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1. Introduction

In this work, we are interested in studying systems of reaction-di�usion equations of the form

∂ u

∂ t
− a1(p(u), q(v))∆u = f(u, v) in QT(1.1)

∂ v

∂ t
− a2(r(u), s(v))∆v = g(u, v) in QT(1.2)

u = u0, v = v0 in Ω , when t = 0(1.3)

in a space and time cylinder

QT := Ω× [0, T )

where Ω is a bounded domain in RN and T ∈ (0,∞]. Here, p, q, r and s are functions depending locally on
the time variable t and non-locally on the density variables u and v. In (1.1)-(1.3), a1 and a2 are functions
expressing possibly di�erent di�usions in each of the nonlocal functions p(u), q(v) and r(u), s(v), respectively.
The functions f and g express distinct interacting reactions between u and v. We supplement the system
(1.1)-(1.3) with the following general boundary conditions

τ ∇u · n + (1− τ)u = 0 on ΓT ,(1.4)

τ ∇v · n + (1− τ)v = 0 on ΓT ,(1.5)

where τ = 0 or τ = 1, and n denotes the outward unit normal to ∂Ω. Throughout this work, we will
consider either the case of Dirichlet boundary conditions, i.e. τ = 0 in (1.4)-(1.5), or of Neumann boundary
conditions, i.e. τ = 1 in (1.4)-(1.5). In the �nal part, we will distinguish situations where it is important to
consider speci�c boundary conditions. Note that the existence of the unit normal to ∂Ω in almost all points
of ∂Ω implies that ∂Ω is su�ciently regular, for instance Lipschitz-continuous.
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Systems of reaction-di�usion equations are very important in the applied sciences to model interesting and
very distinct phenomena, where many chemical and biological processes are in the �rst line of its applications.
On the other hand, the combination of the coupling di�usions together with the coupling reactions produces
many mathematical features. In particular, systems of reaction-di�usion equations lead to the possibility of
many threshold phenomena that we cannot expect they happen if we consider only one reaction-di�usion
equation. An interesting feature of the reaction-di�usion equations (1.1)-(1.2) observed in many models,
arise when the di�usion coe�cient, say for simplicity p(u), is given by a local quantity. However, in many
applications this assumption is incompatible with the physical notion of measure, since we are not able to
measure pointwisely the di�usivity of a pointwise density. One possibility to overcome this di�culty, consists
in choosing a point x in the space and then constructing a ball B := B(x, ε) centered at x with radius ε and
replacing p(u) by

(1.6) p

(
−
ˆ
B∩Ω

|u|γ dy
)
,

for some γ ≥ 1, where −́
B∩Ω

:= 1
LN (B∩Ω)

´
B∩Ω

and LN denotes the N -Lebesgue measure. This makes the

mathematical analysis of the corresponding reaction-di�usion equation more feasible around the chosen point
x (see e.g. [18]). On the other hand, systems of reaction-di�usion equations, but with nonlocal reaction terms
instead of di�usion ones, were recently proposed to describe the motion of particle densities under the presence
of some chemical reactions (see [16]) and to model the evolution of a population under chemotactic e�ects
(see [19]). Though our motivation to study the system (1.1)-(1.3) is primarily mathematical, we can �nd some
interesting aspects of its applications in population dynamics. See, for instance, the references [3, 8, 17, 18].

The exact formulation of the nonlocal functions ai, i = 1, 2, we will consider here, relies on the assumption
that

(1.7) p, q, r and s are continuous linear functionals over Lγp(Ωp), L
γq (Ωq), L

γr (Ωr) and L
γs(Ωs) ,

respectively, for some bounded subdomains Ωp, Ωq, Ωr, Ωs ⊂ Ω and for some real numbers γp, γq, γr, γs ≥
1. Observe that, in view of (1.7), we can use Riesz representation theorem to infer the existence of unique

u∗p ∈ Lγ
′
p(Ωp), v

∗
q ∈ Lγ

′
q (Ωq), u

∗
r ∈ Lγ

′
r (Ωr) and v

∗
s ∈ Lγ

′
s(Ωs), where 1/γi + 1/γ′i = 1 for i ∈ {p, q, r, s}, such

that

p(u) =

ˆ
Ωp

u∗pu dx ∀ u ∈ Lγp(Ωp), q(v) =

ˆ
Ωq

v∗qv dx ∀ v ∈ Lγq (Ωq),

r(u) =

ˆ
Ωr

u∗ru dx ∀ u ∈ Lγr (Ωr), s(v) =

ˆ
Ωs

v∗sv dx ∀ v ∈ Lγs(Ωs).

Moreover, we have

‖p‖(Lγp (Ωp))′ = ‖u∗p‖Lγ′p (Ωp)
, ‖q‖(Lγq (Ωq))

′ = ‖v∗q‖Lγ′q (Ωq)
,

‖r‖(Lγr (Ωr))′ = ‖u∗r‖Lγ′r (Ωr)
, ‖s‖(Lγs (Ωs))

′ = ‖v∗s‖Lγ′s (Ωs)
.

To the best of our knowledge, the �rst works on the mathematical analysis of partial di�erential equations,
with nonlocal di�usivity terms as mentioned above, were studied in [8, 18]. However, we should note that
it was proposed earlier, in [17], an abstract framework to handle hyperbolic problems with similar nonlocal
di�usivity terms, previously and independently introduced by Dickey and Pohoºaev (see the exact references
in [17]).

During the last decades a lot of attention has been devoted to nonlocal di�usion and reaction-di�usion
problems. In [4, 18], the existence and uniqueness of local and global solutions to the following parabolic
di�usion problem

(1.8)


∂ u

∂ t
− a(l(u))∆u = f in Ω× (0, T )

u = u0 in Ω when t = 0.

has been proved. Here, the di�usivity a is some function from R into (0,+∞) and l is a continuous mapping
from L2(Ω) into R. The authors have worked on di�erent problems for distinct di�usivity terms, but always
depending on

´
Ω
u dx, and under di�erent boundary conditions: Dirichlet, Neumann and mixed boundary

conditions. In [5], besides proving the existence and uniqueness of solutions, the same authors have analyzed
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the asymptotic behavior of the solutions as well. These issues were extensively investigated in [7] where, in
particular, the convergence of the solutions to a steady state was proved. Several extensions and modi�cations
of the problem (1.8) were deeply studied in [2], where many interesting examples were given as well. Again
the authors of [4, 5, 18], considered, in [6], a class of nonlocal elliptic and parabolic problems related to
(1.8), now with homogeneous Dirichlet boundary conditions, for which they proved existence and uniqueness
results. The analysis of the problem (1.8), considered with a nonlocal di�usivity depending on the Dirichlet
integral

´
Ω
|∇u|p dx, was carried out in [10, 23] for p = 2 and in [9] for a general p (and for the p-Laplacian).

The asymptotic behavior of the solutions to the problem (1.8), considered with a nonlocal di�usivity written
as a kernel, i.e. l(u) =

´
Ω
g u dx, where g is a given function in L2(Ω), has been performed in [23] too.

Reaction-di�usion analogues of the parabolic problem (1.8) were considered by the authors of [1, 13] in the
following form

(1.9)


∂ u

∂ t
− a(l(u))∆u = f(u) in Ω× (0, T )

u = u0 in Ω when t = 0.

In [1], the problem (1.9) was considered in a rather general Banach space and the authors worked on the

case a(u) =
(´

Ω
u dx

)−1
. This assumption led them to an equivalent reaction-di�usion problem with a

nonlocal di�usivity, now multiplied by the reaction term f(u). For these problems, the authors established
local existence and uniqueness results and, in addition, they found conditions on the initial data in order to
obtain time properties of �nite extinction or persistency of the solutions. In [13], the authors extended the
results of [4, 5, 6, 7, 10, 18] to the case of the reaction-di�usion problem (1.9). In particular, they considered
both stationary and transient situations, where the nonlinearity appears, not only in the nonlocal di�usivity
term a(l(u)), but also on the right-hand side in which one has the nonlinear function f(u).

The outline of our work is the following. In Section 2, we de�ne the notion of weak solutions to the
problem (1.1)-(1.5) and we present Theorem 2.1 where is established the existence of weak solutions. The
proof of Theorem 2.1 is carried out in Section 3 by using Galerkin approximations together with compactness
arguments. In Section 4, we drop the boundedness condition on the nonlocal functions (see (2.2)) to prove
a local existence result in Theorem 4.1. Section 5 is devoted to prove the uniqueness result and in Section 6
we �nd the conditions under which we prove the existence of strong solutions. In Section 7, we establish
several bow-up results for the strong solutions to the problem (1.1)-(1.5). Finally, in Section 8, we give a
criterium for the convergence of these strong solutions towards a homogeneous state by using the theory of
invariant regions.

The notation used throughout this work is largely standard in the �eld of Partial Di�erential Equations
and we address the reader to the monographs [3, 15, 20, 22] for any question related with this matter.

2. Weak formulation

To de�ne the notion of weak solutions we are interested here, we shall assume that:

the functions ai : R2 → R+, wih i = 1, 2 are continuous;(2.1)

∀ i ∈ {1, 2} ∃ mi, Mi > 0 : 0 < mi ≤ ai(ξ, η) ≤Mi <∞ ∀ ξ, η ∈ R.(2.2)

Condition ai(ξ, η) > 0 expresses the fact that we will consider uniformly parabolic equations (1.1)-(1.2). On
the reaction functions, f and g, we assume that

|f(u1, v1)− f(u2, v2)| ≤ CL1 |(u1, v1)− (u2, v2)| ∀ (u1, v1), (u2, v2) ∈ R2 ,(2.3)

with f(0, 0) = 0(2.4)

and

|g(u1, v1)− g(u2, v2)| ≤ CL2
|(u1, v1)− (u2, v2)| ∀ (u1, v1), (u2, v2) ∈ R2 ,(2.5)

with g(0, 0) = 0 ,(2.6)

where CL1
and CL2

are the correspondingly positive Lipschitz constants. For each τ ∈ {0, 1}, we consider
the following function space

Vτ := closure of

{
φ ∈ C∞(Ω) : τ ∇u · n + (1− τ)u = 0 on ∂Ω , τ

ˆ
Ω

φdx = 0

}
in H1(Ω) .



4 J. FERREIRA AND H. B. DE OLIVEIRA

In any case, Vτ is a closed subspace of H1(Ω), with its norm satisfying to

C1‖∇φ‖L2(Ω) ≤ ‖φ‖Vτ ≤ C2‖∇φ‖L2(Ω)

for some positive constants C1 and C2.

De�nition 2.1. Let N ≥ 2 and assume that conditions (2.1)-(2.6) hold. We say (u, v) is a weak solution
to the problem (1.1)-(1.5), for either τ = 0 or τ = 1, if:

(1) u, v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;Vτ );
(2) u(0) = u0 and v(0) = v0;
(3) For every ϕ, η ∈ Vτ

d

dt

ˆ
Ω

u(t)ϕdx+ a1(p(u(t)), q(v(t)))

ˆ
Ω

∇u(t) · ∇ϕdx =

ˆ
Ω

f(u(t), v(t))ϕdx ,(2.7)

d

dt

ˆ
Ω

v(t)η dx+ a2(r(u(t)), s(v(t)))

ˆ
Ω

∇v(t) · ∇η dx =

ˆ
Ω

g(u(t), v(t))η dx ,(2.8)

which hold in D′(0, T ).

In order to prove the existence of weak solutions to the problem (1.1)-(1.5), we have to impose a suitable
restriction related with the Poincaré inequality. We assume that the constants of uniform parabolicity mi

and of Lipschitz continuity CLi are related by

(2.9) miλP > CL1
+ CL2

, i = 1, 2 ,

where λP is the principal (positive) eigenvalue for the Laplacian problem

(2.10)

{
∆φ = −λφ in Ω

τ ∇φ · n + (1− τ)φ = 0 on ∂Ω

for τ = 0 or τ = 1. Observe that, in the case of Neumann boundary conditions, i.e. τ = 1 in (2.10), 0 is
clearly an eigenvalue, with the associated eigenfunction given by any constant, which in turn can be �xed
by a normalization such as φ = 0, where φ = −́

Ω
φdx. In any case, the Rayleigh quotient allows one to

characterize the principal (positive) eigenvalue of (2.10) with the following minimum principle,

(2.11) λP = min
φ∈Vτ , φ6=0

‖∇φ‖2L2(Ω)

‖φ‖2L2(Ω)

.

It is well know that the minimum in (2.11) is attained for a function φ ∈ Vτ such that φ > 0 in Ω (see e.g [15]).
Associated with the problem (2.10)-(2.11), we recall the following Poincaré inequalities (see e.g. [20, Theorem
11.11]) that will be used in the sequel:

‖∇φ‖2L2(Ω) ≥ λP ‖φ‖
2
L2(Ω) if φ ∈ H1(Ω) and φ = 0 on ∂Ω ;(2.12)

‖∇φ‖2L2(Ω) ≥ λP ‖φ− φ‖
2
L2(Ω) if φ ∈ H1(Ω) and ∇φ · n = 0 on ∂Ω ;(2.13)

‖∆φ‖2L2(Ω) ≥ λP ‖∇φ‖
2
L2(Ω) if φ ∈ H2(Ω) and ∇φ · n = 0 on ∂Ω .(2.14)

Theorem 2.1. Let Ω be a bounded domain in RN , N ≥ 2, with a Lipschitz-continuous boundary ∂Ω.
Assume that conditions (1.7), (2.1)-(2.6) and (2.9) hold. If

(2.15) u0, v0 ∈ L2(Ω) ,

then, for any T > 0, there exists, at least, a weak solution (u, v) to the problem (1.1)-(1.5), for either τ = 0
or τ = 1, in the sense of De�nition 2.1. In addition,

u, v ∈ C([0, T ];L2(Ω)),(2.16)

∂ u

∂ t
,
∂ v

∂ t
∈ L2(0, T ;V ′τ ).(2.17)

The proof of Theorem 2.1 will be established in the next section.
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3. Proof of Theorem 2.1

3.1. Existence of approximative solutions. In order to use the Galerkin method, let {φi}∞i=1 be a set of
non-trivial solutions φi, associated to the eigenvalues λi > 0, i = 1, 2, ..., to the following spectral problem:

ˆ
Ω

∇φi · ∇ψ dx = λi

ˆ
Ω

φiψ dx in Ω , ∀ ψ ∈ Vτ ,

τ ∇φi · n + (1− τ)φi = 0 on ∂Ω.

The family {φi}∞i=1 is orthogonal in Vτ and can be chosen as being orthonormal in L2(Ω) (see e.g. [15]).
Given m ∈ N, let us consider the correspondingly m-dimensional space V mτ spanned by φ1, φ2, ..., φm. For
each m ∈ N, we search for an approximative solution (um(t), vm(t)) of (2.7)-(2.8) in the form

(3.1) um(t) =

m∑
k=1

cmk (t)φk , vm(t) =

m∑
k=1

dmk (t)φk .

where φk ∈ V mτ are given and cmk (t) and dmk (t) are the functions we look for. These functions are found
by solving the following system of 2m nonlinear ordinary di�erential equations, with respect to the 2m
unknowns cm1 , . . . , c

m
m and dm1 , . . . , d

m
m, obtained from (2.7)-(2.8):

d

d t

ˆ
Ω

um(t)ϕdx+ a1(p(um(t)), q(vm(t)))

ˆ
Ω

∇um(t) · ∇ϕdx =

ˆ
Ω

f(um(t), vm(t))ϕdx ,(3.2)

d

d t

ˆ
Ω

vm(t)η dx+ a2(r(um(t)), s(vm(t)))

ˆ
Ω

∇vm(t) · ∇η dx =

ˆ
Ω

g(um(t), vm(t))η dx ,(3.3)

for all ϕ, η ∈ {φ1, . . . , φm}, and with

(3.4) um(0) = um0 and vm(0) = vm0 ,

where both um0 and vm0 are chosen in such a way that

(3.5) um0 → u0 and vm0 → v0 strongly in L2(Ω), as m→∞.

Attending to the continuity of a1, a2 and f , g on u and v (see (2.1) and (2.3)-(2.4), (2.5)-(2.6)), we can use
Peano's theorem to prove the existence of tm ∈ (0, T ) and (cm(t),dm(t)), with cm(t) := (cm1 (t), . . . , cmN (t))
and dm(t) := (dm1 (t), . . . , dmN (t)), and such that (cm(t),dm(t)) is a solution to the system (3.2)-(3.4) in the
interval [0, tm]. To show that this solution holds for all the interval [0, T ], we shall establish an a priori
estimate. To do it so, we multiply (3.2) by cmk and (3.3) by dmk , where in both it is taken ϕ = ϕk and η = ϕk,
we add up the resulting equations from k = 1 until k = m and then we integrate them between 0 and t, with
t ∈ (0, tm), to obtain

1

2
‖um(t)‖2L2(Ω) +

ˆ t

0

a1(p(um(ς)), q(vm(ς)))

ˆ
Ω

|∇um(ς)|2 dxdς

=

ˆ t

0

ˆ
Ω

f(um(ς), vm(ς))um(ς) dxdς +
1

2
‖um(0)‖2L2(Ω) ,

(3.6)

1

2
‖vm(t)‖2L2(Ω) +

ˆ t

0

a2(r(um(ς)), s(vm(ς)))

ˆ
Ω

|∇vm(ς)|2 dxdς

=

ˆ t

0

ˆ
Ω

g(um(ς), vm(ς))um(ς) dxdς +
1

2
‖vm(0)‖2L2(Ω) .

(3.7)

Adding the equations (3.6)-(3.7) and then taking the essential supreme in [0, T ] in the resulting equation
and using the assumptions (2.2)-(2.4), one obtains

1

2

(
‖um‖2L∞(0,T ;L2(Ω)) + ‖vm‖2L∞(0,T ;L2(Ω))

)
+m1‖∇um‖2L2(QT ) +m2‖∇vm‖2L2(QT ) ≤

CL1

ˆ
QT

|(um, vm)| |um|dxdt+ CL2

ˆ
QT

|(um, vm)| |vm|dxdt+
1

2

(
‖um(0)‖2L2(Ω) + ‖vm(0)‖2L2(Ω)

)
.

(3.8)
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Then we use Cauchy's inequality together with the Poincaré inequalities (2.12)-(2.13) on the �fth and sixth
terms of (3.8), which yieldˆ

QT

|(um, vm)| |um|dxdt ≤ 1

2λP

(
‖∇um‖2L2(QT ) + ‖∇vm‖2L2(QT )

)
+

1

2λP
‖∇um‖2L2(QT ) ,(3.9)

ˆ
QT

|(um, vm)| |vm|dxdt ≤ 1

2λP

(
‖∇um‖2L2(QT ) + ‖∇vm‖2L2(QT )

)
+

1

2λP
‖∇vm‖2L2(QT ) .(3.10)

Observe that, by the de�nition of um(t), vm(t) and of V mτ set forth in (3.1), we can use (2.13) with
−́
Ω
um(t)dx = 0 and −́

Ω
vm(t)dx = 0. Now we use the information of (3.9)-(3.10) in (3.8) which, in view of

(3.5), yields

1

2
‖um‖2L∞(0,T ;L2(Ω)) +

(
m1 −

CL1

λP
− CL2

2λP

)
‖∇um‖2L2(QT )+

1

2
‖vm‖2L∞(0,T ;L2(Ω)) +

(
m2 −

CL2

λP
− CL1

2λP

)
‖∇vm‖2L2(QT ) ≤

1

2

(
‖u0‖2L2(Ω) + ‖v0‖2L2(Ω)

)
.

Finally, assumption (2.9) guaranties that

(3.11) ‖um‖2L∞(0,T ;L2(Ω)) + ‖vm‖2L∞(0,T ;L2(Ω)) + ‖∇um‖2L2(QT ) + ‖∇vm‖2L2(QT ) ≤ C0 ,

where, by the assumption (2.15), C0 = C(‖u0‖L2(Ω), ‖v0‖L2(Ω),m1,m2, CL1
, CL2

, λP ) is a positive constant
not depending on m. Thus, from the Theory of the ODEs, we can take tm = T .

3.2. Convergence of the approximative solutions. Due to (3.11) and by means of separability and
re�exivity, there exist subsequences (still denoted by) um and vm, and there exist u, v ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;Vτ ) such that

um −→ u and vm −→ v weakly-∗ in L∞(0, T ;L2(Ω)), as m→∞,(3.12)

um −→ u and vm −→ v weakly in L2(0, T ;Vτ ), as m→∞.(3.13)

On the other hand, by using the equations (3.2)-(3.3) together with (3.11) and with the assumptions (2.2),
(2.3)-(2.4) and (2.5)-(2.6) and still using the Poincaré inequalities (2.12)-(2.13), it can be proved the existence
of positive constants C1 = C(M1, C0) and C2 = C(M2, C0), where C0 is the constant from the inequality
(3.11), such that

(3.14)

∥∥∥∥∂ um∂ t
∥∥∥∥
L2(0,T ;V ′τ )

≤ C1 and

∥∥∥∥∂ vm∂ t
∥∥∥∥
L2(0,T ;V ′τ )

≤ C2 .

Hence, by means of re�exivity,

(3.15)
∂ um

∂ t
−→ ∂ u

∂ t
and

∂ vm

∂ t
−→ ∂ v

∂ t
weakly in L2(0, T ;V ′τ ), as m→∞.

Now, due to (3.13) and (3.15), and observing the compact and continuous imbeddings Vτ ↪→↪→ L2(Ω) ↪→ V ′τ
hold, we can use Aubin-Lions compactness lemma to prove that

(3.16) um −→ u and vm −→ v strongly in L2(QT ), as m→∞.

Thus, from the assumptions (2.3)-(2.4) and (2.5)-(2.6), we have

f(um, vm) −→ f(u, v) strongly in L2(QT ), as m→∞ ,(3.17)

g(um, vm) −→ g(u, v) strongly in L2(QT ), as m→∞ .(3.18)

On the other hand, from the continuity of p, q, r and s (see (1.7)) and from the continuity of a1 and a2

(2.1), we can use (3.16) to prove that

a1(p(um), q(vm)) −→ a1(p(u), q(v)) strongly in L2(0, T ), as m→∞ ,(3.19)

a2(r(um), s(vm)) −→ a2(r(u), s(v)) strongly in L2(0, T ), as m→∞ .(3.20)

Then, from Riesz-Fischer theorem we have, up to some subsequences,

a1(p(um), q(vm)) −→ a1(p(u), q(v)) a.e. in [0, T ], as m→∞ ,(3.21)

a2(r(um), s(vm)) −→ a2(r(u), s(v)) a.e. in [0, T ], as m→∞ .(3.22)
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Finally, using the convergence results (3.13), (3.15), (3.17)-(3.18) and (3.21)-(3.22), we can pass (3.2) and
(3.3) to the limit m → ∞ to prove that (2.7) and (2.8) hold in D′(0, T ), �rst for all ϕ, η ∈ {φ1, . . . , φm},
then, by linearity, for all ϕ, η ∈ V mτ and next, by continuity, for all ϕ, η ∈ Vτ . In particular, and once that
by (3.13) u(t), v(t) ∈ Vτ for a.e. t ∈ [0, T ], we can take ϕ = u(t) in (2.7) and η = v(t) in (2.8) to obtain

1

2

d

d t

ˆ
Ω

|u(t)|2 dx+ a1(p(u(t)), q(v(t)))

ˆ
Ω

|∇u(t)|2 dx =

ˆ
Ω

f(u(t), v(t))u(t) dx in D′(0, T ) ,(3.23)

1

2

d

d t

ˆ
Ω

|v(t)|2 dx+ a2(r(u(t)), s(v(t)))

ˆ
Ω

|∇v(t)|2 dx =

ˆ
Ω

g(u(t), v(t))v(t) dx in D′(0, T ) .(3.24)

Then, arguing as we did for (3.11), but taking the supreme, we obtain from (3.23)-(3.24) that

sup
t∈[0,T ]

‖u(t)‖2L2(Ω) + ‖∇u‖2L2(QT ) ≤ C ,(3.25)

sup
t∈[0,T ]

‖v(t)‖2L2(Ω) + ‖∇v‖2L2(QT ) ≤ C .(3.26)

As a consequence of (3.25)-(3.26), we have u, v ∈ C([0, T ];L2(Ω)).
On the other hand, observe that we can writeˆ

Ω

(um(t)− um(0))ϕdx =

ˆ t

0

ˆ
Ω

∂ um

∂ s
ϕ dxdς for a.e. t ∈ [0, T ]

Using (3.4)-(3.5) and (3.15), we can pass the above equation to the limit m→∞ to obtain

(3.27)

ˆ
Ω

(u(t)− u0)ϕdx =

ˆ t

0

ˆ
Ω

∂ u

∂ s
ϕ dxdς =

ˆ
Ω

(u(t)− u(0))ϕdx for a.e. t ∈ [0, T ].

Consequently u(0) = u0. By a completely analogous reasoning, we also have v(0) = v0. The proof of
Theorem 2.1 is thus concluded.

4. Local existence

In this section, we establish a local version of Theorem 2.1. This result shall be proved under the
assumptions that the nonlocal functions a1 and a2 are strictly positive in some neighborhoods. Before we
establish the existence result of this section, let us �x some notation �rst. For each i ∈ {1, 2}, we consider
the open ball Bδi(ξi, ηi) and the closed ball Bδi(ξi, ηi) centered at (ξi, ηi) ∈ R2 and with radius δi. We stress
here that the functions a1 and a2 have the arguments satisfying to (1.7).

Theorem 4.1. Assume that all the conditions of Theorem 2.1 are satis�ed, with the exception of (2.2). In
addition, assume that

a1 : Bδ1(ξ1, η1)→ (0,∞),(4.1)

a2 : Bδ2(ξ2, η2)→ (0,∞)(4.2)

for some (ξ1, η1), (ξ2, η2) ∈ R2 and for some δ1, δ2 > 0. If

(p(u0), q(v0)) ∈ Bδ1(ξ1, η1) ,(4.3)

(r(u0), s(v0)) ∈ Bδ2(ξ2, η2) ,(4.4)

then there exists T0 > 0, and a weak solution (u, v) to the problem (1.1)-(1.5), for either τ = 0 or τ = 1,
such that u, v ∈ C([0, T0];L2(Ω)) ∩ L2(0, T0;Vτ ), ut, vt ∈ L2(0, T0;V ′τ ), u(0) = u0 and v(0) = v0, and the
integral identities (2.7) and (2.8) hold in D′(0, T0) and for all ϕ, η ∈ Vτ .

In the proof of this result, we follow the approach of [5].

Proof. For each i ∈ {1, 2}, let us consider the following radial extension of ai,

(4.5) Ai(ξ, η) =

{
ai(ξ, η) if (ξ, η) ∈ Bδi(ξi, ηi)
ai(δi cos(θi), δi sin(θi)) if (ξ, η) = (δ cos(θi), δ sin(θi)) and δ > δi .

From the assumptions (2.1) and by its de�nition set in (4.5), it can be proved that Ai is continuous and
bounded in R2 for any i ∈ {1, 2} (see [22, p. 153]). In particular, by Weierstrass theorem, we have

(4.6) 0 < mi := min
(ξ,η)∈Bδi (ξi,ηi)

ai(ξ, η) ≤ Ai(ξ, η) ≤ max
(ξ,η)∈Bδi (ξi,ηi)

ai(ξ, η) := M i <∞
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for all ξ, η ∈ R and for any i ∈ {1, 2}. Then , in view of Theorem 2.1 and for any T > 0, the problem (1.1)-
(1.5), with A1 and A2 in the places of a1 and a2, has a weak solution (u, v), with u, v ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;Vτ ), u(0) = u0 and v(0) = v0, and such that (2.7)-(2.8), with A1 and A2 in the places of a1 and a2,
hold in D′(0, T ). Moreover (2.16)-(2.17) also hold. In particular, from (2.16) and from (1.7), we also have

(4.7) p(u), q(v), r(u), s(v) ∈ C([0, T ]) .

As a consequence of the assumptions (4.3)-(4.4) and of (4.7), (p(u(t)), q(v(t)) and (r(u(t)), s(v(t)) will remain
in some neighborhoods of (p(u0), q(v0)) and (r(u0), s(v0)), respectively, for t su�ciently close to 0. Therefore,
there exist positive times T 1

0 and T 2
0 , su�ciently close to 0, such that

(p(u(t)), q(v(t)) ∈ Bδ1(ξ1, η1) ∀ t ∈ [0, T 1
0 ] ,

(r(u(t)), s(v(t)) ∈ Bδ2(ξ2, η2) ∀ t ∈ [0, T 2
0 ] .

Finally, we take T0 = min{T 1
0 , T

2
0 } which concludes the proof of Theorem 4.1. �

5. Uniqueness

Here, we will adapt the results of [8, 13] to establish an uniqueness result. Lipschitz conditions on
the nonlocal di�usivity terms and on the reaction functions (already assumed at (2.3) and (2.5)) play a
fundamental role.

Theorem 5.1. Let (u1, v1) and (u2, v2) be two weak solutions to the problem (1.1)-(1.5), for either τ = 0
or τ = 1, in the sense of De�nition 2.1. Let the conditions (2.2), (2.3) and (2.5) be ful�lled, and assume
that (1.7) is satis�ed with

(5.1) 1 ≤ γp, γq, γr, γs ≤ 2 .

If for each i ∈ {1, 2}, there exists a positive constant Cai such that

(5.2) |ai(ξ1, η1)− ai(ξ2, η2)| ≤ Cai |(ξ1, η1)− (ξ2, η2)| ∀ (ξ1, η1), (ξ2, η2) ∈ R2 ,

then (u1, v1) = (u2, v2).

Proof. By the De�nition 2.1, u1(t), u2(t), v1(t) and v2(t) are in Vτ for a.e. t ∈ [0, T ]. Thus, we can take
ϕ = u(t) := u2(t)− u1(t) and η = v(t) := v2(t)− v1(t) in (2.7) and (2.8), considered for (u1, v1) and (u2, v2)
separately. After some algebraic manipulations, we arrive at

d

dt

ˆ
Ω

(
|u(t)|2 + |v(t)|2

)
dx+

a1(p(u2(t)), q(v2(t)))

ˆ
Ω

|∇u(t)|2 dx+ a2(r(u2(t)), s(v2(t)))

ˆ
Ω

|∇v(t)|2 dx

=

ˆ
Ω

(f(u2(t), v2(t))− f(u1(t), v1(t)))u(t) dx+

ˆ
Ω

(g(u2(t), v2(t))− g(u1(t), v1(t))) v(t) dx+

[a1(p(u1(t)), q(v1(t)))− a1(p(u2(t)), q(v2(t)))]

ˆ
Ω

∇u1(t) · ∇u(t) dx+

[a2(r(u1(t)), s(v1(t)))− a2(r(u2(t)), s(v2(t)))]

ˆ
Ω

∇v1(t) · ∇v(t) dx .

(5.3)

Let us denote by Ik the term that appears in the k-th position in this equation. By the assumption (2.2),
we have

(5.4) m
(
‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω)

)
≤ I2 + I3,

where m := min{m1,m2}. Using the Schwarz and Cauchy inequalities together with the assumptions (2.3)
and (2.5), we have

(5.5) I4 + I5 ≤ CL
ˆ

Ω

(
|u(t)|2 + |v(t)|2

)
dx,
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where CL := 3
2 max {CL1 , CL2}. For the two reminder terms, we �rst observe that we can use the assumptions

(5.2) and (1.7) together with Hölder's inequality and assumption (5.1) in order to get

|a1(p(u1(t)), q(v1(t)))− a1(p(u2(t)), q(v2(t)))| ≤ C11 (|p(u(t)|+ |q(v(t)|)
≤ C12

(
‖u(t)‖Lγp (Ωp) + ‖v(t)‖Lγq (Ωq)

)
≤ C13

(
‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

)
,

(5.6)

where C11 = Ca1 , C12 = C
(
C11, ‖p‖(Lγp (Ωp))′ , ‖q‖(Lγq (Ωq))

′
)
and C13 = C (C12, γp, γq,Ωp,Ωq) are positive

constants. Arguing in the same way, we obtain

|a2(r(u1(t)), q(s1(t)))− a2(r(u2(t)), s(v2(t)))| ≤ C21 (|r(u(t)|+ |s(v(t)|)
≤ C22

(
‖u(t)‖Lγr (Ωr) + ‖v(t)‖Lγs (Ωs)

)
≤ C23

(
‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

)
.

(5.7)

where here C21 = Ca2 , C22 = C
(
C21, ‖r‖(Lγr (Ωr))′ , ‖s‖(Lγs (Ωs))

′
)
and C23 = C (C21, γr, γs,Ωr,Ωs). Then

plugging (5.6)-(5.7) into the sixth and seventh terms of (5.3), and using in addition Cauchy's inequality, we
obtain

I6 ≤C13

(
‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

)
‖∇u(t)‖L2(Ω)‖∇u1(t)‖L2(Ω)

≤m
2
‖∇u(t)‖2L2(Ω) + C13(t)

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)
,

(5.8)

where C13 is the constant from the inequality (5.6) and

C13(t) :=
C2

13

m
‖∇u1(t)‖2L2(Ω) ,

and

I7 ≤C23

(
‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

)
‖∇v(t)‖L2(Ω)‖∇v1(t)‖L2(Ω)

≤m
2
‖∇v(t)‖2L2(Ω) + C23(t)

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)
,

(5.9)

where, in this case, C23 is the constant from the inequality (5.7) and

C23(t) :=
C2

23

m
‖∇v1(t)‖2L2(Ω) .

Now, gathering the information of (5.4)-(5.9) in (5.3), we get

d

dt

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)
+m

(
‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω)

)
≤

m

2

(
‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω)

)
+ C(t)

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)(5.10)

where C(t) := max {C13(t), C23(t)}. From (5.10), we readily obtain

(5.11)
d

dt

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)
≤ C(t)

(
‖u(t)‖2L2(Ω) + ‖v(t)‖2L2(Ω)

)
Observing that, by the De�nition 2.1, ‖∇u1‖2L2(Ω), ‖∇v1‖2L2(Ω) ∈ L1([0, T ]), we have for the coe�cient

function C(t) de�ned at(5.11) that C ∈ L1[0, T ]. Hence, a simple integration, between 0 and an arbitrary
ς ∈ (0, T ], of (5.11) leads us to

‖u(ς)‖2L2(Ω) + ‖v(ς)‖2L2(Ω) ≤
(
‖u(0)‖2L2(Ω) + ‖v(0)‖2L2(Ω)

)
e
´ s
0
C(t) dt.

Finally, since u(0) = u2(0)− u1(0) = 0 and v(0) = v2(0)− v1(0) = 0, we have u1 = u2 and v1 = v2. �

6. Strong solutions

In this section we will �nd conditions on the data of the problem (1.1)-(1.5) under which the solutions
found in the previous sections are more regular. We prove that the time derivatives ut and vt are square
sumable in QT and we establish a result that gives us more spatial regularity for the solution (u, v).

Theorem 6.1. Let (u, v) be a weak solution to the problem (1.1)-(1.5) in the conditions of Theorem 4.1
such that

(6.1) u0, v0 ∈ H1(Ω) .
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If

(6.2) ai ∈ C1(0, T ) and ai is non-increasing in t, for all i ∈ {1, 2} ,
then

ut, vt ∈ L2(0, T ;L2(Ω)) ,(6.3)

u, v ∈ L2(0, T ;H2(Ω)).(6.4)

Proof. To prove (6.3), we start by considering the Galerkin approximations um(t) de�ned at (3.1)-(3.2).
Here, and in addition to (3.4)-(3.5), we assume these approximations satisfy to

(6.5) ∇um(0) = Dm
0 ,

where Dm
0 is chosen in such a way that

(6.6) Dm
0 → ∇u0 strongly in L2(Ω), as m→∞.

Next, we consider a sequence of functions %n ∈ C1(0, T ), with n ∈ N, such that

%n(t) =

{
1 if 0 ≤ t ≤ Tn := T − T

n+2

0 if T − T
n+1 := Tn+1 ≤ t ≤ T

and 0 ≤ %n ≤ 1 , −1 ≤ %′n ≤ 0,

for any n ∈ N. We take

ϕ = ϕk
d cmk
d t

%n

in (3.2) and we add up the resulting equation from k = 1 until k = m. Hence, we obtainˆ
Ω

|umt (t)|2%n(t) dx+ a1(p(um(t)), q(vm(t)))

ˆ
Ω

d |∇um(t)|2

d t
%n(t) dx

=

ˆ
Ω

f(um(t), vm(t))umt (t)%n(t) dx

(6.7)

for a.e. t ∈ [0, T ]. Integrating in [0, Tn+1], we obtain

1

2

ˆ Tn+1

0

ˆ
Ω

|umt |2%n dxdt−
ˆ Tn+1

0

a′1(p(um(t)), q(vm(t)))

ˆ
Ω

|∇um|2%n(t) dxdt

−
ˆ Tn+1

0

a1(p(um(t)), q(vm(t)))

ˆ
Ω

|∇um|2%′n(t) dxdt

≤a1(p(um0 ), q(vm0 ))

ˆ
Ω

|Dm
0 |2dx+

1

2

ˆ Tn+1

0

ˆ
Ω

|f(um, vm)|2%n dxdt ,

(6.8)

where we have used integration by parts on the second term of (6.7) together with (6.5). The assumption
that a1 ∈ C1(0, T ) (see (6.2)) and the Cauchy-Schwarz inequality (on the last term) were also used in the
derivation of (6.8). Then, using the assumptions (2.2) and (2.3) together with the properties of the sequence
%n, and the fact that a1 is non-increasing in t (see (6.2)), we obtain

1

2

ˆ Tn

0

ˆ
Ω

|umt |2 dxdt+m1

ˆ Tn

0

ˆ
Ω

|∇um|2 dxdt

≤1

2

ˆ Tn+1

0

ˆ
Ω

|umt |2ρn dxdt+m1

ˆ Tn+1

0

ˆ
Ω

|∇um|2ρn dxdt

≤M1

ˆ
Ω

|Dm
0 |2dx+ CL1

ˆ T

0

ˆ
Ω

(|um|2 + |vm|2) dxdt .

Letting n→∞ �rst and then making m→∞, we obtain

1

2

ˆ
QT

|ut|2dxdt+m1

ˆ
QT

|∇u|2 dxdt

≤M1

ˆ
Ω

|∇u0|2dx+ CL1

ˆ
QT

(|u|2 + |v|2) dxdt ,

(6.9)

where we have used (3.16) and (6.6). Finally, due to (3.13) and to (6.1), we conclude that ut ∈ L2(0, T ;L2(Ω)).
Analogously, it can be proved that vt ∈ L2(0, T ;L2(Ω)).
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The next step is to prove (6.4). To prove this, let us consider a �xed, but arbitrary, open bounded domain
U ⊂⊂ Ω and let us choose another open bounded domain W such that U ⊂⊂ W ⊂⊂ Ω. Then we consider
a function ζ ∈ C∞(RN ) such that

ζ(x) =

{
1 if x ∈ U
0 if x ∈ RN \W and 0 ≤ ζ ≤ 1 .

We consider the di�erence quotient Dh
ku(t) of the (weak) partial derivative u(t), de�ned by

Dh
ku(x, t) :=

u(x+ hek, t)− u(x, t)

h
, k = 1, . . . , N ,

for x ∈ U and h ∈ R \ {0} such that |h| < dist(U, ∂Ω). Then we take for test function in (2.7)

ϕ := −D−hk (ζ2Dh
ku(t)) a.e. in t .

We observe that whenever the following relations are possible, we have

Dh
k (θϑ) = θhDh

kϑ+ ϑDh
kθ , where θh := θ(x+ hek) ,

(Dh
kθ)xi = Dh

kθxi , i = 1, . . . , N ,ˆ
Ω

θD−hk ϑ dx = −
ˆ

Ω

Dh
kθ ϑ dx

for all admissible functions θ and ϑ (see e.g. [15]). Hence, choosing k ∈ {1, . . . , N} we have for a.e. t ∈ [0, T ]
that

a1(p(u(t)), q(v(t)))

N∑
i=1

ˆ
Ω

Dh
kuxi(t)D

h
kuxi(t)ζ

2 dx

=

ˆ
Ω

[ut(t)− f(u(t), v(t))]
[
(ζ2)−hDh

ku(t) + ζ2D−hk (Dh
ku(t))

]
dx

− a1(p(u(t)), q(v(t)))

N∑
i=1

ˆ
Ω

Dh
kuxi(t)D

h
ku(t)2ζζxi dx .

Now, using the assumptions (2.2) and (2.3) together with the Cauchy-Schwarz inequality, and observing that
0 ≤ ζ ≤ 1 and |∇ζ| ≤ C, where C is a positive constant, we have

m1

ˆ
Ω

|Dh
k (∇u(t))|2ζ2 dx

≤ε
ˆ

Ω

|D−hk (Dh
ku(t))|2 dx+ C(ε)

ˆ
Ω

|ut(t)|2dx+ C(ε)C2
L1

ˆ
Ω

(
|u(t)|2 + |v(t)|2

)
dx

+M1ε

ˆ
Ω

|Dh
k (∇u(t))|2ζ2 dx+M1C(ε)C2

ˆ
Ω

|Dh
ku(t)|2dx .

(6.10)

Then, observe that, by the properties of the di�erence quotients (see e.g. [15]), there exists a constant C0

such that ˆ
Ω

|D−hk (Dh
ku(t))|2 dx ≤C0

ˆ
U

|∇(Dh
ku(t))|2 dx ≤ C0

ˆ
W

|Dh
k (∇u(t))|2ζ2 dx

≤C0

ˆ
Ω

|∇(Dh
ku(t))|2ζ2 dx .

(6.11)

Gathering the information of (6.10)-(6.11), choosing an ε such that 0 < ε < m1

C0+M1
and using the reasoning

of (6.11) on the last term of (6.10), we getˆ
U

|Dh
k (∇u(t))|2 dx ≤

ˆ
W

|Dh
k (∇u(t))|2ζ2 dx ≤

ˆ
Ω

|Dh
k (∇u(t))|2ζ2 dx

≤C
(ˆ

Ω

|ut(t)|2dx+

ˆ
Ω

(
|u(t)|2 + |v(t)|2

)
dx+

ˆ
Ω

|∇u(t)|2dx
)
,

(6.12)
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where the positive constant C depends on m1, CL1 and C0. Using a well-known result of the di�erence
quotients (see e.g. [15, Theorem 5.8.3]), we obtain for a.a. t ∈ [0, T ]

ˆ
Ω

|D2u(t)|2dx ≤ C
(ˆ

Ω

|ut(t)|2dx+

ˆ
Ω

(
|u(t)|2 + |v(t)|2

)
dx+

ˆ
Ω

|∇u(t)|2dx
)
.

Integrating the last relation in the interval [0, T ] and using (3.13) and (6.3), we prove �nally that u ∈
L2(0, T ;H2(Ω)). Analogously, it can be proved that v ∈ L2(0, T ;H2(Ω)). �

7. Existence of Blow-up

In this section, we will establish several bow-up results for the strong solutions to the problem (1.1)-(1.5).
By a strong solution, we mean here a solution (u, v) in the conditions of Theorem 6.1. For a given solution
(u, v) to the reaction-di�usion system (1.1)-(1.5), for either τ = 0 or τ = 1, we de�ne

t∗ := sup {t : (u, v) is bounded in Ω× [0, t), and satis�es to (1.1)-(1.5) there}

If t∗ = ∞, the solution (u, v) is global, since, as in the local problem, it can be shown (see e.g. [14]) that u
and v can be continued for all times t > 0. On the other hand, if t∗ <∞, we have

(7.1) lim sup
t→t−∗

(
‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)

)
=∞.

When this happens, we say the solution (u, v) under consideration blows up in the �nite time t∗.
Blow-up criteria for systems of parabolic equations are normally more di�cult to �nd than for the scalar

case. The following version of Jensen's inequality will allow us to develop some blow-up criteria to our
reaction-di�usion system (1.1)-(1.5).

Lemma 7.1. Let Ω ⊂ RN be a bounded domain and assume that F : R2 −→ R is convex. Then for every
u, v ∈ L1(Ω),

(7.2) F

(
−
ˆ

Ω

u dx,−
ˆ

Ω

v dx

)
≤ −
ˆ

Ω

F (u, v) dx.

Proof. Due to the convexity of F , for each (x1, x2) ∈ R2 there exists (z1, z2) ∈ R2 such that

F (y1, y2) ≥ F (x1, x2) + z1(y1 − x1) + z2(y2 − x2)

holds for all (y1, y2) ∈ R2, i.e. the graph of F lies above its supporting hyperplane at (x1, x2). In this
inequality, let us take x1 = −́

Ω
u dx, x2 = −́

Ω
v dx, y1 = u and y2 = v. This yields

F (u, v) ≥ F
(
−
ˆ

Ω

u dx,−
ˆ

Ω

v dx

)
+ z1

(
u−−
ˆ

Ω

u dx

)
+ z2

(
v −−
ˆ

Ω

v dx

)
.

Then, integrating over Ω, with respect to x, and observing that the terms which are multiplied by z1 and z2

vanish, we immediately arrive at (7.2). �

As a �rst example of the utility of the Lemma 7.1, we have the following blow-up result under Neumann
boundary conditions.

Theorem 7.1. Let (u, v) be a couple of strong solutions to the reaction-di�usion system (1.1)-(1.5) endowed
with the Neumann boundary conditions, i.e. with τ = 1 in (1.4)-(1.5). Assume that

(1) f and g are convex functions,
(2) f(u, v)+g(u, v) ≥ h(u+v) for all (u, v) ∈ R2 and for some function h : R 7−→ R such that h(w) > 0

for all w ≥ u0 + v0.

If

(7.3) t∗ :=

ˆ ∞
u0+v0

1

h(ς)
dς <∞, where u0 + v0 = −

ˆ
Ω

u0 + v0 dx ,

then the solution (u, v) to the reaction-di�usion system (1.1)-(1.5) with τ = 1 blows-up in the �nite time t∗.
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Remark 7.1. Some functions satisfying to condition (2) are, in the case of u0 + v0 > 0, f(s, r) = |r|p and
g(s, r) = |s|q for suitable p ≥ q > 1, or still more general f(s, r) = a|r|p + b|s|q and g(s, r) = c|r|p + d|s|q,
where a, b, c, d are positive real constants and p, q, p, q > 1. In the case of u0 + v0 ≤ 0, one should
consider, for instance, examples of the form f(u, v) = g(u, v) = h(u + v) = (1 + |u + v|)p, for some p > 1,
or f(u, v) = g(u, v) = h(u+ v) = eu+v.

Proof. Adding up the equations (1.1) and (1.2), we obtain

(u+ v)t − a1(p(u(t)), q(v(t)))∆u− a2(q(u), r(v))∆v = f(u, v) + g(u, v).

Let use the notations u(t) = −́
Ω
u(t) dx and v(t) = −́

Ω
v(t) dx. Integrating the above equation over Ω, using

Gauss-Green's theorem together with (1.4)-(1.5) with τ = 1, and invoking the nonlocal character of a1 and
a2, we obtain

d u(t) + v(t)

dt
= −
ˆ

Ω

f(u, v) dx+−
ˆ

Ω

g(u, v) dx .

Then, Lemma 7.1 and assumption (2) yield

d u(t) + v(t)

dt
≥ f

(
u(t), v(t)

)
+ g

(
u(t), v(t)

)
≥ h(u(t) + v(t)) .

Finally, integrating between 0 and t > 0 and using (1.3) together with (7.3), we obtain

t ≤
ˆ t

0

1

h(u(t) + v(t))

d u(t) + v(t)

dτ
dτ

=

ˆ u(t)+v(t)

u0+v0

dς

h(ς)
≤
ˆ ∞
u0+v0

1

h(ς)
dς <∞ .

Then, from a well-known result (see e.g. [3, Theorem 13.11]), we conclude that u+ v will blow up in the
�nite time t∗ provided that h(w) > 0 for all w ≥ u0 + v0. That (u, v) blows up in the sense of (7.1), is an
immediate consequence. �

In the next result, we establish a blow-up criterium under Dirichlet boundary conditions.

Theorem 7.2. Let (u, v) be a couple of strong solutions to the reaction-di�usion system (1.1)-(1.5) endowed
with the Dirichlet boundary conditions, i.e. with τ = 0 in (1.4)-(1.5). Assume that

(1) f is convex,

(2) f(u, v) ≥ f(u, 0) for all (u, v) ∈ R2,

(3) f(w, 0) + λPa1w > 0 for all w ≥ µ(0), where

µ(t) := −
ˆ

Ω

u(t)φdt , a1(t) := a1(p(u(t)), q(v(t))) ,

λP and φ are the principal eigenvalue and the associated eigenfunction of the Laplacian problem
(2.10), restricted to the case of

(7.4)

ˆ
Ω

φdx = 1 .

If

(7.5) t∗ :=

ˆ ∞
µ(0)

dµ

f(µ, 0) + λPa1µ
<∞ ,

then the �rst component of the solution (u, v) to the reaction-di�usion system (1.1)-(1.5), with τ = 0,
blows-up in the �nite time t∗.

Proof. We start by multiplying the equation (1.1) by ϕ, we integrate over Ω and we use (1.1), with τ = 0,
and (2.10) together with the nonlocal character of a1. After all, we obtain

d

dt

ˆ
Ω

u(t)ϕdx− λPa1(t)

ˆ
Ω

u(t)ϕdx =

ˆ
Ω

f(u(t), v(t))ϕdx .
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Observing (7.4), we can use Jensen's inequality (7.2), to prove that

−
ˆ

Ω

f(u, v)ϕdx ≥ f
(
−
ˆ

Ω

uϕdx,−
ˆ

Ω

v ϕ dx

)
.

Replacing this into the previous equation and, in addition, using the hypothesis that f(u, v) ≥ f(u, 0) for all
(u, v) ∈ R2, we get

µ′(t)− λPa1(t)µ(t) ≥ f(µ(t), 0).

It should be noted that µ(t) is well de�ned on the existence interval of the solution u. Then, integrating the
last inequality between 0 and t > 0, and using the fact that µ(0) ≥ 0 and hypothesis (7.5), we obtain

t ≤
ˆ t

0

µ′(τ)

f(µ(τ), 0) + λPa1(τ)µ(τ)
dτ =

ˆ µ(t)

µ(0)

dµ

f(µ, 0) + λPa1µ

≤
ˆ ∞
µ(0)

dµ

f(µ, 0) + λ1a1µ
<∞ .

Then, from [3, Theorem 13.11], we conclude that µ(t), and consequently u, will blow up in a �nite time
provided that f(w, 0) + λPa1w > 0 for all w ≥ µ(0). �

Remark 7.2. We observe that according to the proof of the last result, we had no need to use the boundary
condition v = 0 on ∂Ω. Therefore, we still have blow up of the �rst component even if v is not prescribed at
the boundary.

We end this section by giving a criterium of blow up of both components of the solution (u, v) to the
reaction-di�usion system (1.1)-(1.5) endowed with Neumann boundary conditions. It should be remarked
that, in the case of condition (7.1) is satis�ed, there is, a priori, no reason for both components of the system
(1.1)-(1.5) to blow up. Indeed it may happen that one of the components of (u, v) blows up as t→ t−∗ , while
the other remains bounded on [0, t−∗ ). Thus condition (7.1) only implies that

(7.6) lim sup
t→t−∗

‖u(t)‖L∞(Ω) =∞ or lim sup
t→t−∗

‖v(t)‖L∞(Ω) =∞.

If

lim sup
t→t−1∗

‖u(t)‖L∞(Ω) =∞ and lim sup
t→t−2∗

‖v(t)‖L∞(Ω) =∞,

for possibly distinct times t1∗ and t2∗, we shall say that both u and v blow up in �nite times. When this
happens at the same time t∗, i.e. when t∗ = t1∗ = t2∗, we say that u and v blow simultaneously (in the �nite
time t∗).

Theorem 7.3. Let (u, v) be a couple of strong solutions to the reaction-di�usion system (1.1)-(1.5) endowed
with the Neumann boundary conditions, i.e. with τ = 1 in (1.4)-(1.5). Assume that

(1) f(u, v) = f(v) and g(u, v) = f(u), or f(u, v) = f(u) and g(u, v) = f(v),
(2) f is a convex function,
(3) f(w) > 0 for all w ≥ min {u0, v0}.

If

(7.7) t∗ :=

ˆ ∞
u0+v0

2

dς

f(ς)
<∞ , where u0 + v0 = −

ˆ
Ω

u0 + v0 dx ,

then both u and v blow up, one in the �nite time t∗ and the other in another instant that can be posterior.

Proof. Arguing as we did in the �rst part of the proof of Theorem 7.1, we obtain

d

dt

(
u(t) + v(t)

2

)
=

1

2
−
ˆ

Ω

(f(u(t)) + f(v(t))) dx

≥1

2
f(u(t)) +

1

2
f(v(t)) ≥ f

(
u(t) + v(t)

2

)
.
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Recall that u(t) = −́
Ω
u(t) dx and v(t) = −́

Ω
v(t) dx, and observe that in the last inequality we have again

made use of the convexity of f . Then, integrating between 0 and t > 0 and using (7.7), we obtain

t ≤
ˆ t

0

1

f
(
u(t)+v(t)

2

) d u(t)+v(t)
2

dτ
dτ

=

ˆ u(t)+v(t)
2

u0+v0
2

dς

f(ς)
≤
ˆ ∞
u0+v0

2

1

f(ς)
dς <∞ .

Again, as in the proof of Theorem 7.1, we conclude that u(t)+v(t)
2 will blow up in the �nite time t∗ provided

that f(w) > 0 for all w ≥ u0+v0
2 , condition that is assured by assumption (3) and once that

(7.8) min {u0, v0} ≤
u0 + v0

2
≤ max {u0, v0} .

Consequently (u, v) blows up in the �nite time t∗ and therefore (7.1) holds, which in turn only implies (7.6).
Now, in order to show that both u and v blow up in �nite times, we will argue by contradiction. If we

assume, for instance, that v blows-up at the time t∗ and u does not blow up in any �nite time, then we
would have

lim sup
t→t−∗

‖v(t)‖L∞(Ω) =∞ and

ˆ ∞
u0

dς

f(ς)
=∞ .

In the case of u0 ≥ v0, then we would get, in view of (7.8), thatˆ ∞
u0+v0

2

dς

f(ς)
≥
ˆ ∞
u0

dς

f(ς)
=∞ ,

which contradicts (7.7). For the case of u0 ≤ v0, then, and again in view of (7.8),

2

ˆ ∞
u0+v0

2

dς

f(ς)
≥
ˆ ∞
u0+v0

2

dς

f(ς)
+

ˆ u0

u0+v0
2

dς

f(ς)
=

ˆ ∞
u0

dς

f(ς)
=∞ ,

which cannot happen due to (7.7). �

Remark 7.3. Under the assumptions of Theorem 7.3 and for suitable reaction terms, it is possible to
prove the blow-up of u and v is simultaneous. In fact, modifying the arguing of [11, 21], we can prove the
simultaneous blow-up of u and v in the case of reaction terms with the same shape and such that

f(w) = 0⇔ w = 0 and f
( w

λ2α

)
=

1

λ2(α+1)
f(w)

for some positive constants α and λ. An example of such a situation is the reaction function f(w) = |w|p,
which satis�es to the above conditions for α = 1

p−1 , p > 1, and for any positive constant λ. The same

reasoning can be applied to non-local problems with reaction terms similar to the ones considered in the
works [11, 21].

Remark 7.4. In the particular case of Theorem 7.3 with assumption (1) restricted to the case of f(u, v) =
f(v) and g(u, v) = f(u), we can easily prove the simultaneous blow-up of u and v. To see this let us assume
thatu and v blow-up at distinct times t1∗ and t2∗, respectively, with t1∗ < t2∗.

8. Asymptotic stability

In this section, we shall consider strong solutions (u, v) to the Neumann problem (1.1)-(1.5), in the
conditions of Theorem 6.1, in a cylinder QT0

for some T0 > 0. The aim of the present section, is to give a
criterium for the convergence of these solutions towards a homogeneous state. In particular, we will show
the non-existence of nonconstant steady state solutions if certain conditions are satis�ed. Our approach will
be based on a criterium for the existence of invariant regions and then to exploit this idea to study the
asymptotic behavior of the solutions (see e.g. [20, Chapter 14]). We recall that a bounded subset Σ in the
uv � plane is called an invariant region for a strong solution (u, v) to the problem (1.1)-(1.5) in QT0 , if the
following property is veri�ed:

(u0, v0) and the boundary values of (u, v) on ∂Ω lie in Σ ⇒ (u, v) lies in Σ for all (x, t) ∈ QT0
.
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Let us assume that Σ is prescribed through m functions hi : R2 → R, i = 1, . . . , m and m ∈ N, as

(8.1) Σ =

m⋂
i=1

{(u, v) ∈ R2 : hi(a1(p(u), q(v))u, a2(r(u), s(v))v) ≤ 0} ,

with ∂Σ =
⋃m
i=1{(u, v) ∈ R2 : hi(a1(p(u), q(v))u, a2(r(u), s(v))v) = 0}, and where, for each i ∈ {1 , . . . , m},

hi is supposed to be a smooth real-valued function on an open subset Ui ⊂ R2 and such that

∇(u,v)hi 6= (0, 0) ∀(u, v) ∈ Ui .

Now, if we assume the existence of a solution (u, v) to the problem (1.1)-(1.5) in QT0
, with boundary data

in Σ and also with initial data u0(x) and v0(x) in Σ for all x ∈ Ω, which is not in Σ for all t > 0, then, in
view of the de�nition of Σ set forth in (8.1), there is a function hi, for some i ∈ {1 , . . . , m}, a time t0 > 0
and a point x0 ∈ Ω such that

hi(a1(p(u(t)), q(v(t)))u(x, t), a2(r(u(t)), s(v(t))) v(x, t)) ≤ 0 for x ∈ Ω and t ≤ t0,

and

∀ ε > 0 ∃ t′ ∈ (t0, t0 + ε) : hi(a1(p(u(t′)), q(v(t′)))u(x0, t
′), a2(r(u(t′)), s(v(t′))) v(x0, t

′)) > 0 .

Thus we may characterize the invariant regions for (u, v) as follows. If, for an arbitrary (x0, t0) ∈ QT0 , the
assumptions

(8.2) hi(a1(p(u(t)), q(v(t)))u(x0, t), a2(r(u(t)), s(v(t))) v(x0, t)) < 0 for 0 ≤ t < t0

and

(8.3) hi(a1(p(u(t0)), q(v(t0)))u(x0, t0), a2(r(u(t0)), s(v(t0))) v(x0, t0)) = 0

together imply that

(8.4)
∂ hi(u, v)

∂ t
< 0 at (x0, t0)

for all i = 1, . . . ,m, then Σ must be an invariant region for (u, v).

Theorem 8.1. Assume that (u, v) is a strong solution to the problem (1.1)-(1.5) in QT0
, for some T0 > 0,

and let us consider the bounded domain Σ de�ned at (8.1). If

(1) (u0, v0), (0, 0) ∈ Σ,
(2) hi is quasi-convex for all i ∈ {1, . . . ,m},
(3) (f(u, v), g(u, v)) · n < 0 on ∂Σ, where n is the outward unit normal to ∂Σ,

then Σ is an invariant region for (u, v).

Observe that the assumption of hi to be quasi-convex for all i ∈ {1, . . . ,m}, implies that Σ is a convex
domain. In particular, a rectangular domain of the form [a, b] × [c, d] satis�es this condition. On the other
hand, the condition (f(u, v), g(u, v)) · n < 0 on ∂Σ means that (f(u, v), g(u, v)) points to the interior of Σ
on ∂Σ.

Proof. Using the reasoning aforementioned at (8.2)-(8.4), we assume that, for an arbitrary i ∈ {1, . . . ,m},
the assumptions (8.2)-(8.3) hold for some x0 ∈ Ω and for some t0 > 0. Let us prove now that (8.4) is veri�ed
at (x0, t0). In the general case, we have by the assumption (3), and due to the fact that (u, v) is a strong
solution, that

∂ hi(u, v)

∂ t
=∇(u,v)hi · (ut, vt)

<∇(u,v)hi · (a1(p(u), q(v))∆u, a2(r(u), s(v))∆v) .
(8.5)

Then, by using (8.2)-(8.3), together with the assumption (2) and with the spatial nonlocal character of a1

and a2, we can show that the right-hand side of (8.5) cannot be positive at (x0, t0). To prove this, we will
adapt some of the arguments of the proof of [20, Theorem 14.7]. In order to simplify the exposition, we
consider the case of only one space dimension, i.e. we assume that Ω ⊂ R. De�ning

Hi(x) := hi(a1(p(u(t0)), q(v(t0)))u(x, t0), a2(r(u(t0)), s(v(t0))) v(x, t0)) ,
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we readily see that

H′i(x) = ∇(u,v)hi · (a1(p(u(t0)), q(v(t0)))ux(x, t0), a2(r(u(t0)), s(v(t0))) vx(x, t0)) ,(8.6)

Hi(x0) = 0 ,(8.7)

the last due to (8.3). First we will show that

(8.8) H′i(x0) = 0 ,

arguing by contradiction. If we had H′i(x0) > 0, then, in view of (8.7), we would have Hi(x) > 0 for x > x0

su�ciently close to x0. Due to the de�nition of Hi, we also would have

hi(a1(p(u(t0)), q(v(t0)))u(x, t0), a2(r(u(t0)), s(v(t0))) v(x, t0)) > 0

for x > x0 su�ciently close to x0, and consequently

hi(a1(p(u(t)), q(v(t)))u(x, t), a2(r(u(t)), s(v(t))) v(x, t)) > 0

for some x and for t su�ciently close to t0. In particular, we would have

(8.9) hi(a1(p(u(t)), q(v(t)))u(x0, t), a2(r(u(t)), s(v(t)))v(x0, t)) > 0 for some t < t0,

which violates (8.2). In the case of H′i(x0) < 0, we would have, in view of (8.7), that Hi(x) > 0 but now for
x < x0 su�ciently close to x0. By the same reasoning used in the previous case, we would also end up in
(8.9). As a consequence, (8.8) holds.

Next, we will show that

(8.10) H′′i (x0) ≤ 0.

We start by observing that, in view of the assumption (2) and due to (8.6) and (8.8), we can use the theory
of quasi-convex functions to prove that

H′′i (x0) =

[
a1(p(u(t0)), q(v(t0)))ux(x0, t0)
a2(r(u(t0)), s(v(t0)))vx(x0, t0)

]T
H(u,v)(hi)(x0, t0)

[
a1(p(u(t0)), q(v(t0)))ux(x0, t0)
a2(r(u(t0)), s(v(t0)))vx(x0, t0)

]
+∇(u,v)hi · (a1(p(u(t0)), q(v(t0)))uxx(x0, t0), a2(r(u(t0)), s(v(t0))) vxx(x0, t0))

≥∇(u,v)hi · (a1(p(u(t0)), q(v(t0)))uxx(x0, t0), a2(r(u(t0)), s(v(t0))) vxx(x0, t0)) ,

(8.11)

where H(u,v)(hi)(x0, t0) denotes the Hessian matrix of hi, with respect to (u, v), evaluated at the point
(x0, t0). Then, gathering the information of (8.10) and (8.11), we prove that the left-hand side of (8.5) is
negative at (x0, t0). Consequently the conclusion of the theorem follows from the characterization (8.2)-(8.4)
of an invariant region of the type (8.1).

Finally, it last to show that (8.10) holds. Arguing again by contradiction, we assume that we had
H′′i (x0) > 0. Then, in view of (8.8), we would have H′i(x) > 0 for x > x0 su�ciently close to x0. Due to the
expression of H′i (see (8.6)), we also would have

∇(u,v)hi · (a1(p(u(t0)), q(v(t0)))ux(x, t0), a2(r(u(t0)), s(v(t0))) vx(x, t0)) > 0

for x > x0 su�ciently close to x0, and consequently

∇(u,v)hi · (a1(p(u(t)), q(v(t)))ux(x, t), a2(r(u(t)), s(v(t))) vx(x, t)) > 0

for some x and for t su�ciently close to t0. In particular, we would have

∇(u,v)hi · (a1(p(u(t)), q(v(t)))ux(x0, t), a2(r(u(t)), s(v(t)))vx(x0, t)) > 0 for some t < t0

which violates (8.8).
This proof can be carried over to any space dimension, though the exposition becomes too heavy. �

Next we will use the notion of invariant regions to study the asymptotic behavior of the solutions to the
system (1.1)-(1.3) in the case of Neumann boundary conditions, i.e. when τ = 1 in (1.4)-(1.5). To proceed
with this study, we assume that (1.1)-(1.2) admits a bounded invariant region Σ and we use the notation

(8.12) M := max
(u,v)∈Σ

(
|∇(u,v)f |+ |∇(u,v)g|

)
,
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where the reaction functions f and g are assumed to be su�ciently regular, and the subscript (u, v) means
that the gradient of f and g is taken with respect to these variables. Observe that, by the characterization
of the invariant regions set forth in (8.1), Σ is compact and therefore M <∞. We also �x the notation

(8.13) σ := mλP − 2M ,

where λP is the principal eigenvalue to the Laplacian problem (2.10) with Neumann boundary conditions
and m := min{m1,m2}, being m1 and m2 de�ned at (2.2).

Theorem 8.2. Let (u, v) be a strong solution to the problem (1.1)-(1.5) in QT0 , for some T0 > 0, endowed
with Neumann boundary conditions. Assume that (1.1)-(1.2) admits a bounded invariant region Σ ⊂ RN
such that

(u0(x), v0(x)) ∈ Σ ∀ x ∈ Ω .

If the constant σ de�ned in (8.13) is positive, then there exist positive constants C1 and C2 such that

‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω) ≤ C1e
−2σt ∀ t > 0 ,(8.14)

‖u(t)− u(t)‖2L2(Ω) + ‖v(t)− v(t)‖2L2(Ω) ≤ C2e
−2σt ∀ t > 0 .(8.15)

Proof. We start by multiplying the equations (1.1) and (1.2) by ∆u and ∆ v, respectively, and we integrate
over Ω. Next we add up the resulting equations and we use the Cauchy-Schwarz inequality together with
(2.2) and (8.12), and we obtain

1

2

d

d t

(ˆ
Ω

|∇u(t)|2dx+

ˆ
Ω

|∇v(t)|2dx
)
≤

−m1

ˆ
Ω

|∆u(t)|2dx−m2

ˆ
Ω

|∆v(t)|2dx+ 2M

(ˆ
Ω

|∇u(t)|2dx+

ˆ
Ω

|∇v(t)|2dx
)
.

Then, we use Poincaré's inequality (2.14) together with the notation of (8.13) which yield

d

d t

(
‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω)

)
≤ −2σ

(
‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω)

)
.

Integrating the last relation between 0 and t > 0, and using the fact that u0 , v0 ∈ H1(Ω) (see (6.1)), we
obtain

‖∇u(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω) ≤
(
‖∇u0‖2L2(Ω) + ‖∇v0‖2L2(Ω)

)
e−2σt ,

which proves (8.14). Now, using the Poincaré inequality (2.13), we obtain, from the last relation, that

‖u(t)− u(t)‖2L2(Ω) + ‖v(t)− v(t)‖2L2(Ω) ≤
‖∇u0‖2L2(Ω) + ‖∇v0‖2L2(Ω)

λP
e−2σt ,

and (8.15) follows. �

Arguing as in [12], the exponential decay (8.15) can be strengthened to

‖u(t)− u(t)‖2L∞(Ω) + ‖v(t)− v(t)‖2L∞(Ω) ≤ C3e
−2σt ∀ t > 0 ,

for some positive constant C3. The main consequence of the previous theorem, is that the elliptic problem −a1(p(u), q(v))∆u = f(u, v) in Ω
−a2(r(u), s(v))∆v = g(u, v) in Ω
∇u · n = 0 , ∇v · n = 0 on ∂Ω

has no nonconstant solutions, because these solutions depend only on x and, by (8.15), they must tend to
solutions independent of x.
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