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Abstract  2 

Objective: To determine whether the metabolism of glucose or ketones differs in the 3 

healthy elderly compared to young or middle-aged adults during mild, short-term 4 

ketosis induced by a ketogenic breakfast.  5 

Design and participants: Healthy subjects in three age groups (23±1, 50±1 and 6 

76±2 y old) were given a ketogenic meal and plasma β-hydroxybutyrate, glucose, 7 

insulin, triacylglycerols, total cholesterol, non-esterified fatty acids and breath acetone 8 

were measured over the subsequent 6 h. Each subject completed the protocol twice 9 

in order to determine the oxidation of a tracer dose of both carbon-13 (13C) glucose 10 

and 13C-β-hydroxybutyrate. The tracers were given separately in random order. 11 

Apolipoprotein E genotype was also determined in all subjects. 12 

Results: Plasma glucose decreased and β-hydroxybutyrate, acetone and insulin 13 

increased similarly over 6 h in all three groups after the ketogenic meal. There was 14 

no significant change in cholesterol, triacylglycerols or non-esterified fatty acids over 15 

the 6 h. 13C-glucose and 13C-β-hydroxybutyrate oxidation peaked at 2-3 h post-dose 16 

for all age groups. Cumulative 13C-glucose oxidation over 24 h was significantly 17 

higher in the elderly but only versus the middle-aged group. There was no difference 18 

in cumulative 13C-β-hydroxybutyrate oxidation between the three groups. 19 

Apolipoprotein E (ε4) was associated with elevated fasting cholesterol but was 20 

unrelated to the other plasma metabolites. 21 

Conclusion: Elderly people in relatively good health have a similar capacity to 22 

produce ketones and to oxidize 13C-β-hydroxybutyrate as middle-aged or young 23 

adults, but oxidize 13C-glucose a little more rapidly than healthy middle-aged adults. 24 

Keywords: ketones, glucose, healthy elderly, 13C stable isotope tracers. 25 

26 



(Revised and resubmitted 21 June 2008) 

 
3 

Introduction 27 

In humans, glucose is the brain’s primary energy substrate and ketone bodies 28 

(ketones) are it’s primary replacement fuel during fasting or low carbohydrate intake 29 

(1). Ketones refers collectively to three molecules: acetoacetate (AcAc), β-30 

hydroxybutyrate (-OHB), and acetone (2). During ketogenesis, AcAc is formed first 31 

and is the only ketone metabolized by the tricarboxylic acid cycle as an energy 32 

substrate. After being converted back to AcAc by -OHB dehydrogenase, -OHB can 33 

also serve as an energy substrate (3). Acetone is produced by decarboxylation of 34 

AcAc and is exhaled in the breath in proportion to plasma ketone concentrations (2). 35 

Impaired availability of energy substrates to the brain may be implicated in the 36 

progression towards Alzheimer’s disease (4, 5). Raising blood ketones with a 37 

ketogenic meal shows preliminary potential to alleviate some features of the cognitive 38 

deficit in Alzheimer’s disease (6). Given this potentially important clinical application, 39 

but the relative scarcity of information about how energy substrates are utilized 40 

during healthy aging, i.e. during aging minimally confounded by symptomatic 41 

degenerative disease, our primary objective was to evaluate glucose and ketone 42 

utilization in the healthy elderly compared to young and middle-aged adults.  43 

Insulin inhibits ketone production so to achieve short-term ketogenesis 44 

subjects were given a very low carbohydrate breakfast composed of medium chain 45 

triacylglycerol (MCT), heavy cream, protein powder and water. MCT efficiently induce 46 

mild to moderate ketosis in humans (7) because they are rapidly absorbed and pass 47 

directly via the hepatic portal venous circulation to the liver where they are -oxidized 48 

with some of the resulting acetyl CoA being captured in ketones. MCT do not require 49 

a carnitine-dependent transport system to enter the inner mitochondrial space, and 50 

are thus more readily available for oxidation and at a lower energetic cost than long 51 
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chain triacylglycerol (LCT) (8). Although the present study was not designed or 52 

powered for analysis of the effect of genotype, apolipoprotein E genotype of our 53 

subjects was determined since it affects both post-prandial fat metabolism (9) and 54 

risk of Alzheimer’s disease (10, 11).  55 

56 
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Materials and Methods 57 

Subjects: Subjects were recruited in three age groups: 18-25 y old (young: Y), 40-55 58 

y old (middle-aged: M), and 70-85 y old (elderly: E). This distribution maintained a 59 

minimum 15 y gap between age groups and also avoided the increasing impact of 60 

frailty beyond 85 y old (12). All subjects were non-smokers and determined to be in 61 

relatively good health by a medical evaluation and blood screening done after a 12 h 62 

overnight fast. Fasting glucose and hemoglobin HbA1c were used to rule out the 63 

presence of overt diabetes. A complete blood cell count was used for blood 64 

disorders; electrolyte profile, AST and ALT for renal and liver function; HDL and LDL 65 

cholesterol, triglycerides; albumin for nutritional status; C-reactive protein as a marker 66 

of inflammatory processes; and TSH for thyroid function. Anthropometric parameters 67 

such as height, weight, body mass index (BMI), and fasting plasma metabolites did 68 

not differ significantly between age groups (Table 1). Approval for the study was 69 

obtained from the Research Ethics Committee of the Health and Social Services 70 

Center – Sherbrooke University Geriatrics Institute, which oversees all human 71 

research done at the Research Center on Aging.  72 

 73 

Tracer protocol and sample collection: Subjects arrived at 7:30 a.m. after having 74 

fasted overnight for 12 h. An intravenous forearm catheter was installed and baseline 75 

blood samples taken. The catheter was kept patent by flushing hourly with non-76 

heparinized saline. The stable isotope tracer was then consumed (13C-glucose or 77 

13C--OHB), followed immediately by the ketogenic breakfast drink, which was 78 

consumed within approximately 30 mins. After consuming the ketogenic breakfast, 79 

blood samples were taken hourly over 6 h using a 5 ml latex-free syringe (Becton 80 

Dickinson, Franklin Lakes, NJ) and transferred immediately to a 5 mL K2-EDTA-81 
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coated tube (Becton Dickinson, Franklin Lakes, NJ). Tubes were stored on ice at 4˚C 82 

until the conclusion of the study period at which point they were all centrifuged at 83 

3500 rpm for 18 min at 4˚C. The separated plasma was stored at -20˚C until further 84 

analyzed. During the 6 h study period, water was available ad libitum and subjects 85 

were asked to remain in a resting position with short walks. 86 

Each subject participated in two identical metabolic study days, one to test 87 

13C-glucose metabolism and the other to test 13C--OHB metabolism. The tracers 88 

were U-13C6 D-glucose or 2,4-13C2 sodium D-3-hydroxybutyrate (50 mg each; 89 

Cambridge Isotope Laboratories, Andover, MA) were consumed in 15 mL nanopure 90 

water and in randomized order. The two study days were separated by at least one 91 

but not more than three weeks. Breath samples for 13CO2 and acetone analysis were 92 

collected in triplicate at baseline and every 30 min afterwards using a breath 93 

collection device (Easysampler, Quintron Instrument Company, Milwaukee, WI) and 94 

10 mL evacuated glass tubes (Exetainer, Labco Ltd, Buckinghamshire, UK). The first 95 

~150 mL of exhaled air is dead space (13), so to collect a true alveolar breath 96 

sample, the subjects exhaled for 3 sec before breath sample collection. For acetone 97 

analysis, 1 mL of breath was transferred from one of the three Exetainer tubes to a 98 

glass gas-tight syringe (Hamilton Company, Reno, NV).  99 

 100 

Ketogenic breakfast drink: The ketogenic breakfast drink consisted of a blend of MCT 101 

(Mead Johnson, Ottawa, ONT, CA), 35% heavy cream (Québon Ultra Crème, 102 

Longueuil, QC, CA), raspberry-flavored milk protein powder (Davisco Foods 103 

International, Inc., Eden Prairie, MN, courtesy of Agropur Cooperative, Granby, QC, 104 

CA) and water (Table 2). The fatty acid composition of the ketogenic breakfast is 105 

shown in Table 3. This ketogenic breakfast was designed to give a ratio of total fat to 106 
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protein plus carbohydrate of 4.5:1, which is sufficient to induce mild, short-term 107 

ketosis in young adults (2). The total carbohydrate content of the drink was limited to 108 

the carbohydrate already in the cream (3.2%). Total protein content was calculated to 109 

be 1/3 of the subject’s daily protein requirement as determined by the Harris-Benedict 110 

equation and the Canada Food Guide (Health Canada, Ottawa, ON, CA). Total fat 111 

was then adjusted to be equivalent to 4.5 times the protein plus carbohydrate 112 

content. Subjects received an average of 1104 kCal, 90% of which was fat. In the 113 

breakfast drink, the amount of total fat (g), MCT (g), fat/body weight (g/kg), or fat/BMI 114 

(g/kg/m2) did not differ significantly across the three study groups.  115 

 116 

Isotope ratio mass spectrometry: Enrichment of 13C in breath CO2 following the 117 

ingestion of the 13C tracer was analyzed by isotope ratio mass spectrometry (Europa 118 

20-20, Sercon Ltd, Crewe, Cheshire, UK) as previously described (14). 5% CO2/N2 119 

was the reference gas and He was the carrier gas (Praxair Canada Inc. Mississauga, 120 

ON, Canada). Atom percent (AP) is the relative abundance of 13C in the sample 121 

calculated by the following equation: 122 

 (1) 123 

 124 

13C data in delta notation () is the ratio of 13C to 12C calibrated against the reference 125 

gas and the international standard, Peedee Belemnite (15). The percent dose 126 

recovered (PDR) of the tracer administered to the subjects was calculated as in 127 

equation (2), 128 

(2) 129 

 130 

AP =  100 

 1/[(13Cref + 1] 

PDR = APE x VCO2 x 100%  

 mmol 13C-tracer administered  
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In which atom percent excess (APE) is calculated using of the value obtained in 131 

equation (1) for time t minus the value obtained at time 0. Taking into account the 132 

chemical purity, the isotopic enrichment of the tracer, and the natural abundance of 133 

13C, the quantity of 13C excreted on breath (mmol) was calculated as shown in 134 

equation (3): 135 

 (3)  136 

 137 

The chemical purity of both tracers was 98% and their isotopic purity was 99%. The 138 

CO2 production constant of 300 mmol/h was used as determined by Schofield (16) 139 

and previously validated for healthy adults (17). VCO2 was then calculated by 140 

multiplying the CO2 production constant (300 mmol/h) by body surface area, 141 

calculated according to Gehan and George (18).  142 

 143 

Gas chromatographic analysis of acetone: Triplicate 0.3 ml samples of breath 144 

collected into gastight syringes were injected directly on to a capillary gas 145 

chromatograph equipped with a flame ionization detector (Agilent model 6890, Palo 146 

Alto, CA) and 30 m DB-WAX column (0.25 mm i.d.; Agilent J&W Scientific Santa 147 

Clara, CA). The temperature of the oven was set at 30°C and held for one minute 148 

and then increased at a rate of 5°C/min to 60°C where it was held for 2 min. The 149 

carrier gas was He and the flow rate was 7 mL/min. The injector temperature was 150 

150°C and the detector temperature was 250°C. Acetone peak areas were calibrated 151 

against an aqueous acetone standard. A 0.2 mL of the aqueous standard was then 152 

injected into the gas chromatograph.  153 

 154 

mmol 13C= mg tracer  x chemical purity x ([99% #13C]  + [1% total # C]) 

 molecular weight    
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Other analyses: Plasma glucose, -OHB, cholesterol, triacylglycerols (TG), and non-155 

esterified fatty acids (NEFA) were measured by colorimetric assay using an 156 

automated clinical chemistry analyzer (Dimension XPand Plus, Dade Behring Inc., 157 

Newark, DE) and commercially available reagent kits from the same company, 158 

except for -OHB (RX Daytona kit; Randox Laboratories Ltd., Antrim, UK), and NEFA 159 

(Wako Diagnostics, Richmond, VA). Insulin was analyzed by ELISA (Mercodia, 160 

Upssala, Sweden) and a microplate reader (model 3550, BioRad, Hercules, CA). 161 

ApoE genotype was analyzed at the McGill University Center for Studies in Aging 162 

(19).  163 

Fatty acid composition of the ketogenic breakfast, MCT, and cream was 164 

analyzed by extraction of the total lipids into 2:1 chloroform/methanol with 0.02% 165 

BHT, using triheptadecanoin as the internal standard (20). The total lipids were then 166 

saponified with 1 M methanolic KOH followed by derivitization of the fatty acids to 167 

fatty acid methyl esters using 14% BF3 methanol. Fatty acid methyl esters were 168 

analyzed using a gas chromatograph (Agilent model 6890) equipped with a 50 m 169 

BPX-70 fused capillary column (0.25 mm i.d. x 0.25 µm film thickness; J&W Scientific, 170 

Folsom, CA). Splitless injection and flame ionization detection were performed at 171 

250°C. The oven temperature program was 50°C for 2 min, increasing to 170°C at a 172 

rate of 20°C/min, held for 15 min, increased to 210°C at a rate of 5°C/min and held 173 

there for 7 min. The inlet pressure of the carrier gas (He) was 233 kPa at 50°C. The 174 

identity of individual fatty acids was determined by comparing retention times with 175 

standard mixtures of fatty acids (NuChek 68A, 411, 455; NuChek Prep, Inc., Elysian, 176 

MN) and a custom mixture of saturated fatty acid standards. 177 

 178 
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Statistical analysis: Results are given as mean ± SEM. Comparisons during the 179 

metabolic study period are shown from baseline (time 0 h; T0) up to 6 h later (T6), and 180 

again 24 h later (T24) for tracer oxidation. To determine if tracer oxidation differed over 181 

time or between age groups, a repeated measures two-way ANOVA was performed 182 

followed by a Bonferroni post-hoc test to determine where significant differences 183 

existed. The Pearson test was used to test the significance of correlations between 184 

plasma and breath metabolites. Ketogenic breakfast composition was analyzed by 185 

one-way ANOVA. Statistical analysis of tracer oxidation data, differences in ketogenic 186 

meals composition and fatty acid profile between groups, and correlations were 187 

performed with Prism software (version 4.0, GraphPad Prism, San Diego, CA). An 188 

independent variables ANOVA test for time and age was performed to determine if 189 

any of the plasma metabolites differed between age groups or by ApoE 4 genotype. 190 

Statistical analysis of plasma metabolites was performed with SPSS software 191 

(version 12.0, SPSS Inc, Chicago, IL). Significance was set at p0.05.  192 

 193 

194 
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Results 195 

Plasma and breath metabolites: From baseline (T0) to 6 h after taking the ketogenic 196 

breakfast drink and tracer (T6), plasma glucose was mostly stable in all three groups 197 

but between T3 and T6, glucose was 12% higher in the E compared to the Y group 198 

(p< 0.05; Figure 1). In all three groups, plasma insulin peaked at 90-105 pmol/L at T1 199 

to T2. Except at T2 in the M group, the M and E groups had a similar post-prandial 200 

insulin response to the Y group. Between T0 and T6 and in all three groups, plasma -201 

OHB rose from ~0.1 to ~1.3 mmol/L and breath acetone rose from ~13 to ~87 nmol/L 202 

(Figure 1). Breath acetone was higher at T6 in the M and E groups versus the Y 203 

group. For all subjects, there was a significant positive correlation between plasma -204 

OHB and breath acetone at T0 and T6 (Figure 2). 205 

 206 

13C Tracer oxidation: In all subjects and with both tracers, 13CO2 excretion on breath 207 

peaked at 2-4 h post-dose and returned close to baseline within 24 h of tracer 208 

administration. In all three age groups, 13C-glucose oxidation peaked at 6.4 to 7.4 % 209 

dose/h between T2.5 and T3 (Figure 3). At T4.5, T5 and T6, 
13C glucose oxidation was 210 

significantly higher in the E compared to the M group. Cumulative 13C glucose 211 

oxidation 24 h after dosing was 72%, 62%, and 77% of dose for Y, M and E subjects, 212 

respectively (Figure 3). From T5 to T24, cumulative oxidation of 13C glucose was 213 

significantly higher in the E versus M group (P<0.05), but not compared to the Y 214 

group. In all three groups, 13C -OHB oxidation peaked at ~7.5 % dose/h at T2. 215 

Cumulative 24 h 13C -OHB oxidation was 65%, 74%, and 77% of the dose 216 

administered in Y, M and E subjects, respectively, with no significant differences 217 

between groups (Figure 3).  218 

 219 
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Other measurements: There was no significant effect of the ketogenic breakfast on 220 

plasma TG, NEFA, or total cholesterol over the 6 h study period (Figure 4). However, 221 

from T3 to T6, plasma TG and total cholesterol were significantly elevated in the E 222 

group compared to the Y group.  223 

Genotype distribution could only be determined for 27 of the 31 subjects 224 

(Table 4). For statistical comparisons, genotypes were grouped according to 225 

presence or not of the ApoE ε4 allele. As expected, ε4 carriers had significantly 226 

elevated plasma cholesterol, but had no significant differences in other metabolites 227 

(data not shown).  228 

229 
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Discussion 230 

Overall, we found that for 6 h after consuming a ketogenic breakfast drink, 231 

elderly, middle-aged and young adults in good health had a comparable changes in 232 

plasma β-OHB and breath acetone. To our knowledge, previously published studies 233 

of ketone levels in the elderly have not reported their production after a ketogenic 234 

meal. For instance, higher plasma β-OHB was reported for the elderly, but only after 235 

an 18 h fast (21). Our study confirms the previously reported short term ketogenic 236 

effect of a very low carbohydrate breakfast (2), and shows that the healthy elderly 237 

achieve a level of ketosis (plasma β-OHB and breath acetone) and 24 h oxidation of 238 

β-OHB that is equivalent to or slightly above what is observed in healthy young and 239 

middle-aged subjects. In the absence of differences in plasma β-OHB or β-OHB 240 

oxidation, whether the doubling of breath acetone at the end of the 6 h metabolic 241 

study day is physiologically meaningful remains to be determined.   242 

Our elderly group had statistically significant but very modest differences in 243 

glucose metabolism compared to the middle-aged our young adults. Although fasting 244 

glucose was not statistically different between the three groups, plasma glucose (but 245 

not insulin) was statistically higher in the elderly towards the end of the metabolic 246 

study period. Cumulative glucose oxidation over 24 h was 24% higher in the elderly 247 

but only versus the middle-aged group; the glucose oxidation did not differ 248 

significantly between the elderly and young groups. Without further experimentation, 249 

these data are difficult to interpret because although higher plasma glucose could be 250 

due to various mechanisms related to emerging insulin resistance, one would not 251 

expect a concomitant rise in glucose oxidation (Figure 3) if, in fact, glucose 252 

metabolism was impaired.   253 
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Statistically significant differences between age groups in cholesterol and TG 254 

also emerged 3-6 h after taking the breakfast meal. Issa et al. have also reported 255 

somewhat slower TG clearance after consuming a meal containing 40 g of fat (22). 256 

Several studies have suggested that slower post-prandial clearance of an oral fat 257 

load may contribute to aging-associated pathology such as coronary heart disease 258 

(23, 24) and may be influenced by declining insulin sensitivity (25-27). Post-259 

prandially, the plasma cholesterol response of both the M and the E groups was 260 

elevated compared to the Y group. This could be attributed to the presence of four 261 

subjects in the M group who were ApoE ε4 carriers, as this polymorphism is known to 262 

elevate cholesterol levels (28). In fact, when the ε4 carriers were removed, 263 

cholesterol data for the M group fell between the Y and E groups (data not shown). 264 

Although baseline plasma TG was non-significantly higher in the elderly, none 265 

of the subjects showed a significant post-prandial TG response between T0 - T6. 266 

Given that the ketogenic breakfast contained approximately 50% LCT (Table 3), a 267 

post-prandial increase in plasma TG would have been anticipated. Seaton et al. 268 

found that in comparison with LCT, there was no significant change in plasma TG 269 

and even a slight decrease during the first hour after a single dose of 48 g of MCT 270 

(29). Hill et al. observed an increase in fasting TG but no change over 6 h after giving 271 

a single dose of MCT following a 6 day diet in which MCT represented 40% of daily 272 

energy requirements (30). MCT are clearly absorbed differently from LCT but, in our 273 

study, it is still not clear whether MCT or the low carbohydrate content of the meal 274 

could have suppressed the plasma TG response to the LCT in the cream. 275 

By design, the ketogenic breakfast given to our subjects was not strictly 276 

isoenergetic across groups. Rather, using the Harris-Benedict equation, the energy 277 

content of the ketogenic breakfast was calculated in terms of percentage of basal 278 
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energy needs, which takes into account several parameters including gender, age, 279 

and anthropometric parameters. Other methods to match meals across groups with 280 

different anthropometry include normalizing to only one parameter such as fat in the 281 

meal to body weight, BMI, or hip-to-waist ratio. Recent studies suggest a stronger 282 

relation of parameters such as insulin resistance to body fat mass rather than to age 283 

itself (31, 32). As such, determining % body fat distribution might have helped us 284 

more accurately compare subjects. Regardless, neither the calculated values for 285 

basal energy expenditure nor the total fat content (g), MCT content (g), fat 286 

content/body weight (g/kg), or fat content/BMI (g/kg/m2) differed significantly between 287 

the three age groups (P>0.05). 288 

Our main objective was to assess the short-term ketone response to a 289 

ketogenic breakfast during healthy aging and we conclude that the ability to produce 290 

ketones appears to be fully functional during healthy aging. Hence, these results 291 

support emerging strategies aiming to use physiological levels of ketones to correct 292 

or bypass deteriorating brain glucose uptake in the elderly. 293 

294 
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Table 1 

Anthropometric characteristics and fasting plasma constituents. 

   

Young 

(n = 11) 

Middle-aged 

(n = 12) 

Elderly 

(n = 9)  

  Anthropometry:        

   Age (y)  23 ± 1 50 ± 1 76 ± 2  

   Height (m)  1.74 ± 0.03 1.65 ± 0.03 1.67 ± 0.08  

   Weight (kg)  77.4 ± 4.9 74.2 ± 4.6 72.3 ± 3.7  

   BMI (kg/m²)  25.3 ± 1.1 27.2 ± 1.6 25.7 ± 1.3  

 Fasting plasma measures:      

   -Hydroxybutyrate (mmol/L)  0.07 ± 0.10 0.09 ± 0.13 0.07 ± 0.04  

   Glucose (mmol/L)  5.4 ± 0.6 5.3 ± 0.4 5.7 ± 0.7  

   Insulin (mUI/L)  6.8 ± 4.4 4.5 ± 3.9 4.0 ± 2.6  

   Triacylglycerol (mmol/L)  0.9 ± 0.3 1.1 ± 0.5 1.5 ± 0.5  

   Non-esterified fatty acids (mmol/L)  0.6 ± 0.3 0.5 ± 0.1 0.6 ± 0.2  

    Cholesterol (mmol/L)   4.2 ± 0.4 5.3 ± 1.1 5.3 ± 0.7   

 

Mean ± SEM. No significant difference in any parameter except age (P<0.0001). 
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Table 2 

Ketogenic breakfast meal composition1 

 

 (g) (%)   

Components:     

 protein powder  25 ± 1 10  

 cream  100 ± 0 41  

 medium chain triacylglycerol  71 ± 4 29  

 water  46 ± 2 20  

Macronutrients:     

 protein  25 ± 1 18  

 carbohydrate  3 ± 0 2  

  fat   110 ± 4 80   

 

1 Calculated to give a ratio of 4.5:1 parts fat to protein plus carbohydrates based on 

1/3 of the subject’s daily protein requirements according to basal energy expenditure. 

Meal components and macronutrients are given as mean ± SEM (n = 32). Meal 

content did not differ significantly between age groups.  
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Table 3 

Fatty acid composition (%) of the ketogenic breakfast and its fat components1 

 

 

Breakfast 

n = 32 

MCT 

n = 3 

Cream 

n = 3   

 8:0 14.4 ± 1.5 39.8 ± 0.4 N/D  

 10:0 31.3 ± 0.8 58.6 ± 0.3 5.9 ± 0.1  

 12:0   4.0 ± 0.1 1.6 ± 0.1 8.9 ± 0.1  

 14:0   9.8 ± 0.4 N/D 21.9 ± 0.2  

 16:0 20.4 ± 0.7 N/D 31.9 ± 0.1  

 18:0   4.9 ± 0.3 N/D 6.5 ± 0.2  

 Total Saturates 84.7 ± 1.3 100.0 ± 0 75.0 ± 0.2  

 14:1n-5   1.3 ± 0.6 N/D 2.3 ± 0.0  

 16:1n-7   1.0 ± 0.1 N/D 2.4 ± 0.1  

 18:1n-9 11.0 ± 0.6 N/D 18.1 ± 0.2  

 Total Monounsaturates 14.0 ± 0.6 N/D 22.8 ± 0.2  

 18:2n-6   1.1 ± 0.2 N/D 2.3 ± 0.1  

 Total Polyunsaturates   1.1 ± 0.2 N/D 2.3 ± 0.1   

 

1 Meal composition, given as mean ± SEM. Meal energy content did not differ 

significantly between age groups. N/D = not detected. 
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Table 4. 

 

Apolipoprotein E genotype of the subjects. 

 

 2/2 3/2 3/3 4/3 4/4 4/2 total  

  Young 0 4 5 0 0 0 9   

 Middle-aged 1 3 3 3 0 1 11  

 Elderly 0 0 6 1 0 0 7  

  % Frequency 4 26 51 15 0 4 100   

 

Apolipoprotein E genotype is shown as the combinations of Apolipoprotein E  2, 3, 

or 4 variant alleles.  
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Figure 1. 
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Figure 3.
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Figure 4. 
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Figure Legends 

 

Figure 1.  

Plasma glucose (upper left), insulin (lower left), -hydroxybutyrate (upper right), and 

breath acetone (lower right) over 6 h following consumption of a ketogenic breakfast 

at time 0 (mean  SEM; *P<0.05). Symbols represent young (), middle-aged () 

and elderly () subjects.  

 

Figure 2.  

Correlation between breath acetone and plasma -hydroxybutyrate before and 6 h 

after consuming a ketogenic breakfast. 

 

Figure 3.  

Oxidation of 13C glucose (lower left - % dose/h; upper left – cumulative oxidation/24 

h) and 13C -hydroxybutyrate (lower right - % dose/h; upper right – cumulative 

oxidation/24 h) following consumption of a ketogenic breakfast and the respective 

tracer at time 0 (mean  SEM; *P<0.05). Symbols represent young (), middle-aged 

() and elderly () subjects.  

 

Figure 4.  

Plasma triacylglycerols (TG), non-esterified fatty acids (NEFA), and cholesterol (CHL) 

over 6 h following consumption of a ketogenic breakfast at time 0. Symbols represent 

young (), middle-aged () and elderly () subjects (mean  SEM; *P<0.05).
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