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Synopsis

Maths comes to life in human interaction. This has consequences for the math-
ematics itself. This paper discusses how this “coming to life” of mathematics in
different social arenas influences the foundations of maths. We will argue that this
influence is profound, to the extent that it is hard to upkeep the idea that there is
or should be one foundation on which all mathematics can be built.

1. Introduction

During the first semester of my university maths education, it used to bother
me that different courses used different definitions for the same concept. I
had to work with two “different” sine functions, both again different from the
definition of the sine I remembered from secondary school. I wanted the defi-
nition, founded firmly on easy concepts. But I had to accept that, depending
on the course or what one wanted to do with it, multiple foundations for
mathematical concepts were possible.

Philosophy of mathematics had a similar evolution. Early to mid 20th century
philosophy of mathematics was concerned with finding the foundation of math-
ematics. But this turned out to be very hard indeed. However, we will argue,
the tendency to look into foundations is a fundamental aspect of mathematics,
even that what makes mathematics mathematics. The problem with founda-
tionalist philosophy of maths starts when one does not take the wide variety
of mathematical practices and its social organisation into consideration, which
has an influence on the maths itself, even on its foundations.
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2. From Foundations to Practices

The first half of 20th century philosophy of mathematics was marked by the
foundational crisis. From this crisis, entire “schools” (“-isms”) developed. The
details of these different positions are not relevant for this discussion and can
be found in any introduction to philosophy of mathematics. Rather than
what their differences are, we are interested in what they share. Since they
emerged as programmes to deal with the crisis of mathematical foundations,
what they shared, to a certain extent, is that they were all foundational: from
metaphysical or ontological positions of what the foundations of mathematics
are or should be, the building of mathematics was (re)constructed.

To this day, the matter is not settled. All programmes and positions have
their merits, but all fail to account for all of mathematics and philosophical
problems. As no clear dominant position emerged, the focus shifted “upwards”;
from the foundations to the mathematical practices.1 In recent decades, this
evolved into a fully-fledged “practice turn” in the philosophy of mathematics,
although maybe less profound, later, and more fragmentary than the practice
turn in the philosophy of science. Since then, the social organisation and
human aspect of that funny enterprise called mathematics has received more
and more attention and recognition. Some topical issues in the philosophy of
mathematical practices (PMP for short) are the role of cultural factors, social
organisation of mathematics, historical considerations, heuristics in the context
of mathematical discovery, the role of mistakes, educational links, explanation
and many more.

However, should the two necessarily be in opposition? Can philosophy of
mathematical foundations and philosophy of mathematical practices cross-
fertilise each other? In a specific way (we will argue), discussion of foundations
is unavoidable, and the reason for this is to be found in the characteristics of
mathematics itself. We have to deal with foundations.

Here we enter of course the realm of the “classical” problems of “traditional”
philosophy of mathematics, and risk to get bogged down in these “old” dis-
cussions. Hence, an account of PMP should be compatible with different
metaphysical positions one might hold. To put it crudely: an answer to the
question about whether or not vector spaces existed when dinosaurs roamed

1Or we should say the focus expanded. But in contemporary foundational debates too,
elements of mathematical practice are taken more and more into consideration.
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the earth is a matter of extreme indifference to me. But whether one answers
“yes”, “no”, or “that question has no meaning to me”, it should in theory be
compatible with an account of the core of PMP.

What all mathematical practices share, independently of philosophical ac-
counts of the deeper ontological status of their concepts, is the fact their
mathematics comes to life in some kind of human or social interaction. This
is the aspect we are interested in: a living mathematics, as shared, presented,
discussed, taught, thought, communicated etc. We will call the societal spaces
in which this interaction brings mathematics to live social arenas. We choose
the term exactly because its connotation of action and debate.2 It might be
a difficult operation to exactly identify specific arenas, but a relatively easy
criterion could be: there has to exist a label for it, i.e. a name or even a cer-
tain official or institutional character: a classroom, an undergraduate algebra
course, a PhD defence, a mathematics conference, a university research group,
a TV documentary, the office of a mathematician3, an academic journal’s read-
ership, etc. These arenas are of course linked via individual mathematicians
or groups of mathematicians, who may be active in different arenas. Note
that the “same” piece of mathematics will potentially live quite differently in
different arenas.

Up to this point, the proposed analysis seems trivial. Yes, mathematics is
done and communicated differently in different ranks of society. If there is “a
mathematics” projected differently onto the different arenas where it comes
to live, this indeed does not add much. But here the fact that we take the
practices seriously kicks in. As we will argue, the influence of the social arenas
onto the mathematics itself reaches deeper than this, all the way to the foun-
dations. To such an extent that it is hard to uphold that there is or should be
one foundation that speaks for all of mathematical practices.

2The Online Oxford Dictionaries lists as a second definition for arena: “A place or scene
of activity, debate, or conflict”.

3The solitary “singleton mathematician” proving in her office fits this bill as well. She is
a little society of her own, embedded in different social arenas (research groups, courses she
teaches, university culture, society at large...). Also, there is a form of self-communication
through internal monologue or scribbling. In [4], an insight of C.J. Keyser is cited: “As
early as 1905, Keyser recognized that concepts and proofs in mathematics are essentially
social affairs: “They must be intelligible to at least two minds, or, what is tantamount,
to one person at least twice”.” (our emphasis) So even if we were to isolate the singleton
mathematician, we regard the way in which she “explains the mathematics to herself” as a
form of communication.
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We will present two case studies that show that the requirements of different
social arenas have a severe impact on what one considers to be the foundation
of a mathematical concept.

3. Case 1: The Sine Function

What is the sine function? It turns out this is a more difficult question than one
might suspect. Undoubtedly, a periodic sine wave picture leaps to mind, but
how to “properly” define this concept? It is remarkable that there are so many
versions of this quite essential mathematical notion. Here is a non-exhaustive
list of four commonly found definitions.

• the geometric definition, namely as the generalisation of the sine in a
right-angled triangle: sinx := the ordinate of the intersection point be-
tween the unit circle and the half-line through the origin, corresponding
to an arclength x (which is equal to an angle of x radians);

• a (Taylor) series: sinx :=
∞∑
n=1

(−1)n−1 x2n−1

(2n− 1)!
;

• the 2π-periodic continuation of the inverse of the arcsin function, itself
defined as an integral of an algebaic expression;

• the complex definition: [5] shows that, once the exponential function
expx has been defined, one can define sinx := 1

2i
exp(ix)− exp(−ix).

The first definition is the approach one is most likely to meet in secondary
school education. The reason is obvious: the function can be easily linked
to the right-angled triangle and goniometric circle, which is needed to show
interesting properties (extrema, zeroes, derivative etc.). The link with the
graph of a function (and hence geometric interpretation) is essential in this
arena. Another characteristic is the fact that this approach neatly follows
the school curriculum4: the sine in a right-angled trangle is introduced in the
third year of secondary school, the generalisation to the goniometric circle in
the fourth, functions and the sine-seen-as-function in the fifth.

The second approach is arguably the most “economical”, as only the concept
of infinite series is required. However, geometric interpretation and deriving
the desirable properties become tedious. If, however, there is a link with

4In the Dutch-speaking Belgian school system.
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computational side of things5, this becomes an interesting option, as it puts
forward the approximation method as fundamental. In other approaches, the
series is a property rather than a definition, as an instance of Taylor’s theorem.

The third and fourth definitions start from heavy (respectively real and com-
plex) analysis. The third defines arcsinx =

∫ x

0
dt√
1−t2 with (|t| < 1) and con-

sequently defines the sine function as the periodic continuation of its inverse.
The integral, inverses and all properties can then be derived through the famil-
iar ε−δ definitions, cementing this approach in the topology of R. The forth is
similar, but using machinery from complex analysis. These approaches might
be considered the most “rigorous”, as “it should be stressed that we derived
the basic properties of the trigonometric functions [...] without any appeal to
the geometric notion of angle.” ([5]) Interestingly enough, after having defined
the sine and cosine, [5] continues to argue that “[his definitions] coincide with
the functions cosx and sinx, whose definition is usually based on geometric
considerations.” So to show that his definition is adequate for the sine func-
tion, he shows that the rigorous definition gives rise to all the properties we
expect of a sine based on geometric reasoning.But to derive these properties
of the “geometric” sine, a certain amount of trust needs to be put into the ge-
ometric considerations we started from. This seems circular, but an instance
of a “virtuous circle”: provide more solid foundations for a concept we already
know.

Of course, it is possible to transform one representation in the other. What is
a definition in one arena will be a property in the other and vice versa. Pay-
offs need to be weighed against another. Yet, the situation is not symmetrical.
By favouring one definition over the other, one commits to what one deems
to be more essential as a basis for the concept. The choice depends on the
requirements of the social arena in which the sine function will be used.

So what is the sine function? It seems that this question is impossible
to answer. And this very fact isn’t a problem, rather on the contrary. It is
remarkable and fruitful that these motley crew of practices has so many
approaches to a concept so familiar as the sine function. Note that this
observation is compatible with most “classical” metaphysical positions in phi-
losophy of mathematics. The social constructivist is obviously happy, the
constructivist has (at least one) constructively acceptable version, there is an
embedding in R and (hence) set-theoretic structures, the Platonist
may claim all are projections of the ideal entity of the sine function.

5As e.g. in Bishop and Bridges’s constructivist analysis, see [1]
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There is, however, one position that proves to be untenable in view of these
observations. Namely the view that there should be but one foundation of
mathematics, whatever metaphysical stance one might have about this foun-
dation, because we saw that the foundation of the mathematical concept is
relative to the requirements of the social arena in which the concept is used.

4. Case 2: The Line

What is a (straight) line? This is another very familiar mathematical notion
that turns out to be hard to define. Again, we will present a few approaches.

A first is the very pragmatic approach to accept that a line is a line and
simply get over it. We have a basic understanding of what “straightness” is
or should be. Be it from encounters with it in nature (a lightbeam or the
horizon), a conceit of civilisation (a ruler or train track) or our innate human
proneness to regularity, uniformity, harmony and symmetry. In a lot of arenas,
it is therefore not problematic to simply live with a loosely defined concept of
“straight line”, founded on this acknowledged notion of straightness.

But even in arenas where formalisation and abstraction is imperative, such as
axiomatic geometry, one of the easiest approaches is to accept a line as a line
an no further. But in these arenas, the aim is different: lines are treated as
a primitive concept, tamed through axioms that stipulate how lines (should)
behave, hence making the connection with our intuitions of what an abstracted
straight line is. The concept “line” is not further analysable, and determined
by how it interacts with other notions, such as points. For example, Hilbert in
[3] defines a line as an object completely determined by two points, indefinitely
extendible etc.

Another possibility is to define a line in a coordinate grid system as an object
satisfying a linear equation of the form ax + by + c = 0. Here, geometric
interpretation is secondary, but the line-concept is founded on the real-number
concept, which easily harvests the powers of analytic geometry.

Here again, very different approaches were possible. Be it pragmatic, axiomatic
or analytic, the angle of attack reveals what is deemed to be a (part of the)
foundation for mathematics, within a specific social arena.



Nigel Vinckier 307

5. Practices as Foundations

We have discussed how the foundations of mathematical concepts differ in var-
ious social arenas. It is therefore dangerous to put forward general, unifying
principles that serve as a banner to put all of mathematics under. As soon
as one hears claims along the lines of “a fundamental characteristic of all of
mathematics is [...]”, one will be able to come up with something that is clearly
to be considered as a piece of mathematics, but which doesn’t satisfy the char-
acteristic. However, we will here boldly propose exactly such a characteristic,
maybe tempering the claim to apply to “most of mathematics”. It is a more
delicate version of the classical claim that the notion of proof lies at the heart
of mathematics.

Claim: Mathematics connects new concepts to previously defined and studied
concepts.

The latter are deemed to be the deeper, more intuitive, more easily graspable,
more fundamental concepts from which to start exploring the to-be-defined
concepts. This leads to a practice of connecting mathematical entities to
another. As concepts are built on one another, the natural question arises
of what the deepest concepts or assumptions are on which we are building.
Therefore there is, in all mathematical practices, a fundamental foundational-
ist tendency present. But what these foundations are, their solid basis deemed
unproblematic, intuitive, given, may be very different in the different social
arenas.

The foundationalist tendency is mathematical and only turns philosophically
problematic if one considers the foundational requirements of one social arena
to be the foundations for all arenas. Hence, the problem with foundationalist
philosophy of mathematics is not the foundationalism per se, but rather the
fact they take the foundations of pure mathematics (in-principle-traceability-
to-axioms-or-set-theory, formal proof requirement, preference for rigour over
intuition etc.6) to speak for all social arenas in which maths is performed.

This has consequences for the notion of proof. Traditionally, the maxim goes
that a piece of mathematics is in principle reducible to a set theoretic definition
and proofs work formally from a small set of axioms. As we have seen, this

6It is not claimed that e.g. intuition or informal proof are not part of this arena. Here,
however, we discuss foundational requirements.



308 Maths Living in Social Arenas, From Practice to Foundations

cannot account for the different proof concepts we encountered in different
arenas. Even within academic mathematics, this picture does not hold, as
Leitgeb in [2, page 271] remarks:

“[...] group theorists, topologists, and probability theorists usually
do not even know these set-theoretic axioms — the set theory they
use is most likely a version of naive set theory — and it is not
conceptually essential to their proofs that they rely on an axiomatic
system of set theory.”

6. Conclusion

In this paper, we discussed two examples that show how requirements of differ-
ent social arenas are reflected in the definition of mathematical concepts. This
reveals how different arenas have different ideas about what is to be considered
as foundational concepts. We have argued that looking into foundations is an
essential aspect of all mathematical endeavours, however, seen the diversity
in foundational requirements, one cannot expect the foundations of maths in
one social arena to speak for all of mathematics. The fact that mathematics
“lives” in different arenas has profound consequences, all the way down to its
foundations.
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