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RESUME

Les conséquences de la rupture d'un barrage peuvent étre considérables, en termes de
pertes humaines, économiques et environnementales. De plus, la sécurité des barrages et
des aménagements hydroélectriques est une préoccupation majeure au Québec étant donné
que plus de la moitié de la population vit dans des zones potentiellement inondables. Il y
a environ 933 grands barrages au Canada et 333 ou un peu plus sont situés au Québec.
Parmi eux, beaucoup d’entre eux ont été construits il y a plus de 50 ans. Au cours de cette
période, d’'importants progrés ont été réalisés dans les méthodes d’évaluation des risques
naturels. Bien que la défaillance totale d’'un barrage en béton a la suite d’un tremblement de
terre soit rare, les tremblements de terre sont une cause majeure de dommages a différents
degrés de gravité. Par conséquent, le vieillissement et ses problémes associés, combiné
aux nouvelles méthodes d’estimation des charges sismiques ont entrainé la nécessité de
revoir et d’améliorer les méthodes d’analyse sismique pour les barrages. Au cours des
derniéres décennies, les outils probabilistes sont devenus de plus en plus populaires pour
I’évaluation sismique des barrages. Cependant, de telles méthodes nécessitent souvent un
grand nombre d’analyses dynamiques non linéaires de modéles complexes par éléments
finis. Par conséquent, le compromis entre ’exactitude du modéle numérique et la quantité
de calcul rend ce type d’analyse non viable. Toutefois, I’évaluation sismique des barrages
peut étre améliorée en incluant les incertitudes liées aux parameétres sismiques et aux
parameétres de modélisation et accélérée en réduisant I'importante quantité de temps de
calcul avec T'utilisation de techniques d’apprentissage automatique pour développer des
modeles de substitution ou des méta-modeéles qui serviront prédire la réponse du barrage.

L’objectif principal de la recherche est de mettre au point une méthode d’évaluation de
la sécurité sismique des structures de type barrage-poids grace & une analyse de fragilité,
effectuée avec la mise en ceuvre de méta-modéles et en identifiant correctement le scénario
sismique susceptible d’étre présent sur le site du barrage. La méthodologie est appliquée a
un barrage-poids situé dans ’est du Canada, dont la fragilité est évaluée par comparaison
avec les études antérieures et directives de sécurité actuelles. On observe que la procédure
plus précise présentée ici pour choisir les accélérogrammes produit des estimations moins
conservatrices de la fragilité pour le barrage. Nous avons trouvé que la surface de réponse
polynomiale de 4éme ordre est le méta-modéle le plus performant, et elle a été utilisée
pour générer des fonctions de fragilité multivariées pour tenir compte de la variation des
paramétres les plus critiques du modéle influencant la fragilité sismique du barrage. A
partir de ’analyse de ces modéles, des recommandations pratiques de conception ont pu
étre formulées et il a été observé que le paramétre de modélisation affectant le plus ’analyse
de la fragilité est la cohésion entre le béton et la roche.

Mots-clés : barrages-poids, aléas sismiques, analyse de fragilité, méta-modeéle, courbes
de fragilité, surfaces de fragilité, paramétres de modélisation






ABSTRACT

The consequences of dam failure can be substantial, in terms of casualties, economic and
environmental damage. Moreover, the safety of dams and hydroelectric developments is
a major concern in Quebec given that over half the population lives in potential flood
zone. There are about 933 large dams in Canada and 333 or slightly more are located
in Quebec. Among them, many have been built more than 50 years ago. During that
time, important advances in the methodologies for evaluating the natural hazards have
been made. Although total failure of a concrete dam following an earthquake is rare,
earthquakes are a major cause of damage at different degrees of severity. Consequently,
the combination ageing and its associated problems with new methods for estimating
seismic loads, have resulted in the need to review and upgrade the methods of seismic
analysis for dams. In recent decades, probabilistic-based tools, have become increasingly
popular for the seismic assessment of dams. However, such methods often require a large
number of nonlinear dynamic analysis of complex finite element models. As a result the
trade-off between the accuracy of the numerical model and the computational burden
render unviable this type of analysis. However, the seismic assessment of dams can be
enhanced by including seismic and modeling parameters uncertainties and expedited by
reducing the substantial computational time with the use of machine learning techniques
to develop surrogate or meta-models to predict the response of the dam.

The proposed research addresses direct gaps in the seismic performance assessment of
dams, while also shedding new light on the use of machine learning to support fragility
modeling of complex systems like dams. Accordingly, the main objective of this research
was to develop a method for assessing the seismic safety of gravity dam-type structures
through a fragility analysis, conducted with the implementation of meta-models and by
properly identifying the seismic scenario likely to be present at the dam site. The method-
ology is applied to a case study gravity dam located in eastern Canada, whose fragility
is assessed through comparison with previous studies and current safety guidelines. It
is observed that the more accurate procedure presented herein to select ground motions
produces less conservative fragility estimates for the case study dam. Likewise, the 4th
order polynomial response surface came up as the best performing meta-model, and it
was used to generate multivariate fragility functions to account for the most critical model
parameter variation influencing the dam seismic fragility. From the analysis of these
models, practical design recommendations could be formulated and it was observed that
the modelling parameter affecting the fragility analysis the most was the concrete-rock
cohesion.

Keywords: gravity dams, seismic hazard, fragility analysis, meta-model, fragility curves,
fragility surfaces, modeling parameters






To the other two musketeers: all for one and
one for all, united we stand divided we fall.-

- Alexandre Dumas
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CHAPTER 1
INTRODUCTION

1.1 Context and problematic

Dams are one of the most audacious human constructions, considering the social, environ-
mental and economic risks that a work of such magnitude entails. A dam is designed to
impound and store water behind it safely throughout its lifetime. Thus it has to maintain
its structural integrity in the face of the different hazards and loading conditions that arise

during construction, normal operations, and extreme environmental events.

Several dams have experienced rupture (partially or totally) under the effect of exceptional
floods, and to a lesser extent due to earthquakes. In the last years the documented damage
caused by seismic events |4} 5] 6] [7] has revealed the vulnerability of these structures whose
consequences are catastrophic and expensive. In addition, the Canadian Risk and Hazards
Network indicates that a significant earthquake is probably Canada’s greatest potential
natural disaster [8]. The safety of dams and hydroelectric developments is a major concern
in Quebec given that over half the population lives in potential flood zone. Thus, there
are about 333 large dams in Quebec and around 933 in Canada [9]. Among them, many
have been built more than 50 years ago [0]. During that time, important advances in
the methodologies for evaluating the natural hazards have been made, causing the review
and modification of the design guidelines, in some cases significantly. With the increasing
knowledge of seismicity, a growing number of dams fail to meet the revised safety criteria
that incorporates new seismic hazard information [6]. Consequently, the combination of
ageing and its associated problems with new methods for estimating seismic loads and
with the increasing demands of society to ensure a high level of safety has resulted in the

need to review and upgrade the methods of seismic analysis for dams.

Furthermore, in Quebec, after the dam failure produced by the flood occurred in Saguenay
region in July 1996, a Dam Safety Law was promulgated which is currently being applied.
The aforesaid law confers a key role to the engineer and requires from the dam owners
or operators to produce documented safety analyses of their works [10]. Consequently,
questions have arisen regarding the capacity of existing dams, in their current condition,
to withstand extreme environmental events beyond the original design basis during a future

service period with an acceptable margin of safety.
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Methods for analyzing the structural response of a dam-reservoir-foundation system rely
on deterministic or probabilistic approaches. Deterministic methods are often considered
too conservatives, or even unsafe in some cases, because of the use of extreme load cases
with very low probabilities of occurrence and because of the way of considering different
sources of uncertainty [I1, 12, 13]. In the deterministic analysis, the way of handling
the uncertainties involved in dam performance and safety assessment is by the traditional
approach through the use of safety factors. These safety factors are applied separately
at different stages, and inconsistently in the processes of analysis, design and assessment,
leading to an unknown and unpredictable margin of safety [14]. Procedures that provide a
more rational way of assessing the safety of concrete gravity dams are required to establish
priorities. Moreover, a probabilistic approach is required to manage the various sources
of uncertainty that may impact the dam performance and decisions related thereto [I1].
Within this probabilistic framework, a fragility analysis is a promising alternative, partic-
ularly suited to study the seismic vulnerability of structures and to estimate the level of

damage likely to be caused by seismic events.

Nevertheless, seismic fragility analysis and vulnerability assessment of key infrastructure
elements, often requires a large number of non-linear dynamic analyses of complex finite
element models (FEM). The substantial computational time may be reduced using machine
learning techniques to develop surrogate or meta-models, which are an engineering method
used when an outcome of interest cannot be easily directly measured, so a model of the
outcome is used instead [I5]. Such a challenge is particularly relevant to the case of large
scale infrastructures, such as dams, subjected to seismic loads. Accordingly, the main goal
of this research is to apply statistical learning techniques to develop a seismic probabilistic
demand model or meta-model to predict the seismic response of the dam. The latter
will be used to generate fragility functions and recommendations to expedite the safety
assessment process. The proposed methodology is applied to a case study gravity dam
located in north-eastern Canada. Additionally, the procedure presented herein has the
added asset of properly depicting the seismic scenario likely to occur at a specific site

enhancing the accuracy of the analysis.

1.2 Project description and objectives

The project is part of one of the research axes of the Centre de recherche en génie para-
sismique et en dynamique des structures (CRGP) of the civil engineering department
at Sherbrooke University for evaluating seismic vulnerability of structures in Canada

and developing tools to do this. Several previous projects performed by CRGP allowed
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studying and developing a methodology for using fragility curves, mainly in the area of
bridges [16], 17, 18], T9] and more recently in the area of dams |20, 21]. Moreover, the CRGP
has vast expertise in the dynamic behaviour and seismic analysis of dams and hydraulic

structures.

This study aims to assess, in a probabilistic way, the seismic vulnerability of concrete
gravity dams using meta-model-based single-variable and multi-variable fragility functions,
including the most relevant model parameters (MP) and seismic intensity measures (IM)

affecting the response of the structure.
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Figure 1.1 Research project main objective diagram

The present research project and the proposed methodology focus on a particular case
study gravity dam located in north-eastern Canada. Particulary, this project has the

following specific objectives:

1. Implementation of a non-linear finite element model, accounting for fluid-structure
interaction (FSI) and soil structure interaction (SSI) to estimate the seismic response
of the dam.

2. Characterize the seismic hazard at the dam site by performing a probabilistic seismic

hazard analysis and by selecting a representative suite of ground motion time series

(GMTS).

3. Identification of the most relevant MPs and seismic IMs affecting the seismic response

of the dam through a statistically based screening study.

4. Explore the applicability of meta-models for the seismic assessment of gravity dams

and systematically compare and determine the most suitable one.

5. Generate fragility functions from the meta-model output for the dam under study

and gain insight on the influence of the model parameters affecting the dam perfor-
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mance by explicitly quantify their effect with the generation of multivariate fragility

functions.

6. Asses the expected seismic performance of the dam, providing an overview on the
importance of the parameters influencing the dam performance to formulate practical
design recommendations from the analysis, e.g. appropriate model parameter range

to achieve target risk.

1.2.1 Case study - description

As it was aforementioned, the present study is focused on a particular concrete gravity
dam in Quebec, Canada. It is the largest gravity dam in the province, with 19 unkeyed
monoliths, a maximum crest height of 78 m, and a crest length of 300 m (Figure . The
dam rests on a foundation consisting mainly of anorthosite gabbro and granitic gneiss [22],
which corresponds to hard rock (V'S30 > 1500m/s). The dam was chosen for its simple
and almost symmetric geometry and because of the availability of forced vibration test
results used to calibrate the dynamic properties of the numerical model [22]. Moreover,
previous studies concerning the seismic fragility of one of the central blocks of the dam [20),
21] are also available, enabling a direct comparison with the results of the method proposed

herein.
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Figure 1.2 Case study dam: (a) aerial view of the dam [I] and (b) cross
section

1.3 Oiriginality and contribution

Methods for analysing the structural behaviour of the dam-reservoir-foundation system

rely on deterministic or probabilistic methods. Currently in Quebec the safety assessment
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of hydraulic structures is mainly deterministic and limited to methods based on safety
factors. At present, probabilistic assessment methods, such as fragility functions, are rarely
used in the field of dams. This research project will allow the implementation of this tool
and develop a methodology for its application in dam-type structures. To implement this
type of design, an accurate estimate of the seismic demand of the structural systems is
especially important. Such an estimate requires, in turn, a ground motion record selection
technique that properly depicts the seismic scenario and adequately propagates the record-
to-record variability and uncertainty related to the seismic hazard throughout the fragility
analysis [23, 24]. To this end, a probabilistic seismic hazard analysis (PSHA) will be
conducted, consistent with the National Building code of Canada (NBCC) 2015, to depict
the seismic scenario likely to be present at the dam site. The primary advantage of PSHA
over alternative representations of the earthquake threat is that PSHA integrates over all
possible earthquake occurrences and ground motions to calculate a combined probability of
exceedence that incorporates the relative frequencies of occurrence of different earthquakes
and ground-motion characteristics. These results will be used, together with a refined
ground motion selection method, the generalized conditional intensity measure (GCIM)
approach, to select ground motion time series that match target seismic IMs that highly
correlate with the structure’s probable damage states. This method proposes, therefore,
a more realistic target distribution and its application has produced encouraging results
by recent studies in different contexts [25] 26], 27]. Currently, to the best of the author’s
knowledge, no previous studies have conducted seismic assessment of dams while properly
considering the contribution of several IMs. Moreover, there are no studies that have used
the GCIM method for this region. As such, this research aims to improve the fragility
analysis for concrete gravity dams by using an enhanced procedure to select ground motion
records that includes different intensity measures that are relevant to the probable damage

states of such structures.

Within this framework, and to better simulate the real dynamic response of the structure, a
non-linear FEM of the dam, which fully account for dam-reservoir-foundation interactions
will be used. This approach will provide a more realistic simulation of the structural
response and material behaviour, which are known to vary with the intensity of dynamic
loading. In the same way, the effect of the modeling assumptions will be explored to decide
whether this simplifications are considerable when it comes to the dynamic behaviour of the
dam. The substantial computation time will be reduced using machine learning techniques
to develop surrogate or meta-models, whose basic idea is to avoid the temptation to invest

computational budget, but to develop fast mathematical approximations instead. This
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research will also highlight the advantages and disadvantages regarding the traditional

methodology.

Summarizing, most of prior studies on seismic assessment of concrete gravity dams via ma-
chine learning techniques are limited to the consideration of a few meta-models at a time in
the context of a single study, simplified 2D finite element models and single-variate fragility
functions or engineering demand parameter-seismic intensity measure fragility functions
where the methodologies and/or parameterized equations are not provided [28|, 29, [30].
Therefore, they do not explore the most suitable meta-models for fragility analysis of this
type of structure, nor they explore the influence of the model parameters variation in the
seismic fragility analysis. Moreover in any of these studies is discussed the proper definition
of the seismic scenario likely to occur at a specific site in a probabilistic manner. To address
the aforementioned gaps, this project aims to identify the most viable meta-model for the
seismic fragility assessment of gravity dams and to provide an overview on the importance
of the parameters influencing the dam performance to be able to formulate design recom-
mendations from the analyses. The major contributions of this research, can be listed as:
(i) systematically compare and determine the best performing regression meta-model to
predict the base sliding of gravity dams, among 14 different regression techniques, for the
first time; (ii) present a methodology to fit parameterized fragility surfaces, as a function
of IMs and MPs, from the meta-models; (iii) consider the correlation between the seismic
IMs from a probabilistic seismic hazard analysis to generate the samples to characterize
the seismic scenario where the meta-model will be evaluated; (iv) gain insight on the in-
fluence of the model parameters affecting the dam performance, and explicitly quantify
their effect with the generation of multivariate fragility functions and (v) formulate model
parameter design recommendations from the analysis, e.g. appropriate parameters range

to achieve target risk.

1.4 Structure of the document

In order to meet the objectives of the research project, the content of this thesis is di-
vided into seven chapters. The second chapter presents a review of the literature that
includes: (i) the seismic performance of concrete gravity dams, (ii) eastern Canada seis-
mic hazard, (iii) fragility analysis and (iv) meta-models. The probabilistic seismic hazard
analysis procedure, ground motion record selection methods, different types of fragility
functions, meta-modeling techniques and the few examples available in the field of dams
are discussed. The third chapter is dedicated to the modeling and characterization of a

concrete gravity dam for fragility analysis, where a methodology for the proper consider-




1.4. STRUCTURE OF THE DOCUMENT 7

ation of the uncertainties to assess the seismic vulnerability is proposed. It also presents
a summary of the methodology adopted to generate the dataset with which the meta-
models were trained. More specifically, this chapter includes the modeling of the case
study dam, parameter uncertainties consideration, ground motion selection procedure, de-
sign of experiments and meta-model training, optimal regression technique selection and
parametric fragility surfaces development. The fourth chapter presents the results of the
PSHA to characterize the seismic scenario at the dam site and the development of up-
to-date fragility curves for the case study dam using a record selection method based on
the generalized conditional intensity measure approach. These fragility functions are then
combined with the aforementioned regional hazard data to evaluate the annual risk, which
is measured in terms of the unconditional probability of limit state exceedance. The fifth
chapter provides insight on viable meta-models for the seismic assessment of gravity dams
for use in fragility analysis. A methodology to generate multivariate fragility functions
from the meta-models is presented, which offers efficiency while accounting for the most
critical model parameter variation influencing the dam seismic fragility. From the analysis
of these functions, practical design recommendations were formulated. As it can be seen
from Figure [1.3] the modality of the thesis is by articles and two scientific papers were
produced in the context of this project. It should be noted that chapters 4 (Part 1) and
5 (Part 2) constitute the articles presented in scientific journals, where the samples gen-
erated in Part 1 with the finite element model and the seismic scenario characterization
were used in Part 2 to train the meta-model that will emulate the finite element model
behaviour. Finally, the results of Part 1 and Part 2 were used to perform the seismic

assessment of the dam.

Part 1 Part 2
Finite element Surrogate or
model meta-models
Seismic scenario Emulate the finite
characterization element model
Univariate Multivariate
fragility functions fragility functions

Seismic assessment of dams
Figure 1.3 Structure of the document - Thesis modality
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Chapter six includes complementary verifications and comparisons regarding the seismic
fragility of the case study dam. These results, presented in conference papers, are in-
cluded in this document for completeness. As such, this chapter presents the comparison
of the fragility functions developed with the 2010 and 2015 hazard models and with several
record selection methods and the estimation of the expected seismic performance under
extreme seismic events to assess the impact of these factors in the fragility of the system.
Also, the best performing meta-model is used to develop fragility curves and to identify
the most influencing model parameter in the seismic response by developing fragility re-
gions. Finally, the last chapter presents the conclusions of the research project and gives

guidelines for future projects.




CHAPTER 2
STATE OF THE ART

A concrete gravity dam is a massive structure with an essentially triangular profile that
consists of rigid monoliths built side by side. Its longitudinal axis runs straight along the
entire dam. The structural stability of a concrete gravity dam is derived mostly from
its weight. The primary load affecting concrete gravity dams arises from the hydrostatic

pressure.

Certainly, concrete gravity dams are designed to remain operational under normal con-
ditions, to sustain minimal damage under infrequent operative conditions and to prevent
total loss of reservoir under extreme events. To avoid the uncontrollable release of water
during a strong seismic event, the dam must be able to withstand the ground shaking of
even an extreme earthquake given the human fatalities and the economic losses that can
result from. It arises then, the importance of the behaviour of the dam under seismic
loads. From a deterministic point of view, large storage dams are generally considered
safe if they can survive an event with a return period of 10.000 years, i.e., having a 1%
chance of being exceeded in 100 years. It is very difficult to predict what could happen

during such a rare event as very few earthquakes of this size have actually affected dams.

Current procedures for concrete gravity dams design are based on static, deterministic
analyses. These involve rigid body analysis and static equilibrium for monolith stability
and foundation stresses. Where required, seismic loads are approximated by pseudo-static
forces obtained using the seismic coefficient method [31]. The governing criteria in concrete
gravity dam design are that the dam must be safe from overturning, sliding and bearing
failure in the dam or foundation. Under the criteria currently in use, dams are designed
to withstand or resist hazards that conceivably could occur in their lifetimes. However,
it is not possible to provide "absolute" safety against all hazards. Extreme events, like
earthquakes, that exceed the dam’s capacity can occur, although they may have very low
probabilities of occurrence. Moreover, it is not possible to determine what would happen

(damage without full failure) for lower hazards.

Methods for seismic analysis of concrete dams have been improved extensively in the last
few decades and growth in the processing power of computers has expedited this improve-

ment. Advanced numerical models of dams have become more feasible and manageable
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and constitute the basis of more adequate procedures of designing and assessing. Proce-
dures that provide a more rational way of assessing safety of concrete gravity dams are
required to establish priorities. Such procedures should be based on modern principles
of structural /geotechnical engineering. Moreover, a probabilistic framework is required to
manage the various sources of uncertainty that may impact dam performance and decisions
related thereto [32]. Seismic actions have essentially stochastic characteristics, therefore
they should be considered as probabilistic loads. Moreover, material properties and struc-
tural dimensions have random variations in the spatial domain. Thus, a probabilistic

dynamic analysis of the coupled system dam-reservoir-foundation is necessary [33], 34].

2.1 Seismic performance of gravity dams

Historically, few dams have been significantly damaged by earthquakes. On a worldwide
basis, only about a dozen dams are known to have failed completely as the result of
an earthquake [35] [7) [4]. These dams were primarily tailings or hydraulic fill dams, or
relatively old, small, earth-fill embankments of inadequate design. Earthquakes represent

multiple hazards with the following features in the case of a storage dam:

— Ground shaking causes vibrations and structural distortions in dams, appurtenant
structures and equipment, and their foundations.

— Fault movements in the dam foundation or discontinuities in dam foundation near
major faults can be activated, causing structural distortions.

— Fault displacement in the reservoir bottom may cause water waves in the reservoir
or loss of free board.

— Rock falls and landslides may cause damage to gates, spillway piers (cracks), retain-
ing walls (overturning), surface powerhouses (cracking and puncturing and distor-
tions), electro-mechanical equipment, pen stocks, masts of transmission lines, etc,.

— Mass movements into the reservoir may cause impulse waves in the reservoir.

— Mass movements blocking rivers and forming landslide dams and lakes whose failure
may lead to over topping of run-of-river power plants or the inundation of power-
houses with equipment, and damage downstream.

— Ground movements and settlements due to liquefaction, densification of soil and
rock-fill, causing distortions in dams.

— Abutment movements causing sliding and distortions in the dam.

Dams are designed to withstand construction, normal and infrequent operating condi-

tions, and extreme environmental load conditions. The two primary environmental load
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conditions affecting concrete gravity dams arise from the differential hydrostatic level that
occurs during hydrologic events and the dynamic loads due to seismological events. Sev-
eral stages (limit states) of a dam behaviour occur under progressively increasing levels of
excitation. At low levels, the dam-foundation system remains essentially elastic, displace-
ments are small, drains are fully effective, and full control of the reservoir is maintained.
In the elastic range, there are no permanent deformations, and the traditional 2D equilib-
rium analysis of the dam as a rigid body is sufficient. At the onset of non-linear behaviour,
material cracking occurs, deformations may become permanent, drainage characteristics of
the dam and the operation of gates begin to be affected, and 3D structural actions within
the dam are initiated. At this stage, 2D rigid body analysis of a dam monolith may no
longer provide a good model of structural performance, and a finite element model of the
complete dam may become necessary. Excessive deformations may cause objectionable
cracking and functional disruption. Finally, at ultimate conditions prior to impending
failure, the drains are ineffective due to large deformations, and structural behaviour be-
comes unstable and unpredictable due to sliding, flotations, or loss of foundation material

bearing capacity. In extreme cases, loss of control of the reservoir may occur [32, [36].

2.1.1 Loads, failure modes and limit states

As it was mentioned, the structural stability of a concrete gravity dam is derived mostly

from its weight. The loads acting on the structure can be summarized in Figure [2.1]

Wave Ice

Pressure relief
drains

Internal seepage
uplift

Seismic inertia
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Self weight

Hydrodynamic  Sediment Water
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Fundati uplift preasure if
undation A\dno relief drains
seepage uplift

Figure 2.1 Commonly used loads in design practice
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Two types of loads solicit a dam: static and dynamic loads. The main static loads are:
the weight of the dam, the hydrostatic pressure of the reservoir, uplift-pressure at the
foundation, ice thrust and the stresses generated by volumetric changes and thermal gra-
dients. Attention must be focussed on the operational limit states: gravity only (including
staged construction), normal reservoir only, gravity plus normal reservoir, gravity plus nor-
mal reservoir plus winter /summer temperature; which are of primary importance for dam
structures [37]. For their part, the dynamic loads are caused by the action of an earth-
quake which induces horizontal and vertical inertia forces and reservoir hydrodynamic
thrust. Loads due to seismic excitation are one of the most important actions that must
be considered in concrete dam design, even in regions of low seismic activity [33], [34]. The
relevant limit states of a dam, from the most expected to the least expected [14] [38], 37, [39],

can be listed as:
1. Material failure - concrete crushing failure.

2. Excessive stress in the foundation.

@

Excessive deformation of the dam body inducing service limitation for equipments

and installations.
Seismic hammering between the blocks.
Considerable opening of cracking and joints.

Sliding at the dam-foundation interface or at the construction joints.

NS v e

Uplifting and overturning.
8. Deflection of the top of dam relative to heel.

When subjected to strong ground motions, gravity dams may be damaged in different
ways. Nevertheless, in recent years, typical damage modes in dams after a seismic event
have been identified. Based on that seismic damage levels can be established. This is a
necessary step before seismic vulnerability analysis can be performed [40]. In their study,
Zhong et al. [40] presented the expected typical gravity dams failure modes based on
non-linear seismic simulation results. Strictly speaking, classification of seismic damage
levels should be established based on documents survey of dams actually damaged by
earthquakes in history, or on a large number of simulation of dams subjected to strong

earthquakes.

2.1.2 Seismic analysis methods and structural modeling

To assess the safety of a dam, it is necessary to proceed with the analysis of the latter.

Two approaches are generally used to model a dam: seismic coefficient method (SCM)
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and the finite element method. The SCM method assumes that the dam is infinitely
rigid, earthquake forces are treated simply as static forces and are combined with the
hydrostatic pressures, uplift, backfill soil pressures, and gravity loads. The analysis is
primarily concerned with the rotational and sliding stability of the structure treated as
a rigid body. The inertia forces acting on the structure are computed as the product
of the structural mass, added-mass of water, and the effects of dynamic soil pressures,
times a seismic coefficient. The magnitude of the seismic coefficient is often taken as a
fraction of the peak ground acceleration expressed as a decimal fraction of the acceleration
of gravity. This method has been widely used in practice because of its simplicity and
according to the United States Corps of Engineers (USACE) [41] this method may still be
used in the preliminary design and stability analyses. Nevertheless, it is not applicable in
the case of a three-dimensional behaviour and it neglects several phenomena which may
be important such as the dynamic characteristics of the dam-reservoir-foundation system

and the characteristics of the ground motion.

The finite element method is based on the finite element theory to calculate strains and
stresses in the dam. This method is much more accurate and provides a better assessment
of the behaviour of a dam [42]. The global response of a dam is obtained by first calculating
the effect of static loads to which we add the effect of seismic loads. Analysis of seismic
loads can be carried out with three methods: pseudo-static method, pseudo-dynamic

method and temporal dynamic method.
Pseudo-static method

The equivalent lateral force method (ELF), which is commonly used for the seismic design
of buildings, has also been developed for preliminary seismic analysis of gravity dams
assuming that the structure response is predominantly in the first mode [43]. In a similar

way, the ELF method presents the same limitations as the SCM.
Pseudo-dynamic method

Also called the modal response spectrum analysis procedure is the most basic and truly
dynamic method of analysis. In this method, the peak responses of linear elastic structures
to earthquake ground motions characterized by response spectra are determined [44]. The
number of modes required varies for each analysis, however all modes with significant
contribution to the total response of the structure should be included. Usually the number
of modes is adequate if the total mass participation of the modes used in the analysis is at
least within 90% of the total mass of the structure. Within the pseudo-dynamic methods,

the time history modal analysis procedure is similar to the one described for the modal
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response spectrum, except that earthquake demands are in the form of acceleration time
histories, rather than response spectra. The results are in terms of displacement and stress
(or force) time histories. Peak values of various response quantities are extracted from
the response histories. Time history modal analysis provides valuable time dependent
information that is not available in the modal response spectrum analysis procedure.
Especially important is the number of excursions beyond displacement levels where the
structure might experience strength degradation (strain softening). This type of analysis is
preferred over the ELF method which is limited to a single mode but it is still conditioned

to linear elastic responses.
Temporal dynamic method

This type of analysis involves the direct integration of the equations of motion, and there-
fore is the most powerful method available for evaluating the response of structures to
earthquake ground motions [41], 45]. It is a step-by-step numerical integration procedure,
which determines stresses (or forces) and displacements for a series of short time increments
from the initiation of loading to any desired time. The time increments are generally taken
of equal length for computational convenience. The condition of dynamic equilibrium is
established at the beginning and end of each time increment. The motion of the system
during each time increment is evaluated on the basis of an assumed response mechanism.
The advantage of this method is that it can be used for both linear and nonlinear analyses.
In the case of nonlinear analyses, structure properties (including nonlinear behaviour) can
be modified during each time increment to capture response behaviour appropriate to that
deformed state. The application of non-linear analysis to concrete hydraulic structures is
limited to cases for which experimental or observational evidence of non-linear behaviour
is available and that validity of the numerical models have been demonstrated. These
include certain nonlinear behaviour such as joint opening mechanisms, tensile cracking,
sliding and rotational stability of blocks isolated by opened joints and cracked sections,

and local yielding and cracking.

2.1.3 Modeling considerations

Structural models for dynamic analyses are developed much in the same manner as for
static analyses. However, distribution of mass, stiffness and dynamic interaction between
the structure and water and between the structure and foundation as well as with the
backfill soil should be established accurately. The response of a structure under severe
ground shaking may approach or exceed the yield/cracking state. This means that in a

linear-elastic dynamic analysis the use of effective stiffness is more appropriate than the
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initial elastic stiffness used in the static analysis, and that the damping should be selected
consistently with the expected level of deformation and the extent of non-linear behaviour.
Furthermore, concrete deterioration and cracking can reduce structural stiffness of an
existing structure; thus these effects should be considered in estimation of a representative

effective stiffness.

The dynamic interaction with the foundation introduces inertia and flexibility at the base
of the model and could provide additional damping mechanisms through material and
radiation damping [41]. One of the problems associated with this, is that the seismic signal
must be modified within the foundation. Consequently the earthquake to be applied at
the base of the foundation is not one from a record in the soil surface, but a modification
thereof (deconvolved records). A hydraulic structure also interacts with the impounded,
surrounding, or retained water through hydrodynamic pressures at the structure-water
interface. This interaction is coupled in the sense that motions of the structure generate
hydrodynamic pressures that affect deformations (or motions) of the structure which, in
turn, influence the hydrodynamic pressures. In the same way the compressibility of the
water and the radiation damping in the reservoir given the finite length in the reservoir
modeling are factors that affect the dynamic response of the dam. Since foundation
properties, structural properties, and boundary conditions can vary, it is advisable to
systematically vary parameters that have a significant effect on structure response until the
final results cover a reasonable range of possible responses the structure could experience

during the design earthquake [41].
3D vs. 2D modeling

At present, two dimensional analyses of the dam geometries is still the most common
approach for the design or evaluation of the gravity dams. Most of the three dimensional
analysis methods in the past were developed in reference to arch dams [46]. Practising
engineers almost always prefer the two dimensional analysis tools because of the practical-
ity and wide experience in using these tools and evaluating the results from such models.
The presence of the construction joints, which is a requirement for conventional concrete
dam bodies, justifies the use of two dimensional analyses of concrete gravity dams to some
extent, based on the assumption that the monoliths behave independently during seismic
events. It may happen that the accuracy of 2D models is not enough and one must resort
to the 3D modeling. 3D modeling involves the principle of non-linearity especially when
the foundation is modeled. Yilmazturk et al. [47], pointed out the need of three dimen-

sional analyses for the seismic design of dams in narrow canyons in addition to the fact
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that 3D model non-linearities are particularly more apparent when the soil shear resistance

curve as a function of the normal stress is considered.
Linear vs. non-linear analysis

As previously mentioned, when subjected to strong ground motions, gravity dams may be
damaged in different modes. This implies that depending on the response of a structure
under severe ground shaking (approach or exceed the yield /cracking state), structural and
material properties must be modified accordingly. Concrete deterioration and cracking can
reduce the structural stiffness of an existing structure [48]; thus these effects should be
considered in the estimation of a representative effective stiffness. Inelastic material models
provide more realistic results, as illustrated in Figure [2.2] In the same way, the damping
characteristics should be selected consistent with the expected level of deformation and

the extent of non-linear behaviour.
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Figure 2.2 Linear vs. non-linear material behaviour

Linear elastic finite element analyses of gravity dams often show very high tensile stress
at the upstream heel, especially for two-dimensional models. The reentrant corner goes
into tension when the dam deforms downstream. With a fully connected dam-foundation
interface, combined with linear elastic materials, the results typically show tension that
would exceed that of the concrete by a large margin. Many schemes have been developed
to analyse the fictitious high stresses and arrive at a reasonable dam safety decision, but
each relies heavily on engineering judgement. Schultz et al. [49] showed, in a reevaluation
of a case study dam using non-linear analysis, a more realistic model that better aligned
with the past performance. Instead of unrealistic tension stress between the dam and

foundation, the resulting stress distribution showed that the highest tensile stress does
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not occur at the reentrant corner, but rather about two-thirds height on the upstream

face.

Depending on the type of analysis a suitable numerical method should be selected to
calculate the response of the dam. Non-linear finite element analysis is a broad term that
encompasses a wide variety of numerical methods designed to capture important structural
responses that can not be achieved using a continuous mesh or with elements formulated
on a linear stress-strain assumption. The terms "implicit" and "explicit" analyses are
commonly used to distinguish between two general approaches for finite element analysis
with respect to time history analysis. If the calculation at the current time step t,.1
depends only on the results at the preceding time steps (say at time t,), the method is
said to be explicit. If the calculation at time t,,; depends on the results both at the

preceding time steps and at the current time ¢,1, the method is said to be implicit [44].
Fluid-structure-interaction (FSI) modeling

Earthquake analysis of dams is further simplified if compressibility of water is ignored
because then hydrodynamic effects can be modeled with an added mass frequency inde-
pendent model moving with the dam [50]. When considering the compressibility of water,
in addition to the static water pressure, the dam undergoes dynamic forces from the reser-
voir when the system is subjected to earthquake ground motion. The magnitude of this
additional hydrodynamic force is quite significant and may lead to crack initiation and

propagation in the dam even under a moderately strong seismic event [51].

Three approaches can be used to represent the hydrodynamic effect of the fluid, the West-
ergaard or added mass, the Eulerian and the Lagrangian method [52, 41l [51]. For the
added mass approach the dynamic effect of the reservoir water is modeled as masses ap-
plied at the upstream dam face. The added hydrodynamic mass influences the structure
response by lengthening the period of vibration, which in turn changes the response spec-
trum ordinate and thus the earthquake forces. The added hydrodynamic damping arises
from the radiation of pressure waves and, for dams, also from the refraction or absorption
of pressure waves at the reservoir bottom. The added damping reduces the amplitude of

the structure response especially at the higher modes.

The Eulerian formulation also known as potential or pressure based formulation, allows one
degree of freedom per element (pressure, potential displacement or potential velocity) and
also offers a significant reduction in the number of the model degrees of freedom. However,
interface elements are needed to ensure the compatibility and equilibrium conditions in

the fluid-structure interface. These elements allow to connect fluid elements with adjacent
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solid elements. Each node of these elements has one potential degree of freedom as well
as the displacement degrees of freedom. In the Eulerian approach the displacements
are the variables in the structure and the pressures are the variables in the fluid, thus
a special purpose computer program is required to obtain the solution of the coupled
systems [53, [51].

The Lagrangian formulation is an extension of the classical finite element displacement
formulation developed for solids; that is, the degrees of freedom for the fluid are the
same as for the solid: the nodal displacements. The shape functions of the solids and
fluids elements are the same. However, fluid elements are characterized by a volume
elasticity modulus equal to the fluid compressibility modulus and zero shear resistance to
simulate an inviscid flow. Compatibility in the fluid-structure interface is done by simply
imposing the same normal displacements to the fluid and solid overlapping nodes on the
interface. In other words, in the Lagrangian approach, the reference configuration of the
continuum, solid or fluid, is the undeformed state, the behaviour of both the fluid and
structure is expressed in terms of the displacements [54]. Therefore, compatibility and
equilibrium are automatically satisfied at the nodes along the interfaces between the fluid
and structure. This makes the Lagrangian displacement-based fluid finite elements very
attractive; they can be readily incorporated into a general purpose computer program for

structural analysis, since special interface equations are not required.

Earthquake analysis of dams is greatly simplified if compressibility of water is ignored be-
cause then hydrodynamic effects can be modeled by Westergaard’s concept of a frequency-
independent added mass moving with the dam. The significant discrepancies observed
regarding more advanced method including water-structure interaction render the sim-
plistic methods inadequate for seismic safety evaluation of existing dams. To evaluate
the threshold where the water compressibility can be ignored, it is necessary to consider
the frequency response function of a dam. The latter, when plotted in normalized form,
depends on parameters characterizing the dam-water system, such as the ratio of water
depth to dam height, the hydrodynamic wave reflection coefficient at the reservoir bottom
and the frequency ratio, €2, which is the ratio between the fundamental natural vibration
frequency of the impounded water and the fundamental natural vibration frequency of the
dam alone. For a fixed cross-sectional shape, the frequency ratio €2, , is proportional to
1/VE, , where E, is the concrete modulus of elasticity of the dam. Thus 2, decreases with
increasing F,, or dam stiffness, and vice versa. However, the frequency response functions
are independent of F and €2, if the reservoir is empty or if water is assumed to be in-

compressible. A study of frequency response functions for dams conducted by Chopra [50]
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showed that with increasing €2, , or decreasing F,, the effects of water compressibility
on response become smaller and the response curve approaches the incompressible case.
For systems with €2, = 2 | the effects of water compressibility are insignificant in the
response to horizontal ground motion but are still noticeable in the response to vertical
ground motion. As least in the response to horizontal ground motion, the effects of water
compressibility become insignificant for systems with €, > 2. Interpreting this physically
implies that in a very flexible dam the effects of water compressibility become much smaller
in the earthquake response of dams with very low values of elastic modulus. Water com-
pressibility is expected to be significant in the response of most gravity dams because the
elastic modulus of mass concrete used in dams produces a €2, much smaller than 2 [50].
Ignoring water compressibility, which permits modeling of hydrodynamic effects by an
added mass of water moving with the dam, would lead to unreliable decisions in seismic

safety evaluation of proposed design of new dams and of existing dams [50].
Soil-structure-interaction (SSI) modeling

A SSI model refers to a case where interaction between the structure and its foundation
requires special consideration in terms of the ground motion at the base of the struc-
ture and the flexible support provided by the soil foundation. Such interaction generally
introduces frequency-dependent interacting forces at the structure-foundation interface re-
quiring more elaborate analysis. In practice however, simplified models that include only
the flexibility of the foundation and not its inertia and damping are more common [55].
At soil sites the bed rock motion is affected by the local soil conditions as it travels to the
ground surface, and the presence of the structure produces a further change to this motion
due to kinematic constraints. Additionally, the foundation interacts with the structure by
elongating periods of vibration, by providing additional damping mechanisms (through
material and radiation damping) and with the presence of rock mass inertia. The mate-
rial and the radiation damping in the foundation region have the effect of reducing the
structural response [56, 57, [58]. Earthquake analysis of dams is greatly simplified if foun-
dation rock is assumed to have no mass, because then only flexibility of the foundation
needs to be considered, which can be computed by analysing a bounded-size model of the
foundation as part of a standard finite element analysis. By assuming foundation rock
to be massless, seismic demands are overestimated considerably in some cases by factors
of 2 to 3; this may lead to overly conservative and hence unnecessarily expensive designs
for new dams, and to the erroneous conclusion that an existing dam is unsafe, requiring
unnecessary retrofit that can be very expensive [50]. Soil-structure-interaction methods

and their exhaustive mathematical formulation can be found in the literature [55], 59].
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2.2 Seismic risk assessment

Seismic risk describes the potential damages or losses that a region is prone to experi-
ence following a seismic event. Methods of analysis and evaluation are nowadays made
deterministically. Therefore, they are often considered too conservative because of the use
of extreme load cases with very low probabilities of occurrence [11, 14} [60], and because
they neglect several sources of uncertainty which affect both the structural capacity and
demand. Among them are noteworthy the seismic forces, the material properties and the
system configuration. Moreover, deterministic methods give very little useful information
on vulnerability and reliability of a structure. To address these issues, probabilistic risk

assessment and safety methods are becoming more and more popular [61], [14].

2.2.1 Seismic probabilistic risk assessment - SPRA

Probabilistic risk assessment was originally conceived for using in nuclear industry given
the extent of damage that might occur in extreme events, like earthquakes [62], 63]. Over
time this method was adapted for different types of structures, such as bridges and dams,
and natural hazards like seismic events. The objective of the seismic probabilistic risk
assessment (SPRA) is to estimate the probability of occurrence of different seismic events
that may affect the structure and to assess the structure response to such earthquakes.
The key elements of an SPRA can be reduced to three:

1. Seismic hazard analysis: the selected motion parameter represents the effect of the
seismic events at the structure site. The hazard analysis element must consider all
the sources of such motion and group them accordingly when estimating occurrence

frequencies for each of several magnitudes of ground motion.

2. Seismic fragility evaluation: estimates the conditional probabilities of reaching a

specific damage limit state of the structure as a function of the seismic intensity.

3. System analysis: this step is to define the sequence of events that can lead to system

damage and estimate damages and losses resulting therefrom.

The framework for modern risk assessment is provided by the theorem of total probability
[64]:

Py(Loss > ¢) = » > > Py(Loss > ¢|DS = d)P (DS = d|LS)P(LS[IM = s)P(IM = s)
s LS d
(2.1)
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In which IM is the ground motion intensity measure, P;(IM = s) the probability of
reaching a structural limit state LS, given the occurrence of IM= s, P¢(DS = d|LS) the
probability of damage state DS, given limit state LS, and P¢(Loss > ¢|DS = d) the prob-
ability that the loss exceeds ¢, given that DS= d. The breakdown in this equation clearly
identifies the fundamental contributors to the risk assessment: seismology, structural en-
gineering, and structure economics and losses. The term P;(DS = d|LS) bridges the gap
between structural engineering analysis, which assesses limit states in terms of forces and
deformations, and loss estimation, which relates damage states (e.g. minor, moderate,

severe) to economic losses, expressed as a percentage of replacement cost.

2.2.2 Seismic hazard - Quebec

Although earthquakes occur in all regions of Canada, certain areas have a higher probabil-
ity of experiencing damaging ground motions caused by earthquakes. Figure [2.3] provides
an idea of the likelihood of experiencing strong earthquake shaking at various locations
across the country. The potential damage of an earthquake is determined by how the
ground moves and how the structures within the affected region are constructed. Ex-
pected ground motion can be calculated on the basis of probability, and the expected

ground motions are referred to as seismic hazard.
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Figure 2.3 Simplified seismic hazard map [2]
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Even though eastern Canada is not located in a critical zone, following several major
earthquakes in the south-east of Canada between 1663 and 2010 (Figure , eastern
Canada is considered a moderate seismic zone. This seismic activity in the stable interior
of the North American Plate, where eastern Canada is located, is believed to be related to
the regional stress fields, with the earthquakes concentrated in regions of crustal weakness.
Years of instrumental recordings have identified certain clusters of earthquake activity in
Eastern Canada where earthquakes occur at depths varying from surface to 30 km. West
Quebec, Charlevoix-Kamouraska, Lower St. Lawrence and a small portion of the Northern
Appalachians are the clusters located in the Province of Quebec. Each year, approximately
450 earthquakes occur in eastern Canada [8]. Of these ground motion time series four will
exceed magnitude 4, thirty will exceed magnitude 3, and about twenty five events will be
reported felt. A decade will, on average, include three events greater than magnitude 5. A
magnitude 3 event is sufficiently strong to be felt in the immediate area, and a magnitude

5 event is considered the threshold of damage.
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Figure 2.4 Southeastern Canada earthquakes since 1700 [3]

2015 National hazard model update - 5th generation

The requirements for seismic hazard modeling and mapping have changed over the years
as scientists understandings of earthquakes and their effects on buildings have evolved
and improved. As the knowledge of, and sophistication in, probabilistic seismic hazard

modeling techniques have advanced, Canada’s national mapping efforts have evolved from
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qualitative assessment in 1953, to fully probabilistic for the hazard model accepted for the
seismic provisions of the 2015 NBCC [65].

The 2015 national hazard model update (the 5th generation) yields many important ad-
vances on its predecessors, including: reconfigured seismic sources and special considera-
tion of large rare eastern earthquakes; the use of a suite of representative backbone ground-
motion models, and; explicit definition of crustal fault sources in the Yukon Territory and
offshore western margin faults (north of Cascadia) based on GPS and paleoseismic slip
rates [66]. The model takes advantage of contemporary scientific knowledge and replaces
the 4th generation "robust" combination of alternative source models used for the 2010

seismic hazard model for Canada (SHMC) with a fully probabilistic model.

Regarding the seismic sources zones, for the 4th generation two models were used, dis-
tinguished primarily as historical cluster (H2) and regional seismotectonic (R2) models.
For the 5th generation model, this framework is preserved in northeastern Canada. In
southeastern Canada, an additional type of source - hybrid between H2 and R2 (HY) - is
used together with the updated H2 and R2 models. The different physical properties of
the crust in eastern and western Canada and the different nature of the earthquake sources
in southwestern Canada require the use of separate ground motion models (GMMs), as
detailed by Atkinson and Adams [67]. Unlike the 4th generation SHMC which used a sin-
gle published relation (with rather arbitrary uncertainty bounds) for each region, the 5th
Generation model uses representative suites of GMMs. A suite of crustal relations based
on the ground-motion values from five appropriate eastern GMMs was used for eastern

Canada.

2.2.3 Ground motion record selection method

To assess the seismic vulnerability of structures, an accurate estimate of the seismic de-
mand of the structural systems is especially important. Such an estimate requires, in
turn, a ground motion record selection technique that properly depicts the seismic sce-
nario and adequately propagates the record-to-record variability and uncertainty related
to the seismic hazard throughout the fragility analysis [23, 24]. Generally, the primary
considerations in selecting ground motion recordings make use of appropriate seismological
properties. However, these seismological parameters alone might not properly capture the
seismic behaviour of the structure, failing to predict of structural demands [68]. With this
limitation in mind, a consensus is emerging that it is more productive to consider time

series properties rather than seismological parameters when selecting ground motions [69).
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One commonly used approach for record selection is to select recorded or simulated ground
motions whose response spectra match a target mean response spectrum. Irrespective of
the procedure used to obtain a target response spectrum, there are several methods for se-
lecting input ground motions that match a desired spectrum. Frequently, ground motions
are selected (sometimes after scaling) to individually deviate the least from the target
response spectrum. The deviation can be measured using the sum of squared differences
between the response spectrum of the record and the target response spectrum. An al-
ternate approach is to select a ground-motion set, rather than one record at a time, by
minimizing the mean spectrum of the selected records from the target response spectrum.
In some situations, matching only a target mean response spectrum is not sufficient since
the approach ignores the inherent variance that may exist in the response spectrum. When
matching a target response spectrum mean and variance, it does not suffice to treat ground
motions individually, but rather requires comparisons of the mean and variance of sets of
ground motions to the target values [70]. There is generally an intractably large num-
ber of possible ground-motion sets, and so identifying the best set is a computationally
expensive combinatorial optimization problem. Following the work done by Jayaram et
al. [70] and more recently by Baker and Lee [TI] the selection algorithm first uses simula-
tion techniques, Monte Carlo simulation (MCS) or Latin Hypercube sampling (LHS), to
probabilistically generate multiple response spectra from a distribution parameterized by
the target means and variances. For each simulated response spectrum, a ground motion
with a similar response spectrum is then selected. Since the simulated response spectra
have the desired mean and variance, the response spectra of the selected recorded ground
motions will also have the desired mean and variance. A greedy optimization technique
then further improves the match between the target and the sample means and variances.
This step replaces one previously selected ground motion at a time with a record from
the ground-motion database that causes the best improvement in the match between the

target and the sample means and variances.

2.2.4 Target seismic conditional distributions

For estimating the seismic demand a typical approach is to use the same records at dif-
ferent seismic intensity levels. This is not realistic since different target properties of the
ground motions are expected at each intensity level. Furthermore, in some cases, the
ground motion records are selected from a target spectrum such as a uniform hazard spec-
trum (UHS). Spectral accelerations given by a UHS are obtained by considering the same
probability of exceedance for all periods. Thus, it does not represent the spectra of any

single seismic event [72] and, due to its inherent conservatism, is often considered unsuit-
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able to be used in a probabilistic approach, such as a fragility analysis [21]. Accordingly,
in recent years, the implementation of specific target conditional distribution, such as the
conditional (mean) spectrum (CS) [73] or the generalized conditional intensity measure
approach [74], have been recommended over the frequently employed uniform hazard spec-
trum due to its capability to support the selection of records that match proper ground

motion characteristics for a given intensity measure level [75].
Conditional spectrum - CS

This approach allows to select different sets of ground motion records with appropriate
target properties at each seismic IM level. The conditional spectrum describes the expected
(mean and variance) response spectrum of a ground motion conditioned such that spectral
acceleration matches a target amplitude at a given period, Say(T™*) [73]. The first step
to compute the CS is to determine a target spectral acceleration at a conditioning period,
T*. One must then identify a representative earthquake scenario in terms of magnitude
(M), distance (R) and e-value, which is a measure of the difference between the spectral
acceleration of a record and the mean of a ground motion prediction equation at the given
period. If the target Say(T*) value is obtained from probabilistic seismic hazard analysis
(PSHA), this M — R—e scenario can be obtained from disaggregation. Afterwards, a mean
response spectrum, fi, sq(M, R, T;), and its associated standard deviation, oy, 5,(7;), are
computed using this scenario and a ground motion model consistent with the PSHA. The
conditional mean spectrum in Eq. and the conditional standard deviation spectrum
in Eq. (2.3)), can now be computed according to Baker [73].

n Sa(T3) I Sa(T*) = Hin sa(M, R, T;) + o sa(T3)e(T*) p(T5, T) (2.2)

Oln Sa(T;)|1n Sa(T*) — UlnS’a(T'i) - p2(ﬂy T*) (23)

where p(T;,T*) is the correlation coefficient between a pair of ¢ at two periods and (7™)
is the e-value at the conditioning period. Eq. (2.2)—(2.3) coupled together are defined as
the CS.

Although improved with respect to the traditional UHS, one limitation of the ground mo-
tion selection method based on spectral acceleration matching is that only the characteris-
tics of ground motion represented in terms of (linear) spectral acceleration are considered,
whereas it is acknowledged that the severity of ground motion, in general, depends on

its intensity, frequency content, and duration [74]. Therefore, a further refined method,
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the generalized conditional intensity measure, was proposed by Bradley [74] for ground

motion record selection.
Generalized conditional intensity measure - GCIM

The essence of the GCIM approach is the definition of a multivariate distribution for any
set of ground-motion intensity measures (IM;) conditioned on the occurrence of a specific
ground-motion intensity measure (IM;) [74]. The calculation of the GCIM distributions
involves two major steps: (i) determining the probability that if a ground motion was
observed with IM;, it was caused by a particular earthquake scenario; and (ii) given
the observed ground motion with IM; from a particular earthquake scenario, defining the
distribution of the other ground motion intensity measures. Moreover, the general variable
IM|Rup (where “|Rup" indicates conditioning on a specific earthquake rupture scenario)
is assumed to follow a multivariate log-normal distribution, as shown in Eq. , and the
marginal distributions of all of the scalar intensity measures in IM;|Rup, IM;|Rup can be

estimated via existing GMMs.

2
Sivts Rup, vty ~ TN (R I Rup, T 5 O 11 | Ry T ) (2.4)

Within the GCIM framework, any number of ground-motion IMs identified as relevant
for a particular seismic response problem can be considered allowing the estimation of
conditional distributions based on the full distribution of disaggregation results. This
method proposes therefore a more realistic target distribution and its application has
produced encouraging results by recent studies in different contexts [25] 26] 27]. Further
details regarding the GCIM methodology are given in Section

2.3 Fragility analysis

As it was mentioned before the codes and procedures for earthquake engineering show
a tendency toward performance-based seismic design. For the implementation of this
type of design, the capacity and demand of the structural system have to be defined.
The capacity and demand models must represent the variability in the test data in a

probabilistic manner, as they do with fragility functions.

2.3.1 Fragility curves

A univariate fragility function, as depicted in Figure is a conditional probability that

gives the likelihood that a structure will meet or exceed a specified level of damage for a
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given ground motion intensity measure [61]. This conditional probability is given by:
Fragility = P;(LS | IM = s) (2.5)

where LS is the damage limit state, IM the seismic intensity measure and s is the achieved

condition for the measured intensity of the seismic event.
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Figure 2.5 Conceptual fragility curve

The shape of a fragility curve describes the uncertainty in the capacity of the system to
withstand a load or, alternatively, uncertainty in what load will cause the system to fail. If
there is little uncertainty in capacity or demand, the fragility curve will take the form of a
step function. For elastic, poorly understood, or complex systems, there is uncertainty in
the capacity of the system to withstand a load. In these cases, the fragility curve takes the
form of an S-shaped function. The S-shaped fragility curve is appropriate when there is
uncertainty in the capacity of the system to withstand a load. The choice of the intensity
measure must allow to appropriately reflect the fragility. This choice is not an easy task
when developing fragility curves as this measure should help to effectively represent the
seismic hazard of the site and the behaviour of the structure under consideration. More-
over, this measure must be practical and easy to implement and use. It has been shown
that the spectral acceleration at the fundamental period (Sa(7})) is the preferred IM for
evaluating seismic vulnerability of a particular structure |76, [77, [78]. However, in the case

of concrete dams, recent studies [30] have shown that among the motion-dependent scalar
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IMs, PGV is the best option while the combined acceleration response spectra, Sa'=*=,

is the most practical and proficient structure-dependent spectral IM.

Approaches for developing fragility curves can be classified into three broad categories:
judgemental, empirical and analytical, as further described below. Judgemental ap-
proaches are based on expert opinion or engineering judgement, empirical approaches
are based on observations and analytical approaches are based on numerical models. Each
approach differs in terms of the level of effort required to implement it and the precision
that is attached to the results. However, none of the approaches is always best. The choice
of what approach to use involves making a trade-off between cost and precision that is

appropriate for the application.
Judgemental approaches

Fragility curves that are based on some form of expert opinion are classified as judge-
mental. When relying on expert opinion, it is important to devise replicable and veri-
fiable procedures to elicit the opinions from experts. Fragility curves based on experts
judgement have been developed to assess the seismic vulnerability of the components of
hydroelectric facilities in Canada [79]. This study was based on the report ATC-13 from
the Applied technology Council for California [80] done with the opinion of 71 experts.
The applicability of this study depends on the modifications that must be done to fit the
seismic characteristic of eastern Canada. This subjectivity produces that the judgemen-
tal approaches are often used as a last resort because of limitations in the availability of

observational data and models.
Empirical approaches

Empirical fragility curves are based on observational data documenting the performance
of structures under a variety of loads. Observational data tend to be highly specific to
their source situations and may be sparse in the domain representing the more extreme
events, which may also tend to be the events of most interest. However, the approach
is generally limited to situations in which a sufficient quantity of data can be collected,
and lack of data is often cited as a barrier to use the approach. Empirical fragility curves
are available in the literature for bridges and buildings |76, 81]. Currently, no empirical

fragility curve is available in the literature for dams.
Analytical approaches

Analytical fragility curves are based on structural models that characterize the perfor-

mance limit state of the structure. The performance of the structure is a function of some
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vector of "basic" variables, x. These variables determine both the capacity of a structure
to withstand a load and the demand placed on the structure. Basic variables include ma-
terial properties, geometry, or dimensions; they could also include environmental variables
(such as temperature or humidity) that might in some way affect the capacity. The limit
state equation, also known as the performance function, can be expressed, in terms of

safety margin, as the difference between capacity R(x) and demand S(x):
Z = (R, S) = Rx) - S(x) (2.

However, this formulation is still not the most general, since it assumes that there are
distinct capacity and demand values. In many structural reliability problems such a dis-
tinction is not possible because they cannot be explicitly defined [82]. Thus, the general

structural reliability problem in terms of a limit-state function is defined as :

p=p(x) (2.7)

The solution space consists of three regions: p(x) < 0 is the failure domain; p(x) = 0 is

the limit state surface; and p(x) > 0 is the survival domain.
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Figure 2.6 Conceptual 2D fragility problem

Basic variables can be either random variables or deterministic variables. The probability
of failure is given by integration of a multivariate probability density function (PDF)
for the n-dimensional vector of basic random variables, fx(x), over the failure domain,
p(x) < 0:

Fragility = P;(p(x) < 0) = / . /( - fx(x)dx (2.8)
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A fragility curve is constructed by calculating the probability of failure under loads ranging
from those at which failure is highly unlikely to those at which failure is almost certain.
Analytical approaches can be decomposed into four distinct groups based on whether
the limit state function is an explicit function or an implicit function and whether the
probability of failure is obtained using analytical solution methods or numerical solution
methods. An explicit limit state function is one that could be written explicitly in terms
of basic random variables. An implicit limit state function is one that cannot be written
in closed form as a function of basic variables, but is implied through a numerical model.
Among them, the most popular used in the literature [82] are listed below,
— Analytical solution methods (explicit).
-First-order second-moment (FOSM) analysis.
-First-order reliability method (FORM).
-Second-order reliability method (SORM).
— Numerical solution methods (implicit).
-Monte Carlo simulation.
-Latin Hypercube simulation.
Numerous studies showed that fragility may be adequately described, using a log-normal
cumulative distribution function (CDF) [62] [76] [60]. Consequently the fragility is com-

monly approximated by a log-normal law with the following form,

Py(s) = Oy (m(;/N)) (2.9)

in which ®, is the standard normal CDF, p is the median capacity (expressed in units
that are dimensionally consistent with the demand parameter, s) and (3, is the standard
deviation. Other CDFs like the Normal, Weibull distribution, etc., might be used [62} [83],
as well as any form of Sigmoid function. Regarding the fitting techniques, maximum
likelihood estimator (MLE), least-squares standard and least-squares in the linear space

can be used to estimate the parameter of the fragility curves.

2.3.2 Fragility curves applied to dams

The implementation of fragility curves in the domain of dams is a relatively new practice.
The first study in the field was carried out by Tekie and Ellingwood [36] who illustrated
the methodology applied to the Bluestone Dam on the New River in West Virginia, which
was designed in the late 1930s. Four limit states, confined to structural failure modes,
were considered in the seismic fragility analyses: material failure-concrete (at the neck of

the dam), material failure-foundation (at the toe), sliding at the dam-foundation interface,
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and deflection of the top of the dam relative to the heel. Non-linear temporal dynamic
analysis were performed including the reservoir-dam-foundation interaction effects. A total
of nine uncertain parameters were defined in this study. Twelve samples of the model were
obtained using the method of LHS and were coupled with twelve historical accelerograms.
These samples were analysed for six levels of seismic intensity, by calibrating the acceler-
ation time compared to the spectral acceleration measured at the pitch period, to obtain
the fragility curves. This study reveals that in all cases the log-normal model of fragility
fit the results of the simulation very well. In the same manner, Mirzahosseinkashani and
Ghaemian [84] applied this criteria in order to illustrate seismic fragility curves for Pine
Flat Dam. A non-linear analysis of the tallest monolith of the dam was performed with
a flexible massless foundation and considering the dam-reservoir-foundation interaction.
The maximum PGA that the dam-reservoir-foundation can endure in every horizontal
earthquakes was obtained when the system reaches to 5% energy balance error based on
nonlinear dynamic time history analysis. Two limit states were considered. The first limit
state, was based on the crack length at the base and the second one based on the total area
of cracked elements in the body of dam. The log-normal distribution was used for develop-
ing the fragility curves. The seismic fragility curves illustrated in this paper demonstrate

that the occurrence of structural limit states are probable for massless foundation.

The same methodology proposed by Tekie and Ellingwood was used by Ghanaat et al. [85]
to assess the vulnerability of Miihleberg Dam in Switzerland. Thirty samples were ob-
tained with the LHS method and were simulated for eight levels of seismic intensity by
calibrating the accelerograms based on the peak acceleration at the rock. Six uncertain
parameters were considered. Dynamic non-linear temporal analyses were performed using
the computer software SAP2000 and LS-Dyna. A log-normal distribution was used to
represent results. The fragility analysis was performed first including all variables and
later including only the random uncertainty related to the earthquake. Ghanaat et al. [83]
have also studied the seismic vulnerability of a case study dam using LHS and advanced
non-linear analysis with structural failure capability considering full dam-water and dam-
foundation interaction. Sliding at the dam base and lift joints were identified as two
prominent failure modes of the dam. Random and uncertainty input variables influencing
the seismic fragility were generated using LHS and randomly selected to develop seismic
fragilities for both failure modes. Ten samples were obtained and an incremental dynamic
analysis (IDA) was conducted for each sample until reaching the limit state of damage.
The probability of failure for each random non-linear trial was calculated as a function of

the peak failure acceleration associated with the incipient sliding. The calculated results
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were used to obtain the best-fit distribution to the data. A Weibull distribution was used

to estimate the fragility curves.

Similarly, the work performed by Lupoi and Callari [38] presents a probabilistic seismic as-
sessment method able to manage the physical complexity of the dam-foundation-reservoir
system and the uncertainties regarding structural data and external actions. The method-
ology was applied to Kasho dam, a concrete gravity dam located in Japan. The seismic
response of the structure was estimated from a reduced number of dynamic time his-
tory analyses, employing a finite element discretisation of the dam-reservoir-foundation
structure. The limit states under consideration were the excessive deformation of the
dam, joints cracking recovery and concrete-rock interface slipping. A probabilistic de-
mand model was obtained by calculating the response of the dam with ten historical
accelerograms. The fragility curves were obtained via a standard Monte Carlo simulation

procedure. No probability was assumed to represent the fragility curves.

Further studies on the subject were performed by Zhong and Lin [40]. With consideration
of the persistent uncertainty in ground motion input as well as material properties of
concrete, 180 non-linear seismic analyses were performed based on which, typical seismic
damage modes were obtained. This research used samples obtained by thirty Monte Carlo
simulation and six levels of seismic intensity for determining the seismic vulnerability of
a gravity dam. Three parameters were defined as uncertain and five limit states were
defined qualitatively as a function of the intensity and cracking magnitude. In this study,

no probability distribution was used for estimating fragility.

The most recent studies belongs to Bernier et al. |20} 21], Hariri-Ardebili and Saouma [29],
Lallemant et al. [86] and Segura et al. [87]. In the two first studies |20}, 21], the methodology
is applied to the highest concrete gravity dam in Quebec. The finite element method is
used to model a single block of the dam and it takes into account the different interactions
between the dam, the reservoir and the foundation. Uncertainties in the ground motions
and modeling parameters are included, and a sampling technique is used to propagate
these sources of uncertainty. A sensitivity analysis is also performed to determine the
model parameters that have a significant influence on the seismic response of the system.
The fragility curves are developed using non-linear time-history analysis to evaluate two
limit states: sliding at the dam base and at lift-joints. In the fist paper of Bernier et
al. [20], the uncertainty related to the spatial variation of angle of friction across these
large infrastructure systems is included in the fragility analysis through the incorporation
of random fields modeling. However, the results reveal that this additional source of

uncertainty has only a slight impact on the fragility of the structural system and can be
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neglected. In the second paper of Bernier et al. [21] the same methodology is used together

with the CS method to select ground motion times series.

In the study of Hariri-Ardebili and Saouma [29], seismic fragility curves for gravity dams
with and without ground motion vertical component are explored. The structural analyses
are performed using multiple-record incremental dynamic ones. An optimal intensity
measure parameter is also selected among 37 variations, and it is determined that the
combined spectral acceleration leads to lowest dispersion. The derived fragility curves
using scaled records are compared with those from probabilistic seismic demand analysis

(un-scaled records). Results show acceptable consistency between the two methods.

In like manner, the study performed by Lallemant et al. [86] provides a synthesis of the
most commonly used methods for fitting fragility curves and highlights some of their
significant limitations. More novel methods are described for parametric fragility curve
development (generalized linear models and cumulative link models) and non-parametric
curves (generalized additive model and Gaussian kernel smoothing). It also proposes
methods for treating the uncertainty in intensity measure, a common issue with empirical
data.

Finally in the study by Segura et al. [87], a similar model of the case study dam in Bernier
et al. [20} 21] is used to develop up-to-date fragility curves for the sliding limit states of
gravity dams in Eastern Canada using a record selection method based on the generalized
conditional intensity measure approach. These fragility functions are then combined with
the recently developed regional hazard data to evaluate the annual risk, which is measured
in terms of the unconditional probability of limit state exceedance. It was observed that
the more accurate procedure proposed herein produces less conservative fragility estimates

for the case study dam.

These studies show that as far as dam safety is concerned the most reliable methods
should be implemented. Undoubtedly, one of the best methods of analysing gravity dams
is a non-linear dynamic time history analysis [76]. To minimize the cost of the non-linear
finite element analyses required to develop the fragility functions, sampling techniques
(usually referred to as variance reduction techniques) must be used. Crude MCS can
produce most accurate results, but it requires an enormous amount of computational cost
when non-linear time history analyses are involved [82]. For most fragility analyses the
pure random sampling of MCS may not be necessary, as long as distributions of the input
parameters are reproduced accurately. According to the existing studies in the literature,

LHS technique has been found to be very useful in reliability problems involving complex
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systems. Further and more exhaustive information can be found in the state of the art

review of seismic fragility applied to concrete dams by Hariri-Ardebili and Saouma [28].

2.3.3 Fragility surfaces

Earthquake shaking represents complex loading to a structure. It cannot be accurately
characterized by a single parameter such as peak ground acceleration [88]. Traditional
vulnerability assessment methods develop fragility functions by using a single parameter
to relate the level of shaking to the expected damage, which consequently produces a
robustness of predictions that is highly dependent on the selected parameter. However,
the estimation of the fragility of the system can be potentially improved by increasing the
number of parameters; in this way, a more complete description of the properties of ground
motions can be obtained [89]. Single parameter demand models and fragility curves suffer
from two potential drawbacks: (i) inability to assess the impact of structural model pa-
rameter variation on structure performance during earthquakes without costly re-analysis
for each new set of parameter combinations and (ii) lack of flexibility to incorporate field
instrumentation data from monitoring of existing structures to enable the updating of
seismic fragility estimates [90]. Furthermore, the effect of the variation of the material
properties in the seismic fragility analysis of structures with complex numerical models,
such as dams, is frequently overlooked due to the costly and time-consuming revaluation
of the numerical model. Consequently the use of multi-parameter models to predict the re-
sponse of a certain structure is beginning to be used increasingly. The goal is to identified
the role of various strong motion or structural parameters on the induced damage in the
structure using numerical calculations and vulnerability analysis. The most influential pa-
rameters are then used to build multi-variable fragility functions, in order to reduce some
of the uncertainty inherent in the response to seismic loading. Similar to fragility curves,
multivariate fragility functions offer the conditional probability of exceeding different limit
states given the occurrence of an earthquake of a certain intensity. The only difference
is that the specific limit state is characterized with n parameters py,ps...p, instead of
one parameter, as is the case with fragility curves. Hence the probability of limit state
exceedance is conditioned on the resulting set of critical parameters. The fragility function

corresponding to the limit state [ is defined as follows:
Fi(zy,29,...,2,) =Ps(LS > LS|p1 = 21, p2 = Za, ..., pp = Tp) (2.10)

where LS is the limit state damage index, and LS; is the value corresponding to the **

limit state. This results in an equation for a fragility surface, as depicted in Figure
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that offers a more complete and accurate view of the vulnerability of the structure. Such
fragility surfaces can be implemented within earthquake risk evaluation tools and they
should provide more precise damage estimations. It is expected that this procedure can

lead to more accurate planning and retrofitting policies for risk mitigation.

Pf (LS|P1;p2)

Figure 2.7 Conceptual fragility surface

While fragility curves are usually represented by well-known and readily parameteriz-
able probability distributions like the log-normal one, the problem gets more complex for
surfaces, where bivariate distributions must be computed. Follows, a description of the
fragility surfaces construction methods used in the literature and applied to seismic engi-
neering. As it will be seen, there are only a few studies where fragility surfaces have been
developed for dam-type structures, most of the available studies in the literature have been
implemented for bridges [91] and buildings [92]. Nevertheless, they can be extrapolated

to dams or any other system.
PEER methodology for demand fragility surfaces

The Pacific Earthquake Engineering Research Center (PEER) in their 2011/01 report [91],
proposed a methodology to develop demand fragility surfaces characterizing probability
of exceeding common engineering demand parameters (EDP) for bridges as a function
of the most important and useful seismic IM. The adopted approach was to utilize six
constants to fully define the demand fragility surface. The fragility functions at every
EDP value can be defined by a median, Af, a standard deviation of natural logarithms of
the data, {, and an additional scalar value representing the limiting value of cumulative
probability, pma.. Linear regression is used to define the medians, standard deviations,

and peak probabilities as functions of the EDP. Linear regression requires specification of
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a slope and an intercept value, hence two constants each are required for median, standard

deviation, and maximum probability, and the entire demand fragility surface can therefore

be defined by six constants, as shown in Eq. (2.11)—(2.13)),

Ay = Bo + B1In(edp) (2.11)
= B2+ B3 In(edp) (2.12)
Pmaz = B1+ B5In(edp) < 1 (2.13)

where (3, .. ., 05 are the linear regression coefficients. By combining Eq. (2.11)—(2.13|) with

commonly used parametric formulations for fragility curves, such as the log-normal CDF,

the probability of exceedance can be calculated using Eq. (2.14) for all EDPs;

In(im) — (Bo + B In(edp))
Ba + B3 In(edp)

P;(EDP < edp | IM = im) —OSQDN( ) (Bs + BsIn(edp)) <1

(2.14)
where @, is the standard normal cumulative distribution function, ¢m is the seismic IM
level, and edp is an engineering demand parameter level, defining an specific limit state.
Eq. provides a convenient means of specifying the entire demand fragility surface
using only six variables, where the fitted surfaces agree reasonably well with the discrete

data.
Neighbourhood method

This method is meant to be used for fragility surfaces as a function of two seismic IMs.
For two chosen strong-motion intensity parameters, a x — z space is built containing points
of coordinates (z;, z;), © and z representing the two seismic IMs. This space is associated

with the following norm, between points A(x1, z1) and B(zs, 22):

Y 215

(xmax/xmin (Zmam/zmm

To avoid bias due to differently-scaled parameters this norm is also normalized by the
amplitude of each parameter. For each point of the x — 2z space it can be defined a

neighbourhood V' of radius d, where the probability to reach or exceed the limit state [
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can be evaluated,

Vitot

where Ny, is the total population in the neighbourhood V' and Ny; denotes the number

of points for which the damage state reaches or exceeds LS;.

However, surfaces generated using this original approach present some anomalies (such as
local peaks) [92]. This observation highlights the main issue of this approach: in order to
define the neighbourhood V' of each point, a value of the radius d has to be chosen more
or less arbitrarily. Greater values of the radius d help to smooth the surface, but there is a
risk of generating a description of the fragility behaviour which might be too blurry (loss
in precision). On the contrary, to obtain a sharper image of the structure vulnerability,
it is recommended to decrease the value of d (at the expense of regularity). This method
has been satisfactory used in the development of fragility surfaces for reinforced concrete
buildings [92] [8§].

Hybrid parameter method

The hybrid parameter methodology is an improvement of the neighbourhood method,
proposed for fragility surfaces as a function of two correlated parameters, as it is the case
of seismic IMs [92]. The main idea is to generate an hybrid parameter, Q(z,z), as a
combination of the two considered fragility surface’s parameters. It is then possible to
fit the points by a well-known analytical function, depending on the variable R, hence
it is a function of the two variables x and z. If the parameter () is defined as a linear

combination of x and z and a log-normal CDF is considered, then the fragility surface can

be determined through Eq. (2.17)—(2.18)) as follows,

P(LS > LS, | IM; = z,IM; = z) = Oy (ln(Q;—_“Q) (2.17)
Q

Q(r,z) =ap+a;Inz + azln z (2.18)

where g, a; and o are linear correlation coefficients, and i and Sg are the parameters
characterizing the standard normal cumulative distribution function, ®,,. Besides a lin-
ear correlation, other formulations such as the logarithmic distance between points, has
produced fair results [92]. The methodology has been employed for generating fragility

surfaces for reinforced concrete buildings [92, 93] and for multi-span bridges [94].
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Logistic regression

It is a statistical learning model commonly used in a wide-range of applications where
predictions of a binary outcome are sought. In our case the binary outcome of interest is
the exceedance or not of the prescribed damage level. Logistic regression is the extension
of linear regression for classification problems which basic idea is to transform the linear
function output into the (0, 1) interval describing the probability Ps(p = +1 | x) [95]. The
output of a linear model can be transformed in the interval (0, 1) by passing it through a
sigmoid function. Let p denote the dependent binary variable (this is the damage indicator
variable which becomes 1 if the prescribed damage level is exceeded and 0 otherwise), the
fragility, or probability of exceedence conditioned on the seismic IM and a vector variable

x of structural parameters is

e Vi

where 1; are the coefficients of the model which must be selected in order to provide the
best fit to the available data. These coefficients can be estimated with the maximum like-
lihood estimation method, with Bayesian inference, Markov chain Monte Carlo (MCMC),
etc. Logistic regression has been widely used in the literature for the fragility assessment
with fragility curves for bridges [90, 96, 97| and ports [98] and, to a lesser extent, with
fragility surfaces [99].

2.3.4 Fragility surfaces applied to dams

As it was aforementioned, the estimation of the fragility of the system can be poten-
tially improved by increasing the number of parameters. Noted advantages of these pa-
rameterized or multivariate fragility functions include the potential for efficient posterior
uncertainty propagation, exploring sensitivities or the influence of design parameter vari-
ation, and enabling application across a portfolio of structures. Nevertheless, given the
large number of simulations required, the development of fragility surfaces or multivari-
ate fragility functions that leverage complex numerical models, such as dams, can impose
high computational burdens. Accordingly, there are not many studies in the literature
that have developed fragility surfaces for dams, and the ones that are available do not

provide a methodology or a parameterized formulation.

Hariri-Ardebili and Saouma, in their state-of-art paper [28], present an exhaustive review of
seismic fragility functions (curves and surfaces) for the vulnerability assessment of dams.

In this review, the raw data from Yao et al. [I00], where a seismic fragility analysis is
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applied to the safety evaluation of a concrete arch dam, is used to generate fragility surfaces
as a function of PGA and the EDP joint sliding and joint opening with an EDP-based
Bayesian cloud analysis [I0T]. Yao et al. [100] considered only ground motion record-
to-record variability, where the case study is a 305m high arch dam with 72 % of filled
reservoir. The dam originally included 25 vertical contraction joints; however, only 3 are
modeled using commercial finite element code with nonlinear contact models, while the
concrete is assumed to be linear elastic. Finally, the hydrodynamic pressure is modeled
using Westergaard’s added mass approach. A total of 18 ground motions are selected and
categorized in 3 groups, and no fragility functions are given. However, the seismic fragility
surfaces for joint response, developed by Hariri-Ardebili and Saouma [2§], based on raw
data from Yao et al. [I00] show that the probability of exceedance of a specific PGA is
higher for joint sliding than for opening (mostly at smaller EDP values).

Hariri-Ardebili and Saouma [30] analyzed the tallest non-overflow monolith of a 122 m high
gravity dam. 2D mesh of the dam and foundation was provided while the only source of
nonlinearity being the interface between the two. It is noteworthy that beside gravity and
hydrostatic loads, the uplift pressure is automatically adjusted in terms of crack length.
The aleatory uncertainty included by ground motion record-to-record variability only while
the epistemic uncertainty was ignored. Using the algorithm proposed by Jarayam et
al. [70], 100 ground motions were selected. Fragility curves and surfaces were derived with
the previously mentioned cloud analysis [I01], using 70 different IMs and the optimal one
was then identified. The results show that the fragility curves as a function of the spectral
acceleration at the fundamental period for joint opening and sliding at the dam-rock
interface for three different LSs: 2 mm (initiation of opening/sliding), 5 mm (propagation
of the opening/sliding), and 8 mm (near collapse condition). In all cases, joint sliding has
the highest probability of exceedance. As the LS increases, the differences between those
two fragility curves diminishes. In-so-far all the fragility curves are derived for a finite
values of the EDP (such as sliding of 3, 5 and 8 mm ). However, this was generalized for

continuous values of EDPs and a fragility surface was then generated.

Finally, Hariri-Ardebili and Saouma [28], from the data adapted from Hariri-Ardebili and
Saouma [102], generated fragility surfaces with the methodology explained before, as a
function of the crest horizontal displacement and the LS. Whereas most fragility functions
are expressed in terms of IMs (specific to a site and a structure), it is preferable to express
them in terms of EDPs. The advantage being twofolds: (i) curve is less site specific, and
more generic thus potentially applicable to other similar structures; and (ii) it ties with

the PBEE paradigm. The finite element model, similar to a previous one [30], with the
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difference that beside joint nonlinearity, concrete nonlinearity is also accounted for through
smeared crack model. Two types of ground motion combinations are considered, horizontal
only and horizontal and vertical. Furthermore, for each case two loading scenarios are
further considered, full and empty reservoirs. Finally, each one of these four cases is
subjected to 21 site-specific actual ground motions scaled by 14 seismic intensity levels to

perform an incremental dynamic analysis for collapse fragility curves.

2.4 Surrogate or meta-models

Machine Learning (ML) describes a family of methods that allow learning from data, what
relationships exist between quantities of interests [95]. The goal of learning relationships
between quantities of interests is to gain information about how a system works and to
make predictions for unobserved quantities. This new knowledge can then be employed
to support decision making. ML techniques are usually divided into two main types
supervised and unsupervised [95], the first being the one that will be address in this
document. In the predictive or supervised learning approach, the goal is to learn a mapping
from inputs x to outputs y, given a labeled set of input-output pairs D = {(x;,v:)}2;.
Here D is called the training set, and ny is the number of training examples. In the simplest
setting, each training input x; is a D-dimensional vector of numbers, representing, say,
the characteristics and configurations of the system. These are called features, attributes
or covariates. Similarly the form of the output or response variable can in principle be
anything, but most methods assume that y; is a categorical or nominal variable from some
finite set, y; € {1,...,C} (such as collapse or survival of the structure), or that y; is a
real-valued scalar (such as crack length). When y; is categorical, the problem is known as
classification or pattern recognition, and when y; is real-valued, the problem is known as

regression [103]. Throughout this section, only regression problems will be considered.

Over the last two decades, there has been an explosion in the ability of engineers to build
finite-element models to simulate how a complex structure will perform. A surrogate
model is an engineering method used when an outcome of interest cannot be easily directly
measured, so a model of the outcome is used instead [I5]. The basic idea in the surrogate
model approach is to avoid the temptation to invest computational budget in answering
the question at hand and, instead, invest in developing fast mathematical approximations
to the long running computer codes. One way of gaining this desirable increased insight
into the problems being studied is via the use of surrogate (or meta) models. Such models
seek to provide answers in the gaps between the necessarily limited analysis runs that

can be afforded with the available computing power. The simplest, and currently most




2.4. SURROGATE OR META-MODELS 41

common, use of surrogate models is to augment the results coming from a single, expensive
simulation code that needs to be run for a range of possible inputs dictated by some design
strategy (perhaps a planned series of runs or those suggested by some search process). The
basic idea is for the surrogate to act as a "curve fit" to the available data so that results
may be predicted without recourse to use of the primary source (the expensive simulation
code). The approach is based on the assumption that, once built, the meta-model will
be many orders of magnitude faster than the primary source while still being usefully

accurate when predicting away from known data points.

To reduce the computational expense, surrogate models have been employed in structural
reliability problems to approximate the response of structures with complex finite element
models, or to estimate the limit state function using an approximating function. The
meta-model can be described by,

y=g(x)+v (2.20)

where the surrogate model g(x) statistically predicts the response of the structure, y, for
a given set of covariates including intensity measures and model parameters, x, and v is
the error due to the lack of fit of the surrogate model. The scientific challenge of surrogate
modeling is the generation of a meta-model that is as accurate as possible, using as few
simulation evaluations as possible [104]. The process comprises three major steps which

may be interleaved iteratively:

— Sample selection (also known as sequential design, optimal experimental design or
active learning).

— Construction of the surrogate model and optimizing the model parameters (bias-
variance trade-off).

— Appraisal of the accuracy of the surrogate.

The accuracy of the surrogate depends on the number and location of samples (expensive
experiments or simulations) in the design space. Various design of experiments (DOE)
techniques cater to different sources of errors, in particular errors due to noise in the data

or errors due to an improper surrogate model.

2.4.1 Regression techniques

The following subsections provide a brief overview of the different regression techniques
for their ability to offer viable meta-models of the seismic response of dams. Only the
most relevant features of each technique will be presented given that exhaustive mathe-

matical formulation can be found in the literature. Description of polynomial response
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surface (PRS), adaptive basis function construction (ABFC), multivariate adaptive regres-
sive splines (MARS), radial basis functions (RBF), support vector machine for regression
(SVMR) and random forest for regression (RFR) techniques and their applications in the

literature can be found in section £.2.2
Polynomial chaos expansions - PCE

Polynomial chaos expansions have been introduced in the literature on stochastic mechan-
ics in the early 90’s by Ghanem and Spanos [I05]. In the original setting, a boundary
value problem is considered in which some parameters are modeled by random fields. The
quantities of interest are the resulting stochastic displacement and stress fields. Thus the
use of PCE has been intimately associated with spatial variability and considered as a

separate topic with respect to structural reliability for a while.

Polynomial chaos expansions can be considered as an intrinsic representation of a random
variable that is defined as a function of the input random vector x. In the context of
structural reliability the limit state function leads to define the random margin M(x).
The probability of failure is then defined by P;(M(x) < 0). Assuming that this variable
has a finite variance and that the input parameters in x are independent, the following

representation holds [106],

M(x) = g(x) =D ag¥a(x) (2.21)

where W, (x) are multivariate orthonormal polynomials in the input variables and a, are
coefficients to be computed. Since the component of x are independent, the joint PDF
is the product of the marginal. Considering the expansion in itself as a meta-model that
is suitable for reliability analysis has been originally explored by Sudret and Der Ki-
ureghian [I07]. Later on, the use of PCE has started to be progressively used with the
emergence of so-called non intrusive methods. More specifically the regression approach
has been developed and applied to reliability analysis in Berveiller et al. [108, [109] and Choi
et al. [I10], among others. Further details and a much more comprehensive formulation
can be found in [IT1), 112} 106].

Gaussian process - GP

Rather than claiming g(x) relates to some specific models, it can represent obliquely, but
rigorously, by letting the data "speak" more clearly for themselves [113| with a Gaussian
process (GP) approach. This technique is still a form of supervised learning, but the

training data are harnessed in a subtler way. As such, GP is a less parametric tool. How-
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ever, it is not completely free-form, and if it is unwilling to make even basic assumptions
about ¢g(x) then more general techniques should be considered. Gaussian process regres-
sion works by describing the prior knowledge of a system’s response over its covariate
domain using a joint multivariate normal probability density function. Then it employs
the properties of the multivariate Normal in order to update the prior using empirical

observations [95].

A GP is a generalization of the Gaussian probability distribution. Whereas a probabil-
ity distribution describes random variables which are scalars or vectors (for multivariate
distributions), a stochastic process governs the properties of functions. A GP assumes
that p(g(x1),...,9(xxn)) is jointly Gaussian, with some mean m = m(x) and covariance
3 (x) = k(x;,x;), where k is a positive definite kernel function. The key idea is that if x;
and x; are deemed by the kernel to be similar, then we expect the output of the function
at those points to be similar, too. One of the main attractions of the Gaussian process
framework is precisely that it unites a sophisticated and consistent view with computa-
tional tractability [114]. In supervised learning, some inputs x; and some outputs y; are
observed. It is assumed that y; = g(x;), for some unknown function g, possibly corrupted
by noise. The optimal approach is to infer a distribution over functions given the data,

p(g | X,y), and then to use this to make predictions, ., given new inputs, x,, as shown

in Figure 2.8
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Figure 2.8 Gaussian process model prediction: (a) training data generation,
(b) prediction point (c) estimation of y, as a Gaussian distribution and (d)
prediction error bars
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Let the prior on the regression function be a GP, denoted by:

9(xi) ~ GP(m(x;), k(x;, X;)) (2.22)
For any finite set of points, this process defines a joint Gaussian:

p(g | X) ~N(g|m,X) (2.23)

This GP will be used as a prior for Bayesian inference and one of the primary goals
computing the posterior is that it can be used to make predictions for unseen test cases.

Let g be the known function values of the training cases, and let g, be a set of function
values corresponding to the test set inputs, x,.

R )

where m = m(x;),7 = 1, ..., n for the training means and analogously for the test means ji,;

> X,
)N Y

)

for the covariance we use X for training set covariances, 3, for training-test set covariances
and X, for test set covariances. Since the values for the training set g are know, the

conditional distribution of g, given g can be expressed as:

G|l f~Nm, +3/2(g—m), %, -Z]/27'%) (2.24)

The predictive performance of GPs depends exclusively on the suitability of the chosen
kernel [114, 113} 103}, 05]. In other words, in order for the GP techniques to be of value in
practice, we must be able to choose between different mean and covariance functions in
the light of the data.

Neuronal networks - NN

Only the feedforward architecture for neuronal networks will be addressed in this section
for its simplicity. In feedforward NN the information is transferred from the input layer
to the output layer by propagating it into layers of hidden variables. The idea is to
approximate complex functions by a succession of simple linear combinations of hidden

variables organized in layers [05]. Linear regression can be employed to introduce the
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concepts surrounding feedforward neural networks, according to Eq.(2.25)):
z=b+ Z w;X; (2.25)
i=1

where the covariates x are associated with a single observed system response y = z + v,
where z represents a hidden variable defined by the linear combination of covariate values

using weights, w;, and one bias parameters, b, and v is the model error.

Neural networks became extremely popular in the period from 1980 until the mid 1990’
when they became overshadowed by other emerging methods. It is not until the mid
2000’ that with the appellation of deep learning, they took again the leading role in the
development of machine learning methods. In deep learning, the label deep refers to the
great number of layers of hidden variables in the model. One limitation is that in order to
achieve the exceptional performance it is renown for, deep learning requires large datasets
containing from thousands to millions of labeled examples for covariates x; and the system

responses y; [95].

2.4.2 Meta-models in the structural engineering domain

The combination of numerical models, probabilistic approaches and machine learning has
gained considerable interest in the literature in recent years for engineering design and
structural reliability [L06) 115, 116]. This combination is justified by the significant ran-
domness that characterizes not only the earthquake excitation but also the structural
system itself (e.g., stochastic variations in the material properties, degradation due to

aging and temperature fluctuation, etc.)

Two approaches so far are found in the literature. In the first one the basic premise of
applying statistical learning techniques to provide meta-models is to replace the "true"
seismic demand estimates with computationally efficient approximating functions. After
a discrete surrogate model is employed for the failed /safe classification of the structure
according to the damage limit states of the fragility analysis. This is the case of the work
done by Gosh et al. [90], where a surrogate model demand was developed to approximate
the relationship between the seismic response (peak seismic response of a bridge com-
ponent) and a vector including ground motion intensity measures and parameters of the
system. Lastly, logistic regression was employed to develop parametrized fragility models.
This methodology is also used by Ataei and Padgett [97] and Balomenos and Padgett [98)]

in their research for coastal bridges under extreme load conditions caused by hurricanes
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and wharf/pier structures in port facilities that are subjected to hurricane-induced storm

surge and wave loading, respectively.

In the second approach, an acknowledged alternative for using meta-modeling in fragility
analysis is applied. It consist in constructing meta-models for a continuous response
parameter of the structure, where the response meta-models are themselves compared to
capacity estimates for reliability computation. Typically, polynomial approximation has
been employed to find the predictive models of structural behaviour used in structural
reliability studies; these parametric models are known as response surfaces. However,
this type of model is inherently limited by the properties of the polynomial function
and its transformations. Hence, polynomial meta-models may not accurately represent
the portion of the design space that is of interest to the engineer. Nevertheless, this
approach is still considered owing to its simplicity and the fact that past studies have
shown them to be efficient and accurate for assessing seismic performance of other complex
structures [90], 117, [96], TT8].

Non-polynomial-based meta-models, such as GP, that have the capability of accurately
modeling large portions of highly non-linear and non-monotonic design spaces while re-
taining the highly desired capability of fast execution, are increasingly being used. Not
only because of its predictive capabilities but also because an estimate of the accuracy of
the GP surrogate model is always available as a natural by-product of the underlying GP
mathematics. This method has been used mostly in the structural dynamics domain as
an emulator tool [1T9] 120, 1211 [122].

Surrogate modeling techniques within a seismic fragility framework have found recent
applications for the safety assessment of buildings and bridges, among other structures
[123] 118, 96, 00, 117, 124]. Even though many of these studies considered several seismic
intensity measures, model parameters and geometric uncertainties for building the meta-
models to predict the response of the structure, most of them do not clearly depict the
influence of all the considered parameters in the form of multivariate fragility functions

from the respective meta-models.

2.4.3 Surrogate models applied to dams

The research in this field is very limited and there is a gap between all the theoretical
aspects and the real world dam engineering applications. Gaspar et al. [125] proposed
a probabilistic thermal model to propagate uncertainties on some roller-compacted con-

crete’s (RCC) physical properties. A thermo-chemo-mechanical model was then used to
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describe the RCC behavior. Moreover, the global sensitivity analysis was performed to
evaluate the impact of random variables. Mata et al. [126] proposed a method based on
linear discriminant models for the construction of decision rules for the early detection
of developing failure scenarios. They developed a single classification index by combining

the physical measured quantities.

An extensive comparison between machine-learning data-based predictive models for mon-
itoring the dam behavior can be found in Salazar et al. [127, 128]. In their study it is
discussed and contrasted some of the machine learning based predictive models for dam
safety assessment, i.e., random forests, boosted regression trees (BRT), neural network,
support vector machine, and multivariate adaptive regression splines. The prediction ac-
curacy in each case was compared with the conventional statistical model and BRT models
stood out as the most accurate overall, followed by NN and RFR. It was also observed
that the model fit can be improved by removing the records of the first years of dam

functioning from the training set.

More recently, Hariri-Ardebili and Pourkamali-Anaraki [129, [130] and Hariri-Ardebili [I31]
have used machine learning techniques to perform reliability analysis applied to grav-
ity dams against flooding, earthquakes and aging, considering, in some cases, explicit
limit state functions and simplified FEM in others. In Hariri-Ardebili and Pourkamali-
Anaraki [129], SVM method is adopted and applications for a simplified flood reliability
assessment of gravity dams and for nonlinear seismic finite element method based analysis
are presented. Up to seventeen random variables are considered in the example and the
results of SVM are contrasted with classical reliability analyses techniques. Two examples
are studied in this paper. The first one is a gravity dam analyzed analytically based on
the limit equilibrium method (LEM) approach. In the second example, the finite element
model of a gravity dam-foundation system is analyzed. Similarly, Hariri-Ardebili and
Pourkamali-Anaraki [I30] presented a simplified reliability framework for gravity dams
subjected to flooding, earthquakes, and aging. Response of the dam is analyzed with
explicit limit state functions. The probability of failure is directly computed by either
classical Monte Carlo simulation or the refined importance sampling technique. Three
classification machine learning techniques (i.e., K-nearest neighbor, SVM, and naive Bayes
classifier) are adopted for binary classification of the structural results. Results are then
generalized for different dam classes (based on the height-to-width ratio), various water
levels, earthquake intensity, degradation rate, and cross-correlation between the random
variables. Hariri-Ardebili [I31], investigated the potential application of DOE in order

to develop appropriate response surface meta-models and present an explicit expression
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of dam response. More than ten DOE techniques are compared and contrasted and the
accuracy of meta-models is evaluated using finite element simulations from crude MCS.
The impact of polynomial degree is studied for an actual gravity dam with five random

variables. Pine Flat gravity dam is selected as case study.

ML techniques have also found their application in structural health monitoring (SHM) for
dams. Nguyen and Goulet [132] proposed an anomaly detection method that combines the
existing Bayesian Dynamic Linear Models framework with the Switching Kalman Filter
theory. The approach operates in a semi-supervised setup where normal and abnormal
state labels are not required to train the model. The potential of the new method is
illustrated on the displacement data recorded on a dam in Canada. The results show
that the approach succeeded in identifying the anomaly caused by refection work, without

triggering any false alarm.

Most of the studies that can be found in the literature on the seismic assessment of dams
via machine learning techniques are limited to the consideration of a few meta-models
in the context of a single study, simplified finite element models and univariate fragility
functions. Consequently, they do not inquire in the most suitable meta-model for fragility
analysis of this type of structure, nor they explicitly assess the influence of the variation

of the model parameters on the seismic fragility analysis.




CHAPTER 3
METHODOLOGY

The main objective of this chapter is to present the case study dam to illustrate the
methodology for modeling and characterization of the uncertainties associated with this
type of structure to perform a seismic fragility analysis from the meta-models. Accordingly,
this chapter includes: (i) the development and validation of a nonlinear finite element
model of a dam-type structure, taking into account the soil-fluid-structure interaction and
the characterization of the uncertainty sources and material properties; (ii) the procedure
to conduct a PSHA and the ground motion record selection algorithm; (iii) the meta-
model generation, training, comparison and validation process and (iv) the fragility point

estimate generation and parameterized fragility surfaces fitting.

3.1 Case study dam modeling and characterization

The dam-reservoir-foundation (DRF) system studied was modeled with the finite element
method following the recommendations of the United States Bureau of Reclamation [37,
133]. The model take into account the different interactions between the structure, the
reservoir and the foundation. The model meshing was carried out using the computer
software ANSYS-ICEM [134] while the computer software LS-Dyna [I35] was used for
modeling and analyzing the system considering as guidelines mostly the work done by
Depolo et al. [136], Bernier et al. [20] and Noble [42].

3.1.1 DRF Finite element model

The numerical model must adequately represent dynamic behavior to minimize the epis-
temic uncertainties related to the modeling assumptions. Figure presents the main
features of the finite element model. To reduce the computational burden, an explicit
integration method with single-point-of-integration hexahedral elements was used to esti-

mate the seismic response of the dam.

Due to the presence of contraction joints, the interaction between the blocks of the dam
is not significant enough to justify the realization of a complex 3D model. Thus, only one
block is modeled with 3720 elements and a linear elastic material to model the concrete

behavior. The non-linearities are introduced later on in the model in the form of contact
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: tiebreak contact with
failure criterion

fluid elements

tied contact

Non-reflecting boundary

Non-reflecting boundary

Non-reflecting boundary

Figure 3.1 Dam-reservoir-foundation LS-Dyna model

surfaces between the dam system components. Some elements such as drainage galleries
are not taken into account since their influences on the global behavior of the structure

are not significant.

Part of the foundation is modeled to account for its inertia, flexibility and damping given
that the structure-foundation interaction elongates the periods of vibration and provides
an additional energy dissipation mechanism. The extent of the foundation is defined
as a function of the block height H (78 m) [37]. Its length in the upstream-downstream
direction is 545 m (6H), and its depth is 165m (2H). The foundation mesh element sizes are,
in general, controlled by seismic requirements. Consequently, the maximum element size
depends on the foundation material properties and on the frequencies of the structure [37].
There should be no fewer than 10 elements per wavelength, and every attempt should be

made to maintain uniform elements. The wavelength of interest is given by:

\/ Erock
w, = 2(]- + Vrock)prock (31)
Jo

where w, is the wave length, F,ock, Vrock, Prock are the modulus of elasticity, the Pois-

son coefficient and the density of the foundation, respectively, and fy is the fundamen-
tal frequency of the structure-reservoir-foundation system. Considering from preliminary
analysis that the system’s fundamental frequency is approximately 10 Hz, the maximum
foundation element dimension is fixed at 25m. To limit the number of elements in the
model, the foundation width is identical to that of the block, and the size of the elements
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is progressively increased, as shown in Figure 3.1 The final model of the foundation

comprises 9636 elements.

To account for the interaction between the reservoir and the structure, part of the reservoir
is modeled with fluid elements having the physical properties of water. The reservoir
is modeled with the same length as the foundation, has a constant depth of 76 m and
possesses 7488 elements. The compressibility of water is considered in order to adequately
model the propagation of pressure waves in the reservoir, whereas the viscous effect is
neglected since it had no influence in the fluid-structure interaction. The elements must
be sufficiently small (< 15m) to ensure the adequate transmission of the soil movement
through the water [37]. This condition is widely respected in the present model since the
maximum dimension of a reservoir element remains less than 3m. The elements of the
reservoir are modeled using a Lagrangian formulation and NULL material in LS-Dyna
that has no shear stiffness and no yield strength and behaves in a fluid-like manner. The
NULL material is associated with an equation of state, and as recommended by Noble [42],

a linear polynomial relation is used, where the pressure P applied to one element is given

by:
P=K (p—w - 1) (3.2)
pw,O

where K is the water bulk modulus equal to 2.18 GPa, p,, is the water density at time ¢

during the analysis and p,, ¢ is the initial water density.
Boundary conditions and contact interfaces

In this study, as recommended by several studies [136] 37] and detailed below, the loads are
applied in two phases: a dynamic relaxation phase for static loads and a dynamic phase
for the seismic loads. The boundary conditions are different depending on the loading
phase. During the dynamic relaxation phase, a symmetric boundary condition is applied
in the bottom and downstream-upstream faces, where the normal displacements are zero
to simulate the constraints of the model in the space. In the dynamic phase, symmetric
boundary conditions are removed, and the reactions obtained from the dynamic relaxation
phase are also applied on the boundary faces for equilibrium. Additionally, non-reflective
boundaries are added on the bottom, downstream and upstream faces of the model to take
into account the radiation damping and to dissipate the energy trapped in the foundation
due to the finite length of the model, i.e., to simulate a semi-infinite behavior. In addition,
horizontal and vertical displacements are restricted at the bottom edges of the foundation

to prevent rigid body movements of the model during dynamic analyses.
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Regarding the contact surfaces between the different components of the system, sliding
contact with zero friction was used to model the concrete-reservoir interface. For the
reservoir-foundation interface, tied contact was applied, except near the upstream face
of the block, where sliding contact with zero friction was used to maintain the reservoir
load during the sliding of the block. Preliminary linear analyses, detailed further below,
identified the block-foundation interface at the base of the block as high tensile stresses
areas and, therefore, where cracking and sliding are likely to occur. Consequently, the
model nonlinearity was constrained to this areas only, using tiebreak contact elements
with a tension-shear failure criterion. The finite element code assumes the contact surface

is broken when the following criterion is satisfied:

(55

where o, and o, are the normal and shear stress, respectively, o, is the tensile strength and
o, is the cohesion. As long as the failure criterion is not reached, the tensile-compressive
and shear stresses are transmitted at the contact level. If the normal stress is in compres-
sion, the first term of Eq. is not considered, and only cohesion is taken into account.
In addition, no resistance is mobilized by friction before breaking the contact. Once the

failure criterion is reached, only the friction contributes to the resistance of the contact.
Damping and hourglassing Control

Energy dissipation within a complex dam-reservoir-foundation model may occur from a
number of mechanisms. One major source is the use of non-reflecting boundary conditions;
otherwise, too much energy could be trapped within the foundation domain. Another
energy dissipation mechanism comes from the interaction of the dam with the reservoir
through the generation of elastic waves in the reservoir. This phenomenon is known
as radiation damping, which is considered in the model by also using a non-reflecting
boundary condition in the upstream face of the reservoir. Regarding the block structure,
to consider structural damping and potential nonlinear behavior, a viscous damping is
associated with the concrete material. For the foundation, and as recommended by the

USBR [37], a viscous damping of £ = 5% was also associated with the rock material.

The largest disadvantage of single-point integration elements is the need to control the
zero energy modes that can arise, known as hourglassing modes [54]. The hourglass
control method used in this study is the stiffness method, where a small elastic stiffness
capable of stopping the formation of the anomalous modes but having a negligible effect

on the stable global modes is added to the model. The hourglass modes control methods
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must be calibrated so that the energy associated with these modes remains less than
10 % of the internal energy of the system and optimally less than 5% [I33]. By setting
the hourglassing parameters according to the recommendations of the USBR [133] in LS-
Dyna, these parasitic modes are eliminated from the model, and the hourglassing energy

criterion is always respected.
Calibration of the numerical model

To evaluate the accuracy of the FEM, the dynamic properties of the DRF system were
compared to the results obtained from in-situ dynamic experimental results. Details on
dynamic testing and treatment of results are available in Proulx and Paultre [22]. The
validation of the dynamic characteristics were based on the fundamental period of the sys-
tem and global damping. Because of the type of element used to model the reservoir in the
LS-Dyna model, a modal analysis cannot be performed; therefore, a free vibration test is
simulated to estimate the fundamental period and the damping of the system. Considering
gravity loads only, a force is applied at the crest of the block in the upstream-downstream
direction and then suddenly withdrawn. The recorded horizontal displacement time series
of a node at the crest of the block is then used to estimate the fundamental period of

the system through its Fourier spectrum. The global damping is approximated using the

I ln( tn ) (3.4)

2mm Uptm

logarithmic decrement:

where wu,, is the displacement measured at a given time and u,,, is the displacement
measured m cycles later. The damping was calculated as the average value using the first

representative peak (peak n) and m numbers of cycles afterward.

With the material properties presented in Table [3.1], a fundamental frequency of 4.0 Hz is
obtained and compared to the frequency of 4.85 Hz measured by Proulx and Paultre [22]
during in situ test. The 20 % difference with the experimental value is explained by the
fact that only the highest block of the dam is modeled. Further details in the calibration
of the FEM can be found in Bernier et al. [20].

Static and dynamic loads

The loads considered in this study are summarized in Table [3.2] Loads resulting from ice
thrust, sediment deposit and thermal gradient are neglected, considering they would not
affect the overall behavior of the system under seismic actions. Only one loading case is
considered to analyze the seismic response of the case study structure, which includes the

self-weight of the block, the hydrostatic and hydrodynamic loads exerted by the reservoir
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Table 3.1 Material properties - calibrated model

Parameter Concrete Foundation Water
Density (kg/m?) 2400 2700 1000
Modulus of elasticity (GPa) 32.0 75.0 0.7 x 1073
Bulk modulus (GPa) - - 2.18
Poisson coefficient 0.2 0.33 0.49995
Damping (%) 1.5 5.0 -

on the block, the uplift pressures at the concrete-rock contact and the horizontal and

vertical seismic loads.

Table 3.2 Load conditions

Load Details
Self—welght Pconcrete = 2400kg/m3
Reservoir weight Reservoir level = MOL

Upstream hydrostatic thrust  Reservoir level = MOL
Concrete-rock contact

Uplift Reservoir level = MOL

Drain efficiency: between 0% and 67 %
Automatic with fluid elements
Reservoir level = MOL

Horizontal seismic load Representative GMTS

Vertical seismic load Representative GMTS

Hydrodynamic load

MOL: Maximum operating level.

The weight of the block is integrated in all the analyses, and it is determined directly
by LS-Dyna as well as the reservoir and the hydrostatic load. For all the analyses, the
maximum operating level (MOL) of the reservoir is considered, i.e., a constant reservoir
elevation of 76 m with respect to the foundation. Even if the foundation is associated with
a mass, its self-weight is not taken into account in the application of gravity loads to avoid
settlement during the analysis. Concerning the uplift loads, they are only applied at the
concrete-rock contact, and they are calculated at each node of the structure base according
to the prescribed expressions by the USACE [I37]. The dynamic loads considered in the
analysis comprise the seismic load in the horizontal (upstream-downstream) and vertical
direction. In addition, the model of the reservoir with fluid elements makes it possible to
automatically take into account the hydrodynamic thrust due to the seismic shocks. The
dynamic effects on the uplift distribution are neglected, assuming that the uplift profile

remains constant during seismic loading [137), 37].
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Application of static and dynamic loads

The application of gravity and static loads in an explicit analysis can produce unexpected
results if the load is applied too quickly because the solution may diverge. To avoid
this problem, as previously mentioned, the static loads are applied during a dynamic
relaxation phase, and the seismic loads are applied in a dynamic analysis phase. The
dynamic relaxation then reduces the nodal velocity at each time step, which is equivalent
to a highly damped dynamic analysis [54]. Within the context of this study, the application
of the gravity and statics loads takes a total duration of 8s. The self-weight of the dam is
applied progressively from 0—4 s, whereas the weight of the reservoir and uplift pressures
are applied gradually, after the self-weight, between 4-8s. At the end of the dynamic
relaxation phase, the reaction forces at each node that belong to the foundation faces were

recorded to be used in the next phase to maintain a quasi-static state of the model.

Given the presence of an absorbing boundary condition during the dynamic phase, seismic
loading cannot be applied at the foundation base in the form of accelerograms [37], and

it needs to be applied as a stress time series using the following expressions:

Eroc
O = 2prockUH k (35)
Qprock(l + VTOCk)
E’rock(]- - V'rock)
= 20r0ck¥ 3.6
v Prock V\/ Tock(l + Vrock)<1 — 2Vrock) ( )

where oy is the horizontal stress time series, procx is the foundation density, vy is the
horizontal ground velocity (obtained by integration of the horizontal acceleration), oy is
the vertical stress time series, vy is the vertical ground velocity (obtained by integration of
the vertical acceleration) and E,,cx and v, are the modulus of elasticity and the Poisson

coefficient of the foundation, respectively.
Deconvolution of the ground motions

Given that the foundation mass and inertia effect are considered in the analysis, ground
motions need to be deconvolved. Deconvolution methods allow for the adjustment of the
amplitude and frequency contents of a seismic ground motion applied at the base of the
foundation to achieve the desired target acceleration time series at the structure-foundation
interface. Following the method proposed by Sooch and Bagchi [57] and presented in
Figure [3.2] the ground motion is initially applied at the base of the foundation (IH), and

it is assumed to be the same as the free-field ground acceleration (TH). The acceleration
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time series at the top surface (OH) (i.e., block-foundation interface) is then estimated by
solving the wave propagation problem using the finite element model. This estimated or
reproduced ground motion at a reference point on the block-foundation interface (FO)
is then compared to the original free-field ground motion (FT) after transforming both
signals into the frequency domain using Fourier analyses. The synthesized and free-field
signals at the top of the foundation are then compared in the frequency domain, and a
correction factor for each frequency is computed (CF). The modified ground motion (FMI)
is then transformed back into the time domain (MIH), and the wave propagation analysis
for the foundation system is repeated iteratively with the modified ground motion applied
at the base of the foundation. This procedure is repeated until the difference between the
spectra of the output (MOH) and the target ground motion (TH) is less than 5 % over the
range of periods of interest (0.277 — 273) and 10 % elsewhere. As shown in Figure [3.3] the
comparison of the acceleration response spectra further confirms the effectiveness of the

deconvolution.

Target Fourier
transform FT(f)

Target accelerogram
TH(t)

Apply H(t) at the base of

the foundation

Input Fourier
transform FI(f)

Input accelerogram
TH(t)

Compute the acceleration

at the top of foundation

Output Fourier
transform FO(f)

Output accelerogram
OH(t)

Modified TH(t)
Modified input Fourier transform
accelerogram MIH(t)

FMI(f)=CF (f)FI(f)

Compute the acceleration

at the top of foundation

Output accelerogram
after deconvolution MOH(t)

Figure 3.2 Deconvolution methodology
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Figure 3.3 Comparison between response spectrum (before and after decon-
volution)

3.1.2 Uncertainty modeling

Each parameter of the analysis is defined either as a fixed value or as a random variable
associated with a probability density function. The preliminary analyses carried out in the
finite element model showed that some parameters (e.g., concrete damping) will have to
be defined as random variables to take into account the uncertainty about the estimated
value. The lack of knowledge relative to the parameters quantifying the resistance of
the structure, loading conditions and seismic input are considered in this study. All
the parameters considered as random variables and their associated PDFs are listed in
Table [4.3] while all the material properties considered constant throughout the analysis
are summarized in Table [B.1], except for concrete damping. The modulus of elasticity
of concrete and rock are not considered as uncertain variables since these values were
determined during the calibration of the numerical model. All other modeling parameters
not listed are kept constant using their best estimate. The 8 uncertain parameters listed
in Table were sampled using Latin hypercube sampling to generate ny = 250 model
samples to train the meta-models and to propagate sources of uncertainty in the fragility
analysis. LHS sampling method was chosen because of its ability to efficiently generate
representative samples by dividing the range of possible values for each variable into N
equiprobable intervals. Since no material investigations are available for the case study
dam, the probability distributions of material properties are defined from the literature

and empirical data of similar dams. The uniform distribution is used for all parameters,
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except damping, since it is the maximum entropy probability distribution when data is

limited to an upper and lower bound.
Concrete damping

The concrete damping is difficult to estimate, especially since the possible cracking of
the structure under the effect of the seismic load will cause additional energy dissipation.
Given that the concrete is associated with an elastic linear behavior in the numerical
model, the increase in damping with cracking is not automatically taken into account.
The average damping should therefore be increased with respect to the 1.5 % value that
is obtained from an experimental test for relatively small vibrations [22]. As proposed by
Ghanaat et al. [85], for the concrete damping, a log-normal distribution with a median of
5% and a standard deviation of 0.35 was adopted. Taking into account these values, the

total system damping remains under 7 % [138].
Shear and tensile strength

In the absence of sufficient data, a uniform PDF was also used to describe the parameters
characterizing the shear and the tensile strength. For determining the shear and tensile
strength parameters at the rock-concrete and concrete-concrete contact and based on the
construction plan of the dam, the foundation rock at the dam site was determined to
be composed of diorite, gneiss and granite. The maximum and minimum values for the
cohesion and the angle of friction were estimated from literature test results for the same

type of rock foundation and concrte properties [139, [7].
Drain efficiency

The efficiency of the drainage system is defined by the proportion of the flow that can be
captured by this system to reduce the hydraulic load. To account for the uncertainties in
the uplift pressures, the drain efficiency is defined as a random variable with a uniform
PDF. The USBR [37] recommends limiting the effectiveness of the drains to 67 %. Conse-
quently, the efficiency of the drain system was sampled considering values between 0 and

67 % to include also the undrained case.

3.2 Characterization of the seismic scenario

Classical PSHA allows calculating the probabilities of exceeding, at least once in a given
time span, and at a given site, a set of ground motion parameter levels considering all

possible earthquake ruptures defined in a seismic source model. Such a list of probability
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values is usually referred to as hazard curve. P;(IM > im | t) indicates the probability
that a ground-motion parameter, IM, exceeds at least once in a time span t, a level im.

To calculate the frequency of exceedence three major elements are needed:

1. Characterisation of seismic sources.
2. Characterisation of attenuation of ground motion or ground motion models (GMM).

3. Calculation of probabilities

Regarding the definition of the source model, according the Open file 7576 [140] produced
by the Geological Survey of Canada (GSC), the 5th generation model comprises four
components; one for each quadrant of Canada. The subdivision of the national model
into four components was necessary to reduce computation time. These four components
each comprise multiple weighted sub-models. The sub-models are implemented with the
following weighting:
— The northwestern and southwestern models comprise a single sub-model, weighted
at 1.0;
— The northeastern model comprises two sub-models: Historical (H2) weighted at 0.6
and Regional (R2) weighted at 0.4;
— The southeastern model comprises three sub-models: H2 weighted at 0.4, Hybrid
(HY) weighted at 0.4 and R2 weighted at 0.2.
Concerning the characterization of GMM, they are provided in the form of look-up tables
(based on Atkinson and Adams [67]) to be used with the respective sources. The tables
have also been modified to provide hazard values directly in terms of Soil Class C (V530 =
450m/s), which is the reference ground condition for NBCC 2015 [65].

The calculation of probabilities to obtain the hazard curve and the disaggregation results
at the dam site were performed with the open source software OpenQuake [141]. Further
details with respect on the methodology for the characterization of the seismic scenario

are given in section [4.3.1]

3.2.1 Ground motion selection method

The results of the PSHA were included in a ground motion selection method to define a
representative suite of GMTS likely to occur at the dam site. Moreover it was intended
to include in the selection method all relevant seismic IMs for the fragility analysis. As a
result the GCIM procedure [74] was chosen to compute the target distribution of the IMs
to select ground motion records. Additional explanation is given in section [£.4.2]
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3.2.2 Selection procedure

The major steps of the proposed ground motion selection process are based on the work
done by Baker and Lee [71] and they are illustrated in Figure 3.4, The process starts
by specifying a target response spectrum. Formally, the target mean values of spectral
acceleration and the covariance matrix are specified. Eq. and Eq. were used to
compute the target distribution with the GCIM method. The next step is to statistically
simulate realizations of response spectra from the target distribution. This is done by
sampling from a multivariate log-normal distribution with the target mean and covariance
matrices. Since this simulation step is extremely fast, it is performed multiple times and
the set of simulations best matching the target spectrum is utilized for the following steps.
Next is the specification of candidate ground motions to select from. Relevant meta-data
from a candidate ground motion database is loaded, including horizontal and vertical
spectral acceleration values, PGA, PGV and rupture parameters for each ground motion.
Once the database meta-data has been loaded, a pre-screening must be performed so that
only appropriate ground motions are considered for selection. The pre-screening considers
appropriate values of earthquake magnitude, source-to-site distance, and V' 530. These so-
called causal parameters are important to screen in order to assure that the considered time
series are reasonably consistent with the conditions of interest in ground motion selection,
but they should not be screened so aggressively that an insufficient number of candidate
motions remain for the next stage of selection [142]. The following step involves selecting
a suite of ground motions from the database that best match the conditional mean and
standard deviation of the statistically simulated spectra. The selected suite of motions is
evaluated to see whether it is sufficiently close to the target distribution. The maximum
percentage mismatch of the mean and standard deviation of the selected motions’ spectra,
relative to their targets are calculated. If the errors are too large, then a finite number of
optimization rounds are performed to further improve the selection. Finally, the greedy
optimization involves further optimizing the initial selection if needed. At this stage, the
selected set of ground motions are modified by replacing individual ground motions from
the set with available motions from the screened database and seeing whether the set is

improved in its match to the target response spectrum.

3.3 Regression meta-models generation

Following traditional strategies specific for computer simulations [I03], in this project
meta-models were developed for approximating the seismic response of the dam using the

three steps outlined in Figure [5.1} The subsequent sections will detail such steps.
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Figure 3.4 Ground motion record selection procedure

3.3.1 Experimental design matrix

Latin Hypercube design of experiments has been widely adopted for deterministic com-
puter experiments [I31], wherein a particular combination of dam modeling parameters
coupled with a ground motion record will yield the seismic response. The Latin Hyper-
cube design divides the desired range for each element within the parameter vector p into
ny intervals of equal marginal probability 1/n; and then selects a sample once from each
interval. The selected ny samples for the first factor (p;) are combined with the ny sam-
ples of the second factor (py), and subsequent factors (ps...p,) such that it maximizes
the minimum distance between the design points. Each row of this Latin Hypercube ex-
perimental design matrix, X is then paired with a suite of ground motions with varying

intensity measures. Hence, the dimensions of the original Latin Hypercube experimen-
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tal design matrix are m x ny. Besides the model parameters of Table .3 the seismic
IMs listed in Table were considered in the experimental design matrix. Given that
250 GMTS were selected, the original dimensions of the experimental design matrix were
X[19 x 250] to which mathematical transformations (natural logarithm, exponential form,
etc.) and parameter product combinations were added.

Table 3.3 Seismic IMs considered in the experi-
mental design matrix

Seismic intensity parameters

Sag(Ty) spectral acceleration at the T3
Svy(Ty) spectral velocity at the Ty
PGA peak ground acceleration
PGV peak ground velocity

PGD peak ground displacement

SI spectrum intensity

Wegk earthquake angular frequency
Dsgs significant duration

I, Arias intensity

PGAy vertical peak ground acceleration
Say(Ty) vertical spectral acceleration at the T;

3.3.2 Finite element simulations

For each row, x;, of the experimental design matrix, ny = 250 finite element simulations
were conducted, following the procedure presented in section The structural re-
sponse, ¥;, considered herein was the maximum relative sliding, d,,... Hence a response
vector y[250 x 1] was produced as a result of the FEM simulation, to be used to train

different regression techniques.

3.3.3 Meta-model fitting

The regression techniques described in section were fitted to the training points
generated as a result of the finite element simulations considering only the best demand
and capacity predictors. In order to select the best predictors, the stepwise regression
algorithm in Matlab was used when fitting the meta-models. The algorithm starts with
a constant term to predict the response. In the next step, one predictor is added to the
model, and the performance of the model is evaluated based on the Bayesian information
criterion (BIC). If the model performance improves, the added term is kept; otherwise, it
is removed, and this process is repeated until all the proposed predictors are tested. Once

all the regression meta-models have been trained, the best performing one is selected in
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terms of predictive capacities, based on cross-validation (CV) goodness-of-fit estimates.
Further details on the meta-model fitting are given in section and section [5.2.3] In
the following sections, details regarding the implementation of all the considered meta-

modeling techniques in this project, are given.
Polynomial response surface

The polynomial response surface methodology in this study is employed to predict the
maximum horizontal relative displacement at the base of the dam to quantify the sliding
limit state. Traditionally, lower order polynomial (up to second order) are used as meta-
models in reliability problems, yet these functions may not be able to capture highly
non-linear behaviour. Regarding, higher order polynomials, even if these functions have
higher predictive accuracy, they tend to over fit the data. Polynomials up to order 4th were

implemented in this study to avoid over fitting issues. The implementation and results of
this technique is further detailed in section

Adaptive basis function construction

The adaptive basis function construction methodology was also employed to predict the
maximum horizontal relative displacement at the base of the dam. The software variReg [143]
implemented through Matlab was used for this purpose. The performance of this meta-
models is shown in Table and it can be seen that in terms of local and global goodness-

of-fit the model predict with a faire accuracy.
Multivariate adaptive regressive splines

The multivariate adaptive regressive splines methodology were used to replace the output
of the numerical model of the dam for the sliding limit state. Two MARS models were
trained, one with cubic splines and the other with linear splines. The toolbox for Matlab
developed by Jekabsons [144] was used for this purpose. The performance of these meta-
models is addressed in Table[5.3|and it can be seen that in terms of local goodness-of-fit the
model with linear splines is better while if we consider the global performance indicators

the model with cubic splines is more adequate.
Radial basis functions

As it was already mentioned above the RBF method implements basis functions whose re-
sponse monotonically changes as distance from the central point increases. In the present
study, multi-quadratic, thin plate spline and Gaussian are the radial basis functions consid-

ered for interpolation. As in the ABFC case, the RBF meta-model was implemented with
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the software variReg [145]. The performance of RBF meta-models is shown in Table
Only 5-CV values are displayed in the table, because the radial basis passes through all
the training data, the prediction with the latter is trivial. It can be observed that the

RBF training model with multi-quadratic basis functions present the best performance
between all the RBF models.

Support vector machine for regression

A support vector machine meta-model for regression was trained using the statistics and
machine learning toolbox in Matlab [146]. Four different types of kernels (linear, quadratic,
cubic and radial basis functions) were used and their performance is shown in Table
For the radial basis functions and the cubic kernel, it can be noticed a clear over-fitting of
the data given that the meta-models predict with faire accuracy for the training data, but
fail to predict for the unseen cases. Besides, almost all the samples in the dataset were used
as support vectors reaffirming the over-fitting. Although the local and global performance
of the SMVR with linear and quadratic kernels is reasonable, it should be mentioned that
approximately 72% of the samples in the dataset were used as support vectors in the
multidimensional feature space to find hyperplane that separates all given samples. This
is the result of a highly non-linear feature space and could not be appropriate to train this

type of models with small datasets (< 300 samples).
Random forest for regression

An assembling technique in terms of random forest regression was performed within 100
decision trees and was also implemented with the statistics and machine learning toolbox
in Matlab [146]. The final model adds a sequence of base models and predicts the response
by combining the decision trees. Table [5.3|shows that the RFR model overfits the data in

the training set, given the lower performance of the model in the cross-validation stage.

3.4 Seismic fragility analysis

Estimation of fragility functions using dynamic structural analysis is an important step in
a number of seismic assessment procedures. The first step is the identification of the limit
states that are relevant to the system performance, for which a specific fragility function
is developed, taking into account a rational assessment of all sources of uncertainty likely
to affect it.
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3.4.1 Damage states

As is was mentioned in section [2.1.1] when subjected to strong ground motion, gravity
dams may be damaged in different ways. In recent years, typical damage modes that
could lead to the potential collapse of dams after a seismic event have been identified, and
seismic damage levels have been established. Preliminary analyses have identified sliding
as the critical failure mode for the case study dam [20], and other failure modes would only
occur after sliding has already been observed. As a result, two limit states were considered

in this study:
1. Concrete-to-rock sliding at the base of the dam interface.
2. Concrete-to-concrete joint sliding at the neck of the dam interface.

Each limit state was characterized by the sliding damage states presented in Table [4.2]

3.4.2 Single-variate fragility functions

There are a number of procedures for performing non-linear dynamic structural analyses to
collect the data for estimating a fragility function. One common approach is incremental
dynamic analysis, where a suite of ground motions are repeatedly scaled in order to find
the IM level at which each ground motion causes collapse [77]. A second common approach
is multiple stripes analysis (MSA), where analysis is performed at a specified set of IM
levels, each of which has a unique ground motion set [68|. The latter is the procedure
selected in this study to generate fragility functions, curves and surfaces, from non-linear

FEM simulations and from the meta-models respectively.

The MSA approach is common when using the GCIM or other approaches to select ground
motions representative of a specific site and IM level, because the target properties of
the ground motions change at each IM level and thus so do the representative ground
motions [74], [75]. Hence, with this approach different ground motions are used at each
IM level and the analysis need not be performed up to IM amplitudes where all ground

motions cause collapse [6§].

Non-linear dynamic analyses were performed for the 30 samples at each intensity level
(Sag(Ty) = 0.1g;0.2¢;0.3g;0.4¢;0.5g;0.7g;0.9¢g), resulting in a total of 210 analyses.
From each simulation, the maximum relative base and neck displacement is computed.
The results from the non-linear analysis were used to calculate 7 fragility point estimates
as the number of samples where sliding exceeded the limit state divided by the total num-
ber of samples. A well-known mathematical equation was then fitted to these fragility

estimates to develop fragility curves for the considered limit states. Several mathemati-
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cal formulations, such as the normal, log-normal and Weibull CDF, were fitted to point
estimates of the fragility curves. Nevertheless, the log-normal cumulative distribution
function, together with the MLE fitting technique, was found to be adequate for depicting
the fragility of the considered limit states. Further details on the fragility curves generation

are given in section [4.5.3

3.4.3 Multivariate fragility functions

Given the number of simulations required to generate a fragility surface, instead of non-
linear dynamic analysis the results from the meta-models were used to generate the fragility
point estimates. Regarding the generation of the samples where the meta-model will be
evaluated to predict the dam’s response, independence between all the modeling parame-
ters was considered to generate 5 x 10° samples with LHS. The values of the seismic IMs
were bounded, as shown in Table [3.4] to efficiently cover the range of values corresponding

to return periods from 500-30000 years.

Table 3.4 Seismic IMs range of values

Intensity measures Range of values
Peak ground velocity (PGV) 0.80-25.0cm/s
Arias intensity (/,) 0.0-2.5m/s

Vertical peak ground acceleration (PGAy/) 0.01-0.25g

To perform the fragility analysis and obtain the fragility point estimates from the meta-
models, the methodology depicted in section and Figure [5.2| was used. The range of
each of the parameters of the fragility surface was divided in 100 intervals. As a result,

10* fragility point estimates were generated for each limit state, as shown in Figure .

Two different cases were taken into account to generate fragility surfaces. In the fist case,
as it is expected, correlation between the seismic IMs was assumed to generate the samples
where the meta-model was evaluated. As a result, fragility surfaces as a function of PGV
and each of the MP involved in the prediction of the dam response were generated. In the
second case, although less realistic, independence between the seismic IMs was considered
to generate the meta-model’s samples. Accordingly, fragility surfaces as a function of two
seismic IMs were generated to consider more general cases where the seismic scenario is
not well defined.
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P, (LS, | IM=10, MP=1)
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Figure 3.5 Conceptual fragility point estimates from the meta-model MSA

Correlated seismic IMs

For the case study dam, considering the PSHA and the characteristics of the seismic sce-
nario for a specific site, correlation between seismic parameters is to be expected. In
order to consider this, the samples of these parameters must be sampled from a multi-
variate distribution with their respective correlation coefficients, when referring to specific
cases. Section [5.3.6] describes the approach that was used to generate point estimates of
the fragility surfaces and section explains the procedure used to create parametric

fragility surfaces.
Uncorrelated seismic IMs

In this section, to consider more general cases, the correlation between the seismic IMs
was neglected. The fragility point estimates were generated as a function two seismic IMs,
IM; and IM,. The uncertainty due to all other parameters involved in the meta-model

response is propagated in the analysis by sampling these parameters from their respective
PDFs.

For this specific case, the methodology proposed by Baker [68] for the efficient fitting of
fragility curves, was extrapolated to fit fragility surfaces. It was assumed that for each

limit state, the fragility surface is described by the product of two independent cumulative
density functions, as shown in Eq. (3.7):

Fy(IMy, IMy) = Py, (IMy, Oy, Biv, ) P, (IM, G101y 5 Bint, ) (3.7)
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where @y, , are some form of CDFs and 6n, , and fny, , are the parameters character-
izing the respective CDFs. The parameters of each fragility surface were estimated with
the MLE method as proposed by Baker [68]|, when using the MSA for efficient fragility

functions’ fitting.

3.4.4 Seismic assessment of dams

Expected seismic performance

For structures of special importance, such as dams and nuclear power plants, it is typical
to consider the high confidence low probability of failure (HCLPF) criteria. This notion
represents the level for which the probability of exceedance of a limit state is sufficiently
low to consider that it will not be reached throughout the life of the structure [147] and
usually corresponds to a probability of less than 5-6 %. In Canada, the committee of the
Canadian Dam Association (CDA) has the vision of being the authoritative source for
dam safety practices, and its current design philosophy provides the minimum standards
for life safety [31]. Accordingly, to evaluate the seismic performance of the case study
dam under extreme limit states, the return period boundaries for the hazard classification
provided by the CDA (Table[4.4) for the maximum credible earthquake (MCE), were used.
The probabilities of exceedance calculated for the "extreme risk" case [31] were compared
with the values proposed by the ASCE 7-16 [148| guidelines for the maximum probability
of failure for the MCE. For a risk category III (dam-type structures) and total or partial

structural collapse, the maximum probability of failure should be less than 6 %.

In the case of single variate fragility functions, for a given probability of exceedance,
prescribed by the safety guidelines, the corresponding seismic IM was extracted from the
hazard curve. The fragility estimates of the system for the specified return periods were
then calculated from the fragility curves corresponding to the 100 mm and 150 mm damage
states for the neck and the base sliding limit states, respectively. Similarly, in the case of
the fragility surfaces as a function of IM and MP, to achieve a desired seismic performance,
boundaries of model parameters for an adequate performance under extreme limit states
can be formulated. As it is the case for fragility curves, the corresponding seismic IM was
extracted from the hazard curve and all possible MP values for that IM are established
by cutting a slice of the fragility surface along that seismic IM. By ensuring that the
probability of exceedance given that an extreme event is in line with the current guidelines

for the minimum provisions for life safety, a usable range of MP values can be determined.
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Unconditional probability of failure

A design to a specific scenario event or a specific return period ground motion intensity
does not address the seismic vulnerability of the resulting structure. Any structure is
potentially exposed, throughout its design life, to all the possibilities of the occurrence of
ground motion intensities at a given site as characterized by a set of site-specific seismic
hazard curves (mean, median, and several specified exceedance percentiles). The use of
this complete hazard information is prerequisite to estimating seismic "failure" probabili-
ties. "Failure" is a generic term defining non-performance at a preselected limit state. In
order that all pairs of ground motion intensities and associated exceedance probabilities
are considered, the site hazard curves are substituted by the mean curve. First, the con-
ditional failure probability curve (fragility curve) is calculated by the convolution of the
load and resistance distribution functions. To calculate the unconditional failure proba-
bility, each conditional failure probability is multiplied by the corresponding probability
density functions of the mean hazard curve, and then summed over all possible values of

the hazard curve.

As shown in Figure seismic hazard is usually characterized by curves relating the
exceedance probability of a ground motion parameter to the intensity level of the ground
motion variable. Given the significant uncertainties in ground motion estimates, a proper
probabilistic seismic hazard evaluation includes the variability of the selected ground mo-
tion parameter at all exceedance probabilities. This uncertainty is characterized in Fig-
ure (b) and Figure (b) by several hazard curves for different source models and
earthquake rupture forecast configurations. A hazard curve, V(Sa(T})), is the complemen-
tary cumulative distribution function of the selected ground motion parameter, Sa(Ty).
The CDF of the hazard, V(Sa(T})), is simply [I — V(Sa(T}))]. Thus, the PDF of the

considered seismic hazard curve is given by,

AV(Sa(Ty)) dll—V(Sa(Ty))]  dV(Sa(Ty))
oSaT)) = —qsamy” = T dsa(m)  ~ dSa(Ty) (38)

Then, Eq. is used together with Eq. to calculate the unconditional probability
of exceedence. The unconditional probabilities for the most damaging limit states were
compared with the annual probabilities of failure found in the literature. MacGregor [149]
recommended that the collapse probability of a building-type structure should be on the
order of magnitude of 5 x 107° and even lower for structures of special importance, such as

dams and nuclear power plants. In the same manner, following the risk category framework
proposed by the ASCE 7-16 [148|, the number of people at risk is between 100 and 1000.
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For this range, the FEMA P-1025 [150] guidelines specify a value between 1 x 107> and
1 x 107° for tolerable risk. The results obtained for the case study dam, are shown in
section 4.0.2
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tous les parameétres de mouvement du sol pertinents dans ’analyse de la fragilité de ce
type de structure. Cet article présente 1’élaboration de courbes de fragilité, pour les états
limites de glissement de barrages-poids dans I'Est du Canada, actualisées & ’aide d’une
méthode de sélection des accélérogrammes fondée sur la méthode de la mesure d’intensité
conditionnelle généralisée. Ces courbes de fragilité sont ensuite combinées aux données de
risque régionales récemment développées pour évaluer le risque annuel, qui est mesuré en
termes de probabilité inconditionnelle de dépassement des états limites. La méthodologie
proposée est appliquée & un barrage situé dans le nord-est du Canada, dont la fragilité est
évaluée par comparaison avec des études antérieures et les directives de sécurité actuelles.
Il a été observé que la méthode, plus précise, proposée dans le document produisait des

estimations de la fragilité moins conservatrices pour le barrage étudié.

Abstract:

In recent years, probabilistic methods, such as fragility analysis, have emerged as reli-
able tools for the seismic assessment of dam-type structures. These methods require the
selection of a representative suite of ground motion records, resulting in the need for a
ground motion selection method that includes all the relevant ground motion parameters
in the fragility analysis of this type of structure. This paper presents the development of
up-to-date fragility curves for the sliding limit states of gravity dams in Eastern Canada
using a record selection method based on the generalized conditional intensity measure
(GCIM) approach. These fragility functions are then combined with the recently devel-
oped regional hazard data to evaluate the annual risk, which is measured in terms of the
unconditional probability of limit state exceedance. The proposed methodology is applied
to a case study dam in north-eastern Canada, whose fragility is assessed through com-
parison with previous studies and current safety guidelines. It is observed that the more
accurate procedure proposed herein produces less conservative fragility estimates for the

case study dam.

Keywords:Seismic hazard; dam safety; concrete dams; probabilistic seismic hazard anal-

ysis; fragility curves; ground motion record selection.

4.1 Introduction

The consequences of dam failure can be substantial, in terms of both casualties and eco-
nomic and environmental damage. Therefore, dam safety is given highest priority. With

the increasing knowledge of seismicity, a growing number of dams fail to meet the re-
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vised safety criteria that incorporate new seismic hazard information. Consequently, the
combination ageing and its associated problems with new methods for estimating seis-
mic loads and with the increasing demands of society to ensure a high level of safety has
resulted in the need to review and upgrade the methods of seismic analysis for dams.
Traditionally, dams were evaluated using deterministic analysis under an extreme event.
Nevertheless, in recent decades, probabilistic-based tools, such as fragility functions, have
become increasingly popular for the seismic assessment of dams |28, 21], 102, 151), [38), [14].
Fragility analysis, which depicts the uncertainty in the safety margin with respect to spec-
ified hazard levels, including the design-basis and review-level events, has proved to be an
effective and reliable instrument to support rational risk mitigation decision making and
to establish priorities [36] [I4]. Based on this, earthquake engineering codes and guidelines
have started to shift towards performance-based earthquake engineering (PBEE) design
which seeks to improve seismic risk decision-making through assessment and design meth-
ods with a strong scientific basis to make informed decisions. To implement this type of
design, an accurate estimate of the seismic demand of the structural systems is especially
important. Such an estimate requires, in turn, a ground motion record selection technique
that properly depicts the seismic scenario and adequately propagates the record-to-record
variability and uncertainty related to the seismic hazard throughout the fragility analysis
[23,24]. Generally, the primary considerations in selecting ground motion recordings make
use of appropriate seismological properties. However, these seismological parameters alone
have proven to be fairly poor predictors of structural demands [68]. With this limitation in
mind, a consensus is emerging that it is more productive to consider time series properties

rather than seismological parameters when selecting ground motions [69].

Accordingly, in recent years, the implementation of specific target spectra, such as the
conditional (mean) spectrum (CS) [73] has been recommended over the frequently em-
ployed uniform hazard spectrum (UHS) due to its capability to support the selection of
records that match proper ground motion characteristics for a given intensity measure
(IM) level [75]. Although improved with respect to the traditional UHS, one limitation of
the ground motion selection method based on spectral acceleration matching is that only
the characteristics of ground motion represented in terms of (linear) spectral acceleration
are considered, whereas it is acknowledged that the severity of ground motion, in gen-
eral, depends on its intensity, frequency content, and duration [74]. Therefore, a further
refined method, the generalized conditional intensity measure (GCIM), was proposed by
Bradley [74] for ground motion record selection. Within the GCIM framework, any num-
ber of ground-motion IMs identified as relevant for a particular seismic response problem

can be considered allowing the estimation of conditional distributions based on the full
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distribution of disaggregation results. This method proposes therefore a more realistic
target distribution and its application has produced encouraging results by recent studies
in different contexts [25] 26} 27].

Currently, no previous studies have conducted seismic assessment of dams while prop-
erly considering the contribution of several IMs. Moreover, and referring to the specific
context of this study, only a few studies considering the recent CS-based approach for
eastern Canada exist [72, 21] and there are no studies that have used the GCIM method
for this region. As such, this paper aims to improve the development of fragility curves for
concrete gravity dams by using an enhanced procedure to select ground motion records
that includes the different intensity measures that are relevant to the sliding limit states
of such structures. Specifically, within PBEE of concrete gravity dams, considering their
intrinsic structural characteristics, the peak ground velocity (PGV) and the vertical spec-
tral acceleration (Say) have been recognized as important intensity measures to develop
probabilistic seismic demand models related to dam base sliding limit states [102, [30].
The GCIM approach, therefore, enables consideration of PGV and Say, in addition to
the traditionally employed horizontal spectral acceleration (Say), to improve the selection
of the horizontal and vertical components of the records. Such records are then used to

seismically assess a concrete gravity dam located in north-eastern Canada.

Fragility curves are developed by performing non-linear dynamic analysis, including fluid-
structure-foundation interaction. The produced fragility functions are compared with
currently available ones, which were developed with records selected using the standard CS
method and an older hazard model. Finally, an expedited safety assessment is performed
by computing the probability of occurrence of the ultimate sliding state for the maximum
considered earthquake (MCE) and the unconditional probability of occurrence, which are

then compared with the current guidelines for the minimum provisions for life safety.

4.2 Case study description and modeling

The present study is focused on a case study concrete gravity dam in Quebec, Canada. It
is the largest gravity dam in the province, with 19 unkeyed monoliths, a maximum crest
height of 78 m, and a crest length of 300 m(Figure [4.1[(a)). The dam rests on a foundation
consisting mainly of anorthosite gabbro and granitic gneiss [22], which corresponds to
hard rock (V.S30 > 1500 m/s). The dam was chosen for its simple and almost symmetric
geometry and due to the availability of forced vibration test results used to calibrate the

dynamic properties of the numerical model [22]. Moreover, previous studies concerning
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the seismic fragility of one of the central blocks of the dam [20, 21| are also available,

enabling a direct comparison with the results of the method proposed herein.
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Figure 4.1 (a) Cross section and (b) Finite element model of the tallest mono-
lith

The tallest monolith of the dam was selected to represent it and was modeled with com-
puter software LS-Dyna [135], as shown in Figure (b), following the recommendations
of the United States Bureau of Reclamation (USBR) [37]. An explicit time integration
solver [44] was used, within LS-Dyna, due to the contact surfaces and to reduce the compu-
tational time. Only one load case combination was considered, which included self-weight,
hydrostatic thrust, uplift, hydrodynamic effects and seismic load. The proposed model
takes into account the different interactions among the structure, reservoir, and founda-
tion. The reservoir is modeled with compressible fluid elements, whereas the concrete
dam and the rock foundation are modeled with linear elastic materials to which a viscous
damping is associated. Given that the model should remain stationary after the static
loads are applied, two loading phases were considered: (i) a dynamic relaxation phase for
static loads, and (ii) a dynamic phase for the seismic loads, each with different boundary
conditions. In the first loading phase, a symmetric boundary condition was applied where
the normal displacements are zero. For the dynamic phase, non-reflective boundaries were
included to prevent artificial amplification of the seismic waves due to the finite length of
the foundation and the reservoir. Concerning the contact surfaces between the different
components of the system, sliding contact with zero friction was used to model the dam-
reservoir interface. For the reservoir-foundation interface, tied contact was applied, except

near the upstream face of the dam where sliding contact with zero friction was used to
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maintain reservoir load during the sliding of the dam. Preliminary linear analyses identi-
fied the concrete-rock interface at the base of the dam and the concrete-concrete interface
at the crest of the dam as high tensile stresses areas and, therefore, where cracking and
sliding could occur. Consequently, the model non-linearity was constrained to these two
areas only, using tiebreak contact elements with a tension-shear failure criterion. Further
details of the modeling assumptions and the validation of the numerical model can be
found in the study by Bernier et. al [20]. After adjusting the properties of the dam and
the foundation materials, the fundamental period of the dam-reservoir-foundation sys-
tem is 0.25 s, which matches the fundamental period from a previous model of the same

monolith calibrated from in situ forced vibration tests [22].

4.3 Characterization of seismic hazard

A classic probabilistic seismic hazard analysis (PSHA) approach enables the calculation of
the probabilities of exceeding, at least once in a given time span and at a given site, a set
of ground motion parameter levels considering all possible earthquake ruptures defined in
a seismic source model. Such set of probability values is usually referred to as the hazard
curve, and three major steps are required to compute it: (i) characterization of seismic
sources, (ii) characterization of the ground motion models (GMM) and (iii) calculation of

probabilities.

4.3.1 Probabilistic seismic hazard analysis and disaggregation

Although eastern Canada is located in a stable zone, the occurrence of several major
earthquakes in the south-east of the country between 1663 and 2010 has led to the consid-
eration of this area as a moderate seismic zone. The most recent hazard model, on which
the seismic provisions of the 2015 National Building Code of Canada (NBCC) [2] are
based, comprises four components, one for each quadrant (north-west, south-west, north-
east and south-east), to reduce computational burden [I40]. In this context, an updated
hazard model for the south-eastern quadrant was considered for this study, using three
sub-models, distinguished primarily as the historical cluster (H2), regional seismotectonic
(R2) and a hybrid approach (HY) between H2 and R2. The adopted weights were 0.4
for both H2 and HY and 0.2 for R2. The empirical ground motion models were provided
in the form of look-up tables (based on Atkinson and Adams [67]) to be used with the
considered sources. To account for the epistemic uncertainty, three weighted GMMs were
used to specify a central (weighted at 0.5), upper (weighted at 0.3) and lower (weighted at

0.2) representative equation set for each region/event type. The tables were also modified
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to provide hazard values directly in terms of firm ground site conditions (V.S30 = 450
m/s), which is the reference ground type for the NBCC 2015. A PSHA was then per-
formed at the dam site using the open-source software OpenQuake [141], which features the
aforementioned 2015 NBCC hazard model, as part of a project at the Global Earthquake
Model (GEM) Foundation, using information provided by the Geological Survey of Canada
(GSC). Deamplification factors consistent with NBCC 2015 were applied to the hazard
curve to make it compatible with the hard rock soil conditions at the dam site. Different
hazard levels were selected for the conditioning IM (Sa(77) = 0.1,0.2,0.3,0.4,0.5,0.7,0.9
g) to conveniently cover the range of spectral accelerations corresponding to return pe-
riods from 700 to 30000 years. The hazard curve was obtained in a discrete manner by
calculating the annual rate of exceedance at the hazard levels specified above. Further-
more, the hazard curve was also described analytically to enable seismic safety assessment
through analytical or numerical integration, enabling the propagation of uncertainty in
the hazard model. Given that at the dam site, the hazard data does not follow a linear
relationship in log-log space, a hyperbolic function was used to approximate the hazard
curve, as proposed by Bradley et al. [I52]. This function provides a good approximation
of both linear and non-linear hazard data in the range of adopted intensity levels, whereas

it may not extrapolate accurately, and is given in Eq. (4.1)),

V = aexp {5 {m (%)]_1} (4.1)

where V is the estimated mean annual frequency of exceedance corresponding to a given
Sa(Ty), and «, § and v are constants characterizing the fitting of the hazard curve data.
Figure (a) compares the mean annual frequency estimates from Eq. with the
results obtained with OpenQuake, showing close agreement when the constants «, 8 and
~ are, respectively, 5.0 x 10, 2.12 x 10? and 1.87 x 10*. To understand and identify
the earthquake scenarios with the greatest contribution to the overall seismic hazard,
disaggregation was performed for the seven considered hazard levels using the hazard curve
corresponding to the branch with the smaller sum of squared errors (SSE) with respect
to the mean hazard curve. Figure (b) shows that the hazard curve corresponding to
the hybrid source model (HY) is the closest to the mean hazard curve. Accordingly,
Table presents the earthquake scenarios resulting from the disaggregation of the HY
source model coupled with the central GMM.

The disaggregation results are illustrated in Figure[4.3] where it can be seen (Figure[d.3|(a))

that for low Sa(7}) values, events of magnitudes between 5.0 and 6.0 and distances between
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Figure 4.2 (a) Hazard curve at the dam site for Sa(7} = 0.25s) and (b)
Hazard curves according to the different source models

Table 4.1 Earthquake scenarios from the GMM disaggregation at
Ty =0.25s

Mean values

Intensity level Annual rate of exceedance

M R €
0.1g 1.29E-03 6.01 51.18 km 0.78
02g 4.43E-04 6.18 37.54 km 0.86
0.3g 2.26E-04 6.31 29.70 km 0.91
04g 1.37E-04 6.43 24.45 km 0.94
05¢g 9.18E-05 6.52 21.77 km 0.95
0.7¢g 4.94E-05 6.61 19.58 km 0.97
0.8¢g 3.08E-05 6.82 18.70 km 0.99

15km and 85km are predominant at the dam site, while for high Sa(77) values, as shown
in Figure (b), contributions to the hazard are mainly from distances between 0 km and
45km and magnitudes between 6.0 and 7.5.

4.3.2 Comparison of the NBCC 2010 and 2015 Hazard Models

Given the availability of an updated hazard model, the extent to which the PSHA outcome
at the dam site, which is essential for the ground motion record selection that follows,
is modified by the use of different models was investigated. As the knowledge and so-
phistication surrounding probabilistic seismic hazard modeling techniques have advanced,
Canadian national mapping efforts have evolved from qualitative assessments in 1953 to
fully probabilistic hazard models, foreseen by the seismic provisions of the 2015 NBCC.
Figure [1.4)(a) depicts the hazard curve obtained with the NBCC 2010 and 2015 models.
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Figure 4.3 Magnitude-distance-annual probability of exceedance (POE) dis-
aggregation at the dam site for: (a) Sa(T; = 0.25s) = 0.1 g; (b) Sa(T} =
0.255) =09 g

The 2015 model provides lower hazard estimates than those obtained with the 2010 model,
upon which past fragility curves for gravity dams have been based [2I]. This difference
can be explained by the fact that the updated hazard model encompasses many impor-
tant advances compared to its predecessor, such as the consideration of the contributions
of different seismic source models, special consideration of large rare eastern earthquakes
and the use of representative modern ground-motion models. Additionally, the two hazard
models behave differently due to the changing mesh size in the computer software Open-
Quake. As shown in Figure [£.4[b), the 2010 model is more stable than the 2015 model
when considering a very coarse or refined mesh. Hence, several meshing possibilities were
tested to determine the earthquake rupture forecast (ERF) sensibility and to achieve the
optimal trade-off between precision and computational time. These improvements are

also reflected in the lower disaggregation values of the updated hazard model shown in

Figure [4.5

4.4 Ground motion records selection

To proceed with the evaluation of the vulnerability of the case study dam through the de-
velopment of fragility functions, a representative set of ground motion time series (GMTS),

which properly accounts for the aleatory uncertainty, is necessary. When selecting ground
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Figure 4.5 Comparison of the mean disaggregation values according to the
NBCC 2010 and 2015 hazard models: (a) Magnitude, (b) Distance and (c)
Epsilon

motions, the established goal was to obtain time series that were consistent with the
ground motion amplitudes and properties computed from seismic hazard analysis. There-
fore, a record selection approach that considers all the relevant IMs for the response of the
structure was adopted. This approach is based on the aforementioned GCIM, a framework
in which the distribution of any ground motion IM can be obtained given the occurrence

of another specific ground-motion intensity measure.

4.4.1 Generalized Conditional Intensity Measure Approach

The essence of the GCIM approach is the definition of the multivariate distribution of any
set of ground-motion intensity measures (IM;) conditioned on the occurrence of a specific

ground-motion intensity measure (IM;) [74]. The calculation of the GCIM distributions
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involves two main steps: (i) determining the probability that if a ground motion was
observed with IM;, it was caused by a particular earthquake scenario; and (ii) given
the observed ground motion with IM; from a particular earthquake scenario, defining the
distribution of the other ground motion intensity measures. Moreover, the general variable
IM|Rup (where “| Rup" indicates conditioning on a specific earthquake rupture scenario) is
assumed to follow a multivariate log-normal distribution, and the marginal distributions of
all the scalar intensity measures in IM;| Rup, IM;| Rup can be estimated via existing ground-
motion prediction equations. This means that the correlation coefficient matrix of IM is
sufficient to uniquely specify the multivariate log-normal distribution for IM|Rup; hence,
for each IM; in IM, IM;|Rup,IM; has a univariate (conditional) log-normal distribution
that, according to [I53], can be expressed by Eq. (4.2).

2
Sivts Rup, vty ~ TN (R v Rup, M 5 O 11 | Ry T ) (4.2)

Accordingly, the conditional mean and standard deviation are given by Eq. (4.3) and
Eq. ().

MM | Rup,IM; = HinIM;|[Rup T Oln IM;| RupPln IM; In IM;; | Rup€ln IM; (4.3)

_ 2
OIM;|Rup,IM; = UlnIMilRuz)\/l - plnIMi,lnIMj|Rup7 (4'4)

where pin;| Rup,IM; and o, Rup,IM; are the mean and standard deviation of InIM; for a
given rupture and are commonly obtained from the ground motion prediction equations;
PImIM; InIM,|Rup 18 the correlation coefficient between InIM; and InIMj; for a given earth-
quake scenario, commonly provided by empirical correlation equations; and the parameter
Em1M,, representing the number of standard deviations between the target and the mean
predicted spectral amplitudes, is obtained via Eq. .

In IM; — i M, | Rup
O1nIM;|Rup

In this case, the conditioning intensity measure is the spectral acceleration at the fun-
damental period of the dam (IM; = Sa(0.25)s) obtained from PSHA, and the specific
earthquake scenarios were obtained from the disaggregation analyses for different inten-
sity levels (Table[4.1)). Due to the limited availability of recorded ground motions in eastern

North America (ENA), empirical ground motion and correlation models are rarely avail-
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able for this region. Therefore, equations proposed for western North America (WNA)
were assumed to be valid for Eastern Canada because these models are suitable for shallow

crustal events, which are the most common type of events in ENA.

4.4.2 Selection algorithm

The purpose of using the GCIM approach to perform the selection of recorded ground
motion time histories is to include the intensity parameters with the greatest influence
on the structural response at the limit states of interest and the consequent seismic risk
assessment. In the case of gravity dam-type structures, PGV was found to be one of the
best-performing ground-motion-dependent scalar IMs to correlate damage [30]. Similarly,
the vertical spectral acceleration Say is also expected to be relevant in heavy structures
of this type and is hence considered in the GCIM to account for the vertical compo-
nent of ground motion in the record selection. As a result, the set of considered IMs
are {Sag(T),Say(T), PGV}, where Say(T) and Say(T) are computed at 20 vibration
periods in the range of T' = {0.2T; — 2T}, as proposed by [73], leading to a total of 41 IMs
to be considered in addition to the conditioning IM. The following GMMs and correla-
tion models were considered: Atkinson and Adams [67| (Say(T) and PGV), Gulerce and
Abrahamson [154] (Say (7)), Baker and Jayaram [I55] (psa,,,say ), Baker and Cornell [156]
(PSag.say and Psay say ), and Bradley [157] (psa, pov). Finally, due to the lack of empirical
correlation models between Say (T') and PGV, and considering that previous studies have
shown that PGV is strongly correlated to moderate period spectral accelerations [153],
the correlation between these two IMs was approximated by Eq. .

PPGV,Say (T) = PSay(1.5),PGV PSay (1.5s),Say (T) (4.6)

The GCIM distribution computed with the above-mentioned IMs was then used to simulate
and select 30 ground motion records for each intensity level. Given the lack of recorded
ground motions for the specific case study region, artificial simulated records could have
been employed. However, the former have still been preferred over the latter to include
the added value of working with real ground motions, given that stochastically simulated
spectra might present unrealistic properties [I58),[74]. In line with the previously mentioned
limitations in terms of the available GMMs, the records were selected from the PEER
NGA-West2 database [I59] due to the limited availability of strong ground motion records
in the PEER NGA-East database [I60]. Another reason for not using the NGA-East

database was the lack of the vertical acceleration component in the records, which rendered
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the corresponding matching within the selection algorithm impossible. Furthermore, as
stated by Jayaram et al. [70], the considered dataset will have a greater effect on the
GMNMs for the IMs than on the correlation empirical models. As such, the use of empirical
GMDMs and records from the NGA-West2 database are indeed a limitation of the study
in terms of the estimated response of the case study dam, as previously recognized in the
study by Bernier et al. [21], given that: (i) hard rock sites in ENA are much stiffer than
those in western regions; (ii) when compared to western regions, eastern events tend to
generate high amplitudes at low periods; and (iii) ground acceleration attenuates more
slowly in ENA, with a distance close to the source at low periods. Therefore, it was
guaranteed that the ground motions from the NGA-West2 database matched the GCIM
distribution at low periods [161) [162]. Furthermore, a pre-screening of the database in
terms of magnitude, distance to the source and soil type was performed to limit the
selection of ground motions to those that closely describe the seismic characteristics at
the dam site. Specifically, only ground motions with magnitude (M), distance (R) and
shear wave velocity (VS30), respectively, of 5.5 < M < 7.5, 0Okm < R < 200km and
550m/s < V.S30 < 2000 m/s were considered. Alternatively the causal parameter bounds
proposed by Tarbali and Bradley [142] could have been used to filter the database for usable
spectra but it was preferred, for the sake of simplicity, to consider bounds based on the
disaggregation analysis and previous studies [21] to cover all the range of studied IM levels.
Despite the fact that the simulations were conducted in a 2D model and that the horizontal
components could have been taken individually (obtaining twice the number of records),
the geometric mean of the response spectra for the two orthogonal horizontal components
of motion (SaRotD50) was selected for two main reasons: (i) the PGV values in the
NGA-West2 database correspond to the geometric mean of the horizontal component;
(ii) empirical ground motion models work with the mean and standard deviation of the
logarithm of Sa, which can be represented by a Gaussian distribution. The ground motions
were then selected using the greedy optimization algorithm proposed by Jayaram et al. [70]
and later improved by Baker and Lee [71]. The statistical Kolmogorov-Smirnov (KS) test
was used to compare the target GCIM distribution and the empirical distribution of the
selected ground motion set for an IM to evaluate the quality of the selected ground motion

sets.

Figure[1.6{(a) presents the horizontal response spectra of the selected records for the inten-
sity level of Sa(T) = 0.1g, and Figure [1.6(b) presents the corresponding vertical response
spectra of the selected records. A good match was found for the selected GMTSs that lay
within the desired range of values (mean and standard deviation) for the entire range of

considered periods and intensity measures. By contrast, Figure shows the theoretical
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cumulative distribution and the realizations of two sets of records for the vertical spectral
acceleration at the fundamental period and PGV selected with the CS and the GCIM
approaches. Even if the hazard model and the GMMs are the same, the records selected
considering only horizontal spectral acceleration as the IM are less representative of the an-
alytical distributions and hence are less consistent with the seismic scenario at the dam site.
Conversely, the distribution of the records selected with IM = {Say(T), Say(T), PGV}
and the GCIM method is in agreement with the conditional cumulative distributions, as
is evident from the empirical distribution function of the realizations between the KS

rejection bounds (for a confidence level of 0.05).
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Figure 4.6 Distribution of the 30 selected ground motions at Sa(7} =
0.25s) = 0.1g for: (a) horizontal spectral acceleration, (b) vertical spectral
acceleration

4.5 Fragility analysis

Seismic assessment through fragility analysis provides a framework to ensure that available
information on uncertainties is treated consistently [14]. The first step is the identification
of the limit states that are relevant to the system performance, for which a specific fragility
curve is developed, taking into account a rational assessment of all sources of uncertainty
likely to affect it.

4.5.1 Damage limit states

When subjected to strong ground motion, gravity dams may be damaged in different
ways. In recent years, typical damage modes that could lead to the potential collapse

of dams after a seismic event have been identified, and seismic damage levels have been
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Figure 4.7 Empirical distribution function of the 30 selected GMTSs at
Sa(Ty = 0.25s) = 0.1g: (a) Say(T; = 0.25s), (b) PGV

established. Preliminary analyses have identified sliding as the critical failure mode for the
case study dam [20], and other failure modes would only occur after sliding has already
been observed. As a result, two limit states were considered in this study: (i) sliding at
the concrete-to-rock interface at the base of the dam, and (ii) sliding at the concrete-to-
concrete joint at the neck of the dam. Each limit state was characterized by the sliding
damage states proposed in Bernier et. al [21], which are presented in Table

Table 4.2 Limit states considered for the
concrete gravity dam

Sliding damage state ~ Base Neck

Slight /minor 5 mm
Moderate 25 mm
Extensive 100 mm
Complete 150mm 10mm

4.5.2 Modeling parameter uncertainty

Table presents the parameters that were considered as random variables in the numer-
ical analysis of the dam response and for which the uncertainty or likelihood of occurrence
was formally included, through their probability distribution function (PDF). All the re-
maining input parameters were held constant and were represented by their best estimate
values. While the seismic response modeling uncertainty has been taken into account in
terms of parameter uncertainty, it should be acknowledged that neglecting higher-level

uncertainties in the seismic response, can lead to the underestimation of the true model
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uncertainty [163]. For the case study dam, due to the limited availability of material
investigations, the probability distributions were defined using empirical data from sim-
ilar dams. The uniform distribution was used for the parameters other than damping,
for which a log-normal distribution was adopted, as proposed by Ghanaat et al. [83]. A
screening study to assess the effect of each modeling parameter on the response of the dam
can be found in Bernier et al. [20]. The uncertainties due to the variables in Table
were propagated in the fragility analysis using Latin hypercube sampling (LHS) due to
its ability to ensure that the set of samples reflects the entire range of the parameters, as
demonstrated in past applications to earthquake engineering [164], 165]. Thirty statisti-
cally significant samples of the dam model at each intensity level were generated with this

procedure.

4.5.3 Fragility curves

A fragility function is defined by the conditional probability that a structure will meet

or exceed a specified level of damage for a given ground motion intensity measure, as
illustrated by Eq. (4.7):

fragility = P¢(IM) = P¢(LS|IM = im), (4.7)

where P¢(IM) is the fragility, LS is the damage limit state, IM is the intensity measure,
and im is the achieved condition for the specified IM. In this study, the chosen IM was the
spectral acceleration at the fundamental period of the dam-reservoir-foundation system
(Sa(Ty)). The fragility curves were developed using multiple stripes analysis (MSA) [68],
which enables efficient estimation of fragility curves from a small number of dynamic

analyses at a limited number of discrete intensity levels. For each of the 7 intensity levels,

Table 4.3 Modeling parameter assumed PDFs

Parameters PDF Distribution Parameters
Concrete-to-rock tensile strength (MPa) Uniform L=0.2 U=1.5
Concrete-to-concrete tensile strength (MPa)  Uniform L=0.3 U=2.0
Concrete-to-rock cohesion (MPa) Uniform L=0.3 U=2.0
Concrete-to-concrete cohesion (MPa) Uniform L=0.9 U=25
Concrete-to-rock angle of friction (°) Uniform L=42 U=55
Concrete-to-concrete angle of friction (°) Uniform L=42 U=55
Drain efficiency (%) Uniform L=0.0 U=66

Concrete damping (%) Log-normal A=-2.99 ¢(=0.35
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30 samples of the finite element model were generated with LHS and were paired with 30
sets of ground motion records selected via GCIM. The maximum sliding displacements at
the base and at the neck interface were computed from the non-linear simulations of the
dam-reservoir-foundation system. A log-normal PDF was fit to the sliding displacements at
the base and neck for each intensity level; thus, the fragility point estimates were computed
as the probability that the displacement at each intensity level exceeds the specific damage
state displacement threshold. Finally, to compute the fragility, a log-normal cumulative
distribution function (CDF) was fitted to the data points according to Eq. , in which
®,r is the integral probability in the standard normal space, p is the median capacity
(expressed in units that are dimensionally consistent with the demand parameter, im),

and [ is the logarithmic standard deviation (or dispersion) of the capacity.

)

Following the recommendations of Baker [68], when using MSA, the maximum likelihood
estimation (MLE) method was employed to fit Eq. (4.8) to the fragility point estimates.
Figure [4.8] presents the resulting fragility curves.

In(IM /1)
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Figure 4.8 Fragility curves for: (a) base sliding, (b) neck sliding

4.5.4 Comparison of the ground motion selection approaches

The superiority of the CS method as a ground motion record selection tool to develop
fragility curves compared to the traditional methodology based on the uniform hazard
spectrum as the target was demonstrated by Bernier et al. [21] for the seismic assessment of

gravity dams. Nevertheless, the ground motion record selection was conducted considering
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the horizontal spectral acceleration as the sole IM, whereas the fragility curves developed
herein are based on records selected by considering multiple IMs. Therefor, to illustrate
the differences, Figure [4.9] directly compares the fragility curves proposed in this study,
which were obtained from the updated Canadian hazard model and multiple-IM-based
record selection with the GCIM (Method A), with the fragility curves obtained using the
2010 hazard model for Canada and single-IM-based record selection with the CS method
(Method B). The fragility estimates of the curves obtained via Method B are conservative
with respect to those obtained by Method A, an outcome that is even more evident for
the neck sliding limit state. For the base sliding limit state, the median differs by 2
to 20%, whereas for the neck sliding limit state, it differs by 11 to 24 %. These results
were expected because it was previously shown in Figure (a) that the annual rate of
exceedance of the 2015 hazard model is lower than that calculated with the 2010 hazard
model for the same range of spectral acceleration. Moreover, the representativeness of
the selected ground motions with Method B is based on comparison of the mean and
standard deviation of the spectral accelerations at various vibration periods, whereas in
the proposed approach (Method A), representativeness is based on statistical goodness-
of-fit comparisons for each IM of the empirical distribution function (EDF) of the ground
motion records and the GCIM distribution. This leads to ground motion record sets that
more accurately describe the seismic scenario at the site and the structure in question
due to the ability to account for all the relevant IMs. These results also highlights how
selecting ground motion records to match a target (elastic) response spectrum can lead to
a less precise and overly conservative estimate of the probability of reaching the considered

damage limit states.
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Figure 4.9 Comparison of fragility curves obtained via Method A (solid line)
and Method B (dashed line) for: (a) base sliding and (b) neck sliding limit states
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4.6 Safety assessment

4.6.1 Expected seismic performance under extreme limit states

Given the high risk associated with concrete gravity dams related to the catastrophic con-
sequences of a potential collapse and uncontrolled release of water, their safety assessment
represents one of the most important and complex problems for owners and regulatory
organizations. In Canada, the committee of the Canadian Dam Association (CDA) has
the vision of being the authoritative source for dam safety practices, and its current de-
sign philosophy provides the minimum standards for life safety [31]. Now that the updated
fragility functions have been proposed in the previous section, it is important to understand
the level of risk (for the considered limit states) to which the case study dam is subject.
To evaluate the seismic performance of the case study dam under extreme limit states, the
return period boundaries for the hazard classification provided by the CDA (Table
were used. For a given probability of exceedance (P.), prescribed by the safety guidelines,
the corresponding spectral acceleration was extracted from the hazard curve. The fragility
estimates of the system for the specified return periods (P,.) were then calculated from the
fragility curves corresponding to the 100 mm and 150 mm damage states for the neck and
the base sliding limit states, respectively. The probabilities of exceedance calculated for
the "extreme risk" case were compared with the values proposed by the ASCE 7-16 [14§)]
guidelines for the maximum probability of failure for the MCE. For a risk category III
(dam-type structures) and total or partial structural collapse, the maximum probability
of failure should be less than 6 %. As shown in Table [4.4] for Method A and for both limit
states, the probability of exceedance is less than 6 %. By contrast, the results obtained
with Method B show that for both limit states, the probability of exceedance is well above
the maximum value and is even higher for neck sliding. The main outcome of this short
safety assessment exercise is that the outdated hazard model, coupled with a less com-
prehensive ground motion record selection approach, yields overly conservative estimates,
which can have a direct impact in the application of safety guidelines and eventual decision

making.

4.6.2 Unconditional Probabilities of Failure

A structure is potentially exposed throughout its lifetime to all the possibilities of the
occurrence of ground motion intensities at a given site, as characterized by the site-specific
seismic hazard curve. Accordingly, and for completeness, the assessment of the annual

risk, measured as the annual probability of exceedance of the specified damage state, was
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Table 4.4 Probability of exceedance of the limit states set by the CDA

Hazard CDA boundaries Method A Method B
P,., Base P,., Neck P,, Base P,, Neck
Low P. > 1/100 < 0.01 < 0.01 < 0.01 < 0.01
Significant ~ 1/1000 <P, < 1/100 < 0.01 < 0.01 < 0.01 < 0.01
High P. > 1/2475 < 0.01 < 0.01 < 0.01 < 0.01
Very high 1/10* <P, < 1/2475 < 0.01 < 0.01 1.31 x 1072 2.11 x 1072
Extreme P. < 1/10% 3.59x 1072 2.34x 1072 9.73x 1072 1.37 x 107!

* Maximum considered earthquake (MCE)

also performed. The fragility functions were convolved with the hazard curve resulting
from PSHA to calculate the unconditional probabilities of exceedance. Using the hazard
function from Eq. , the unconditional probability of exceedance can be approximated
with Eq. and used to assess the annual probability of damage, which has been proven
to be an accurate approximation of the probability of failure for small periods of time,
such as 1 year [147, [166].

dv
P um:/ 1 — P¢(LS|IM, Sa(T; ’— dSa(T 4.9
pone = [ PALSING S(T) | |45l (1.9
o s , av :
P (LS|IM, Sa(T})) is given by the fragility function, and Sa(Ty) is the PDF of the median
a\ily

hazard at the dam site. Table presents the risk evaluated as the annual probability
of exceeding each damage limit state, and the unconditional probabilities for the most
damaging limit states were compared with the annual probabilities of failure found in the
literature. MacGregor [149] recommended that the collapse probability of a building-type
structure should be on the order of magnitude of 5 x 107> and even lower for structures of
special importance, such as dams and nuclear power plants. In the same manner, following
the risk category framework proposed by the ASCE 7-16, the number of people at risk is
between 100 and 1000. For this range, the FEMA P-1025 [I50] guidelines specify a value
between 1 x 107° and 1 x 1076 for tolerable risk. Table shows that for the most severe
limit states, the corresponding probabilities of exceedance are within the aforementioned

boundaries.
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Table 4.5 Annual probability of exceedance

Limit state P une, Base Py yne, Neck
Incipient sliding 1.32x 107 5.17x 107°
25 mm 435 x107° 199 x 107°
50 mm 247 x107°  1.07 x 107°

150 mm (base) - 100 mm (neck) 9.26 x 1075  6.63 x 10~°

4.7 Conclusions

The main objective of this study was to understand and present the level of improvement
in the fragility analysis of concrete gravity dams provided by the use of an innovative
method for record selection that combines the latest advances in probabilistic seismic

hazard analysis and the most influential IMs for the proposed limit states.

The methodology was applied to a case study dam located in north-eastern Canada. PSHA
was performed with the open-source software OpenQuake and the updated 2015 hazard
model for Canada to characterize the seismic scenario at the dam site. The results of the
PSHA at the dam site with the updated hazard model were compared with the results of
the previous version to quantify the extent to which the differences between the two models
are significant. The updated model showed lower annual probabilities of exceedance for

the same site, which can be explained by the consideration of a more extensive database.

The intensity measures identified as relevant for the seismic response of the dam were
included in the modified selection algorithm consistent with the GCIM formulation. The
sets of selected ground motion records were paired with the 30 samples of numerical mod-
els of the dam generated with LHS for each intensity level. The fragility curves for the
base and neck sliding limit states of the dam were then generated via multiple stripes anal-
ysis. A safety assessment was performed by calculating the expected seismic performance
under the extreme limit states proposed by the Canadian national guidelines (CDA) and
by determining the unconditional probabilities of damage limit state exceedance. The
fragility functions and the results from the safety assessment obtained with the proposed
methodology were compared with those resulting from the previous hazard model and
using a selection algorithm considering spectral acceleration as the only IM. The compar-
ison showed that the proposed methodology produces less conservative fragility functions
which can be related to the more accurate hazard model and to the fact that the selected
set of ground motions includes the characteristics of the IM that, in addition to Say, are
likely to be present at the dam site. Selecting ground motions by considering only the

horizontal spectral acceleration can lead to sets of records whose distributions with respect
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to other important IMs are not consistent with the seismic scenario at a specific site. Fur-
thermore, the results of the safety assessment with the present methodology were in line
with the minimum safety margins proposed by the current guidelines, whereas the results
were above the tolerable limits for the same case study dam when using the previously

employed procedure based on a less thorough seismic input definition.

Despite the specificities of this case study, namely, its location in eastern Canada and
consideration of only sliding limit states, the conclusions are believed to be useful for
the seismic assessment of concrete gravity dams in general. An important limitation of
this study, which should be addressed by future developments in the field, is the lack of
empirical GMMs and correlation models for ENA and the corresponding impossibility of

selecting records from the ENA database.

4.8 Numerical Implementation

The source code for the GCIM distribution and the selection algorithm used for the case
study dam are available at https://github.com/SeguraRL/GCIM gm eastern Can. The
repository includes meta-data and all the empirical GMMs and correlation models consid-

ered for eastern Canada.
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plorer différentes techniques de méta-modélisation pour sélectionner les plus viables pour
I’évaluation sismique de la siireté des structures de type barrage-poids basées sur des fonc-
tions de fragilité multi-variables, développé par la mise en ccuvre de ce méta-modele. Les
résultats de ’analyse probabiliste des aléas sismiques et les accélérogrammes sélectionnées
dans 'article constituant le chapitre 4, sont utilisées pour générer les points de formation
auxquels les méta-modeéles de régression ont été ajustés. De plus, une méthodologie perme-
ttant d’ajuster les surfaces de fragilité paramétrées aux estimations des points de fragilité
générées avec les méta-modeéles est présentée. Enfin, la comparaison de ces fonctions de
fragilité avec les directives de sécurité actuelles est présentée, ce qui permet d’établir une
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Résumé frangais : Des méthodes probabilistes, telles que I'analyse de la fragilité, ont
été développées comme alternative prometteuse pour I’évaluation sismique des structures

de type barrage. Cependant, compte tenu de la réévaluation cotiteuse des simulations de
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modéles numériques, 'effet des parameétres de modéle susceptibles d’affecter la fragilité sis-
mique du systéme est souvent négligé. Reconnaissant le manque d’exploration approfondie
de différentes techniques d’apprentissage automatique pour développer des substituts ou
des méta-modeéles permettant d’approcher efficacement la réponse sismique des barrages,
cette étude fournit des informations sur les méta-modeéles viables pour I'évaluation sis-
mique des barrages a gravité destinés a ’analyse de la fragilité. La méthodologie proposée
pour générer des fonctions de fragilité multivariée est efficace tout en prenant en compte la
variation de paramétre de modéle la plus critique influant sur la fragilité sismique du bar-
rage. A partir de I'analyse de ces modéles, des recommandations de conception pratiques
peuvent étre formulées. La procédure présentée ici est appliquée & un barrage situé dans
le nord-est du Canada, dont la fragilité est évaluée par comparaison avec les directives de

sécurité en vigueur afin d’établir une plage de valeurs de paramétres de modéle utilisables.

Abstract:

Probabilistic methods, such as fragility analysis, have been developed as a promising
alternative for the seismic assessment of dam-type structures. However, given the costly
reevaluation of the numerical model simulations, the effect of the model parameters likely
to affect the seismic fragility of the system is frequently overlooked. Acknowledging the lack
of the thorough exploration of different machine learning techniques to develop surrogates
or meta-models that efficiently approximate the seismic response of dams, this study
provides insight on viable meta-models for the seismic assessment of gravity dams for
use in fragility analysis. The proposed methodology to generate multivariate fragility
functions offers efficiency while accounting for the most critical model parameter variation
influencing the dam seismic fragility. From the analysis of these models, practical design
recommendations can be formulated. The procedure presented herein is applied to a case
study dam in northeastern Canada, where the polynomial response surface of order 4
(PRS O%) came up as the most viable meta-model among those considered. Its fragility
is assessed through comparison with the current safety guidelines to establish a range of
usable model parameter values in terms of concrete-rock angle of friction, drain efficiency

and concrete-rock cohesion.

Keywords: Gravity dams, fragility functions, meta-models, seismic hazard, modeling

parameters.
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5.1 Introduction

Methods for the seismic analysis of dams have improved extensively in the last few decades,
and the growth of computing power has expedited this improvement. Advanced numerical
models have become more feasible and, thus, constitute the basis of improved procedures
for design and assessment. Moreover, a probabilistic framework is required to manage
the various sources of uncertainty that may impact the system performance and decisions
related thereto [32]. Fragility analysis, which depicts the conditional probability that a
system reaches a structural limit state, is a central tool in this probabilistic framework.
Traditional vulnerability assessment methods develop fragility functions by using a sin-
gle parameter to relate the level of shaking to the expected damage, which consequently
produces a robustness of predictions that is highly dependent on the selected parame-
ter. However, the estimation of the fragility of the system can be potentially improved by
increasing the number of parameters; in this way, a more complete description of the prop-
erties of ground motions can be obtained [89]. Furthermore, the effect of the variation of
the material properties in the seismic fragility analysis of structures with complex numer-
ical models, such as dams, is frequently overlooked due to the costly and time-consuming
revaluation of the numerical model. The seismic response and vulnerability assessment
of key infrastructure elements often require a large number of nonlinear dynamic analy-
ses of complex finite element models (FEMs). The substantial computational time may
be reduced by using machine learning techniques to develop a surrogate or meta-model,
which is an engineering method used when an outcome of interest cannot be easily directly
measured; thus, a model of the outcome is used instead [15]. In addition, if the outcome
of interest comes from non-linear FEM analysis that reflects the dynamic behaviour of
the structure under seismic loading, the meta-model will emulate this behaviour. To this
end, these algorithms include several features in their mathematical formulation to help
capture this highly non-linear behaviour. Among them, the use of higher order sparse
polynomials, partitioning the sample space and fitting a series of models and then com-
bines them into an ensemble with an overall better performance and by mapping into high

dimensional feature space, between others.

Such a challenge is particularly relevant to the case of large-scale infrastructures such as
dams subjected to seismic loads. Thus, the main goal of this study is to explore the
applicability of meta-models for the seismic assessment of gravity dams and present a
methodology to develop parameterized multivariate fragility functions through the use of
the latter. The secondary goal is to explicitly account for the effect of the model parameter

variation in the seismic fragility analysis. The proposed methodology has the added asset
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of properly depicting the seismic scenario likely to occur at a specific site, enhancing the
accuracy of the seismic fragility analysis. The proposed methodology is applied to a case

study gravity dam located in northeastern Canada.

5.1.1 Literature review

In the past two decades, univariate fragility functions, which depict the potential for limit
state exceedance conditional on a ground motion intensity, have been readily adopted and
developed for the seismic assessment of structures, as it can been found in several state-of-
the-art reviews [167, 28|, [168]. However, given the recognized limitations of such univariate
fragility curves, the use of multivariate fragility functions to assess the vulnerability of a
given structure or portfolio of structures is beginning to be used progressively [91], 99,
94, [92], 169]. Noted advantages of these parameterized or multivariate fragility functions
include the potential for efficient posterior uncertainty propagation, exploring sensitivities
or the influence of design parameter variation, and enabling application across a portfolio of
structures. Nevertheless, given the large number of simulations required, the development
of fragility surfaces or multivariate fragility functions that leverage numerical models can

impose high computational burdens.

The combination of numerical models, probabilistic approaches and machine learning has
gained considerable interest in the literature in recent years for engineering design and
structural reliability [106] 115, IT16]. This combination is justified by the significant ran-
domness that characterizes not only the earthquake excitation but also the structural
system itself (e.g., stochastic variations in the material properties, degradation due to
aging and temperature fluctuation, etc.). Surrogate modeling techniques within a seismic
fragility framework have found recent applications for the safety assessment of buildings
and bridges, among other structures [123] 118 06, 00, 117, 124]. Even though many of
these studies considered several seismic intensity measures (IMs) and model parameters
(MPs) for building the meta-models to predict the response of the structure, most of them
do not clearly depict the influence of all the considered parameters in the form of multivari-
ate fragility functions from the respective meta-models. For the specific case of dam-type
structures, an extensive comparison between machine-learning data-based predictive mod-
els for monitoring the dam behavior can be found in Salazar et al. [I127] and Salazar et
al. [128]. More recently, Hariri-Ardebili and Pourkamali-Anaraki [129], Hariri-Ardebili
and Pourkamali-Anaraki [I30], and Hariri-Ardebili [I3T] have used machine learning tech-

niques to perform reliability analysis applied to gravity dams against flooding, earthquakes
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and aging, considering, in some cases, explicit limit state functions and simplified FEM in

others.

Most of the prior studies on the seismic assessment of concrete gravity dams via machine
learning techniques are limited to the consideration of a single meta-model, simplified
finite element models and univariate fragility functions. Therefore, they do not explore
the most suitable meta-model for fragility analysis of this type of structure, nor they
explore the influence of the variation of the model parameters on the seismic fragility
analysis. Moreover, none these studies discuss the proper definition of the seismic scenario

likely to occur at a specific site in a probabilistic manner.

5.1.2 Originality and contribution

To address the aforementioned gaps, this paper aims to identify most viable meta-model,
from the subset of machine learning methods considered, for the seismic fragility assess-
ment of gravity dams, provide an overview on the importance of the parameters influencing
the dam performance and formulate design recommendations from the analysis. The major
contributions of this paper, in order of presentation, can be listed as follows: (i) perform a
comparative analysis to determine the best performing regression meta-model to predict
the base sliding of gravity dams from 6 meta-models with different basis function configu-
rations, yielding a total of 14 different regression techniques, for the first time; (ii) present
a methodology to fit parameterized fragility surfaces, as a function of IMs and MPs, from
the meta-models; (iii) consider the correlation between the seismic IMs from a probabilis-
tic seismic hazard analysis (PSHA) to generate the samples to characterize the seismic
scenario where the meta-model will be evaluated; (iv) gain insight into the influence of the
model parameters affecting the dam performance and explicitly quantify their effect with
the generation of multivariate fragility functions; and (v) formulate model parameter de-
sign recommendations from the analysis, e.g., appropriate range of parameters to achieve

target risk.

5.2 Meta-model-based multivariate fragility procedure

Dam seismic assessment is a complex task due to the uniqueness of each of such structures
and to the interaction between the different components of the system. Similarly, the
seismic response of dam-type structures involves nonlinear dynamic analysis of complex
finite element models, often requiring prohibitively high computation times. Machine

learning describes a series of methods that allow learning from data, what relationships
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exist between the quantities of interest. When performing probabilistic studies related
to structural reliability, it may be interesting to replace the finite element model by a
regression model built on a set of simulated responses, for the purpose of computational
efficiency [95]. Accordingly, the motivation of applying statistical learning techniques to
develop a seismic probabilistic demand model or meta-model is to expedite this safety
assessment process. Such "model of a model" is based on machine learning techniques
to allow the algorithm to learn from the data and because observations are the output
of a simulation, the observation model does not include any observation error. Within
this context, a probabilistic seismic demand model expresses an approximate relationship
between an uncertain seismic response, e.g., a dam’s maximum relative base sliding, and a
set of parameters that influence the response. The basic idea is for the surrogate or meta-
model to act as a “curve fit” to the available data so that the results may be predicted

without requiring costly simulation. In the general case, the meta-model can be described

as follows:
v = gx) +v, x={x1,r0,..., 2} (5.1)
~ S~~~ ~~ d
response meta-model covariates

where the surrogate model g(+) statistically predicts the response of the structure, y;, for
a given set of intensity measures and model parameters, x;, and v is the error due to the

lack of fit of the surrogate model.

The meta-models considered herein are within an adaptive scheme, i.e., the functions in
the meta-models can change according to the input data to reduce the burden of manual
selection of several parameters in the meta-model. Therefore, three adaptive meta-models
and an interpolation scheme will be considered. In addition, the performance of two other
statistical learning algorithms based on kernels and decision trees will also be addressed.
Among the different regression techniques, this paper focuses on the following: (1) poly-
nomial response surface models of order 2 to 4 with stepwise regression (PRS 0%*); (2)
multivariate adaptive regressive splines (MARS) with linear and cubic splines; (3) adap-
tive basis function construction (ABFC); (4) radial basis function (RBF) interpolation
with multiquadratic, thin plate splines and Gaussian basis functions; (5) support vector
machines for regression (SVMR) with linear, quadratic, cubic and radial basis function

kernels; and (6) random forest for regression (RFR).

Within the extent of this study, the first comparative analysis of meta-models in the con-
text of seismic assessment of dams is performed. Using the results from the finite element

simulations, this study develops meta-models for approximating the seismic response of
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gravity dam-type structures using the three steps outlined in Figure The subsequent

sections will detail such steps.

5.2.1 Design of experiments

To minimize the associated cost of running dynamic nonlinear FEM of dams under seismic
excitation while analysing an adequate number of loading conditions and structural system
configurations, an appropriate experimental design method should be used. Structural
and material properties likely to affect the seismic response of the structure should be
considered, and their associated ranges should be based on experimental data or values
found in the literature. The Latin hypercube sampling (LHS) experimental design method
is adopted to generate n; sample points representing the different configurations of the
dam under study. This sampling technique was selected because of its ability to divide the
desired range of values for each parameter into n-equiprobable intervals and then select a

sample once from each interval.

Step 1: Experimental design matrix

- Select the set of parameters defining loading
conditions and structural configurations;

- Define range of feasible values;

- Define the number n; of FE simulations to be
performed;

- Generate ny sample points with LHS in the
corresponding space of the selected parameters;

Step 2: Finite element simulations

- Conduct ny dynamic non-linear finite element
simulations;

- Obtain the structural response y;, corresponding to
each row x;, of the experimental design matrix, X;

Step 3: Fit meta-models
- Fit different regression techniques g(X) considering

Figure 5.1 Procedure for the generation of meta-models

5.2.2 Meta-modeling techniques

The following subsections provide a brief overview of the different meta-models tested in
this study for the ability to offer viable meta-models of the seismic response of dams.

Only the most relevant features of each technique will be presented given that exhaustive
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mathematical formulation can be found in the literature. Alternatively, relevant details

concerning the model fitting and the algorithm settings are provided.
Polynomial response surface - PRS

The polynomial response surface is an m-dimensional surface that predicts desired re-
sponses using a computationally efficient closed-form polynomial function developed from
a set number of input variables [103]. PRS was implemented together with stepwise re-
gression to select the best explanatory or basis functions. The sparse polynomial response

surface can be represented as follows:
y=a'® (5.2)

where ¢ represents the predicted value with the meta-model, the set of coefficients is
represented by a column vector a and © is a column vector of basis functions. In this
study, the response variable was considered normally distributed and the meta-model was

trained using the statistics and machine learning toolbox in Matlab [146].

Up to 2nd-order polynomials shall suffice for responses characterized by low curvatures,
while 3rd- and 4th-degree polynomials including two factor interactions are more appropri-
ate for significant curvatures [103]. This approach is considered because past studies have
shown them to be efficient and accurate for concrete gravity dam seismic performance as

well as for meta-models of other complex structures [131], [T1§].
Adaptive basis function construction - ABFC

ABFC is a sparse polynomial regression model building approach that enables adaptive
model building without restrictions on the model’s degree, accomplished in polynomial
time instead of exponential time, as well as without the requirement to repeat the model
building process [145]. The required basis functions are automatically iteratively con-
structed using heuristic search, specifically for the particular data. The ABFC meta-
model can be represented by Eq. , where the order of the polynomial basis functions
are adaptively determined. When working with relatively small datasets, basis functions
selection bias and instability should be prevented. To this end, the ensemble of float-
ing adaptive basis function construction (EF-ABFC) method proposed by Jekabsons [145]
was used, together with the corrected Akaike’s information criterion (AICC) as the pe-
nalization criteria for model evaluation. The software variReg [143] implemented through

Matlab was used to train this meta-model.
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Similar to the PRS, ABFC has also been proven to be a valuable technique for the evalu-

ation of the seismic performance of complex structures [96].
Multivariate adaptive regressive splines - MARS

MARS is a form of regression analysis introduced by Friedman [I70]. It is a nonparametric
regression technique and can be considered an extension of linear models that automat-
ically take into account nonlinearities and interactions between variables using a tensor
product basis of regression splines to represent the multidimensional regression functions.

The MARS meta-model can be represented as follows:
g = Z cibi(x) (5.3)
i=1

where ¢; are constants coefficients and b;(x) are the basis functions. Due to its adaptive
nature, the MARS meta-model partitions the sample space and fits a series of models,
each of which has a lower error, and then combines them into an ensemble with an overall
better performance [90]. Two MARS models were trained, one with cubic splines and
the other with linear splines. The toolbox for Matlab developed by Jekabsons [144] was
used for this purpose. The algorithm builds a model in two phases: forward selection and
backward deletion. From the backward deletion phase the "best" models of each size are
selected and outputted as the final one based on the ones with the lowest generalized cross-
validation (GCV) estimates. As suggested by Jekabsons [144], most attention was paid
to the maximum number of basis functions included in the model, the maximum degree
of interaction between input variables and the GCV penalty per knot. Regarding the
maximum number of basis functions, the recommended value for this parameter is about
two times the expected number of basis functions in the final model [I170] and in the context
of this study was limited to 30. The maximum degree of interaction was set to 3 because it
was found to be a fair trade off between the meta-model predictive capabilities and the use
of computational resources. Concerning the GCV penalty per knot, larger values will lead
to fewer knots (i.e., the final model will have fewer basis functions). Simulation studies
suggest values in the range of about 2 to 4 [144]. As recommended by Friedman [I70],

taking into account the maximum number of interactions, these value was set equal to 3.

MARS models are well suited to nonlinear problems, easily interpretable, and have achieved
great accuracy in predicting structural response due to their adaptive nature while being

computationally efficient for seismic assessment [127], 96] [90].
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Radial basis functions - RBF

Radial basis function interpolation uses basis functions whose response monotonically
changes as the distance from the central point increases. It was first introduced by
Hardy [I71] for scattered multivariate data interpolation, using linear combinations of
radially symmetric functions based on Euclidian distances or similar metrics to approx-

imate response functions. The RBF can be expressed in the following functional form:

U= ag+ Z a;PrpF, [wi(x)] (5.4)

i=1
where ®rpr, [w;(x)] is a nonlinear mapping from the input layer to the hidden layer, aq is
the bias, and ay, ..., a,, are the connection weights between the hidden layer and output
layer, typically determined using iterative procedures. Multiquadratic, thin plate spline
and Gaussian radial basis functions are some of the basis functions typically considered for
interpolation [I03]. For the Multicuadratic basis functions and the thin plate spline basis
functions, the shape parameter was kept constant as 1/ny while for the basis Gaussian
basis functions, the smoothing parameter was found using leave one out cross-validation
(LOOCV). The RBF meta-model was also implemented with the software variReg [145].

Despite the lack of transparency due to the hidden layer, RBF have been proven to generate
excellent approximations to a wide range of structural responses [96, 90, 115] and are thus

considered in this study.
Support vector machine for regression - SVMR

Support vector machines are a modern class of statistical learning algorithms with a sparse
solution; thus, predictions only depend on a subset of the training data, known as support
vectors [103]. This technique was originally designed for binary classification but can be
extended to regression. Moreover, it contains all the main features that characterize the
maximum margin algorithm: a nonlinear function is learned by a linear learning machine’s
mapping into high-dimensional kernel-induced feature space. The capacity of the system
is controlled by parameters that do not depend on the dimensionality of the feature space.
In SVM regression, the input X is first mapped onto an m-dimensional feature space using
a nonlinear mapping, and then a linear model is constructed in this feature the space. The
statistics and machine learning toolbox in Matlab [I46] was used to train the meta-model
with four different types of kernels (linear, quadratic, cubic and radial basis functions). A
set of hyper-parameters values must be set before the learning process, which for SVMR

includes the soft margin constant (cost function, C'), parameters of the kernel function
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(width of RBF kernel or degree of a polynomial kernel) and the tolerance width margin,
e. Regarding the soft margin constant the value C' = igr(y)/1.349, where igr(y) is the
interquartile range of response variable, was used for the RBF kernel and C' = 1 for all
other kernels as recommended by Fan et al. [?|. The width of the RBF kernel was set equal
to 1 and, as it was already mentioned, the degree of the polynomial kernel was set equal
to 1, 2 and 3. Concerning the tolerance width margin, € was set equal to igr(y)/13.49 as

recommended by Fan et al. [?].

SVMR has started to be used progressively for the fragility assessment of bridges [172} 90,

96] and more recently for dams [127], 129], showing satisfactory results.
Random forest for regression - RFR

A random forest is a meta-estimator that fits a number of classifying decision trees on
various subsamples of the dataset and uses averaging to improve the predictive accuracy
and control overfitting. The random forest model is an additive-type model that makes
predictions by combining decisions from a sequence of base models. More formally, we can

write this class of models as follows:
XN
0= 2; fi(x) (55)

where the final model is the sum of simple base models f;(x). Here, each base classifier is a
simple decision tree. In random forests, all the base models are constructed independently
using a different subsample of the data [I03]. A regression ensemble was performed within
100 decision trees using Bootstrap aggregation as the ensemble aggregation method due
to its ability of reducing over-fitting of the model, handle higher dimensionality very
well and a less careful tuning of different hyper-parameters unlike the Boosting ensemble
method [I73]. Moreover, random forests typically offer a good estimate on prediction
accuracy for external data based on the out-of-bag (OOB) accuracy. For bagged decision
trees, the maximum number of decision splits was set at ny—1 and the number of predictors
to select at random for each split was one third of the number of predictors. The algorithm

was implemented with the statistics and machine learning toolbox in Matlab [146].

RFR meta-models are easy to train and implement, and in contrast to other methods,
random forests are not sensitive to outliers. For these reasons, together with the fairly
good performance of this technique in the literature [90, 96, 127], RFR are implemented
in this study.
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5.2.3 Cross-validated goodness-of-fit estimates

The goodness-of-fit estimates depict the discrepancy between the observed values from
the FEM simulation and the estimated value with the meta-model in question. The root
mean square error (RMSE) provides a measure of global error, quantifying the difference

between the responses predicted by the meta-model and actual data and is computed as

RMﬁh:¢Z£i%:%l (5.6)

ny

follows:

where y; are the response values in the dataset, ¢; are the predicted values and ny is the
total number of points in the dataset (FE simulations). Additionally, the coefficient of

determination R? can be calculated as follows:

>, (Wi — 3i)?

ngo?

R*=1- (5.7)
where o is the variance of the response in the dam response dataset. Similarly, the relative
maximum absolute error (RMAE) measures the extent of the local fitting error and is the
ratio of the maximum absolute difference between the meta-model and test data responses
to the standard deviation of the actual response:

maz|y; — §il

RMAE = (5.8)

o

In the present study, the predictive capability of the meta-models will be assessed through
5-fold cross-validation (5-CV) [95]. The dataset is randomly divided into 5 sets, and the
meta-model is trained using k — 1 sets, with the remaining set used as test data. This
procedure is repeated 5 times; thus, 5-CV provides an estimate of the predictive accuracy
of the model for unknown data. The average R? value resulting from 5-CV will be used
along with RMSE and RMAE to compare the different meta-models.

5.2.4 Multivariate fragility analysis

As stated by Ghosh et al. [90], single-parameter demand models suffer from two potential
drawbacks: (i) the inability to assess the impact of structural model parameter variation
on structure performance during earthquakes without costly re-analysis for each new set of
parameter combinations and (ii) the lack of flexibility to incorporate field instrumentation
data from monitoring of existing structures to enable the updating of seismic fragility

estimates. Consequently, the use of multivariate fragility functions enables the efficient
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uncertainty propagation of the random variables and allows for the exploration of the
effects of design parameter variation on the vulnerability of the structure. Thus, the goal
is to identify the role of the most influential ground motion IMs and MPs on the induced
damage in the structure to build multivariate fragility functions from the meta-model

output to provide a more complete and accurate view of the vulnerability of the structure.

Similar to fragility curves, multivariate fragility functions offer the conditional probability
of exceeding different limit states given the occurrence of an earthquake of a certain inten-
sity. The only difference is that the specific limit state is characterized with n parameters
P1, P2 - - - Pn instead of one parameter, as is the case with fragility curves. Hence the prob-
ability of limit state exceedance is conditioned on the resulting set of critical parameters.

The fragility function corresponding to the limit state [ is defined as follows:
Fi(zy,29,...,2,) = Pr(LS > LSi|p1 = 21,02 = %2, ..., P = ) (5.9)

where LS is the limit state damage index, and LS; is the value corresponding to the [**

limit state.
Sample generation and fragility point estimates

This paper adopts a sampling strategy for generating point estimates of the fragility func-
tions that draws upon the approach presented in multiple stripe analysis (MSA). However,
in this study, both the ground motion and model intensity ranges of parameters are strat-
ified, and rather than conduct nonlinear dynamic analyses, the meta-models are used for

approximating the seismic response.

To this end, the selected IMs and MPs to generate the fragility surface are divided in N
and M intensity levels, respectively, and samples are generated as shown in Figure [5.2]
While keeping one parameter constant, the other is varied among the different levels,
and its response is approximated with the meta-model. The fragility point estimate is
calculated as the number of samples with a specific IM and MP intensity level that exceed
a determined limit state over the total number of samples generated with those specific
IM and MP.

Parametric fragility surfaces

While fragility curves are usually represented by well-known and readily parameterizable
probability distributions such as the log-normal one, the problem is more complex for
surfaces, where bivariate distributions must be computed. To fit an analytical function

to the fragility point estimates, within this MSA approach, the methodology proposed by
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M, - ;MP,

Mo — sMP;, N seismic intensity levels

’ M modelling parameter levels
M3 — sMP 3
P (IM = imp,, MP = mpr,,) > LS,
! (IM = impn, MP = mprm ot
IM N - SMP;s

Figure 5.2 Multiple stripe analysis for meta-model fragility point estimate
generation

Baker [68] to generate fragility curves and the methodology proposed by Brandenberg et
al. [91] to generate fragility surfaces are combined for the first time. This joint procedure
is further modified to make it suitable for the generation of fragility surfaces from the
meta-model results, as a function of seismic IMs and model parameters, as shown in
Figure [5.3] The steps involved in the construction of the parametric fragility surfaces can

be summarized as follows:

1. For each limit state, [, fit fragility curves (F.) according to Eq. (5.10)), as a function
of the seismic IM, for each MP intensity level, mpy.

F.(IM, MP = mpy) = &,(IM, 0y, 5.) (5.10)
where @, is a cumulative density function (CDF), and 6, and fy are the parameters

characterizing the associated CDF.

2. Plot the values of parameters 6, and S, for each limit state and for each value of

mpy, and fit a functional form to the discrete data:

0 = k(ps, MP) (5.11)

B = k(pg, MP) (5.12)

where 6 and B are the analytical expressions of the parameters characterizing the
CDF as a function of MP, and py and ps are the regression coefficients and x(-) is

the fit-type function (polynomial, exponential, etc.) selected for each MP.

3. Substitute Eq. (5.11)—(5.12)) into Eq. (5.10) to obtain the analytical expression of

the fragility surface (Fy) as a function of IM and MP for each limit state, as shown
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in Eq. (5.13).

F,(IM, MP) = &,(IM, 8, 8) = &; (IM, x(pg, MP), (ps, MP)) (5.13)

Three different CDFs, (i) normal, (ii) log-normal and (iii) Weibull, were tested, and the
one with the best performance in each case was selected. The parameters of Eq. ((5.10)
were estimated with the maximum likelihood estimation (MLE) method and a Newton-

Raphson optimization technique, as recommended by Baker [68] when working with the
MSA method.

In the following sections, an application of the proposed methodology to assess the seis-
mic vulnerability of a concrete gravity dam case study is presented, where the effect of
the different model parameters influencing the seismic response of the dam is explicitly

considered in the fragility analysis.

P;(LS; IM,MP)

Fragility curves: F, = ®;(IM, 0y, B)
N—

T~
Fragility surface: Fs; = ®;(IM, 0, 3)

P(LS; [IM,MP)

M

Figure 5.3 Parametric fragility surface construction

5.3 Case study: description and modeling

The proposed methodology in this study is applied to a case study gravity dam in Quebec,
Canada. It possesses 19 unkeyed monoliths, a maximum crest height of 78 m, and a crest

length of 300 m. The dam was chosen for its simple and almost symmetric geometry,
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its well documented dynamic behavior and the availability of forced vibration test results

used to calibrate the dynamic properties of the numerical model [22].

5.3.1 Finite element model

The tallest monolith of the dam is selected as representative of the structure and was
modeled with the explicit finite element software LS-Dyna [135], as shown in Figure
following the recommendations of the United States Bureau of Reclamation (USBR) [37].
Only one load case combination was considered, which included self-weight, hydrostatic
thrust, uplift, hydrodynamic effects and seismic load. The proposed model takes into
account the different interactions among the structure, reservoir, and foundation. The
reservoir is modeled with compressible fluid elements, whereas the concrete dam and the
rock foundation are modeled with linear elastic materials to which a viscous damping is
associated. Preliminary linear analyses identified the concrete-rock interface at the base of
the dam and the concrete-concrete interface at the crest of the dam as high areas of tensile
stresses and, therefore, where cracking and sliding could occur. Consequently, the model
nonlinearity was constrained to these two areas only, using tiebreak contact elements with
a tension-shear failure criterion. Further details of the modeling assumptions and the

validation of the numerical model can be found in Bernier et al. [20].

Fluid elements (Lagrangian formulation) Neck of the dam

Tiebreak contact

Non-reflecting boundary condition

< Non-reflecting boundary condition

Figure 5.4 Finite element model of the case study dam

Y

Non-reflecting boundary ,
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5.3.2 Model parameter uncertainty

Table presents the parameters that were considered random variables in the numerical
analysis of the dam response and for which the uncertainty was formally included through
their probability distribution functions (PDFs). All of the remaining input parameters
were kept constant and represented by their best estimate values. For the case study
dam, due to limited availability of material investigations, the probability distributions
were defined using empirical data of similar dams. The uniform distribution was used for
most parameters except for damping, for which a log-normal distribution was adopted as
proposed by Ghanaat et al. [83]. By posing the resulting meta-models and fragilities as
functions of MPs that have a significant impact on the behavior of the dam, future studies

may integrate these models with emerging estimates of these parameters or updated PDFs.

Table 5.1 Parameter distributions considered for statistical design of experiments

Parameters PDF Distribution Parameters
Concrete-to-rock tensile strength (MPa) Uniform L=02 U=15
Concrete-to-concrete tensile strength (MPa)  Uniform L =023 U=20
Concrete-to-rock cohesion (MPa) Uniform L =03 U=20
Concrete-to-concrete cohesion (MPa) Uniform L-=09 U =25
Concrete-to-rock angle of friction (°) Uniform L =42 U =55
Concrete-to-concrete angle of friction (°) Uniform L =42 U =55
Drain efficiency (%) Uniform L =00 U = 66
Concrete damping (%) Log-normal A =-299 (=0.35

5.3.3 Damage limit states

In recent years, typical damage modes that could lead to the potential collapse in dams
after a seismic event have been identified, and seismic damage levels can be established.
Preliminary analyses have confirmed sliding as the critical failure mode for the case study
dam [20], and other failure modes would only occur after sliding had already been observed.
As a result, base sliding at the concrete-to-rock interface damage limit states proposed
in Tekie and Ellingwood [I4] is considered in this study and presented in Table [5.2] The
incipient sliding limit state should only cause minor damage since well-dimensioned dams
should be able to undergo slight deformations or displacements while remaining stable.
The moderate damage limit state can be considered as the onset of nonlinear behavior
where material cracking occurs, deformations may become permanent and the drainage
system begins to be affected. Displacement greater than 50 mm could cause differential

movements between the blocks and potentially lead to the loss of control of the reservoir
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and very extensive damage, while displacements greater than 150 mm represent a complete

damage state and high probability of collapse of the structure.

Table 5.2 Limit states considered for
the case study dam

Limit state Base sliding, 0.,
LSO - Slight/minor 5 mm
LS1 - Moderate 25 mm
LS2 - Extensive 50 mm
LS3 - Complete 150 mm

5.3.4 Seismic hazard and ground motion selection method

A probabilistic seismic hazard analysis (PSHA) was performed at the dam site with the
computer software OpenQuake [141] to characterize the possible earthquake scenarios at
different intensity levels. The hazard levels were defined in terms of horizontal spectral
acceleration at the fundamental period of the structure (Sapy(71) = 0.1g : 0.1 : 1.0g)
to conveniently cover the range of spectral accelerations corresponding to return periods
from 700 to 30000 years.

To proceed with the selection of a representative set of ground motion time series (GMTS),
the generalized conditional intensity measure (GCIM) approach [74] was adopted. The
purpose of using the GCIM approach is to include the most influencing seismic IMs with
respect to the structural response. For the case of gravity dam-type structures, PGV was
found to be one of the best performing ground-motion structure-independent scalar IM
to correlate damage [30]. Similarly, the vertical spectral acceleration Say is also expected
to be relevant in heavy structures of this sort. As a result, the set of considered IMs in
the GCIM are Say(T), Say(T) and PGV, where Say(T) and Say(T) are computed at
20 vibration periods in the range of T = {0.277 — 2T} }, as proposed by [73], leading to a
total of 41 IMs to be considered in addition to the conditioning IM, Say(7}). The GCIM
distribution computed with the abovementioned IMs was then used to simulate and select
250 ground motions. The records were selected from the PEER NGA-West2 database
[159] due to the limited availability of strong ground motion records in the PEER NGA-
East database [I60]. Further details on the PSHA and the record selection procedure can
be found in Segura et al. [87].
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5.3.5 Most viable meta-model for maximum relative base sliding

prediction

By selecting different configurations of the model parameters in Table 5.1, ny = 250
samples of the FEM were generated with LHS and paired with the selected ground motions.
The maximum relative sliding at the base (dax) Was computed from nonlinear simulations,
and 14 regression meta-models were fitted to the structural response. An initial pre-
screening of the covariates or predictors was made before selecting the algorithm, based
on visual inspection of the scatter plots of the possible predictors with respect to the
response of the structure and taking into account the parameters affecting the dynamic
behaviour of the structure. This initial set of predictors (input) was used to train all
the considered meta-models to perform a comparative analysis. In addition to the model
parameters listed in Table [5.1], several seismic intensity measures were considered in the
starting set of variables, such as spectral acceleration at the fundamental period (Say(T7)),
spectral velocity at the fundamental period (Svy(T7)), peak displacement, velocity and
acceleration (PGD, PGV, PGA), spectrum intensity (SI), earthquake angular frequency
(Wegk ), significant duration (Dse5), Arias intensity (I,), and peak ground acceleration and
spectral acceleration at the fundamental period in the vertical direction (PGAy ,Say (T7)).
Given that some algorithms already perform a internal selection of the predictors (with
forward and backward iterations), the selected final set of predictors (output) in each

meta-model is a sub-set of the initial set of predictors.
Comparison of meta-model predictive capabilities

The performance of the meta-models, namely, their ability to predict the sliding response
of the dam, is judged based on the goodness-of-fit estimates shown in Table[5.3] In general,
good performance of the adaptive-type meta-models and relatively poor performance of
the kernel-based meta-models were observed, which could be explained due to the small
training set. Provided that the number of samples considered to train the different algo-
rithms can have en effect on the performance of the latter, Figure[5.6| presents the variation
of the prediction performance of the considered meta-modeling techniques with respect to
the size of the training set. In general it can been that the prediction accuracy from 5 fold
cross-validation improves as the number of training samples increases and that all consid-
ered meta-models perform poorly with small training samples (< 50). However, it should
be noted that for some meta-models, after a certain number of samples, the goodness-of-fit
estimates remain almost constant or with a relatively low rate of improvement. Indeed, for

these meta-models, the fact of increasing the size of the training samples beyond a certain
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number will not translate in a significant improvement of the predicting capabilities of the
algorithm. This is the case for ABFC, PRS ©0?*, RFR and, to a lesser extent, MARS and
RBF, where beyond 175 training samples the improvement of the predicting accuracy is
relatively low. On the contrary, for SVMR with different kernel functions, it can be ob-
served that the performance of the algorithm keeps progressively increasing as the number
of samples increases. Moreover, although the local and global performance of SVMR with
linear and quadratic kernels is reasonable, it should be mentioned that approximately 72%
of the samples in the dataset were used as support vectors in the multidimensional feature
space to find hyperplane that separates all given samples. This is the result of a highly

non-linear feature space and a larger sample should be use to validate this type of model.

Goodness-of-fit estimates were calculated to evaluate how closely the meta-model’s pre-
dicted values match the FEM simulation (true) values, considering the whole dataset for
training and testing. Despite the fact that some algorithms showed superior performance,
it is also known that some of them tend to overfit the data. To this end, the meta-models
were trained and validated using 5-CV, and the performance was evaluated by calculat-
ing the mean of the goodness-of-fit estimates obtained from each fold. Consequently, by
comparing the estimates from the algorithm trained and validated with the whole dataset
with the ones from cross-validation, it is possible to identify model overfitting. Figure [5.5
presents the comparison of the goodness-of-fit estimates of the meta-models trained with
the entire training set and the average result from 5-CV. It is intended for these indicators
to be as close as possible to ensure that the meta-model can predict accurately for the
cases that were trained with as well as for the unknown cases, i.e. to prevent overfitting.
From Figure , it can be seen that in terms of RMSE and R?, the PRS meta-models
present similar values for both cases. Similarly, in terms of RMAE, the ABFC and the
MARS surrogates, for which the estimates were calculated with the entire training set, are
very close to those from 5-CV. On the other hand, the SVMR behavior suggests overfitting
of the meta-model, given their large capacity to describe the training dataset but failing
to predict beyond it to unseen cases. The RFR meta-model presents fair results regarding
the R? and RMAE, but the difference between the RMSE for the training data and the
average 5-CV reflect some limitations to accurately predict the response of the system.
From Figure and Table [5.3] the best meta-model in terms of predicting capabilities is
the 4th-order PRS (PRS O%), which is evident from the 5-CV results.

Polynomial response Surface Meta-model

From the meta-model comparison, the selected surrogate is a polynomial response surface

of 4th-order (PRS O%) as a function of three model parameters, three seismic intensity
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Table 5.3 Meta-model comparison for base sliding

Meta-model RMSE R? RMAE 5-CV RMSE 5-CV R? 5-CV RMAE
PRST Order: 2 0.367 0.857 1.245 0.381 0.846 0.945
Order: 3 0.324 0.889 1.156 0.342 0.876 0.923
Order: 4 0.319 0.907 1.024 0.321 0.887 0.898
ABFCH 0.308 0.900 1.149 0.360 0.860 1.040
MARST Linear 0.281 0.916 0.920 0.408 0.810 -
Cubic 0.298 0.905 1.040 0.383 0.841 -
RBF* Multiquad - - - 0.355 0.866 1.137
Thin plate - - - 0.373 0.846 1.165
Gaussian - - - 0.468 0.767 1.310
SVMR? Linear 0.361 0.862 1.243 0.379 0.843 0.956
Quadratic  0.302 0.904 1.184 0.405 0.824 1.136
Cubic 0.267 0.924 1.056 0.859 0.213 3.582
RBF 0.194 0.959 0.775 0.651 0.554 1.483
RFR** 0.240 0.939 0.987 0.406 0.824 1.113

T Adaptive algorithm; * Interpolation scheme; ¥ Kernel-based algorithm; ** Decision trees-based
algorithm

measures and their transformations and pairwise products.

model parameters seismic IMs
Omax = 9(X) = g(CRF, DR, CRC, PGV, I,, PGAy) + v (5.14)
v ~ N (v;0,0?) (5.15)

where CRF, DR and CRC are the model parameters corresponding to the concrete-rock
angle of friction, drain efficiency and concrete-rock cohesion, respectively; PGV is the peak
ground velocity; PGAy is the peak ground acceleration in the vertical direction; and [, is
Arias intensity. A normally distributed model error term v with zero mean and standard
deviation equal to the RMSE is added to the selected surrogate model to reflect the lack
of fit [174] 96, 118].

The stepwise regression algorithm in MATLAB was formally implemented together with
PRS to improve the task of "manually selecting" the predictors. This first filter was used
because the PRS meta-model considers all the covariates present in the dataset. The
algorithm starts with a constant term to predict the response. In the next step, one
predictor is added to the model, and the performance of the model is evaluated based on
the Bayesian information criterion (BIC). If the model performance improves, the added

term is kept; otherwise, it is removed, and this process is repeated until all the proposed
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Figure 5.5 Goodness of fit - Training data vs. cross-validation average: (a)
RMSE, (b) R? and (c) RMAE

predictors are tested. As a result of the stepwise regression, the best predictors from each 5-

CV fold were selected. A polynomial regression model considering the interaction between
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the predictors was fitted to the dataset. In addition to the 5-CV method, which shows
the overall accuracy of the model, p-values associated with the explanatory functions were
controlled to be smaller than 0.05, assuring that the final terms included in the model are
not selected by chance. Figure (a) shows that the predicted values obtained with the
selected meta-model are in agreement with the simulated dataset, while in Figures (b)
and (c), it can be seen that the residual normal distribution and the independence between

the observation error hypothesis is respected.
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Figure 5.7 PRS O": (a) Predicted vs. simulated values, (b) Residuals his-
togram and (c) Fitted value residuals

5.3.6 Dam sample generation and multivariate fragility functions

Regarding the generation of the samples where the meta-model will be evaluated to predict
the dam’s response and derive point estimates of fragility, independence among all the
MPs was considered to generate 5 x 10° samples with LHS. Nevertheless, it should be
noted that for a specific site, the seismic IMs are correlated. For the case study dam and
considering the 250 GMTS used to train the meta-models, a linear correlation is to be
expected, as seen from Figure Figure 5.9 shows the histogram of the logarithm of the
seismic IMs that follow an approximate normal distribution. Based on this, the samples
of these parameters are taken from a jointly log-normal distribution with their respective
correlation coefficients. In addition, to consider a range of values corresponding to return
periods from 700 to 30000 years at the dam site, the possible values of PGV, I, and PGAy
were bounded, respectively, as 0.8cm/s < PGV < 25cm/s, 0.0m/s < I, < 2.5m/s and
0.01g < PGAy <0.25¢.

The fragility analysis was performed following the MSA methodology depicted in Fig-
ure [5.2] The range of each of the parameters of the fragility surface was divided into
100 intervals. As a result, 10* fragility point estimates were generated for each limit state.

Moreover, to display how the variation of the model parameters alters the seismic fragility,
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()

fragility surfaces as a function of PGV and each of the model parameters considered in
the meta-model (CRF, DR and CRC) were generated. It is noteworthy that PGV was se-
lected as the IM to be displayed in the fragility surface not only because of its practicality

of database availability and value accessibility but also because, as previously mentioned,

it was found to be one of the best performing ground-motion IM to correlate with the

proposed damage state [30].

Parametric fragility surfaces for each limit state and for each MP were generated, im-
plementing the methodology explained in Figure [5.3] The resulting fragility surfaces are
depicted in Figures|5.10 and the goodness of fit between the proposed parameterized
fragility surfaces and the fragility point estimates is presented in Table [5.4]
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and (d) LS3
Table 5.4 Fragility surfaces’ goodness of fit
Parameters Limit state R?> RMSE RMAE 5-CV R? 5-CV RMSE 5-CV RMAE
LSO 0.997 0.013  0.207 0.991 0.014 0.215
LS1 0.997 0.015  0.253 0.992 0.016 0.277
PGV-CRE LS2 0.996 0.014 0.314 0.991 0.015 0.364
LS3 0.991 0.010  0.449 0.991 0.014 0.480
LSO 0.997 0.013  0.217 0.990 0.014 0.291
LS1 0.997 0.014  0.263 0.995 0.015 0.293
PGV-DR LS2 0.996 0.014  0.252 0.994 0.016 0.285
LS3 0.987 0.016  0.752 0.948 0.018 0.649
LSO 0.994 0.023  0.809 0.991 0.024 0.724
LS1 0.997 0.017  0.288 0.993 0.018 0.295
PGV-CRC LS2 0.995 0.017  0.348 0.992 0.017 0.390
LS3 0.987 0.015  0.803 0.973 0.016 0.882
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5.3.7 Effect of model parameter variation in the fragility analysis
Concrete-rock angle of friction

Fragility curves as a function of PGV were calculated for each CRF intensity level, accord-
ing to Eq. , where ®; in this case is the Weibull CDF. The parameters characterizing
the CDF were plotted for each CRF value and for each limit state, as shown in Figure[5.13
A linear function was fitted to each parameter whose regression coefficients are shown in
Table . Finally, the parametric fragility surface is depicted by Eq. ,

F,(PGV,CRF) = CDFW(PGV, ps, CRF + pg,, ps, CRF + pg, ) (5.16)

where the CDF is also a Weibull distribution to be consistent with the fragility curves. As
seen from Figure and Table [5.4] the parametric fragility surfaces fit fairly well with
the fragility point estimates.

Table 5.5 CRF regression coefficients

Limit state Do, Do, Ppy Pps

LSO 2.619 3.548 0.471 0.799
LS1 4928 7.753 0.727 0.820
LS2 6.358 10.795 0.920 0.741
LS3 6.836 21.918 1.412 0.439

Drain efficiency

The same procedure described in the above section was used to develop fragility surfaces
as a function of PGV and DR; however, a quadratic fit-type function was used instead

of a linear one, as seen in Figure [5.14, The parameterized formulation is described by

Eq. (5-17);
F,(PGV,DR) = CDEW(PGV, pg, DR + pg,DR* + pys, pg, DR + ps,DR® + ps,)  (5.17)

where pg, , , and pg, , , are the linear regression coefficients shown in Table Figure

shows the resulting fragility surfaces.
Concrete-rock cohesion

Similarly, the fragility surfaces as a function of PGV and CRC were generated. In this
case, as displayed in Figure [5.15] an exponential function was fitted to each parameter

defining the fragility curves, and a log-normal CDF was used for the fragility functions.
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Figure 5.13 CRF fragility curves parameters regression
Table 5.6 DR regression coefficients
Limit state Do, Do, Deos P DB Pgs
LSO 4.483 3.964  4.697 -0.027 0.274 1.314
LS1 16.701 5.163  9.621 -0.230 0.393 1.637
LS2 34.515 3.821 12780 -0.433 0.454 1.782
LS3 123.314 -10.199 20.957 -0.713 0.432 2.033
The parametric fragility surfaces result in the following:
F4(PGV,CRC) = CDF In N (PGV, py, CRC?%2 + py,, ps, CRCP?2 + pyg,) (5.18)
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Figure 5.14 DR fragility curve parameter regression

where py, ,, and pg, ,, are the linear regression coefficients presented in Table . The

fragility surfaces are shown in Figure [5.1

Table 5.7 CRC regression coeflicients

lelt state p91 p92 p@g pﬁl pﬁQ p,BS
LSO -1.074 -1.079 2.619 0.378 -0.996 0.274
LS1 -0.928 -0.758 3.247 0.306 -1.049 0.310
LS2 -0.510 -0.977 3.177 0.341 -0.989 0.288

LS3 -0.025 -2.931 3.285 0.415 -0.934 0.249
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Figure 5.15 CRC fragility curve parameter regression

5.4 Application to seismic assessment of dams

The resulting fragility functions can also be used to assess the seismic performance of the
dam by formulating recommendations with respect to the model parameters. To achieve a
desired seismic performance, boundaries of model parameters for an adequate performance
under extreme limit states can be formulated. The usable range of values is determined by
ensuring that the probability of exceedance given that an extreme event is in line with the
current guidelines for the minimum provisions for life safety. To establish the admissible
values of the model parameters, a return period of 10000 years, which corresponds to
the maximum considered earthquake (MCE) [148] [150] 31], was used. The peak ground
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velocity associated with the MCE (PGV ycr) was determined from the PSHA and from
the fragility surfaces corresponding to the complete damage limit state (LS3), and the
fragility curves as a function of the model parameters were extracted for the PGV cp

value.

According to what it is proposed by the ASCE 7-16 [148|, for a risk category III (dam-
type structures) and total or partial structural collapse, the maximum probability of failure
should be less than 6 %. Consequently, and as shown in Figure [5.16] the boundaries of
model parameters were established to provide a probability of exceedance less than 6 %
for an MCE seismic scenario. As a result, a range of values of 50° < CRF < 55°, 0.35 <
DR < 0.66 and 0.87MPa < CRC < 2.0 MPa should be considered to ensure that the
performance of the dam is in line with the minimum values for life safety. Nonetheless, it
should be acknowledged that these parameter ranges are derived from the single parameter
at a time evaluation, and the joint interaction of the model parameters should be further

examined.
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5.5 Conclusions

The main objective of this study was to identify the most viable meta-model among those
considered for the seismic fragility assessment of gravity dams, present a methodology for
the development of multivariate fragility functions displaying the effect of the model pa-
rameter variation on the dam seismic performance and formulate design recommendations

from the analysis.

The methodology was applied to a case study dam located in northeastern Canada. PSHA

was performed to characterize the seismic hazard at the dam site and to select 250 ground
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motions, consistent with the latter, using the GCIM approach. The sets of selected ground
motion records were paired with the 250 samples of numerical models of the dam generated
with LHS, representing different material and loading configurations of the system. The
dataset used to train the meta-models was generated by performing nonlinear dynamic
analysis of these samples, with an FEM that considered the fluid-structure-foundation
interaction and by extracting the maximum relative sliding at the base of the dam. Six
different types of meta-models with different configurations (basis and interpolation func-
tions) were fitted to the seismic response of the case study dam to predict the sliding limit
state at the base of the dam. The 4th-order PRS emerged as the best performing meta-
model based on local and global goodness-of-fit estimates from 5-CV, and it was used to
generate fragility surfaces as a function of PGV and each of the model parameters. It is
observed that the variability of the concrete-rock cohesion model parameter has the most
influence on the fragility analysis estimates, followed by the drain efficiency and to a lesser
extent, the concrete-rock angle of friction. Finally, a seismic assessment was performed
to determine the model parameter boundaries for adequate performance under extreme
events, such as the MCE, to respect the minimum safety margins proposed by the current

guidelines.

It should be noted that machine learning techniques are indispensable when assessing the
vulnerability of structures with computationally expensive FEM such as gravity dams
subjected to seismic loading. Similarly, the use of surrogate models allows for the explo-
ration of the impact of different parameters in the fragility without the costly reevaluation
of the FEM simulations. Regarding the fragility functions, as evident for the case pre-
sented herein and the goodness-of-fit values, the fragility estimates are well depicted by

the methodology suggested in this study to fit parametric fragility surfaces.

It is expected that the results of this study can lead to more accurate planning and
retrofitting policies to expedite the safety assessment of dams under seismic loads while
supporting the decision-making process and to guide the preliminary design of future grav-
ity dams. In future studies, additional insight into the correlation between the parameters
defining the model configurations should be made, including other relevant limit states
for gravity dams. Additionally, the model parameter variations in the fragility analysis
should be further explored to provide parametric fragility functions, including the joint

interaction of these parameters using classification meta-modeling techniques.
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CHAPTER 6

SEISMIC FRAGILITY ANALYSIS OF DAMS:
COMPLEMENTARY RESULTS

This chapter includes additional verifications and comparisons regarding the seismic fragili-
ty of the case study dam. These results, presented in conference papers [175], [176], are
included in this document for completeness. As such, first an exhaustive comparison
between the different record selection procedures considering the NBCC 2010 [I77] and
2015 [177] hazard models, and their impact in the development of fragility curves is pre-
sented. In the subsequent sections, a polynomial response surface meta-model is used to
predict the continuous maximum relative base sliding of the dam to build fragility curves
and show the effect of the modeling parameters uncertainty. To do so, fragility regions
are developed that represent the fragility curves generated with values corresponding to a
95 % confidence interval of the usable range of the model parameters values; this is done
in order to identify the parameter that introduces the most uncertainty in the fragility

analysis.

6.1 Ground motion record selection methods

As it was already explained in section [4.3.1] expected ground motion can be calculated
on the basis of probability, and the expected ground motions are referred to as seismic
hazard. Classical PSHA allows calculating the probabilities of exceeding, at least once in a
given time span, and at a given site, of a set of ground motion parameter levels considering
all possible earthquake ruptures defined in a seismic source model. Two different source
models were considered, the ones provided by the NBCC 2010 and the NBCC 2015.
Figure [4.4{-4.5 showed not only that the 2015 model provides lower hazard estimates than
the 2010 model but also that the 2015 model is more sensitive to the ERF configuration
(meshing density). Consequently, it was intended to display the effect of the hazard model
in the fragility analysis.

Concerning the different GMTS selection approaches, the CS, GCIM and UHS methods
were used to calculate the target distributions, resulting in 4 different cases: (i) GCIM with
the NBCC 2015 as presented in section 4.4} (ii) CS with the NBCC 2015; (iii) CS with the
NBCC 2010 and (iv) UHS with the NBCC 2010. For cases (i)—(iii) 30 GMTS were selected

127
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from the NGA-WEST2 database for each intensity level ranging from 0.1 g-0.9g covering
return periods from 700-30000 years. As such, the correlation equations proposed by Baker
and Jayaram [I55] for western North America (WNA) were herein assumed for eastern
Canada, considering that these models are suitable for shallow crustal events, which are
the type of events mostly expected in ENA. To select ground motions with the CS and the
NBCC 2015, the exactly same procedure and GMMs as for the GCIM with the NBCC 2015
were used, except that only horizontal spectral accelerations were considered in the target
conditional distribution. Similarly, for the CS with the NBCC 2010 the methodology
presented in section was used together with the GMMs proposed by Atkinson and
Boore [I7§]. For case (iv), 20 ground motions from the NGA-WEST?2 database with the
smallest sum of squared errors with respect to the UHS presented in Figure between

periods of 0.1 and 1.0s, were selected.

0 0.2 0.4 0.6 0.8 1.0
T (s)

Figure 6.1 NBCC 2010 uniform hazard spectra

6.2 Fragility curves comparison

For each intensity level, 30 non-linear dynamic analyses were performed for cases (i)—(iii)
and for case (iv) the values of the fragility curves were extracted from Bernier et al. [21],
where the same case study dam is analyzed. The FEM is the one described in section [3.1.1]
From each simulation, the maximum relative base and crest displacement are computed.
These results were used to calculate 7 fragility point estimates as the number of sam-
ples where sliding exceeded the limit state divided by the total number of samples. A

log-normal cumulative distribution function was then fitted to these fragility estimates
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to develop fragility curves for the considered limit states, together with the MLE fitting
technique. The fragility curves developed with the four approaches considered herein are
illustrated and compared in Figures for the four levels of damage of each limit
state. Tables [6.1H6.2] also presents the parameters of the log-normal distribution for each
fragility curve. As it was expected, from Figures [6.2H6.3] as the selection method re-
finement improves the point estimates of the fragility are less conservative. Under this
perspective, the methods can be listed, from the most conservative to the least conser-
vative as: UHS - NBCC 2010, CS - NBCC 2010, CS - NBCC 2015 and GCIM - NBCC
2015. Correspondingly, from tables [6.146.2], it can be seen that the mean and dispersion
parameters of the curves are significantly higher with the GCIM - NBCC 2015 method,
which will result in lower fragility, for a same IM level. Accordingly, for a given IM level, a
lower mean response and a lower corresponding dispersion will yield a higher probability of
reaching a damage limit state. This highlights how using less refined selection techniques,
such as the UHS, and neglecting the spectral shape change of the target ground motions
at the different intensity levels can lead to a less accurate estimation of the probability of
reaching the considered damage limit states. These results are in line, with the studies
related thereto, found in the literature [71], 211, [87].

Similarly, to evaluate the seismic performance of the case study dam under extreme limit
states, the return period boundaries for the hazard classification provided by the CDA
were used as explained in section [4.6.1 As it was expected in Tables [6.3H6.4] for the
cases where the records where selected with the 2015 hazard model (GCIM and CS) and
for both limit states, the probability of exceedance is less than 6 %. On the contrary,
the results obtained with the 2010 hazard model (CS and UHS) show that for both limit
states, the probability of exceedance is well above the maximum value and is even higher
for the UHS.

Table 6.1 Comparison of the fragility parameters between the records se-
lection approaches for base sliding

GCIM - 2015 CS - 2015 CS - 2010 UHS - 2010
Mean SD Mean SD Mean SD Mean SD

LSO 0.458 0.531 0.404 0.640 0.390 0.612 0.315 0.483
LS1 0.758 0.545 0.741 0.647 0.700 0.595 0.421 0.323
LS2 0.982 0.584 0.990 0.672 0.921 0.623 0.522 0.311
LS3 1.512 0.648 1.631 0.745 1.203 0.483 0.831 0.390

Limit State
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Figure 6.2 Fragility curves comparison for base sliding damage state for (a)
LSO, (b) LS1, (c) LS2 and (d) LS3

Table 6.2 Comparison of the fragility parameters between the records se-
lection approaches for neck sliding

GCIM - 2015 CS - 2015 CS - 2010 UHS - 2010
Mean SD Mean SD Mean SD Mean SD

LSO 0.656 0.469 0.621 0.401 0.573 0.371 0.430 0.501
LS1 1.007 0.547 0.893 0.493 0.771 0.413 0.521 0.363
LS2 1.176 0.518 1.022 0.459 0.912 0.482 0.620 0.342
LS3 1.487 0.578 1.353 0.553 1.080 0.473 0.753 0.261

Limit State
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Figure 6.3 Fragility curves comparison for neck sliding damage state for (a)
LSO, (b) LS1, (c) LS2 and (d) LS3
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Table 6.3 Comparison of the probability of exceedance of the base sliding limit states set
by the CDA

GCIM - 2015 CS-2015  CS-2010 UHS - 2010

Hazard CDA boundaries

P,., Neck P,., Neck P,., Neck P,, Neck
Low P. > 1/100 <0.01 <0.01 <0.01 <0.01
Significant 1/1000 <P, < 1/100 <0.01 <0.01 <0.01 <0.01
High P. > 1/2475 <0.01 <0.01 <0.01 <0.01
Very high  1/10* <P, < 1/2475 <0.01 <0.01 1.31 x 1072 3.66 x 1072
Extreme P, <1/10* 359 x 1072 4.76 x 1072 9.73 x 1072 2.58 x 107!

Table 6.4 Comparison of the probability of exceedance of the neck sliding limit states set
by the CDA

GCIM - 2015 CS-2015  CS-2010 UHS - 2010

Hazard CDA boundaries

P,., Neck P,, Neck P,., Neck P,, Neck
Low P. > 1/100 <0.01 <0.01 <0.01 <0.01
Significant 1/1000 <P, < 1/100 <0.01 <0.01 <0.01 <0.01
High P. > 1/2475 <0.01 <0.01 <0.01 <0.01
Very high  1/10* <P, < 1/2475 <0.01 <0.01 2.11 x 1072 1.05 x 1072
Extreme P, <1/10% 234 %1072 282x107% 137x107! 276 x 107!

It is also noted that the fragility curves obtained with the GCIM - NBCC 2015 are close to
those obtained with the CS - NBCC 2015. However, it should be taken into account that
even if the source models and the GMMs are the same, the records selected considering only
horizontal spectral acceleration as the IMs are less representative of the seismic scenario
at the dam site and neglect the analytical distribution of other IMs that are relevant for
the dam’s seismic response and for the considered damage states (Figure . In fact,
this highlights that the effort in better characterizing the seismic hazard and selecting
appropriate ground motion records pays off more than simplifying the seismic load input
leading more conservative estimates which can have a direct impact in the application of

safety guidelines and eventual decision making.

6.3 Fragility functions from meta-models

6.3.1 Fragility curves

Fragility curves were also generated for the case study dam as a function of PGV, as
presented in Figure [6.4f The analytical fragility curves were developed using the multiple

stripes analysis [71]. To compute the parametric fragility function, a Weibull cumulative
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distribution function was fitted to the data points according to Eq. (6.1]), in which £y, > 0

is the shape parameter and pyy > 0 is the scale parameter.
P;(PGV) = 1 — exp[—(PGV /)] (6.1)

The fragility curves were generated in the same manner as the fragility surfaces in sec-
tion for the correlated seismic IMs, but in this case the uncertainty in the modeling
parameters, was propagated in the analysis by considering a range of possible values as
shown in Table [4.3]

P, (LS |[PGV)

PGV (cm/s)

Figure 6.4 Fragility curves from the meta-model

In the same manner, and to explicitly account for the variability in the model parameters,
Figure [6.5] shows the fragility curves for each limit state in red, and the shaded areas
represent the fragility curves generated with the values corresponding to the 95 % confi-
dence interval of the usable range of the model parameters values. A Weibull CDF was
used in all cases except for the concrete-rock cohesion, where a log-normal CDF provided
better goodness-of-fit estimates. It can be seen that the concrete-rock cohesion variability
introduces the most uncertainty in the fragility analysis, followed by the drain efficiency

and to a lesser extent the concrete-rock angle of friction.

6.3.2 Fragility surfaces: uncorrelated IMs

As it was stated in section [3.4.3] for the uncorrelated cases, to consider more general
cases, fragility surfaces were generated where the correlation between the seismic IMs was

neglected. The fragility point estimates were generated as a function of PGV and [, the
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Figure 6.5 Fragility curves from meta-models for base sliding and 95 % con-
fidence interval of the modeling parameters values for (a) LS0, (b) LS1, (c¢) LS2
and (d) LS3

two most influential seismic IMs. The uncertainty due to the modeling parameters and
PGAYy is propagated in the analysis by sampling these parameters with LHS according to
their respective range of usable values (Table and Table .

It was assumed that for each limit state in Table [4.2] the fragility surface is described by
the product of two cumulative density functions, as shown in Eq. (6.2):

FS(PGV7 Ia) = (I)PGV(PGV7 9PGV7 BPGV)q)Ia<Iaa 91(17 B[a)

(6.2)

where after testing several distributions, ®pgy and @y, are normal CDFs and Opqv, fpav

and 0;,, O, are the parameters characterizing each respective CDFs.
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The parameters of each fragility surface were estimated with the MLE method and can
be found in Table As it can be seen in Figures and from Table the paramet-
ric fragility surfaces fit well the fragility estimates calculated with the meta-model and
describe well the behaviour of the structure with increasing levels of the selected seismic
intensity measures. Nevertheless, it should be noted that using two (usually) correlated
seismic IMs to build the fragility surface, can lead to the consideration of seismic scenarios

very unlikely to happen at the site of the structure during its lifetime.
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Figure 6.6 Fragility surfaces for (a) LSO, (b) LS1, (c¢) LS2 and (d) LS3
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Table 6.5 PGV-I, fragility surfaces param-

eters
Limit state  Opgv  Brav 014 Bra
LSO -0.643 9.340 0.039 0.643
LS1 10.189 15.954 0.623 0.641
LS2 20.606 22.146 0.804 0.614
LS3 61.760 42.983 1.024 0.554

Table 6.6 PGV-I, fragility surfaces
goodness-of-fit

Limit state R? RMSE RMAE

LSO 0.947 0.043 1.184
LS1 0.988 0.018  0.484
LS2 0984 0.014  0.564
LS3 0.961 0.008  1.238




CHAPTER 7
CONCLUSION

7.1 Summary and conclusions

The consequences of dam failure can be substantial, in terms of both casualties and eco-
nomic and environmental damage. Thus it has to maintain its structural integrity in the
face of the different hazards and loading conditions that arise during construction, normal
operations, and extreme environmental events. Therefore, dam safety is given highest pri-
ority. Moreover, the safety of dams and hydroelectric developments is a major concern in
Quebec given that over half the population lives in potential flood zone. There are about
933 large dams in Canada and 333 or slightly more than a third are located in Quebec.
Among them, many have been built more than 50 years ago. During that time, impor-
tant advances in the methodologies for evaluating the natural hazards have been made,
causing the review and modification of the design guidelines, in some cases significantly.
Many existing dams fail to meet these revised safety criteria and structural rehabilitation
to achieve newly revised criteria may be costly and difficult. Although the occurrence of
total failure of a concrete dam following an earthquake is rare, earthquakes are, on the

other hand, a major cause of damage to these structures at different degrees of severity.

Consequently, the combination ageing and its associated problems with new methods for
estimating seismic loads and with the increasing demands of society to ensure a high level
of safety, has resulted in the need to review and upgrade the methods of seismic analysis for
dams. Traditionally, dams were evaluated using deterministic analysis under an extreme
event. Nevertheless, in recent decades, probabilistic-based tools, such as fragility functions,
have become increasingly popular for the seismic assessment of dams, although its main
drawback is the requirement of a large number of nonlinear dynamic analysis of complex

finite element models, rendering the task computationally expensive.

To address the aforementioned gaps, the main objective of the research project was to
develop a method for assessing the seismic safety of gravity dam-type structures based
on multi-variable fragility functions, developed by the implementation of meta-models
and by properly identifying the seismic scenario likely to be present at the site. The
proposed methodology was applied to a case study dam in Quebec which presents a well

documented dynamic behaviour. Given the presence of contraction joints, it is assumed

137
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that the blocks of the dam behave independently, a detailed 2D finite element model
which fully account for dam-reservoir-foundation interactions and a non-linear analysis
was performed. The model meshing was carried out using the computer software ANSY'S-
ICEM while the computer software LS-Dyna was used for modeling and analyzing the
system’s response. To evaluate the accuracy of the FEM, the dynamic properties of the
DRF system were compared to the results obtained from in-situ dynamic experimental
results. The validation of the dynamic characteristics were based on the fundamental
period of the system and global damping. This study was divided in two parts, as it can

be seen from the two journal articles included in the document.

In the first stage of this study, the main objective was to understand and present the level
of improvement in the fragility analysis of concrete gravity dams provided by the use of an
innovative method for record selection that combines the latest advances in probabilistic
seismic hazard analysis and the most influential IMs for the proposed limit states. To this
end, a PSHA was performed with the open-source software OpenQuake and the updated
2015 hazard model for Canada to characterize the seismic scenario at the dam site. The
results of the PSHA with the updated hazard model were compared with the results of the
previous hazard model to quantify to which extent the differences between the two models
are significant. The updated model showed lower annual probabilities of exceedance for

the same site, which can be explained by the consideration of a more extensive database.

The results of the PSHA were used to select ground motions consistent with the CS and the
GCIM. The intensity measures identified as relevant for the seismic response of the dam
were included in the modified selection algorithm consistent with the GCIM formulation.
The sets of selected ground motion records were paired with the 30 samples of numeri-
cal models of the dam generated with LHS for each intensity level. The fragility curves
for the base and neck sliding limit states of the dam were then generated via multiple
stripes analysis. A safety assessment was performed by calculating the expected seismic
performance under the extreme limit states proposed by the Canadian dam association
guidelines and by determining the unconditional probabilities of limit state exceedance.
The fragility functions and the results from the safety assessment obtained with the pro-
posed methodology were compared with those resulting from the 2010 hazard model and
using the UHS and the CS as target distributions. The comparison showed that the more
refined methodology with the GCIM method and the 2015 hazard model produces less
conservative fragility functions, followed by the 2015-CS, 2010-CS and finally the 2010-
UHS. These results can be related to the more accurate hazard model and to the fact that

the selected set of ground motions includes the characteristics of the IM that, in addition
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to Sag, are likely to be present at the dam site. Selecting ground motions by considering
only the horizontal spectral acceleration can lead to sets of records whose distributions
with respect to other important IMs are not consistent with the seismic scenario at a spe-
cific site. Furthermore, the results of the safety assessment with the present methodology
were in line with the minimum safety margins proposed by the current guidelines, whereas
the results were above the tolerable limits for the same case study dam when using the

previously employed procedure based on a less thorough seismic input definition.

Concerning the second part of this study, it was intended to use the PSHA results and the
selected records with the method that provided the best results in the previous analysis to
train surrogate models for the fragility seismic assessment of gravity dams. Therefore, the
main goal of the second part of this research project was to identify the most viable meta-
model for the seismic fragility assessment of gravity dams, present a methodology for the
development of multivariate fragility functions displaying the effect of the model parameter
variation on the dam seismic performance and formulate design recommendations from the

analysis.

The seismic hazard characterization at the dam site was conducted with a PSHA with
the 2015 hazard model and 250 ground motions were selected, consistent with the latter,
using the GCIM approach. The sets of selected ground motion records were paired with
the 250 samples of numerical models of the dam generated with LHS, representing different
material and loading configurations of the system. The dataset used to train the meta-
models was generated by performing non-linear dynamic analysis of these samples, with
the FEM above-described and by extracting the maximum relative sliding at the base
of the dam. Six different types of meta-models with different configurations (basis and
interpolation functions) were fitted to the seismic response of the case study dam to predict
the sliding limit state at the base of the dam. The 4th order PRS emerged as the best
performing meta-model based on local and global goodness-of-fit estimates from 5-CV, and
it was used to generate fragility curves as a function of PGV and fragility surfaces as a
function of PGV and each of the model parameters, considering the correlation between the

seismic IMs for a specific site and by sampling from a multivariate log-normal distribution.

To explicitly account for the variability of the modeling parameters in the fragility anal-
ysis, fragility curves were generated by propagating the uncertainty of these parameters
and by considering the extreme values (95 % confidence interval) of the usable range of
values. It was observed that the variability of the concrete-rock cohesion model parameter
affects the most the fragility analysis estimates, followed by the drain efficiency and to

a lesser extent, the concrete-rock angle of friction. Finally, from the fragility surfaces a
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seismic assessment was performed to determine the model parameter boundaries for ade-
quate performance under extreme events, such as the MCE, to respect the minimum safety
margins proposed by the current guidelines. Consequently, the boundaries of model pa-
rameters were established to provide a probability of exceedance less than 6 % for an MCE
seismic scenario. As a result, a range of values of 50° < CRF < 55°, 0.35 < DR < 0.66
and 0.87 MPa < CRC < 2.0 MPa should be considered to ensure that the performance
of the dam is in line with the minimum values for life safety. Nonetheless, it should be
acknowledged that these parameter ranges are derived from the single parameter at a time

evaluation, and the joint interaction of the model parameters should be further examined.

Comparatively, and to consider more general cases, the correlation between the seismic
IMs was also neglected. The fragility point estimates were generated as a function of
PGV and [,, the two most influential seismic IMs. The uncertainty due to the modeling
parameters and PGAy was propagated in the analysis by sampling these parameters with
LHS according to their respective range of usable values. It was assumed that for each
limit state, the fragility surface is described by the product of two independent normal
cumulative density functions. It was observed that the parametric fragility surfaces fit well
the fragility estimates calculated with the meta-model and describe well the behaviour of
the structure with increasing levels of the selected seismic intensity measures. Nevertheless,
using two (usually) correlated seismic IMs to build the fragility surface, can lead to the
consideration of seismic scenarios very unlikely to happen at the site of the structure

during its lifetime.

Machine learning techniques are indispensable when assessing the vulnerability of struc-
tures with computationally expensive FEM such as gravity dams subjected to seismic
loading. Similarly, the use of surrogate models allows for the exploration of the impact
of different parameters in the fragility without the costly reevaluation of the FEM sim-
ulations. Regarding the fragility functions, as evident for the case presented herein and
the goodness-of-fit values, the fragility estimates are well depicted by the methodology
suggested in this study to fit parametric fragility surfaces. It is expected that the re-
sults of this study can lead to more accurate planning and retrofitting policies to expedite
the safety assessment of dams under seismic loads while supporting the decision-making

process and to guide the preliminary design of future gravity dams.




7.2. FUTURE WORK RECOMMENDATIONS 141

7.2 Future work recommendations

Despite the specificities of this case study, namely, its location in eastern Canada and
consideration of only sliding limit states, the conclusions are believed to be useful for
the seismic assessment of concrete gravity dams in general. An important limitation of
this study, which should be addressed by future developments in the field, is the lack of
empirical GMMs and correlation models for ENA and the corresponding impossibility of

selecting records from the ENA database.

In future studies, additional insight into the correlation between the parameters defining
the model configurations should be made, including other relevant limit states for gravity
dams. Additionally, the model parameter variations in the fragility analysis should be
further explored to provide parametric fragility functions, including the joint interaction

of these parameters using classification meta-modeling techniques.

More specifically, the results of this research could be complemented by additional studies

on the following subjects:

— Definition of performance criteria and damage limit states. The main drawback of
the methodology used is the lack of data to define the levels of damage. Experimen-
tal research must be conducted to characterize the damage states which are usually
based on expert judgment, leaving much room for subjectivity. Studies on the con-
crete modulus of elasticity non-linearities and definition of cracking performance
limit states for gravity dams should be given priority.

— Consideration of a 3D model to assess the seismic vulnerability of dams. Two-
dimensional analysis of dam geometries is still the most common approach for the
design or evaluation of the gravity dams. Nevertheless, it may happen that the
accuracy of 2D models is not enough to depict, in a realistic manner, the seismic
behaviour and must resort to the 3D modelling whose dynamic properties are known
to vary significantly from those found for a two-dimensional model.

— Include the geometric uncertainty in the development of meta-models for fragility
analysis. Besides the model parameters and the seismic IMs, efforts should be done
to include the geometric uncertainty in the analysis. Geometric uncertainty refers to
the geometric characteristic of the dam (monolith’s height, base length and width).
A geometric variable, such as base-to-height ration of the blocks, should be included
to develop meta-models. Given that the case study dam is very regular and quasi-
symmetric, it would be possible to generate a meta-model from 3D FEM simulations
and another from 2D FEM of each of the blocks of the dam including this geometric
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uncertainty and compare the two approaches. Moreover, given that 2D FEM models
are widely used for gravity dams, it is believed that by including geometric param-
eters to the covariate matrix, the resulting meta-model will be useful in predicting
the response of a 2D block cross-section gravity dams’ portfolio.

— Study the applicability of a two-layered meta-model scheme to efficiently predict the
response of the dam. It has been observed that for a given seismic intensity level,
and for a given modeling and geometric parameter configuration, the dam system
response is not significant enough (base or neck displacement < 3mm or crack length
< 2.5mm), which render the task of fitting a regression meta-model very inaccurate
in the presence of several values close to zero. Thus, a classification meta-model
could be fitted first to determine whether the response of the dam is significant
or not, and then for those values which are above the specified limit, a regression
meta-model will be fitted to predict the continuous response of the dam.

— Study the effect of neglecting the correlation between the parameters defining the
model configurations, such as concrete-rock cohesion and concrete-rock angle of fric-
tion.

— Explore the joint model parameter variations impact in the fragility analysis to pro-
vide parametric fragility functions, including simultaneous effect of these parameters

using classification meta-modeling techniques.

7.3 Sommaire et conclusions

L’occurence d'une rupture de barrage peut avoir des conséquences considérables, telles
des pertes en vies humaines, des répercussions économiques et des impacts environnemen-
taux. La sécurité des barrages est d’intérét public et un souci permanent a toutes les
phases du projet, aussi bien de la construction, que de I'exploitation. L’intégrité struc-
turale d'un barrage doit étre maintenue face aux différents risques et aux conditions de
chargement qui surviennent durant la construction, ’exploitation normale, et les événe-
ments environnementaux extrémes. Au Québec, en particulier, la sécurité des barrages et
des aménagements hydroélectriques est une préoccupation majeure étant donné que plus
de la moitié de la population vit dans une zone potentiellement inondable. On dénombre
environ 933 grands barrages au Canada dont plus du tiers (333) sont situés au Québec.
Parmi ces derniers, beaucoup ont été construits depuis plus de 50 ans. Entre-temps,
d’importants progres ont été réalisés dans les méthodes d’évaluation des risques naturels,
entrainant la révision et la modification des régles de conception de maniére significative

dans certains cas. De nombreux barrages existants ne satisfont pas a ces critéres de sécu-
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rité révisés, et la réhabilitation de la structure pour satisfaire aux nouveaux critéres peut
s’avérer onéreuse et difficile a réaliser. Bien que la rupture totale d’un barrage en béton
a la suite d’'un seisme soit rare, les tremblements de terre sont, tout de méme, une cause

majeure d’endommagement de ces structures a différents niveaux de gravité.

En conséquence, la conjonction de la vétusté des structures, des problémes associés aux
nouvelles méthodes d’estimation des charges sismiques et des exigences croissantes de la
société pour assurer un haut niveau de sécurité, a fait ressortir la nécessité de reviser et
d’améliorer les méthodes d’analyse sismique des barrages. Traditionnellement, les barrages
étaient évalués a ’aide d’une analyse déterministe pour un événement extréme. Toutefois,
au cours des derniéres décennies, les outils probabilistes, tels que les fonctions de fragilité,
sont devenus de plus en plus populaires pour ’évaluation sismique des barrages, malgré
que leur principal inconvénient soit 1’exigence d’un grand nombre d’analyses dynamiques

non linéaires de modéles d’éléments finis complexes, rendant le cott de calcul élevé.

Pour combler les lacunes susmentionnées, I’'objectif principal du projet de recherche était
d’élaborer un plan d’action pour la mise en ceuvre de I’évaluation de la sécurité sismique de
structures de type barrage-poids avec des fonctions de fragilité multivariées, développées
par I'implémentation de méta-modéles et 'identification fidéle de scénarios sismiques sus-
ceptibles de se produire sur le site. La méthodologie proposée a été appliquée a un barrage
au Québec qui présente un comportement dynamique bien documenté. Un modéele complet
d’éléments finis 2D qui tient compte des interactions barrage-réservoir-fondation (BRF)
couplé a une analyse non linéaire a été développé. Le maillage du modéle a été réalisé a
laide du logiciel ANSYS-ICEM tandis que le solveur LS-Dyna a été utilisé pour modéliser
la réponse du systéme. Pour évaluer la précision du modéle, les propriétés dynamiques du
systeme BRF ont été comparées aux résultats expérimentaux dynamiques obtenus in situ.
La validation des caractéristiques dynamiques étaient basées sur la période fondamentale
du systeme et 'amortissement global. Cette étude a été scindée en deux parties, comme

on peut le voir dans les deux articles de revue inclus dans le document.

Dans la premiére phase de ’étude, 'objectif principal était de comprendre et de présen-
ter le niveau d’amélioration de ’analyse de fragilité des barrages-poids en béton grace a
I'utilisation d’'une méthode innovante de sélection d’accélérogrammes qui combine les ré-
centes avancées en matiére d’analyse probabiliste d’aléas sismiques et de mesures d’intensités
(MI) les plus influentes pour les états limites proposés. A cette fin, une analyse proba-
biliste d’aléas sismiques a été réalisée a I'aide du logiciel libre OpenQuake et du modéle
d’aléas sismiques mis & jour en 2015 pour le Canada pour caractériser le scénario sismique

sur le site du barrage. Les résultats de ’analyse probabiliste des aléas sismiques (APAS)
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sur le site du barrage avec le modéle de risque mis a jour a été comparé aux résultats de la
version précédente afin de quantifier 'importance des différences entre les deux modéles.
Le modeéle actualisé montrait des probabilités annuelles de dépassement plus faibles pour
le méme site, ce qui peut s’expliquer par la considération d'une base de données plus

compléte.

Les résultats de ’APAS ont été utilisés pour sélectionner les séismes conformes aux spectres
conditionnels et a la GCIM. Les mesures d’intensités jugées pertinentes pour la réponse
sismique du barrage ont été incluses dans l'algorithme de sélection modifié conforme a
la formulation de la GCIM. Les ensembles de tremblements de terre sélectionnés ont été
appariés avec les 30 échantillons de modéles numériques du barrage générés par la Latin
Hypercube Sampling pour chaque niveau d’intensité. Les courbes de fragilité des états
limites de glissement a la base et aux joints de reprise du barrage ont ensuite été générés
au moyen d’une analyse & bandes multiples. Une évaluation de la sécurité a été effectuée en
calculant la performance sismique attendue sous les états limites extrémes proposés par les
régles de conception de I’Association canadienne des barrages et en déterminant les prob-
abilités inconditionnelles de dépassement des états limites. Les fonctions de fragilité et
les résultats de I'évaluation de la sécurité obtenues avec la méthodologie proposée ont été
comparées a celles résultant du modéle d’aléa sismique 2010 en utilisant les distributions
UHS et CS comme distributions cibles. La comparaison a montré que la méthodologie
la plus raffinée avec la méthode GCIM et le modéle d’aléa sismique 2015 produit des ré-
sultats moins conservateurs suivis par les modeéles 2015-CS, 2010-CS et enfin 2010-UHS.
Ces résultats peuvent étre lié au modéle d’aléa sismique plus précis et au fait que les
accélérogrammes choisis incluent les caractéristiques des mesures d’intensités sismiques
qui, en plus de Say, sont susceptibles d’étre présents sur le site du barrage. Sélectionner
les accélérogrammes en ne prenant en compte que les accélérations spectrales horizon-
tales peut conduire a des ensembles d’enregistrements dont la distribution par rapport a
d’autres MI importantes ne sont pas compatibles avec le scénario sismique d’un site parti-
culier. Par ailleurs, les résultats de 1’évaluation de la sécurité avec la méthodologie actuelle
étaient conformes aux marges de sécurité minimales proposées par les recommendations
actuelles, alors que les résultats étaient supérieurs aux limites tolérables pour le méme
barrage lorsque la procédure utilisée précédemment était basée sur une définition moins

approfondie de I'apport sismique.

En ce qui concerne la deuxiéme partie de 1’étude, il était prévu d’utiliser les résultats de
I’APAS et les données sélectionnées avec la méthode ayant donné les meilleurs résultats

pour la formation des modéles de substitution pour I’évaluation sismique de la fragilité
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des barrages poids. Par conséquent, 1'objectif principal de la deuxiéme partie de cette
recherche était d’identifier le méta-modele le plus viable pour ’évaluation de la fragilité
sismique des barrages-poids, de présenter une méthodologie pour le développement de
fonctions de fragilité multivariées exhibant 'effet de la variation des paramétres du modeéle
sur la performance sismique du barrage, et de formuler des recommandations de conception

a partir de 'analyse.

La caractérisation des aléas sismiques sur le site du barrage a été effectuée a I'aide d’une
APAS avec le modéle d’alea sismique 2015, et 250 accélérogrammes ont été sélectionnés,
conformément a ce dernier, en utilisant ’approche GCIM. Les ensembles d’accélérogrammes
sélectionnés ont été jumelés avec les 250 échantillons de modéles numériques du barrage
générés avec le LHS, ce qui représente différentes configurations de matériaux et de charge-
ment du systéme. L’ensemble des données utilisées pour former les méta-modeles a été
généré a partir d’analyses dynamiques non-linéaires de ces échantillons, a ’aide de la MEF
et en extrayant le glissement relatif maximum & la base du barrage. Six différents sortes de
méta-modeles avec différentes configurations (fonctions de base et d’interpolation) ont été
ajustées a la réponse sismique du barrage a I’étude pour prédire I'état limite de glissement
a la base du barrage. La surface de réponse polynomiale du 4e ordre s’est révélée étre la
meilleure pour I'exécution d’un méta-modele basé sur des estimations locales et globales de
la qualité de I'ajustement a partir de 5-CV, et il a été utilisé pour générer des courbes de
fragilité en fonction du PGV et des surfaces de fragilité en fonction du PGV et de chacun
des parameétres du modéle, en considérant la corrélation entre les MI sismiques pour un

site spécifique et par échantillonnage & partir d’'une distribution log-normale multivariée.

Pour tenir compte explicitement de la variabilité des paramétres de modélisation dans
I’analyse de fragilité, des courbes de fragilité ont été générées en répandant 'incertitude
de ces parameétres et en considérant les valeurs extrémes (95 % d’intervalle de confiance) de
la plage des valeurs utilisables. Il a été observé que le paramétre de modélisation qui influe
le plus sur 'analyse de fragilité est la cohésion béton-rocher, suivi de 'efficacité de drainage
et, dans une moindre mesure, de ’angle de frottement entre le béton et le rocher. Enfin, a
partir des surfaces de fragilité, une évaluation sismique a été réalisée pour déterminer les
limites des parameétres du modéle afin d’obtenir un rendement adéquat dans des conditions
extrémes des événements tels que le MCE, pour respecter les marges de sécurité minimales
proposées par les recommendations actuelles. Par conséquent, les limites des paramétres
du modeéle ont été établies pour fournir une probabilité de dépassement inférieure a 6 %
pour un scénario sismique MCE. Ainsi, une fourchette de valeurs de 50° < CRF < 55°,
0.35 < DR < 0.66 and 0.87 MPa < CRC < 2.0 MPa devrait étre prise en compte pour
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s’assurer que le rendement du barrage soit conforme aux exigences des valeurs minimales
pour la sécurité des personnes. Néanmoins, il faut reconnaitre que ces plages de parameétres
sont dérivées du parameétre individuel au momment de I’évaluation et que l'interaction

conjointe des paramétres du modeéle devrait faire I'objet d’un examen plus approfondi.

Comparativement, et pour examiner des cas plus généraux, la corrélation entre les MI sis-
miques a également été négligée. Les estimations ponctuelles de fragilité ont été générées
en fonction du PGV et de [, le deux MI sismiques les plus influents. L’incertitude due
aux parametres de modélisation et & PGAy a été distribuée dans I'analyse en échantillon-
nant ces paramétres avec le LHS selon leurs valeurs respectives utilisables. On a supposé
que, pour chaque état limite, la surface de fragilité est définie par le produit de deux
fonctions normales de densité cumulative. Il a été observé que les surfaces de fragilité
paramétriques correspondent bien aux estimations de fragilité calculées a I'aide du méta-
modele et décrivent bien le comportement de la structure avec des niveaux croissants de
mesures d’intensités sismiques choisies. Néanmoins, 1'utilisation (habituelle) de deux IMs
sismiques corrélés pour construire la surface de fragilité peut mener a considérer des scé-
narios sismiques trés peu susceptibles de se produire a ’emplacement de 'ouvrage pendant

sa durée de vie.

Il est & noter que les techniques d’apprentissage machine sont indispensables lors de
I’évaluation de la vulnérabilité des structures dont le cotit de calcul par la MEF est élevé,
comme les barrages gravitaires soumis a des charges sismiques. De méme, 1'utilisation
de modéles de substitution permet d’explorer I'impact de différents parameétres dans la
fragilité sans la réévaluation cotiteuse des simulations des MEF. En ce qui concerne les
fonctions de fragilité, comme cela a été démontré dans le cas présenté ici et dans ceux
des valeurs de la qualité de l'ajustement, les estimations de la fragilité sont bien illus-
trées par la méthodologie suggérée dans cette étude pour ajuster les surfaces de fragilité
paramétriques. On s’attend a ce que les résultats de cette étude puissent mener & des poli-
tiques de planification et de modernisation plus précises afin d’accélérer ’évaluation de la
sécurité des barrages sous des charges sismiques tout en appuyant la prise de décisions, et

pour guider la conception préliminaire des futurs barrages gravitaires.
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7.4 Recommandations pour les travaux futurs

Malgré les particularités de cette étude de cas, a savoir son emplacement dans l'est du
Canada et la prise en compte uniquement des états limites de glissment, les conclusions
sont jugées utiles pour 'examen de 'application de I’évaluation sismique des barrages
gravitaires en béton en général. Une limite importante de cette étude, qui devrait étre
prise en compte dans les développements futurs dans ce domaine, est l’absence de MGM
empiriques et d’outils d’évaluation de I'impact, de modéles de corrélation pour 'ENA et

I'impossibilité de sélectionner des enregistrements dans base de données de 'ENA.

Dans les études a venir, un apercu supplémentaire de la corrélation entre les parameétres
qui définissent ’approche des configurations des modéles devraient étre établies, y compris
les autres états limites pertinents pour les barrages gravitaires. En outre, les variations des
parameétres du modéle dans 'analyse de fragilité devraient étre examinées plus en détail
pour fournir des fonctions paramétriques de fragilité, y compris I'interaction conjointe de

ces parameétres en utilisant des techniques de méta-modélisation de classification.

Plus précisément, les résultats de cette recherche pourraient étre complétés par d’autres

études sur les sujets suivants :

— Définition des critéres de performance et des états limites de dommages. Le princi-
pal inconvénient de la méthodologie utilisée est le manque de données pour définir
les niveaux de dommages. La recherche expérimentale doit étre effectuée pour car-
actériser les états d’endommagement qui sont habituellement basés sur des données
d’experts en laissant beaucoup de place a la subjectivité. Les études sur le module
d’élasticité du béton, les non-linéarités et la définition des états limites de résistance
a la fissuration des barrages devrait étre prioritaires.

— Examen d’un modéle 3D pour évaluer la vulnérabilité sismique des barrages. En
deux dimensions, I'analyse de la géométrie des barrages est encore I'approche la plus
courante pour la conception ou I’évaluation des barrages gravitaires. Néanmoins, il
peut arriver que la précision des modeéles 2D ne soit pas suffisante pour représenter
de maniére réaliste le comportement sismique et on doit recourir & une modélisation
tridimensionnelle dont on sait que les propriétés dynamiques varient considérable-
ment par rapport a celles d’'un modéle bidimensionnel.

— Inclusion de l'incertitude géométrique dans 1’élaboration d’analyse de fragilité des
méta-modeéles. Outre les parameétres du modéle et les GI sismiques, des efforts de-
vraient étre faits pour inclure I'incertitude géométrique dans ’analyse. L’incertitude

géométrique fait référence aux caractéristiques géométriques du barrage (hauteur du
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monolithe, longueur et largeur de la base). Une variable géomeérique telle le rapport
de la base a la hauteur des blocs, doit étre considérée pour développer des méta-
modéles. Etant donné que le barrage étudié est trés régulier et quasi-symétrique,
I'idée est de générer un méta-modeéle a partir de simulations de MEF 3D et un autre
a partir de simulations de MEF 2D de chacun des blocs du barrage, y compris cette
incertitude géométrique, et comparer les deux approches. De plus, étant donné que
les modeéles d’EF 2D du barrage sont encore les plus courants pour les barrages-poids,
on croit qu’en incluant les données géométriques a la matrice de covariables, le méta-
modeéle résultant sera utile pour prédire le parameétre de réponse d'un ensemble de
barrages gravitaires de section transversale de bloc 2D.

Etude de I'applicabilité d’un méta-modéle & deux niveaux pour prédire efficacement
la réponse du barrage. Ceci est dii au fait que l'on a observé que pour une inten-
sité sismique donnée et pour une modélisation et une configuration de paramétres
géométriques données, la réponse du systéme de barrage n’est pas assez significa-
tive (glissement de la base et aux joints de reprise < 3mm ou longueur de fissure
< 2,5 mm), ce qui rend I'ajustement d’'un méta-modeéle de régression trés imprécis
en présence de plusieurs valeurs proches de zéro. Ainsi, un méta-modéle de classi-
fication pourrait étre ajusté d’abord pour déterminer si la réponse du barrage est
importante ou non, et ensuite pour les valeurs qui sont supérieures a la limite spé-
cifiée, un méta-modeéle de régression sera ajusté pour prédire la réponse continue du
barrage.

Etude de effet de négliger la corrélation entre les paramétres définissant le modéle
tels que la cohésion béton-rocher et I’angle de frottement béton-rocher.
Exploration des variations des paramétres du modéle dans I'analyse de fragilité afin
de fournir des fonctions de fragilité paramétriques, incluant l'interaction conjointe

de ces parameétres a 1’aide de techniques de méta-modélisation de la classification.
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