which

more heavily considered g(A) term over g(B). dmin(A) and dmin(B) represent

the actual observable minimums depending on the geometry of the robot. The

values are presented in Table 2.1.

For the modular morphologies, dmax was set to the actual limit of motion of the

branch. For the non-modular morphologies, dmax was set to less than the actual range

of the motor to produce the desired behavior. By setting dmax less than the actual

range, any robot that goes past a certain distance away from the A sphere would have

an error of 1 for that object. Similarly, in the B sphere, if the robot moved far enough

away to be past dmax it was considered to have 0 error. This effectively created a

weighting to the influences between the A and B spheres which corresponded to the

robot learning the desired behavior as seen in Figures 2.2 and 2.4.
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(a) An evolved controller for the M robot

(b) An evolved controller for the M robot

Figure 2.4: The behaviors generated by two controllers that evolved to succeed in each of the
four environments in the 2x2 environment space. Lines emanating from the leaf branches
represent the distance sensors embedded in each.
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Actual Max. Distance dmax(B) dmax(S) dmin(B) dmin(S)

M Morphology 5.315 5.315 5.315 5.157 5.157

NM Morphology 7.596 6.002 7.200 5.028 5.028

Table 2.1: Table of maximum and minimum distance values for each morphology type.

2.3.5 Experimental Design

The first set of experiments consisted of evolutionary trials made up of fixed length

epochs in the 2x2 environment space. The robot starts by training on one environ-

ment for the duration of the epoch. At the end of each epoch a new environment

is added for the robot to be trained on. By the last epoch the robot is trained on

all four environments. So, from the robots’ perspective, when each new environment

was introduced, the environment space changes by becoming more complex. The

epoch length was set to 100 generations, thus each evolutionary run lasted for 400

generations. If a robot survived from the last generation of one epoch into the first

generation of the next epoch, its fitness was recomputed against this expanded set of

environments.

In the second set of experiments, the robots were evolved in a pre-determined sub-

set of the environment space. Unlike the previous experiment, the robot is introduced

to all of the environments in the subset at the same time instead of sequentially. After

the best robot in the population achieved a pre-specified error threshold in all of the

environments in the chosen subset, it was tested in the remaining environments not

in the subset without any further evolution to see how well it performed.
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{AA,AB,BA} {AA,AB,BB} {AB,BA,BB}

NM BB: 0.465 (±0.0445) BA: 0.593 (±0.0385) AA: 0.388 (±0.0232)

MNM BB: 0.665 (±0.00614) BA: 0.580 (±0.0168) AA: 0.586 (±0.0269)

Table 2.2: Mean values of the error for the non-modular robot types in the unseen environ-
ment after achieving an error of at most 0.15 in the three seen environments. Values in the
parenthesis represent one standard error of the mean.

2.4 Results

Experiment 1, described in Section 2.3.5, was run 50 times for all three robots

in four environments in the 2x2 environment space, yielding a total of 50 × 2 = 100

independent evolutionary runs. The order of the environments was AA,BB,AB,BA.

Figure 4.3 shows that at the start of each epoch there is a spike in the error in the

case of both the MNM and NM robot. In the case of the M robot, there is no spike

in error when the third (AB) and fourth (BA) epochs are introduced.

Experiment 2, described in section 2.3.5, was also run 50 times for the 2x2, 3x3,

and 4x4 environments on all of the robots. Thus there were 50 × 2 × 3 = 300

independent trials. For the first set of trials only the ‘diagonal’ of the environment

space was considered. For the 2x2 environment space this consisted of {AA,BB}.

For the 3x3 environment space the diagonal was {AA,BB, aa}. Finally, for the 4x4

environment space the diagonal was {AA,BB, aa, bb}. The error threshold was set

to 0.15. Figure 2.6 shows the results for these trials.

The next test using this experimental set-up considered another subset other than

the diagonal which had the same number of elements as the diagonal. Specifically, the
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Figure 2.5: Errors of controllers evolved for the M robot (left column), MNM robot (middle
column), and the NM robot (right column) in fixed epoch training (experiment 1 as described
in Sect. 2.3). New environment regimes occurred every 100 generations. Robots were evolved
along the diagonal of the environment space meaning the order presented to the robot was
AA,BB,AB,BA. Each blue curve corresponds to an individual evolutionary run: it reports,
at each generation, the controller with the lowest error in the population at that time. The
red curve reports the average of these runs.

‘corner’ of the environment space was considered Fig. (2.7). All three environment

spaces were considered. For the 2x2 environment space, the corner was designated

to be the top row of the environment space {AA,AB}. For the 3x3 environment

space, the corner was set as {AA,AB,BA}. Finally, for the 4x4 environment space,

the corner was {AA,AB,BA,BB}. Fifty trials of each robot in each environment

space were performed, yielding 50× 2× 3 = 300 independent trials. Again the error

threshold was set to 0.15.

The last test performed using this experimental set-up looked at how well the

MNM and NM robots respond to an unseen environment in the 2x2 case when evolved

in three out of the four environments. The robots were evolved in three different sub-

sets: {AA,AB,BA}, {AA,AB,BB}, and {AB,BA,BB}. Because of the inherent

symmetry in the problem, {AA,AB,BB} is the same as {AA,BA,BB}, so only one
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Figure 2.6: The M (bottom row), MNM (middle row), and NM (top row) robots were evolved
along the diagonal (environments with blue boxes around them) until they achieved an error
of less than or equal to 0.15 in each environment in the subset considered. The robots
were then tested in the remaining environments. The color of the box of each environment
represents the average reported error in that environment. The lighter the color, the greater
the average error with white representing an error of 1.0 and black representing an error of
≤ 0.15. In the modular case, every robot achieved an error of less than or equal to 0.15 on the
off diagonal environments. Over the 50 trials, both the non-modular and mod-nonmodular
robot averaged an error greater than 0.15 in all of the off diagonal environments.
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Figure 2.7: The M (bottom row), MNM (middle row), and NM (top row) robots were
evolved in the corners (environments with blue boxes around them) until they achieved an
error of less than or equal to 0.15 in each environment in the subset considered. The robots
were then tested in the remaining environments. The color of the box of each environment
represents the average reported error in that environment. Here we see that it is necessary
to use completely independent subsets of the environment space to ensure linear scaling in
the modular case.
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was chosen to be tested. Results are presented in Table 2.2.

2.5 Discussion

When the modular robot is presented with a new environment, it is able to break

down that environment into a combination of percepts. If the robot has seen those

percepts before, even if the combination of those percepts is unfamiliar, it is able to

act appropriately. Evidence for this is shown in Fig.4.3. There is no spike in error

in the modular case at the start of the third and fourth epochs when the AB and

BA environments are introduced. In contrast, the non-modular robots cannot see the

environment in this manner, as is shown by the presence of error spikes at each new

epoch.

Fig. 2.6 shows that when the modular robot is evolved along the diagonal of

the environment space, it is able to achieve acceptable error levels, that is at or

below the pre-determined cut off threshold (0.15), in the remaining environments

in the environment space. This suggests that, for this specific task, the number of

environments needed to evolve a robot with a modular morphology and controller

scales with the size of the diagonal of the environment space. Therefore the necessary

number of environments for the modular robot seems to scale linearly with n, where

n is equal here to the number of variations in the size of the spheres.

Conversely, the robots with the non-modular morphologies or controllers do not

achieve acceptable, at or below 0.15, errors in the other environments in the space

by simply evolving along the diagonal, as seen in Fig. 2.6. This means that for this

task, the number of environments the robot needs to be evolved in before achiev-
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ing adequate fitness for the whole environment space is greater than the number of

environments along the diagonal.

Table 2.2 shows that even when either of the non-modular robots is presented

with three out of the four environments in the 2x2 environment space they cannot

use what it has seen in previous environments to help them in the unseen environment.

Thus, at least for the 2x2 environment space case, the non-modular robots need to be

evolved in each environment in the entire space in order to achieve adequate fitness.

Figure 2.7 indicates that just choosing any subset of environments to evolve in does

not guarantee adequate fitness in the remaining unseen environments. Specifically,

the results point to choosing a subset of environments in which each environment is

completely independent from every other environment in the subset. In this context,

completely independent environments are those which do not share the same row

or column. For example, AB would be completely independent from aa since both

the right (A 6= a) and left (B 6= a) spheres are different. As a converse example,

AB and Aa are not completely independent since the left sphere is the same in both

environments, namely A. These results further suggest that a modular robot can

recognize familiar precepts from previous environments and respond appropriately to

them, even when they are presented in an unfamiliar combination. This is seen in

the result from Fig. 2.7, which shows that in the 3x3 environment space case, when

the robot is tested in the BB environment, it reacts appropriately without requiring

further evolution.

Figure 2.7 also shows the side result that evolution will generally find the simplest

action to solve the problem at hand. In the 4x4 environment space case both the

modular and non-modular robot evolve to act on any sphere of size B or smaller (the
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a or b sizes) as an instance of the B sphere. Thus, the robots do well in the remaining

environments comprised of b spheres and poorly in the environments containing a

spheres since the action desired for B sizes is the same as b and different than the

action desired for a.

2.6 Conclusions

This paper has shown that a modular morphology combined with a modular

neural control can enable a robot to break down seemingly novel environments into

combinations of familiar percepts. Moreover, if robots possess both this morphological

and neural modularity, these robots are also likely to move in a similar manner in

these environments, thus continuing to perceive the environment as a combination

of familiar percepts. Assuming that the robot should always react the same way to

each of these local percepts, it follows then that such a robot is likely to exhibit a

successful behavior in this novel environment without requiring further training.

Robots with either non-modular morphologies or non-modular neural controllers

cannot easily exhibit this phenomenon and, as a result, are likely to require additional

training even in environments that contain individually familiar percepts. Given this,

we have shown that, for this task, robots with a modular morphology, combined with

a modular neural controller, need to be evolved only in a linearly growing number

of environments, whereas the number of environments non-modular robots require

grows superlinearly. Our results indicate that it is likely that non-modular robots

will require evolution in all of the possible environments in the space.

In future work, we would like to investigate specifically how the amount of evolu-
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tionary time necessary to evolve adequately fit robots scales for both the modular and

non-modular robots. We plan to accomplish by completely evolving both the modular

and non-modular robots in the 2x2, 3x3, and 4x4 environment spaces. Further, we

will look into scaling both f and n instead of just n, as was presented in this work.

If we consider our entire environment space to be a hypercube composed of nf

hypervoxels representing each individual environment, then there will be n voxels

along the diagonal of the hypercube. If it is sufficient for a modular robot to simply

evolve along this diagonal, then it is possible for time complexity, in this case the

number of evolutionary time steps, necessary to evolve a given robot in an nf sized

environment space to decrease from O(nf ) to O(n). However, this ideal case holds

only if the robots are already morphologically and neurologically modular.

If robots begin with little or no morphological or neural modularity, it follows from

[57] that if environments are added in a modularly-varying way, more modular robots

should evolve. This can be accomplished in this framework by ensuring that each

newly-added environment contains just one new feature of one of the free parameters

describing the environments, while the other free parameters hold to a feature against

which the robots have already been trained. This would require environments to be

added to the training set along each of the edges of the environment hypercube in

sequence, thus reducing O(nf ) to O(nf). Determining whether this theoretical result

holds in practice, and under what conditions, is another worthy target of future

investigation.

There are many other problems to investigate, including how these results here

can be generalized to more complex and realistic robots and task environments. Fur-

thermore, under what conditions would the evolved modularity be maintained when
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the evolved robots are instantiated as physical robots.

Ultimately, this work thus suggests that there may exist a relationship between

morphology, modularity, evolvability, and scalability, which may in future enable the

automated optimization of increasingly complex robots that perform appropriately

in increasingly complex environments.
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Chapter 3

Reducing Training Environments

Through Ecological Modularity

3.1 Abstract

Due to the large number of evaluations required, evolutionary robotics experi-

ments are generally conducted in simulated environments. One way to increase the

generality of a robot’s behavior is to evolve it in multiple environments. These envi-

ronment spaces can be defined by the number of free parameters (f) and the number

of variations each free parameter can take (n). Each environment space then has

nf individual environments. For a robot to be fit in the environment space it must

perform well in each of the nf environments. Thus the number of environments grows

exponentially as n and f are increased. To mitigate the problem of having to evolve a

robot in each environment in the space we introduce the concept of ecological modu-

larity. Ecological modularity is here defined as the robot’s modularity with respect to

free parameters in its environment space. We show that if a robot is modular along
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m of the free parameters in its environment space, it only needs to be evolved in

nf−m+1 environments to be fit in all of the nf environments. This work thus presents

a heretofore unknown relationship between the modularity of an agent and its ability

to generalize evolved behaviors in new environments.

3.2 Introduction

One of the major challenges to evolutionary robotics in particular, and evolu-

tionary computation in general, is the relatively slow rate of convergence toward

acceptable solutions due to these algorithms’ stochastic elements. This challenge is

exacerbated when robust behavior is desired: In such cases robots must be evolved

in multiple environments until the robots exhibit the desired behavior in all of them.

However, because of catastrophic forgetting [44], it is not usually possible to evolve

robots in one environment, discard that environment, continue evolving them in a

different environment, and have them retain their ability to succeed in the first en-

vironment. Thus, robots must be trained in some set of static environments, or

gradually exposed to a growing set of training environments over evolutionary time.

[74] pointed out convergence time explodes in such multiple-environment contexts

because of the combinatorics of parametrically-defined environments. Typically, a

set of training environments is generated before evolution commences by defining a

number of free parameters f , which represent aspects of the environment that change

from one to another. For each of these free parameters, there are n possible set-

tings. For example, given an object in the environment, a free parameter could be

the starting position of that object. If the object may have different sizes as well
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as starting positions in a given environment from taken for the total set of possible

environments, then f = 2. If there are two possible sizes, and two different starting

positions, then n = 2. [74] showed that if we wish evolved robots to succeed in all

environments defined for a given f and n, then the robots will have to be evolved in

nf environments.

3.2.1 Robustness

Much work has been done to increase the robustness of evolved behavior in robots.

For instance, Jakobi [54] investigated the introduction of noise to guard against evo-

lutionary exploitation of any inaccuracies in the simulator used to the evolve the be-

haviors. Lehman [68] demonstrated experiments in which explicit selection pressure

was exerted on robots to respond to their sensor input, thus ensuring that evolved

robots would behave differently when placed in different environments where they

could sense the changes. Bongard [8] demonstrated that robots with ancestors that

changed their body plans during their lifetimes tended to be more robust than robots

with fixed-morphology ancestors, because the former lineages tended to experience

wider ranges of sensorimotor experiences than the latter lineages. However, these and

similar works did not investigate the role that modularity might play in the evolution

of robust behavior. One exception is the work of Ellefsen et al. [35], in which an

evolutionary cost is placed on the synapses of disembodied neural networks trained

to compute logical functions. They had previously shown that such connection cost

tends to lead to the evolution of modular networks [24], and, in [35], this neural

modularity enabled evolved networks to rapidly adapt to new environments without

losing their ability to succeed in the original environments.
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3.2.2 Modularity

Like robust behavior, the ubiquity of modularity in evolved systems has spawned

an active literature. Work in this area can be divided into investigations into the evo-

lution of modularity in disembodied systems and embodied systems, such as robots.

Wagner [108] forwarded a theoretical argument that modularity evolves when

systems experience combinations of directional and stabilizing selection on different

parts of their phenotypes. This was subsequently verified by experiments using non-

embodied data structures [72], neural networks [56], [24], and models of gene networks

[36].

Investigations into the evolution of modularity in embodied systems begin with

Gruau [48], who employed an indirect genotype to phenotype mapping that allowed

for the construction of neural modules in a robot. Yamashita et al. [112] demonstrated

robots capable of learning independent motor primitives and then combining them in

novel sequences. In [11] and [13], Bongard et al. showed how to evolve structurally

modular neural controllers for autonomous robots.

However, none of these approaches investigate the relationship between both mor-

phological and neurological modularity as a way to increase generalization. That is,

how the structure of the robot’s morphology and controller may interact with the

environment to reduce the minimum number of environments robots must be evolved

in to generalize across the entire environment space.
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3.2.3 Morphological and neurological modular-

ity

Modularity has shown to be important in evolution of networks and robots be-

cause it helps the agent avoid catastrophic forgetting when presented with a new

environment [35]. Catastrophic forgetting is a problem when, in order to learn a new

task, an agent must forget what it previously learned [44].

However, most of the modularity research in robotics has focused on modularity

with respect to the controller of the robot. Most often the controller is a neural

network so network metrics are used. Most notably the Q-metric has been used

to define modularity in networks [80]. Q is a metric which measures the fraction

of edges which fall between within a group subtracted by the expected fraction of

edges within that group given a random network with the same degree distribution.

However, Q disregards many aspects of the morphology and control of robots which

may be important in determining if the robot is made up of actual useful modules.

More recent work has defined both neural and morphological modularity in terms

of the sensor-motor feedback loop [17]. It was shown that the number of necessary

training environments for robots that are morphologically and neurologically modular

in this manner grows less rapidly than the number of necessary training environments

in non-modular cases when the number of free parameters, f , was held constant and

the number of variations, n, was increased.

In this work, we build upon this research by holding n constant and increasing f .

Also, we continue to use those definitions of neurological and morphological modu-

larity and expand them by considering the robot’s interactions with its environment
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space a property which we here term ‘ecological modularity’.

3.2.4 Ecological modularity

We define the following terms and variables to be used throughout the paper:

• F - The set of free parameters in the system with cardinality f . Free parameters

are the dimensions of the environment space which change.

• n - number of variations of each free parameter in F . Because we are only

considering free parameters that vary, n ≥ 2. For simplicity, all free parameters

are assumed to have the same number of variations.

• Discrete Environment Space - The set, E, comprised of all the possible

combinations of free parameter variations. These are environment spaces which

can be discretized and organized into an f -dimensional hypercube with nf hy-

pervoxels each corresponding to one individual environment. Therefore there

are a total of nf environments in E. Each environment can therefore be defined

as a f -tuple consisting of the variations of each free parameter.

• Orthogonal Environments - Orthogonal environments are those in which

none of the variations of the free parameters are equal. Thus given two envi-

ronments e1 and e2, π(j)
e1 6= π(j)

e2 for all j in F . For example,

(
π

(1)
1 , π

(2)
1 , . . . , π

(f)
1

)
⊥
(
π

(1)
2 , π

(2)
2 , . . . , π

(f)
2

)

because π(j)
1 6= π

(j)
2 for each j.
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• Orthogonal Environments along a Subset of Free Parameters - Let

D ⊂ F . Then two environments, e1, e2, are orthogonal along D if for each

d ∈ D, π(d)
e1 6= π(d)

e2 .

• Modularity along u Free Parameters - Let U be a subset of F with car-

dinality u. Let OU ⊂ E represent a subset of orthogonal environments along

U . A robot is said to be modular along U if, when the robot achieves sufficient

fitness in all u environments in OU , the robot will maintain its fitness in the

remaining environments where the variations along the F \ U free parameters

remain fixed. We note 1 ≤ u ≤ f for every robot and environment space.

• Ecological Modularity - LetM be a subset of F with cardinality m such that

M is the maximal subset of F a robot is modular with respect to. That is the

robot is modular with respect to every free parameter inM but none of the free

parameters in F \M . Then ecological modularity is defined to be the degree

to which the robot is modular with respect to its environment, m. Robots with

m = f are said to be fully ecologically modular, robots with 1 > m > f are

said to be partially ecologically modular, and robots with m = 1 are said to be

ecologically non-modular.

Using the definitions above, we claim the total number of environments necessary

for a robot to be evolved in is n(f−m+1). Meaning when we have a robot which is

fully ecologically modular (m = f) we only need to evolve the robot in n mutually

orthogonal environments, the easiest example of which is the ‘grand diagonal’ of the

hypercube representation of the environment space. When the robot is ecologically

non-modular (m = 1) we need to evolve the robot in all nf environments. The term
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f −m + 1 represents the number of free parameters the robot is not modular with

respect to.

3.3 Methods

In this section we describe the structure of the environment spaces, robot design,

evolutionary algorithm, and experimental design.

3.3.1 Robot design

Robot Morphology

The robots were designed with a branching, hierarchical morphology. A tree struc-

ture was chosen because it is symmetric, can easily be made modular/non-modular

by fixing different branch hinges, and is easily expandable. Each tree consisted of

one root node and two leaf nodes. The root node was connected to a point in space

by a hinge joint. The leaf nodes were connected to the root node by hinge joints.

Sensors were distance sensors placed in the leaf nodes of the robot. When the robot

was pointing at an object they returned the distance to that object. When the robot

was not pointing at anything, the sensor values returned a default value of ten.

Each robot was composed of three cylinders, one root node and two leaf nodes,

of length one. The base of each leaf node was attached to the tip of the root node.

Robots were initially positioned such that the leaves were horizontally rotated +45o

and −45o with respect to the root node. In this paper we explored two variations of

robot morphology.
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(a)M
(b) NM

Figure 3.1: The modular (3.1a) and non-modular (3.1b) robots’ morphology and control
structures. The morphology consisted of fixed hinges (red squares), free hinges (large blue
circles), and sensor nodes (large beige circles). The networks are presented blown up for
each robot. They consisted of sensor (white circles), hidden (yellow circles), and motor
(blue circles) neurons. Motor neuron output controls the hinge joint at the base of the node
the motor neuron is in. Connections between layers were feed-forward and feed-back. There
are also recurrent connections for each hidden and motor neuron not depicted.

First is the modular morphology,M. In the modular morphology, the root node

of the robot is fixed while the leaf nodes of the robot are free to move. Each leaf

could rotate horizontally [−45o,+45o] with respect to its starting position.

Second is the non-modular morphology, NM. In the non-modular morphologies,

the root of the robot is free to move while its leaf nodes are fixed. The root could

rotate horizontally [−120o,+120o].

Robots were simulated using Open Dynamics engine.

Robot controllers

Robots were controlled by artificial neural networks. All networks were layered

networks with both feed-forward and feed-back synapses as well as recurrent connec-

tions on both the hidden neurons and motor neurons. Different cognitive architectures

were employed for robots with different morphologies. Each of these architectures are
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reported in Figure 3.1. For the modular morphologies, each leaf node had a separate,

self-contained network connecting the leaf sensor to the motor neuron in the leaf (Fig.

3.1a). Each leaf network consisted of the one sensor neuron, two hidden layers with

four neurons each, and the one motor neuron.

For the non-modular morphologies, the network connected the two leaf sensor

neurons to the one root motor neuron. This network consisted of the one sensor

neuron, two layers with eight hidden neurons each, and the one motor neuron (Fig.

3.1b).

Sensor neurons could take values between [0, 10]. Hidden and motor neurons could

take values between [−1, 1]. Sensors could take any real valued number. Neurons in

the network were updated at each time step in the simulation. The value of each

neuron was determined by

y
(t)
i = tanh

y(t−1)
i +

∑
j∈J

wjiy
(t−1)
j

 (3.1)

where yti denotes the i neuron’s new value at time step t. y(t−1)
i denotes that neurons

value in the previous time step. wji denotes the weight of the synapse connecting

neuron j to neuron i.

3.3.2 Environmental setup

Environments consisted of two clusters of cylinders set up on the left and right

of the robot such that on the first time step of simulation, the robot pointed at the

center of each cluster as shown in Fig. 3.2. Cylinders were organized on a line segment

perpendicular to the direction of the leaf nodes. Clusters were placed such that the
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Figure 3.2: The starting point of the robots in simulation for each environment. The envi-
ronment space E2 = {e0, e1, e2, e3} is shown by the four left environments in the figure and
E3 = {e0, e1, . . . , e7} is shown by all eight environments which make up the figure. The δ
variable defines the initial distance of both clusters from the robot.

robot was initially pointing at their center. The diameter of each cylinder was equal

to the length of the line segment divided by the number of cylinders in the cluster.

A small constant value of ε = .1 was then added to the diameters so there were no

gaps between cylinders in the cluster. Thus, each environment consisted of three free

parameters:

• cL: The number of cylinders in the left cluster. cL ∈ {1, 2}.

• cR: The number of cylinders in the right cluster. cR ∈ {1, 2}.

• δ: The distance, in simulator units, the center point of each cluster is from the

tip of its corresponding sides leaf node of the robot. δ ∈ {4, 6}.

From the variables described above, we can categorize each environment as a

3-tuple (δ, cL, cR).

We can generate environment spaces by restricting which parameters are free and

which are fixed. In this manner we generate two different environment spaces we are

interested in:
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Figure 3.3: Physical robot made out of Legos. Can represent the M or NM robot by
fixing/freeing motors.

• E2 = (δ = 4, cL = ∗, cR = ∗)

• E3 = (δ = ∗, cL = ∗, cR = ∗)

where ∗ indicates that parameter is free to vary. From this we see E2 is a 2 × 2

environment space with four total environments and E3 is a 2 × 2 × 2 environment

space with eight total environments.

We can then enumerate individual environments by the corresponding tuples pa-

rameter values. For example, we let e(0,0,0) represent an environment that consists of

the first variation of each parameter, namely e(0,0,0) = e0 = (δ = 4, cL = 1, cR = 1).

Thus e(1,1,1) = e7 = (δ = 6, cL = 2, cr = 2) and so on for each environment. All of the

environments considered in this work are presented in Figure 3.2.

3.3.3 Physical implementation

The robot was also made in out of Legos as shown in Figure 3.3. While the physical

implementation can move and respond in the same manner as the simulation, it is

still in development so no evolution was performed using the physical robot.
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3.3.4 Evolutionary setup

The goal of the robot was to point towards clusters containing an even number

of cylinders and away from clusters containing an odd number of cylinders. This was

implemented using a simple counting method detailed in equation (3.4).

The fitness scores of each sensor for each time step, (sL(t), sR(t)), were then

summed and normalized with respect to the environment so the overall fitness was in

[0, 1] for each environment in the space (Eq. 3.3).

The fitness scores of each individual environment were then sorted from lowest to

highest (worst to best) and a weighted average was performed meaning the overall

fitness of the entire environment space also in the range [0, 1] (Eq. 3.2). Weighting

was performed by the geometric sequence wi = 1/(2i) for i = {1, 2, . . . , ‖O‖−1} where

O is subset of the environment space considered. In order to make the weights sum to

one, the last weight was set equal to the second to last weight. The other weighting

schemes considered were a mean average and simply taking the worst individual

environment fitness as the fitness for the whole environment set. Both converged

more slowly than method we use.

Overall Fitness =
∑
i∈||O||

wi fit(e(i)) (3.2)

fit(ei) = 1
normalize(ei)

T∑
t=T/2

sL(t) + sR(t) (3.3)
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s{L,R}(t) =



1 if the sensor is pointing at

an even cluster at time t

0 if the sensor is not pointing at

an object at time t

−1 if the sensor is pointing at

an odd cluster at time t

(3.4)

Evolution was performed using Age Fitness Pareto Optimization (AFPO) with a

population size of 50 [95]. AFPO is a multi-objective optimization method using a

genome’s age and fitness as objectives. Mutations occurred by way changing synapse

values in the neural network. If a synapse was chosen for mutation, a new weight was

drawn from a random Gaussian value with mean equal to the previous weight and

standard deviation equal to the absolute value of the previous weight. This mutation

operator is employed because it allows weights near zero to mutate very slightly, while

large-magnitude weights can be mutated in a single step over a much broader range.

A mutation rate was chosen such that the expected number of synapses mutated each

step was one.

3.3.5 Experimental setup

Robots were evolved in a subset, O, of the total environment space, E. O was

designated as the training set. When the best robot in the population achieved a

certain fitness threshold for each environment in O, evolution was halted and the

best robot was then tested in the remaining unseen environments, E \ O. We chose

a fitness value of 0.9 as the threshold. We performed 30 trials for each experiment.
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3.4 Results

The first environment space explored was E2, the 2× 2 environment space where

only cL and cR were varied. The training set of the robots was O2,2 = {e0, e3}. In E2,

O2,2 represents the grand diagonal of the space. Figure 3.4a shows thatM was able

to achieve sufficient fitness in the entirety of E2 when the robot achieved sufficient

fitness in O2,2. Figure 3.4b shows that NM was not able to achieve sufficient fitness

in all environments of E2. The robot was not above the fitness threshold in any

unseen environment for any trial.

The second environment space we explored was E3, the 2×2×2 environment space

where cL, cR and δ were free parameters. For this environment space, the training

set was O3,4 = {e0, e3, e4, e7}. This training set represents diagonal sub-spaces of

environments for each value of δ. The M robot was able to be sufficiently fit in

the whole space while only being evolved in the environments in O3,4 (Fig. 3.5a).

The NM robot was not able to achieve sufficient fitness in the rest of E3 after

achieving sufficient fitness in O3,4 (Fig. 3.5b). We also evolved the M robot in E3

using a different training subset. For this experiment, O3,2 = {e0, e7} which is the

grand diagonal of E3. Results presented in Fig. 3.6 show theM was not able to be

sufficiently fit.
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(a) Modular robot in E2 (b) Non-modular robot in E2

Figure 3.4: Average fitness scores forM (3.4a) and NM (3.4b) robots in E2 with training
set O2,2 = {e0, e3}. O2,2 is represented by the blue outlines around the environments.

(a)M robot in E3

(b) NM robot in E3

Figure 3.5: Average fitness scores forM (3.5a) and NM (3.5b) robots in E3 with training
set O3,4 = {e0, e3, e4, e7}. O3,4 is represented by the blue outlines around the environments.
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Figure 3.6: The M robot evolved with training set O3,2 = {e0, e7}. We see that the robot
does not achieve adequate fitness when only evolved in O3,2.

(a) Modular Robot (b) Non-modular Robot

Figure 3.7: Sensor values of the left and right distance sensors for randomly chosen M
and NM robots evolved in training set O2,2 = {e0, e3}. We see that the modular robot can
move one leaf node without affecting the sensor value of the other arm. In contrast the
non-modular robot cannot.

70



3.5 Discussion and Conclusion

When a robot with ecological modularity is presented with a new environment, it

is able to break down that environment along M , the free parameters it is modular

with respect to. The robot then can recognize this new environment as a combination

of percepts it has seen before and act accordingly. This means the robot only needs

to be evolved in a subset of the whole environment space. Specifically, the minimal

size of this subset is nf−m+1.

As the ecological modularity in the robot increases, it is able to break down more

free parameters in the environment space. This is shown by the fact the M robot

can achieve fitness at or above 0.9 in environments it has not seen before while the

NM robot cannot as seen in Figs 3.4 and 3.5.

We claim that in both the E2 and E3 environment spaces theM robot has m = 2

while the NM robot has m = 1. This is because the robot can break down its

environment because it is able to move its sensors independently (Fig. 3.7a ). The

NM robot cannot break down its environment into left and right percepts because

it is morphologically and neurologically non-modular (Fig. 3.7b). When it senses a

new percept on the right it fundamentally changes how it views its environment even

if the percept on the left remains constant. Therefore, in the E2 environment space

m = 2 forM and m = 1 for NM.

Neither theM nor NM robots are modular with respect to δ. This is shown by

the fact that they cannot be simply trained along the diagonal of E3 to be sufficiently

fit in the whole space (Figs. 3.5 and 3.6). Therefore, in the E3 environment space

m = 2 for M and m = 1 for NM. We hypothesize that if a robot was able to
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categorize the clusters independently of distance then, in E3, the robot would have

m = 3 and only n3−3+1 = n environments would be necessary.

In this paper we introduced the concept of ecological modularity and showed that

robots which are ecological modular can be sufficiently fit in an entire environment

space even though they are only evolved in a subset of its environments. Robots that

are not morphologically modular cannot move without changing their entire percep-

tion of their environment and thus cannot break down their environment into familiar

percepts. Similarly, ecologically non-modular robots cannot view the varying environ-

ments in terms of unfamiliar combination of familiar percepts because they cannot

sense their world in a manner which breaks down the environment into individual

percepts.

In future work we would like to investigate whether ecological modularity can be

discovered by evolution instead of from human construction of these robots.
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Chapter 4

Embodied Embeddings for Hyper-

NEAT

4.1 Abstract

A long time goal of evolutionary roboticists is to create ever-increasing lifelike

robots which reflect the important aspects of biology in their behavior and form.

One way to create such creatures is to use evolutionary algorithms and genotype to

phenotype maps which act as proxies for biological development. One such algorithm

is HyperNEAT whose use of a substrate which can be viewed as an abstraction of

spatial development used by Hox genes. Previous work has looked into answering

what effect changing the embedding has on HyperNEAT’s efficiency, however no work

has been done on the effect of representing different aspects of the agents morphology

within the embeddings. We introduce the term embodied embeddings to capture the

idea of using information from the morphology to dictate the locations of neurons

in the substrate. We further compare three embodied embeddings, one which uses
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the physical structure of the robot and two which use abstract information about the

robot’s morphology, on an embodied version of the retina task which can be made

modular, hierarchical, or a combination of both.

4.2 Introduction

The ultimate goal of evolutionary artificial intelligence and automated machine

research is to have the complex forms and behaviors of animals reflected in the agents

created by algorithms. Modularity, hierarchy, and regularity are important factors to

consider when creating agents which reflect the complexities seen in biology [19, 94,

49, 12].

In mammalian fetal development, HOX genes are activated at different times in

development based on the strength of chemical gradients physically present in the

morphology of the organism [33, 63]. In one example, Hox genes at the beginning of

the genome are activated first near the anterior end of the organism while Hox genes

at the end of the genome are activated later in development along the posterior of

the organism. This allows development to easily generate symmetry and structure

based on a local interaction of chemicals. This type of development helps generate the

repeated, hierarchical, and modular structures present in a biological agents body.

Indirect encodings which incorporate development in some manner can help ar-

tificially act as development similar to how Hox genes behave during mammalian

development[101, 7]. Indirect encodings also have the benefit of only needing to op-

timize a set of parameters existing in a smaller dimension than a counterpart direct

encoding. Instead of choosing the weight of each synapse, an indirect encoding instead

76



provides rules or functions for how the weights should be set [47]. Evolution then only

has to optimize the rules for determining the weights and not the weights themselves

meaning indirect encodings can be applied to arbitrarily tasks with arbitrarily large

networks without increasing the search space evolution actually exists in. Indirect

encodings can also introduce regularity into the phenotype of the agent, similar to

what is found in natural agents [28]. If the rules used by the indirect encoding con-

tain symmetry, it is likely symmetry will be reflected in the final individual. In the

effort to create more natural evolved robots being able to codify natural development

processes in the generation of said robots is an important step.

HyperNEAT, explained in more detail in the next section, is a direct encoding

which acts as a proxy for development for artificial agents. Similar to Hox genes,

HyperNEAT takes locality into account in its genotype to phenotype map. We call

an embodied embedding when the locality present in the substrate is based on some

aspect of the morphology of the agent. We provide evidence that different embodied

embeddings provide differences based on the objective the robot is tasked to perform.

4.2.1 HyperNEAT

HyperNEAT is a genetic algorithm specialized in creating gradients and patterns

along substrates [101]. When used on neural networks, Hyperneat uses Compositional

Pattern Producing Networks (CPPNs) to determine the synaptic weight between two

neurons by taking in the embedded locations of the source and target neuron as

input. The output of the CPPN is then used to determine the weight of the synapse.

HyperNEAT uses the NEAT algorithm to determine the structure and topology of the

CPPN. The initial population for NEAT is a simplistic network directly connecting
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Figure 4.1: A depth 2 robot in an environment consisting of two Far cylinders on the left
and two Near cylinders on the right. The robot is tasked with a local and a global objective.
The local objective consists of pointing at the white portions of the cylinders while the global
objective consists of moving its root node upwards because there are an even number of each
type of cylinder. The initial position of the robot is shown on the left. At the midpoint
of evaluation (middle image) the robot is correctly pointing at the correct portions of the
cylinders. Rays coming out of the robots leaves are purely graphical to help indicate where
the robot is pointing. Towards the end of simulation (right) the robot has completed the
global task at the cost of half of the local task.

inputs to outputs with randomly determined weights. Over evolutionary time the

network is made more complex by adding nodes and edges to the network, as well

as changing the weights of the edges. The activation functions of the nodes are

chosen from a predetermined list of functions which can be chosen to reflect the

relevant regularity needed in the specific task at hand. NEAT further uses diversity

preservation techniques which give new genotypes a chance to optimize to the task

before removing them from the population due to fitness.

HyperNEAT has been shown to be effective in a wide range of domains which

require regularity from determining weights in neural networks, to painting images,

and determining an agent’s morphology [30].

There are many variants and modifications one can make to HyperNEAT. The one

we use throughout the experiments in this paper is HyperNEAT with Link Expression

Output (HyperNEAT-LEO). HyperNEAT-LEO uses two outputs to the CPPN, one

to determine the weight of the synapse in question and one to determine whether the
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synapse is expressed or not in the final neural network [106]. By allowing evolution

to control whether the synapse is expressed, HyperNEAT-LEO can control the final

topology of the produced neural network and explicitly dictate the presence of mod-

ules. To further imbue the concept of modularity and locality for HyperNEAT-LEO,

the initial population of CPPNs can be seeded with Gaussian nodes which are acti-

vated only when input neurons are close to eachother in their embedded substrate.

Thus synapses are initially much more likely to be expressed if the neurons are close

in embedded space.

This type of control over synaptic expression can be useful in tasks in which mod-

ularity is necessary [106]. One such task is the Retina Task detailed later in the paper.

So far the majority of tasks which use HyperNEAT-LEO have been disembodied net-

works in which modularity is critical or necessary to correct completion of the task

[106, 53]. In this work we apply HyperNEAT-LEO to an embodied agent evolved in

task environments that are modular and hierarchical.

4.2.2 Substrate Analysis

[25] showed that the configuration of the substrate can impact fitness and effi-

ciency when using HyperNEAT. The authors applied different embodied embeddings

for a quadruped. In one experiment, the embeddings differed by the dimension of

the geometric representation. The authors tested 1,2, and 3-d representations for the

neural network controlling the quadruped, the idea being that the 3-d representation

more encompasses the actual symmetries and structure present in the physical robot.

They showed that the 2 and 3-d representations resulted in similar performance mean-

ing that this increase in dimensionality did not help or hinder HyperNEAT’s ability
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to evolve a walking gait in the quadruped. Their work did not use information about

the abstract structure and relationships between components in the morphology in

determining the embedding.

Further work in the impact on of embedding locations has been focused on evolvable-

substrate HyperNEAT (ES-HyperNEAT) which evolves the location of neurons in the

substrate as well as the CPPN [92, 93]. While these methods have shown to have

been effective on benchmark problems, when the designer of the substrate is given a

body in which to physically place neurons, it allows the morphology to dictate the

structure of the controller.

4.2.3 Retina Task

The retina task is an inherently hierarchical and modular task. Two retinas, on the

left and right, are fed into a neural network. The modular aspect of the retina task is

to distinguish whether each retina contains a target pattern or not. The hierarchical

aspect of the retina task is to then take whether each retina is a target pattern or not

as a logical input and compute a function on that input, like NAND.

The original goal of the retina task was to show that modularly varying goals

causes evolution to generate modular networks whereas fixed goals tend to gener-

ate nonmodular networks [57]. In their initial paper [57] used direct encodings to

construct the neural networks topology and synaptic weights. By changing the logi-

cal function the network needed to compute periodically, they were able to generate

networks which exhibited left-right modularity.

[27] then used the same retina task using HyperNEAT to specify the neural net-

work. They found that HyperNEAT performed much more poorly than the direct
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encodings used previously as well as finding that the solutions produced by Hyper-

NEAT were not modular.

In response, [106] showed that by using Hyperneat-LEO modular solutions were

found to the retina task when the initial population of Central Pattern Producing

Networks (CPPNs) used by HyperNEAT-LEO were seeded with an explicit concept

of locality. This work further showed that other versions of HyperNEAT including

dynamic threshold and LEO without seeding were less effective in generating modular

networks which were fit to the required task.

Further modularity has been shown to be evolved by using connection cost along

with HyperNEAT-LEO [53]. The authors evolved networks on a variety of variants

of the disembodied retina task.

Every work using the retina task has done so in a disembodied way. We present

an embodied version of the retina task in which the robot must physically move in

order to respond correctly to what it senses in the environment. This movement

then changes how the robot perceives its environment causing its sensation of the

environment to change. In this manner seemingly modular tasks can have extremely

effective non-modular solutions. In future work we plan to examine how adding

connection cost can aid modularity in the embodied retina task presented later in the

paper.
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Figure 4.2: The embeddings shown at three different depths of the tree. White neurons in-
dicate the distance sensor neurons. Sensor neurons are placed in the leaves of the tree and
point outward in the direction of the leaf they are contained in. Black neurons indicate mo-
tor neurons and are placed in the leaves and the root of the tree. The remaining neurons are
hidden neurons colored according to their depth for ease of comparison across embeddings.
Each branch consisted of four hidden neurons. Both the physical (a) and binary (b) embed-
dings exist in 2D-space regardless of the depth of the tree and produce valid embeddings (i.e.
no overlapping neurons) for arbitrary depths of the tree. The dimension of the hierarchical
embedding (c) grows as the size of the tree grows. Note at d = 1 the hierarchical and binary
embedding are exactly the same.

4.3 Methods

4.3.1 Robot Construction

The robot was a planar tree structure consisting of an actuated root and 2d actu-

ated leaves where d is the depth of the tree. Hence, at d = 2 there are two actuated

leaves (Fig. 4.2). Each leaf consisted of a distance sensor pointing out from the tree

into the environment and a motor which actuates a hinge joint connecting the leaf
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to its parent branch. The hinge joint allowed the leaf to rotate up and down with

respect to its parent branch. The root consisted of a motor which actuated a linear

joint moving the entire tree along the z-axis (up and down). Joint ranges in the leaves

were limited to ±π
4 from their starting position and the root node could move ±1

units from its starting position. Each branch was 1/2 unit long with the root base

starting at the point (0, 0, 1.5)

n
(t)
i = σ

n(t−1)
i +

∑
j∈J

wjin
(t−1)
j

 (4.1)

Neuron activation in the robot was controlled using Equation 4.1. The value of the ith

neuron, ni, at time step t was equal to the value of ni in the previous time step plus

the sum of the incoming synaptic weights multiplied by the corresponding neuron’s

value. The σ in the Eq. (4.1) is the hyperbolic tangent function.

4.3.2 Embodied Retina Task

The goal of the embodied retina task is to perceive objects in the environment

and react accordingly. Similar to the its disembodied counterpart the embodied retina

task requires aspects of modularity and hierarchy in the controller of the agent.

The task environment consisted of cylinders placed along a semi circle four units

(Near) and six units (Far) away from the origin. Near cylinders were white on top,

black on the bottom and far cylinders were colored black on top and white on bottom.

The cylinders were placed such that each leaf of the robot was pointing at the middle

of its corresponding cylinder (Fig. 4.1).

There were two objectives for each robot: local and global. The local objective was
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to have leaves point at the white region of their corresponding cylinders. The global

objective was to determine if there was an even or odd number of Near cylinders.

The robot had to respond by moving the root, and thus the whole tree, up if there

was an even number and down if there was an odd number of Near cylinders.

For example, given a depth d = 1 robot and the the environment {Near, Near},

the robot should move its root up while the leaves of the robot point up towards the

tops of the cylinders. Further, given the environment {Near, Far}, the global solution

will be to move the root down, while the local solutions will be to point to the top of

the left (Near) cylinder and the bottom of the right (Far) cylinder.

The number of cylinders in the environment is dependent on the number of leaves

in the tree which is further dependent on the depth of the tree. Specifically, the

number of cylinders, n, is n = 2d. Each cylinder had two variants. Thus, at depth

d = 1 there are two cylinders meaning there are 22 = 4 total environments for the

robot to be evaluated in. For depth d = 2 there are four cylinders giving 42 = 16

total environments for the robot to be evaluated in.

eval(ce, t) =



1 if pointing at white region of

ce at time t

0 otherwise

ge = |ztarget − zroot| (4.2)

`e = 1−
∑T
t=T/2

∑
ce∈Ce

eval(ce, t)
`e,max

(4.3)

Err(α,E) =
∑
e∈E

(αge + (1− α)`e)2 (4.4)
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The global objective, calculated in Eq. (4.2) as ge, is primarily hierarchical. ge is

the absolute difference between the target z-location (1.5 if there is an even number

of each cylinder, 0.5 otherwise) and the ending z-location of the root at the final time

step. A human designer would possibly create a network where information would

flow from the leaves to the root where the robot would then aggregate the information

to create the correct response.

The local objective, calculated in Eq. (4.3) is primarily modular. `e is found by

assessing whether the robot is looking at the white portion of the cylinders in the last

half of the evaluation. By expanding out evaluation to the final half of simulation we

allow evolution to create a more steady gradient to the optimal solution. At each time

step during evaluation, the robot is given a point if it is correctly looking at the white

portion of the cylinder and a 0 if it is not. These points are then summed for each

cylinder and normalized between [0, 1] and subtracted from 1 to give the error. In

correctly assessing a cylinder, each leaf would benefit from having an isolated module

which determines whether to move the leaf branch up or down as appropriate.

The overall objective function is a mean squared error consisting of a weighted

sum of the error from the two tasks. From these two objectives we explored three

tasks determined by Eq. (4.4) using α = {0.0, 0.5, 1.0}. These values correspond to

focusing on only the local objective, both objectives combined, and only the global

objective, respectively.

4.3.3 Embodied Network Embeddings

Each embedding consisted of four hidden neurons per physical tree branch. The

embeddings are embodied because each neuron is placed using information from the
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morphology of the robot. The physical embedding uses the actual (x, y) positioning

of the robot in its initial state whereas both the binary and hierarchical embeddings

use information about the branches location in the abstract tree structure. Each

embedding consisted of a number of motor and sensor neurons dependent on the

depth of the tree considered. Each leaf branch contained one sensor neuron and one

motor neuron. The root contained a single motor neuron. Thus for d = 1 there where

3 ∗ 4 = 12 hidden neurons 2 sensor neurons and 3 motor neurons giving 17 total

neurons. For d = 2 there where 7 ∗ 4 = 28 hidden neurons 4 sensor neurons and 5

motor neurons giving 37 total neurons.

The path of a branch is determined by whether the branch is a left or right child

or an ancestor. Thus, the path of each branch is a list with length d, the depth of the

tree. The elements of this list are chosen from {−1, 0, 1}. A −1 indicates the branch

is a left child, +1 indicates a right child, and 0 indicates the branch is an ancestor to

branches in that depth. For example, given a d = 2 tree, the leftmost leaf is [−1,−1]

because it is left child of the left child of the root. In contrast root’s path is [0, 0]

because it is the ancestor of both depth one and two branches.

In the physical embedding, neurons were placed along the branches of the physical

robot. Thus each neuron had a physical location which corresponded to the robots

initial starting position in physical (x, y) space. The physical embedding is in two-

dimensional space, regardless of the the depth of the robot.

In the binary embedding, the neurons were placed according to the location of its

corresponding branch in the overall tree structure. The x position of the neurons are

placed using information about the path and depth of the current branch. Neurons

x = ∑
i=1d pi ∗ 1

i
where pi is the ith index of the path p. This results in neurons in
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branches of left children being placed to the left of neurons in the parent branches

and, conversely, neurons in right child branches are to the right of their parents.

The neurons in the root branch are located at x = 0. The y coordinate of the

binary embedding was chosen to be linear spacing between [−1,+1]. Motors were

placed at y = −1, sensors at y = +1 and hidden neurons were linearly spaced in

between. In branches without sensors or motors, hidden neurons were still placed as

if they existed, meaning hidden neurons from each branch shared y coordinates. This

embedding was chosen because it encompasses information about the morphology

of the tree, specifically left-right symmetry, while also being extensible to different

depths of tree morphologies and remaining in a 2-d embedding. The embedding is

shown in more detail in Figure 4.2b.

The hierarchical embedding (Fig. 4.2c) is similar to the binary embedding in

that it uses information about the branches location to determine the position of

the embedded neurons. However, instead of placing neurons in a 2-d embedding,

the dimension hierarchical embedding grows with the depth of the tree, specifically

dim = d + 1. Each new depth of the tree is a new dimension for the embedding

with variations in the positioning at that depth, according to the path of the branch,

corresponding to location in that dimension in the embedding. For example, if a

branches path in a depth 2 tree is [-1, 1], the corresponding (x, y) embedding for

neurons in that branch are (−1, 1) with the z coordinate being determined by the

same linear interpolation between [−1,+1] as seen previously. In general, the first

d coordinates of the hierarchical embedding are determined by the path with the

final coordinate being determined by the linear interpolation. This means at d = 1

the binary and hierarchical embeddings are exactly the same. Further, the distance
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bin/hier physical

α = 0.0 0.0152**** 0.0185

α = 0.5 0.0208 0.0245

α = 1.0 0.125 0.140

Table 4.1: Depth 1 average minimum fitness at generation 1000. Bolded values indicates
minimum across row. **** indicates p < 0.0001 according to Mann-Whitney U test.

between in neurons in the hierarchical embedding is reflective of the path distance of

the branches within the tree. This means a child is closer to its parent than its sibling

and branches with the same parent are closer than branches with different parents.

4.3.4 Experimental Parameters

Robots were simulated using Pyrosim, a python interface for Open Dynamics

Engine 1. We used the same parameters for HyperNEAT as in [106] with the exception

of changing the population size to 100 due to the computational cost of simulation.

Robots were evaluated for 100 time steps in each environment.

The initial population of CPPNs were seeded as in [106]. Because we considered

two dimensional substrates, two Gaussian nodes were used and the bias was connected

to the LEO output of the CPPN with a -2. This seed means that two neurons which

are close together in the embedded xy-plane are much more likely to be connected by

HyperNEAT.

1https://ccappelle.github.io/pyrosim/

88

https://ccappelle.github.io/pyrosim/


0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

d
=

1

= 0.0
physical
bin/hier

0.02

0.04

0.06

0.08

0.10

0.12
= 0.5

physical
bin/hier

0.15

0.20

0.25

0.30

0.35

0.40

= 1.0
physical
bin/hier

0 200 400 600 800 1000
generation

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

d
=

2

physical
binary
hierarchical

0 200 400 600 800 1000
generation

0.06

0.07

0.08

0.09

0.10

0.11 physical
binary
hierarchical

0 200 400 600 800 1000
generation

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400 physical
binary
hierarchical

Fitness

Figure 4.3: The average minimum error for the three embeddings in the six experiments per-
formed over generational time. The top row contains the average minimum error for depth
1 trees with four total test environments. The bottom row contains the average minimum
error for depth 2 trees with 16 total test environments. Each column indicates a different
α parameter. α is used to tune the error from the local objective, α = 0.0, to the global
objective ,α = 1.0, as dictated by Equation 4.4. Shaded regions indicate ± SEM. Only the
d = 1, α = 0.0 and d = 2, α = 0.5 results are significant with p < 0.05 according to the
Kuskal-Wallis H-test.
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binary physical hierarchical

α = 0.0 0.0600 0.0675 0.0548

α = 0.5 0.0699 0.0632 0.0588 *

α = 1.0 0.227 0.239 0.222

Table 4.2: Depth 2 average minimum fitness at generation 1000. Bold values indicate
minimum across row. ∗ indicates significance at p < 0.05 according to Kruskall-Wallis
H-Test.

4.4 Results

We ran 30 trials of HyperNEAT-LEO for both the physical and binary embedding

for α ∈ {0.0, 0.5, 1.0} with d ∈ {1, 2} for 1000 generations each. The results are

presented in Figure 4.3. Amongst the six experiments, two resulted in population in

a significant difference in ending average error. In the d = 2, α = 0.5 experiment, the

physical embedding proved to have significantly better fitness after 1000 generations

(p < 0.05). Conversely, in the d = 2, α = 1.0 experiment, the binary embedding

proved to be significantly better error than the physical embedding (p < 0.05). All

other experiments provided statistically similar ending fitness values for both embed-

dings.

For every value of α in the Depth 1 experiments, the binary/hierarchical embed-

ding performed better than the physical embedding over 1000 generations however

only the α = 0.0 results are significant. Complete reporting on ending error of Depth

1 experiments is located in Table 4.1.

For every value of α in the Depth 2 experiments, the hierarchical embedding

performed better than both the physical and binary embeddings over 1000 generations
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however only the α = 0.5 results are significant.

Modularity in the form of network modularity was not present in any of the ending

champion networks, every network was completely connected. Regularity was found

to be present and varied between the different encodings as seen in Figure 4.4.
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Sample networks and Connection Matrix

Figure 4.4: The best run champions from the α = 0.5, d = 1 experiment. The physical
embedding is shown on the top row and the binary/hierarchical embedding is shown on
the bottom row. The left column shows how the network is placed on the embedding and
the right column is the same network in adjacency matrix form. Red connections indicate
negative synaptic weights while blue indicates positive weights and the alpha of the connection
indicates the magnitude of the weight. The adjacency matrix (right) helps show how the
positioning of nodes in the embedding impacts the type of connection structure which occurs.
The white separations are sensors which cannot be connected to by synapses. The separations
help further distinguish the neurons within each branch and how they connect to the neurons
in other branches
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4.5 Discussion

The location of neurons embedded in the substrate used by HyperNEAT is known

to have a difference in the efficiency of evolution to optimize to both embodied and

disembodied tasks [25]. By using different embodied embeddings, HyperNEAT is able

to set connection weights using locality and gradients, present in the morphology,

which may stress the importance of certain desirable traits in robot controllers such

as hierarchy and modularity. Figure 4.4 shows a clear difference in the types of

patterns that are more common given a physical embedding, one where the robots

morphology is directly reflected in the location of the neurons, compared to a different

type of embodied embedding which uses information about the abstract concept of

the structure of the morphology.

Figure 4.3 shows the hierarchical embedding was able to perform better than

other embeddingns on a complex task which had both global and local objectives.

The increases in dimensionality of the hierarchical embedding helped it compared

to the similar binary embedding which uses the same concept of a branches path

to determine neuron location but restricts the embedding to two dimensions. These

differences are important because it gives an indication as to the nature of the rela-

tionship between the morphology of the robot, the structure of the task at hand, and

the embedding used.

One important aspect of HyperNEAT is that it is resolution independent meaning

it is likely that solutions found are able to scale in a predictable manner [47]. Here we

give some insight into how embodied embeddings may be able to be scaled effectively.

In either embedding presented in this work, more hidden neurons can easily be placed
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by using linear spacing between the end points set by the sensor and motor neurons.

In the physical embedding this takes place near the physical (x, y) position of the tips

of each branch while in the binary embedding this occurs at x ∈ {−1,+1}. Further

resolution increases can occur for this robot by increasing the depth of the tree. In

other robots this can be thought of as adding different components or sensors and

incorporating them into the substrate as prescribed by the emobodied embedding

plan. Figure 4.3 shows that while increasing the depth had a impact on the overall

error achieved it is important to note that the number of environments between d = 1

and d = 2 was squared. The increase in depth helped elucidate potential problems

with each embedding at these higher depth dimensions.

The disembodied retina task is known to be a benchmark in order to create mod-

ularity in evolved neural networks [57, 27]. There are many potential reasons as to

why modularity did not form in the experiments performed. One could be that there

are plenty of perfectly acceptable non-modular controllers in this task even though,

to a human designer, the task seems separable and modular. Another reason could

be that there was not enough pressure for modularity to form. [57] only consistently

found modularity when the global task the network needed to compute was changed

over the course of evolution. This changing every few generations pressured evolution

to separate the network into left and right halves. It is possible that for this task,

in order for modularity to be present, one would need to change the global objective

periodically.

Another way to further constrain connectivity is to explicitly choose for solutions

which have less connections through applying a connection cost function. The sim-

plest function to represent cost simply counts the total number of connections present
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in the network, however, given the tree structure of the robot, we can direct evolu-

tion towards hierarchical solutions by assigning each neuron a physical corresponding

branch and computing the path length from the branch of one neuron to the branch

of the other. In this manner we could select for controllers which explicitly use a

hierarchical structure.

Lastly, it is possible modularity did not occur because this is an embodied task

in which speed of movement may play a factor. The more heavily connected a motor

neuron is the more likely it is that it will actuate with a higher magnitude veloc-

ity. This higher velocity can help the robot achieve its target position more quickly

resulting in higher fitness.

4.6 Conclusion

In this work we presented the term embodied embedding and presented two ways in

which it could be performed. One simply took the physical morphology of the robot

in space to inform the construction of the substrate. The other used the abstract

notion of the robot’s structure to create the embedding. Both were able to perform

in tasks that, to a human, seem modular and hierarchical. We showed that differences

in these embeddings can cause differences in the evolvability of the robots. We further

gave insight into the patterns of connections created by certain embeddings and how

they can create different networks to complete the same task.

In the future we would also like to investigate if ES-Hyperneat chooses hierarchical

embeddings for hierarchical tasks and whether connection cost could help produce

modularity in the embodied retina task.
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Chapter 5

Morphological Cost Facillitates

the Evolution of Modularity

An open area of research in evolutionary biology is the existence of modularity in

the structure of organisms. Much of the scientific inquiries into the catalyst for the

evolution of modules has ignored the question of morphological modularity–the me-

chanical independence between portions of the body–and how this modularity relates

to the agent’s environment. In this study we explore the evolution of populations of

embodied agents in a set of environments consisting of variations of modular sub-goals

and investigate modularity with respect to the structure present in the environment

by introducing a new metric—called sub-goal interference—to measure how environ-

mental variation impacts an agent’s response to stimulus. We further compare how

implementing a cost associated with an agent’s body as well nervous system during

evolution impacts the resulting patterns of behavior of fit individuals. We show that

our implementation of morphological cost evolves agents with lower sub-goal interfer-

ence than no cost or neural cost alternatives. With no a priori knowledge of the robot
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or the environment, we show a simple morphological cost applied during evolution

can produce agents which accurately reflect the modularity and structure of their en-

vironments. This suggests that for certain tasks and environments, the relationships

within an agent’s body can be more fundamental towards exhibiting modularity with

respect to a set of tasks compared to the structure of its nervous system.

5.1 Introduction

Modularity is present at multiple scales and varieties–structural, functional, etc.–

within an organism [16, 49, 110, 114]. Consider the breakdown of an organism into

its separate organs, specialized tissues within each organ, independent cells within

the tissue, and functionally different organelles contained within each cell. While

the prevalence of modularity in biological life has made it a popular target of study,

quantifying modularity within a system is notoriously difficult due to its inherently

subjective description [6, 16]. Despite this difficulty, most definitions of modularity

share a reliance on some concept of independent features acting as part of a whole.

Here we explore the modularity of movement and perception with respect to en-

vironmental stimulus. Modularity in robotics has been explored through the use of

modular robots, however the modules which make up the robot in these studies are

predefined and not directly evolved [105, 73]. When considering an example of evolved

embodied modularity, it is possibly easiest to imagine this concept as the dexterity

present in a hand, or hand equivalent structure. The evolution of hands and limbs

has been one of the most studied aspects of evolutionary development research [78,

107, 114].
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Consider the movement of one digit of the human hand. For the most part, there

is the ability to move one finger without impacting the position and orientation of

the remaining fingers in the hand. The movement between left and right hands is

even more independent than between fingers within the same hand. This begs for

evolutionary explanations for many independent degrees of freedom within the hands

of some species, but many coupled degrees freedom in others. Or more generally, what

leads to increasing independence of motion within an organism? Given consideration

of specific examples we can suggest possible explanations.

The first example to consider is the evolution of whales and other sea mammals

which evolved from land mammals. These mammals reverted the previous evolution

of mechanically independent fingers and toes into flippers which limit the motion of

the still present digits [104]. The evolution of flippers are a product of the animals’

aquatic environment where having independent digits without some sort of webbing

will naturally be a detriment to swimming. The evolution of whales demonstrates how

certain environments impose selective pressure towards more mechanically dependent

morphology. However, the environment can also pressure towards a specialization of

independent digits. The aye-aye is a lemur with a highly specialized third digit, which

aids in foraging for insect larva in the hollows of trees [85]. With this digit, the aye-

aye is capable of completing highly dexterous maneuvers in pursuit of food which

its other fingers cannot achieve [76]. The specific form of the hands evolved within

the whale and aye-aye species provide support to the idea of environment guiding

evolution. However there may be other, non-environmental pressures, which can

impact the evolution of mechanical independence. We evolve populations of simulated

agents in tasks and environments containing modular sub-goals while employing both
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morphological and neurological cost to the phenotype in order to explore how the

various factors contribute to mechanical modularity.

By simulating the evolutionary process, we can explore evolution at a faster rate

while also isolating factors which may cause differences in evolutionary trajectories.

Simulation of evolved agents can be separated into two categories: disembodied and

embodied. Disembodied approaches (Sec. 5.1.1) treat agents as separate from their

environment. That is, while the agents are tasked to receive and react to signals from

the environment, there is no action they can take which impacts future perception.

Studies of disembodied agents generally implement agents as networks. In contrast,

embodied agents have the ability to move through an environment, which in turn

affects future behavior (Sec. 5.1.2). While both approaches are valid for exploring

the evolutionary process, in this work we implement an embodied agent to study the

evolution of mechanical modularity.

5.1.1 Disembodied modularity

Computational studies of the evolution of modularity have largely concerned mod-

ularity with respect to disembodied networks [57, 58, 23]. There it has been shown

that modularity in networks can evolve by exposing an agent to a set of environments

which temporally change the global task by varying common sub-goals [57, 38]. This

is referred to as modularly varying goals (MVG). Populations of highly modular net-

works evolve more rapidly to adapt to these changes. While the plausibility for MVG

to occur in nature has been shown in certain cases [84], there are most likely many

other factors which contribute to the evolution of modularity. Sparsity is an example

of another possible factor which has been explored in disembodied networks [23, 45,
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4, 37]. Selection for more sparse individuals can be achieved through the implemen-

tation of connection cost:a cost levied on the topology of the network, depending on

how it is connected. Connection cost can be directly selected for using multi-objective

methods [23] or implicitly through the choice of mutation operator [45]. In this work

we similarly implement a fitness function which considers both performance and cost

while evolving the population of agents in a set of environments consisting of modu-

lar sub-goals. However, this work differs from computational studies of disembodied

agents because we implement a robot which can move to change future perception

of the environment. Further, the use of a body means we cannot use traditional

techniques to calculate modularity.

The standard calculation of modularity in a network is through the use of Q [79,

69]. Q is calculated by finding the optimal community structure and then comparing

the number of intra-module connections to the number of expected connections of

a random graph with the same degree distribution. This means Q only measures

structural modularity present in the network; it does not take into account mechanical

aspects of the modules nor their physical interactions with the environment [70].

Further, Q has been shown to produce results which are unintuitive [2] and fails to

resolve smaller modules as the size of the network increases [42]. The resolution issue

of Q has been addressed in more recent work, however it requires the calculation of Q

in many random networks [37]. Lastly, Q may only be applied to structures which can

be represented as networks. This poses a problem for investigating the modularity

present within both an agents’ body plan and nervous system. We instead use an

embodied measure of modularity called sub-goal interference, I, to explore what we

believe is a more descriptive metric of modularity for embodied agents. I is fully

103



defined in Section 5.3.2.

While the investigation of disembodied networks is useful for a more complete

understanding of neural pathways, gene regulatory networks, and complex interac-

tions within organisms, actually describing the functional behavior of an agent and

how modularity in the body plan impacts evolution requires that the agent be able

to affect its perception of its environment.

5.1.2 Embodied modularity

Although embodiment is often mentioned in Evolutionary Robotics (ER), many

experiments only evolve the synaptic weights in a fixed-topology neural controller,

nor is the morphology of the robot evolved [32, 55]. To accurately investigate the

evolution of biological organisms we must allow evolution to dictate both neural

topology and morphology. Studies which do consider morphological change generally

restrict agents to be evolved in a singular environment [98, 9]. Further work into the

impact of environment on morphology has been limited to exploring the relationship

between environmental complexity and morphological complexity [1], not on how the

underlying structure of the environment can be reflected in the body of the evolved

agent. These studies do not consider the concept of morphological modularity.

We have previously defined morphological modularity as the amount a subset of

motors impacts future values of a subset of sensors [17]. However, modularity within

the body plan alone does not imply the robot correctly reflects the structure of the

environment [18]. When the structure of a robot accurately reflects the structure

of the environment, it is know as ecologically modular. When a priori knowledge of

desired modular behavior within an environment is known, it can be used to increase
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evolvability [13]. In this work we show modularity with respect to the environment

can be evolved by applying a simple morphological cost which requires no a priori

knowledge of the environment or robot.

5.2 Robot Representation

In this section we detail the structure of the robot’s morphology (§5.2.1), controller

(§5.2.2), and genome (§5.2.3). The complete design of the robot can also be seen in

Figure 5.1. The robot was simulated using pyrosim1, a python interface for Open

Dynamics Engine (ODE) [62, 99].

5.2.1 Morphology

The robot was expressed as a tree morphology. A tree was chosen because it can

exhibit intuitive forms of modularity and hierarchy–movement of leaves of the tree

are independent while movement of the root impacts the global state of the tree–and

because most relevant robot morphologies are able to be described as trees [65]. The

robot consisted of a depth three binary tree consisting of seven total limbs: one root

limb, two middle limbs, and four leaf limbs (Fig. 5.1). Each limb contains a one

degree-of-freedom rotational motor in the joint connecting it to the parent limb. The

root base was connected to an arbitrary point in space allowing for rotation relative to

the world. Motors allowed lateral rotation between connected limbs in the horizontal

plane. The joints were restricted to a maximum range of motion depending on the

depth of the limb containing the joint. These restrictions prevent sibling limbs from
1https://ccappelle.github.io/pyrosim/
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colliding with one-another. The root joint was limited to rotations in [−120◦,+120◦],

middle limb joints were limited to [−45◦,+45◦], and leaf limb joints were restricted

to [−20◦,+20◦]. Each leaf contained a distance sensor in its tip pointing out into the

environment along the long axis of the limb, thus allowing the robot to detect objects

in the environment.

5.2.2 Neural Controller

Controllers were encoded as Continuous Time Recurrent Neural Networks (CTRNNs),

a common formalism when controlling robots in tasks which require memory [5].

Each limb consisted of three hidden neurons and one motor neuron. Each leaf limb

was also equipped a sensor neuron. More neurons theoretically allow the robot to

complete more complicated tasks however, each additional neuron also increases the

search space as parameters describing those neurons and the synapses associated with

them, must be optimized as well. The number of neurons used was found to provide

sufficient performance in an acceptable given the available computational resources.

Four sensor neurons, 3× 7 = 21 hidden neurons, and seven motor neurons were em-

ployed, yielding 4 + 21 + 7 = 32 total neurons. Because recurrent connections were

allowed and sensor neurons only obtained input from the distance sensors, there were

32× (32− 4) = 896 total possible synapses the robot’s controller could express.

5.2.3 Genome

Each genome consisted of three components: the weight matrix W ∈ R32×28, the

network topology matrix N ∈ {0, 1}32×28, and the joint range vector r ∈ [0, 1]7×1.
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Figure 5.1: A schematic drawing of the robots morphology and controller. Each robot had
seven limbs (black lines). Each limb had three hidden neurons (yellow circles) and one
motor neuron (blue circles). Leaf limb also had one sensor neuron (white circle) for a total
of 32 neurons. Each sensor neuron had the potential to be connected to every other non-
sensor neuron through a synapse. The value of the motor neurons controlled the position of
the joints located in the base of each limb (black circles). The green arcs specify the possible
movement range of each limb.
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The weight matrix W consisted of float values which determined the weight of each

synapse with entry Wij corresponding to the synaptic weight from neuron i to neuron

j. The network topology matrix N was a matrix of Boolean values and determined

whether the synapse from neuron i to neuron j was expressed in the phenotype.

Zero dictates that the synapse between neuron i and neuron j is not expressed in

the phenotype, regardless of the value of Wij; one indicates the synapse is expressed

with weight Wij. Lastly, the joint range vector r was a vector of float values between

0 and 1. r determined the proportion of the maximum joint range each joint could

rotate through in the phenotype. If we let rangei,max be the maximum range joint

i can achieve, then the actual range of joint i in the phenotype would be [−ri ×

range◦i,max,+ri × range◦i,max]. Thus if r is a vector of zeros, the robot cannot move at

all regardless of W and N.

5.3 Methods

This section provides the methods used in this paper. (§5.3.1) details the envi-

ronments and task, (§5.3.2) provides the formal definition of sub-goal interference.

(§5.3.3) outlines the evolutionary algorithm. (§5.3.4, §5.3.5, §5.3.6) overview the

objective, cost, and fitness functions respectively. Lastly, (§5.3.7) presents the exper-

imental configurations.

5.3.1 Task Environments

The robot was tasked with classifying cylinders it perceived in its environment,an

embodied analog of the retina task used in previous research to investigate disembod-
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ied modularity [57, 23, 27, 106].

It is useful to categorize the number of environments in terms of the free param-

eters in the system and variations on those free parameters [74]. In this study we

explore an environment with four free parameters: the locations of four cylinders

(Fig. 5.2). Each cylinder had two variations: near or far. Near cylinders were placed

three units away from the tip of the closest leaf and far cylinders were placed six units

away. Let f = 4 be the number of free parameters (one for each cylinder) and n = 2

(near, far) be the number of variations. There are nf = 24 = 16 total environments.

Let any environment be represented by a f -tuple of its n variations where each

entry refers to the specific variation of that free parameter. In this case we can

express a single environment as a 4-tuple. Thus we write e = (c0, c1, c2, c3) where

c0, c1 ∈ {a, b} and c2, c3 ∈ {0, 1}. For the two cylinders to the robot’s left we let a

denote ‘near’ and b denote ‘far’. For the right two cylinders we let 0 denote ‘near’

and 1 denote ‘far’. Thus the environment (a, b, 1, 0) corresponds to the environment

in which the cylinders are {near,far,far,near} if we start from the left-most cylinder

and end with the right-most cylinder.

The robot was tasked with three independent sub-goals. The first two sub-goals

relate to the robot’s response to c0 and c1 to showcase an example of a sub-goal which

is made up of a singular free parameter. The robot should point towards c0 if c0 = b

and point away if c0 = a. Behavior with regards to c1 was the same as c0. The third

sub-goal was chosen to be an example of a sub-goal which is a combination of two

free parameters. This follows the Retina task approach in which a logical function

was computed from the classification of left and right sub-problems. The robot was

tasked with pointing towards cylinders c2 and c3 if and only if c2⊕ c3 is false where ⊕
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Figure 5.2: Snapshots of the starting point of the robot in all sixteen possible task envi-
ronments. Cylinders varied between near (designated a or 0) and far ( designated b or
1). The cylinders in the left half vary along the rows and cylinders on the right half vary
along columns. The cylinders are colored as follows to allow for easier distinction: a is
red, b is blue, 0 is black, and 1 is white. The environments are further numbered 0-15 for
convenience.
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Figure 5.3: A robot actuating over its lifetime in the (a, b, 0, 1) environment (number 5 in
Fig. 5.2). The colored rays emitting from the limbs indicate the robot is looking at that
cylinder. One sub-goal is to look away from cylinders labeled a (red), at cylinders labeled b
(blue). Another sub-goal is to compute the XOR function on cylinders labeled 0 (black) and
1 (white). In this case XOR evaluates to true meaning the robot should point away from
both cylinders on the right side. This robot exhibits the correct behavior for this environment
because it points towards the blue cylinder and away from all others.

is the XOR function. This setup was chosen because it exhibits environments which

contain both modular and non-modular components. Figure 5.3 shows an example

robot acting in environment (a, b, 0, 1) over simulation time.

5.3.2 Sub-goal interference

In this section we introduce the concept of sub-goal interference, denoted I. I is

a metric for evaluating to what extent variation in an independent sub-goal impacts

movement of the robot related to a different sub-goal over the course of simulation.

To specify I we define the following:
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G = the set of sub-goals

Vg = the set of variants of specific sub-goal g ∈ G

Lg = the set of limbs in the tree associated with sub-goal g ∈ G

Ev,g = the set of environments associated where variant v ∈ Vg and g ∈ G

T = the total number of simulated time steps

α`,t,e = the angle of limb ` at time t in environment e ∈ Ev,g

α`,e = the average angle over time of limb ` in environment e ∈ Ev,g

We then calculate sub-goal interference as

I = 1
|G|

∑
g∈G

1
|Vg|

∑
v∈Vg

1
|Lg|

∑
`∈Lg

1
|Ev,g|

∑
e∈Ev,g

1
T

T∑
t=0
|α`,t,e − α`,e|

Thus the lower I is, the more invariant a robot’s behavior is towards achieving a

specific sub-goal to variations in other sub-goals.

To further clarify, in the following example we explore one specific variation of

one sub-goal out of our |G| = 3 total possible sub-goals. Consider the sub-goal of

classifying the left-most cylinder, c0. Let g denote this sub-goal and let Vg denote

the set of variations contained in this sub-goal. Then |Vg| = 2 because g has two

variations: the robot is either presented with c0 = 0 or c0 = 1. Let us choose the case

when c0 = 0. If we consider the limbs which contribute to sub-goal g, we see that

they are the limbs which, when moved, have an impact on limb `2, the limb which
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starts out the simulation pointing towards c0. These limbs are the root (`0) the left

limb at depth one ( `1) and `2 itself. Thus Lg = {`0, `1, `2}. Next we can specify

Ev,g by enumerating all of the environments in which c0 = 0. This can be denoted by

(0, ∗, ∗, ∗) where ∗ is the wild card operator with two choices. Thus there are 23 = 8

environments where c0 = 0, or exactly half of the total environments the robot is

tasked with. Then, at each time step, for each environment, for each limb, we take

the absolute difference between the angle of the limb and the average angle of that

limb over each of the environments. This measures how similarly the limbs which are

relevant to the sub-goal move when cylinders which do not impact the sub-goal are

changed.

Therefore, I = 0 indicates that the robot displays infinitely conservative behavior:

for each sub-goal, the relevant limbs move exactly the same for each variation of that

sub-goal.

5.3.3 Evolutionary Algorithm

In order to optimize the robot we employed Age-Fitness Pareto Optimization

(AFPO) [95] a multi-objective evolutionary algorithm that maintains solution diver-

sity by evolving genetically independent lineages in the same population.

We employed different mutation operators for each part of the genome: synaptic

weights, neural topology, and morphology.

For the synaptic weight matrix W each entry could mutate or not according to

some probability, pW . If a location Wij was chosen for mutation, then the mutation

Ŵij was calculated by adding a random number drawn from a Gaussian distribution

with mean zero and standard deviation proportional to the magnitude of the weight
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of the synapse

Ŵij = Wij +N (0,max (|Wij|, ε))

where ε = 0.01. This mutational setup allows a mutation in larger synaptic weights

to make more drastic changes and smaller weights to undergo smaller mutations. The

ε is used to ensure non-zero standard deviations.

As for the neural topology matrix N, each location undergoes mutation according

to probability pN . If a location is selected for mutation, the bit in that location is

flipped. So, after mutation we have

N̂ij =


0 if Nij = 1

1 if Nij = 0

Finally, to mutate the joint range vector r, we again decide whether each location

in the vector undergoes mutation using some probability pr. If a joint range is selected

for mutation, the new joint range value is found by adding a random number from

a Gaussian distribution with mean zero and standard deviation of 1/10. A hyper-

parameter which was selected after exploratory results that indicated the mutations

altered behavior without being too disruptive to evolvability.

r̂i = ri +N (0, 0.1)

For each portion of the genome, the probability of mutation was such that the

expected number of mutations was one. Thus pW = 1/(32 × 28), pN = 1/(32 × 28)

and pr = 1/7.

114



5.3.4 Objective Function

In order to evolve the robots to accomplish their task a fitness function (Sec. 5.3.6)

was implemented which incorporated objective performance and cost. The behavior

was measured based on how well the robot performed the task of ‘looking’ towards or

away from the appropriate cylinders in each of the test environments denoted Etest.

The overall objective performance for a robot (Eq. 5.1) was its average perfor-

mance in each environment in the test set (Eq. 5.2). The individual environmental

objective value of a robot was calculated during the last half of simulation time

t ∈ [T/2, T ]. By deferring evaluation to the later half of simulation, the robot is

allowed to move in the beginning without adversely impacting its performance. Dur-

ing each evaluation time step t, each cylinder c was considered. Cylinders could be

correctly pointed at, incorrectly pointed at, or not pointed at. If the task specifica-

tion required cylinder c0 to be pointed at and the robot was pointing at c0, this was

denoted as correct pointing and the robot was rewarded. If the task specification

required cylinder c0 to not be pointed towards and the robot was pointing at c0, this

was denoted as incorrect pointing and the robot received a penalty. When the robot

was not pointing at a cylinder, no reward or penalty was implemented (Eq. 5.3).

The reward/penalty over the evaluation time was then normalized based on the en-

vironment to lie in the range [0, 1] (Eq. 5.2). Normalization was performed based on

the minimum and maximum reward the robot could achieve in the environment. For

example, if the robot was supposed to look away from all cylinders in the environ-

ment, the reward range for that environment would be [−4T/2, 0] because the worst

performer would receive a penalty at every time step and the best performer would
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receive no reward. Normalization mapped the robot’s score to the range [0, 1] and is

implement in Equation 5.2.

ooverall = 1
|Etest|

∑
e∈Etest

oenvironment(e) (5.1)

oenvironment(e) = 1
T/2

T∑
t=T/2

(∑c∈Ce
ocylinder(c, t))−min(Ce)

max(Ce)−min(Ce)
(5.2)

ocylinder(c, t) =



−1 if cylinder c is incorrectly being

pointed towards at time t

0 if cylinder c is not being pointed

towards at time t

1 if cylinder c is correctly being

pointed towards at time t

(5.3)

5.3.5 The cost functions

Two cost functions were considered: one for the neural controller and one for the

morphology. Both cost functions were normalized [0, 1].

The cost of a robot’s controller, or connection cost (CC) [23], was computed to

be the number of total expressed connections present in the network. Specifically

CC = 1
32× 28

32∑
i=1

28∑
j=1

nij

for nij ∈ N. Therefore, robots with more connections were considered more costly

than robots with fewer connections.

116



The cost of a robot’s morphology, or joint cost (JC), was computed as the average

of the elements of r, the joint range vector of the robot. Thus robots which had the

potential to move more were considered more costly. A robot which could not move

therefore had zero cost.

5.3.6 The fitness function

The fitness function was a combination of the objective and two cost functions:

maximize performance while minimizing cost. This was accomplished by simple mul-

tiplication of objective and cost terms (Eq. 5.4). Because each term ranges between

zero and one, the overall fitness was also between zero and one.

f = ooverall × (1− xCCCC)× (1− xJCJC) (5.4)

xCC and xJC determined the influence of connection and joint cost respectively towards

the fitness score. These influence factors were implemented to allow variation in the

importance of each cost function.

5.3.7 Experimental configurations of mutation

and cost

This section details the different evolutionary trials performed. The trials differed

in what evolution could alter and which fitness function was used to guide evolution.

The first difference between trials was the mutation function used to alter the pop-

ulation across generations. The specific mutation function used in an evolutionary al-
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gorithm is important to the solution forms which result [32]. Many mutation functions

in ER are limited to just synaptic weights or neural architecture. Here we test various

mutation functions to determine which proves most efficacious for evolving low in-

terference robots. We considered four choices for mutation: weights, topology, joints

and all. Each choice differed in which portion of the genome evolution could mutate.

• weights could only mutate in W.

• topology could mutate W and N.

• joints could mutate W and r.

• all could mutate W, N, and r.

W is always considered subject to mutation because if W is constant, evolution

cannot complete the categorization task.

In the cases where N and r were not under evolutionary control, they were fixed

such that all values were equal to one. This means, for example, robots using the

weights configuration used all synapses (N == 1) and were maximally free to rotate

their limbs (r == 1).

The second difference between the configurations was the value of xCC and xJC

which dictated how the cost function was implemented, and thus what fitness function

was used to evaluate robots. These tests explore which cost function aids in the

evolution of modularity. We considered four cost options: none, CC, JC, CC+JC.

• none had xCC = xJC = 0

• JC had xCC = 1 and xJC = 0

• JC had xCC = 0 and xjc = 1
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Mutation

weights topology joints all

Cost

none (weights,none) (topology,none) (joints,none) (all,none)

CC (topology, CC) (all, CC)

JC (joints, JC) (all, JC)

CC+JC (all, CC+JC)

Table 5.1: The nine configurations possible for evolutionary trials. Performed experiments
are highlighted in grey and named. White cells of the table represent infeasible configura-
tions. For example, (joints, CC) does not make sense to test because the connection cost
would be constant regardless of the genome.

• CC+JC had xCC = xJC = 1

Thus each configuration could be written as a pair of what was mutated and what cost

function was used. Combinations in which cost remains constant across all genomes

in the population were not considered as cost would impart no effect. For example,

the combination (weights, CC) makes no sense to explore because connection cost

is constant when N is fixed. This yields nine possible configurations concerning

evolution and cost. They are summarized in Table 5.1.

5.4 Results

This section details the two main experiments performed and the subsequent re-

sults.

In the first experiment, we test the performance and sub-goal interference of each

configuration when evolved in all 16 environments. 30 independent populations of

each configuration were evolved over 4000 generations. Figure 5.4 compares the joint
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Figure 5.4: The average ending maximum objective value for the selected configurations
comparing joint cost to connection cost. (joints, JC) was compared to (topology, CC) and
(all, JC) was compared to (all, CC). Comparisons were performed using the Mann-Whitney
U Test. *** indicates a p-value < 0.0005 and ∗ indicates a p-value < 0.05.

cost and connection cost configurations average performance of the highest perform-

ing individual after evolution. Both joint cost configurations yield significantly higher

performance than the connection cost alternatives. Average performance over gener-

ational time is shown in Figure 5.5.

When evaluating a robot in multiple environments, there are many ways to aggre-

gate performance across each environment. Figure 5.6 shows the trial average envi-

ronmental performance oenvironment of the most fit robot in its worst environment. This

helps to indicate if the evolved robots exhibit generalism across all environments or

if they sacrifice performance in one environment to specialize on other environments.
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Figure 5.5: Performance over generational time for each configuration.
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Figure 5.6: The average value of the best robot’s worst environment over generational time.

Figure 5.7 reports the percentage of trials in which the highest performing robot

in the population’s lowest performing environment is above the specified threshold

value. In ten percent of evolutionary runs, the (all,JC) configuration created a robot

with above 0.9 performance in every environment. 6.6% of (all,none) and (all,CC)

configurations were able to create a robot with above 0.9 performance in every en-

vironment. All other trials of every other configuration failed to create a robot with

this high performance in every environment.

The average sub-goal interference I of the highest performing robots was calcu-

lated and the results for various comparisons between configurations are presented

in Figures 5.8, 5.9, and 5.10. Figure 5.8 reports the I value of (joints, JC) to be
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Figure 5.7: Percentage of trials in which the best robot after 4000 generations achieved a
performance greater than or equal to the threshold value in every environment.
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Figure 5.8: The calculated interference values of the (joint,JC) and (topology,CC) config-
urations. The asterisks indicates a p-value of < 0.0001 according to the Mann-Whitney U
Test.

significantly lower than (topology,CC). Figure 5.9 compares the (all,none), (all, CC),

and (all,JC) configurations. The I value of the (all,JC) configuration is significantly

less than that of the (all,none) configuration, however the other pairwise comparisons

are not significant (Fig. 5.10).

Figures 5.11, 5.12, and 5.13 report the movement patterns of the highest per-

forming individual of chosen configurations in each of the sixteen environments. The

movement pattern was the position of each limb through simulation time.

In the second experiment, we test how well each configuration performs over the

whole environment space when evolved only in a subset of environments. Based
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Figure 5.9: The calculated interference values of the (all,none), (all,CC), and (all,JC) con-
figurations. The (all,JC) configuration is significantly lower than (all,none) configuration
with a p-value < 0.0001. No other comparison is significant.
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Figure 5.10: The average calculated sub-goal interference I value for each configuration
when evolved in all sixteen environments. Error bars indicate ± 1 standard error.
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Figure 5.11: Movement pattern of a the best robot evolved in all environments using exper-
iment (weights, none). The environmental performance is reported in the lower left corner
of each environment.
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Figure 5.12: Movement pattern of a the best robot evolved in all environments using exper-
iment (all, none). The environmental performance is reported in the lower left corner of
each environment.
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Figure 5.13: Movement pattern of a the best robot evolved in all environments using exper-
iment (all, jc). The environmental performance is reported in the lower left corner of each
environment.
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on the results of the first experiment, only the four configurations which could mu-

tate the morphology and topology of the network were tested: (all,none), (all,JC),

(all,CC), and (all,CC+JC). Robots were evolved for 8000 generations only expe-

riencing {00aa, 01ba, 10ab, 11bb}. This corresponds to the environments numbered

{0, 6, 9, 15} in Figure 5.2. These environments were chosen because they represent a

Latin Hypercube Sample [103] the minimal set allowing the robot to experience all

variations of every sub-goal. We ran thirty independent trials of each configuration.

After evolution on these four environments, the best performing robot was tested in

the remaining twelve environments. The average performance in these unseen envi-

ronments is shown in Figure 5.14. The (all, JC) and (all, CC+JC) configurations are

significantly better than the (all, none) configuration. There was no other significance

between configurations.
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Figure 5.14: Average performance of the best robot evolved with a training set of
{00aa, 01ba, 10ab, 11bb} in all unseen test environments for each cost configuration with
mutation parameter set to ‘all’. Error bars show ± 1 standard error. First a Kruskal-
Wallis test was performed indicating significant difference between each configurations with
p < 0.01. Asterisks indicate pairwise significance as determined by the Mann-Whitney U-
Test between the selected configuration and (all,none) with a p-value of 0.01. There was no
significance between any other pair of configurations.
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5.5 Discussion

The results of the first experiment, comparing all nine configurations, indicate

that using joint cost produces robots which are better adapted to the task at hand

compared to connection cost alternatives while still maintaining low interference be-

havior. The first experiment further shows that giving evolution the ability to control

both morphology and controller structure leads to better overall fitness in this task:

Figure 5.5 shows that average performance of a robot evolved with the (all, none)

configuration is better than any other configuration when the robot is evolved in all

environments.

When evaluating which configuration is ‘best’ it is important to note that the

objective value is only one metric to consider. Because the performance is an average

over all environments, there can be cases when a robot with relatively high overall

performance will sacrifice performance of a single environment to attain higher per-

formance in the remaining environments. This is why it is important to consider the

lowest performing environment as well (Fig. 5.6). This figure further shows that the

(all, none) configuration will produce robots better generalized to all environments.

One can also evaluate a configuration’s ability to evolve desirable robots by how

likely it is that a high performing individual will be created. Figure 5.7 shows that

only four configurations were able to produce robots with greater than or equal to

0.9 performance in all 16 environments: (joints, none), (all, none), (all, CC), and

(all, JC). Further, only (all, JC) was able to create an individual with over 0.95%

performance in every environment. This indicates that these configurations more

easily find high quality solutions over alternative configurations.
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One possible explanation for the relatively poor fitness performance of the con-

figuration (all, CC+JC) compared to the non-cost and single cost options could be

the structure of how cost is implemented. Because the cost is multiplied in the fit-

ness function, it is possible that the selection pressure placed on the robots to be

inexpensive is greater than the pressure to complete the objective function.

The other factor considered was how much interference there was between the

sub-goals in the environment. Figure 5.10 shows the I value of all configurations and

gives a general trend that configurations which placed morphology under evolutionary

control evolved more independent behaviors than those which did not. Further, this

figure shows that adding joint cost when only the morphology can be mutated can

decrease I compared to the non-cost option. While the (all,CC+JC) configuration

achieved the lowest interference, its low performance values indicate that the robot

is simply performing the same action in multiple environments rather than evolving

specialized motion of each limb in accordance with each sub-task. In contrast, (all,JC)

achieved high performance and low I values, indicating it was able to specialize limb

movement to environmental changes.

Figures 5.11, 5.12, and 5.13 give insight into the different movement patterns pro-

duced by the different mutation and cost configurations. First consider the (weights,none)

configuration. Without the ability to change morphology or neural topology, the robot

attempts to solve each environment with a different movement pattern, regardless of

the fact that sub-variants of the environment remain the same. This leads to behav-

ior with a high amount of interference. In contrast, robots which can adapt their

morphology and neural topology can more easily create movement patterns which

are similar across multiple environments (Figs. 5.12, 5.13). This means differences
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in movement across environments are the result of specialized behavior in a subset of

the limbs.

These specialized behaviors can allow the robot to behave similarly when intro-

duced to new, unseen, environments: altering behavior only in the portion of the

body related to the portion of the environment that varied. Figure 5.14 shows that

joint cost functions select for better performing individuals in unseen when evolution

occurs on a subset of environments when compared with the non-cost configuration.

This may be because limiting joint ranges is the easiest way for the robot to separate

its body in accordance with the sub-goals in the environment. For example, fixing

the root partitions a robot’s movement into independent movement in the right and

left halves which is in accordance with the modularity of the environmental sub-goals.

Joint cost may be a factor in discovering modularity sooner during evolution.

5.6 Conclusion

In this paper we presented sub-goal interference as a novel metric for quantifying

embodied modularity with respect to multiple environments. We showed that robots

with evolved body plans exhibited more specialized behaviors than those with non-

modular body plans. This replicates the well known biological phenomena of evolution

producing bodies which are well adapted and reflect the environment in which the

organism lives [31]. Our work is a first step towards the artificial evolution of embodied

agents which reflect the latent structure in the environments they are to which they

are exposed.

Continued focus examining the why of morphological design in biological organ-
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isms could answer remaining questions regarding intelligence. Having an overly com-

plex controller in a simple morphology may prohibit the automatic creation of mod-

ules and specialization in the controller due to limitations in possible movement as

described by the morphology. Similarly, a simple controller may not be sufficient to

adequately control a complex, highly independent morphology. The co-evolution of

body and controller may be necessary to understand the evolution of intelligence in

order to balance both control and morphology with respect to one another. Animals

which have more freedom of movement may be required to be more intelligent in

order to adequately control their actions.

Even though the task we present is a simple categorization task, it provides insight

into how simple evolutionary pressures may cause more or less modularity in an

organism’s body plan and nervous system. This task can be made more complex by

introducing tree-based body plans with more depth, new variations of sub-goals, or

even completely new sub-goals themselves. In future work, we would like to explore

a variety of tasks beyond basic categorization to those which are not as cleanly split

into independent sub-goals. One such task is grasping. We can imagine a similar tree

morphology being tasked to recognize objects in the environment, grasp objects of a

certain type, and ignore the others. It would be worthwhile to see how the structure

of the tree adapts in order to achieve this more complicated task.

Because most vertebrate skeletal structures can be described as a tree, we believe

the use of a tree morphology enables the answering of general enough framework

for which to explore modularity while still answering important questions regarding

the evolution of mechanical independence, or dexterity. Our work indicates that

when morphology is able to be adapted, dexterity arises in due to the independence
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present in the sub-goals. Further, morphological cost can place evolutionary pressure

on populations to only exhibit the most necessary components for overall success.

Thus, when future new environments are encountered, it may become easier for an

agent to understand environments which are simply novel combinations of previously

experienced stimulus.

Morphological cost is present in many forms in biological organisms. In general,

the more mass a body has, the more energy is required for movement. Similarly, there

may be a structural cost associated with having more independence between joints.

The joints of an animal are more prone to injury than the bones. Having a larger

number of independent joints may result in a body which is more frail and subject to

more severe forms of damage. In this work we present a simple morphological cost

implemented by summing up the total amount of possible movement the robot could

experience. A more realistic approach may be to place higher cost on the joints which

move the most mass. In the case of the tree morphology presented in this work, when

the root joint actuates, the position of seven total branches changes. In contrast when

the joint of a leaf actuates, only one total branch position is change. The amount of

energy used to actuate the root joint is therefore greater than the amount used by

the leaf joint. Future work could focus on finding various other biologically plausible

implementations of morphological cost.

Similar to morphological cost, the connection cost implemented here is fairly sim-

ple. A more sophisticated cost function could incorporate the embodied position of

each neuron, mimicking costs associated with synaptic path length. This could lead

to the hierarchical control seen in vertebrates where response to inputs from local sen-

sation can be shortcut by being computed locally in the spine. Similarly, in the tree,
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local computation can occur at the leaf level without the need to send information

to upstream to the root branch. However, more complex task may require the robot

to perform global computation in which many sensors will be used in computation in

the root.

Lastly, this work examined the behavior of robots given incomplete combinations

of the total environment space. Our results indicate that robots who experience some

sort of cost over evolution are better able break down previously experienced environ-

ments into its sub-goals and reconstruct the sensation of new, unseen environments

based on recognition of these previously experienced sub-goals. Taken together, this

work is of import for understanding the long term scalability of evolution of embodied

agents. Organisms can operate in new environments which they experience as novel

combinations of familiar percepts rather than completely new sensory data. This

work contributes to an understanding of such abilities evolve, and how they might be

instantiated in embodied machines.
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Chapter 6

Conclusion

In this thesis, I explored the consequences of evolving robots in multiple environ-

ments. When robots cannot break down their environment into unfamiliar combina-

tions of familiar percepts they potentially must be exponential number of environ-

ments. This leads to an intractable number of necessary simulations for the evolution

of non-trivial robots capable of non-trivial behaviors.

In this thesis, I explore the impact of modularity in a robot’s morphology and

control in order for the robot to better reflect the structure present in the environment.

When the design of the robot accurately reflects the environment, it is better able

to independently act in response to locally perceived environmental features, thus

allowing evolution to occur on a reduced subset of environments while exhibiting

high performance in unseen environments. This indicates that modularity can be a

path forward to addressing the issue of scalability in evolutionary robotics.

For any system, modularity is notoriously difficult to describe in a way that is both

useful and general. In this thesis I explore modularity as it relates to the sensory-

motor-environment interactions of robot instead of the common approach of using Q
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to report the structural modularity present in an agent’s neural network. This allows

for a more useful definition of modularity in embodied agents as it incorporates all

relevant aspects towards a robot’s perception and response.

Chapters 2 and 3 consider agents in which morphology and control is hand de-

signed to reflect the structure of the environment. These robots can be compared to

agents which do not correctly reflect the environment. These experiments are nec-

essary to show the theoretical benefits of embodied systems which already correctly

reflect aspects of their environment.

Chapters 4 and 5 give evolution more control over the qualitative aspects of a

robot’s understanding of the environment. Whereas the experiments in Chapters

2 and 3 addressed the why of modularity, these experiments address the how. They

provide insight into how modularity may be formed and how the relationship between

environment and robot design may be utilized by evolution to create more modular

robots.

In Chapter 4, the neural controllers are generated using HyperNEAT, a bio-

inspired model for development which maintains spatial relationships between neu-

rons. When the spatial embedding reflected the modular and hierarchical nature

of the task environments presented to the robot, it was more evolvable than robots

which possessed other embeddings which did not adequately capture the structure of

the environment.

In Chapter 5, I show the complete evolution of a robot’s morphology and neural

topology. By exposing the robot to an environment which exhibits both modular and

non-modular sub-goals, I show the evolution of varying degrees of dexterity which

reflect the goals of the environment. Further, I show morphological cost can be used
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to pressure evolution to find populations of robots which experience low interference.

6.1 Significance

The work presented in this thesis has implications with regards to evolution in

both biology as well as an optimization tool for artificial agents.

By focusing on the fundamental process by which artificial evolution occurs and

examining a theoretical agent, this thesis can be applied to give insight into biological

questions regarding the evolution of modularity and the varying degree of mechanical

independence shown within organisms. This work confirmed what biologists have long

know: environment can guide evolution [31]. I also give support to the possibility of

morphological cost applying pressure towards morphologies which accurately reflect

the structure of the environment. While the conclusions of this thesis for the field of

biology are more narrow, for evolutionary robotics and evolutionary computation the

results are more general.

The use of a tree robot makes this work general to many other types of morpholo-

gies and to other hierarchical systems. Most robots can be described as trees in which

appendages branch off from a central control body, therefore even though a robot’s

morphology may not look like a tree, from a theoretical aspect, it behaves similarly

to the tree robot presented in this thesis. Research concerning robots which cannot

be described as trees such as soft robots may still benefit from this thesis because

this work generalizes to systems which must react to disparate local sensation which

potentially requires immediate response through local computation or slower more

collective response through the use of hierarchical control. While this thesis does
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not specifically explore non-tree morphologies, the results here can be applied to any

hierarchical system with distributed local sensation as described above.

This thesis provides an important novel framework for discussing the relationship

between morphology, control, and environment by first providing definitions for mor-

phological, neurological, and ecological modularity and then tying them all together

with the sub-goal interference metric I. When I is used in conjunction with fitness

in a set of environments, it indicates the level of specialization of perception and

response within the robot.

The use of cost has been previously implemented to constrain complexity of design

[91] but, to my knowledge, it has not been used to help guide evolution towards

modular solutions. Connection cost has proven effective for the formation of neural

modularity [23], however I show it may be insufficient in an embodied context. This

is important to help shift the focus of modularity research away from the Q metric

towards something more grounded in movement which is an important component of

active embodied agents. Because Q inherently only describes structural modularity

of networks, it cannot be used to adequately describe the independence of sensations

due to motion.

This thesis implies cost functions may also be part of the catalyst for the evolu-

tion of independent control and motion within biological organisms. By incorporating

cost, evolutionary methods will find which components of the genome are most es-

sential essential towards achieving high fitness. Cost can aid evolution to isolate the

independent components of the agent to accurately reflect the independent aspects

of the environment.

Outside of using cost functions, this thesis also explored the concept of embodied
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embeddings which can be used to describe better neural embeddings for the popular

evolutionary algorithm HyperNEAT. These embeddings create relationships within

the agents neural controller and have previously been based on grid patterns or chosen

arbitrarily by the researcher [26]. This thesis extends work which uses the body as the

starting point for the location of neurons in the embedding [25] by using embodied

concepts such as hierarchy and locality when determining the embedding. This work

can be used to help future researchers choose how to structure the spatial relationship

between neurons given a morphology and set of task environments.

To summarize, this thesis first defines what modularity is in an embodied context

with relation to environment, second shows why modularity is important to the long

term scalability of evolutionary robotics, and third examines a variety of ways in

which the structure and modularity of the environment can become reflected in an

evolved agent.

6.2 Future Work

Many questions remain due to the theoretical nature of this thesis. This section

describes the various avenues future work should explore in order to contribute to

this area of research.

Future implementations using morphological cost should strive to use more general

multi-objective methods to receive the full benefit of what morphological cost can

provide. In this thesis I deliberately used naïve methods such as simply combining the

cost penalty term in the fitness function in order to compare different implementations

of cost. However, now that morphological cost has been shown to be effective even
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in this simple use case, it would be fruitful to utilize the complete potential given by

more explicit multi-objective techniques of having a spectrum of individuals in the

population exhibiting different cost values.

Along with a different multi-objective implementation, the use of different cost

functions could be an area of worthwhile research. Embodied agents provide a greater

array of feasible constraints than their disembodied counterparts. One biologically

inspired cost function is the use of energy. Here morphological cost was used as

a simple penalty to the maximum range of joints in the phenotype but, instead,

penalizing for energy usage could accomplish the same goal while leading towards

more conservative behavior. Energy is also an attractive cost option because of its

biological reality.

However energy may be too indirect to accomplish the intended goal and spe-

cific robots may have obvious forms of cost which may allow faster evolution. Some

examples of potentially useful morphological cost functions can be:

• Mass and volume - Selecting for smaller robots may increase the specialization

by reducing the amount of material connecting different areas of the robot.

This would be useful for robots in which the entire body plan is placed under

evolutionary control.

• Number of joints - By placing a cost on how many joints the robot has, pressure

is directly placed on the mechanical independence. In this case, only the joints

which are found to be most necessary to complete the task will remain. This

type of cost could be useful when the pieces of the body are all pre-defined but

not how they are connected.
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• Joint torque and speed - This type of cost is similar to the one presented in this

thesis. By inhibiting how much a joint can lift or how fast it can move, different

forms of relationships between the bodies may arise. It might be found that

joints which are higher up on the hierarchy (and therefore control more of the

body) may have a higher torque so as to move the entirety of the body but may

require lower speed so as to not disrupt the local computation of sensors lower

down in the hierarchy. This type of cost would probably be most beneficial in

a similar case to the tree robot where evolution controls how the joints move.

• Material type - In reality robots are not made up of only one material. By

implementing cost to favor cheaper types of materials to create the morphology,

there may be impacts to the mechanical relationships within the body of the

robot. This type of cost will most likely be beneficial to soft robots where

the material varies widely and has a larger effect on the overall movement and

control of the robot.

Finally, future work should try to incorporate performance and sub-goal interfer-

ence more directly. In this work we introduce I as a separate metric from fitness, but

for actual analysis it seems useful to evaluate both performance and I to completely

describe, in one metric, the quality of the robot. This thesis shows that it may be dif-

ficult to do in general or for larger systems because it requires a complete knowledge

of the association between the portions of the robot and the independent sub-goals.

However, it seems fruitful to continue exploring a general relationship between robot

and environment in order for evolutionary robotics to continue progressing.

Aside from additional implementation techniques, this thesis raises questions re-

garding the fundamental nature of modularity. Can modularity form when there is no
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perceivable presence of modularity? Most experiments which approach modularity do

so by exposing the agent to stimulus which contains some level of modularity already

present. What happens when the human researcher does not perceive modularity

in the task they assign to the agent? Consider the evolution of the human hand.

Although many other species exist in the same or similar environments, the human

hand is unique because it exhibits a high level of mechanical independence between

digits. What in our environment led to the formation of the hand? Are there better,

or more modular, versions of the hand that we as humans do not recognize? Can

artificial evolution generate agents with forms of modularity not recognizable to the

human observer? This may be important to the scalability of evolutionary approaches

when it is not known how many free parameters are present in the environment and

how the parameters of the environment relate to each other. It could be that by

evolving robots which minimize various forms of cost discover novel modularity in

the environment.

150



Bibliography

[1] Joshua E Auerbach and Josh C Bongard. “Dynamic resolution in the co-
evolution of morphology and control”. In: Artificial Life XII: Proceedings of the
Twelfth International Conference on the Synthesis and Simulation of Living
Systems. CONF. MIT Press. 2010.

[2] James P Bagrow. “Communities and bottlenecks: Trees and treelike networks
have high modularity”. In: Physical Review E 85.6 (2012), p. 066118.

[3] Wolfgang Banzhaf et al. Genetic programming: an introduction. Vol. 1. Morgan
Kaufmann San Francisco, 1998.

[4] Anton Bernatskiy and Joshua C Bongard. “Exploiting the relationship between
structural modularity and sparsity for faster network evolution”. In: Proceed-
ings of the companion publication of the 2015 annual conference on genetic
and evolutionary computation. ACM. 2015, pp. 1173–1176.

[5] Jesper Blynel and Dario Floreano. “Exploring the T-maze: Evolving learning-
like robot behaviors using CTRNNs”. In: Workshops on Applications of Evo-
lutionary Computation. Springer. 2003, pp. 593–604.

[6] Jessica A Bolker. “Modularity in development and why it matters to evo-devo”.
In: American Zoologist 40.5 (2000), pp. 770–776.

[7] Josh Bongard. “Evolving modular genetic regulatory networks”. In: Evolution-
ary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on. Vol. 2.
IEEE. 2002, pp. 1872–1877.

[8] Josh Bongard. “Morphological change in machines accelerates the evolution of
robust behavior”. In: Proceedings of the National Academy of Sciences 108.4
(2011), pp. 1234–1239.

[9] Josh Bongard. “Morphological change in machines accelerates the evolution of
robust behavior”. In: Proceedings of the National Academy of Sciences 108.4
(2011), pp. 1234–1239.

151



[10] Josh C Bongard. “Spontaneous evolution of structural modularity in robot
neural network controllers”. In: Proceedings of the 13th annual conference on
Genetic and evolutionary computation. ACM. 2011, pp. 251–258.

[11] Josh C Bongard. “Spontaneous evolution of structural modularity in robot
neural network controllers”. In: Proceedings of the 2011 Genetic and Evolu-
tionary Computation Conference. Dublin: ACM, 2011, pp. 251–258.

[12] Josh C Bongard and Rolf Pfeifer. “Repeated structure and dissociation of
genotypic and phenotypic complexity in artificial ontogeny”. In: Proceedings of
the 3rd Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc. 2001, pp. 829–836.

[13] Josh C Bongard et al. “Evolving robot morphology facilitates the evolution
of neural modularity and evolvability”. In: Proceedings of the 2015 annual
conference on genetic and evolutionary computation. ACM. 2015, pp. 129–
136.

[14] Rodney A Brooks. “Elephants don’t play chess”. In: Robotics and autonomous
systems 6.1 (1990), pp. 3–15.

[15] Duncan S Callaway et al. “Network robustness and fragility: Percolation on
random graphs”. In: Physical review letters 85.25 (2000), p. 5468.

[16] Werner Callebaut, Diego Rasskin-Gutman, and Herbert A Simon. Modularity:
understanding the development and evolution of natural complex systems. MIT
press, 2005.

[17] Collin K Cappelle et al. “Morphological modularity can enable the evolution
of robot behavior to scale linearly with the number of environmental features”.
In: Frontiers in Robotics and AI 3 (2016), p. 59.

[18] Collin Cappelle, Anton Bernatskiy, and Josh Bongard. “Reducing Training
Environments in Evolutionary Robotics Through Ecological Modularity”. In:
Conference on Biomimetic and Biohybrid Systems. Springer. 2017, pp. 95–106.

[19] Sean B Carroll. “Chance and necessity: the evolution of morphological com-
plexity and diversity”. In: Nature 409.6823 (2001), p. 1102.

[20] Nick Cheney et al. “Scalable co-optimization of morphology and control in
embodied machines”. In: Journal of The Royal Society Interface 15.143 (2018),
p. 20170937.

[21] Andy Clark. Being there: Putting brain, body, and world together again. MIT
press, 1998.

[22] Dave Cliff, Phil Husbands, and Inman Harvey. “Explorations in evolutionary
robotics”. In: Adaptive behavior 2.1 (1993), pp. 73–110.

152



[23] Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. “The evolutionary origins
of modularity”. In: Proc. R. Soc. B 280.1755 (2013), p. 20122863.

[24] Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. “The evolutionary origins
of modularity”. In: Procs of the Royal Society B: Biological sciences 280.1755
(2013), p. 20122863.

[25] Jeff Clune, Charles Ofria, and Robert T Pennock. “The sensitivity of Hyper-
NEAT to different geometric representations of a problem”. In: Proceedings of
the 11th Annual conference on Genetic and evolutionary computation. ACM.
2009, pp. 675–682.

[26] Jeff Clune et al. “Evolving coordinated quadruped gaits with the HyperNEAT
generative encoding”. In: 2009 iEEE congress on evolutionary computation.
IEEE. 2009, pp. 2764–2771.

[27] Jeff Clune et al. “Investigating whether HyperNEAT produces modular neu-
ral networks”. In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM. 2010, pp. 635–642.

[28] Jeff Clune et al. “On the performance of indirect encoding across the contin-
uum of regularity”. In: IEEE Transactions on Evolutionary Computation 15.3
(2011), pp. 346–367.

[29] Paolo Crucitti, Vito Latora, and Massimo Marchiori. “A topological analysis
of the Italian electric power grid”. In: Physica A: Statistical mechanics and its
applications 338.1-2 (2004), pp. 92–97.

[30] David B D’Ambrosio, Jason Gauci, and Kenneth O Stanley. “HyperNEAT:
The first five years”. In: Growing adaptive machines. Springer, 2014, pp. 159–
185.

[31] Charles Darwin. On the origin of species, 1859. Routledge, 2004.
[32] Stephane Doncieux et al. “Evolutionary robotics: what, why, and where to”.

In: Frontiers in Robotics and AI 2 (2015), p. 4.
[33] Denis Duboule. “Vertebrate hox gene regulation: clustering and/or colinear-

ity?” In: Current opinion in genetics & development 8.5 (1998), pp. 514–518.
[34] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary comput-

ing. Vol. 53. Springer, 2003.
[35] Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff Clune. “Neural modularity

helps organisms evolve to learn new skills without forgetting old skills”. In:
PLoS Comput Biol 11.4 (2015), e1004128.

[36] C. Espinosa-Soto and A. Wagner. “Specialization can drive the evolution of
modularity”. In: PLoS Comp Biol 6.3 (2010), e 1000719.

153



[37] Carlos Espinosa-Soto. “On the role of sparseness in the evolution of modular-
ity in gene regulatory networks”. In: PLoS computational biology 14.5 (2018),
e1006172.

[38] Carlos Espinosa-Soto and Andreas Wagner. “Specialization can drive the evo-
lution of modularity”. In: PLoS computational biology 6.3 (2010), e1000719.

[39] Luca Ferrarini et al. “Hierarchical functional modularity in the resting-state
human brain”. In: Human brain mapping 30.7 (2009), pp. 2220–2231.

[40] Robert Fitch et al. “Reconfigurable modular robotics”. In: Robotics and Au-
tonomous Systems 7.62 (2014), pp. 943–944.

[41] Dario Floreano and Francesco Mondada. “Evolution of homing navigation in a
real mobile robot”. In: IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics) 26.3 (1996), pp. 396–407.

[42] Santo Fortunato and Marc Barthelemy. “Resolution limit in community de-
tection”. In: Proceedings of the National Academy of Sciences 104.1 (2007),
pp. 36–41.

[43] James A Foster. “Computational genetics: Evolutionary computation”. In: Na-
ture Reviews Genetics 2.6 (2001), p. 428.

[44] Robert M French. “Catastrophic forgetting in connectionist networks”. In:
Trends in cognitive sciences 3.4 (1999), pp. 128–135.

[45] Tamar Friedlander et al. “Mutation rules and the evolution of sparseness and
modularity in biological systems”. In: PloS one 8.8 (2013), e70444.

[46] Nicolás García-Pedrajas, Domingo Ortiz-Boyer, and César Hervás-Martínez.
“An alternative approach for neural network evolution with a genetic algo-
rithm: Crossover by combinatorial optimization”. In: Neural Networks 19.4
(2006), pp. 514–528.

[47] Jason Gauci and Kenneth O Stanley. “Indirect encoding of neural networks
for scalable go”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 2010, pp. 354–363.

[48] F. Gruau. “Automatic definition of modular neural networks”. In: Adaptive
Behaviour 3 (1994), pp. 151–183.

[49] Leland H Hartwell et al. “From molecular to modular cell biology”. In: Nature
402.6761supp (1999), p. C47.

[50] Inman Harvey et al. “Evolutionary robotics: the Sussex approach”. In: Robotics
and autonomous systems 20.2-4 (1997), pp. 205–224.

[51] Arend Hintze and Christoph Adami. “Evolution of complex modular biological
networks”. In: PLoS computational biology 4.2 (2008), e23.

154



[52] Gregory Hornby et al. “Automated antenna design with evolutionary algo-
rithms”. In: Space 2006. 2006, p. 7242.

[53] Joost Huizinga, Jeff Clune, and Jean-Baptiste Mouret. “Evolving neural net-
works that are both modular and regular: HyperNEAT plus the connection
cost technique”. In: Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation. ACM. 2014, pp. 697–704.

[54] Nick Jakobi, Phil Husbands, and Inman Harvey. “Noise and the reality gap:
The use of simulation in evolutionary robotics”. In: Advances in artificial life.
Springer, 1995, pp. 704–720. doi: 10.1007/3-540-59496-5_337.

[55] Pankaj Jalote. “ICSE 2014”. In: Communications of the ACM (2013).
[56] N. Kashtan and U. Alon. “Spontaneous evolution of modularity and network

motifs”. In: PNAS 102.39 (2005), p. 13773.
[57] Nadav Kashtan and Uri Alon. “Spontaneous evolution of modularity and net-

work motifs”. In: Proceedings of the National Academy of Sciences 102.39
(2005), pp. 13773–13778.

[58] Nadav Kashtan, Elad Noor, and Uri Alon. “Varying environments can speed
up evolution”. In: Proceedings of the National Academy of Sciences 104.34
(2007), pp. 13711–13716.

[59] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. “The transfer-
ability approach: Crossing the reality gap in evolutionary robotics”. In: IEEE
Transactions on Evolutionary Computation 17.1 (2012), pp. 122–145.

[60] Kostas Kouvaris et al. “How Evolution Learns to Generalise: Principles of
under-fitting, over-fitting and induction in the evolution of developmental or-
ganisation”. In: arXiv preprint arXiv:1508.06854 (2015).

[61] Anat Kreimer et al. “The evolution of modularity in bacterial metabolic net-
works”. In: Proceedings of the National Academy of Sciences 105.19 (2008),
pp. 6976–6981.

[62] Sam Kriegman et al. “Simulating the evolution of soft and rigid-body robots”.
In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion. ACM. 2017, pp. 1117–1120.

[63] Robb Krumlauf. “Hox genes in vertebrate development”. In: Cell 78.2 (1994),
pp. 191–201.

[64] Manoj Kumar et al. “Genetic algorithm: Review and application”. In: Inter-
national Journal of Information Technology and Knowledge Management 2.2
(2010), pp. 451–454.

155

https://doi.org/10.1007/3-540-59496-5_337


[65] Lars Kunze, Tobias Roehm, and Michael Beetz. “Towards semantic robot de-
scription languages”. In: 2011 IEEE International Conference on Robotics and
Automation. IEEE. 2011, pp. 5589–5595.

[66] Quoc V Le et al. “Building high-level features using large scale unsupervised
learning”. In: arXiv preprint arXiv:1112.6209 (2011).

[67] Joel Lehman and Kenneth O Stanley. “Exploiting open-endedness to solve
problems through the search for novelty.” In: ALIFE. 2008, pp. 329–336.

[68] Joel Lehman et al. “Encouraging Reactivity to Create Robust Machines”. In:
Adaptive Behavior (2013).

[69] Elizabeth A Leicht and Mark EJ Newman. “Community structure in directed
networks”. In: Physical review letters 100.11 (2008), p. 118703.

[70] Hod Lipson. “Principles of modularity, regularity, and hierarchy for scalable
systems”. In: Journal of Biological Physics and Chemistry 7.4 (2007), p. 125.

[71] Hod Lipson and Jordan B Pollack. “Automatic design and manufacture of
robotic lifeforms”. In: Nature 406.6799 (2000), p. 974.

[72] Hod Lipson et al. “On the origin of modular variation”. In: Evolution 56.8
(2002), pp. 1549–1556.

[73] Daniel Marbach and Auke Jan Ijspeert. “Co-evolution of configuration and
control for homogenous modular robots”. In: Proceedings of the eighth con-
ference on intelligent autonomous systems (IAS8). CONF. IOS Press. 2004,
pp. 712–719.

[74] Maja Matarić and Dave Cliff. “Challenges in evolving controllers for physical
robots”. In: Robotics and autonomous systems 19.1 (1996), pp. 67–83.

[75] David Meunier et al. “Hierarchical modularity in human brain functional net-
works”. In: Frontiers in neuroinformatics 3 (2009), p. 37.

[76] Garrett W Milliken, Jeannette P Ward, and Carl J Erickson. “Independent
digit control in foraging by the aye-aye (Daubentonia madagascariensis)”. In:
Folia Primatol 56 (1991), pp. 219–224.

[77] Francesco Mondada, Edoardo Franzi, and Andre Guignard. “The development
of khepera”. In: Experiments with the Mini-Robot Khepera, Proceedings of the
First International Khepera Workshop. CONF. 1999, pp. 7–14.

[78] John Napier. “The evolution of the hand”. In: Scientific American 207.6 (1962),
pp. 56–65.

[79] Mark EJ Newman. “Modularity and community structure in networks”. In:
Proceedings of the national academy of sciences 103.23 (2006), pp. 8577–8582.

156



[80] Mark EJ Newman and Michelle Girvan. “Finding and evaluating community
structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[81] Stefano Nolfi and Dario Floreano. “Evolutionary Robotics: The Biology”. In:
Intelligence, and Technology of Self-Organizing Machines, Bradford Company,
Scituate, MA (2004).

[82] Stefano Nolfi, Dario Floreano, and Director Dario Floreano. Evolutionary robotics:
The biology, intelligence, and technology of self-organizing machines. MIT
press, 2000.

[83] Lawrence Page et al. The PageRank citation ranking: Bringing order to the
web. Tech. rep. Stanford InfoLab, 1999.

[84] Merav Parter, Nadav Kashtan, and Uri Alon. “Environmental variability and
modularity of bacterial metabolic networks”. In: BMC evolutionary biology 7.1
(2007), p. 169.

[85] JEAN-JACQUES Petter. “The aye-aye”. In: Primate conservation (1977),
pp. 37–57.

[86] Rolf Pfeifer and Josh Bongard. How the body shapes the way we think: a new
view of intelligence. MIT press, 2006.

[87] Massimo Pigliucci. “Is evolvability evolvable?” In: Nature Reviews Genetics
9.1 (2008), p. 75.

[88] Tony Pinville et al. “How to promote generalisation in evolutionary robotics:
The ProGAb approach”. In: Proceedings of the 13th annual conference on Ge-
netic and evolutionary computation. ACM. 2011, pp. 259–266.

[89] Nataša Pržulj. “Biological network comparison using graphlet degree distribu-
tion”. In: Bioinformatics 23.2 (2007), e177–e183.

[90] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. “Quality diversity: A
new frontier for evolutionary computation”. In: Frontiers in Robotics and AI
3 (2016), p. 40.

[91] Timothy E Revello and Robert McCartney. “A cost term in an evolutionary
robotics fitness function”. In: Proceedings of the 2000 Congress on Evolutionary
Computation. CEC00 (Cat. No. 00TH8512). Vol. 1. IEEE. 2000, pp. 125–132.

[92] Sebastian Risi, Joel Lehman, and Kenneth O Stanley. “Evolving the placement
and density of neurons in the hyperneat substrate”. In: Proceedings of the
12th annual conference on Genetic and evolutionary computation. ACM. 2010,
pp. 563–570.

157



[93] Sebastian Risi and Kenneth O Stanley. “Enhancing es-hyperneat to evolve
more complex regular neural networks”. In: Proceedings of the 13th annual
conference on Genetic and evolutionary computation. ACM. 2011, pp. 1539–
1546.

[94] Gerhard Schlosser and Günter P Wagner. Modularity in development and evo-
lution. University of Chicago Press, 2004.

[95] Michael Schmidt and Hod Lipson. “Age-fitness pareto optimization”. In: Ge-
netic Programming Theory and Practice VIII. Springer, 2011, pp. 129–146.

[96] John Scott and Peter J Carrington. The SAGE handbook of social network
analysis. SAGE publications, 2011.

[97] Jimmy Secretan et al. “Picbreeder: evolving pictures collaboratively online”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM. 2008, pp. 1759–1768.

[98] Karl Sims. “Evolving virtual creatures”. In: Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques. ACM. 1994, pp. 15–
22.

[99] Russell Smith et al. “Open dynamics engine”. In: (2005).
[100] Ricard V Solé and Sergi Valverde. “Spontaneous emergence of modularity in

cellular networks”. In: Journal of The Royal Society Interface 5.18 (2007),
pp. 129–133.

[101] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. “A hypercube-
based encoding for evolving large-scale neural networks”. In: Artificial life 15.2
(2009), pp. 185–212.

[102] Kenneth O Stanley and Risto Miikkulainen. “Evolving neural networks through
augmenting topologies”. In: Evolutionary computation 10.2 (2002), pp. 99–127.

[103] Michael Stein. “Large sample properties of simulations using Latin hypercube
sampling”. In: Technometrics 29.2 (1987), pp. 143–151.

[104] JGM Thewissen et al. “From land to water: the origin of whales, dolphins, and
porpoises”. In: Evolution: Education and Outreach 2.2 (2009), p. 272.

[105] Frank Veenstra et al. “Evolution and morphogenesis of simulated modular
robots: a comparison between a direct and generative encoding”. In: European
Conference on the Applications of Evolutionary Computation. Springer. 2017,
pp. 870–885.

158



[106] Phillip Verbancsics and Kenneth O Stanley. “Constraining connectivity to
encourage modularity in HyperNEAT”. In: Proceedings of the 13th annual
conference on Genetic and evolutionary computation. ACM. 2011, pp. 1483–
1490.

[107] George Von Dassow and Ed Munro. “Modularity in animal development and
evolution: elements of a conceptual framework for EvoDevo”. In: Journal of
Experimental Zoology 285.4 (1999), pp. 307–325.

[108] G.P. Wagner, M. Pavlicev, and J.M. Cheverud. “The road to modularity”. In:
Nature Reviews Genetics 8.12 (2007), pp. 921–931. issn: 1471-0056.

[109] Günter P Wagner. “Homologues, natural kinds and the evolution of modular-
ity”. In: American Zoologist 36.1 (1996), pp. 36–43.

[110] Günter P Wagner, Mihaela Pavlicev, and James M Cheverud. “The road to
modularity”. In: Nature Reviews Genetics 8.12 (2007), p. 921.

[111] Stanley Wasserman and Katherine Faust. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press, 1994.

[112] Yuichi Yamashita and Jun Tani. “Emergence of functional hierarchy in a mul-
tiple timescale neural network model: a humanoid robot experiment”. In: PLoS
Comp Bio 4.11 (2008), e1000220.

[113] Mark Yim et al. “Modular self-reconfigurable robot systems [grand challenges
of robotics]”. In: Robotics & Automation Magazine, IEEE 14.1 (2007), pp. 43–
52.

[114] Nathan M Young, Gunter P Wagner, and Benedikt Hallgrimsson. “Develop-
ment and the evolvability of human limbs”. In: Proceedings of the National
Academy of Sciences 107.8 (2010), pp. 3400–3405.

159


	University of Vermont
	ScholarWorks @ UVM
	2019

	Exploring the Modularity and Structure of Robots Evolved in Multiple Environments
	Collin Cappelle
	Recommended Citation


	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Evolutionary Computation
	Evolutionary Robotics
	Characterization of Environments
	Modularity
	Network Approaches
	Embodied Approaches

	Contribution Outline

	Morphological Modularity Can Enable the Evolution of Robot Behavior to Scale Linearly with the Number of Environmental Features
	Abstract
	Introduction
	Non-embodied modularity.
	Embodied modularity.
	Neural modularity and morphological modularity

	Material & Methods
	The robot morphologies.
	The robot controllers.
	The task environments.
	Evolutionary optimization
	Experimental Design

	Results
	Discussion
	Conclusions

	Reducing Training Environments Through Ecological Modularity
	Abstract
	Introduction
	Robustness
	Modularity
	Morphological and neurological modularity
	Ecological modularity

	Methods
	Robot design
	Environmental setup
	Physical implementation
	Evolutionary setup
	Experimental setup

	Results
	Discussion and Conclusion

	Embodied Embeddings for HyperNEAT
	Abstract
	Introduction
	HyperNEAT
	Substrate Analysis
	Retina Task

	Methods
	Robot Construction
	Embodied Retina Task
	Embodied Network Embeddings
	Experimental Parameters

	Results
	Discussion
	Conclusion

	Morphological Cost Facillitates the Evolution of Modularity
	Introduction
	Disembodied modularity
	Embodied modularity

	Robot Representation
	Morphology
	Neural Controller
	Genome

	Methods
	Task Environments
	Sub-goal interference
	Evolutionary Algorithm
	Objective Function
	The cost functions
	The fitness function
	Experimental configurations of mutation and cost

	Results
	Discussion
	Conclusion

	Conclusion
	Significance
	Future Work


