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Abstract

We prove Sobolev-typep(·) → q(·)-theorems for the Riesz potential operatorIα in the weighted
Lebesgue generalized spacesLp(·)(Rn,ρ) with the variable exponentp(x) and a two-parametrica
power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems
spherical analogue of the Riesz potential operator in the corresponding weighted spacesLp(·)(Sn,ρ)

on the unit sphereSn in R
n+1.
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1. Introduction

Recently, an obvious interest to the operator theory in the generalized Lebesgue
with variable exponentp(x) could be observed in a variety of papers, the main objects
ing the maximal operator, Hardy operators, singular operators and potential type ope
we refer, in particular to surveys [13,24].
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In the case of maximal operators, we refer to L. Diening [5] for bounded domainsR
n

and to D. Cruz-Uribe, A. Fiorenza and C.J. Neugebauer [3] and A. Nekvinda [22,2
unbounded domains, and to V. Kokilashvili and S. Samko [17] for weighted bounde
on bounded domains.

Hardy operators, including the weighted case were treated in [17].
Singular operators were studied by L. Diening and M. Ružička [8–10] in the non-

weighted case and by V. Kokilashvili and S. Samko [15,16] in the weighted case.
Sobolevp(·) → q(·)-theorem for potential operators on bounded domains was co

ered in S.G. Samko [25] and L. Diening [6], in [6] there being also treated the ca
unbounded domains under the assumption that the maximal operator is bounded
version of the Sobolev-type theorem for unbounded domain was given in V. Kokila
and S. Samko [14]. The Sobolev theorem for unbounded domains in its natural for
proved by C. Capone, D. Cruz-Uribe and A. Fiorenza [1]. Another proof may be fou
D. Cruz-Uribe, A. Fiorenza, J.M. Martell, and C. Perez [2] where there are also give
insights into the problems of boundedness of singular and maximal operators in va
exponent spaces.

A weighted statement onp(·) → p(·)-boundedness for the Riesz potential opera
on bounded domains was obtained in V. Kokilashvili and S.G. Samko [17], limiting
equalities for bounded domains having been recently proved in S. Samko [27] (
type inequality,p(·) → p(·)-setting) and [28] (Stein–Weiss type inequality,p(·) → q(·)-
setting).

In this paper we prove a weighted Sobolev-type theorem for the Riesz potential op

Iαf (x) =
∫
Rn

f (y)

|x − y|n−α
dy, 0< α < n, (1.1)

over the whole spaceRn, in the weighted Lebesgue generalized spacesLp(·)(Rn, ρ) with
the variable exponentp(x) and power weight fixed to the origin and infinity.

We prove also a similar theorem for the spherical analogue

(Kαf )(x) =
∫
Sn

f (σ )

|x − σ |n−α
dσ, x ∈ Sn, 0< α < n, (1.2)

of the Riesz potential in the corresponding weighted spacesLp(·)(Sn, ρ) on the unit sphere
S

n in R
n+1.

The main results are formulated in Theorems 3.1 and 3.5. Theorem 3.5 for the sp
potential operators is derived from Theorem 3.1 for spatial potentials, while the pro
Theorem 3.1 is based on usage of the estimates obtained in [28].

2. Preliminaries

2.1. The spaceLp(·)(Rn, ρ)

By Lp(·)(Ω,ρ) we denote the weighted space of functionsf (x) onΩ such that∫
ρ(x)

∣∣f (x)
∣∣p(x)

dx < ∞,
Ω
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wherep(x) is a measurable function onΩ with values in[1,∞) and 1� p− � p(x) �
p+ < ∞, x ∈ Ω andρ is the weight function. This is a Banach function space with res
to the norm

‖f ‖Lp(·)(ρ) = inf

{
λ > 0:

∫
Ω

ρ(x)

( |f (x)|
λ

)p(x)

dx � 1

}
(2.1)

(see, e.g., [18]). We refer to [11,12,18,25] for basics of the spacesLp(·) with variable
exponent.

We deal withΩ = R
n and consider the weight fixed to the origin and infinity:

ρ(x) = ργ0,γ∞(x) = |x|γ0
(
1+ |x|)γ∞−γ0. (2.2)

We assume that the exponentp(x) satisfies the conditions

1< p− � p(x) � p+ < ∞, x ∈ R
n, (2.3)∣∣p(x) − p(y)

∣∣ � A

ln 1
|x−y|

, |x − y| � 1

2
, x, y ∈ R

n; (2.4)

observe that from (2.4) there follows that

∣∣p(x) − p(y)
∣∣ � NA

ln N
|x−y|

(2.5)

for x, y ∈ Ω̄ , whereΩ is any bounded domain inRn andN = 2 diamΩ .
We treatp(x) as a function onṘn whereṘn is the compactification ofRn by the unique

infinite point. To manage with the weighted case under the consideration, we introd
assumption onp(x) at infinity stronger than the usually considered assumption

∣∣p(x) − p(∞)
∣∣ � A∞

ln(e + |x|) , x ∈ R
n (2.6)

(see, for instance, [3,26]); namely, we suppose that

∣∣p∗(x) − p∗(y)
∣∣ � A∞

ln 1
|x−y|

, |x − y| � 1

2
, x, y ∈ R

n, (2.7)

wherep∗(x) = p
(

x

|x|2
)
. Condition (2.7) will be essentially used in the proof of The

rem 3.1, see the part “The termA−−” in Section 4. Namely, to be able to apply The
rem 2.3 given below, we will need the fact that after the inversion change of vari
x → x∗ = x

|x|2 , the new exponentp∗(x) = p(x∗) satisfies the local log-condition.
Conditions (2.4) and (2.7) taken together are equivalent to the unique global cond

∣∣p(x) − p(y)
∣∣ � C

ln
(2

√
1+|x|2

√
1+|y|2

|x−y|
) , x, y ∈ R

n (2.8)

(observe that infx,y∈Rn

√
1+|x|2

√
1+|y|2

|x−y| = 1, see (2.25)).

From (2.7) it follows that there exists the limitp(∞) := limx→∞ p(x) and (2.6) holds.
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Remark 2.1. Condition (2.7) is indeed stronger than condition (2.6), that is, there
functionsp(x) (and even radial ones) such that both the local log-condition and c
tion (2.6) are satisfied, but condition (2.7) does not hold. This is proved in Appendix

The Riesz–Thorin interpolation theorem is valid for the spacesLp(·), as observed b
L. Diening [4, p. 20] (see also [7, p. 5]) and proved in a more general setting for Musi
Orlicz spaces in [21, Theorem 14.16]. Namely, the following statement holds.

Theorem 2.2. Let pj :Ω → [1,∞) be bounded measurable functions,j = 1,2, and
A a linear operator defined onLp1(·)(Ω) ∪ Lp2(·)(Ω) and ‖Af ‖

L
pj (·) � Cj‖f ‖

L
pj (·) ,

j = 1,2. Then A is also bounded inLp(·)(Ω) where 1
p(·) = 1−θ

p1(·) + θ
p2(·) and

‖A‖Lp(·)→Lp(·) � C1−θ
1 Cθ

2 .

Let q(x) be the limiting Sobolev exponent

1

q(x)
= 1

p(x)
− α

n
; (2.9)

we assume that

esssupx∈Rn p(x) <
n

α
(2.10)

so thatq(x) also satisfies conditions (2.3), (2.4), (2.6).
Weightedp(·) → q(·)-estimates for the operatorIα in the case of bounded domai

were proved in [28]. Namely, the following statement holds (in [28] it was proved in
case when the orderα = α(x) is variable as well).

Theorem 2.3. Let Ω be a bounded domain inRn andx0 ∈ Ω̄ and letp(x) satisfy condi-
tions(2.3)and (2.4) in Ω andesssupx∈Ω p(x) < n

α
. Then the following estimate

‖Iαf ‖Lq(·)(Ω,|x−x0|µ) � C‖f ‖Lp(·)(Ω,|x−x0|γ ) (2.11)

is valid, if

αp(x0) − n < γ < n
[
p(x0) − 1

]
(2.12)

and

µ = q(x0)

p(x0)
γ. (2.13)

2.2. On the inversionx∗ = x

|x|2

Lemma 2.4. Letx, y ∈ R
n. The following properties hold:

|x∗ − y∗| = |x − y|
|x| · |y| , |x∗ − x| = |1− |x|2|

|x| , (2.14)

2 |x − y|2 + (1− |x|2)(1− |y|2)
|x∗ − y| = |x|2 , (2.15)
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and

|x∗ − y| � |x − y|
|x| for |x| � 1, |y| � 1. (2.16)

Proof. Both the relations in (2.14) and (2.15) are verified directly:

|x∗ − y∗|2 = 1

|x|2 − 2
x · y

|x|2|y|2 + 1

|y|2 = |x − y|2
|x|2|y|2 ,

and similarly for the second relation in (2.14) and formula (2.15). The inequality in (2
is a consequence of (2.15).�
Lemma 2.5. Let p satisfy condition(2.4). Then in the spherical layer12 � |x| � 2 the
inequality

∣∣p(x∗) − p(x)
∣∣ � C

ln 2
|1−|x|2|

(2.17)

is valid, whereC > 0 does not depend onx.

Proof. By (2.5), we have
∣∣p(x∗) − p(x)

∣∣ � 4A

ln 4
|x−x∗|

= 4A

ln 4|x|
|1−|x|2|

,

where we have used the second of the relations in (2.14). Hence (2.17) easily follow
1
2 � |x| � 2. �
2.3. The spaceLp(·)(Sn, ρ)

We consider a similar weighted space with variable exponent on the unit sphereS
n =

{σ ∈ R
n+1: |σ | = 1}:

Lp(·)(Sn, ρβa,βb
) =

{
f :

∫
Sn

ρβa,βb
(σ )

∣∣f (σ )
∣∣p(σ)

dσ < ∞
}
,

whereρβa,βb
(σ ) = |σ − a|βa · |σ − b|βb anda ∈ S

n andb ∈ S
n are arbitrary points on th

unit sphereSn.
For the variable exponentp(σ) defined onSn we assume that

1< p− � p(σ) � p+ < ∞, σ ∈ S
n, (2.18)∣∣p(σ1) − p(σ2)

∣∣ � A

ln 3
|σ1−σ2|

, σ1 ∈ S
n, σ2 ∈ S

n, (2.19)

esssupσ∈Sn p(σ ) <
n

α
. (2.20)

Under assumption (2.18), this is a Banach space with respect to the norm

‖f ‖Lp(·)(Sn,ρβa,βb
) =

{
λ > 0:

∫
|σ − a|βa · |σ − b|βb

∣∣∣∣f (σ )

λ

∣∣∣∣
p(σ)

dσ � 1

}
.

Sn
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2.4. Stereographic projection

We use the stereographic projection (see, for instance, [19, p. 36]) of the sphS
n

onto the spaceRn = {x ∈ R
n+1: xn+1 = 0} generated by the following change of variab

in R
n+1:

ξ = s(x) = {
s1(x), s2(x), . . . , sn+1(x)

}
, (2.21)

where

sk(x) = 2xk

1+ |x|2 , k = 1,2, . . . , n, and sn+1(x) = |x|2 − 1

|x|2 + 1
,

x ∈ R
n+1, |x| =

√
x2

1 + · · · + x2
n+1.

We remind some useful formulas of passage fromR
n to S

n:

|x| = |ξ + en+1|
|ξ − en+1| ,

√
1+ |x|2 = 2

|ξ − en+1| , (2.22)

|x − y| = 2|σ − ξ |
|σ − en+1| · |ξ − en+1| , dy = 2n dσ

|σ − en+1|2n
, (2.23)

and inverse formulas of passage fromS
n to R

n:

|ξ − en+1| = 2√
1+ |x|2 , |ξ + en+1| = 2|x|√

1+ |x|2 , (2.24)

|ξ − σ | = 2|x − y|√
1+ |x|2√1+ |y|2 , dσ = 2n dy

(1+ |y|2)n , (2.25)

whereξ = s(x) , σ = s(y), x, y ∈ R
n+1 anden+1 = (0,0, . . . ,0,1).

Lemma 2.6. If the spatial exponentp(x) defined onR
n satisfies the logarithmic con

ditions (2.4) and (2.7), then the spherical exponentp[s−1(σ )] satisfies the logarithmic
condition(2.19)onS

n. Inversely, if a functionp(σ), σ ∈ S
n satisfies condition(2.19), then

the functionp[s(x)], x ∈ R
n, satisfies conditions(2.4)and (2.7).

Proof. The proof is direct. �

3. The main statements

Theorem 3.1. Under assumptions(2.3), (2.4), (2.6) and (2.10) the spatial potential type
operatorIα is bounded from the spaceLp(·)(Rn, ργ0,γ∞) into the spaceLq(·)(Rn, ρµ0,µ∞),
where

µ0 = q(0)

p(0)
γ0 and µ∞ = q(∞)

p(∞)
γ∞, (3.1)

if [ ] [ ]

αp(0) − n < γ0 < n p(0) − 1 , αp(∞) − n < γ∞ < n p(∞) − 1 , (3.2)
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and the exponentsγ0 andγ∞ are related to each other by the equality

q(0)

p(0)
γ0 + q(∞)

p(∞)
γ∞ = q(∞)

p(∞)

[
(n + α)p(∞) − 2n

]
. (3.3)

In the case of constantp(x) ≡ p = const, the(p → q)-boundedness of the Riesz p
tential operator with the power weight|x|γ0 is due to E.M. Stein and G. Weiss [29] witho
the additional condition (3.3). The general weighted case for constantp is due to B. Muck-
enhoupt and R. Wheeden [20]. The inequalities for the exponentsγ0 andγ∞ in (3.2), as is
well known, are necessary and sufficient for power weight to belong to the Muckenh
WheedenApq -class.

Corollary 3.2. Let 0 < α < n, p(x) satisfy conditions(2.3), (2.4), (2.7) and (2.10), and
suppose that

−1

2

(
1− 1

p−

)
<

1

p(∞)
− n + α

2n
<

1

2

(
1

p+
− α

n

)
. (3.4)

Then the operatorIα is bounded from the spaceLp(·)(Rn) into the spaceLq(·)(Rn), 1
q(x)

=
1

p(x)
− α

n
.

The statement of the corollary was proved in [1] and [2] without assumption (3.4
under weaker assumption (2.6) instead of (2.7).

Remark 3.3. In the non-weighted case of Corollary 3.2 there are given bounds fo
difference 1

p(∞)
− n+α

2n
, which is more general than just to write the assumption1

p(∞)
=

n+α
2n

which follows from condition (3.3) of Theorem 3.1. There might be similarly writ
some inequalities instead of just equality (3.3) in the weighted case in Theorem 3.1 a
but the bounds of the corresponding intervals are not expressed in “nice” terms.

Remark 3.4. Theorem 3.1 is obviously valid also for the case of the weightρµx0,µ∞(x) =
|x − x0|γx0 (1+ |x|)γ∞−γx0 fixed to an arbitrary pointx0 ∈ R

n; in conditions (3.2) and (3.3
the valuesp(0) andq(0) should be replaced in this case byp(x0) andq(x0), respectively.

Theorem 3.5. Let the functionp :Sn → [1,∞) satisfy conditions(2.18)–(2.20). The spher-
ical potential operatorKα is bounded from the spaceLp(·)(Sn, ρβa,βb

) with ρβa,βb
(σ ) =

|σ − a|βa · |σ − b|βb , wherea ∈ S
n andb ∈ S

n are arbitrary points on the unit sphereSn,
a 	= b, into the spaceLq(·)(Sn, ρβa,βb

) with ρνa,νb
(σ ) = |σ − a|νa · |σ − b|νb , where

1
q(σ )

= 1
p(σ)

− α
n
, and

αp(a) − n < βa < np(a) − n, αp(b) − n < βb < np(b) − n, (3.5)

νa = q(a)

p(a)
βa, νb = q(b)

p(b)
βb (3.6)

and the weight exponentsβa andβb are related to each other by the connection

q(a)
βa = q(b)

βb. (3.7)

p(a) p(b)
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Corollary 3.6. Under assumptions(2.18)–(2.20)the spherical potential operatorKα is
bounded fromLp(·)(Sn) into Lq(·)(Sn), 1

q(σ )
= 1

p(σ)
− α

n
.

4. Proof of Theorem 3.1

Proof. We denote

Ap
µ0,µ∞(f ) =

∫
Rn

|x|µ0
(
1+ |x|)µ∞−µ0

∣∣f (x)
∣∣p(x)

dx.

We have to show thatAq
µ0,µ∞(Iαϕ) � c < ∞ for all ϕ with A

p
γ0,γ∞(ϕ) � 1, wherec > 0

does not depend onϕ.
Let

B+ = {
x ∈ R

n: |x| < 1
}

and B− = {
x ∈ R

n: |x| > 1
}
.

In view of (2.3) it is easily seen that

Aq
µ0,µ∞(Iαϕ) � c(A++ + A+− + A−+ + A−−), (4.1)

where

A++ =
∫
B+

|x|µ0

∣∣∣∣
∫

B+

ϕ(y)dy

|x − y|n−α

∣∣∣∣
q(x)

dx,

A+− =
∫
B+

|x|µ0

∣∣∣∣
∫

B−

ϕ(y)dy

|x − y|n−α

∣∣∣∣
q(x)

dx,

and

A−+ =
∫
B−

|x|µ∞
∣∣∣∣
∫
B+

ϕ(y)dy

|x − y|n−α

∣∣∣∣
q(x)

dx,

A−− =
∫
B−

|x|µ∞
∣∣∣∣
∫
B−

ϕ(y)dy

|x − y|n−α

∣∣∣∣
q(x)

dx

so that we may separately estimate these terms. We note that the relation (3.3) will b
only in the estimation of the “mixed” termsA+− andA−+.

The termA++. This term is covered by Theorem 2.3, the condition (2.12) of Theorem
being fulfilled by the first assumption in (3.2).

The termA−−. The estimation ofA−− is reduced to that ofA++ by means of the simul
taneous change of variables (inversion):

u du v dv

x = |u|2 , dx = |u|2n

, y = |v|2 , dy = |v|2n
. (4.2)
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A−− =
∫
B+

|x|−µ∞−2n

∣∣∣∣
∫

B+

ϕ(y∗) dy

|y|2n|x∗ − y∗|n−α

∣∣∣∣
q∗(x)

dx,

where we denoted

q∗(x) = q(x∗) = q

(
x

|x|2
)

.

By (2.14), we obtain

A−− =
∫
B+

|x|−µ∞−2n

∣∣∣∣|x|(n−α)q∗(x)

∫
B+

|y|−n−αϕ(y∗) dy

|x − y|n−α

∣∣∣∣
q∗(x)

dx.

Sinceq(x) satisfies the logarithmic condition (2.6) at infinity, the functionq∗(x) satisfies
the local logarithmic condition (2.4) near the origin, so that|x|(n−α)q∗(x) � c|x|(n−α)q∗(0) =
c|x|(n−α)q(∞) and we get

A−− =
∫
B+

|x|µ1

∣∣∣∣
∫

B+

ψ(y)dy

|x − y|n−α

∣∣∣∣
q∗(x)

dx, (4.3)

where

µ1 = (n − α)q(∞) − 2n − µ∞ and ψ(y) = |y|−n−αϕ

(
y

|y|2
)

. (4.4)

It is easily checked that∫
B+

|x|γ1
∣∣ψ(x)

∣∣p∗(x)
dx =

∫
B−

|x|γ∞ ∣∣ϕ(x)
∣∣p(x)

dx < ∞ (4.5)

under the choiceγ1 = (n + α)p(∞) − 2n − γ∞, and conditions

αp∗(0) − n < γ1 < n
[
p∗(0) − 1

]
and µ1 = q∗(0)

p∗(0)
γ1

hold. By (2.7), the exponentq∗ satisfies the local log-condition. Therefore, Theorem 2.
applicable in (4.3) and thenA−− � c < ∞.

Estimation of the termsA−+ andA+− is less direct and requires condition (3.3) wh
was not used when we estimated the termsA++ andA−−.

The termA−+. By the inversion changex → x∗ of the variablex, we have

A−+ =
∫
B+

|x|−µ∞−2n

∣∣∣∣
∫

B+

ϕ(y)dy

|x∗ − y|n−α

∣∣∣∣
q∗(x)

dx

�
∫

|x|(n−α)q∗(0)−µ∞−2n
∣∣h(x)

∣∣q∗(x)
dx =

∫
|x|µ1

∣∣h(x)
∣∣q∗(x)

dx,
B+ B+
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where

h(x) =
∫
B+

ϕ(y)dy

(|x| · |x∗ − y|)n−α
.

In contrast to the case of the termsA++ andA−−, now the information about the inte
grability of ϕ(x) is known in terms ofp(x), while h(x) should be integrated to the pow
q∗(x), notq(x) (in the symmetrical termA+−, on the contrary, we will have to deal wit
q(x) preserved, butp(x) replaced byp∗(x)). Fortunately, we may pass toq∗(x) thanks to
the properties of the inversionx∗ = x

|x|2 and the logarithmic smoothness ofq(x) whenx

passes through the unit sphere. We proceed as follows. First we observe that

|x| · |x∗ − y| � |x − y| and |x| · |x∗ − y| � 1− |x| (4.6)

for |x| � 1 and|y| � 1. The former of the inequalities in (4.6) was given in (2.16), the la
follows from the fact that|x∗| � 1 and|y| � 1 and then|x∗ − y| � |x∗| − |y| = 1

|x| − |y| �
1
|x| − 1.

Let E1 = {x ∈ B+: q∗(x) � q(x)} andE2 = {x ∈ B+: q∗(x) � q(x)}. We have

A−+ �
∫

x∈E1, |h(x)|�1

|x|µ1 dx +
∫

x∈E1, |h(x)|�1

|x|µ1
∣∣h(x)

∣∣q(x)
dx

+
∫
E2

|x|µ1
∣∣h(x)

∣∣q∗(x)
dx =: A1 + A2 + A3.

Here the termA1 is finite sinceµ1 > −n. For the termA3 we have

A3 �
∫

x∈E2, |x|� 1
2

|x|µ1
∣∣h(x)

∣∣q∗(x)
dx

+
∫

x∈E2, |x|� 1
2

|x|µ1
∣∣h(x)

∣∣q(x)∣∣h(x)
∣∣q∗(x)−q(x)

dx =: A31 + A32.

The termA31 is finite since|x| · |x∗ − y| � 1
2 for |x| � 1

2 by (4.6) and then|h(x)| �
c‖ϕ‖L1 � c1‖ϕ‖Lp(·)(Rn,ργ0,γ∞ ). For the termA32 we have to show that

sup
x∈E2, |x|� 1

2

∣∣h(x)
∣∣q∗(x)−q(x)

< ∞.

To this end, we make use of the second inequality in (4.6) and obtain

∣∣h(x)
∣∣ �

(
1− |x|)α−n

∫
B+

∣∣ϕ(t)
∣∣dt = c

(
1− |x|)α−n

and then∣ ∣
∣h(x)∣q∗(x)−q(x) � e(α−n)[q∗(x)−q(x)] ln(1−|x|),
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e

which is bounded for|x| � 1
2 by Lemma 2.5.

Gathering the estimates, we obtain

A−+ � c + c

∫
B+

|x|µ1
∣∣h(x)

∣∣q(x)
dx

� c + c

∫
B+

|x|µ1

(∫
B+

|ϕ(y)|dy

(|x| · |x∗ − y|)n−α

)q(x)

dx.

Hence, by the first inequality in (4.6),

A−+ � c + c

∫
B+

|x|µ1

(∫
B+

|ϕ(y)|dy

|x − y|n−α

)q(x)

dx

and we are able now to apply Theorem 2.3. However, this requires the conditionµ1 �
µ0 = q(0)

p(0)
γ1, that is,

µ0 + µ∞ � (n − α)q(∞) − 2n

or equivalently,

q(0)

p(0)
γ0 + q(∞)

p(∞)
γ∞ � q(∞)

p(∞)

[
(n + α)p(∞) − 2n

]
. (4.7)

Therefore, by (3.3) we may apply Theorem 2.3 which provides the necessary estim
A−+ � c < ∞.

The termA+−. After the inversion change of variables in the inner integral inA+− we
have

A+− =
∫
B+

|x|µ0

∣∣∣∣
∫

B+

|y|−2nϕ(
y
|y| ) dy

|x − y
|y| |n−α

∣∣∣∣
q(x)

dx

=
∫
B+

|x|µ0

∣∣∣∣
∫

B+

ψ(y)dy

(|y| · |x − y∗|)n−α

∣∣∣∣
q(x)

dx, (4.8)

where

ψ(y) = |y|−n−αϕ(y∗) ∈ Lp∗(·)(B+, |x|γ1
)

is the same function as in (4.4). We distinguish the cases|y| � 1
2 and |y| � 1

2. In the
first case we make use the second of the inequalities in (4.6) in the form|y| · |x − y∗| �
1 − |y| � 1

2 and then the estimation becomes trivial. In the case|y| � 1
2 we make use

of the first inequality in (4.6):|y| · |x − y∗| � |x − y| which gives a possibility to mak
use of Theorem 2.3, the passage to the exponentq∗(x) = np∗(x)

n−αp∗(x)
in (4.8) is done in the

same way as in the estimation ofA−+ by distinguishing the cases whereq(x) � q∗(x) and
q(x) � q∗(x):

A+− � c +
∫

|x|µ0

(∫ |ψ(y)|dy

n−α

)q∗(x)

dx;

B+ B+

|x − y|
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we omit details of that passage to the exponentq∗(x), they are symmetrical to those in th
case ofA−+ when we passed fromq∗(x) to q(x). We only mention that when proving th
uniform boundedness of∣∣∣∣

∫

y∈B+, |y|> 1
2

|ψ(y)|dy

(|y| · |x − y∗|)n−α

∣∣∣∣
q(x)−q∗(x)

with q(x) � q∗(x), we may use the obvious inequality|x − y∗| � 1− |x|.
When applying Theorem 2.3 with the exponentsp∗(x) andq∗(x), according to condi

tion (2.12) we have to assume that

µ0 � q∗(0)

p∗(0)
γ1 = q(∞)

p(∞)
γ1,

which gives the condition

q(0)

p(0)
γ0 + q(∞)

p(∞)
γ∞ � q(∞)

p(∞)

[
(n + α)p(∞) − 2n

]
(4.9)

contrary to (4.7), which holds because of condition (3.3). Therefore the applicati
Theorem 2.3 ends the proof.�
Proof of Corollary 3.2. The statement of this corollary follows immediately from The
rem 3.1 under condition (3.3) which in the non-weighted case takes the form

p(∞) = β, β = 2n

n + α
> 1.

We make use of the Riesz–Thorin interpolation theorem, see Theorem 2.2, to show t
boundedness holds if instead ofp(∞) = β we require that the value of1

p(∞)
does not differ

much from 1
β

, namely,−1
2(1− 1

p− ) < 1
p(∞)

− 1
β

< 1
2( 1

p+ − α
n
) which is condition (3.4).

To avoid the conditionp(∞) = β, we may interpolate between a constantp0 > 1 and
somer(·) for which the conditionr(∞) = β holds. That is, we have to findθ ∈ (0,1) and
p0 ∈ (1, n

α
) such that

1

p(x)
= 1− θ

p0
+ θ

r(x)
,

wherer(x) satisfies the conditions

inf
x∈Rn

r(x) > 1, sup
x∈Rn

r(x) <
n

α
and r(∞) = β (4.10)

(note that any log-condition forr(x) follows from the same log-condition ofp(x)). Con-
ditions (4.10) take the form

1− θ

p0
+ θ >

1

p−
,

1− θ

p0
+ α

n
θ <

1

p+
and

1− θ

p0
+ θ

β
= 1

p(∞)
, (4.11)

respectively. By direct calculations, it can be proved that conditions (4.11) may be sa
jointly with conditionsp0 ∈ (1, n

α
) andθ ∈ (0,1) if and only if assumption (3.4) holds. W
prove this in Appendix B. �
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5. Proof of Theorem 3.5

The statement of Theorem 3.5 is derived from that of Theorem 3.1 by means
stereographic projection. By Remark 3.4 and an appropriate rotation on the sphe
reduce the proof to the case wherea = en+1 = (0,0, . . . ,0,1) andb = −en+1.

Formulas (2.22)–(2.25) give the relations∫
Rn

ϕ(y) dy

|x − y|n−α
= 2α

∫
Sn

ϕ∗(σ ) dσ

|ξ − σ |n−α
, (5.1)

whereξ = s(x), σ = s(y) and

ϕ∗(σ ) = ϕ[s−1(σ )]
|σ − en+1|n+α

.

We have also the modular equivalence

∫
Sn

|σ − en+1|βa · |σ + en+1|βb
∣∣ϕ∗(σ )

∣∣p(σ)
dσ

∼
∫
Rn

|y|γ0 · (1+ |y|)γ∞−γ0
∣∣ϕ(y)

∣∣p̃(y)
dy, (5.2)

where

p̃(y) = p
[
s(y)

]
, βa = −γ∞ + (n + α)p̃(∞) − 2n and βb = γ0.

The direct verification shows that the corresponding intervals for the spherical w
exponentsβa andβb coincide with the corresponding intervals for the spatial weight
ponentsγ0, γ∞:

{
γ0 ∈ (αp̃(0) − n,np̃(0) − n),

γ∞ ∈ (αp̃(∞) − n,np̃(∞) − n),

⇐⇒
{

βb ∈ (αp(−en+1) − n,np(−en+1) − n),

βa ∈ (αp(en+1) − n,np(en+1) − n).

Similarly we have an equivalence between the relation (3.3) for spatial weight expo
γ0 andγ∞ and the relation (3.7) for spherical weight exponents, which in our case ha
form

q(en+1)

p(en+1)
βb = q(−en+1)

p(−en+1)
βa,

whereq(σ ) = np(σ)
n−αp(σ)

is the Sobolev limiting exponent on the sphere.
In view of the relation (5.1) and equivalence (5.2) of norms, we then easily derive
orem 3.5 from Theorem 3.1 after obvious recalculations.
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Appendix A

To prove what was stated in Remark 2.1, it suffices to consider the casen = 1. The
question we have to treat, is whether from the conditions

∣∣p(x) − p(y)
∣∣ � A

ln 1
|x−y|

for |x − y| � 1

2
and

∣∣p(x) − p(∞)
∣∣ � B

ln(1+ |x|)
there follows that∣∣∣∣p

(
1

x

)
− p

(
1

y

)∣∣∣∣ � C

ln 1
|x−y|

,

wherex, y ∈ R
1+. This is equivalent to the following question. Let a continuous on[0, 1

2]
functionf (x) (= p( 1

x
)), satisfy the log-condition everywhere beyond the origin:

∣∣f (x) − f (y)
∣∣ � Cδ

ln 1
|x−y|

for all x, y ∈
[
δ,

1

2

]
, δ > 0, (A.1)

and ∣∣f (x) − f (0)
∣∣ � C0

ln 1
x

. (A.2)

Do conditions (A.1) and (A.2) guarantee that
∣∣f (x) − f (y)

∣∣ � C

ln 1
|x−y|

for all x, y ∈
[
0,

1

2

]
? (A.3)

The answer to this question is negative, because the only condition (A.2) may no
vent from the constantCδ in (A.1) to be tending to infinity whenδ → 0. The correspondin
counterexample is given in the lemma below.

Lemma A.1. There exists a functionf (x) continuous on[0, 1
2] such that conditions(A.1)

and (A.2) are satisfied, but(A.3) is not valid.

Proof. Let µ(x) ∈ C∞(R1) be an even smooth “cap” with support in(−1,1), 0 �
µ(x) � 1, such thatµ(0) = 1 andµ(1

2) = 1
2.

Let also{bn}∞n=1 be a monotonically decreasing sequence of points in[0, 1
2] tending to 0

asn → ∞. We construct the “narrow” caps

µn(x) = µ

(
x − an+1

λn

)
, wherean+1 = bn + bn+1

2
andλn = bn − bn+1

2
,

supported on(bn+1, bn). By the choice ofµ(x), we have

µn(βn) = 1

2
, βn = bn+1 + 3bn

4
∈ (bn+1, bn). (A.4)

We denoteω(x) = 1
ln 1

x

for brevity and construct the functionf (x) in the form

f (x) = ω(x)G(x), whereG(x) =
∞∑

Akµk(x)ω
(|x − ak+1|

)
(A.5)
k=1
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and the positive constantsAk will be chosen later. Obviously, for any fixedx, the series
in (A.5) contains one term only

f (x) = Anω(x)µn(x)ω
(|x − an+1|

)
, x ∈ (bn+1, bn). (A.6)

Under any choice ofAn condition (A.1) is satisfied automatically, because forx ∈ [δ, 1
2],

the series in (A.5) contains a finite number of terms and∣∣ω(|x − ak+1|
) − ω

(|y − ak+1|
)∣∣ � ω

(|x − y|)
(where we took into account that the functionω(x) = 1

ln 1
x

is the continuity modulus, tha

is, ω(x) − ω(y) � ω(x − y), x > y).
To satisfy condition (A.2) and show that (A.3) does not hold, we have to show tha

sup
x∈[0, 1

2 ]
G(x) < ∞ and sup

x,y∈[0, 1
2 ]

|f (x) − f (y)|
ω(|x − y|) = ∞. (A.7)

To this end, we have to properly choose both the coefficientsAn and the pointsbn. For the
former of conditions in (A.7) we need to show that

sup
n

sup
x∈[bn+1,bn]

Anµn(x)ω
(|x − an+1|

)
< ∞,

for which it suffices to chooseAn so that

sup
n

Anω(bn − an+1) < ∞. (A.8)

As regards the latter of the conditions in (A.7), we have

sup
x,y∈[0, 1

2 ]

|f (x) − f (y)|
ω(|x − y|) � sup

n
sup

x∈[0, 1
2 ]

|f (x) − f (an+1)|
ω(|x − an+1|)

= sup
n

sup
x∈[bn+1,bn]

Anω(x)µn(x)ω(|x − an+1|)
ω(|x − an+1|)

� sup
n

Anω(βn)µn(βn).

Then, by (A.4) we obtain

sup
x,y∈[0, 1

2 ]

|f (x) − f (y)|
ω(|x − y|) � 1

2
sup
n

Anω(βn) = 1

2
sup
n

An

ln 1
βn

. (A.9)

Now we choose

An = ln2 1

βn

.

Then by (A.9), sup
x,y∈[0, 1

2 ]
|f (x)−f (y)|

ω(|x−y|) = ∞ so that condition (A.3) is not satisfied, ind
pendently of the choice of the pointsbn. It remains to show that there exists a choice
these points such that (A.8) holds. Under our choice ofAn we have

Anω(bn − an+1) = ln2 1
βn =

ln2 4
bn+1+3bn = (ln 1

bn
+ ln 4

3+tn
)2

,

ln 1

bn−an+1
ln 2

bn−bn+1
ln2+ ln 1

bn
+ ln 1

1−tn
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where we have denotedtn = bn+1
bn

� 1. Hence

Anω(bn − an+1) � c
ln2 1

bn

ln 1
bn

+ ln 1
1−tn

(A.10)

with some positive constantc. Now we wish to make a choice ofbn so that ln 1
1−tn

= ln2 1
bn

,

that is,tn = 1− b
ln 1

bn
n and we arrive at the recurrent relation forbn:

bn+1 = bn

(
1− b

ln 1
bn

n

)
(whence it follows thatbn tends monotonously to zero asn → ∞). Then under this choic
of bn, from (A.10) there follows that

Anω(bn − an+1) � c
ln2 1

bn

ln 1
bn

+ ln2 1
bn

� c

with c not depending onn which proves (A.8) and the lemma.�

Appendix B

Lemma B.1. Let p+ � p− > 1,p(∞) > 1 and β = 2n
n+α

. The numbersθ ∈ (0,1) and
p0 ∈ (1, n

α
) satisfying conditions(4.11)exist if and only if assumption(3.4)holds.

Proof. Since 1
p0

andθ are related by the linear relation, the last one in (4.11), after

cluding 1
p0

, we see that our problem is equivalent to the problem of existence ofθ ∈ (0,1)

such that
1

p−
− 1

p(∞)
< θ

(
1− 1

β

)
,

1

p(∞)
− θ

β
<

1

p+
− αθ

n
(B.1)

and
1

1− θ

[
1

p(∞)
− θ

β

]
∈

(
α

n
,1

)
. (B.2)

The restrictions onθ in (B.1) together are equivalent to the condition

θ > a := max

( 1
p− − 1

p(∞)

1− 1
β

,

1
p(∞)

− 1
p+

1− 1
β

)
. (B.3)

Observe (in the “only if” part) that this lower bounda must be less than 1, which gives t
conditions

1

p−
− 1<

1

p(∞)
− 1

β
<

1

p+
− α

n
. (B.4)

It remains to take care about condition (B.2). After direct calculations we obtain that
is equivalent to the following restriction onθ from above:

θ < b := min

(1− 1
p(∞)

,

1
p(∞)

− α
n

)
. (B.5)
1− 1
β

1− 1
β
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Finally, according to (B.3) and (B.5) the requiredθ exists if and only ifa < b. This gives
the condition

1

p−
+ α

n
<

2

p(∞)
< 1+ 1

p+
which is nothing else but (3.4).�
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[8] L. Diening, M. Ružǐcka, Calderon–Zygmund operators on generalized Lebesgue spacesLp(x) and problems
related to fluid dynamics, preprint, Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg, (21
04.07.2002):1–20, 2002.
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