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1. Introduction

The well known Morrey spaces L p,λ were introduced in [27] in relation to the study of partial differential equations,
and presented in various books, see e.g. [13,21,44]. They were widely investigated during the last decades, including the
study of classical operators of harmonic analysis – maximal, singular and potential operators on Morrey spaces and there
generalizations were studied, including also the case of functions defined on metric measure spaces. We refer for instance to
papers [1–4,8,7,9–11,28–34,41–43]. Surprisingly, weighted estimates of these classical operators, in fact, were not studied.
Just recently, in [38] we proved weighted p → p-estimates in Morrey spaces L p,λ for Hardy operators on R

1+ and one-
dimensional singular operators (on R

1 or on Carleson curves in the complex plane). In paper [39] we gave the conditions
for the p → q-boundedness of multidimensional Hardy and potential operators within the frameworks of the Morrey spaces
L p,λ(Rn).

In this paper we make use of another approach which allows us to obtain weighted estimations for such operators in the
generalized Morrey spaces L p,ϕ obtained from Morrey spaces when we replace rλ by a function ϕ(r). The admitted weights
w(|x − x0|) are generated by functions w(r) from the Bary–Stechkin-type class; they may be characterized as weights
continuous and positive for r ∈ (0,∞), with possible decay or growth at r = 0 and r = ∞, which become almost increasing
or almost decreasing after the multiplication by a power function. Such weights are oscillating between two powers at the
origin and infinity (with different exponents for the origin and infinity).

We obtain conditions for the weighted boundedness of the Hardy operators for local and global generalized Morrey
spaces (see definitions in Section 3.1). These conditions are necessary and sufficient, in the case of local spaces, and sufficient
in the case of global ones; in the latter case they are also necessary in some cases, see Theorems 4.2 and 4.4.

The paper is organized as follows. In Section 2 we give necessary preliminaries on some classes of weight functions.
In Section 3, which plays a crucial role in the preparation of the proofs of the main results, we prove some important
lemmas concerning belongness of the generalized Morrey spaces of some classes of radial functions. In Section 4 we prove
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theorems on the weighted p → q-boundedness of Hardy operators in Morrey spaces. Finally, in Section 5 we apply the
results of Section 4 to a similar weighted boundedness of potential operators in the global generalized Morrey spaces. The
main results are given in Theorems 4.2, 4.4 and 5.5.

2. Preliminaries on weight functions

2.1. Zygmund–Bary–Stechkin (ZBS) classes and Matuszewska–Orlicz (MO) type indices

2.1.1. On classes of the type W0 and W∞
In the sequel, a non-negative function f on [0, �], 0 < � � ∞, is called almost increasing (almost decreasing), if there

exists a constant C (� 1) such that f (x) � C f (y) for all x � y (x � y, respectively). Equivalently, a function f is almost
increasing (almost decreasing), if it is equivalent to an increasing (decreasing, resp.) function g , i.e. c1 f (x) � g(x) � c2 f (x),
c1 > 0, c2 > 0.

Definition 2.1. Let 0 < � < ∞.

1) By W = W ([0, �]) we denote the class of continuous and positive functions ϕ on (0, �] such that the limit limx→0 ϕ(x)
exists and is finite;

2) by W0 = W0([0, �]) we denote the class of almost increasing functions ϕ ∈ W on (0, �);
3) by W = W ([0, �]) we denote the class of functions ϕ ∈ W such that xaϕ(x) ∈ W0 for some a = a(ϕ) ∈ R

1;
4) by W = W ([0, �]) we denote the class of functions ϕ ∈ W such that ϕ(t)

tb is almost decreasing for some b ∈ R
1.

Definition 2.2. Let 0 < � < ∞.

1) By W∞ = W∞([�,∞]) we denote the class of functions ϕ which are continuous and positive and almost increasing on
[�,∞) and which have the finite limit limx→∞ ϕ(x),

2) by W ∞ = W ∞([�,∞)) we denote the class of functions ϕ ∈ W∞ such xaϕ(x) ∈ W∞ for some a = a(ϕ) ∈ R
1.

Finally, by W (R1+) we denote the set of functions on R
1+ whose restrictions onto (0,1) are in W ([0,1]) and restrictions

onto [1,∞) are in W ∞([1,∞)). Similarly, the set W (R1+) is defined.

2.1.2. ZBS-classes and MO-indices of weights at the origin
In this subsection we assume that � < ∞.

Definition 2.3. We say that a function ϕ ∈ W0 belongs to the Zygmund class Z
β , β ∈ R

1, if

x∫
0

ϕ(t)

t1+β
dt � c

ϕ(x)

xβ
, x ∈ (0, �),

and to the Zygmund class Zγ , γ ∈ R
1, if

�∫
x

ϕ(t)

t1+γ
dt � c

ϕ(x)

xγ
, x ∈ (0, �).

We also denote

Φ
β
γ := Z

β ∩ Zγ ,

the latter class being also known as Bary–Stechkin–Zygmund class [5].

It is known that the property of a function to be almost increasing or almost decreasing after the multiplication (division)
by a power function is closely related to the notion of the so called Matuszewska–Orlicz indices. We refer to [18,20], [24,
p. 20], [25,26,36,37] for the properties of the indices of such a type. For a function ϕ ∈ W , the numbers

m(ϕ) = sup
0<x<1

ln(lim suph→0
ϕ(hx)
ϕ(h)

)

ln x
= lim

x→0

ln(lim suph→0
ϕ(hx)
ϕ(h)

)

ln x
(2.1)

and

M(ϕ) = sup
ln(lim suph→0

ϕ(hx)
ϕ(h)

)

ln x
= lim

x→∞
ln(lim suph→0

ϕ(hx)
ϕ(h)

)

ln x
(2.2)
x>1
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are known as the Matuszewska–Orlicz type lower and upper indices of the function ϕ(r). Note that in this definition ϕ(x) need
not to be an N-function: only its behavior at the origin is of importance. Observe that 0 � m(ϕ) � M(ϕ) � ∞ for ϕ ∈ W0,
and −∞ < m(ϕ) � M(ϕ) � ∞ for ϕ ∈ W , and the following formulas are valid:

m
[
xaϕ(x)

] = a + m(ϕ), M
[
xaϕ(x)

] = a + M(ϕ), a ∈ R
1, (2.3)

m
([

ϕ(x)
]a) = am(ϕ), M

([
ϕ(x)

]a) = aM(ϕ), a � 0, (2.4)

m

(
1

ϕ

)
= −M(ϕ), M

(
1

ϕ

)
= −m(ϕ), (2.5)

m(uv) � m(u) + m(v), M(uv) � M(u) + M(v) (2.6)

for ϕ, u, v ∈ W .

The following statement is known, see [18, Theorems 3.1, 3.2 and 3.5]. (In the formulation of Theorem 2.4 in [18] it was
supposed that β � 0, γ > 0 and ϕ ∈ W0. It is evidently true also for ϕ ∈ W and all β,γ ∈ R

1, in view of formulas (2.3).)

Theorem 2.4. Let ϕ ∈ W and β,γ ∈ R
1 . Then

ϕ ∈ Z
β ⇐⇒ m(ϕ) > β and ϕ ∈ Zγ ⇐⇒ M(ϕ) < γ .

Besides this

m(ϕ) = sup

{
μ > 0:

ϕ(x)

xμ
is almost increasing

}
, (2.7)

M(ϕ) = inf

{
ν > 0:

ϕ(x)

xν
is almost decreasing

}
(2.8)

and for ϕ ∈ Φ
β
γ the inequalities

c1xM(ϕ)+ε � ϕ(x) � c2xm(ϕ)−ε (2.9)

hold with an arbitrarily small ε > 0 and c1 = c1(ε), c2 = c2(ε).

The following simple lemma is also useful. For its formulation and also for other goals in the sequel we find it convenient
to introduce the following notation for a subclass in W 0:

W 0,b =
{
ϕ ∈ W 0:

ϕ(t)

tb
is almost increasing

}
, b ∈ R

1.

Lemma 2.5. Let ϕ ∈ W0,b([0, �]), 0 < � � ∞. Then ϕ ∈ Z
β([0, �]) for any β < b. If there exists a ν (> b) such that ϕ(t)

tν is almost
decreasing, then there exist positive constants c1 and c2 such that

c1
ϕ(r)

rβ
�

r∫
0

ϕ(t)dt

t1+β
� c2

ϕ(r)

rβ
, r ∈ (0, �], (2.10)

where β < b.

The proof is simple so we leave out the details. We also mention the following obvious consequence of the lemma:

Corollary 2.6. Let ϕ ∈ W with −∞ < m(ϕ) � M(ϕ) < ∞. Then (2.10) holds for every β < m(ϕ).

2.1.3. ZBS-classes and MO-indices of weights at infinity
Following [19, Subsection 4.1], and [35, Subsection 2.2], we introduce the following definitions:

Definition 2.7. Let −∞ < α < β < ∞. We put Ψ
β
α := Ẑ

β ∩ Ẑα , where Ẑ
β is the class of functions ϕ ∈ W ∞ satisfying the

condition

∞∫ (
x

t

)β
ϕ(t)dt

t
� cϕ(x), x ∈ (�,∞), (2.11)
x
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and Ẑα is the class of functions ϕ ∈ W ([�,∞)) satisfying the condition
x∫

�

(
x

t

)α
ϕ(t)dt

t
� cϕ(x), x ∈ (�,∞) (2.12)

where c = c(ϕ) > 0 does not depend on x ∈ [�,∞).

The indices m∞(ϕ) and M∞(ϕ) responsible for the behavior of functions ϕ ∈ Ψ
β
α ([�,∞)) at infinity are introduced in

the way similar to (2.1) and (2.2):

m∞(ϕ) = sup
x>1

ln[lim infh→∞ ϕ(xh)
ϕ(h)

]
ln x

, M∞(ϕ) = inf
x>1

ln[lim suph→∞ ϕ(xh)
ϕ(h)

]
ln x

. (2.13)

Properties of functions in the class Ψ
β
α ([�,∞)) are easily derived from those of functions in Φα

β ([0, �]) because of the
following equivalence

ϕ ∈ Ψ
β
α

([�,∞)
) ⇐⇒ ϕ∗ ∈ Φ

−β
−α

([
0, �∗]), (2.14)

where ϕ∗(t) = ϕ( 1
t ) and �∗ = 1

�
. Direct calculation shows that

m∞(ϕ) = −M(ϕ∗), M∞(ϕ) = −m(ϕ∗), ϕ∗(t) := ϕ

(
1

t

)
. (2.15)

Making use of (2.14) and (2.15), one can easily reformulate properties of functions of the class Φ
β
γ near the origin, given

in Theorem 2.4 for the case of the corresponding behavior at infinity of functions of the class Ψ
β
α and obtain that

c1tm∞(ϕ)−ε � ϕ(t) � c2tM∞(ϕ)+ε, t � �, ϕ ∈ W ∞, (2.16)

m∞(ϕ) = sup
{
μ ∈ R

1: t−μϕ(t) is almost increasing on [�,∞)
}
, (2.17)

M∞(ϕ) = inf
{
ν ∈ R

1: t−νϕ(t) is almost decreasing on [�,∞)
}
. (2.18)

We say that a continuous function ϕ in (0,∞) is in the class W 0,∞(R1+), if its restriction to (0,1) belongs to W ([0,1])
and its restriction to (1,∞) belongs to W ∞([1,∞]). For functions in W 0,∞(R1+) the notation

Z
β0,β∞(

R
1+
) = Z

β0
([0,1]) ∩ Z

β∞([1,∞)
)
, Zγ0,γ∞

(
R

1+
) = Zγ0

([0,1]) ∩ Zγ∞
([1,∞)

)
has an obvious meaning. In the case where the indices coincide, i.e. when β0 = β∞ := β , we will simply write Z

β(R1+) and
similarly for Zγ (R1+). We also denote

Φ
β
γ

(
R

1+
) := Z

β
(
R

1+
) ∩ Zγ

(
R

1+
)
. (2.19)

Making use of Theorem 2.4 for Φα
β ([0,1]) and relations (2.15), we easily arrive at the following statement.

Lemma 2.8. Let ϕ ∈ W (R1+). Then

ϕ ∈ Z
β0,β∞(

R
1+
) ⇐⇒ m(ϕ) > β0, m∞(ϕ) > β∞ (2.20)

and

ϕ ∈ Zγ0,γ∞
(
R

1+
) ⇐⇒ M(ϕ) < γ0, M∞(ϕ) < γ∞. (2.21)

2.2. On classes Vμ
±

Note that we slightly changed the notation of the class introduced in the following definition, in comparison with its
notation in [37].

Definition 2.9. Let 0 < μ � 1. By Vμ
± , we denote the classes of functions ϕ which are non-negative on [0, �] and positive on

(0, �], 0 < � � ∞, defined by the following conditions:

Vμ
+: |ϕ(x) − ϕ(y)|

|x − y|μ � C
ϕ(x+)

xμ
+

, (2.22)

Vμ
−: |ϕ(x) − ϕ(y)|

|x − y|μ � C
ϕ(x−)

xμ
+

, (2.23)

where x, y ∈ (0, �], x 	= y, and x+ = max(x, y), x− = min(x, y).
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Lemma 2.10. Functions ϕ ∈ Vμ
+ are almost increasing on [0, �] and functions ϕ ∈ Vμ

− are almost decreasing on [0, �].

Proof. Let ϕ ∈ Vμ
+ and y < x. By (2.22) we have |ϕ(x)−ϕ(y)| � Cϕ(x)(1− y

x )μ � Cϕ(x). Then ϕ(y) � |ϕ(x)−ϕ(y)|+ϕ(x) �
(C + 1)ϕ(x). By instead of (2.22) using (2.23) the second statement follows in a similar way. �
Corollary 2.11. Functions ϕ ∈ Vμ

+ have non-negative indices 0 � m(ϕ) � M(ϕ) and functions ϕ ∈ Vμ
− have non-positive indices

m(ϕ) � M(ϕ) � 0, the same being also valid with respect to the indices m∞(ϕ), M∞(ϕ) in the case � = ∞.

Proof. Use (2.7) and (2.8). �
Note that

V μ
+ ⊂ V ν+, V μ

− ⊂ V ν−, 0 < ν < μ � 1, (2.24)

the classes V μ
± being trivial for μ > 1. We also have that

xγ ∈
⋃

μ∈[0,1]
Vμ

+ ⇐⇒ γ � 0, xγ ∈
⋃

μ∈[0,1]
Vμ

− ⇐⇒ γ � 0,

which follows from the fact that xγ ∈ V1+ ⇐⇒ γ � 0, and xγ ∈ V1− ⇐⇒ γ � 0 (see [38, Subsection 2.3]), Remark 2.10 and
property (2.24).

An example of a function which is in Vμ
+ with some μ > 0, but does not belong to the total intersection

⋂
μ∈[0,1] Vμ

+ is
given by

ϕ(x) = axγ + b|x − x0|β ∈
⋂

μ∈[0,β]
Vμ

+,

where x0 > 0, γ � 0, 0 < β < 1, a > 0, and b > 0.
The following lemmas (proved in [38], see Lemmas 2.10 and 2.11 there) show that conditions (2.22) and (2.23) are

fulfilled with μ = 1 not only for power functions, but for an essentially larger class of functions (which in particular may
oscillate between two power functions with different exponents). Note that the information about this class in Lemmas 2.12
and 2.13 is given in terms of increasing or decreasing functions, without the word “almost”.

Lemma 2.12. Let ϕ ∈ W . Then

i) ϕ ∈ V1+ in the case ϕ is increasing and the function ϕ(x)
xν is decreasing for some ν > 0;

ii) ϕ ∈ V1− in the case ϕ(x) is decreasing and there exists a number μ � 0 such that xμϕ(x) is increasing.

Lemma 2.13. Let ϕ ∈ W ∩ C1((0, �]). If there exist ε > 0 and ν � 0 such that 0 � ϕ′(x)
ϕ(x) � ν

x for 0 < x � ε, then ϕ ∈ V1+ . If there exist

ε > 0 and μ � 0 such that −μ
x � ϕ′(x)

ϕ(x) � 0 for 0 < x � ε, then ϕ ∈ V1− .

3. On weighted integrability of functions in Morrey spaces

3.1. Definitions and belongness of some functions to generalized Morrey spaces

Let Ω be an open set in R
n , Ω ⊆ R

n and � = diamΩ , 0 < � � ∞, B(x, r) = {y ∈ R
n: |x − y| < r} and B̃(x, r) = B(x, r)∩Ω .

Definition 3.1. Let ϕ(r) be a non-negative function on [0, �], positive on (0, �], and 1 � p < ∞. The generalized Morrey
spaces L p,ϕ(Ω), L p,ϕ

loc;x0
(Ω), are defined as the spaces of functions f ∈ L p

loc(Ω) such that

‖ f ‖p,ϕ := sup
x∈Ω,r>0

(
1

ϕ(r)

∫
B̃(x,r)

∣∣ f (y)
∣∣p

dy

) 1
p

< ∞, (3.1)

‖ f ‖p,ϕ;loc := sup
r>0

(
1

ϕ(r)

∫
B̃(x0,r)

∣∣ f (y)
∣∣p

dy

) 1
p

< ∞, (3.2)

respectively, where x0 ∈ Ω .
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Obviously,

L p,ϕ(Ω) ⊂ L p,ϕ
loc;x0

(Ω).

The spaces L p,ϕ(Ω), L p,ϕ
loc;x0

(Ω) are known under the names of global and local Morrey spaces, see for instance [7,8].
Let ω denote a weight function on Ω . Then the weighted Morrey space L p,ϕ(Ω,ω) is defined as follows:

Lp,ϕ(Ω,ω) := {
f : ω f ∈ Lp,ϕ(Ω)

}
.

Everywhere in the sequel we assume that

ϕ(r) � crn (3.3)

for 0 < r � �, if � < ∞, and 0 < r � N with an arbitrary N > 0, if � = ∞, the constant c depending on N in the latter case.
Condition (3.3) makes the spaces L p,ϕ(Ω), L p,ϕ

loc;x0
(Ω) non-trivial, see Corollary 3.4. Sometimes in the case � = ∞ we will

use the condition (3.3) also on the whole semiaxis R
1+ , that is

sup
0<r<∞

rn

ϕ(r)
< ∞. (3.4)

Remark 3.2. The space L p,ϕ(Ω) as defined above, is not necessarily embedded into L p(Ω), in the case when Ω is un-

bounded. A counterexample in the case when Ω = R
n is f (x) = (

ϕ(|x|)
|x|n )

1
p which is not in L p(Rn), but belongs to L p,ϕ(Rn)

under the conditions

1) ϕ ∈ Z
0,

2) the function ϕ(r)
rn is almost decreasing.

Indeed, we have that

‖ f ‖p,ϕ = sup
x∈Ω, r>0

(
1

ϕ(r)

∫
B(x,r)

ϕ(|y|)
|y|n dy

) 1
p

,

which is bounded (when |x| � 2r, take into account that |y| � r and ϕ(r)
rn is almost decreasing; when |x| � 2r, make use of

the inclusion B(x, r) ⊂ B(0,3r) and the fact that ϕ ∈ Z
0).

In the next lemma we give sufficient or necessary conditions for radial type functions u(|x − x0|), x0 ∈ Ω , to belong to
generalized Morrey spaces. They are given in terms of the condition

Mϕ(u) := 1

ϕ(r)

r∫
0

up(t)tn−1 dt � C, 0 < r < �, (3.5)

in the case of the local spaces L p,ϕ
loc;x0

(Ω), and in terms of the condition

sup
0<r<�

rnup(r)

ϕ(r)
< ∞ (3.6)

in the case of the spaces L p,ϕ(Ω). Note that (3.5) �⇒ (3.6), if rnϕ(r) ∈ Z 0. The belongness of u(|x|) to L p,ϕ(Ω) makes
also use of the notion of the Matuszewska–Orlicz indices m(u) and M(u) of the function u. Our principal result in this
subsection reads:

Proposition 3.3. Let � = diamΩ � ∞, ϕ(r) be almost increasing on [0, �] satisfying condition (3.3), u ∈ W ([0, �]) and x0 ∈ Ω .
I. Condition (3.5) is necessary and sufficient for a function f (x) := u(|x − x0|) to belong to the local Morrey space L p,ϕ

loc;x0
(Ω) and

‖ f ‖p,ϕ � C
(

Mϕ(u)
) 1

p , (3.7)

where C does not depend on u and ϕ . Condition (3.5) and consequently (3.6) are necessary also for f ∈ L p,ϕ(Ω).
II. Let u,ϕ ∈ W ([0, �]). Condition (3.6) is sufficient for f ∈ L p,ϕ(Ω), if either

i) u(r) is bounded and, in the case � = ∞, condition (3.4) holds, or
ii) M(u) < 0, u(2r) � Cu(r) and rnup(r) ∈ Z 0 .
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Let � < ∞. In terms of the indices of the functions u and ϕ the conditions for f ∈ L p,ϕ(Ω) have the form

M(ϕ) − pm(u) < n (sufficient condition), (3.8)

m(ϕ) − pM(u) � n (necessary condition) (3.9)

independently of the signs of the indices. In the case of the power function, the inclusion |x − x0|γ ∈ L p,ϕ(Ω) holds, if and only if

n + γ p > 0 and sup
r>0

rn+γ p

ϕ(r)
< ∞. (3.10)

Proof. I. We first prove the necessity of (3.5) for f ∈ L p,ϕ
loc,x0

(Ω). Let δ(x) = dist(x, ∂Ω). By passing to polar coordinates and
using obvious estimates we have that

‖ f ‖p,ϕ = sup
x∈Ω,r>0

(
1

ϕ(r)

∫
B̃(x,r)

up(|y − x0|
)

dy

) 1
p

� sup
x∈Ω,

p0<r<δ(x)

(
1

ϕ(r)

∫
B(x,r)

up(|y − x0|
)

dy

) 1
p

� sup
0<r<δ(x0)

(
1

ϕ(r)

∫
B(x0,r)

up(|y − x0|
)

dy

) 1
p

= C sup
p0<r<δ(x0)

(
1

ϕ(r)

r∫
0

up(t)tn−1 dt

) 1
p

(3.11)

and we arrive at the necessity of condition (3.5) for 0 < r < δ(x0) and then for all r ∈ (0, �] by properties of the functions ϕ
and u. From the above estimates the necessity of (3.5) for f ∈ L p,ϕ

loc;x0
(Ω) is also seen.

The sufficiency of (3.5) for f ∈ L p,ϕ
loc;x0

(Ω) is a trivial fact since

‖ f ‖p
p,ϕ;loc � sup

0<r��

1

ϕ(r)

∫
B(0,r)

∣∣u(|y|)∣∣p
dy = C sup

0<r��

1

ϕ(r)

r∫
0

up(t)tn−1 dt.

II. The case i) is easy:

‖ f ‖p,ϕ � sup
x∈B(0,�), r>0

(
1

ϕ(r)

∫
B(x,r)

up(|y|)dy

) 1
p

� sup
0<r<�

(
Crn

ϕ(r)

) 1
p

< ∞. (3.12)

In the case ii) we distinguish the cases |x| � 2r and |x| > 2r. In the first case we have B(x, r) ⊂ B(0,3r) and then

1

ϕ(r)

∫
B(x,r)

up(|y|)dy � 1

ϕ(r)

∫
B(0,3r)

up(|y|)dy � C

ϕ(r)

3r∫
0

up(t)tn−1 dt (3.13)

where it remains to refer to the fact that rnϕ(r) ∈ Z 0 and observe that u(2r) � Cu(r) �⇒ u(3r) � Cu(r). In the case |x| � 2r
we have |y| � |x| − |x − y| � r in the first integral in (3.13). Since M(u) < 0, the function u(r) is almost decreasing by (2.8).
Therefore,

sup
x∈Ω,r>0

1

ϕ(r)

∫
B(x,r)

up(|y|)dy � C sup
r>0

u(r)rn

ϕ(r)
< ∞.

To cover the case of conditions (3.8)–(3.9), we prove the estimates

C1rn+pM(u)−m(ϕ)+ε � sup
x∈B(0,�)

1

ϕ(r)

∫
B(x,r)

up(|y|)dy � C2rn+pm(u)−M(ϕ)−ε (3.14)

with an arbitrarily small ε > 0 and Ci = Ci(ε), i = 1,2, from which (3.8)–(3.9) follow. To this end, we make use of property
(2.9) and obtain that

1

ϕ(r)

∫
B(x,r)

up(|y|)dy � C

ϕ(r)

∫
B(x,r)

|y|pm(u)−pε dy.

If m(u) > 0, we choose 0 < ε < m(u) and δ small enough and then the right-hand side of the last inequality is bounded in
view of (3.3). If m(u) � 0, as above we distinguish the cases |x| � 2r and |x| < 2r. In the first case we have |y| > r and then

1

ϕ(r)

∫
B(x,r)

up(|y|)dy � r pm(u)−pε

rM(ϕ)+δ

∫
B(x,r)

dy = C sup
r>0

r pm(u)+n−M(ϕ)−δ−pε

and in the second case the usage of the embedding B(x, r) ⊂ B(0,3r) yields the same estimate.
Similarly, the left-hand side inequality in (3.14) is obtained. �
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Corollary 3.4. Let ϕ be a non-negative measurable function. Then

L∞(Ω) ⊆ Lp,ϕ(Ω), (3.15)

if and only if (3.4) holds. In the case ϕ ∈ W ([0, �]), the condition m(ϕ) � n is necessary for (3.15) and M(ϕ) < n is sufficient.

Proof. Embedding (3.15) is equivalent to saying that the function f (x): u(|x|) ≡ 1 belongs to L p,ϕ(Ω). Then the equivalence
of (3.15) to (3.3) follows from the definition of the space. To check the conditions in terms of the indices m(ϕ) and M(ϕ),
note that m(u) = M(u) = 0 for u ≡ 1, and then it suffices to refer to (3.10). �
Remark 3.5. In the case of � = ∞, sufficient or necessary conditions (3.8), (3.9) must be complemented by similar conditions
related to the indices m(u), M(u),m(ϕ), M(ϕ) defined in Section 2.1.3.

3.2. Some weighted estimates of functions in Morrey spaces

Our first result in this subsection reads:

Proposition 3.6. Let 1 � p < ∞, 0 < s � p, v ∈ W ([0, �]), v(2t) � cv(t), ϕ
s
p

v ∈ W ([0, �]), 0 < � � ∞. Then( ∫
|z|<|y|

| f (z)|s

v(|z|) dz

) 1
s

� C A(|y|)‖ f ‖p,ϕ;loc, 0 < |y| � �, (3.16)

where C > 0 does not depend on y and f and

A(r) =
( r∫

0

tn(1− s
p )−1 ϕ

s
p (t)

v(t)
dt

) 1
s

. (3.17)

Proof. We have∫
|z|<|y|

| f (z)|s

v(|z|) dz =
∞∑

k=0

∫
Bk(y)

| f (z)|s

v(|z|) dz, (3.18)

where Bk(y) = {z: 2−k−1|y| < |z| < 2−k|y|}. Making use of the fact that there exists a β such that tβ v(t) is almost increas-
ing, we observe that

1

v(|z|) � C

v(2−k−1|y|)
on Bk(y). Applying this in (3.18) and making use of the Hölder inequality with the exponent p

s � 1, we obtain∫
|z|<|y|

| f (z)|s

v(|z|) dz � C
∞∑

k=0

(2−k−1|y|)n(1− s
p )

v(2−k−1|y|)
( ∫

Bk(y)

∣∣ f (z)
∣∣p

dz

) s
p

.

Hence ∫
|z|<|y|

| f (z)|s

v(|z|) dz � C
∞∑

k=0

(
2−k−1|y|)n(1− s

p ) ϕ
s
p (2−k|y|)

v(2−k−1|y|)‖ f ‖s
p,ϕ;loc.

It remains to prove that

∞∑
k=0

(
2−k−1|y|)n(1− s

p ) ϕ
s
p (2−k|y|)

v(2−k−1|y|) � C
[

A
(|y|)]s

. (3.19)

We have

r∫
tn(1− s

p )−1 ϕ
s
p (t)

v(t)
dt =

∞∑
k=0

2−kr∫
−k−1

tn(1− s
p )−1 ϕ

s
p (t)

v(t)
dt.
0 2 r
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We use the fact that ϕ
s
p (t)

tb v(t)
is almost decreasing with some b and that v(2t) � cv(t) and obtain

r∫
0

tn(1− s
p )−1 ϕ

s
p (t)

v(t)
dt � C

∞∑
k=0

(
2−kr

)n(1− s
p ) ϕ

s
p (2−kr)

v(2−kr)
� C

∞∑
k=0

(
2−k−1r

)n(1− s
p ) ϕ

s
p (2−kr)

v(2−k−1r)
(3.20)

which proves (3.19). �
Corollary 3.7. Let 1 < p < ∞. Then∫

|z|<|y|

| f (z)|
ϕ

1
p (|z|)

dz � c|y| n
p′ ‖ f ‖p,ϕ;loc, 0 < |y| � � � ∞. (3.21)

The next result is the following complement to Proposition 3.6.

Proposition 3.8. Let 1 � p < ∞, 0 � s � p, ϕ satisfy condition (3.3) and v ∈ W (R1+). Then( ∫
|z|>|y|

v
(|z|)∣∣ f (z)

∣∣s
dz

) 1
s

� cB(|y|)‖ f ‖p,ϕ;loc, y 	= 0, (3.22)

where C > 0 does not depend on y and f and

B(r) =
( ∞∫

r

tn−1
(

ϕ(t)

tn

) s
p

v(t)dt

) 1
s

. (3.23)

Proof. The proof is similar to that of Proposition 3.6. We have∫
|z|>|y|

v(t)
∣∣ f (z)

∣∣s
dz =

∞∑
k=0

∫
Bk(y)

v(z)
∣∣ f (z)

∣∣s
dz,

where Bk(y) = {z: 2k|y| < |z| < 2k+1|y|}. Since there exists a β ∈ R
1 such that tβ v(t) is almost increasing, we obtain

∞∑
k=0

∫
Bk(y)

v
(|z|)∣∣ f (z)

∣∣s
dz � C

∞∑
k=0

v
(
2k+1|y|) ∫

Bk(y)

∣∣ f (z)
∣∣s

dz

where C may depend on β , but does not depend on y and f . Applying the Hölder inequality with the exponent p
s , we get∫

|z|>|y|
v
(|z|)∣∣ f (z)

∣∣s
dz � C

∞∑
k=0

v
(
2k+1|y|)(2k|y|)n(1− s

p )
( ∫

Bk(y)

∣∣ f (z)
∣∣p

dz

) s
p

� C
∞∑

k=0

v
(
2k+1|y|)(2k|y|)n(1− s

p )
ϕs/p(

2k+1|y|)‖ f ‖s
p,ϕ;loc.

It remains to prove that
∞∑

k=0

v
(
2k+1|y|)(2k|y|)n(1− s

p )
ϕs/p(

2k+1|y|) � C
[

B(|y|)]s
.

We have

∞∫
r

tn−1
(

ϕ(t)

tn

) s
p

v(t)dt =
∞∑

k=0

2k+1r∫
2kr

tn−1− ns
p ϕs/p(t)v(t)dt � C

∞∑
k=0

v
(
2kr

)
ϕs/p(

2kr
)(

2kr
)n(1−s/p)

� C
∞∑

k=0

v
(
2k+1r

)
ϕs/p(

2k+1r
)(

2kr
)n(1−s/p)

,

which completes the proof. �
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Remark 3.9. The analysis of the proof shows that estimate (3.22) remains in force, if the assumption v ∈ W (R1+) is replaced
by the condition that 1

v ∈ W (R1+) and v satisfies the doubling condition v(2t) � cv(t).

Corollary 3.10. Let 1 � p < ∞. Then∫
|z|>|y|

| f (z)|
|z|bϕ 1

p (|z|)
dz � c|y| n

p′ −b‖ f ‖p,ϕ;loc, y 	= 0, (3.24)

for every b > n
p′ .

4. On weighted Hardy operators in generalized Morrey spaces

4.1. Pointwise estimations

We consider the following generalized Hardy operators

Hα
w f (x) = |x|α−n w

(|x|) ∫
|y|<|x|

f (y)dy

w(|y|) , Hα
w f (x) = |x|α w

(|x|) ∫
|y|>|x|

f (y)dy

|y|n w(|y|) , (4.1)

and their one-dimensional versions:

Hα
w f (x) = xα−1 w(x)

x∫
0

f (t)dt

w(t)
, Hα

w f (x) = xα w(x)

∞∫
x

f (t)dt

t w(t)
, x > 0 (4.2)

adjusted for the half-axis R
1+ . In the sequel R

n with n = 1 may be read either as R
1 or R

1+ .
We also use the notation

Hα = Hα
w

∣∣
w≡1.

The proof of our main result of this section given in Theorem 4.2 is prepared by the following theorem on the pointwise
estimates of the Hardy-type operators.

Theorem 4.1. Let 1 � p < ∞ and ϕ satisfy condition (3.3).

I. Let w ∈ W , w(2t) � C w(t) and ϕ
1
p

w ∈ W ([0, �]). The condition

ε∫
0

t
n
p′ −1

ϕ1/p(t)

w(t)
dt < ∞, (4.3)

with ε > 0, is sufficient for the Hardy operator Hα
w to be defined on the space L p,ϕ(Rn) or on the space L p,ϕ

loc;0(R
n). Under this condition

∣∣Hα
w(x)

∣∣ � C |x|α−n w
(|x|) |x|∫

0

t
n
p′ −1

ϕ1/p(t)

w(t)
dt ‖ f ‖p,ϕ;loc. (4.4)

Condition (4.3) is also necessary in the case of L p,ϕ
loc;0(R

n) if also
∫ h

0
ϕ(t)

t dt � cϕ(h). In the case of L p,ϕ(Rn) it is also necessary, if

either ϕ ∈ Φ0
n or ϕ(r) = rn.

II. Let 1
w ∈ W , or w ∈ W and w(2t) � C w(t). The condition

∞∫
ε

t− n
p −1

ϕ1/p(t)

w(t)
dt < ∞ (4.5)

with ε > 0, is sufficient for the Hardy operator Hα
w to be defined on the space L p,ϕ(Rn) or L p,ϕ

loc;0(R
n), and in this case

∣∣Hα
w(x)

∣∣ � C |x|α w
(|x|) ∞∫

|x|

t− n
p −1

ϕ1/p(t)

w(t)
dt ‖ f ‖p,ϕ;loc. (4.6)

Condition (4.5) is also necessary in the case of L p,ϕ
(Rn). It is also necessary in the case of L p,ϕ(Rn), if either ϕ ∈ Φ0

n or ϕ(r) = rn.
loc;0
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Proof. I. The “sufficiency” part. The sufficiency of condition (4.3) and estimate (4.4) follow from (3.16) under the choice s = 1
and v(t) = w(t).

The “necessity” part. We choose a function f (x) equal to [ϕ(|x|)
|x|n ] 1

p in a neighborhood of the origin and zero beyond this

neighborhood. Then f ∈ L p,ϕ
loc;0 by condition (3.6), see Lemma 3.3. It is also in L p,ϕ , if either ϕ(r) = rn or ϕ ∈ Φ0

n , by
conditions i) and ii) of Lemma 3.3. For this function f , the existence of the integral Hα

ϕ f coincides with condition (4.3).
II. The “sufficiency” part. The sufficiency of condition (4.5) and estimate (4.6) follow from (3.22) under the choice s = 1

and v(t) = 1
tn w(t) .

The “necessity” part. The proof is the same as in Part I, via the choice f (x) = [ϕ(|x|)
|x|n ] 1

p . �
4.2. Weighted p → q estimates for Hardy operators in the generalized Morrey spaces

The statements of Theorem 4.2 are well known in the case of Lebesgue space ϕ = 1 when 1 < p < n
α , see for instance

[22, pp. 6, 54]. As can be seen from the results below, inequalities for the Hardy operators in Morrey spaces admit the case
p = 1 when ϕ(0) = 0.

4.2.1. The case of local spaces L p,ϕ
loc;0(R

n)

Theorem 4.2. Let 1 � p < ∞, 1 � q < ∞ and ϕ satisfy condition (3.3).
I. Suppose that

w ∈ W
(
R

1+
)
, w(2t) � cw(t),

ϕ
1
p

w
∈ W

(
R

1+
)
. (4.7)

The operator Hα
w is bounded from L p,ϕ

loc;0(R
n) to Lq,ϕ

loc;0(R
n), if

sup
r>0

1

ϕ(r)

r∫
0

wq(s)sq(α−n)+n−1

( s∫
0

t
n
p′ −1

ϕ
1
p (t)

w(t)
dt

)q

ds < ∞. (4.8)

If
∫ h

0
ϕ(t)

t dt � cϕ(h), then (4.8) is also necessary.
II. Suppose that

1

w
∈ W

(
R

1+
)
, or w ∈ W

(
R

1+
)

and w(2t) � C w(t). (4.9)

The operator Hα
w is bounded from L p,ϕ

loc;0(R
n) to Lq,ϕ

loc;0(R
n), if and only if

sup
r>0

1

ϕ(r)

r∫
0

wq(s)sqα+n−1

( ∞∫
s

t− n
p −1

ϕ
1
p (t)

w(t)
dt

)q

ds < ∞. (4.10)

Proof. I. The “if” part follows from estimate (4.4) of Lemma 4.1 and Lemma 3.3, since condition (4.8) is nothing else but the
requirement that the radial function arising on the right-hand side of (4.4) belongs to Lq,ϕ

loc;0(R
n) according to Lemma 3.3.

To prove the “only if part”, as in the proof of Lemma 4.1, we choose f (x) = ϕ
1
p (|x|)
|x| n

p
which is in L p,ϕ

loc;0(R
n) by Lemma 3.3.

Then condition (4.8) is nothing else but the statement that Hα
w f belongs to Lq,ϕ

loc;0(R
n).

II. In the case of the operator Hα
w(x) the arguments are similar, based on part II of Lemma 4.1 and Lemma 3.3. �

Remark 4.3. Conditions (4.8) and (4.10) represent joint restriction on p,q,ϕ and w . In the case w ≡ 1 and ϕ(r) = rλ , they
recover the Sobolev and Adams [1] exponent 1

q = 1
p − α

n−λ
.

4.2.2. The case of global spaces L p,ϕ(Rn)

We can formulate the statement of Theorem 4.2 for the case of the global spaces.

Theorem 4.4. Let 1 � p < ∞, 1 � q < ∞ and ϕ satisfy condition (3.3). Under conditions (4.7) and (4.9) for the operators Hα
w and

Hα
w , respectively, these operators are bounded from L p,ϕ(Rn) to Lq,ϕ(Rn), if

sup
x∈Ω, r>0

1

ϕ(r)

∫
wq(|y|)|y|q(α−n)

( |y|∫
t

n
p′ −1

ϕ
1
p (t)

w(t)
dt

)q

dy < ∞ (4.11)
B(x,r) 0
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and

sup
x∈Ω, r>0

1

ϕ(r)

∫
B(x,r)

wq(|y|)|y|qα
( ∞∫

|y|

t− n
p −1

ϕ
1
p (t)

w(t)
dt

)q

dy < ∞, (4.12)

respectively. These conditions are also necessary, when either ϕ ∈ Φ0
n or ϕ(r) = rn.

Proof. The sufficiency part follows from estimates (4.4) and (4.6). For the necessity, just observe that (4.11) is nothing else

but the statement that Hα
w f ∈ Lq,ϕ(Rn) under the choice f (x) = [ϕ(|x|)

|x|n ] 1
p , which belongs to Lq,ϕ(Rn) under the assumptions

of the theorem. Similarly (4.12) is interpreted. �
5. Application to potential operators

We consider the potential operator

Iα f (x) :=
∫
Rn

f (y)dy

|x − y|n−α
, 0 < α < n, (5.1)

and show that its weighted boundedness in Morrey spaces – in the case of weights w ∈ V μ
+ ∪ V μ

− with μ = min{1,n −α} –
is a consequence of the non-weighted boundedness and the weighted boundedness of Hardy operators, the latter being
given in Theorem 4.4.

5.1. Reduction to Hardy operators

The necessity of the boundedness of the Hardy operators for that of potential operators is a consequence of the following
simple fact, where X = X(Rn) and Y = Y (Rn) are arbitrary Banach function spaces in the sense of Luxemburg (cf., for
example, [6]).

Lemma 5.1. (See [39].) Let w = w(x) be any weight function. For the boundedness of the weighted potential operator w Iα 1
w from X

to Y , it is necessary that the Hardy operators Hα
w and Hα

wα
are bounded from X to Y , where wα(x) = |x|−α w(x).

The proof of the sufficiency of the obtained conditions is based on the pointwise estimate of the following Lemma 5.2
which was proved in [39].

Lemma 5.2. (See [39].) Let w ∈ Vμ
− ∪ Vμ

+ with μ = min{1,n − α} be a weight and f a non-negative function. Then the following
pointwise estimate holds

w Iα
1

w
f (x) � Iα f (x) + c

{
Hα

w f (x) + Hα−α f (x), if w ∈ Vμ
+,

Hα f (x) + Hα
wα

f (x), if w ∈ Vμ
−.

(5.2)

In view of Lemma 5.2, for the weighted boundedness of the potential operator under the corresponding assumptions on
weights it suffices to apply the results obtained in Section 4 for the Hardy operators and the results for the boundedness of
the non-weighted Riesz potential.

5.2. On a non-weighted p → q-boundedness of potential operators in the generalized Morrey spaces

Potential operators in the non-weighed setting were studied in [12,14,15,17,23,28,40]. We make use of the Adams-type
p- to q-statement which we give in Theorem 5.4 following the approach developed in [14,15]. Note that Theorem 5.4 does
not impose any monotonicity condition of the function ϕ . A version of Theorem 5.4 for bounded domains but in a more
general setting of variable exponent Morrey spaces was proved in [16].

To prove Theorem 5.4, we first need the following statement on the boundedness of the maximal operator in generalized
Morrey spaces. In such a form Theorem 5.3 was proved in fact in [14,15]. For the proof we refer also to [16] where it was
extended to the case of variable p(x) and ϕ(x, r) (note that in [16] the maximal operator was considered over bounded
domains in R

n , but the proof presented there is valid for unbounded domains as well when p is constant).

Theorem 5.3. Let 1 < p < ∞ and ϕ(r) be a non-negative measurable function satisfying the condition

∞∫
ϕ

1
p (t)

t
n
p +1

dt � C
ϕ

1
p (r)

r
n
p

. (5.3)
r
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Then the maximal operator

M f (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

∣∣ f (y)
∣∣dy

is bounded in the space L p,ϕ(Rn).

By means of Theorem 5.3, the following theorem is proved.

Theorem 5.4. Let 0 < α < n, 1 < p < n
α , q > p and ϕ(r) a non-negative measurable function satisfying condition (5.3) and the

condition
∞∫

r

ϕ
1
p (t)

t
n
p −α+1

dt � Cr− αp
q−p . (5.4)

Then the Riesz potential operator Iα is bounded from L p,ϕ(Rn) to Lq,ϕ(Rn).

Proof. We follow the approach developed in [14–16], and as in [16] prove the following pointwise estimate

∣∣Iα f (x)
∣∣ � Ctα M f (x) + C

∞∫
t

rα− n
p −1‖ f ‖L p(B(x,r)) dr, t > 0. (5.5)

To this end, we represent the function f in the form

Iα f (x) = Iα f1(x) + Iα f2(x),

where f1(y) = f (y)χB(x,2t)(y), f2(y) = f (y)χRn\B(x,2t)(y). For Iα f1(x), by the well known Hedberg trick we have∣∣Iα f1(x)
∣∣ � C1tα M f (x).

For Iα f2(x) we obtain∣∣Iα f2(x)
∣∣ �

∫
|y−x|>2t

|x − y|α−n
∣∣ f (y)

∣∣dy

= (n − α)

∫
|y−x|>2t

∣∣ f (y)
∣∣dy

∞∫
|x−y|

rα−n−1 dr

= (n − α)

∞∫
2t

( ∫
2t<|x−y|<r

∣∣ f (y)
∣∣dy

)
rα−n−1 dr

� (n − α)

∞∫
t

‖ f ‖L1(B(x,r))r
α−n−1 dr

� C

∞∫
2t

‖ f ‖L p(B(x,r))r
α− n

p −1 dr

� C

∞∫
t

‖ f ‖L p(B(x,r))r
α− n

p −1 dr,

which proves (5.5).
By (5.5) we get

∣∣Iα f (x)
∣∣ � Crα M f (x) + C‖ f ‖p,ϕ

∞∫
r

tα− n
p −1

ϕ
1
p (t)dt.

In view of (5.4), we obtain∣∣Iα f (x)
∣∣ � Crα M f (x) + Cr− αp

q−p ‖ f ‖p,ϕ .
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Now we choose r = (
‖ f ‖p,ϕ

M f (x) )
q−p
αq and arrive at∣∣Iα f (x)

∣∣ � C
(
M f (x)

) p
q ‖ f ‖1− p

q
p,ϕ ,

whence the statement of the theorem follows by the boundedness of the maximal operator M in L p,ϕ(Rn) provided by
Theorem 5.3 in virtue of condition (5.3). �
5.3. p → q-boundedness of potential operators in generalized Morrey spaces

To formulate the result, we need the following conditions derived from (4.11)–(4.12) according to the estimation in (5.2):

sup
x∈Rn, r>0

1

ϕ(r)

∫
B(x,r)

|y|q(α−n)

( |y|∫
0

t
n
p′ −1

ϕ
1
p (t)dt

)q

dy < ∞, (5.6)

sup
x∈Rn, r>0

1

ϕ(r)

∫
B(x,r)

( ∞∫
|y|

tα− n
p −1

ϕ
1
p (t)dt

)q

dy < ∞, (5.7)

and

sup
x∈Rn, r>0

1

ϕ(r)

∫
B(x,r)

wq(|y|)( ∞∫
|y|

tα− n
p −1

ϕ
1
p (t)

w(t)
dt

)q

dy < ∞. (5.8)

Theorem 5.5. Let 0 < α < n, 1 < p < n
α , q > p and ϕ(r) a non-negative measurable function satisfying conditions (3.3) and

(5.3)–(5.4). Let the weight w ∈ W (R1+) ∩ W (R1+) satisfy the conditions

w ∈ Vμ
− ∪ Vμ

+, μ = min{1,n − α}

and ϕ
1
p

w ∈ W (R1+). Then the weighted Riesz potential operator w Iα 1
w is bounded from L p,ϕ(Rn) to Lq,ϕ(Rn) under conditions (4.11)

and (5.7) in the case w ∈ Vμ
+ and conditions (5.6) and (5.8) in the case w ∈ Vμ

− .
In the case where when either ϕ ∈ Φ0

n or ϕ(r) = rn, conditions (4.11), (5.7) and (5.6), (5.8) are also necessary.

Proof. Apply Lemmas 5.1, 5.2 and Theorems 5.4, 4.4. �
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