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ABSTRACT 

BACKGROUND: Omega-3 polyunsaturated fatty acid (n−3 PUFA) metabolism seems 

to be disrupted in carriers of the epsilon 4 allele of apolipoprotein E (E4+). The objective 

of this study was to investigate whether the n−3 PUFA distribution in the high and low 

density lipoproteins is APOE-genotype dependant before and after supplementation with 

n−3 PUFA.  

SUBJECTS/METHODS: Eighty participants, aged between 20 to 35 years old were 

recruited and supplemented with 900 mg of eicosapentaenoic acid + 680 mg of 

docosahexaenoic acid for 4-weeks. Over the 4-wk intervention, blood samples were 

collected and HDL and LDL particles were obtaind using sucrose gradient 

ultracentifugation. Fatty acid profiles of the HDL and LDL fractions were performed by 

gas chromatography.  

RESULTS: Baseline anthropometric characteristics of participants was not significantly 

different between the two APOE-groups (E4+, N = 10; E4−, N = 70). At baseline, in the 

LDL of E4+, n−6/n−3 PUFA ratio was 17% higher than E4−. At week-4, n−6/n−3 

PUFA ratio was significantly higher in LDL of E4+ than E4−. There was a significant 

genotype × time interaction for 16:0 in HDL and LDL and for 18:2 n−6 in HDL. DHA in 

the HDL was positively correlated to HDL-C levels pre- and post-supplementation in 

E4− only.  

CONCLUSIONS: Contrary to what we anticipated, n−3 PUFA in HDL and LDL was 

not APOE isoform-dependant in young participants. However, young E4+ had already a 

tendency towards lower baseline-DHA levels in LDL particles as well as a more 

atherogenic n−6/n−3 PUFA ratio in LDL pre and post-supplementation.   
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ABBREVIATIONS: 

AD, Alzheimer’s disease; ALT, alanine transferase; APOE, apolipoprotein E; AST, 

aspartate transaminase; CVD, cardiovascular diseases; DHA, docosahexaenoic acid; 

E4+, carriers of APOE ε4 allele; E4−, non-carriers of APOE ε4 allele; EPA, 

eicosapentaenoic acid; LDL-R, low density lipoprotein receptor family; n−3 PUFA, 

omega 3 fatty acid; n−6 PUFA, omega-6 fatty acid; TC, total cholesterol; TG, 

triglyceride; TSH, thyroid stimulating hormone. 
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INTRODUCTION  

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. 

Carrying the apolipoprotein E epsilon 4 allele (E4+) is one of the most important genetic 

risk factor of developing age-related chronic diseases such as CVD and Alzheimer’s 

disease (AD) [1]. One environmental factor likely capable of decreasing the risk of CVD 

and AD is through consumption of omega-3 fatty acids (n−3 PUFA) from fatty fish [2]. 

A low balance of n−6/n−3 PUFA seems to be contributing in decreasing the risk of 

inflammatory-related diseases and may promote heart and brain health [3]. However, 

E4+ do not seem to be protected against CVD [4] and cognitive decline [5, 6] when 

consuming n−3 PUFA. Recent evidences suggest that this lack of protection could be 

related to dysfunction of n−3 PUFA metabolism and kinetics [7, 8].  

In human, there are three isoforms of the apoE protein, namely apoE2, apoE3 and 

apoE4, resulting from six genotypes (i.e. ε2/ ε2, ε2/ ε3, ε2/ ε4, ε3/ ε3, ε3/ε4 and ε4/ ε4) 

[9]. The sequence variations found between APOE isoforms induce structural 

modifications of the apoE protein that ultimately modulate low density lipoprotein 

receptor family (LDL-R) binding activity [10]. The structural conformation of apoE4 

explains its preferential bind to triglyceride rich lipoproteins (i.e. VLDL and LDL) as 

opposed to apoE3 and apoE2 which preferentially bind to high density lipoproteins 

(HDL) [10, 11]. Therefore, E4+ subjects usually have higher plasma triglycerides (TG), 

total cholesterol, and small and dense LDL than E4− [10, 12]. Because apolipoprotein E 

(apoE) plays important roles in the regulation, transport and clearance of fatty acids, 

carrying apoE4 isoform may modulate the efficiency of apoE in accomplishing its 

essential role in lipoprotein metabolism. Moreover, the lack of protection against CHD 
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and AD when E4+ are supplemented with  n−3 PUFA may potentially be explain by a 

disrupted postprandial kinetics of dososahexaenoic acid (DHA; 22:6 n−3), an n−3 PUFA 

[7]. Other studies reported gene-by-diet interaction in the uptake of n−3 PUFA and 

cholesterol metabolism in E4+ supplemented with 3 g/d of n−3 PUFA [4, 12, 13]. 

Because E4+ supplemented with n−3 PUFA have greater sensitivity of fasting 

triglycerides [14] and increased total cholesterol [4, 13] when compared to E4− subjects, 

we speculate that n−3 PUFA distribution in plasma lipoproteins is APOE isoform-

dependant. We also hypothesize that n−3 PUFA are mainly incorporated into LDL 

particles in E4+ subjects as opposed to HDL particles in E4− carriers. The aim of this 

study was to determine the longitudinal FA profile in the HDL and LDL of young E4+ 

and E4− participants receiving 680 mg/day of DHA + 900 mg/d of eicosapentaenoic acid 

(EPA; 20:5 n−3) over a 4-weeks intervention.   M
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MATERIAL AND METHODS 

Subjects and study design 

Eighty-two healthy men and women (N = 82) aged between 20−35 years old, 

from the Sherbrooke area, were recruited. Subjects were excluded if they smoked, were 

medicated, with the exception of contraception pills, had a history of psychiatric 

difficulties or depression, were allergic to seafood, were pregnant or breastfeeding, or 

were already supplemented with n−3 PUFA capsules. Each participant gave their 

informed written consent before participating in the study. This study was approved by 

the ethics committee of the Health and Social Services Center, Sherbrooke University 

Geriatrics Institute. This study is registered in clinicaltrial.org (NCT-01544855). 

Participants were asked to consume two capsules of ethyl ester fish oil (450 mg of 

EPA + 340 mg of DHA/capsule) daily for 4 weeks (Ocean Nutrition, Dartmouth, NS, 

Canada). This dose corresponds to three times the current n−3 PUFA consumption in 

young French Canadian adults [15]. Participants were instructed to record their daily 

consumption of fish, alcohol and natural products in a logbook. Compliance was 

measured by counting the capsules returned to the research staff each week. 

Participants came to our research facility once per week, for 4 weeks, and a fasted 

blood sample was collected. Plasma was separated from red and white blood cells by 

centrifugation (3500  g during 10 min at 4°C). Whole blood was kept for subsequent 

DNA extraction and APOE genotyping. Separation of HDL and LDL was performed as 

follows: 800 µL of plasma was added to a sucrose gradient as described in Cooper et al. 

[16]. Briefly, 105 mg of sucrose was added to plasma to obtain 12.5% of sucrose in 

plasma. The sucrose gradient was created by successive layers, from top to bottom: 500 
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µL of PBS, 12.5% of sucrose + plasma, and 333 µL of both 25% and 47% sucrose in 

PBS solutions (w/w). Ultracentrifugation was performed at 201 000  g, 12°C during 26 

h using a Beckman Optima TLX ultracentrifuge equipped with a TLS-55 rotor (Beckman 

Coulter, Brea, California, United State). The following fractions were pooled together: 

700 µL of LDL (fraction 3−9, ρ=1.04–1.07 g/mL) and 600 µL of HDL fractions (fraction 

10−15, ρ=1.07–1.23 g/mL). Blood biochemistry including glucose, albumin, total 

cholesterol (TC), TG, thyroid stimulating hormone (TSH), aspartate transaminase (AST), 

alanine transferase (ALT), HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C) and 

creatinine was assessed at the Centre Hospitalier Universitaire de Sherbrooke. 

 

Fatty acid analysis 

FA profile of HDL and LDL particles was performed as previously described 

[17]. Briefly, total lipids were extracted from HDL and LDL using a 2:1 chloroform: 

methanol solution. The total lipid extract was then saponified using 1M KOH/methanol 

and heated at 90°C for 1 h, thereby releasing the FAs from cholesteryl esters and 

glycerolipids. The transmethylation of FA into FA-methyl-esters was done by adding 

boron trifluoride/methanol (14%; Sigma-Aldrich, St-Louis, Missouri, USA) and were 

heated at 90°C during 30 min. Analysis was performed using a gas chromatograph 

equipped with a 50-m BPX-70 fused capillary column (SGE, Melbourne, Australia; 0.25 

mm inner diameter, 0.25 μm film thicknesses). FAs were identified using external 

standard (NuChek 68A, NuChek 411, and NuChek 455; NuChek Prep, Inc., Elysian, MN, 

USA and a custom mixture of saturated FA standards). 

APOE genotype analysis 
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APOE genotyping was performed using a derived method of Hixson and Vernier 

[18]. Genomic DNA was first isolated from whole blood by Qiagen DNA Blood Mini Kit 

(Qiagen Ltd, Crawley, UK). After, APOE polymorphism was determined by polymerase 

chain reaction-fragment length polymorphism (PCR-RFLP). The 244 pb amplified PCR 

fragments were then digested with the restriction enzyme Hha1 (New England Biolab, 

Ipswich, MA, USA). Fragments were separated through migration on a 20% 

polyacrylamide gel, post-stained with gel red, and visualised under UV-light (Image 

analyser BMI lab equipment, MBI sigma, Kirland, Canada).  

Statistical analysis 

Sample size calculation was based on the relative percentage of DHA in plasma 

TG at baseline in E4+ (0.82% ± 0.25%) and E4− (0.53% ± 0.31%) as reported in Plourde 

et al [8]. This metric was used since no data are currently available in literature on 

baseline-DHA content of HDL or LDL according to APOE genotype. An unequal sample 

size in each group was expected for two reasons: 1) our institution does not allow pre-

screening for E4+ genotype; 2) 15–25% of Canadians are known to be carriers of at least 

one epsilon 4 allele of APOE [18]. To achieve a statistical power of 80% (α = 0.05), we 

determined that ten (N = 10) E4+ were needed. Therefore, based on the lowest frequency 

of APOE epsilon 4 allele in Canadians (15%), the number of participants to be recruited 

was sixty seven (N = 67), but with an anticipated dropout of 20% [19], eighty participants 

(N = 80) were recruited.  

Normal distribution and homogeneity of variance were evaluated before further 

statistical analysis. All data were analysed for statistical differences of the FA profile in 

HDL and LDL using a using a Factorial Repeated Measures (Split-Plot) ANOVA in 
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SPSS version 22.0 (IBM Corp., Armonk, NY). When assumptions of homogeneity of the 

covariance matrixes were rejected (i.e. Mauchly’s Test of Sphericity), Greenhouse-

Geisser corrections were used. The main effect of genotype at baseline and after 

supplementation was analysed using Kruskal-Wallis non-parametric analysis of variance. 

Univariate spearman correlation analysis was used to investigate associations among 

outcome. The balance of n−6/n−3 PUFA was calculated using the sum of the following 

FA: the sum linoleic acid (LA), di-homo-gamma linolenic acid (DGLA), and arachidonic 

acid (AA) over the sum of alpha-linolenic acid (ALA), EPA, docosapentaenoic acid 

(DPA), and DHA. P values ≤ 0.05 were considered statistically significant, and P value 

for trends was set as ≤ 0.08. FA profiles are presented as means percentage (%) of total 

FA ± SEM and as percentage (%) compared to control, meaning E4‒  subjects, using the 

following equation:  

 

Compared to control (%) = [(E4+ value) ÷ (E4‒  value)] × 100  

M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 
 
 



10 
 

RESULTS  

Participants 

The characteristics of E4+ and E4− are presented in Table 1. Ten participants 

were carrying one allele of E4+ (N = 6, ε4/ε3 and N = 4, ε4/ε2) whereas the remaining 

participants were classified as E4− (N = 59, ε3/ε3 and N = 11, ε3/ε2). There were an 

equal number of men and women in the E4+ group, whereas men represented 41% of the 

E4− group. Two individuals were ε2/ε2 and were excluded from our statistical analysis 

to avoid any bias since APOE2 homozygous commonly have dyslipidemia [9]. There was 

no significant difference in baseline anthropometrics values, alcohol consumption or 

physical activity levels between both groups. Consumption of fish oil was well tolerated 

by the participants.  

Variation of biomarkers between baseline and week 4 

As shown in Table 2, there was a genotype × time interaction (P = 0.021) for 

albumin and for creatinine (P = 0.047), a biomarker of kidney function. There was an 

independent genotype (P = 0.022) and time effect (P = 0.021) on HDL-cholesterol (HDL-

C). E4+ had 20% higher HDL-C level at baseline (P = 0.015) when compared to E4−. 

Four weeks after starting the supplement, total-C/HDL-C ratio was significantly reduced 

in both groups (P = 0.029) without any genotype effect. Total-C tended to be higher in 

E4+ independently of time (P = 0.057).  

Fatty acid profile in HDL according to APOE-genotype 

At baseline, there was no significant difference in the lipid profile of HDL 

according to genotype (Table 3). There were significant genotype × time interactions for 
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16:0 and 18:2 n−6 in HDL. There was an independent time effects on EPA and DHA.  

Levels of EPA and DHA reached a plateau within 2 weeks of supplementation with n−3 

PUFA. At week-4, the n−6/n−3 PUFA ratio tended (P = 0.062) to be higher in E4+ 

subjects compared to E4− (Figure 1A). Baseline DHA in HDL was positively correlated 

to baseline HDL-C (r = 0.400, P <0.001) and week-4 DHA in HDL to week-4 HDL-C (r 

= 0.206, P = 0.046) in E4− subjects only.  

Fatty acid profile in LDL according to APOE-genotype 

Baseline 16:1 n−7 and DHA were 29% and 19% lower, respectively in the LDL 

of E4+ compared to E4− (Table 4. At baseline, the n−6/n−3 PUFA ratio was 17% higher 

in the LDL of E4+ than E4− (Figure 1B). There was a genotype effect for 16:1 n−7 and 

ALA. There was a time effect for 18:1 n−9, EPA (P < 0.001) and DHA (P < 0.001) 

(Table 4). At week-4, n−6/n−3 PUFA ratio was 31% higher in the LDL of E4+ compared 

to E4− (Figure 1B). There was no statistically significant correlation between EPA or 

DHA in LDL and LDL-C, nor at baseline or at week-4.  
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DISCUSSION 

Contrary to what we anticipated, n−3 PUFA in the HDL and the LDL were not 

APOE isoform-dependant in young participants, before and after n−3 PUFA 

supplementation. N−3 PUFAs were similarly incorporated into plasma LDL and HDL of 

E4+ and E4− subjects. However, there was a genotype × time interaction for 16:0 and 

18:2 n−6 in the HDL. N−6/n−3 PUFA ratio in the LDL faction of E4+ was significantly 

higher than E4‒ , both at baseline and at 4-weeks. Thus, the APOE isoform-dependant 

distribution of FA into HDL and LDL particles was more subtle than we anticipated. 

Absence of genotype × time interactions may be related to the young age of our 

participants (25–35 years old) compared to prior studies [12, 13, 20]. Calvalho-Wells et 

al [12] showed that disturbance in cholesterol and TG metabolism was only in E4+ aged 

over 50 years old. Similarly, n−3 PUFA metabolism seems to be age-dependant [21]
 
and 

DHA kinetics is modified by age [22].  

 In this study, there was higher n−6/n−3 PUFA ratio (P = 0.048) in the LDL of 

E4+ compared to E4− which arises from a tendency towards lower baseline-DHA, 

without significant changes in n−6 PUFA. There are two potential reasons explaining this 

result: 1) lower dietary intake of n−3 PUFA in the E4+ group or 2) imbalance in n−3 

PUFA metabolism as supported by our previous studies [7, 8]. Unfortunately, nor food 

frequency questionnaires nor 3-d dietary intake recall were administered to participant, 

thus we can’t discard that E4+ subjects may have taken a diet lower in n−3 PUFA. The 

importance of the n−6/n−3 PUFA ratio is currently a source of debate in determining the 

risk of CVD [23, 24]. Harris et al [23] concluded that the n−6/n−3 PUFA ratio may be a 

poor biomarker of the risk of CVD compare to the n−3 PUFA profile alone. However, 
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Simopoulos [25] argue that this ratio is an important factor to consider in primary and 

secondary prevention of CVD. The higher n−6/n−3 ratio in the LDL of E4+ is therefore 

potentially contributing to higher CVD risk as reported in literature [4, 11, 26], but this 

needs to be investigated in another trial. 

Previous studies reported that modulation of cholesterol metabolism is APOE 

isoform-dependant [12, 13, 20]. In this study, TG and LDL-C concentrations at baseline 

and at week-4 (Table 2) were both independent of genotype, probably because of the 

young age of the participants compared to other studies [12, 13, 20]. Contrary to previous 

studies [27-30], the E4+ of this study had higher levels of HDL-C at baseline and 4 

weeks after receiving the n‒ 3 PUFA supplement compared to E4− carriers (Table 2). 

This is potentially related to cultural differences between French Canadians and 

Europeans populations used in previous published studies (i.e. Lithuanian [27], UK [28] 

and Finnish [29]), but this thesis is only speculative and need further investigation. 

We also reported a positive correlation between DHA in the HDL and HDL-C 

level, prior and after the supplementation, in E4− subjects only. This result is somewhat 

in line with Liang et al [30], showing that APOE-allele modifies association between 

plasma phospholipid DHA and medium size HDL. N−3 PUFA supplementation seems to 

increase hepatic uptake of HDL-C in mice [31] and increase reverse cholesterol transport 

[32], whereas homozygous mice for E4+ allele are less efficient at transferring apoA-I 

from VLDL to HDL, resulting in less HDL particles than APOE3 mice [20]. Moreover, 

the enriched-apoE VLDL particles associated to E4+ carriers are known to reduce lipase 

activity and thus diminish HDL synthesis [26]. Therefore, this association support that 

DHA may upregulate HDL production, explaining why E4‒  have higher levels of HDL-
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C [27-30]. However, contrary to E4‒ , there is no association between baseline-DHA in 

the HDL and HDL-C level in E4+ carriers. This result also supports the thesis of a 

disrupted lipid metabolism in E4+ carriers, but the exact mechanism needs to be clarified 

in future investigations. As emphasized by Liang et al [30], the association between EPA 

or DHA with total cholesterol, LDL-C, and HDL-C is erratic and highly variable between 

clinical trials and thus, carefulness is needed while interpreting results for such 

investigation trials.  

The lower levels of 16:0 and 16:1 n−7 in HDL and LDL of E4+ compared to E4− 

is an example of APOE isoform-dependant modification of FA distribution in plasma 

lipoproteins. As suggested in previous studies [7, 33], this modification may result from a 

modulation of substrate preference (i.e. FA) undergoing β-oxidation in E4+ carriers. 

Long-chain FAs are preferential substrates for β-oxidation [34] and FA oxidation rate is 

known to vary according to FA chain-length as well as saturation level. In human [35], 

FA rate of β-oxidation can generally be predicted as follows: lauric acid (12:0) > myristic 

acid (14:0) > ALA (18:3 n−3) > LA (18:2 n−6) > OA (18:1 n−9) > PA (16:0) > SA 

(18:0). Previously, β-oxidation of 
13

C-DHA was found to be higher in E4+ over a 28 

days follow-up, supporting a shift in FA substrate selection in E4+. Indeed,DHA is 

usually highly preserved as carnitine palmitoyltransferase 1 (CPT1), the limiting enzyme 

of mitochondrial β-oxidation [36], possess a greater affinity for EPA, ALA and palmitate 

[37]. Using APOE-targeted replacement mice, Conway et al [33] recently reported higher 

concentration of hepatic CPT1 in E4+ animals compared to control. Therefore, 

investigating FA rate of β-oxidation according to APOE-alleles should be undertaken in 

humans.  
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This trial has strengths and limitations. The participants of this study were young 

age, therefore excluding bias induce by prescribed medication such as statins that are 

commonly taken in older E4+ individual for modifying lipoprotein metabolism [7, 12]. 

Moreover, another strength is the low body mass index of participants (mean BMI <25 

kg/m²), therefore limiting potential confounding effect between BMI and DHA kinetics 

[19]. There was an important intra-individual variation in FA distribution into plasma 

lipoproteins in E4+ participants, and this is potentially because the E4+ group included 

two APOE4 genotypes, namely ε4/ε3 (N = 6) and ε4/ε2 (N = 4). Indeed, a previous study 

reported that FA metabolism may be different between APOE4 genotypes (ε2/ ε4, ε3/ε4 

and ε4/ ε4) [12]. Because of the small sample size of E4+ group (N = 10), it was not 

statistically possible to stratify our data according to these two APOE4 genotypes. 
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CONCLUSIONS 

In conclusion, baseline level of n−3 PUFA, as well asn−3 PUFA level at 4-week 

after supplementation, were similar in HDL and LDL fractions of E4+ and E4− 

participants. This result suggests that disrupted DHA metabolism in E4+ is age-

dependant. Therefore, there is room to identify prevention strategies to prevent 

dysregulation of DHA homeostasis likely occurring in the older E4+.   
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FIGURE LEGEND 

Figure 1. Omega-6 to omega-3 fatty acid ratio (n−6/n−3 PUFA) in A) HDL and B) LDL 

of participants carrying the apolipoprotein E epsilon 4 allele (E4+,  , N = 10) or non-

carriers (E4−;  , N = 70) before (baseline) and after 4 weeks of supplementation with 

680 mg/day of docosahexaenoic acid + 900 mg/day of eicosapentaenoic acid. Data are 

expressed as means ± SEM. P values for the independent genotype effect were obtained 

using a non-parametric Kruskal-Wallis analysis of variance.
 
P values ≤ 0.05 were 

considered significant. 
 
Trend effect for genotype was set at P < 0.08. 
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TABLES 

 

 

TABLE 1 

Baseline characteristics of participants carrying (E4+) or not (E4−) the apolipoprotein E epsilon 

4 allele 

Characteristics 
a
 

 E4+ E4−  
P 

 (N= 10) (N = 70)  

Age
 

 26 ± 4 27 ± 4  0.509 

Sex (men/women)  (5/5) (29/41)  0.801 

Weight (kg)  68 ± 13 70 ± 13  0.651 

Body Mass index (kg/m
2
)  24 ± 3 24 ± 4  0.951 

Waist circumference (cm)
 

 82 ± 10 85 ± 9  0.195 

Natural Product (%) 
b
  10 23  0.302 

Alcohol Consumption (%)    
 

0.752 

Never  10 10   

2−3/month  20 26   

1/wk  20 31   

2−3/wk  50 29   

Almost everyday  0 4   

Physical activity (%)     0.370 

Never  0 2   

2−3/ month  20 7   

1/wk  0 19   

2−3/wk  40 46   

Almost everyday  40 26   
a 
Values are presented as mean ± SD.  

b 
Percentage (%) of subjects taking natural products in each group. Natural product included: 

Homeopathic Products, Vitamin B6, C and D, Protein, Aloes, Probiotics, Multi-vitamins, Multi-

minerals, Orange Triads, Echinacea, Collagen, Creatinin Phosphate, Oregano Oil, Branched 

Chain Amino Acids, Hypericum. Supplementation with n−3 PUFA was not permitted. 
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TABLE 2 

Blood biochemistry values before (Baseline) and after 4-weeks of supplementation with n−3 polyunsaturated fatty acids in carriers 

(E4+) and non-carriers (E4−) of the apolipoprotein E epsilon 4 allele 
a
 

  

  

 
Baseline 

 
Week 4 

 
P values 

b
 

  

  

 
E4+ E4− 

 

E4+ E4− 
 

Interaction Genotype Time 

Glucose (mmol/L)  4.29 ± 0.14 4.12 ± 0.05 
 

4.34 ± 0.15 4.18 ± 0.06  0.908 0.660 0.134 

Albumine (g/L)  46.17 ± 0.71
 

45.40 ± 0.33
 

 
44.46 ± 0.48

 
45.34 ± 0.33

  0.021 0.998 (0.015) 

AST (UI/L)  22.00 ± 2.06 20.60 ± 0.61 
 

24.67 ± 2.58 21.89 ± 0.89  0.874 0.196 0.215 

ALT (UI/L)  19.70 ± 3.36 20.86 ± 1.20 
 

24.78 ± 3.91 21.21 ± 1.43  0.267 0.603 0.180 

TSH (UI/L)  2.20 ± 0.37 2.45 ± 0.14 
 

2.41 ± 0.41 2.60 ± 0.14  0.996 0.639 0.280 

Total-C (mmol/L)  4.81 ± 0.27 4.39 ± 0.10 
 

4.84 ± 0.24 4.38 ± 0.09  0.572 0.057 0.497 

TG (mmol/L)  0.95 ± 0.18 1.16 ± 0.07 
 

0.85 ± 0.14 1.06 ± 0.05  0.698 0.281 0.110 

HDL-C (mmol/L)  1.71 ± 0.10 1.42 ± 0.04 
 

1.78 ± 0.11 1.49 ± 0.04  0.838 0.022 0.021 

LDL-C (mmol/L)  2.67 ± 0.20 2.45 ± 0.08 
 

2.68 ± 0.19 2.40 ± 0.08  0.702 0.182 0.269 

Total-C/HDL-C  2.84 ± 0.13 3.26 ± 0.12 
 

2.76 ± 0.12 3.10 ± 0.11  0.984 0.270 0.029 

Creatinine (µmol/L)  82.90 ± 5.76 73.39 ± 1.24 
 

81.44 ± 4.05 73.11 ±  1.20  0.047 (0.006) (0.025) 

AST, aspartate transferase; ALT, alanine transferase; TSH, thyroid stimulating hormone; C, cholesterol; TG, triglyceride. 

a 
Values are presented as mean relative percentages ± SEM.  
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b
 P values were obtained using a Factorial Repeated Measures (Split-Plot) ANOVA in SPSS version 22.0 (IBM Corp., Armonk, NY). 

Bold characters indicate significant differences (P ≤ 0.05). When interactions were found, significant P values for the independent 

genotype and time effects are indicated in parenthesis. 
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TABLE 3  

Fatty acid profiles in high density lipoproteins (HDL) before (Baseline) and after 4-weeks of supplementation with n−3 

polyunsaturated fatty acids in carriers (E4+) and non-carriers (E4−) of the apolipoprotein E epsilon 4 allele 
a
 

    Baseline  Supplementation P values 
b
 

  Week-0  Week-2  Week-4 Interaction Genotype Time 

16:0 
E4+ 21.95 ± 0.41 

 

22.38 ± 0.82 

 

19.09 ± 0.72 
0.004 (0.005) (0.024) 

E4− 22.56 ± 0.28 22.35 ± 0.25 23.85 ± 0.37 

18:0 
E4+ 7.38 ± 0.38 

 

9.15 ± 0.89 

 

7.20 ± 0.67 
0.176 0.684 0.481 

E4− 8.02 ± 0.30 7.80 ± 0.26 8.63 ± 0.37 

16:1 n−7 
E4+ 1.35 ± 0.10 

 

1.33 ± 0.12 

 

0.99 ± 0.16 
0.576 0.147 0.453 

E4− 1.78 ± 0.12 1.50 ± 0.08 1.33 ± 0.08 

18:1 n−9 
E4+ 16.00 ± 0.54 

 

15.30 ± 0.49 

 

14.72 ± 0.80 
0.840 0.995 0.161 

E4− 16.48 ± 0.41 15.02 ± 0.27 14.87 ± 0.31 

18:2 n−6 
E4+ 33.61 ± 0.60 

 

29.83 ± 1.37 

 

35.16 ± 1.25 
0.008 (0.042) (0.006) 

E4− 31.44 ± 0.47 30.49 ± 0.50 29.90 ± 0.53 

20:4 n−6 
E4+ 10.51 ± 0.49 

 

9.96 ± 0.56 

 

10.20 ± 0.75 
0.686 0.192 0.604 

E4− 9.85 ± 0.26 9.72 ± 0.21 9.12 ± 0.25 

18:3 n−3 
E4+ 0.74 ± 0.05 

 

0.82 ± 0.15 

 

0.64 ± 0.10 
0.546 0.127 0.637 

E4− 0.84 ± 0.05 0.94 ± 0.05 0.92 ± 0.05 

20:5 n−3 
E4+ 1.06 ± 0.14 

 

3.18 ± 0.31 

 

4.05 ± 0.42 
0.199 0.428 <0.001 

E4− 1.19 ± 0.09 3.45 ± 0.12 3.62 ± 0.14 

22:6 n−3 
E4+ 2.50 ± 0.18 

 

3.58 ± 0.25 

 

3.77 ± 0.24 
0.978 0.112 <0.001 

E4− 2.83 ± 0.10 4.00 ± 0.08 4.04 ± 0.09 
a
 Values are presented as mean percentages (%) of total FA ± SEM.  
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b
 P values were obtained using a Factorial Repeated Measures (Split-Plot) ANOVA in SPSS version 22.0 (IBM Corp., Armonk, NY). 

When assumptions of homogeneity of the covariance matrixes were rejected (Mauchly’s Test of Sphericity), Greenhouse-Geisser 

corrections were used. Bold characters indicate significant differences (P ≤ 0.05). When interactions were significant, P values for the 

independent genotype and time effects are indicated in parenthesis. 
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TABLE 4  

Fatty acid profiles in low density lipoproteins (LDL) before (Baseline) and after 4-weeks of supplementation with n−3 

polyunsaturated fatty acids in carriers (E4+) and non-carriers (E4−) of the apolipoprotein E epsilon 4 allele 
a
 

    Baseline  Supplementation P values 
b
 

  Week-0  Week-2  Week-4 Interaction Genotype Time 

16:0 
E4+ 18.95 ± 0.56 

 

19.26 ± 0.86 

 

17.15 ± 1.16 

0.351 0.238 0.449 E4− 19.92 ± 0.33 19.20 ± 0.28 19.70 ± 0.31 

18:0 
E4+ 5.75 ± 0.68 

 

5.82 ± 0.78 

 

6.24 ± 1.16 

0.686 0.264 0.831 E4− 5.68 ± 0.30 5.00 ± 0.19 5.16 ± 0.22 

16:1 n−7 
E4+ 1.67 ± 0.23 

 

1.66 ± 0.14 

 

1.25 ± 0.12 

0.523 0.025 0.137 E4− 2.35 ± 0.11 2.18 ± 0.10 2.13 ± 0.10 

18:1 n−9 
E4+ 21.98 ± 0.98 

 

20.10 ± 1.11 

 

19.73 ± 0.92 

0.762 0.706 0.005 E4− 21.54 ± 0.40 19.80 ± 0.33 20.31 ± 0.33 

18:2 n−6 
E4+ 37.27 ± 1.24 

 

36.22 ± 1.12 

 

38.21 ± 1.48 

0.888 0.385 0.763 E4− 35.45 ± 0.65 35.58 ± 0.57 35.14 ± 0.62 

20:4 n−6 
E4+ 7.08 ± 0.45 

 

7.59 ± 0.52 

 

7.32 ± 0.53 

0.864 0.289 0.104 E4− 6.81 ± 0.21 7.08 ± 0.17 6.57 ± 0.16 

18:3 n−3 
E4+ 0.92 ± 0.08 

 

0.88 ± 0.11 

 

0.95 ± 0.07 

0.967 0.008 0.649 E4− 1.12 ± 0.04 1.20 ± 0.05 1.11 ± 0.05 

20:5 n−3 
E4+ 0.84 ± 0.13 

 

2.45 ± 0.29 

 

2.95 ± 0.40 

0.529 0.349 <0.001 E4− 0.93 ± 0.07 2.85 ± 0.11 2.83 ± 0.10 

22:6 n−3 
E4+ 1.38 ± 0.12 

 

2.29 ± 0.14 

 

2.45 ± 0.18 

0.435 0.034 <0.001 E4− 1.70 ± 0.07 2.89 ± 0.10 2.75 ± 0.08 
a
 Values are presented as mean relative percentages ± SEM.  
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b
 P values were obtained using a Factorial Repeated Measures (Split-Plot) ANOVA in SPSS version 22.0 (IBM Corp., Armonk, NY). 

When assumptions of homogeneity of the covariance matrixes were rejected (Mauchly’s Test of Sphericity), Greenhouse-Geisser 

corrections were used. Bold characters are used to indicate significant effects (P ≤ 0.05). When interaction terms were found, 

significant P values for the independent terms (i.e. genotype and time) are indicated in parenthesis. 
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