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Abstract

The aim of the paper is twofold. First, we present a new general ap-
proach to the definition of a class of mixed norm spaces of analytic functions
Aq;X(D), 1 � q < ∞ on the unit disc D. We study a problem of bounded-
ness of Bergman projection in this general setting. Second, we apply this
general approach for the new concrete cases when X is either Orlicz space
or generalized Morrey space, or generalized complementary Morrey space.
In general, such introduced spaces are the spaces of functions which are
in a sense the generalized Hadamard type derivatives of analytic functions
having lq summable Taylor coefficients.

MSC 2010 : Primary 30H20; Secondary 46E30, 46E15

Key Words and Phrases: mixed norm, fractional derivatives, Hadamard
type integro-differentiation, Bergman type space, Bergman projection, Or-
licz space, Morrey space

1. Introduction

Let X(I) ⊆ L1(I), I = (0, 1), denote any Banach space of functions
f on interval I containing step functions, and let ‖ · ‖X(I) stand for the

norm. Given a function f(z) = f(r, eiα) on D or in general a distribution
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MIXED NORM SPACES OF ANALYTIC FUNCTIONS AS . . . 1107

on D we denote by fn its distributional Fourier coefficients (see Section 7
for definition). We introduce the mixed norm space Lq;X(D), 1 � q < ∞,
as the space of distributions on D such that the (distributional) Fourier
coefficients fn are regular functions fn(r) ∈ X(I) and

∑
n∈Z ‖fn‖qX(I)

is

finite. The q−th root from this sum gives the norm in Lq;X(D). The mixed
norm Bergman space Aq;X(D), 1 � q < ∞, is defined as the subspace in
Lq;X(D) of functions analytic in D.

In [20, 21] we studied special cases for the space X(I). The variable
exponent Lebesgue space X(I) = Lp(·)(I), 1 � p(r) � ∞, was treated in
[20], and the cases of classical Morrey space X(I) = Lp,λ(I), 0 � λ < 1,

1 � p < ∞, and complementary Morrey space X(I) = �Lp,λ(I), 0 � λ <
p − 1, 1 < p < ∞, were studied in [21]. This research was inspired by the
evident fact that introduction of the mixed norm in the unit disc allows to
distinguish between radial and angular behavior of functions, and, hence,
to specify the boundary behaviour with more accuracy. In such a way one
can reveal the behaviour of a function using variety of norms, including
norms of the so called spaces of functions of non standard growth.

A special motivation to introduce new spaces in this paper is in the
fact that, for instance, in the case q = 2 these Bergman type spaces may be
precisely characterize as the range of certain generalized fractional differen-
tiation operator over the Hardy space H2(D) (see Theorem 4.1). Moreover,
the introduced spaces, in general, are the spaces of functions which are the
generalized fractional derivatives of analytic functions with lq summable
Taylor coefficients. This important fact sheds a light on the nature of the
introduction of the spaces via conditions on Fourier coefficients, which is
different from the usual mixed norm space setting. The notion of general-
ized derivatives of Hadamard type is a wide generalization of the used in
the theory of analytic functions so called radial derivatives, Flett’s deriva-
tives, etc. We discuss this notion in Section 4. In the particular cases
of Orlicz and generalized Morrey type spaces the corresponding form of
Hadamard derivative can be explicitly seen from the characterization of
functions in such spaces, see Theorems 5.2, 6.2. For a general theory of
fractional derivatives and integrals we refer to [23], [36].

In the last two decades the theory of new spaces arising in harmonic
analysis of functions with non standard growth and the theory of operators
of harmonic analysis in various general spaces with non-standard growth
have been intensively developed. These spaces include in particular variable
exponent Lebesgue, Hölder, Sobolev spaces, Lorentz spaces, and Orlicz,
Morrey-Campanato type, Herz spaces, and others. Within these spaces
there were widely considered singular integrals, Riesz and Bessel poten-
tials, maximal and fractional operators, some other classical operators of
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1108 A. Karapetyants, S. Samko

harmonic analysis. As a matter of fact, major attention was paid to real
variable settings. We refer to the books [7, 8, 25, 26] (see also review paper
[34]).

Therefore it seems natural and fruitful to make use of widely developed
methods in the area mentioned above in the case of new spaces of analytic
functions. Indeed, the investigation in such a direction already presents
very new effects and interesting results. For instance, such a variety of
spaces include classical Hardy space and Bergman type space, these very
different spaces of functions even within one scale of spaces, i.e. when
X(I) = Lp(·)(I). Depending on the growth of p(r) as r → 1 we may obtain
both Hardy and Bergman type spaces as particular cases of Aq;X(D) with

X(I) = Lp(·)(I).
Starting with the papers [4], [17], [18], the Bergman spaces, called some-

times the Bergman-Jerbashian spaces, and other spaces of analytic func-
tions attracted attention of many researchers, see the books [5, 10, 16, 39,
40] and references therein. In particular, an important role is played by the
boundedness of the Bergman projection. Besides the above cited books we
also refer to [1, 3, 9] with respect to such boundedness and related questions.
There are known result on the mixed norm Bergman spaces with integral
mixed norm with integration in angular and radial variables (boundedness
of the Bergman projection, and some functional space properties of the
mixed norm Bergman spaces, such as duality, interpolation etc.). We refer
to the papers [12, 15, 19, 29, 30] (see also references therein).

The spaces that we study are different from such mixed integration
norm spaces. In some cases embedding of our spaces into such spaces may
be traced under some concrete choice of the space X(I) (see Theorem 4.2).

Introducing the spaces Aq;X(D), 1 � q < ∞, we in fact suggest a
new general approach to the definition of a class of mixed norm Bergman
spaces on the unit disc D.We provide some general assumption on the space
X(I) under which the Bergman projection is bounded from Lq;X(D) onto
Aq;X(D) and reveal the importance of the asymptotical behaviour of the
norms ‖rn‖X(I) as n → ∞ for the characterization of the spaces Aq;X(D).
This general scheme may be considered as a useful guide. However, the
main difficulties start when we treat concrete cases: we have to overcome
various problems to verify the above mentioned assumption on the space
X(I) and the asymptotic of ‖rn‖X(I) as n → ∞ in the case of this or other
concrete case of X(I). Exactly at this step we often have to use very specific
properties of the space X(I) or even to obtain new ones, as for instance
in [20]. We also present a short review of results previously obtained in
[20, 21], i.e. we summarize these results under a general point of view.
We apply this general approach for the new concrete cases where X(I) is
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either the Orlicz space LΦ(I) or the generalized Morrey space Lp,ϕ(I), or

the generalized complementary Morrey space �Lp,ϕ(I). The fundamentals
of Young functions and Orlicz spaces appeared to be very useful in this
study. This is a promising area of research, and we plan to explore new
cases, for instance, via introducing Besov type norms (see [22]), as well as
we keep in mind to study Toeplitz type operators on such new spaces.

The paper is organized as follows. Section 2 contains necessary prelimi-
naries on classical function spaces: Bergman, Morrey and Orlicz. In Section
3 we develop our general approach. In Section 3.1 we give our basic defi-
nition and prove the completeness of Lq;X(D), and in Section 3.2 we give
general condition on the boundedness of Bergman projection from Lq;X(D)
onto Aq;X(D). In Section 3.3 we briefly discuss Toeplitz operators on our
new spaces. In Section 4 we discuss the characterization of our spaces in
terms of generalized fractional differentiation. A special attention is paid
to the space A2;X(D) which coincides with the range of certain differential
operator over the classical Hardy space H2(D). We also outline certain
results previously obtained in [20, 21]. In Sections 5, 6 we realize our ap-
proach for X(I) being Orlicz space or generalized Morrey and generalized
complementary Morrey space where we manage to find the asymptotic for
the norm ‖rn‖X(I) which also leads to the characterization of the spaces
under consideration and to the corresponding results on boundeddness of
the Bergman projection. In Section 7 we pay a special attention how we
interpret distributional Fourier coefficients of traces of functions.

2. Preliminaries

2.1. On the Bergman Ap(D) space, Hardy Hp(D) space and Bergman
projection BD. For the references, see [10, 16, 39, 40]. Let dA(z) stand
for the area measure on D normalized so that the area of D is 1. As usual
Ap(D) stands for the Bergman space of analytic in D functions f that be-
long to Lp(D) = Lp(D; dA(z)). The corresponding Bergman projection BD

which is defined on f ∈ L1(D) as

BDf(z) =

∫
D

f(w)

(1− zw)2
dA(w), z ∈ D, (2.1)

is bounded from Lp(D) onto Ap(D) for 1 < p < ∞. For a function f on the

unit discD, and for 0 � r < 1, we writeMp(f ; r) =
{

1
2π

∫ 2π
0 |f(r, eiθ)|pdθ

} 1
p
,

for 0 < p < ∞, and Mp(f ; r) = ess-sup θ∈[0,2π)|f(r, eiθ)|, for p = ∞. The

class of analytic in D functions f for which ‖f‖Hp(D) ≡ limr→1Mp(f ; r) <
∞, 0 < p � ∞, is the Hardy class Hp(D).
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1110 A. Karapetyants, S. Samko

2.2. Generalized Morrey and complementary Morrey spaces Lp,ϕ(I),
�Lp,ϕ(I). For more details on the Morrey type spaces, we refer to [13, 28,
32, 33, 37]. In the definition below we naturally assume that the function
ϕ : I → R+ is increasing on I and ϕ(t) > 0 for t > 0, ϕ(0) = 0. We treat
the Lebesgue space Lp(I), 1 ≤ p < ∞, as equipped with the measure 2rdr.

Let 1 � p < ∞. The generalized Morrey space Lp,ϕ(I) over the interval
I is defined as the set of functions f measurable on I such that

supr,r±h∈I,h>0

1

ϕ(h)

∫ r+h

r−h
|f(t)|p 2tdt < ∞.

Let 1 < p < ∞. The generalized complementary Morrey space �Lp,ϕ(I)
over the interval I is defined as the set of functions f measurable on I such
that

suph∈Iϕ(h)
∫ 1−h

0
|f(t)|p 2tdt < ∞.

The p-th root from the expressions above provides the corresponding

norm in Lp,ϕ(I) and in �Lp,ϕ(I). The space Lp,ϕ(I) is trivial if limt→0
ϕ(t)
t =

0, and Lp,ϕ(I)

∣∣∣∣
ϕ(t)=t

= L∞(I). So we suppose that ϕ(t) � Ct, when t → 0.

The spaces Lp,ϕ(I), �Lp,ϕ(I) are non separable. The embedding Lp,ϕ(I) ↪→
Lp(I), 1 � p < ∞ is obvious. For the embedding �Lp,ϕ(I) ↪→ L1(I),
1 < p < ∞, we need to assume additional condition on ϕ provided by the
following result.

Lemma 2.1. Let 1 < p < ∞ and∫
I

dt

(tϕ(t))
1
p

< ∞. (2.2)

Then �Lp,ϕ(I) ↪→ L1(I).

P r o o f. The proof is straightforward: use dyadic decomposition, which
is the standard tool when working with Morrey type norm (see, for in-
stance, [6, 31]) for the interval I and apply Hölder inequality. We have
(Z+ ≡ N ∪ {0}):∫

I
|f(t)|2tdt � 2

1
p′
∑
k∈Z+

(
2−k−1

) 1
p′
(∫ 1−2−k−1

1−2−k

|f(t)|p2tdt
) 1

p

� 2
1
p′
∑
k∈Z+

(
2−k−1

) 1
p′
ϕ− 1

p (2−k−1)

(
ϕ(2−k−1)

∫ 1−2−k−1

0
|f(t)|p2tdt

) 1
p
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� 2
1+ 2

p′ ‖f‖�Lp,ϕ(I)

∑
k∈Z+

∫ 2−k−1

2−k−2

t
1
p′

ϕ
1
p (t)

dt

t
= 2

1+ 2
p′ ‖f‖�Lp,ϕ(I)

∫ 1
2

0

t
1
p′

ϕ
1
p (t)

dt

t
.

We refer, for instance, to Lemma 3.2 from [6] for the estimation of the
infinite sum via integral. �

Note that in the classical case of complementary Morrey space when
ϕ(t) = tλ the condition (2.2) is λ < p− 1. If there exists β ∈ (0, p− 1) such

that ϕ(t)
tβ

decreases on I, then the condition (2.2) is satisfied for such ϕ.

Remark 2.1. In what follows when considering the Morrey space
Lp,ϕ(I) and complementary Morrey space �Lp,ϕ(I), we always assume the
mentioned above natural assumptions on ϕ : the function ϕ : I → R+

is increasing on I and ϕ(t) > 0 for t > 0, ϕ(0) = 0. Additionally, for
the Morrey space we suppose that ϕ(t) � Ct, when t → 0, and for the

complementary Morrey space �Lp,ϕ(I) we assume validity of (2.2).

Remark 2.2. In the definition of the Morrey space one may want to
use a more classical way, writing ϕ(4rh) instead of ϕ(h), since the measure
of the interval (r − h, r + h) with respect to the 2rdr equals to 4rh. Such
introduced mixed norm space, let us denote it as Lq;ϕ

∗ (D), will be different
from Lq;ϕ(D). However, the corresponding subspaces of analytic functions
coincide up to norm equivalence. For instance, the proof of the Theorem
6.3 explicitly shows that we will have similar results in that another setting.
We leave the details for the reader. Also note that the usual definition of
the Morrey space deals with the supremum over all r, h ∈ I and intervals
I ∩ (r− h, r+ h). For our goals, for the definition of Lp,ϕ(I) we admit only
intervals (r − h, r + h) ⊂ I.

2.3. Young functions and Orlicz space LΦ(I). We refer to [27, 28, 32,
35]. Let Φ : [0,∞] → [0,∞] be a convex function, Φ(0) = 0, limx→∞Φ(x) =
Φ(∞) = ∞. From the convexity and Φ(0) = 0 it follows that any Young
function is increasing. To each Young function Φ one identifies the com-
plementary function Ψ, which possesses the same properties, by the rule
Ψ(y) = supx�0{xy − Φ(x)}. Note that

t � Φ−1(t)Ψ−1(t) � 2t, t � 0. (2.3)

We say that Φ ∈ Δ2 if there exists C(2) > 0 such that Φ(2t) � C(2)Φ(t),
t > 0. This Δ2 condition is usually referred as doubling condition. A Young
function Φ is said to satisfy the ∇2 condition, denoted also by Φ ∈ ∇2, if for
some k > 1 one has Φ(kt) � 2kΦ(t), t � 0. Let, as usual, LΦ(I) be the Orlicz
space of functions f measurable on I such that

∫
I Φ(k|f(r)|)2rdr < ∞ for
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1112 A. Karapetyants, S. Samko

some k > 0. The functional NΦ(f) = inf

{
λ > 0 :

∫
I Φ
( |f(r)|

λ

)
2rdr � 1

}
defines norm in LΦ(I). The following analog of Hölder inequality is valid:∫

I
|f(t)g(t)|2tdt � 2‖f‖LΦ(I)‖g‖LΨ(I). (2.4)

Let χr,h be characteristic function of the interval (r−h, r+h). It is known
that

‖χr,h‖LΦ(I) =
1

Φ−1
(

1
4rh

) . (2.5)

The following result may be found in [24], however we present it here,
with slight modification, for the sake of completeness. A function ϕ is
said to be almost decreasing for t > 0 if there exists C > 0 such that
ϕ(t2) � Cϕ(t1), t2 > t1 > 0.

Lemma 2.2. Let Φ satisfy the doubling Δ2 condition for t > 0 with
the constant C(2). Then given any β � log2 C(2) we have

(1) t−βΦ(t) is almost decreasing for t > 0;
(2) Φ(At) � AβC(2)Φ(t), for any constant A � 1, for t > 0.

P r o o f. The statements (1) and (2) are equivalent up to the con-
stants in the inequalities. Let us prove the second one. Naturally we
assume that C(2) > 1. Fix N = [log2A] so that 2N � A < 2N+1. Then

Φ(At) � Φ(2N+1t) � CN+1
(2) Φ(t) = C

[log2 A]+1
(2) Φ(t) � C

log2 A+1
(2) Φ(t) =

C
log2 A
(2) C(2)Φ(t) = Alog2 C(2)C(2)Φ(t). Hence it follows that given any β �

log2 C(2) we have Φ(At) � AβC(2)Φ(t), t > 0. �

3. Mixed norm Bergman type space and boundedness
of Bergman projection: general scheme

3.1. Mixed norm space Lq;X(D) and mixed norm Bergman type
space Aq;X(D). Let X(I) ⊆ L1(I), I = (0, 1), denote a Banach space of
functions f on interval I containing step functions, and let ‖·‖X(I) stand for

the norm. Given a function f(z) = f(r, eiα) on D or in general a distribution
on D we denote by fn its distributional Fourier coefficients. The notion
of distributional Fourier coefficients needs a certain precise definition. In
order not interrupt the presentation of the main results we refer the reader
to Section 7 where all the necessary definitions are given. Introduce the
mixed norm space Lq;X(D), 1 � q < ∞, as the space of distributions f on
D such that the (distributional) Fourier coefficients fn are regular functions
fn ∈ X(I), and the following norm is finite:
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‖f‖Lq;X(D) =

(∑
n∈Z

‖fn‖qX(I)

) 1
q

. (3.1)

Theorem 3.1. The space Lq;X(D), 1 � q < ∞, is complete.

P r o o f. Let fk ∈ Lq;X(D), k = 0, 1, . . . , be a Cauchy sequence. Then
for each n ∈ Z the sequence of Fourier coefficients fk

n , k = 0, 1, . . . , is
Cauchy sequence inX(I) and converges inX(I) to some element fn ∈ X(I).
From the inequality∑

n∈Z

∣∣∣‖fk
n‖X(I) − ‖fm

n ‖X(I)

∣∣∣q �∑
n∈Z

‖fk
n − fm

n ‖qX(I)

it follows that the numerical sequence of elements {‖fk
n‖X(I)}n∈Z, k =

0, 1, . . . , is Cauchy sequence in lq, 1 � q < ∞, and, hence, converges to
some numerical sequence {an}n∈Z ∈ lq. Obviously, an = ‖fn‖X(I), and

therefore the distribution f =
∑

n∈Z fn(r)e
inα is the limit of the sequence

fk ∈ Lq;X(D), k = 0, 1, . . . , and its distributional Fourier coefficients are
nothing but fn, by Lemma 7.1. Hence, f ∈ Lq;X(D) and the space Lq;X(D)
is complete. �

We introduce the mixed norm Bergman space Aq;X(D), 1 � q < ∞, as
the space of functions from Lq;X(D) which are analytic in D. Hence, the

norm of a function f ∈ Aq;X(D) is given by ‖f‖Aq;X(D) =
(∑

n∈Z+
‖fn‖qX(I)

) 1
q
.

Remark 3.1. From the definition of the space Aq;X(D), it can be
derived that the Fourier coefficients fn = fn(r), n ∈ Z, of a function f in
Bergman space Aq;X(D) may be represented as

fn(r) =

{
an‖rn‖−1

X(I)r
n, n ∈ Z+,

0, otherwice,
(3.2)

where {an}n∈Z+ ∈ lq+, |an| = ‖fn‖X(I), n ∈ Z+, moreover, ‖f‖Aq;X (D) =

‖{an}n∈Z+‖lq+ .

It is evident that the multipliers ‖rn‖−1
X(I), n ∈ Z+, in (3.2) characterize

the functions in Aq;X(D). Their behaviour when n → ∞ is a crucial point
in the whole study. This behavior depends only on the choice of the space
X(I). So to characterize the introduced space in each particular case of
X(I) we should examine the asymptotic behavior of the numbers ‖rn‖−1

X(I).

Brought to you by | De Gruyter Trial Portugal 2018
Authenticated

Download Date | 7/24/19 5:52 PM



1114 A. Karapetyants, S. Samko

This is a quite difficult issue for spaces of functions with special norm, such
as, for instance, variable exponent Lebesgue norm, Morrey space norm, etc.

Remark 3.2. Our main goal is the study of the Bergman space of
analytic functions Aq;X(D). The space Lq;X(D) plays only a background
role: the space Aq;X(D) will be obtained from Lq;X(D) via the Bergman
projection. In the definition of the space Lq;X(D) in view of the property of
the Bergman projection (see Lemma 3.1) negative entries may be replaced
for instance by ‖fn‖Y (I) with an arbitrary Banach space Y (I), or even
more generally ‖{fn}n∈Z\Z+

‖Z(I), where Z(I) is an arbitrary Banach space
of sequences of functions. The resulting subspace of analytic functions
Aq;X(D) will be the same independently what kind of norm is used for
negative entries. Theorem 3.1 remains also true under such changes if the
space Y (I) or Z(I) is complete. For simplicity of presentation we keep the
definition of the space Lq;X(D) as given in (3.1).

3.2. Boundedness of Bergman projection from Lq;X(D) onto Aq;X(D).
The proof of the following result is straightforward (see for instance [20]).

Lemma 3.1. Given a function f in L1(D) let fn = fn(r), n ∈ Z, denote
the Fourier coefficients of the function f. Then the Fourier coefficients of
the function BDf are

(BDf)n(r) = ϑn(f) r
n, n ∈ Z+, (3.3)

(BDf)n(r) = 0, n ∈ Z \ Z+,

where ϑn(f) = (n+ 1)
∫
I τ

nfn(τ) 2τ dτ, n ∈ Z+.

Let SX
0 (D) denote the set of functions f(z) = f(r, eiα) =

N∑
n=−N

fn(r)e
inα,

fn ∈ X(I), where N ∈ Z+ is arbitrary. Since X(I) ⊂ L1(I), then SX
0 (D) ⊂

L1(D) and therefore the Bergman projection BD is well defined on functions
of such type as integral operator (2.1). It is evident that SX

0 (D) is a dense
subset in Lq;X(D), 1 � q < ∞. The Bergman projection BD on Lq;X(D) is
understood as a continuous extension from this dense subset (see the proof
of Theorem 3.2).

Using (3.3) we get the following expression for the X(I) - norm for
(BDf)n, n ∈ Z+ when f ∈ L1(D) : ‖(BDf)n‖X(I) = |ϑn(f)| ‖rn‖X(I),
n ∈ Z+. This allows us to formulate the following condition on the space
X(I) that ensures boundedness of the corresponding Bergman projection
as a projection from Lq;X(D) onto Aq;X(D): there exists C0 > 0 such that
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MIXED NORM SPACES OF ANALYTIC FUNCTIONS AS . . . 1115

n

∣∣∣∣∫
I
τng(τ)2τdτ

∣∣∣∣ ‖rn‖X(I) � C0‖g‖X(I), n → ∞, g ∈ X(I). (3.4)

Theorem 3.2. Let 1 � q < ∞, and let condition (3.4) be satisfied.
The operator BD is bounded as a projection from Lq;X(D) onto Aq;X(D).

P r o o f. For f ∈ SX
0 (D) we obtain

‖BDf‖qLq;X(D)
=

N∑
−N

‖ (BDf)n ‖qX(I) � Cq
0

N∑
−N

‖fn‖qX(I) = Cq
0‖f‖qLq;X(D)

,

where the constant C0 comes from condition (3.4) and does not depend on
f. Making use of the Banach-Steinghaus theorem we finish the proof. �

Corollary 3.1. Let 1 � q < ∞, and let the condition (3.4) be
satisfied. The space Aq;X(D) is a closed subspace of Lq;X(D).

3.3. On Toeplitz operators with radial symbols on Aq;X(D). Given
a function a = a(|z|) ∈ L1(D) consider the Toeplitz operator Ta on Aq;X(D)
which acts on polynomials f ∈ Aq;X(D) as follows: Taf(z) = (BDaf) (z).
For an analytic function f(z) =

∑
n∈Z+

cnz
n in Aq;X(D) the following for-

mula is true:

(Taf)n(r) = γa(n)cnr
n, n ∈ Z+, and (Taf)n(r) = 0, n ∈ Z \ Z+,

where {cn‖rn‖X(I)}n∈Z+ ∈ lq+, and γa(n) = (n+1)
∫
I τ

2na(τ) 2τ dτ, n ∈ Z+.

From Remark 3.1 and the definition of the norm in Aq;X(D) it is follows
that the operator Ta is bounded on Aq;X(D) if and only if the sequence
{γa(n)}n∈Z+ is bounded. The operator Ta is compact on Aq;X(D) if and
only if γa(n) → 0, n → ∞.

There are known many sufficient and, in some cases, necessary condi-
tions for boundedness and vanishing of the sequence {γa(n)}n∈Z+ . These
conditions were obtained (see, for instance, [14]) in terms of behavior of
some means (averages) of the symbol a when r → 1. There also many
examples of badly behaved oscillating and unbounded symbols that gener-
ate even compact operators. We refer to the book [38], and also references
therein, for recent development of the theory of Toeplitz operators with
special non standard symbols on classical weighted Bergman spaces over
unit disc and half plain. We call attention to the fact that in the set-
ting of our spaces Aq;X(D) the boundedness and compactness conditions
do not depend on the choice of the space X(I). We suppose to give more
consideration to the study of Toeplitz operators in another paper.
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1116 A. Karapetyants, S. Samko

4. The spaces Aq;X(D) and the range of generalized fractional
differentiation operator over Hardy type space

We will use the notion of the Hadamard product composition. Let
the functions b(z) =

∑
k∈Z+

bkz
k, g(z) =

∑
n∈Z+

gnz
n be analytic in D.

Consider the expression D(b, g)(z) = b ◦ g(z) =
∑

n∈Z+
bngnz

n, known as

Hadamard product composition of functions b and g. This general notion
includes in particular operation of fractional integro-differentiation. It gen-
eralizes fractional differentiation of analytic function g if bn → ∞, when
n → ∞. For g analytic in D,

D(b, g)(z) =
1

2πi

∫
|u|=r

b
( z
u

)
g(u)

du

u
, |z| < r < 1.

We refer to [23], [36] for instance. We will use the following operator

DXg(z) =
∑
n∈Z+

‖rn‖−1
X(I)gnz

n, g(z) =
∑
n∈Z+

gnz
n,

defined in terms of Hadamard product composition.
The case q = 2 is of a special interest. Basing on Remark 3.1 for the

case q = 2 we arrive at the following theorem.

Theorem 4.1. The space A2;X(D) coincides with the range of the
operator DX over the Hardy space H2(D) : A2;X(D) = DX(H2(D)).

In view of Theorem 4.1, the distinction between A2;X(D) and H2(D) is
determined by the behavior of ‖rn‖−1

X(I) when n → ∞. In our general case

these asymptotics may be quite different varying, for instance, from very
slow logarithmical to very high exponential type. As we showed in [20],
we may even meet the non trivial situation when ‖rn‖X(I) = 1. In that

case A2;X(D) = H2(D). This situation is realized for the case of variable

exponent Lebesgue space X(I) = Lp(·)(I) when p = p(r) grows to infinity
fast enough, so that

lim
r→1

p(r)

ln A
(1−r) ln 1

1−r

= ∞. (4.1)

If again X(I) = Lp(·)(I) and p(r) is still growing but slower, then in (4.1),
like p(r) � C1 ln

α 1
1−r , in a neighborhood of the point r = 1, for some

0 < α < 1, C1 > 0, then ‖rn‖X(I) � C2 e−C3(lnn)1−α

, n → ∞, with some
positive C2, C3.

At least for 1 � q � 2 we can provide the information of embedding
of Aq;X(D) into mixed integral norm space. Following [11] we introduce
the mixed norm space H(s, t, γ), s > 0, t > 0, γ > 0 of measurable on D

functions with the norm:

Brought to you by | De Gruyter Trial Portugal 2018
Authenticated

Download Date | 7/24/19 5:52 PM



MIXED NORM SPACES OF ANALYTIC FUNCTIONS AS . . . 1117

‖f‖H(s,t,γ) =

{∫
I
(1− r)tγ−1Mt

s(f ; r) dr

} 1
t

, 0 < t < ∞,

‖f‖H(s,∞,γ) = ess-sup r∈I {(1− r)γMs(f ; r)} , t = ∞.

Most resent information about such spaces, including embedding theorems,
may be found in [2]. By Dα, α > 0, we denote the Flett’s fractional
derivative whose action on analytic function is defined by the multiplication
by (n+ 1)α of its nth Taylor coefficient.

Theorem 4.2. Let 1 � q � 2 and there exist C > 0 and α > 0
such that ‖rn‖−1

X(I) � Cnα, n → ∞. Then the continuous embedding

Aq,X(D) ↪→ H(s, t, 12 − 1
s + α) ↪→ L1(D) holds, α < 1

2 + 1
s , 2 < s � ∞,

2 � t � ∞.

P r o o f. We provide a sketch of proof. Due to Aq;X(D) ↪→ A2;X(D),
1 � q � 2 it suffices to prove the theorem for q = 2. According to
Flett’s result (see [11], Theorem B and Theorem 6), we have the esti-
mate ‖Dαf‖H(s,t, 1

2
− 1

s
+α) � C‖f‖H2(D), which shows that the fractional

derivative g = Dαf of a function f ∈ H2(D) belongs to the weighted
mixed norm space H(s, t, 12 − 1

s +α) and proves the embedding A2;X(D) ↪→
H(s, t, 12− 1

s+α). To prove H(s, t, 12− 1
s+α) ↪→ L1(D) one has to repeatedly

use the Hölder inequality under the condition on parameter s : α < 1
2 +

1
s ,

2 < s � ∞. �

Note that in Theorem 4.2 there is no restriction on t except 2 � t � ∞.
Though it is useful to note that the minimal space in the scale H(s, t, 12 −
1
s + α) with respect to the parameter t, 2 � t � ∞, is achieved when t = 2
(see [2]).

In the following theorem we use the notation of the following classical
fractional derivative of analytic functions:

Dαg(z) =
Γ(1 + α)

2πi

∫
|u|=r

g(u)(
1− z

u

)1+α

du

u
, |z| < r < 1, α > 0. (4.2)

Theorem 4.3. Let 1 � q < ∞ and there exist C > 0 and α > 0 such
that ‖rn‖−1

X(I) ∼ Cnα, n → ∞. Each function f ∈ Aq;X(D) is represented

as f = Dαg with some analytic function g(z) =
∑

n∈Z+
gnz

n, such that

{gn}n∈Z+ ∈ lq+.
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1118 A. Karapetyants, S. Samko

P r o o f. We have nα ∼ Γ(1 +α)(−1)n
( −1− α

n

)
, n → ∞. Replac-

ing ‖rn‖−1
X(I) by equivalent expression via binomial coefficients we arrive at

the kernel b(z) = Γ(1 + α)(1 − z)−1−α, and, consequently at the operator
(4.2). �

The condition ‖rn‖−1
X(I) ∼ Cnα, n → ∞, is satisfied with some α > 0,

for instance, for the following cases of the space X(I) considered in [20],
[21]:

(1) α = 1
p(1) for the case of the variable exponent Lebesgue space

X(I) = Lp(·)(I), p(1) = limr→1−p(r) < ∞, p satisfies logarithmic
decay condition in a neighborhood of r = 1, i.e. there exist δ > 0,
K > 0 such that |p(r)− p(1)| ln e

1−r � K, r ∈ (1− δ, 1);

(2) α = 1−λ
p for the case of the classical Morrey space X(I) = Lp,λ(I),

0 � λ < 1, 1 � p < ∞;
(3) α = 1+λ

p for the case of the classical complementary Morrey space

X(I) = �Lp,λ(I), 0 � λ < p− 1, 1 < p < ∞.

5. Mixed norm Bergman - Orlicz space Aq;Φ(D)

Let Φ be a Young function and X(I) = LΦ(I). Here instead of writ-

ing Lq;LΦ(I))(D), as we did previously for an abstract space X(I), we use
Lq;Φ(D) for simplicity. The same applies to Aq;Φ(D).

5.1. Characterization of functions in Aq;Φ(D). We first provide the
description of functions in Aq;Φ(D) in terms of Taylor coefficients and in
terms of fractional derivatives.

Theorem 5.1. Let Φ be a Young function, Φ ∈ Δ2 ∩ ∇2. Then for
an analytic in D function f(z) =

∑
n∈Z+

cnz
n ∈ Aq;Φ(D), z ∈ D the norm

‖f‖Aq;Φ(D) is equivalent to
(∑

n∈Z+

( |cn|
Φ−1(n)

)q) 1
q
.

Theorem 5.2. Under the conditions of Theorem 5.1, each function
f ∈ Aq;Φ(D) has the form f = DXg with some analytic function g(z) =∑

n∈Z+
gnz

n, such that {gn}n∈Z+ ∈ lq+, whereDXg(z) =
∑

n∈Z+
Φ−1(n)gnz

n,

z ∈ D.

Theorem 5.2 follows form Theorem 5.1. The later, in view of Remark
3.1, is the corollary of the following result which will be also crucial for the
proof of the boundedness of the Bergman projection in the next section.
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Theorem 5.3. Let Φ be a Young function. Then

‖rs‖LΦ(I) �
2

Φ−1(s)
, s > 0. (5.1)

If, in addition, Φ satisfies the Δ2 doubling condition with the constant C(2),
then

1

Φ−1(γs)
� ‖rs‖LΦ(I), s > 0, (5.2)

where γ = C(2)

(
1
2 log2 C(2) +

1
s

)
. If moreover Φ ∈ ∇2, then

2
γ

Φ−1(s)
� 1

Φ−1(γs)
� ‖rs‖LΦ(I), s > 0. (5.3)

P r o o f. Due to the convexity of Φ :∫
I
Φ

(
rs

1

2
Φ−1(s)

)
2rdr �

∫
I
rs+1Φ(Φ−1(s))dr =

s

s+ 2
< 1,

so the estimate (5.1) follows by the definition of the norm in LΦ(I).
Put A = r−s, β = log2C(2), γ = C(2)

(
1
2 log2C(2) +

1
s

)
. We assume

C(2) > 1. Use the second statement of Lemma 2.2 (s > 0):∫
I
Φ
(
rsΦ−1 (γs)

)
2rdr � 2

C(2)

∫
I
rsβ+1Φ

(
Φ−1 (γs)

)
dr =

2sγ

C(2)(sβ + 2)
= 1.

Again by the definition of the norm in LΦ(I) we obtain the estimate (5.2).
To prove (5.3) we have to show that γs � Φ

(γ
2Φ

−1(s)
)
. Setting Φ−1(s) = t,

we get γΦ(t) � Φ
(γ
2 t
)
, which is exactly the ∇2 condition for Φ. �

We find it convenient for future references to outline the following bi-
lateral estimate which is proved in Theorems 5.3: if a Young function
Φ ∈ Δ2 ∩ ∇2, then

2

C(2)

(
1
2 log2 C(2) + 1

) 1

Φ−1(n)
� ‖rn‖LΦ(I) � 2

1

Φ−1(n)
, n ∈ N.

Remark 5.1. Note that Theorems 5.1, 5.2 are obtained under the
condition: Φ ∈ Δ2∩∇2, which eliminates such Young functions which have
exponential type growth. This case undoubtedly presents a great interest
and we formulate as an open problem: to prove similar results for the mixed
norm Bergman-Orlicz type spaces Aq;Φ(D) when the condition Φ ∈ Δ2∩∇2

is either omitted or at least weakened.

Brought to you by | De Gruyter Trial Portugal 2018
Authenticated

Download Date | 7/24/19 5:52 PM



1120 A. Karapetyants, S. Samko

5.2. Boundedness of the Bergman projection.

Theorem 5.4. Let Φ be a Young function. Then the condition (3.4)
with X(I) = LΦ(I) is satisfied.

P r o o f. Due to the Hölder inequality,∣∣∣∣∫
I
tng(t)2tdt

∣∣∣∣ � 2‖g‖LΦ(I)‖tn‖LΨ(I).

Therefore,

n

∣∣∣∣∫
I
tng(t)2tdt

∣∣∣∣ ‖rn‖LΦ(I) � 2n
4‖g‖LΦ(I)

Φ−1(n)Ψ−1(n)
� 8‖g‖LΦ(I), n ∈ N.

The ultimate inequality follows by (2.3). �

As an immediate consequences of Theorem 3.2 we obtain the following
results.

Theorem 5.5. Let Φ be a Young function. The operator BD is
bounded as a projection from Lq;Φ(D) onto Aq;Φ(D), 1 � q < ∞.

Corollary 5.1. Let Φ be a Young function. The space Aq;Φ(D) is
the closed subspace of Lq;Φ(D), 1 � q < ∞.

Remark 5.2. Note that Theorem 5.5 holds for an arbitrary Young
function, i.e. it admits, in particular, exponential growth of Φ, like Φ(t) =
et−1. In this case the norms ‖rn‖LΦ(I) will be bounded by log-type estimate:

2
ln(n+2) .

6. Mixed norm Bergman-Morrey type spaces

Here and below the space X(I) is either the generalized Morrey space

Lp,ϕ(I), or the generalized complementary Morrey space �Lp,ϕ(I). Similarly
to the previous section, if X(I) = Lp,ϕ(I), instead of writing Lq;Lp,ϕ

(D),
Aq;Lp,ϕ

(D) we use the notations Lq;p,ϕ(D), Aq;p,ϕ(D) for simplicity. Also we

will denote by �Lq;p,ϕ(D), �Aq;p,ϕ(D) the spaces that correspond to X(I) =
�Lp,ϕ(I).

6.1. Characterization of functions in Aq;p,ϕ(D) and �Aq;p,ϕ(D). We

first provide the description of functions in Aq;p,ϕ(D) and �Aq;p,ϕ(D) in
terms of Taylor coefficients and in terms of fractional derivatives.
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Theorem 6.1. For an analytic in D function f(z) =
∑

n∈Z+
cnz

n,

z ∈ D the following statements hold:

(1) Let 1 � p < ∞. Let the function ϕ be concave on I, the function
ϕ(t)
t be decreasing on I, limt→0

ϕ(t)
t = ∞, and the function tϕ(1t )

be concave for t > 1. Then the norm ‖f‖Aq;p,ϕ(D) of f ∈ Aq;p,ϕ(D)

is equivalent to

(∑
n∈Z+

|cn|q
(
np ϕ

(
1
np

))− q
p

)1
q

.

(2) Let 1 < p < ∞. Let there exists β ∈ (0, p − 1) such that ϕ(t)
tβ

is

decreasing on I. Then the norm ‖f‖�Aq;p,ϕ(D) of f ∈ �Aq;p,ϕ(D) is

equivalent to
(∑

n∈Z+
|cn|q

(
1
nϕ
(
1
n

)) q
p

) 1
q
.

Theorem 6.2. Under the conditions of Theorem 6.1, each func-
tion f ∈ Aq;p,ϕ(D) is represented as f = DXg with some analytic func-
tion g(z) =

∑
n∈Z+

gnz
n, such that {gn}n∈Z+ ∈ lq+, where DXg(z) =∑

n∈Z+

(
npϕ

(
1
np

)) 1
p
gnz

n, z ∈ D.Analogously, each function f ∈ �Aq;p,ϕ(D)

is represented as f = DXg with some analytic function g(z) =
∑

n∈Z+
gnz

n,

such that {gn}n∈Z+ ∈ lq+, where DXg(z) =
∑

n∈Z+

(
1
nϕ
(
1
n

))− 1
p gnz

n, z ∈ D.

Theorem 6.2 follows form Theorem 6.1. The latter, in view of Re-
mark 3.1, is the corollary of the estimates obtained below for the norms
‖rn‖Lp,ϕ(I) and ‖rn‖�Lp,ϕ(I), which will be also crucial for the proof of the

boundedness of the Bergman projection in the next section.

Theorem 6.3. Let 1 � p < ∞. If the function ϕ(t)
t is decreasing

on I, limt→0
ϕ(t)
t = ∞, and the function tϕ(1t ) is concave for t > 1, then

‖rn‖Lp,ϕ(I) � C1

(
np ϕ

(
1
np

))− 1
p
, n → ∞. If the function ϕ is concave on

I, then C2

(
np ϕ

(
1
np

))− 1
p � ‖rn‖Lp,ϕ(I), n → ∞. Here C1, C2 are some

positive constants which do not depend on n.

P r o o f. Apply the Hölder inequality (2.4) with Young function Φ

which will be determined below (h > 0, r ± h ∈ I): 1
ϕ(h)

∫ r+h
r−h tnp2tdt �

2
ϕ(h)‖tnp‖LΦ(I)‖χr,h‖LΨ(I), where χr,h is the characteristic function of (r −
h, r+h) and Ψ is the conjugate of Φ. Using (2.5), (2.3) and (5.1) we obtain
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1

ϕ(h)

∫ r+h

r−h
tnp2tdt � 4

ϕ(h)Φ−1(np)Ψ−1
(

1
4rh

) � 4
4rh

ϕ(h)

Φ−1
(

1
4rh

)
Φ−1(np)

.

By assumption, the function tϕ
(
1
t

)
is concave and increasing for t > 1, so

for t > 1 we set now Φ−1(t) = tϕ
(
1
t

)
, t > 1. We have to take care about

a possibility of concave continuation of Φ−1 to the interval I = (0, 1) with
the condition Φ−1(0) = 0. Note that the behavior of ϕ when t approaches
t = 1 is not of importance for the Morrey space up to the equivalence of
norms. Therefore, if needed, we may modify the function ϕ in a left-sided
neighbourhood of t = 1 so that the function Φ−1 will always have a concave
continuation for t � 1. To this end, it suffices to change the function ϕ so
that ϕ ∈ C1(1− δ, 1], and ϕ′(1) > 0.

We claim that 4rhΦ−1
(

1
4rh

)
� 4 hΦ−1

(
1
h

)
. Indeed, for 4r < 1 we use

the fact that ϕ increases on I, and for 4r > 1 we apply the fact that ϕ(t)
t

decreases on I.
Taking into account the made change of the function ϕ, up to equiva-

lence of norms we have ‖rn‖pLp,ϕ(I) � C
(
npϕ

(
1
np

))−1
, n ∈ N.

Now we prove the estimate from below. Again, let Φ be a Young func-
tion and Ψ – its conjugate. Denote

En =

{
r, h ∈ I : r + h = 1,

1

4
< (1− 2h)np <

1

2

}
.

Applying (2.3), we have

‖rn‖p
Lp,ϕ(I)

= supr,r±h∈I,h>0
1

ϕ(h)

∫ r+h

r−h
tnp2tdt

� supr,r±h∈I,h>0

1
8

ϕ(h)
Φ−1

(
4

∫ r+h

r−h
tnp2tdt

)
Ψ−1

(
4

∫ r+h

r−h
tnp2tdt

)
� supr,h∈En

1
8

ϕ(h)
Φ−1

(
4(1−2h)np

∫ 1

1−2h
2tdt

)
Ψ−1

(
8
1−(1−2h)np+2

np+2

)
� 1

8
supr,h∈En

1

ϕ(h)
Φ−1 (4rh)Ψ−1

(
4

np+ 2

)
.

The function ϕ is concave and increasing on I, so we set now Φ−1(t) =
ϕ(t), 0 < t < 1. Again, we need to guarantee the existence of a concave
continuation of Φ−1 for t � 1 with the condition Φ−1(∞) = ∞. As in the
previous case we free to modify ϕ in a left sided neighbourhood of t = 1 so
that ϕ ∈ C1(1− δ, 1], and ϕ′(1) > 0.

Since 4rh > h on En, and
4

np+2 > 1
np , n �= 0, then
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‖rn‖pLp,ϕ(I) � Csupr,h∈En

1

ϕ(h)
Φ−1 (h)Ψ−1

(
1

np

)
� C

1

np Φ−1( 1
np)

, n ∈ N.

This finishes the proof. �

Theorem 6.4. Let 1 < p < ∞. Then C1

(
1
nϕ
(
1
n

)) 1
p � ‖rn‖�Lp,ϕ(I),

n → ∞. If there exists β ∈ (0, p − 1) such that ϕ(t)
tβ

is decreasing on I,

then ‖rn‖�Lp,ϕ(I) � C2

(
1
nϕ
(
1
n

)) 1
p , n → ∞. Here C1, C2 are some positive

constants which do not depend on n.

P r o o f. In is obvious that

‖rn‖p�Lp,ϕ(I)
= suph∈I

ϕ(h) (1− h)np+2

np+ 2
�

ϕ( 1n )(1− 1
n)

np+2

np+ 2
� C

1

n
ϕ

(
1

n

)
.

Since ϕ is increasing on I, then sup0<h< 1
n

ϕ(h)(1−h)np+2

np+2 � C1
1
nϕ
(
1
n

)
,

and since there exists β ∈ (0, p− 1) such that ϕ(t)
tβ

is decreasing on I, then

sup 1
n
<h<1

ϕ(h)

hβ
hβ (1− h)np+2

np+ 2

� C2
1

n

ϕ( 1n )(
1
n

)β sup 1
n
<h<1h

β (1− h)np+2 � C3
1

n
ϕ

(
1

n

)
.

�

We find it convenient for further references to outline the following
bilateral estimates which are proved in Theorems 6.3, 6.4:

(1) Let 1 � p < ∞. Let the function ϕ be concave on I, the function
ϕ(t)
t be decreasing on I, limt→0

ϕ(t)
t = ∞, and the function tϕ(1t )

be concave for t > 1. Then C1

(
np ϕ

(
1
np

))− 1
p � ‖rn‖Lp,ϕ(I) �

C2

(
np ϕ

(
1
np

))− 1
p
, n → ∞, where C1, C2 are some positive con-

stants which do not depend on n.

(2) Let 1 < p < ∞. Let there exists β ∈ (0, p − 1) such that ϕ(t)
tβ

is de-

creasing on I. Then C1

(
1
nϕ
(
1
n

)) 1
p � ‖rn‖�Lp,ϕ(I) � C2

(
1
nϕ
(
1
n

)) 1
p ,

n → ∞, where C1, C2 are some positive constants which do not
depend on n.
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6.2. Boundedness of the Bergman projection.

Theorem 6.5. Let 1 � p < ∞. Let the function ϕ(t)
t be decreasing on

I, limt→0
ϕ(t)
t = ∞, and the function tϕ(1t ) be concave for t > 1. Then the

condition (3.4) is valid with X(I) = Lp,ϕ(I).

P r o o f. Passing to the dyadic decomposition over the intervals Ik =
(1−2−k, 1−2−k−1), k ∈ Z+, we have:

∫
I τ

ng(τ)2τdτ =
∑

k∈Z+

∫
Ik
τng(τ)2τdτ.

Let as usual 1
p + 1

p′ = 1. Below we will proceed with the case p > 1. Using

the Hölder inequality we obtain∣∣∣∣∫
Ik

τng(τ)2τdτ

∣∣∣∣�(∫
Ik

τnp
′
ϕ

p′
p (1−τ)2τdτ

) 1
p′
(∫

Ik

1

ϕ(1−τ)
|g(τ)|p2τdτ

) 1
p

.

For each k ∈ Z+ we have Ik = (1 − 2−k, 1 − 2−k−1) = (rk − hk, rk + hk),
where rk = 1− 2−k−1 − 2−k−2, hk = 2−k−2. Since ϕ increases on I, we get(∫

Ik

1

ϕ(1 − τ)
|g(τ)|p2τdτ

) 1
p

�
(

1

ϕ( 1
2k+1 )

∫
Ik

|g(τ)|p2τdτ
) 1

p

�
(

1

ϕ( 1
2k+2 )

∫
Ik

|g(τ)|p2τdτ
) 1

p

� ‖g‖Lp,ϕ(I).

It is convenient to introduce the notation ϕ∗(t) =
ϕ(t)

t
, t ∈ I. Direct

estimation gives(∫
Ik

τnp
′
ϕ

p′
p (1− τ)2τdτ

) 1
p′

=

(∫
Ik

τnp
′
ϕ

p′
p∗ (1− τ)(1− τ)

p′
p 2τdτ

) 1
p′

� (1− 2−k−1)nϕ
1
p

(
1

2k+1

)
2−k � 4

∫
Ik+1

τnϕ
1
p∗ (1− τ)dτ. (6.1)

Hence,
∣∣∫

I τ
ng(τ)2τdτ

∣∣ � 4‖g‖Lp,ϕ(I)

∫
I(1− t)nϕ

1
p (t)t

− 1
p dt. Further,

∫
I
(1− t)nϕ

1
p (t)t

− 1
pdt =

∫ np

0

(
1− t

np

)n
⎛⎝ϕ

(
t
np

)
t
np

⎞⎠
1
p

dt

np

� (np)
− 1

p′ ϕ
1
p

(
1

np

)(∫ 1

0

dt

t
1
p

+

∫ np

1
e−

t
pdt

)
.

Here for the estimate over the interval I = (0, 1) we use that ϕ is increasing

on I, and for the estimate over (1, np) we use that ϕ(t)
t is decreasing on I.
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Let now p = 1. In that case in (6.1) we use the L∞(Ik) norm in-
stead of the integral p′-norm. The analogue to (6.1) is as follows ‖τnϕ(1−
τ)‖L∞(Ik) = ‖τnϕ∗(1 − τ)(1 − τ)‖L∞(Ik) � (1 − 2−k−1)nϕ

(
1

2k+1

)
2−k �

4
∫
Ik+1

τnϕ∗(1− τ)dτ, and the rest of the proof is similar to the case p > 1.

Collecting all the estimates we finally obtain:

n

∣∣∣∣∫
I
τng(τ)2τdτ

∣∣∣∣ ‖rn‖Lp,ϕ(I) � C0‖g‖Lp,ϕ(I), n ∈ N, g ∈ Lp,ϕ(I), 1 � p < ∞,

where the constant C0 does not depend on either g or n. �

Theorem 6.6. Let 1 < p < ∞. Let there exist β ∈ (0, p−1) such that
ϕ(t)
tβ

decreases on I. Then the condition (3.4) is valid with X(I) = �Lp,ϕ(I).

P r o o f. We provide a sketch of the proof since it follows the steps of
the proof of Theorem 6.5. Use the dyadic decomposition and estimate each
integral over Ik:∣∣∣∣∫

Ik

τng(τ)2τdτ

∣∣∣∣�(∫
Ik

τnp
′
ϕ
− p′

p (1−τ)2τdτ

) 1
p′
(∫

Ik

ϕ(1−τ)|g(τ)|p2τdτ
) 1

p

.

For each k ∈ Z+ we have Ik = (1− 2−k, 1− 2−k−1) ⊂ Ĩk = (0, 1− 2−k−1) =
(0, 1 − hk), where hk = 2−k−1. Since ϕ increases on I we get(∫

Ik

ϕ(1 − τ)|g(τ)|p2τdτ
) 1

p

�
(
ϕ

(
1

2k+1

)∫
˜Ik

|g(τ)|p2τdτ
) 1

p

�‖g‖�Lp,ϕ(I).

Further, (∫
Ik

τnp
′
ϕ

p′
p (1− τ)2τdτ

) 1
p′

� (1− 2−k−1)nϕ
− 1

p

(
1

2k+1

)
2
− k

p′

� 2
1+ 1

p′
∫
Ik+1

τn

ϕ
1
p (1− τ)(1− τ)

1
p

dτ,

and therefore,
∣∣∫

I τ
ng(τ)2τdτ

∣∣ � 2
1+ 1

p′ ‖g‖�Lp,ϕ(I)

∫
I(1 − t)nϕ− 1

p (t)t−
1
pdt.

Finally,∫
I
(1− t)n (tϕ(t))

− 1
p dt � 1

n

∫ 1

0

((
t

n

)−β

ϕ

(
t

n

))− 1
p ( t

n

)−β+1
p

dt

+
1

n

∫ n

1
e−t

(
t

n
ϕ

(
t

n

))− 1
p

dt�Cn
− 1

p′ ϕ
− 1

p

(
1

n

)(∫ 1

0

dt

t
β+1
p

+

∫ n

1
t
− 1

p e−tdt

)
.

Here for the estimate over the interval I = (0, 1) we use that t−βϕ (t)
is decreasing on I, and for the estimate over (1, n) we use that ϕ(t) is
increasing on I. Collecting all the estimates will finish the proof. �

Brought to you by | De Gruyter Trial Portugal 2018
Authenticated

Download Date | 7/24/19 5:52 PM



1126 A. Karapetyants, S. Samko

Now in view of Theorem 3.2 we have the following result.

Theorem 6.7. The following statements are true:

(1) Let the function ϕ(t)
t be decreasing on I, limt→0

ϕ(t)
t = ∞, and the

function tϕ(1t ) be concave for t > 1. The operator BD is bounded as
a projection from Lq;p,ϕ(D) onto Aq;p,ϕ(D), 1 � p < ∞, 1 � q < ∞;

(2) Let there exists β ∈ (0, p−1) such that ϕ(t)
tβ

decreases on I. The op-

erator BD is bounded as a projection from �Lq;p,ϕ(D) onto �Aq;p,ϕ(D),
1 < p < ∞, 1 � q < ∞.

Corollary 6.1. Under the conditions of Theorem 6.7 the spaces

Aq;p,ϕ(D) and �Aq;p,ϕ(D) are correspondingly the closed subspaces of Lq;p,ϕ(D)

and �Lq;p,ϕ(D).

7. Appendix: On distributional Fourier coefficients

Given a function f(z) = f(r, eiα) ∈ L1(D) its Fourier coefficients fn(r)

= 1
2π

∫ 2π
0 f(r, eiα)e−inαdα, n ∈ Z, exist for almost all r ∈ I. The distribu-

tion of Fourier series of 2π periodic functions, i.e., Fourier analysis on the
unit circle, is well known. For our goals we need the notion of distributional
Fourier coefficient of a distribution f on D. This coefficient are treated as
a distribution on the interval I. We do not touch the study of the distri-
butional Fourier transform in full extend and rather restrict ourselves to
necessary facts for our needs.

We define the test function space S = S(D) as the set of functions ω =
ω(r, eiα) ∈ C∞(D) such that Λm1,m2(ω) = supr,α

∣∣∂m1
r ∂m2

α ω(r, eiα)
∣∣ < ∞,

m1,m2 ∈ Z+. The set S is a linear topological space with the topology
defined by the countable set of seminorms Λm1,m2(·). For any γ > 0 Fourier
coefficients of ω ∈ S satisfy the estimates

sup
r∈I

|ωn(r)| � C|n|−γ (7.1)

with the constant C > 0 depending only on ω and γ. By S′ = S′(D) we
denote the set of all linear continuous functionals (distributions) on S. By
(f, ω), f ∈ S′, ω ∈ S, we denote the value of functional f on test function
ω choosing such a bilinear form for that which coincides for f ∈ L1(D) with

(f, ω) =

∫
D

f(z) ω(z) dA(z) =

∫ 1

0

(
1

2π

∫ 2π

0
f(r, eiα) ω(r, eiα) dα

)
2rdr.

Let now σ = σ(I) be the set of test functions v ∈ C∞(I) such that

λm(v) = supr∈I
∣∣v(m)(r)

∣∣ < ∞, m ∈ Z+. Thus the space of test func-
tions σ is a linear topological space with the topology defined by the
countable set of seminorms λm(·). By σ′ = σ′(I) we denote the space
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of linear continuous functionals (distributions) on σ. Similarly, 〈g, v〉 will
represent the corresponding bilinear form in the case of “nice” functionals

g : 〈g, v〉 =
∫ 1
0 g(r) v(r) 2rdr. Given a distribution f ∈ S′ we define its

distributional Fourier coefficient fn ∈ σ′ by the rule

〈fn, v〉 = (f, veinα), v ∈ σ, n ∈ Z. (7.2)
The function veinα belongs to S so the right side of this equality is well
defined for any f ∈ S′. If f ∈ L1(D) then the equality (7.2) is valid in the
regular sense when both sides replaced with corresponding integrals. This
fact justifies our definition (7.2).

Lemma 7.1. Let fn ∈ L1(I), n ∈ Z, and suppose that ‖fn‖L1(I) �
C|n|γ for some γ � 0 and absolute constant C > 0. Then the series∑

n∈Z fn(r)e
inα converges to a distribution f in S′. The distributional

Fourier coefficients of f are nothing but fn, i.e. the distributional expansion
of f into Fourier series is unique.

P r o o f. In view of (7.1) we have (use γ + 2 instead of γ there):∣∣(fn(r)einα, ω)∣∣ =

∣∣∣∣∫
I
fn(r)2rdr

∫ 2π

0
einα ω(r, eiα)

dα

2π

∣∣∣∣
=

∣∣∣∣∫
I
fn(r) ωn(r) 2rdr

∣∣∣∣ � C|n|γ |n|−γ−2=C|n|−2, n �= 0.

Hence, the limit

lim
N→∞

(
N∑

n=−N

fn(r)e
inα, ω

)
= lim

N→∞

N∑
n=−N

(
fn(r)e

inα, ω
)

(7.3)

exists for any ω ∈ S, and so it defines a distribution f in S′. Let us show
that fn is the distributional Fourier coefficient of f . Indeed, let ω(r, eiα) =
v(r)eilα ∈ S for some fixed l ∈ Z. Due to the orthogonality and (7.3) we
obtain:

(f, ω) =

(
lim

N→∞

N∑
n=−N

fn(r)e
inα, ω

)
=

∫ 1

0
fl(r) v(r) 2rdr = 〈fl, v〉.

The distributional coincidence of nth Fourier coefficients of f with fn is
then obvious. �
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