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Abstract

Longitudinally measured data and time-to-event or survival data are often asso-
ciated in some ways, and are traditionally analyzed separately (Asar et al., 2015).
However, separate analyses are not applicable in this case because they may lead to
inefficient or biased results. To remedy this, joint models optimally incorporate all
available information (longitudinal and survival data) simultaneously (Wulfsohn &
Tsiatis, 1997). Furthermore incorporating all sources of data improves the predictive
capability of the joint model and lead to more informative inferences for the purpose
of decision-making (Seyoum & Temesgen, 2017). The primary goal of this analysis
was to determine the effect of repeatedly measured CD4 counts on mortality. The
standard time-to-event models require that the time-dependent covariates of interest
are external; where the value of the covariate at a future time point is not affected by
the occurrence of the event. This requirement would not be fulfilled in this setting,
since the repeatedly measured outcome is directly related to the mortality mecha-
nism. Hence, a joint modeling approach was required.

We applied the methods developed in this thesis to the CAPRISA AIDS Treatment
program (CAT). We also sought to determine if the patients’ baseline BMI (Body
mass index), baseline age, gender, baseline viral load, baseline CD8 count, baseline
TB status and clinic site, influence the evolution of the CD4 count over time. Various
linear mixed models were fitted to the CD4 count, adjusting for repeated measure-
ments, as well as including intercept and slope as random effects. Different types of
covariance structures were assessed and the spatial spherical correlation structure
was found to be the best fit. The Cox PH model was employed to model mortality.
Finally the joint model for longitudinal and time-to-event data was fitted.

Out of the 4014 patients, 1457 (36.30%) were male. There were more patients pre-
senting without TB at ART initiation, 3042 (75.78%) compared to those with preva-
lent TB, 972 (24.22%). Results from the multivariable random effects model showed
that the patients gender, age, baseline viral load and baseline CD8 cell count had
statistically significant influences on the rate of change in CD4 cell count over time.
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The un-adjusted and adjusted hazards regression both found CD4:CD8 ratio, viral
load, gender and age of patients to be significant predictors of mortality. The result
from the joint model in this study indicated that CD4 count change due to HAART
and mortality had been influenced jointly by gender, age, baseline viral load, base-
line CD8 count, time (in years) , CD4:CD8 ratio and by the interaction effects of time
(in years) with TB status, baseline viral load and baseline CD8 cell count. CD4 count
proved to be significantly associated with mortality, after adjusting for age, gender
and other potential confounders

Model diagnostics were performed for validating model assumptions, and our joint
model fitted quite well with fairly good diagnostic attributes. The methods that were
developed in this thesis were applied to the CAPRISA AIDS Treatment program
(CAT) between June 2004 to December 2013.
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Chapter 1

Introduction

1.1 Background

According to Karim & Karim (2010), Acquired Immune Deficiency Syndrome (AIDS)
was first reported in 1983 in South Africa . Back then it was mainly associated with
homosexuals, blood transfusion recipients and hemophiliacs (Karim & Karim, 2010).
According to Karim & Karim (2010) approximately 5.3 million South Africans were
estimated to be HIV positive by the end of 2007. in December 2006, approximately
1.3 million people in the sub-Saharan Africa region were receiving antiretroviral
therapy (ART) (Bennett et al., 2008).

According to UNAIDS (2017) there were approximately 36.7 million people world-
wide living with HIV/AIDS at the end of 2016. Of these, 2.1 million were chil-
dren (<15 years old). As of June 2017, 20.9 million people living with HIV were
accessing antiretroviral therapy (ART) globally. By mid-2016, 182 million people
were on antiretroviral treatment UNAIDS (2016), up from 15.8 million in June 2015,
7.5 million in 2010, and less than one million in 2000. There have been some no-
table achievements in disease management, including substantial improvements in
access to condoms, expansion of tuberculosis control efforts, and scale-up of free
antiretroviral therapy (ART) (Karim et al., 2005). Even though antiretroviral treat-
ment is widely accessible, treating and caring for millions of South Africans infected
with HIV still poses a huge challenge as there are people who refuse to take the an-
tiretroviral (ARV) treatment because of religious reasons, others fear side effects and
have difficulty integrating pill-taking into their lives amongst other reasons (Karim
& Karim, 2010).

According to Gandhi et al. (2006) the rising incidence of TB has been attributed to
HIV co-infection especially in developing countries. This is due to the fact that HIV
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1.1. Background

greatly increases the risk of active tuberculosis disease and majority of the patients
presenting with prevalent tuberculosis in South Africa, are co-infected with HIV,
thus posing a need to recruit those patients infected with TB (Karim & Karim, 2010).

1.1.1 CD4 count

CD4+ T cells (also called T-helper cells) are white blood cells that play an impor-
tant role in ones immune system. They alert other immune cells to the presence of
viruses and bacteria in a persons body. Certain receptors on the CD4+ T cells make
them prime targets for HIV. If one contracts an HIV infection, the virus will attack
ones CD4+ T cells. This will cause the number of CD4+ T cells in a persons body to
drop, thereby weakening ones immune system. For a long time, the CD4 lympho-
cyte count was by far the most widely used biological marker of the disease to assess
the stage of infection and HIV progression (Karim et al., 2005). However, there is less
emphasis on CD4 count, the viral load is now widely used to monitor disease pro-
gression.

1.1.2 Viral load

During the acute phase of HIV infection, the viral load, which refers to the actual
number of HI virus in the blood is very high, several times higher than set point
levels during established infection. The viral load is used to determine the rate of
destruction of the immune system. Thus the more HIV present in ones blood (and
therefore the higher your viral load), then the faster the CD4 count will drop, and
the greater the risk of acquiring other opportunistic infections because of HIV. Fur-
thermore, high viral load is associated with a greater risk of HIV transmission, hence
the importance of recognizing and detecting acute infection (Karim et al., 2005) and
start treatment immediately.

1.1.3 CD8 count

CD8+ T cells are called the killer cells because they recognize and kill cells that are
infected with a virus. CD8 lymphocyte counts and CD4 lymphocyte counts have
an inverse relationship with each other, in that during an untreated HIV, the former
increases as the latter declines (Margolick et al., 1995).

1.1.4 CD4:CD8 ratio

Few studies have addressed the significance of the CD4:CD8 ratio in HIV infection.
Before the introduction of the Highly Active ART (HAART) in 1996, the CD4:CD8
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1.2. Justification of the study

ratio was identified as a predictor of disease progression (Taylor et al., 1989). More
recently, a low CD4:CD8 ratio at initiation of ART has been associated with the
prevalence and volume of coronary plaques (Lo et al., 2010). Sainz et al. (2013) re-
ported that an association between the CD4:CD8 ratio and immune activation in
HIV-infected adults results in long-term viral suppression.

1.2 Justification of the study

In this study we used data from the Centre for the AIDS Programme of Research in
South Africa (CAPRISA). The CAPRISA AIDS Treatment (CAT) programme enrolled
HIV positive patients and initiated them on ART between June 2004 and August
2013. Eligibility criteria was in accordance with the Department of Health guidelines
throughout. Males and females at least 14 years of age from urban (eThekwini)
and rural (Vulindlela) sites were enrolled. ”Routine demographic and clinical data
were recorded at baseline and at follow-up visits. Laboratory safety assessments and
CD4+ cell counts and viral loads were conducted at baseline and every 6 months or
as clinically indicated. Patients were regarded as lost to follow-up if they missed
3 consecutive scheduled visits and if all attempts to track them telephonically and
physically had failed”. Information on the deaths was based on hospital chart notes,
death certificates or oral reports from participant’s relatives.

1.2.1 Joint Models for longitudinal and time-to-event Data

This thesis aim to investigates the joint modelling approach of Rizopoulos (2012),
which enables one to combine longitudinal and time-to-event data. Rizopoulos
(2012) applied the method to data from an AIDS clinical trial. Their longitudinal
outcome was CD4 count. Their main research question was to test for a treatment
effect on survival after adjusting for the CD4 count.

Joint models of longitudinal and time-to-event data have received much attention
in the literature dating back to the past two decades. Many other investigators have
described methods for estimating parameters of similar models. De Gruttola & Tu
(1994) and Tsiatis et al. (1995) considered the progression of CD4 lymphocyte counts
and survival time in patient with AIDS. De Gruttola & Tu (1994) assumed that the
joint distribution of time-dependent log CD4 counts and some transformation of sur-
vival times are multivariate normally distributed. This formulation allowed them to
fit the model using a modified expectation maximization (EM) algorithm which was
proposed by Laird & Ware (1982). Wulfsohn & Tsiatis (1997) used Cox proportional
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1.2. Justification of the study

hazards models to model the hazard of death as a function of the conditional expec-
tation of true log CD4 counts given the history of observed counts, thus relaxing the
normality assumption for the survival time.

Self & Pawitan (1992) proposed a two-step method for parameter estimation in mod-
elling the relationship between CD4:CD8 ratios and time to AIDS diagnosis. Their
method differs from Wulfsohn & Tsiatis (1997), in that they conditioned on survival
information when computing expected values of the covariates. They also used par-
tial likelihood to obtain estimates of the disease risk parameters, but they derived
the corresponding variances to account for the uncertainty in the expected covari-
ate values. To obtain these variances, they made the simplifying assumption that
the variance of the covariate random effects is fixed and known (Faucett & Thomas,
1996).

A year later, Pawitan & Self (1993) used maximum likelihood methods to jointly
model immunologic markers, time of infection, and time to AIDS. According to
Faucett & Thomas (1996) they decided to switch things up, by modelling the marker
as a function of disease time rather than modelling time of disease as a function of
the marker. They also considered fully parametric Weibull regression models for the
times of disease and infection.

Faucett et al. (2002) developed an approach, based on multiple imputation, using
auxiliary variables to recover information from censored observations in survival
analysis. They applied this approach to data from an AIDS clinical trial comparing
ZDV and placebo, in which CD4 count is the time dependent auxiliary variable. To
facilitate imputation, a joint model was developed for the data, which included a
hierarchical change-point model for CD4 counts and a time dependent proportional
hazards model for the time to AIDS.

Joint modelling techniques have seen great advances in the recent years. Several
investigators, among others, Ding & Wang (2008) proposed a nonparametric mul-
tiplicative random effects model for the longitudinal process, which has many ap-
plications and leads to a flexible yet parsimonious nonparametric random effects
model. A proportional hazards model is then used to link the biomarkers and event
time.

Rizopoulos et al. (2009) proposed a new computational approach for fitting joint
models of longitudinal response with a time-to-event outcome that is based on the
Laplace method for integrals that makes the consideration of high dimensional ran-
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dom effects structures feasible. Contrary to the standard Laplace approximation,
their method requires fewer repeated measurements per individual to produce reli-
able results (Faucett & Thomas, 1996).

Most recently Andrinopoulou et al. (2014) proposed a joint model consisting of two
longitudinal outcomes, one continuous (aortic gradient) and the other ordinal (aortic
regurgitation), and two time-to-event outcomes (death and re-operation). Accord-
ing to Faucett & Thomas (1996), they use B-splines to allow for more flexibility for
the average evolution and the subject-specific profiles of the continuous repeated
outcome. However, a drawback to this method is that when adopting a nonlinear
structure for the model, there may be difficulties when interpreting the results.

Although substantial research has been done in the area of CD4 count modeling us-
ing linear mixed models, very few studies have used joint models to model CD4
count and time to death. A study done by Seyoum & Temesgen (2017) showed that
the joint models were simpler as compared to the separate longitudinal and time
to event models as their effective number of parameters was smaller. The current
thesis is aimed at assessing whether the CD4 count predicts mortality and viral load
suppression through construction of a joint model for longitudinal and time to event
data in patients initiated on ART.

Ye et al. (2008) proposed a joint model for longitudinal measurements and time-to-
event data in which the longitudinal measurements are modeled with a semipara-
metric mixed model to allow for the complex patterns in longitudinal biomarker
data. They proposed a two-stage regression calibration approach that is simpler to
implement than a joint modeling approach. In the first stage of their approach, the
mixed model is fitted without regard to the time-to-event data. In the second stage,
the posterior expectation of an individual’s random effects from the mixed-model
are included as covariates in a Cox model.

Seyoum & Temesgen (2017) used joint models to detect determinants of CD4 count
change and adherence to highly active antiretroviral therapy. They found joint mod-
elling analysis to be more parsimonious as compared to separate analysis, since it
reduced type I error and subject-specific analysis improved its model fit. Chen et al.
(2014) proposed a joint model for longitudinal and survival data with time-varying
covariates subject to detection limits and intermittent missingness at random. Their
proposed method was shown to improve the precision of estimates as compared to
alternative methods.
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A study conducted by Werner (2010) proved that ”modelling HIV markers jointly
with informative drop-out is crucial to account for the missing data incurred from
participants leaving the study to initiate ARV treatment. In ignoring this drop-out,
CD4 count is estimated to be higher than what it actually is”.

1.3 Aims and objectives

• Determine the effect of ART on CD4 count trajectories and determine whether
the CD4 evolution is influenced on measured covariates

• To describe mortality rates and determine the predictors of mortality among
patients initiated on ART

• To construct a joint model for CD4 count and mortality in patients initiated on
ART

1.4 Methodology

Make use of the linear mixed models methodology to model the CD4 count, adjust-
ing for repeated measurements, as well as including intercept and slope as random
effects.

”Use data of patients who commenced Highly Active Antiretroviral Therapy (HAART)
from the Center for the AIDS Programme of Research in South Africa (CAPRISA) in
the AIDS Treatment Project (CAT) between June 2004 and August 2013, including
two years of follow-up for each patient”.

Analysis was done using linear mixed models for longitudinal data, Survival anal-
ysis models for time-to-event data and joint models for longitudinal data and time-
to-event data.

Analysis was conducted using SAS, version 9.4 (SAS Institute INC., Cary) and R
version 3.5.1.

P-values less than 0.05 were considered statistically significant.

1.5 Structure of the thesis

Chapter 1 (Introduction)
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1.5. Structure of the thesis

Chapter 2 (Exploratory data analysis)

Chapter 3 (linear mixed models)

Chapter 4 (Survival analysis)

Chapter 5 (Joint models for longitudinal and time-to-event data)

Chapter 6 (Application to the CAT data)

Chapter 7 (Discussion and concluding remarks)
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Chapter 2

Data and exploratory analysis

2.1 Introduction

The first step in any analysis is to conduct an exploratory analysis, or univariate
analysis of the data to obtain a clear sense of the distributional characteristics of the
outcome variable as well as all possible predictor variables with the aim of determin-
ing the relevant modelling approaches suitable for it (Yende, 2010). Data, analysis
was performed using SAS, version 9.4 (SAS Institute INC., Cary) and R version 3.5.1.
In this chapter we will explore the distributional properties of the variables from the
CAT project which include age, gender, BMI, site, TB status, CD4 Count, baseline
CD8 Count, baseline viral load and the CD4:CD8 ratio.

2.2 Data description

”This thesis will use data collected at two sites, eThekwini (urban) and Vulindlela
(rural) in KwaZulu-Natal province of South Africa. The data is collected as part of
HIV and AIDS research by Centre for the AIDS Programme of Research in South
Africa (CAPRISA). The data is collected on HIV+ positive patients. The eThekwini
site enrolled the first patient on HAART in October 2004 while Vulindlela site en-
rolled the first patient in June 2004.

The eThekwini site stopped enrolling patients into the programme in August 2013
and the Vulindlela site stopped enrolling patients into the programme in January
2012. Patients at the eThekwini site are recruited from the Prince Cyril Zulu Clinic of
Communicable Disease which is the chest clinic adjacent to the CAPRISA clinic and
sometimes patients present themselves for HIV testing. Patients at the Vulindlela
site are recruited from the Mafakatini clinic which is situated near that site or present
themselves for medication”. The data in the current study will be referred through-
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2.2. Data description

out the thesis as the CAPRISA AIDS Treatment Project (CAT).

”Some patients came for their six monthly visits a month prior to the scheduled
visit or sometime a month after the scheduled visit which is still acceptable. An
additional complexity with the data is that of missing observations due to drop out
for known reasons such as death, loss to follow up and relocation to other areas.
In this treatment project we have more females accessing ARVs than males”. The
description of the variables is presented in Table 2.1.

Table 2.1: Variable description

Characteristic Description Type

Gender 0 : Female
1 : Male Binary

TB status 0 : No TB
1 : Prevalent TB Binary

Site 0: Vulindlela site
1 : EThekwini site Binary

Ratio 0 : CD4 CD8< 0.05

1 : CD4 CD8≥ 0.05 Binary
Sqrtcd4 CD4 count (square root transformed) Continuous
BMI Baseline body mass index Continuous
Age Baseline age in years Continuous
sqrtcd8 Baseline CD8 count (square root transformed) Continuous
Logviral baseline viral load (log10 transformed) Continuous
CD4 CD8 ratio Continuous
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2.2. Data description

Table 2.2: Baseline characteristics

Characteristic N initiated
on ART EThekwini Vulindlela Missing p-value

Age (years), mean ±SD 4010 34.28 ± 9.35 35.08 ± 8.13 4 0.0003

Gender, n (%): 4014 − < .0001

Male 765 (42.15) 692 (31.47)
Female 1050 (57.85) 1507 (68.53)
TB status, n (%): 4014 − < .0001

No TB 1092 (60.17) 1950 (88.68)
Prevalent TB 723 (39.83) 249 (11.32)
Median body mass index
(kg/m2),(IQR) a: 3777 22.70 (6.40) 22.70 (6.20) 237 0.4154
CD4 count,
(cells/µL), median(IQR)b: 3632 125.00 (134.00) 125.00 (132.50) 382 0.0079
Baseline CD8 count,
(cells/µL), median(IQR)c: 2078 751.00 (672.00) 799.00 (653.00) 1936 < .0001

Baseline viral load
(log copies/ml), mean ±SD: 4010 4.96 ± 0.83 4.94 ± 0.96 488 0.0219
CD4:CD8 ratio,
(cells/µL), median(IQR)d : 2085 1929 < .0001

CD4:CD8 < 0.05 0.03 (0.02) 0.03 (0.02)
CD4:CD8 ≥ 0.05 0.15 (0.13) 0.16 (0.15)

Table 2.2 illustrates the results for the baseline characteristics broken down by site.
There were 4014 patients enrolled whose ages range from 14-76 (with the mean age
being 34.64 years). There were more females than males from both sites. Out of the
4014, 2557 (63.70%) were females and 1457 (36.30%) were males. All patients had a
mean weight of 23.8 kg/m2 at baseline with minimum and maximum weight of 10.5
and 264.5 kg/m2 respectively. There were more patients presenting without TB at
ART initiation, 3042 (75.78%) compared to those with prevalent TB, 972 (24.22%).
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Table 2.3: Distribution of patients baseline characteristics according to gender and site

Characteristic Ethekwini Vulindlela

Age (years), mean ±SD
Gender
Female 33.69 (7.78) 33.68 (9.36)
Male 36.98 (8.23) 35.62 (9.09)
Body mass index (kg/m2), mean ±SD
Gender
Female 25.21 (5.80) 25.09 (8.54)
Male 21.69 (3.99) 21.32 (6.09)
CD4 count (cells/µL), mean ±SD
Gender
Female 146.12 (120.76) 151.28 (121.04)
Male 127.45 (101.43) 121.72 (90.42)

Table 2.3 shows that women from both sites are younger than men . The mean BMI
for males and females within each site was almost the same. Women compared to
men have a higher mean BMI at baseline from both sites. Furthermore on average
women had a higher baseline CD4 count compared to men from both sites.

Table 2.4: Patients’ frequency for termination reason

Reason Frequency (%)

Transferred 3038 (75.69)
Death 414 (10.31)
Defaulted 396 (9.87)
Patient decision 78 (1.94)
Relocated 51 (1.27)
Other 43 (1.07)
Poor adherence 5 (0.12)

Of the 4014 patients, majority were transferred from the study accounting for 75.69%.
Only 414 (10.31 %) people died.
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2.3 Mortality

Majority of deaths occurred in patients without TB and patients from the Vulindlela
site over 8195.87 person-years of follow-up. Patients presenting without TB had
higher mortality rates compared to those with prevalent TB, 4.11 per 100 person-
years (p-y), (95% CI: 3.68-4.58) vs. 0.94 per 100 p-y, (95% CI: 0.74-1.17); mortality
rate ratio: 0.23, (95% CI: 0.18-0.29), p < 0.0001. Patients from the Vulindlela site
had higher mortality rates comparedto those form the EThekwini site, 3.28 per 100
person-years (p-y), (95% CI: 2.90-3.70) vs. 1.77 per 100 p-y, (95% CI: 1.49-2.08); mor-
tality rate ratio: 1.86, (95% CI: 1.52-2.27), p < 0.0001.

2.4 Distributional properties of CD4 count, CD8 count, viral
load and CD4:CD8 ratio

Figures 2.1, 2.2, 2.3 and 2.4 display the histograms that were plotted for our
data to check the normality assumptions for CD4 counts, CD8 count, viral load and
CD4:CD8 ratio respectively.

(a) CD4 count (cells/µL) (b) Square root CD4 count (cells/µL)

Figure 2.1 – Histogram for CD4 count (cells/µL) and square root transformed CD4 count
(cells/µL)
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(a) CD8 count (cells/µL) (b) Square root CD8 count (cells/µL)

Figure 2.2 – Histogram for CD8 count (cells/µL) and square root transformed CD8 count
(cells/µL)

(a) Viral load(copies/ml) (b) log10 viral load(copies/ml)

Figure 2.3 – Histogram for viral load(copies/ml) and log10 transformed viral load

(a) CD4:CD8 ratio (b) Square root CD4:CD8 ratio

Figure 2.4 – Histogram for CD4:CD8 ratio and square root transformed CD4:CD8 ratio

Figures 2.1a, 2.2a, 2.3a and 2.4a all show right-skewed histograms which violates
the normality assumptions. There are several transformation methods available to
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normalize the data such as log10 transformation and the square root transforma-
tion. For this project we applied the square root transformation to CD4 count, CD8
count and CD4:CD8 ratio to normalize the data as can be seen in figures 2.1b, 2.2b
and 2.4b because the square root transformation better approximates the normal
distribution compared to the original CD4 count and CD4:CD8 ratio. The square
root transformation is a commonly used transformation used when analyzing CD4
counts, as evidenced by previous research in similar cohorts (Yende (2010) ; Reddy
et al. (2016); Wandeler et al. (2013); Reda et al. (2013) and De Beaudrap et al. (2009)).
Throughout this project we will use square root transformed variables of CD4 Count,
CD8 Count and CD4:CD8 ratio in the modelling processes.

(a) CD4 count (cells/µL) (b) CD4:CD8 ratio (cells/µL)

(c) viral load(copies/ml) (d) CD8 count (cells/µL)

Figure 2.5 – Rate of change for CD4 count (cells/µL),CD8 count (cells/µL), CD4:CD8 ratio
and viral load

Figure 2.5a and 2.5b suggests that CD4 count increases over time, after a patient
has been initiated on HAART, this is exactly what we would expect and Figure 2.5c
suggests that viral load decreases over time after a patient has been initiated on
HAART. As can be seen on figure 2.5d, CD8 increase to a maximum then starts to
decrease thereafter .
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(a) Mean CD4 count by site (b) Mean CD4 count by gender

(c) Mean CD4 count by TB status

Figure 2.6 – Rate of change for CD4 count (cells/µL) for site, gender and TB status

Figure 2.6a shows that after HAART initiation the EThekwini patients had a high
rate of change for CD4 count and shows that female patients before and after HAART
initiation had a higher rate of change for CD4 count compared to males regardless
of site this is seen on figure 2.6b. Figure 2.6c shows that patients without TB start
with higher mean CD4 count compared to those with prevalent TB but the rate of
change in CD4 count is less compared to those with prevalent TB.
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2.5. Individual profiles (spaghetti plots)

Figure 2.7 – Rate of change for CD4 count (cells/µL) for gender from both sites

The mean CD4 count at baseline for the eThekwini and Vulindlela site were 138.58
and 141.69 cells/µL respectively. Further women at both Vulindlela and eThekwini
sites started with mean CD4 count of 139.32 and 139.47 cells/µL respectively, and
men from Vulindlela and the eThekwini sites started with 147 and 137.36 respec-
tively. Figure 2.7 illustrates these results.

2.5 Individual profiles (spaghetti plots)

The spaghetti plots are generally used to assess if there is any variation between
and within subjects. We randomly selected 50 patients to construct such plots since
graphs with all individual curves can be hard to distinguish for large sample size.
Its important to note that randomly drawn subjects need not be representative and
extreme curves are unlikely to be shown. Figures 2.8a to 2.8d indicated within and
between patient variability in the rate of change of CD4 count, CD4:CD8 ratio, CD8
count, and viral load variability over time.
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2.6. Scatter plots with sample correlation for CD4 count against covariates

(a) CD4 count (cells/µL) trajectories (b) CD4:CD8 ratio (cells/µL) trajectories

(c) CD8 count (cells/µL) trajectories (d) viral load(copies/ml) trajectories

Figure 2.8 – Individual trajectories for a random sample of 50 patients, for CD4 count,
CD4:CD8 ratio, CD8 count and viral load.

Figures 2.8a and 2.8b both portray the same qualitative features which depicts
an increasing trend of CD4 count and the CD4:CD8 ratio over time after HAART
initiation for 50 randomly selected patients. What can be observed is that generally
there is evidence of between subjects variability as well as within subject variability.
The subjects have large CD4 and CD4:CD8 evolutions over time, this suggests that
perhaps linear mixed models with random intercepts and slopes could be plausible
starting points. The thinning of the data toward later visit months suggests that
trends at later times should be treated with caution Verbeke (1997). A decreasing
trend of CD8 count and viral load over time after HAART initiation can be seen for
50 randomly selected patients in figures 2.8c and 2.8d respectively.

2.6 Scatter plots with sample correlation for CD4 count against
covariates

A scatter plot shows graphically the relationship between two variables. We then
used it to check for correlation between CD4 count and other continuous variables
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2.6. Scatter plots with sample correlation for CD4 count against covariates

in our data, namely viral load, CD8 count, age and BMI. This is very helpful for
model building.

(a) CD4 count versus CD8 count (cells/µL) (b) CD4 count (cells/µL) versus bmi

(c) CD4 count (cells/µL) versus viral
load(copies/ml) (d) CD4 count (cells/µL) versus age (in years)

Figure 2.9 – Scatter plot of all CD4 count measurements versus CD8 count, BMI, viral load
and age.

Figure 2.9a suggests a positive correlation between CD4 count and CD8 count.
Hence, as CD4 count increases so does CD8 count. The Pearson’s correlation co-
efficient was 0.3191 and this was statistically significant (p< 0.0001). As CD4 count
increases so does BMI, this is shown by figure 2.9b. Figure 2.9c suggests a negative
correlation between viral load and CD4 count. Hence, as viral load increases, CD4
count decreases, which is exactly what is expected given the relationship between
these two variables in the absence of treatment. The Pearson’s correlation coefficient
was -0.1851 and this was statistically significant (p< 0.0001). Furthermore as age
increases, CD4 count decreases 2.9d .

2.6.1 Summary

In this chapter patients baseline characteristics and distributional properties of the
biomarkers were explored. The CD4 count, CD8 count and CD4:CD8 ratio were
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2.6. Scatter plots with sample correlation for CD4 count against covariates

square root transformed and the viral load was transformed using a logarithm ap-
proximation. The spaghetti plots indicated some within and between patient varia-
tion which suggested that a model with both random intercepts and slopes could be
plausible. The mean plots suggested an increase in the evolution of CD4 count over
time after patients had been initiated on HAART.
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Chapter 3

Linear mixed models

3.1 Introduction

In this chapter the theory of linear mixed models including two types of estimation
methods and model diagnostics will be explored.

Linear mixed models are an extension of linear regression models which incorporate
random effects in the structure for the mean, so that the data is allowed to display
correlation and non-constant variability. Mixed models are commonly used for the
analyses of longitudinal data where experimental units are followed over a period
of time and they are called subjects. These subjects are regarded as a random sample
from a larger population of subjects and hence any effects that are not constant for
all subjects are regarded as random.

The linear mixed model is commonly used for analyzing continuous repeated mea-
sures from individuals ranging from social, economical, agriculture and biomedical
applications (O’Brien & Fitzmaurice, 2004). The advantage of using such models is
that they allow for unbalanced designs where all subjects do not require an equal
number of observations and/or the same data collection occasions or visits (Zhang
& Chen, 2013).

According to O’Brien & Fitzmaurice (2004), longitudinal data analysis is widely used
for three reasons namely;

• To increase the sensitivity by making within-subject comparisons

• To study evolutions of outcomes of interest through time

• To use subject efficiency once they are enrolled in a study.
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3.2. Model building

3.2 Model building

Consider a data set with N subjects. Let ni denote the number of observations for the
ith subject. Let Yi be the ni × 1 vector of observations for the ith subject (1 ≤ i ≤ N).
Then the general linear mixed model is given by

Yi = Xiβ + Zibi + ei (3.1)

where

• β is a (p× 1) vector which contains the parameters for the p fixed effects in the
model including the constant term

• bi is a (q × 1) vector with the random effects for the ith subject in the data set.

• Xi(ni × p) and Zi(ni × q) are the design matrices for the p fixed and q random
effects respectively.

• ei is a ni × 1 vector which contains the residual components for subject i

The random effects, bi and ei are assumed to be independent and are normally dis-
tributed with mean vector 0 and covariance matrices D(q × q) and

∑
i
(ni × ni) re-

spectively. Different structures for these covariance matrices are possible and will be
briefly discussed in section 3.5. Thus

bi ∼ N(0, D)

and
ei ∼ N

(
0,Σi

)
.

The distribution of bi and ei can jointly be written as;

[
bi

ei

]
∼ N

{[
0

0

]
,

[
D 0

0 Σi

]}
. (3.2)

An important distinction in the linear mixed model is between the conditional and
marginal models for Yi. The subject-specific mean of Yi conditionally on bi from
equation 3.2 is given by

E(Yi|bi) = Xiβ + Zibi (3.3)

and the conditional variance of Yi given bi is
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3.2. Model building

V ar(Yi|bi) = Σi (3.4)

thus

(Yi|bi) ∼ N
(
Xiβ + Zibi,Σi

)
. (3.5)

When we assume conditional independence the variance of Yi given bi is

V ar(Yi|bi) = σ2I. (3.6)

The marginal mean Yi of when averaged over the distribution of random effects bi is
given by

E(Yi) = E
[
E(Yi|bi)

]
= E(Xiβ + Zibi)

= Xiβ + ZiE(bi)

= Xiβ

(3.7)

and the marginal covariance matrix is

V ar(Yi) = Vi

= E
[
V ar(Yi|bi)

]
+ V ar

[
E(Yi|bi)

]
= E[Σi] + V ar(Xiβ + Zibi)

= Σi + ZiDZ
′
i

= ZiDZ
′
i + Σi

(3.8)

thus the implied marginal model is given by

Yi ∼ N
(
Xiβ, ZiDZ

′
i + Σi

)
. (3.9)

In this interpretation, it becomes clear that the fixed effects enter only through the
mean E(Yij), whereas the inclusion of subject-specific effects specifies the structure
of the covariance between observations on the same unit (Antonio & Beirlant, 2007).
It should be noted that intrinsically, the marginal model allows negative variance
components provided Vi from 3.8 is positive semi-definite while in the conditional
model negative components do not make sense.
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3.3. Estimation of parameters in linear mixed models

3.3 Estimation of parameters in linear mixed models

According to Searle et al. (2008), the most often used methods of estimation in gaus-
sian mixed models are maximum likelihood (ML) and restricted maximum likeli-
hood (REML). The REML procedure is most popular when it comes to the estimation
of variance components in mixed models assuming Gaussian random terms. REML
maximizes the joint likelihood of all error contrasts rather than of all contrasts as in
ordinary maximum likelihood (Gilmour et al., 1995).

3.3.1 Maximum likelihood estimation (MLE)

The method of maximum likelihood estimation was first introduced by (RA Fisher,
1922). He first presented the numerical procedure in 1912. Since then, this method
has become one of the most important tools for estimation and inference available
to statisticians. According to White (1982) a fundamental assumption underlying
classical results on the properties of the maximum likelihood estimator is that the
stochastic law which determines the behavior of the phenomena investigated (the
”true” structure) is known to lie within a specified parametric family of probability
distributions (the model). In other words, the probability model is assumed to be
”correctly specified.” The drawback of the maximum likelihood estimator is that it
does not take into account the degrees of freedom used in estimating fixed effects.
Thus standard errors are underestimated and results in narrower confidence inter-
vals hence a bigger chance to reject the null hypothesis. The MLE for σ2 is obtained
by maximizing the joint log-likelihood distribution given by

LML(θ, Y ) = −1

2

{
log|V |+ (Y −Xiβ̂)−1V −1(Y −Xiβ̂)

}
. (3.10)

This is the simple case of the linear model for independent observations and homo-
geneous variance, thus the MLE for σ2 is

σ̂2
ML =

N∑
i=1

(Yi −Xiβ̂)
′
(Yi −Xiβ̂)

N
(3.11)

σ̂2
ML is a biased estimator for σ2 since

E(σ̂2
ML − σ2) = −σ

2

N
6= 0 (3.12)

where σ2, N > 0, this implies that σ̂2
ML underestimate σ2.
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3.3. Estimation of parameters in linear mixed models

3.3.2 Estimation of fixed effects parameters under ML

”Let β denote the vector of fixed effects and let α be a vector of all variance com-
ponents in D and Σi, it then follows that the variance covariance matrix Vi of Yi
dependents on α. Thus we can let θ = (β

′
, α
′
)
′

denote the vector of all parameters
in the marginal model”. Thus assuming the above assumptions holds, the marginal
likelihood function is given by

LML(θ) =

N∏
i=1

{
(2π)−

ni
2 |Vi|−

1
2

}
×
{
− 1

2
(Yi −Xiβ)

′
V −1
i (Yi −Xiβ)

}
(3.13)

where Vi is the matrix of variance components. According to Verbeke & Molen-
berghs (2000) the estimates for αML and βML can be obtained from maximizing
LML(θ) with respect to θ that is with respect to α and β simultaneously. The log
likelihood function for subject i is

li = logLi = −ni
2
log(2π)− 1

2
log|Vi| ×

{
− 1

2
(Yi −Xiβ)−1V −1

i (Yi −Xiβ
}
. (3.14)

According to Harville (1977), if α is known then the maximum likelihood estimate
of β is given by

β̂(α) =
{ N∑
i=1

X
′
iWiXi

}−1
×
{ N∑
i=1

XiWiyi

}
(3.15)

where Wi = V −1
i . According to O’Brien & Fitzmaurice (2004) the estimator of β that

minimizes this expression is known as the generalized least squares (GLS) estimator
of β, denoted by β̂. If E(Yi) is correctly modeled, it can be shown that

E(β̂) = β (3.16)

and

V ar(β̂) =
{ N∑
i=1

X
′
iWiXi

}−1{ N∑
i=1

X
′
iW

′
iV ar(Yi)WiXi

}{ N∑
i=1

XiWiX
′
i

}−1

=
{ N∑
i=1

X
′
iWiXi

}−1

(3.17)

provided V ar(Yi) is truly given by Vi. In most cases, α is not known, and needs to
be replaced by an estimate α̂ and we can set V̂i = Ŵi

−1
and estimate β by using the

expression with Wi replaced with Ŵi by (Verbeke & Molenberghs, 2000) .

24



3.3. Estimation of parameters in linear mixed models

3.3.3 Estimation of variance components under ML

The maximum likelihood procedure of Hartley & Rao (1967) is modified by adapt-
ing a transformation from Patterson & Thompson (1971) which partitions the like-
lihood render normality into two parts, one being free of the fixed effects. Recent
developments promise to increase greatly the popularity of maximum likelihood
as a technique for estimating variance components (Harville, 1977). Miller (1973)
developed a satisfactory asymptotic theory for maximum likelihood estimators of
variance components.

Consider a linear mixed model for one trait, represented by 3.1, the least squared
equations given by

[
X
′
X X

′
Z

Z
′
X Z

′
Z

][
b̂

â

]
=

[
X
′
y

Z
′
y

]
(3.18)

where â denote the vector of addictive effects, absorbing the fixed effects reduces the
equations to

Z
′
KZâ = Z

′
Ky (3.19)

where

K = I −X ′(X ′X)−1X
′
. (3.20)

According to Meyer (1991), a generalized inverse can be used when the inverse of
X
′
X does not exist. To get the estimates of the variance components we consider

method 3 of fitting constants by (Henderson, 1953). Thus

σ̂2
e =

{
(y
′
y)− â′Z ′y − b̂′X ′y
r(X)− r(Z) + 1

}
(3.21)

σ̂2
a =

{
aZKy −

(
r(Z)− i

)
σ̂2
e

tr(Z ′KZ)

}
(3.22)

Where r(X) and r(Z) denote the column rank of X and Z respectively. N repre-
sents the number of observations, and tr is the trace operator. In this method any
covariances between levels of a are ignored. When a and e are taken as having zero
covariance that are from

V = ZG
′
Z +R (3.23)
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3.3. Estimation of parameters in linear mixed models

and with V non-singular

V V −1 = I (3.24)

and supposing that V is a square matrix having elements that are not functionally
related.

∂V −1

∂θ
= −V −1

(
∂V

∂θ

)
V −1 (3.25)

and

∂

∂θ
log|V | = tr

(
V −1∂V

∂θ

)
(3.26)

where elements of V are considered as function of θ. Using this result, we arrange
the variance covariance components that occur in V as a vector θvh=1, where v is
the total number of different components. Then to find the variance components
estimates, we maximize the equation given by

Lθh = log

{
tr

(
V −1

(
∂V

∂θ

))}− 1
2

× exp
{
− 1

2
(Y −Xβ)

′
V −1(Y −Xβ)

}
(3.27)

lθh = log
(
Lθh
)

= −1

2

{
tr

(
V −1

(
∂V

∂θ

))}
− 1

2

{
(Y −Xβ)

′
V −1(Y −Xβ)

}
(3.28)

equating 3.28 to zero we get

tr

[
V̂ −1

(
∂V

∂θh|θ=θ̂

)]
= (Y −Xβ̂)

′
V̂ −1

(
∂V

∂θh|θ=θ̂

)
(Y −Xβ̂) (3.29)

where

Xβ̂ = X(X
′
V̂ −1X)−X

′
V −1 (3.30)

we define

P = V −1 − V −1X(X
′
V̂ −1X)−X

′
V −1 (3.31)

that is

V −1(Y −Xβ̂) = P̂ y (3.32)
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3.3. Estimation of parameters in linear mixed models

thus the maximum likelihood (ML) estimation equation is given by

tr

[
V̂ −1

(
∂V

∂θh|θ=θ̂

)]
= y

′
P̂

(
∂V

∂θh|θ=θ̂

)
P̂ y (3.33)

To find the estimates of variance components, we consider the derivatives of ML
equation in terms of D and Σ. We distinguish θd and θΣ as elements of θ that occurs
in V ar(u) = D and V ar(e) = Σ, respectively. Then

∂V

∂θd
= Z

(
∂V

∂θd

)
Z
′

(3.34)

and

∂V

∂θΣ
=
∂D

∂θΣ
(3.35)

hence the ML equation becomes

tr

[
V̂ −1

(
∂V

∂θh|θ=θ̂

)]
= y

′
P̂

(
∂D

∂θh|θ=θ̂

)
P̂ y (3.36)

for each parameter θd of D, and

tr

[
V̂ −1

(
∂V

∂θh|θ=θ̂

)]
= y

′
P̂

(
∂Σ

∂θh|θ=θ̂

)
P̂ y (3.37)

for each parameter θΣ of Σ.

3.3.4 Restricted maximum likelihood estimation (REML)

Thompson Jr (1962) called this method restricted maximum likelihood or residual
(marginal) maximum likelihood. Patterson & Thompson (1971) proposed an ap-
proach which takes into account the loss in degrees of freedom resulting from esti-
mating fixed effects. Retaining the property of invariance under translation that ML
estimators have, the REML estimators have the additional property of reducing to
the analysis variance (ANOVA) estimators for many, if not all, cases of balanced data
(equal subclass numbers). A computing algorithm is developed, adapting a transfor-
mation from (Hemmerle & Hartley, 1973), which reduces computing requirements
to dealing with matrices having order equal to the dimension of the parameter space
rather than that of the sample space. These same matrices also occur in the asymp-
totic sampling variances of the estimators.
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3.3. Estimation of parameters in linear mixed models

3.3.5 REML estimation for the linear mixed model

Consider models where

Y ∼ N(Xβ, Vi) (3.38)

where

Vi = ZiDZ
′
i + Σi (3.39)

Combining the subject-specific sub-models we get

Y ∼ N
{

(Xβ), V (α)
}

(3.40)

where


V1 . . . 0
...

. . .
...

0 . . . Vn

 (3.41)

According to Verbeke & Molenberghs (2000), maximization of the likelihood func-
tion of a set of error contrasts, gives the REML estimator for the variance components
α and β given by

LREML(θ) =

∣∣∣∣∣
N∑
i=1

X
′
iWiXi(α̂)

−1
2

∣∣∣∣∣× LML(θ) (3.42)

with respect to θ = (β
′
, α
′
)
′
. The resulting estimates for β and α will be denoted by

βREML and αREML respectively. LREML(θ) can be seen as the penalized likelihood
(Verbeke & Molenberghs, 2000).

3.3.6 Inference for the fixed effects

As stated previously if α is known the MLE of β is given by

β̂(α) =
{ N∑
i=1

X
′
iWiXi

}−1{ N∑
i=1

X
′
iWiYi

}
. (3.43)

Under the marginal model above and conditional on α and β̂ follows a multivariate
normal distribution with mean vector given by
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3.3. Estimation of parameters in linear mixed models

E[β̂(α)] =
{ N∑
i=1

X
′
iWiXi

}−1{ N∑
i=1

X
′
iWiE(Yi)

}
(3.44)

and we know that E(Yi) = Xiβ. Thus the above expression becomes

E[β̂(α)] =
{ N∑
i=1

X
′
iWiXi

}−1{ N∑
i=1

X
′
iWiXiβ

}
= β

(3.45)

and the covariance of β is then given by

V [β̂(α)] =
{ N∑
i=1

X
′
iWiXi

}−1{ N∑
i=1

X
′
iWiV ar(Yi)WiXi

}{ N∑
i=1

X
′
iWiXi

}−1

=
{ N∑
i=1

X
′
iWiXi

}−1

(3.46)

provided V ar(Yi) is truly given by Vi. Furthermore Wi = V −1
i , and in most cases, α

is not known, and needs to be replaced by an estimate α̂ and we can set V̂i = Ŵi
−1

and estimate β by using the expression with Wi replaced with Ŵi by (Verbeke &
Molenberghs, 2000).

3.3.7 Approximate Wald test

For any known matrix L, consider testing the hypothesis.

H0 : Lβ = 0

vs

HA : Lβ 6= 0

(3.47)

then the Wald test statistic is given by

W = β̂
′
L
′
[
L

N∑
i=1

X
′
iWiXiL

′
]−1

Lβ̂ (3.48)

”The asymptotic sum distribution W is chi-square distributed with rank (L) degrees
of freedom”. The deficiency of the Wald test is that the variability introduced by
replacing α by some estimate (ML or REML) is not taken into account in the sub-
sequent test, thus providing valid inferences only in sufficiently large samples. Ac-
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3.3. Estimation of parameters in linear mixed models

cording to Gianola & Foulley (1990) there are at least 2 potential shortcomings of
REML, first, REML estimates are the elements of the modal vector of the joint poste-
rior distribution of the variance components. From a decision theoretic point of view,
the optimum Bayes decision rule under quadratic loss in the posterior mean rather
than the posterior mode. The mode of the marginal distribution of each variance
component should provide a better approximation to the mean than a component
of the joint mode. Second, if inferences about a single variance component are de-
sired, the marginal distribution of this component should be used instead of the joint
distribution of all components.

3.3.8 Inference for the variance components

The mean structure is usually of primary interest in the inference, however in a
variety of applied statistical problems, there is a need for inference on variance
components. This includes a variety of applied fields, for example, random-effects
ANOVA models (Nelder, 1954), linear mixed models Verbeke & Molenberghs (2000),
generalized linear and nonlinear (mixed) models (Jacqmin-Gadda & Commenges,
1995), over dispersion Cox (1983); Smith & Heitjan (1993); Ohara Hines (1997); and
Lu (1997), clustering (Britton, 1997), and homogeneity in stratified analyses (Liang,
1987). A test for variance component helps in proving or establishing whether we
do need the inclusion of random effects or not.

3.3.9 Approximate Wald test

”Asymptotically, ML and REML estimates of α are normally distributed with cor-
rect mean and inverse Fisher information matrix I(α)−1 as covariance”. Hence ap-
proximate standard errors and Wald tests can easily be obtained for the variance
components

3.3.10 The Likelihood ratio test (LRT)

The likelihood ratio test is ideal for the comparison of nested models with differ-
ent covariance structure, but equal mean structures. When comparing two models
it seems reasonable to consider the ratio of the likelihoods under the two models.
This is the likelihood ratio. The better model has the greater likelihood. Let the
hypothesis of interest be

H0 : α ∈ Θα,0 (3.49)

for some subspace Θα,0 of the parameter space Θα of the variance components α.
Thus the test statistic is given by
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3.4. The random coefficients model

LR = 2× [ln(l̂alt)− ln(l̂null)] (3.50)

Where l̂alt and l̂null denotes the likelihood for alternative model and likelihood
for the null model respectively. The probability distribution of the test statistic
is approximately a chi-squared (χ2) distribution with degrees of freedom equal to
dfalt − dfnull, the number of free parameters for alternative and null models. There
are many iterative algorithms that can be considered for computing the ML or REML
estimates. The computations on each iteration of these algorithms are those associ-
ated with computing estimates of fixed and random effects for given values of the
variance components.

3.4 The random coefficients model

Determining the relationship between the response variable and time, is often of
importance in a study. This is achieved by the inclusion of time tij as a predictor
in the model, with a corresponding slope, say βt. Most likely the slope will vary
with subject, so it is useful to fit the subject variable as the intercept and the sub-
ject*time interaction as the slope for each patient. These two terms could reasonably
be assumed to arise at random from a distribution and, thus, would be specified
as random effects. This gives rise to what is called a random coefficients model.
The random coefficients model is often used if the repeated measurements do not
occur at fixed intervals. This type of model is different from an ordinary random ef-
fects model because the subject and subject*time effects in the model are correlated.
The random effects model must be adapted to this situation to allow for correlation
among these random effects. This is done using the bivariate normal distribution.
The bivariate random effect becomes

(
bi

(b ∗ t)i

)
∼ N(0, G) (3.51)

where

(
σ2
b σb,b∗t

σb,b∗t σ2
b∗t

)
(3.52)
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3.4.1 Random intercepts and slopes model

A model that includes both random intercepts and random slopes is likely the most
realistic type of model, although it is also the most complex. In this model, both
intercepts and slopes are allowed to vary across groups, meaning that they are dif-
ferent in different contexts (Cohen et al., 1983). The random intercept and slopes
model is given by

Yij = β0 + β1tij + bi1tij + bi0 + eij

= β0 + (β1 + b1j)tij + b0j + eij
(3.53)

[
bi0

bi1

]
∼ N(0,Ωb) (3.54)

Ωb =

[
σ2
b0

σb01
σb01 σ2

b1

]
(3.55)

eij ∼ N(0, σ2
e) (3.56)

bi ∼MVN(0,Σ) (3.57)

V ar(Yij) = σ2
1 + 2σ01tij + σ2

1tij + σ2 (3.58)

Cov(Yij , Yik) = σ2
0 + σ01(tij , tik) + σ2

1tijtik (3.59)

Cov(Yij , Ylk) = 0 (3.60)

More complex models possible, but harder to fit.

3.5 Types of covariance structures

The distinct nature of longitudinal mixed model analysis is the covariance structure
of the observed data. Here measurements made on the same subject are likely to be
more similar than measurements made on different individuals. That is, repeated
measurements are correlated. The covariance among repeated measures must be
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modeled properly in order for the analysis to be valid. Note the covariance structure
is not of primary interest in the analysis, however it plays a huge role for validity
of inferences. Thus more effort is usually needed at the beginning of the statistical
analysis to assess and identify the best covariance structure of the data.

Until recently, analysis techniques available in computer software only offered the
user limited and inadequate choices. One choice was to ignore covariance structure
and make invalid assumptions. Another was to avoid the covariance structure issue
by analyzing transformed data or making adjustments to otherwise inadequate anal-
yses. Ignoring covariance structure may result in erroneous inference, and avoiding
it may result in inefficient inference. Recently available mixed model methodology
permits the covariance structure to be incorporated into the statistical model.

There are several specific choices of the form of the working covariance structures,
but the three most commonly used covariance structures are, compound symmetry
(CS), unstructured (UN) and autoregressive (AR(1)).

3.5.1 Compound Symmetry (CS):

Cov(Yijk, Yijl) = σ2
1 (3.61)

if k 6= l then

V ar(Yijk) = σ2
1 + σ2 (3.62)

Compound symmetric structure specifies that observations on the same subject have
homogeneous covarianceCov(Yijk, Yijl) = σ2

1 and homogeneous variance V ar(Yijk) =

σ2
1 + σ2. The correlation function is ρ =

σ2
1

σ2
1+σ2 . Note that the correlation does not

depend on the value of the lag, in the sense that the correlations between two obser-
vations are equal for all pairs of observations on the same subject. This is unrealistic
in longitudinal data problem in the sense that observations closer to each other are
more correlated than the ones which are further apart (Littell et al., 2000). Com-
pound symmetric structure is sometimes called variance components structure, be-
cause the two parameters σ2

1 and σ2 represent between-subjects and within-subjects
variances, respectively. This mix of between and within-subject variances logically
motivates the form of V ar(Yijk)) in many situations and implies a non-negative cor-
relation between pairs of within-subject observations. For example if we consider
three repeated measures, the compound symmetric correlation structure is given by
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CS =

σ
2
1 + σ2 σ2

1 σ2
1

σ2
1 σ2

1 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 + σ2

 (3.63)

3.5.2 Unstructured (UN)

All the variances and covariances are different, this is the most flexible covariance
structure which leads to the unstructured pattern of correlations which assumes un-
constrained pair-wise correlations where each correlation is estimated from the data
(the most complex model). This lets the data dictate what they should be and re-
quires the estimate of many parameters. The more data that are used to assess the
covariance structure, the less data are left to estimate the parameters of linear mod-
els. An unstructured covariance structure with three repeated measures is given by

UN =

 σ
2
1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3

 (3.64)

The unstructured type of correlation has an immediate disadvantage because it in-
creases the number of parameters to estimate in the overall model hence causing
possible non-convergence problems, particularly those associated with boundary
values. The best way adopted to reduce the number of parameters is to assume that
all the covariances along the diagonal have a constant variance. Furthermore an
analysis that uses this covariance matrix will be less powerful than an analysis that
uses a less parametric but more realistic structure, however the problem with that is
knowing what that proper structure is (Littell et al., 2000).

3.5.3 Autoregressive, order 1 [AR (1)]:

Cov(Yijk, Yijl) = σ2 × ρ|k−l| (3.65)

The AR (1) covariance structure specifies homogeneous variance V ar(Yijk) = σ2.
Furthermore it specifies that covariances between observations on the same subject
are not equal, but decrease toward zero with increasing lag. This covariance struc-
ture is relevant for repeated measures in time, and the term autoregressive is derived
from time series analysis that assumes observations are related to their own past val-
ues or history through one, two, or a higher order autoregressive (AR) process. The
correlation between two responses that are m measurements apart is ρm, since ρ is
−1 ≤ ρ ≤ 1 or to be more realistic 0 < ρ < 1, the greater the power m ≥ 1, the
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smaller the magnitude. Thus the further measurements are apart, the lower their
correlation. In the case of three repeated measurements AR(1) covariance structure
is given by

AR(1) = σ2

 1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

 (3.66)

Note that the AR (1) resolves some of the objectives to the use of the compound
symmetry where only one correlation parameter is needed. AR (1) are a reasonable
choice for evenly or equally spaced observations.

The heterogeneous versions of AR (1) and CS, are ARH (1), CSH respectively, and
they are simple extensions which assume the variances along the diagonal of the
matrix are not equal.

3.5.4 Spatial covariance structures

Spatial correlation structures are very useful for ”unequally spaced longitudinal data
which can be viewed as a spatial process in one dimension” (Littell et al., 2000). The
advantage of using spatial correlation structures is that they calculate the actual dis-
tance between measurements themselves without making any assumptions. Table
3.1 gives some of the spatial covariance structures, each one specifying and defining
how fast the correlations decrease as functions of the distances between measure-
ments dij .
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Table 3.1: Spatial covariance structures

Structure Example

Power σ2

 1 ρd12 ρd13

ρd12 1 ρd23

ρd13 ρd23 1



Linear σ2

 1 1− ρd12 1− ρd13
1− ρd12 1 1− ρd23
1− ρd13 1− ρd23 1



Exponential σ2

 1 exp(−d12\ρ) exp(−d13\ρ)

exp(−d12\ρ) 1 exp(−d23\ρ)

exp(−d13\ρ) exp(−d23\ρ) 1



Gaussian σ2

 1 exp(−d2
12\ρ2) exp(−d2

13\ρ2)

exp(−d2
12\ρ2) 1 exp(−d2

23\ρ2)

exp(−d2
13\ρ2) exp(−d2

23\ρ2) 1



Spherical σ2


1

[
1− (3d12

2ρ ) + (
d312
2ρ3

)
] [

1− (3d13
2ρ ) + (

d313
2ρ3

)
][

1− (3d12
2ρ ) + (

d312
2ρ3

)
]

1
[
1− (3d12

2ρ ) + (
d312
2ρ3

)
][

1− (3d12
2ρ ) + (

d312
2ρ3

)
] [

1− (3d12
2ρ ) + (

d312
2ρ3

)
]

1



3.5.5 Choosing the best covariance structure

Ideally the covariance structure should be known from previous work or subject
matter considerations. Selecting a structure that is too simple increases the Type I er-
ror rate and selecting a structure that is too complex sacrifices power and efficiency
Littell et al. (2000).

To choose the best covariance structure use the information criteria (IC). Given a
set of candidate covariance structures for the data, the preferred structure is the one
with the minimum Akaike information criterion (AIC) value. AIC rewards goodness
of fit (as assessed by the likelihood function), but it also includes a penalty that is an
increasing function of the number of estimated parameters. The penalty discour-
ages over fitting, because increasing the number of parameters in the model almost
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3.6. Model diagnostics

always improves the goodness of the fit. Alternatively one can use the Bayesian in-
formation criterion (BIC), which is an increasing function of the error variance σ2

e

and an increasing function of k. That is, unexplained variation in the dependent
variable and the number of explanatory variables increases the value of BIC. Hence,
lower BIC implies either fewer explanatory variables, better fit, or both (Verbeke &
Molenberghs, 2000). It is important to keep in mind that the BIC can be used to com-
pare estimated models only when the numerical values of the dependent variable
are identical for all estimates being compared. The models being compared need
not be nested, unlike the case when models are being compared using an F-test or a
likelihood ratio test. The interest in the covariance structure is not for its own right
but for obtaining a good model for the covariance structure so that computations
and inferences about the fixed effects are valid (Verbeke & Molenberghs, 2000).

Table 3.2: Information criteria for AIC and BIC

Criteria Structure Small is better Large is better

AIC log(n)k − 2log(L̂) −2l + 2d l − d
BIC 2k − 2log(L̂) −2l + 2dlog(n) l − 0.5 ∗ d ∗ logn

Where, L̂ is the maximized value of the likelihood function of the model, n is the
sample size and k is the number of free parameters to be estimated.

3.5.6 Some graphical guides

Consider fitting UN then plot the covariance for each starting time which can pro-
vide pertinent diagnostic information. That is, plot lag 1, covariance, lag 2, covari-
ance, and so on, for the errors starting at 0, 1, 2 and so on. Then if there is a lin-
early declining covariance without increasing lags one might fit an AR (1) covari-
ance structure, and if the lines overlay each other, then a constant variance would be
appropriate otherwise the heterogeneous version of the structure would be best to
use. However this is not the best method to use according to Kincaid (2005).

3.6 Model diagnostics

Sometimes the assumption of the random effects can be violated by longitudinal
data. Thus it is very important to check the assumptions of the model after it has
been fitted, that is, to check if the normality assumption for the random effects and
the behavior of residuals is appropriate. In most cases, histograms and scatter plots
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of the random components and the residuals are often used for the diagnostic pur-
poses. In particular, the scatter plots are used to pinpoint outlying observations
which arise from subjects that seem to evolve differently from the other subjects in
the sample, but the histograms of the residuals can be used to check for the normality
of the random effects and the error terms. The empirical distribution of the data (the
histogram) should be bell-shaped and resemble the normal distribution. This might
be difficult to see if the sample is small. In this case one might proceed by regress-
ing the data against the quantiles of a normal distribution with the same mean and
variance as the sample. Lack of fit to the regression line suggests a departure from
normality. One can also use the probability plots, and tests using the Shapiro-Wilk
test and the Kolmogorov-Smirnov test to assess the normality assumptions. Specif-
ically the W-statistic (in the Shapiro-Wilk test), suggested by Shapiro & Wilk (1965)
has been shown to be a good omnibus test of normality.

3.6.1 Residual diagnostics

In order to validate model assumptions and to detect outliers and potentially influ-
ential data points residuals are employed. A residual is defined as the difference be-
tween an observed quantity and its predicted value. In the mixed model a marginal
residual is the difference between the observed data and the estimated (marginal)
mean that is

rmi = yi − x
′
iβ̂ (3.67)

and a conditional residual is the difference between the observed data and the pre-
dicted value of the observation that is,

rci = yi − x
′
iβ̂ − z

′
i b̂i (3.68)

For a model without random effects b, the marginal and conditional residuals coin-
cide. The name conditional residual stems from the fact that x

′
iβ̂ + z

′
i b̂i is the condi-

tional mean of yi. According to Schabenberger (2005), the raw residuals, rmi and rci
are usually not well suited for these purposes. ”Even if the true model errors are un-
correlated and have equal variance, the residuals will exhibit correlations and their
variances will differ. The interpretation of raw residuals is further made difficult if
the variances of the observations differ. A data point with a smaller raw residual
may be more troublesome than a data point with a large residual, if the variance of
the former observation is less”. Different types of residuals are presented in Table
3.3 .
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3.6. Model diagnostics

Table 3.3: Summary of available residuals

Type of Residual Marginal Conditional

Raw rmi = yi − x
′
iβ̂ rci = yi − x

′
iβ̂ − z

′
i b̂i

Studentized rstudentmi = rmi√
V̂ (rmi)

rstudentci = rci√
V̂ [rci]

Pearson rpearsonmi = rmi√
V̂ [Yi]

rpearsonci = rci√
V̂ [Yi|b̂i]

Scaled Ĉ−1
rm

3.6.2 Influence diagnostics

Influential observations refer to those observations that appear to have fairly large
influence on the parameter estimates.

3.6.3 Overall influence

Typically the subscript U denotes quantities obtained without the observations in
the set U . An overall influence statistic measures the change in the objective func-
tion being minimized Schabenberger (2005) . Beckman et al. (1987) refers to it as
the likelihood displacement (LD). According to Schabenberger (2005), the likelihood
and restricted likelihood distances (RLD) are then given by

LD(U) = 2
{
l(ψ̂)− l(ψ̂(U))

}
(3.69)

RLD(U) = 2
{
lR(ψ̂)− lR(ψ̂(U))

}
(3.70)

According to Schabenberger (2005) ”the likelihood distance gives the amount by
which the log-likelihood of the full data changes if one were to evaluate it at the
reduced-data estimates. It is obtained by evaluating the likelihood function based
on the full data set (containing all n observations) at the reduced-data estimates. The
likelihood distance is a global, summary measure, expressing the joint influence of
the observations in the set U on all parameters in that were subject to updating”.
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3.6. Model diagnostics

3.6.4 Change in parameter estimates

Cooks distance measures the effect of deleting a given observation and was first
introduced by Cook (1977). Schabenberger (2005) states that the difference between
Cooks distance (D) and multivariate DFFITS (also known as MDFFITS) is that the
latter uses an externalized estimate of the variance of the parameter estimates, while
Cooks distance does not. For the fixed effects, the two statistics are

D(β) = (β̂ − β̂(u))
′
vâr(β̂)−1(β̂ − β̂(u))/rank(X) (3.71)

MDFFITS = (β̂ − β̂(u))
′
vâr( ˆβ(u))

−1(β̂ − β̂(u))/rank(X) (3.72)

For both statistics, large values, according to Schabenberger (2005) ”indicate that the
change in the parameter estimate is large relative to the variability of the estimate
. If the covariance parameters are updated during influence analysis, similar statis-
tics can be computed for θ̂. However, the D(θ) and MDFFITS(θ) statistics do not
involve division by a matrix rank”.

3.6.5 Change in precision of estimates

According to Schabenberger (2005) ”the effect on the precision of estimates is sepa-
rate from the effect on the point estimates. Data points that have a small Cooks D,
for example, can still greatly affect hypothesis tests and confidence intervals, if their
influence on the precision of the estimates is large”.
where q denotes the rank of V ar(θ). The variance matrix that is used in the compu-
tation of COVTRACE and COVRATIO for covariance parameters is obtained from
the inverse Hessian matrix Schabenberger (2005).

3.6.6 Effect on fitted and predicted values

Following Schabenberger (2005) ”the MIXED procedure computes the following statis-
tics to measure influence on fitted and predicted values. The PRESS residual Allen
(1974) is the difference between the observed value and the predicted (marginal)
mean, where the predicted value is obtained without the observations in question.
Formally,

êi(U) = yi − x
′
iβ̂(U) (3.73)

If you compute the influence of individual observations, the MIXED procedure re-
ports these PRESS residuals. When removing sets of observations, PROC MIXED
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3.6. Model diagnostics

computes the PRESS statistic. This statistic is the sum of the squared PRESS residu-
als in a deletion set,

PRESS(U) =
∑
i∈U

êi(U) (3.74)

The effect of observations on fitted values can be measured by the DFFITS statistic
of Belsley et al. (1980). Recall that a DFFIT measures the change in predicted values
due to removal of a single data point. If this change is standardized by the externally
estimated standard error of the predicted value in the full data, then the DFFITS
statistic is given by”

DFFITSs = (ŷi − ŷi(U))/ese(ŷi) (3.75)

3.6.7 Summary

The theory on linear mixed models and the estimation methods was discussed.
Types of covariance structures were briefly described and the best structure can be
selected by choosing the model with a structure that gives the lowest Akaike Infor-
mation Criteria (AIC). Furthermore different types of residuals for model diagnos-
tics were briefly discussed

41



Chapter 4

Survival analysis

4.1 Introduction

In this chapter we examine the survival analyses methodology, in particular the Cox
proportional hazards model is discussed as well as the Kaplan-Meier and the log-
rank test.

Survival analysis examines and models the time it takes for an event to occur and
focuses on the distribution of survival times Fox (2002). According to Collett (2015),
survival data are not symmetrically distributed and are strictly positively skewed. In
a survival analysis, the time an individual has survived over some follow-up period
is known as a survival time an event such as death is known as failures Kleinbaum
& Klein (2005).The basic goals of survival analysis by Kleinbaum & Klein (2005)
include;

• The estimation and interpretation of survivor and/or hazard functions from
survival data

• Comparing survivor and/or hazard functions.

A key analytical problem in survival analysis is censoring. According to Kleinbaum
& Klein (2005), censoring occurs when there is some information about individual
survival time, but the survival time is not known exactly . There are three types of
censoring, following Kleinbaum & Klein (2005) these types are;

1. Right censoring;
This type of censoring occurs if the event occurs after the observed survival
time (after the study is finished). It follows that right censored survival time is
less than the actual survival time.
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4.2. The survivor function and the hazard function

2. Left censoring;
When the actual survival time is less than or equal to the observed survival
time is known as left censoring.

3. interval censoring;
interval censoring occurs when the individual is known to have experienced
an event within an interval of time but the actual survival time is not known.

Some of the reasons for censoring includes an individual not experiencing the event
before the end of the study, or lost to follow-up, perhaps that person has relocated,
lastly a person could withdraw from the study or die but death not related to the
event of interest (Kleinbaum & Klein, 2005).

4.2 The survivor function and the hazard function

Let T represent survival time. T can take any non-negative value and is regarded as
a random variable with cumulative distribution function;

F (t) = Pr(T ≤ t) =

∫ t

0
f(u)du (4.1)

and a probability density function given by

f(t) = F
′
(t) = −S′ , t ≥ 0 (4.2)

The survivor function is a decreasing function and it gives the probability that the
random variable T exceeds the specified time t (Kleinbaum & Klein, 2005). The sur-
vivor function is given by

S(t) = P (T > t) = 1− F (t) (4.3)

The hazard function, denoted by h(t), assesses the instantaneous risk of failure,
given that the individual has survived up to time t (Fox, 2002).The function typi-
cally refers to a hazard rate, the instantaneous death rate, or the force of mortality
(Collett, 2015), the hazard function is given by
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4.3. The Kaplan-Meier estimate of the survivor function

h(t) = lim
δt→0

P (t ≤ T < t+ δt|T ≥ t)
δt

; t ≥ 0

= lim
δt→0

P (t ≤ T < t+ δt)

δtP (T ≥ t)

= lim
δt→0

[
F (t+ δt)− F (t)

δt

]
×
[

1

P (T ≥ t)

]
=
f(t)

S(t)

(4.4)

It then follows that

h(t) =
f(t)

S(t)
=
−dlogS(t)

dt
(4.5)

and so

S(t) = exp

[
−
∫ t

0
h(u)du

]
= exp(−H(t)), t ≥ 0, (4.6)

all these functions give a mathematical equivalent specification of the distributions
of the survival time T : If one of them is known, then the other two can be deter-
mined. Commonly used parametric functions include the Weibull and exponential
distribution.

4.3 The Kaplan-Meier estimate of the survivor function

According to Collett (2015), the Kaplan-Meier (KM)estimate is a generalization of
the empirical survivor function that accommodates censored observations and it is
based on individual (ungrouped) survival times. Following Collett (2015) consider
a sample with n individuals with observed survival times t1, · · · , tn. Suppose that
there are m ≤ n recorded event times then the ranked survival times are t(1) <

t(2) < · · · < t(m). Let dj be the number of deaths at tj . Let nj be the number alive
(those at risk) just before dj for j = 1, 2, · · · ,m. The probability that an individual
dies during the interval from t(j) − δ to t(j) is estimated by dj/nj and corresponding
estimated probability of survival through that interval is then

(
nj−dj/nj

)
. Thus the

Kaplan-Meier estimator is defined as follows

Ŝ(t) =
∏

t:t(j)≤t

(
1− dj

nj

)
(4.7)
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4.3.1 Non-parametric maximum likelihood

Consider the likelihood contribution of a case that experiences an event or censored
at time tj . Taking cj to represent the number of cases censored between t(j−1) and
t(j), and taking dj to be the number of cases which die or experience the event at t(j)
, then by Hanagal (2011) the likelihood function is given by

L =
m∏
j=1

[
S(t(j−1))− S(t(j))

]dj[
S(t(j))

]cj
(4.8)

The conditional probability of surviving from S(t(j−1)) to S(t(j)) is πj = S(t(j))/S(t(j−1))

where S(t(j)) can be written as S(t(j)) = p1 × · · · × pj , thus the likelihood then be-
comes

L =
m∏
j=1

(1− pj)djp
cj
j (p1, · · · , pj−1)dj+cj . (4.9)

Let
∑

j>i(dj + cj) denote the total number exposed to risk at t(j), thus collecting the
terms on each πj , we get a binomial likelihood given by

L =

m∏
j=1

(1− pj)djp
nj−dj
j (4.10)

The maximum likelihood estimator of πj is then given by

p̂j =
nj − dj
nj

= 1− dj
nj
.

The K-M estimator follows from multiplying these conditional probabilities.

var(p̂j) =
pj(1− pj)

nj
(4.11)

which can be estimated by

vâr(p̂j) =
p̂j(1− p̂j)

nj
. (4.12)

According to Collett (2015), the Kaplan-Meier estimate of the survivor function of
any value of t can be written as

Ŝ(t) =
m∏
j=1

p̂j

for j = 1, . . . ,m, taking logarithms
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4.3. The Kaplan-Meier estimate of the survivor function

logŜ(t) =

m∑
j=1

logp̂j (4.13)

and so the variance of logŜ(t) is given by

var
[
logŜ(t)

]
=

m∑
j=1

var
(
logp̂j

)
(4.14)

To obtain the variance logp̂, we make use of a general result for the approximate
variance of a function of a random variable given by

var
[
f(X)

]
≈
{df(X)

dX

}2
var(X). (4.15)

Using equation 4.15, the approximate variance of logp̂ is var(p̂j)/p̂2
j , and using

equation 4.11, the approximate estimated variance of logp̂ is (1− p̂j)/(nj p̂j), which
on substitution for p̂j , reduces to

dj
nj(nj − dj)

. (4.16)

Equation 4.14 then becomes

var
[
logŜ(t)

]
≈

m∑
j=1

dj
nj(nj − dj)

. (4.17)

and a further application of the result in equation 4.15 gives

var
[
logŜ(t)

]
≈ 1[

Ŝ(t)
]2 var[Ŝ(t)

]
(4.18)

so that

var
[
logŜ(t)

]
=

m∑
j=1

dj
nj(nj − dj)

. (4.19)

Using delta method to get the variance of the survivor function from the variance of
its log, we get

var
(
Ŝ(t)

)
= Ŝ(t)2

m∑
j=1

dj
nj(nj − dj)

. (4.20)

Finally, the standard error of the Kaplan-Meier estimate of the survivor function is

se
[
Ŝ(t)

]
≈ Ŝ(t)

{ m∑
j=1

dj
nj(nj − dj)

} 1
2

. (4.21)
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This result is known as Greenwood’s formula.

4.3.2 Limitations of Kaplan-Meier

• This method is mainly descriptive

• Does not control for covariates

• Suitable for categorical predictors

• Can not accommodate time-dependent variables

4.4 The Log- Rank test (Mantel-Haenszel statistic)

The log-rank test also known as the Mantel-Haenszel statistic is a large-sample chi-
square test that uses a statistic that provides an overall comparison of the K-M curves
being compared as its test criterion. The log-rank test makes use of observed versus
expected cell counts over categories of outcomes (Kleinbaum & Klein, 2005). The
categories for the logrank statistic are defined by each of the ordered failure times
for the entire set of data being analyzed. Suppose the two groups are denoted by 1
and 2, and that there are k distinct times, t1 < t2 < · · · < tk across the two groups.
The test uses a conditional argument based on the number at risk of failing just prior
to each observed failure time. Suppose that at time tj there are dj deaths and nj

at risk in total, with d1j and d2j deaths and n1j and n2j at risk in group 1 and 2
respectively such that d1j + d2j = dj and n1j + n2j = nj , at each death time tj . This
scenario is summarized in a 2× 2 table below

Table 4.1: Number of deaths at tj in each of two groups of individuals

Group Number of deaths Number surviving Number at risk (Total)

1 d1j n1j − d1j n1j

2 d2j n2j − d2j n2j

Total dj nj − dj nj

If the assumption that the two groups are the same is true, then according to Col-
lett (2015), the expected number of deaths at any time follows the hyper-geometric
distribution and is given by

E(d1j) = e1j =
n1jdj
nj

(4.22)
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and the variance

var(d1j) = v1j =
n1jn2jdj(nj − dj)

n2
j (nj − 1)

. (4.23)

Summing the various measures over the death times gives

O1 =
∑
j

d1j , E1 =
∑
j

e1j , V1 =
∑
j

v1j .

Thus the test statistic is then given by

χ2
1 =

(O1 − E1)2

V1
. (4.24)

This statistic summarizes the extent to which the observed survival times in the two
groups of data deviate from those expected under the null hypothesis of no group
differences (Collett, 2015). The larger its values is, the greater the evidence against
the null hypothesis. V1 is the variance of the difference O1 − E1 assuming indepen-
dent event times. Alternatively, assuming the deviations d1j − e1j for j = 1, 2, · · · , k,
are independent,

Z =
O1 − E1√

V1
. (4.25)

should have an approximately standard normal distribution, and at 5% level of sig-
nificance the null hypothesis is rejected if the observed Z is greater than 1.96. The
log rank test can be generalized to test equality of death rates in s > 2 groups. The
test statistic, with (s− 1) degrees of freedom, would then be given by

χs−1
1 =

(O1 − E1)2

V1
+

(O2 − E2)2

V2
+ · · · (4.26)

If the calculated value exceeds the table value at 5% significant level, we reject the
null hypothesis of no group differences survivor or hazard functions.

4.5 The Cox proportional hazards (PH) model

The Cox proportional-hazards regression model is broadly applicable and the most
common tool used for studying the dependency of survival time on predictor vari-
ables (Fox, 2002). The Cox proportional hazard model which was introduced by Cox
(1972) is given by
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h(t|X) = h0(t)exp(β1X1 + · · ·+ βpXp)

= h0(t)exp(β
′
X)

(4.27)

This model is referred to as a semi-parametric model since it does not assume any
form of probability distribution. This model allows for fixed covariates that do
not change over time (Cox, 1972) and parameters are estimated by maximizing the
partial-likelihood (Cox, 1975). In equation 4.27, given a set of covariates in X =

(X1 . . . Xp)
′
, h0(t) is known as a baseline hazard function, and β = (β1 . . . βp)

′
is a

vector of regression coefficients. The key property of the model is that h0(t) is left
completely unspecified. However in specifying the model in equation 4.27, the un-
derstanding is that link between the hazard and the covariates is correctly specified
and all the covariates necessary are in the model. This is almost impossible in prac-
tice hence the model has been extended in many ways to account for unobserved
covariates that could have been included in the model.

4.5.1 The Cox PH assumption

The PH assumption requires the hazard ratio to be constant over time, or equiva-
lently, that the hazard for one individual is proportional to the hazard for any other
individual, where the proportionality constant is independent of time Kleinbaum &
Klein (2005), as shown in equation 4.28

ĤR =
ĥ(t,X1)

ĥ(t,X2)
= θ̂, (4.28)

The hazard ratio of two individuals with different hazards and time-invariant co-
variates say X1 and X2 is

ĤR =
h0(t)exp(β̂

′
X1)

h0(t)exp(β̂
′
X2)

= exp[β̂
′
(X2 −X2)].

(4.29)

The hazard functions are proportional, implying that the ratio of the two hazards is
constant regardless of time t.

4.5.2 The partial likelihood function for survival times

Suppose that k of the n individual survival times are uncensored and that n − k

are right censored. Let t(1) < t(2) < · · · < t(k) and X1, · · · , Xk denote the ordered,
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distinct event times and covariates respectively Lee & Wang (2003). R(ti) represents
the set of subjects at risk at event time ti. For a particular observed event at time t(i)
given R(ti), the probability that the event is on the individual observed is

exp
(∑p

j=1 βjXj(i)

)∑
l∈R(ti)

exp
(∑p

j=1 βjXj(l)

) =
exp(β

′
X(i))∑

l∈R(ti)
exp(β

′
X(l))

. (4.30)

Since each observed event time contributes a factor as given above, the overall par-
tial likelihood function is

Lβ =
k∏
i=1

exp
(∑p

j=1 βjXj(i)

)∑
l∈R(ti)

exp
(∑p

j=1 βjXj(l)

)
=

k∏
i=1

exp(β
′
X(i))∑

l∈R(ti)
exp(β

′
X(l))

.

(4.31)

The maximum partial likelihood estimate of the regression coefficients can be found
by setting to zero the derivative of the log of the expression in equation 4.31 by
differentiating with respect to β and solving the resulting simultaneous equations
iteratively using numerical methods such as the Newton-Raphson procedure.

According to Kleinbaum & Klein (2005), if time-dependent variables are considered,
equation 4.29 will no longer satisfy the PH assumption, instead the extended Cox
model with the partial likelihood evaluated at each event time in the form is used.
The extended Cox model accommodates two types of time-dependent covariates,
namely, time varying covariates resulting from repeated observations at different
time points prior to the event or censoring and covariates whose values change ac-
cording to a mathematical function of time. This partial likelihood is given by

Lβ =
k∏
i=1

exp
(∑p

j=1 βjXj(i)(ti)
)∑

l∈R(ti)
exp
(∑p

j=1 βjXj(l)(ti)
)

=

k∏
i=1

exp(β
′
X(i)(ti))∑

l∈R(ti)
exp(β

′
X(l)(ti))

.

(4.32)

4.5.3 Cox PH assumption model checking

The adequacy of the fitted model needs to be assessed after a model has been fitted
to an observed set of survival data. Many model-checking procedures are based on
graphical methods, adding time-dependent covariates as well as a formal test based
on residuals. Residuals refer to the values that can be calculated for each individual
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in the study, and have the feature that their behavior is known, when the model is
satisfactory (Collett, 2015)

4.5.4 Graphical methods

There are two graphical approaches for checking the PH assumption, namely, com-
paring log-log survival curves and comparing observed versus predicted survival
curves.

• Comparing log-log survival curves

Recall that the survival function is given by,

S(t,X) = [S0(t)]exp
( p∑
i=1

βiXi

)
(4.33)

where S0(t) denotes the baseline survival function. After taking logarithm
twice we get

ln[−lnS(t,X)] =

p∑
i=1

βiXi + ln[−lnS0(t)] (4.34)

Then the difference in log-log curves corresponding to two different subjects
X1 = (x11, . . . , x1p) andX2 = (x21, . . . , x2p) is given by

ln[−lnS(t,X1)]− ln[−lnS(t,X2)] =

p∑
i=1

βi(x1i − x2i) (4.35)

which does not depend on t provided the two covariate vectors X1 and X1

are not time dependent. This relationship is very helpful to help us identify
situations where we may have proportional hazards. If a PH model is appro-
priate for a given set of predictors, one should expect that empirical plots of
log-log survival curves for different individuals to be approximately parallel
(Kleinbaum & Klein, 2005). This method does not work well for continuous
predictors or categorical predictors that have many levels because the group
becomes cluttered. Furthermore, the curves are sparse when there are few time
points and it may be difficult to tell how close to parallel is close enough (Th-
erneau & Grambsch, 2013). ”Similarly, although the PH assumption may not
be violated, the log-minus-log curves are rarely perfectly parallel in practice,
and tend to become sparse at longer time points, and thus less precise. It is
not possible to quantify how close to parallel is close enough, and thus how
proportional the hazards are. The decision to accept the PH hypothesis often
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depends on whether these curves cross each other. As a result, the decision
to accept the PH hypothesis can be subjective and conservative” (Schemper,
1992), since one must have strong evidence ”crossing lines” to conclude that
the PH assumption is violated. To alleviate these limitations, Martinussen &
Scheike (2007) suggest providing standard errors to these plots, however this
approach can be computationally intensive and is not directly available in stan-
dard computer programs.

• Comparing observed versus predicted survival curves

The use of observed versus predicted plots to assess the PH assumption is the
graphical analog of the goodness-of-fit (GOF) testing approach. If for each
category of the predictor being assessed, the observed and expected plots are
close to one another, one can then conclude that the PH assumption is satis-
fied. If, however, one or more categories show quite discrepant observed and
expected plots, one can conclude that the PH assumption is violated (Klein-
baum & Klein, 2005)

4.5.5 Residuals for the Cox regression model

Several residuals have been proposed for the assessment of the Cox PH model ad-
equacy. For this project we will briefly discuss the Martingale residuals, Deviance
residuals, Schoenfeld residuals and Score residuals. Others include Cox-Snell resid-
uals and Modified Cox-Snell residuals but we will not discuss these here.

• Martingale residuals

rMi = δi − rCi (4.36)

Eqauation 4.36 is known as a martingale residuals, since they can be derived
using martingale methods (Collett, 2015). Following Collett (2015), Martingale
residuals can take values between −∞ and∞, with the residuals for censored
observations, where δi = 0 being negative. It can be shown that these residu-
als sum to zero and in large samples the Martingale residuals are uncorrelated
with one another and have an expected value of zero (Collett, 2015). In this re-
spect, they have properties similar to those possessed by residuals encountered
in linear regression analysis, however they are not symmetrically distributed
about zero, even when the fitted model is correct.
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• Deviance residuals

The Deviance residuals are symmetrically distributed about zero and were first
introduced by Therneau et al. (1990)

rDi = sgn(rMi)
[
− 2
(
rMi + δilog(δi − rMi)

)] 1
2 , (4.37)

Where rMi is the martingale residual for the ith individual, and the function
sgn(·) is the sign function. This is the function that takes the value +1 if its
argument is positive and −1 if negative. Thus sgn(rMi) ensures that the de-
viance residuals have the same sign as the Martingale residuals (Collett, 2015).
The deviance is a statistic that is used to summarize the extent to which the fit
of a model of current interest deviates from that of a model which is a perfect
fit to the data. This latter model is called the saturated or full model in which
β coefficients are allowed to be different for each individual. The statistic is
given by

D = −2(logL̂c − logL̂f ),

where L̂c is the maximized partial likelihood under the current model and L̂f

is the maximized partial likelihood under the full model. The smaller the value
of the deviance, the better the model (Collett, 2015).

• Schoenfeld Residuals

These residuals are different to the ones mentioned above in a sense that, there
is not a single value of the residual for each individual, but a set of values,
one for each explanatory variable included in the fitted Cox regression model.
Schoenfeld Residuals were originally known as partial residuals. The ith par-
tial or Schoenfeld Residual for Xj , the Xj explanatory variable in the model is
given by

rpji = δi(xji − âji), (4.38)

where xji is the value of the jth explanatory variable, j = 1, . . . , p for the ith

individual in the study,

âji =

∑
l∈R(ti)

xjiexp(β̂
′
xl)∑

l∈R(ti)
exp(β̂

′
xl)

(4.39)

and R(ti) is the set of all individuals at risk at time ti. Note that non-zero
values of these residuals only arise for uncensored observations. Moreover, if
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the largest observation in a sample of survival times is uncensored, the value of
âji for that observation, from equation 4.39, will be equal to xji and so rpji = 0

(Collett, 2015).

The ith Schoenfeld residual, for the explanatory variable Xj is an estimate of
the ith component of the first derivative of the logarithm of the partial likeli-
hood function with respect to βj which is given by

∂logL(β)

∂βj
=

n∑
i=1

δi(xji − âji), (4.40)

where

aji =

∑
l xjlexp(β

′
xl)∑

l∈R(ti)
exp(β

′
xl)

(4.41)

The ith term in this summation, evaluated at β̂ is then the Schoenfeld residual
for Xj given in equation 4.38. Since the estimates of the β’s are such that

(
∂logL(β)

∂βj

)
|β̂ = 0,

the Schoenfeld residuals must sum to zero. These residuals also have the prop-
erty that, in a large sample, the expected values of rpji is zero and they are
uncorrelated with one other. The scaled version of the Schoenfeld residuals,
proposed by Grambsch & Therneau (1994) is more effective in detecting de-
partures from the assumed model and is given by

r∗pi = rV ar(β̂)rpi ,

where

rpi = (rp1i , . . . , rppi)
′

and r is the number of deaths among the n individuals, and V ar(β̂) is the
variance-covariance matrix of the parameter estimates in the fitted Cox regres-
sion model. These scaled Schoenfeld residuals are therefore quite straight for-
ward to compute (Collett, 2015).

• Score Residuals

Just like the Schoenfeld Residuals, the Score Residuals are also obtained from
the first derivative of the logarithm of the partial likelihood function with re-
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spect to the parameter βj , j = 1, · · · , p. However, equation 4.40 is now ex-
pressed as

∂logL(β)

∂βj
=

n∑
i=1

{
δi(xji − aji) + exp(β

′
xi)

∑
tr≤ti

(ajr − xji)δr∑
l∈R(tr) exp(β

′
xl)

}
(4.42)

where xji value of the jth explanatory variable. δi is the event indicator which
is zero for censored observations and unity otherwise, aji is given in equation
4.41, and Rtr is the risk set at time tr. In this formulation, the contribution
of the ith observation to the derivative only depends on information up to
time ti. In other words, if the study was actually concluded at time ti the ith

component of the derivative would be unaffected. Residuals are then obtained
as the estimated value of the n component of the derivative. From equation
4.42 the first derivative of the logarithm of the partial likelihood function, with
respect to βj , is the efficient score for βj and so by Collett (2015) these residuals
are known as score residuals. From equation 4.42, the ith score residual, i =

1, · · · , n for the jth explanatory variable in the model, Xj , is given by

rSji = δi(xji − aji) + exp(β̂
′
xi)

∑
tr≤ti

(âjr − xji)δr∑
l∈R(tr) exp(β

′
xl)

(4.43)

Using equation 4.38, this may be written in the form

rSji = rpji + exp(β̂
′
xi)

∑
tr≤ti

(âjr − xji)δr∑
l∈R(tr) exp(β

′
xl)

(4.44)

Which according to Collett (2015) shows that the score Residuals are modifica-
tions of the Schoenfeld Residuals.

4.5.6 Strategies of dealing with non-proportionality

If nonproportional hazards are detected, then by Therneau & Grambsch (2000), the
researcher may choose between the following options to address the violation;

• If changes in the coefficient over time appears very small or if it appears the
outliers are driving the changes in the coefficient, one can ignore the non-
proportionality. In large datasets, very small departures from proportional
hazards can be detected.

• One can also stratify the model by the non-proportional covariate. The ad-
vantage of stratification is that it allows each stratum to have its own baseline
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hazard, which ultimately solves the non-proportionality problem. The draw-
back of stratifying is that, one cannot test whether the stratifying variable itself
affects the hazard rate significantly.

• Consider including covariate interactions with time as predictors in the Cox
model. Thus a significant interaction indicates violation of the PH assumption.

• Lastly one can consider using alternative regression models such as acceler-
ated failure time models and additive hazard regression models. In section 4.6
below we briefly describe additive hazard regression models.

4.6 Additive hazard regression model

The additive hazards model, also known as the additive Aalen model, originally
suggested by Aalen (1980), is a simple and flexible nonparametric model with well
understood properties. This model was proposed as an alternative method for mod-
eling survival data, when the proportional hazard assumption for the Cox propor-
tional hazards model is violated. However, this model has not gained much popu-
larity in practice, according to Scheike (2006) perhaps this is because the model only
contains nonparametric terms, and that the handling of these terms for inferential
purposes has not been fully developed yet. Other reasons could be lack of familiar-
ity with the models and lack of knowledge on how to implement the models using
existing software Xie et al. (2013). For Aalens model the hazard rate at time t for an
individual i with vector of covariates xi(t) = (xi1(t), · · · , xip(t))

′
takes the form

α(t|xi) = β0(t) + β1xi1(t) + · · ·+ βpxip(t). (4.45)

where β0 is the baseline hazard corresponding to the hazard rate of an individual
with all covariates identically equal to zero, while βj(t) the coefficients in the above
model can be interpreted as the change in hazard at time t, corresponding to a unit
increase in the jth covariate. Note that βj(t) in 4.45 allow the effects of the covariates
to change over time.

According to Xie et al. (2013), unlike the proportional hazards model which es-
timates hazard ratios, an additive model estimates the difference in hazards: the
change in hazard function due to the exposure of interest or stated more simply the
absolute difference in the instantaneous failure rate per unit of change in the expo-
sure variable. Further details about this model can be found in (Aalen, 1980; Scheike,
2006 and Hosmer et al., 2002)
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4.6.1 summary

The Kaplan-Meier and log-rank formulation was discussed. The Cox proportional
hazards model was examined, including residuals used for checking the PH as-
sumption. Furthermore strategies for dealing with non proportionality were briefly
described. The additive hazard regression model as an alternative to model survival
data when the PH assumption fails was briefly described.
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Chapter 5

Joint models for longitudinal and
time-to-event data

5.1 Introduction

This chapter will describe how to jointly model time-to-event data with longitudinal
data following an approach by Rizopoulos (2012).

5.2 Joint model formulation

According to Wu et al. (2012) joint models for longitudinal and time-to-event data
are typically required in the following situations:

• Survival models with measurement errors in time-dependent covariates;

• Longitudinal models with informative dropouts;

• Longitudinal and survival processes governed by a common latent process
and

• The use of external information for more efficient inference.

Furthermore joint models of longitudinal data and time-to-event data entail, im-
proving inference for a time-to-event outcome, whilst taking account of an intermit-
tently and error-prone measured endogenous time-dependent variable Wulfsohn &
Tsiatis (1997) and studying the relationship between the two correlated processes
Henderson et al. (2000).

Formulating a standard joint modelling framework, follows a typical setup where
you have a linear mixed-effects (LME) model for the longitudinal data and a Cox
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proportional hazards (PH) model for the time-to-event data, with the two models
sharing some random effects Wu et al. (2012).This is the so called shared parameter
model approach

5.2.1 The survival sub-model

We shall follow the model formulation by Rizopoulos (2012), thus consider a longi-
tudinal study with n individuals in the sample. The objective is to model the time
to an event of interest or survival time. The main aim is to measure the association
between the longitudinal marker level and the risk for an event, while accounting
for the special features of the former Rizopoulos (2012). To achieve this let mi(t) de-
note the true and unobserved value of the longitudinal outcome at time t. Note that
mi(t) is different from yi(t), where the latter is contaminated with the measurement
error value of the longitudinal outcome at time t. A relative risk model is postulated
to quantify the association between mi(t) and the risk of an event given by

hi(t|Mi(t), wi) = lim
δt→0

Pr

{
t ≤ T ∗i < t+ dt|T ∗i ≥ t,Mi(t), wi

}
= h0(t)× exp

{
γTwi + αmi(t),

}
, t > 0

(5.1)

whereMi(t) =
{
mi(s), 0 ≤ s < t

}
denotes the history of the true unobserved longi-

tudinal process up to time point t, h0(·) denotes the baseline risk function, andwi is a
vector of baseline covariates, with a corresponding vector of regression coefficients
γ. α quantifies the effect of the underlying longitudinal outcome to the risk of an
event (Rizopoulos, 2012).
Usually in standard survival analysis h0(·) is left completely unspecified, however
according to Hsieh et al. (2006), following this route in the joint modelling frame-
work may lead to an underestimation of the standard errors of the parameter esti-
mates. Several approaches in the literature have been proposed to flexibly model
h0(·). According to Rizopoulos (2012) typically used distributions for specification
of the baseline risk function include the Weibull, the log-normal and the Gamma.
Practically, two approaches that work quite satisfactory are the piecewise-constant
models and regression splines;

1. Under the piecewise-constant model, the baseline risk function takes the form:

h0(·) =

Q∑
q=1

ξqI(vq−1 < t ≤ vq), (5.2)

where 0 = v0 < v1 < · · · < vQ denotes a split of the time scale, with vQ being
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larger than the largest observed time, and ξq denotes the value of the hazard
in the interval (vq−1, vq]. According to Rizopoulos (2012), the specification of
the baseline hazard become more flexible as the number of knots increases. In
the limiting case where each interval vq−1, vq contains only a single true event
time (assuming no ties), model 5.2 is equivalent to a standard survival analysis
where h0(·) is left completely unspecified and estimating it using nonparamet-
ric maximum likelihood.

2. For the regression splines model the log baseline risk function is expanded into
B-spline basis functions for cubic splines with the following form:

logh0(t) = k0 +
m∑
d=1

kdBd(t, q), (5.3)

where k = (k0, k1, · · · , km)
′

are the spline coefficients, q denotes the degree of
the B-splines basis function B(·), and m = m̈ + q − 1, denoting the number
of interior knots (Rizopoulos, 2012). Similar to the piecewise-constant model,
increasing the number of knots increases the flexibility in approximating h0(·),
(Rizopoulos, 2012).

5.2.2 The longitudinal sub-model

According to Rizopoulos (2012), to measure the effect of the longitudinal covariate
to the risk for an event, mi(t) needs to be estimated and successfully reconstruct the
complete longitudinal history Mi(t) for each subject. In order for this to work a
suitable mixed-effects model is postulated to describe the subject-specific time evo-
lutions. Following Rizopoulos (2012) consider a linear-mixed effect model with nor-
mally distributed outcomes

yi(t) = mi(t) + ei(t)

mi(t) = x
′
i(t)β + z

′
i(t)bi

bi ∼ N(0, D), ei(t) ∼ N(0, σ2)

(5.4)

Where xi(t) and zi(t) are the design vectors for the fixed effects β and random effects
bi, respectively. Note that the design vectors xi(t) and zi(t) as well as the error terms
ei(t) are time dependent. Furthermore, assume that the error terms are mutually in-
dependent, independent of the random effects and normally distributed with mean
zero and variance σ2 Rizopoulos (2012). According to Wu et al. (2012), in survival
models, some time-dependent covariates may be measured with errors. Thus the
mixed model plays an important role in accounting for that measurement error prob-
lem by postulating that the observed level of the longitudinal outcome yi(t) equals

60



5.3. Estimation of joint models

the true level mi(t) plus a random term. Moreover, the time structure in the defini-
tions of xi(t) and zi(t) , and the use of subject-specific random effects allows to re-
construct the complete path of the time-dependent processMi(t) for each subject Ri-
zopoulos (2012). The survival function Si(t) depends on the whole history of the true
marker levels, therefore obtaining a good estimate ofMi(t) is crucial for an accurate
estimation of Si(t) (Rizopoulos, 2012). To flexibly model the subject-specific longitu-
dinal profiles, several authors have considered spline-based approaches in the joint
models framework (Rizopoulos, 2012). Alternatively, highly nonlinear shapes of
subject-specific evolutions can be modelled using the linear mixed model approach
by incorporating an additional stochastic term that aims to capture remaining se-
rial correlation in the observed measurements not captured by the random effects
(Rizopoulos, 2012). Thus, the linear mixed model is then given by

yi(t) = mi(t) + ui(t)ei(t) (5.5)

where ui(t) is a stochastic process with mean zero, independent of bi and ei(t), and
mi(t) has the same mixed-effects model structure as 5.4 (Rizopoulos, 2012).

5.3 Estimation of joint models

According to Wu et al. (2012), there are two commonly used approaches for inference
of joint models:

1. Two-stage methods

2. Likelihood methods

5.3.1 Two-stage methods

• In the first stage, the linear mixed effects model is fitted to the longitudinal
covariate data, that is, the covariate is modeled using growth curve models
with random effects (Laird & Ware, 1982). At each event time, the individual
random effects are estimated using empirical Bayes methodology (Wulfsohn
& Tsiatis, 1997)

• In the second stage, the survival model is fitted separately, the modeled value
is then substituted into the partial likelihood for the Cox model with time de-
pendent covariates, and the partial likelihood is then maximized Tsiatis et al.
(1995). This modeling approach has been advocated on the basis that it reduces
the bias of the parameter estimate in the Cox model (Wulfsohn & Tsiatis, 1997).

61



5.3. Estimation of joint models

According to Wu et al. (2012), this method is fairly simple and can be implemented
with existing software. The limitation with the two-stage methods, however, is that
they may lead to biased inferences

Following Wu et al. (2012), the bias in the estimation of the longitudinal model pa-
rameters caused by ignoring the informative truncations from the events may de-
pend on the strength of the association between the longitudinal process and the sur-
vival process. The bias resulting from ignoring the estimation uncertainty in Stage
1 may depend on the magnitude of measurement errors in covariates. To address
these issues, various modified two-stage methods have been proposed, leading to
better two-stage methods.

5.3.2 Likelihood methods

Wulfsohn & Tsiatis, 1997; Henderson et al., 2000 and Hsieh et al., 2006 proposed a
semi-parametric maximum likelihood method to estimate joint models (Rizopoulos,
2012). According to (Rizopoulos, 2012), the maximum likelihood estimates are de-
rived as the modes of the log-likelihood function corresponding to the joint distribu-
tion of the observed outcomes Ti, δi, yi. ”Assume that the vector of time-independent
random effects bi underlies both the longitudinal and survival process. This means
that these random effects account for both the association between the longitudinal
and event outcomes, and the correlation between the repeated measurements in the
longitudinal process (conditional independence)”. This means the distribution can
be factored into a product of two components as

p(Ti, δi, yi|bi, θ) = p(Ti, δi|bi, θ)p(yi|bi, θ) (5.6)

and

p(yi|bi, θ) =
∏
j

p(yi(tij)|bi, θ), (5.7)

with θ = (θ
′
t, θ
′
y, θ

′
b)
′
denoting the full parameter vector, with θt denoting the parame-

ters for the event time outcome, θy the parameters for the longitudinal outcomes and
θb the unique parameters of the random-effects covariance matrix, and yi is the ni×1

vector of the longitudinal responses of the ith subject. Furthermore, assume that
given the event history, the censoring mechanism and the visiting process are inde-
pendent of the true event times and future longitudinal measurements (Rizopoulos,
2012). Under these assumptions the log-likelihood contribution for the ith subject
takes the following form
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logp(Ti, δi, yi; θ) = log

∫
p(Ti, δi, yi; θ)dbi

= log

∫
p(Ti, δi|bi; θt, β)

[∏
j

p
{
yi(tij)|biθy

}]
P (bi; θb)dbi,

(5.8)

with the conditional density for the survival part p(Ti, δi|bi; θt, β)) taking the form

p(Ti, δi|bi; θt, β) = hi(Ti|Mi(Ti); θt, β)δiSi((Ti|Mi(Ti; θt, β)

=

[
h0(Ti)exp

{
γ
′
wi + αmi(Ti)

}]δi
× exp

(
−
∫ Ti

0
h0(s)exp

{
γ
′
wi + αmi(s)

}
ds

)
,

(5.9)

where h0(·) can be any positive function of time, such as the piecewise-constant
model 5.2, or the B-spline model 5.3 or the hazard function of any known distribu-
tion, and the survival function given by 5.1. The joint density for the longitudinal
responses together with the random effects is given by

p(yi|bi)p(bi; θ) =
∏
j

p(yi(tij)|bi; θyp(bi; θb))

= (2πσ2)−ni/2exp||yi −Xiβ − Zibi||2/2σ2

× (2π)−qb/2det(D)−1/2exp(−b′iD−1bi/2),

(5.10)

where qb denotes the dimensionality of the random-effects vector, and ||x|| denotes
the Euclidean vector norm (Rizopoulos, 2012). Maximization of the log-likelihood
function l(θ) =

∑
i
logp(Ti, δi, yi; θ)) with respect to θ can be achieved using stan-

dard algorithms, such as the Expectation-Maximization (EM; Dempster et al. (1977))
algorithm or the Newton-Raphson algorithm or any of its variants (Hunter & Lange,
2004). In the joint modelling literature the EM algorithm has been traditionally pre-
ferred (treating the random effects as ”missing data”), mainly due to the fact that
in the M-step some of the parameters have closed-form updates Rizopoulos (2012).
However, according to Rizopoulos (2012), a serious drawback of the EM algorithm
is its linear convergence rate that results in slow convergence especially near the
maximum.
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5.4 Asymptotic inference for joint models

5.4.1 Hypothesis testing

In general, if one is interested in testing the null hypothesis

H0 : θ = θ0 versus Ha : θ 6= θ0, (5.11)

According to Rizopoulos (2012), we could use the standard asymptotic likelihood
inference tests in Table 5.1 below

Table 5.1: Standard asymptotic likelihood inference tests

Test Parameter

Likelihood ratio test LRT = −2
{
l
(
θ̂0

)
− l
(
θ̂
)}

Score test U = ST (θ̂0)
{
I(θ̂0)

}−1
S(θ̂0)

Wald test W = (θ̂ − θ0)T I(θ̂)(θ̂ − θ0)

where θ̂0 and θ̂ denote the maximum likelihood estimates under the null and al-
ternative hypothesis, respectively. S(·) and I(·) denote the score function and the
observed information matrix of the model under the alternative hypothesis. Under
the null hypothesis, the asymptotic distribution of each of these tests is based on a
chi-squared distribution on p degrees of freedom, where p denotes the number of
parameters being tested (Rizopoulos, 2012). For a single parameter θj the Wald test
is equivalent to (θ̂j− θ0j)/ŝ.e(θ̂j), which follows an asymptotic standard normal dis-
tribution. According to Rizopoulos (2012), ”these test statistics are approximately
low-order Taylor series expansion of each other, and they are asymptotically equiv-
alent. However, in practice, when we are dealing with finite samples, they usually
differ. In this case, the likelihood ratio test is generally considered the most reliable
compared to the Wald test. The Score and the Wald test require fitting the model only
under the null and alternative hypotheses, respectively, whereas the likelihood ratio
test requires to fit the joint model under both hypothesis, and thus it is a bit more
computationally expensive” (Rizopoulos, 2012). In the presence of missing data in
the variable of interest, then the score test will be more efficient since it requires
fitting the model under only the null hypothesis and therefore, avoids a case-wise
deletion of missing values.
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5.5 Estimation of the random effects

The random effects bi in the joint model framework are used as a construct to de-
scribe the heterogeneity in the subject longitudinal evolutions and to build the as-
sociation between the longitudinal and event time processes. To derive predictions
for either outcome, an estimate of the random effects vector bi is required. Since the
random effects are assumed to be random variables, then according to Rizopoulos
(2012), it is natural to estimate them using Bayesian paradigm. In particular, assum-
ing that p(bi; θ) is the prior distribution, and that p(Ti, δi|bi; θ)p(yi|bi; θ) is the condi-
tional likelihood part, the corresponding posterior distribution can be be derived as
follows

p(bi|Ti, δi, yi; θ) =
p(Ti, δi|bi; θ)p(yi|bi; θ)p(bi; θ)

p(Ti, δi, yi; θ)

∝ p(Ti, δi|bi; θ)p(yi|bi; θ)p(bi; θ).
(5.12)

In mixed models this 5.12 is a multivariate normal distribution, whereas in the joint
model framework it does not have a closed-form solution and it has to be numeri-
cally computed (Rizopoulos, 2012). To describe this posterior distribution, standard
summary measures are often utilized. For its location the mean or the mode are
typically used, defined asb̄i =

∫
bip(bi|Ti, δi, yi; θ)dbi, and

b̂i = arg maxb
{

log p(b|Ti, δi, yi; θ)
}
,

(5.13)

respectively, and as a measure of dispersion we may use the posterior variance or
the inverse Hessian matrix of the random effects, i.e.,var(bi) =

∫
(bi − b̄i)2p(bi|Ti, δi, yi; θ)dbi, and

Hi =
{
− ∂2logp(b|Ti,δi,yi;θ)

∂bT ∂b
|b=b̂i

}−1
.

(5.14)

For the estimation of 5.13 and 5.14, an empirical Bayes approach is employed where
θ is replaced by θ̂ (Rizopoulos, 2012).

5.6 Advantages of joint models

Often longitudinally measured data and time-to-event or survival data are associ-
ated in some ways. For example, in this study patients infected with HIV were
monitored until they developed AIDS or died, and markers such as the CD4 lym-
phocyte count and CD8 lymphocyte count or the estimated viral load were regularly
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measured. Thus, the association between time to event and the longitudinal trajec-
tories. Separate analyses of longitudinal data and survival data are not applicable
in this case because they may lead to inefficient or biased results. Joint models, on
the other hand, provide valid and efficient inferences by optimally incorporating all
available information (longitudinal and survival data) simultaneously (Wulfsohn &
Tsiatis, 1997). Several other advantages of jointly modelling longitudinal and sur-
vival data taken from (Faucett & Thomas, 1996) are listed below

• Jointly modelling longitudinal (covariate) and survival data reduces bias in
parameter estimates due to measurement error and informative censoring

• The model allows for unequally spaced measurements, or missing covariate
data and censoring of survival times

• ”In a survival analysis setting, where the covariate of interest is time-dependent,
either the entire history of the covariate for every subject, or, minimally, mea-
surements of the covariate at each time of disease occurrence for all subjects in
the corresponding risk set, are necessary. This extensive measurement of co-
variate is rarely, if ever, executed and the values obtained are typically subject
to measurement error. Thus by modelling the covariates over time, we can en-
hance the survival analysis since we can interpolate covariate values between
the observed measurements to the specific times of disease occurrence, with
the use of the entire covariate history of the subjects”.

• Furthermore, according to Faucett & Thomas (1996), after accounting for mea-
surement error, the standard error of the relative risk estimate will reflect cor-
rectly the uncertainty in the measurements of the covariate. Conversely, utiliz-
ing the survival data in the covariate tracking (longitudinal) model will yield
improved covariate tracking parameter estimates by allowing adjustment for
informative right censoring of the repeated measurements by the disease pro-
cess.

• The joint model has the distinct advantage of simultaneously modelling two
response variables (for example in this study, CD4+ count and time-to-death),
this allows the researcher some degree of flexibility (Ramroop, 2010).

5.7 Joint model diagnostics

5.7.1 Residuals for the longitudinal part

In the standard linear mixed-effects model, two types of residuals are often used,
namely subject-specific (conditional) residuals and the marginal (population aver-
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aged) residuals, see section 3.6.1 for more details. According to Rizopoulos (2012),
conditional residuals predict the conditional errors ei(t), and can be used for check-
ing the homoscedasticity and normality assumptions, whereas marginal residuals
predict the marginal errors yi −Xiβ = Zibi + ei, and can be used to investigate mis-
specification of the mean structure Xiβ as well as to validate the assumptions for
the within-subjects covariance structure Vi. These two residuals can also be used to
check the assumptions of the longitudinal part of a joint model as well (Rizopoulos,
2012).

5.7.2 Residuals for the survival part

According to Rizopoulos (2012) martingale residuals are the standard type of resid-
uals for the relative risk submodel of the joint model. These residuals are given by

rtmi (t) = Ni(t)−
∫ t

0
Ri(s)hi(s|M̂i(s); θ̂)ds

= Ni(t)−
∫ t

0
Ri(s)ĥ0(s)exp

{
γ̂Twi + α̂m̂i(s)

}
ds

(5.15)

where ”Ni(t) is the counting process denoting the number of events for subject i by
time t, Ri(t) is the left continuous at risk process with Ri(t) = 1 if subject i is at risk
at time t, and Ri(t) = 0 otherwise. m̂i(t) = xTi (t)β̂ + zTi (t)b̂i and ĥ0(·) denotes the
estimated baseline risk function (Rizopoulos, 2012). rtmi (t) can be seen as the differ-
ence between the observed number of events and predicted or expected number of
events by the same time based on the fitted model”. According to Rizopoulos (2012),
martingale residuals are mainly used for a direct identification of excess events and
for evaluating whether the appropriate functional form for a covariate of interest
has been used in the model. Alternatively, one can use Cox-Snell residuals which
are calculated as the value of the estimated cumulative risk function evaluated at
the observed event time Ti, that is

rtcsi =

∫ Ti

0
(hi(s|M̂i(s); θ̂)ds

=

∫ Ti

0
ĥ0(s)exp(γ̂Twi + α̂m̂i(s))ds,

(5.16)

and thus, rtcsi = Ni(Ti) − rtmi (Ti). ”According to the probability integral transform,
when the assumed model fits the data well we expect that the probability of survival
time t, i.e., S(t) = Pr(T ∗i > t) will have a uniform distribution in [0.1], and therefore
the cumulative hazard, defined as H(t) = −logS(t) will have a unit exponential
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distribution. This identity implies that we can check the overall goodness of fit of
our relative risk sub-model by checking whether the Cox-Snell residuals rtcsi are unit
exponentially distributed. However, according to Rizopoulos (2012), a complexity
in the practical use of these residuals is that they are evaluated at the observed event
time Ti, and thus when Ti is censored, rtcsi will be censored as well. Hence in order to
check the fit of the model, while accounting for the fact that rtcsi is actually a censored
sample from a unit exponential distribution, we compare the survival function of the
unit exponential distribution, Eexp(t) = exp(−t), with the Kaplan-Meier estimate of
the survival function of rtcsi ” (Rizopoulos, 2012).

5.7.3 Summary

The joint model methodology by Rizopoulos (2012) was examined. The advantages
of joint models over separate analyses were discussed
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Chapter 6

Application

6.1 Modelling square root CD4 count

In this chapter various linear mixed models will be fitted to determine the effect
of different variables on CD4 count (square root transformed). The focus will be
based on describing the mean model for square root CD4 count while also trying to
capture the best correlation structure of the repeated measurements within a subject.
This is because misspecification of the covariance structure for repeated measures in
longitudinal analysis may lead to biased estimates of the model parameters. Given a
set of candidate covariance structures for the data, the preferred structure is the one
with the minimum Akaike information criterion (AIC) value. Generally, to develop
the best fitting model for the data is not an easy task. Model selection is one of the
major challenges faced in data analysis, the likelihood ratio test will be used as a
selection criteria when comparing two nested models. Model building will be done
using the stepwise procedure in SAS, version 9.4 (SAS Institute INC., Cary) and R
version 3.5.1.

6.2 Univariable models

All the models for CD4 count outcome were fitted using the MIXED procedure in
SAS software. The advantage of using linear mixed models is that it uses all avail-
able data including incomplete case. This method yields a consistent estimator of
precision, even if the covariance is misspecified (Verbeke & Molenberghs, 2000).

6.2.1 Random effects model

Various covariance structures were used to model the within and between variation.
Maximum likelihood (ML) and restricted maximum likelihood method (REML) are
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the estimation methods to be used. Independence structure, autoregressive and
Toeplitz covariance structures were inappropriate for our data because: (1) Inde-
pendence structure assumes that repeated measures are uncorrelated which is un-
realistic with a longitudinal study. (2) Toeplitz structure assumes that correlations
between equally distant points is constant which most likely not the case with our
study given we had fairly long individual sequence of observations. (3) Autore-
gressive structure assumes that the measurements are equally spaced which is not
the case with our study because of unplanned visits and missing values which ex-
acerbated the coarseness of the data. We also tested the unstructured covariance
structure as it is the most flexible, however it did not converge. We compared the
AIC’s of compound symmetry, spatial spherical, spatial power, spatial exponential,
spatial Gaussian, and spatial linear covariance structures. We used AIC instead of
the likelihood ratio test because the chosen structures were not nested within each
other and also the likelihood ratio test would not be valid under REML.

Yij = β0 + b0i + (β1 + b1i)tij + eij (6.1)

Table 6.1: Covariance Parameter Estimates for the univariable random effects model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 13.2125 1.3727 9.62 < .0001
UN(2,1) -3.4465 0.3361 -10.25 < .0001
UN(2,2) 2.5496 0.2591 9.84 < .0001
Variance 11.1209 1.4933 7.45 < .0001
SP(SPH) 31.8709 4.0896 7.79 < .0001
Residual 2.4560 0.1777 13.82 < .0001

Table 6.2: Solution for fixed effects for the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 13.5911 0.1203 1645 113.01 < .0001
times years 2.6385 0.06253 1488 42.20 < .0001

Table 6.1 shows that the random intercepts and slopes are significantly different
from zero. The covariance between the random intercept and slope is given by UN
(2,1), which is negative and statistically significant. The AIC for this model is 41972.9
which is smaller than 42484.8 the AIC for the marginal model, implying that the
random effects model fits our data well. The results in Table 6.2 give us an average
intercept and slope over time where β0 =13.5911 is the average square root CD4
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count at baseline and this is an estimate of the population mean. β1 =2.6385 is an
estimate for the population rate of increase of square root CD4 count. The intercept
and slope for each patient is given by (β0 + b0i) and (β1 + b1i) respectively. The next
model is where the relationship between CD4 count and gender will be explored.
The model is given by:

Yij = β0 + b0i + β1Gi + β2tij + β3Gitij + b1itij + eij (6.2)

where Gi = 1 if male

Gi = 0 if female
(6.3)

Table 6.3: Covariance Parameter Estimates for gender under the univariable random effects
model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 12.1469 1.3546 8.97 < .0001
UN(2,1) -3.3361 0.3306 -10.09 < .0001
UN(2,2) 2.4857 0.2576 9.65 < .0001
Variance 11.3363 1.4906 7.61 < .0001
SP(SPH) 31.9933 3.9368 8.13 < .0001
Residual 2.4205 0.1780 13.60 < .0001

Table 6.4: Solution for fixed effects under the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 14.3020 0.1477 1644 96.83 < .0001

times years 2.5582 0.07564 1487 33.82 < .0001

Gender Men -2.0794 0.2438 4698 -8.53 < .0001

times years*gender Men 0.1525 0.1323 4698 1.15 0.2491

In this model, the mean rate of change for males and females is given by β2 and
(β2+β3) respectively. The results for this model are given by Table 6.3 and Table 6.4.
Table 6.4 show that male and female patients have mean square root CD4 count of
12.2226 (14.3020-2.0794) and 14.3020 respectively. They also, on average gain square
root CD4 count at the rate of 2.7107 (2.5582+0.1525) and 2.5582 respectively. The
intercepts are statistically significantly different with females on average having a
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higher mean rate of change in square root CD4 count than males. The results are in
line with exploratory data analysis in chapter 2, Figure 2.6b where we showed that
females had higher mean CD4 count over time. The next sub-model fitted assesses
whether the mean rate of change is the same in the two sites and this the model is
given by;

Yij = β0 + b0i + β1Si + β2tij + β3Sitij + b1itij + eij (6.4)

Si = 1 If EThekwini site

Si = 0 If Vulindlela site
(6.5)

Table 6.5: Covariance Parameter Estimates for site under the univariable random effects
model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 12.9013 1.1582 11.14 < .0001
UN(2,1) -3.3159 0.3284 -10.10 < .0001
UN(2,2) 2.4653 0.2438 10.11 < .0001
Variance 11.2772 1.1762 9.59 < .0001
SP(SPH) 32.4517 2.8763 11.28 < .0001
Residual 2.4612 0.1764 13.95 < .0001

Table 6.6: Solution for fixed effects for site under the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 13.8685 0.1393 1643 99.58 < .0001

times years 2.4638 0.06870 1488 35.86 < .0001

Site EThekwini -1.0591 0.2740 4698 -3.87 0.0001
times years*site EThekwini 0.7363 0.1596 4698 4.61 < .0001

The results in Table 6.6 show that the interaction term times years*site is significant,
implying that the inclusion of random intercept and slope in the model allows the
rate of change from both sites to differ significantly at 5% level of significance. Pa-
tients from the EThekwini and Vulindlela site have mean square root CD4 count
of 12.8094 (13.8685-1.0591) and 13.8685 respectively. They also, on average gain
square root CD4 count at the rate of 3.2001 (2.4638+0.7363) and 2.4638 respectively.
The intercepts and slopes are statistically significantly different with patients from
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the EThekwini site on average having a higher mean rate of change in square root
CD4 count than those from the Vulindlela site. The next sub-model fitted assesses
whether the mean rate of change is the same for patients without TB and those with
prevalent TB and the model is given by:

Yij = β0 + b0i + β1Bi + β2tij + β3Bitij + b1itij + eij (6.6)

Bi = 1 if prevalent TB

Bi = 0 if no TB
(6.7)

Table 6.7: Covariance Parameter Estimates for TB status under the univariable random ef-
fects model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 13.1707 1.3945 9.44 < .0001

UN(2,1) -3.2084 0.3261 -9.84 < .0001

UN(2,2) 2.3894 0.2463 9.70 < .0001

Variance 10.7989 1.5044 7.18 < .0001

SP(SPH) 31.4333 4.3450 7.23 < .0001

Residual 2.4772 0.1751 14.14 < .0001

Table 6.8: Solution for fixed effects for TB status under the univariable random effects
model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 12.5455 0.2573 1644 48.76 < .0001
times years 3.6831 0.1593 1488 23.12 < .0001
TB status No TB 1.3420 0.2904 4697 4.62 < .0001
times years*TB status No TB -1.3007 0.1724 4697 -7.54 < .0001

Table 6.8 shows patients with no TB and those with prevalent TB have mean square
root CD4 count of 13.8875 (12.5455+1.3420) and 12.5455 respectively. They also, on
average gain square root CD4 count at the rate of 2.3824 (3.6831-1.3007) and 3.6831
respectively. The intercepts and slopes are statistically significantly different with
patients with prevalent TB on average having a higher mean rate of change in square
root CD4 count than those without TB. The next set of models will explore the rela-
tionship between square root CD4 count and the four continuous variables namely
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age, BMI, baseline CD8 count and baseline viral load separately.

Table 6.9: Covariance Parameter Estimates for age under the univariable random effects
model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 13.3158 1.3289 10.02 < .0001

UN(2,1) -3.4821 0.3372 -10.33 < .0001

UN(2,2) 2.5675 0.2586 9.93 < .0001

Variance 10.9673 1.4248 7.70 < .0001

SP(SPH) 31.5365 3.9099 8.07 < .0001

Residual 2.4643 0.1773 13.90 < .0001

Table 6.10: Solution for fixed effects for age under the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 14.0840 0.4731 1643 29.77 < .0001
times years 3.0727 0.2592 1488 11.86 < .0001
Age -0.01443 0.01315 4698 -1.10 0.2724
times years*age -0.01243 0.007121 4698 -1.75 0.0809

Looking at Table 6.10, the estimate for age is not statistically significantly differ-
ent from zero (P-value = 0.2724). This implies that the regression of square root CD4
count on age is not statistically significant given time (times years) and times years*age
are in the model. This means that younger and older patients started HAART with
almost the same CD4 count. However, the interaction times years*age is negative
and also not statistically significant (P-value = 0.0809). Continous variables re fre-
quently modified into categorical variables because interpreting their interaction
term is very tricky (Van Walraven & Hart, 2008).
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Table 6.11: Covariance Parameter Estimates for BMI under the univariable random effects
model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 12.8752 1.3663 9.42 < .0001

UN(2,1) -3.3638 0.3331 -10.10 < .0001

UN(2,2) 2.5227 0.2583 9.77 < .0001

Variance 11.1887 1.4885 7.52 < .0001

SP(SPH) 31.9776 4.0305 7.93 < .0001

Residual 2.4482 0.1774 13.80 < .0001

Table 6.12: Solution for fixed effects for BMI under the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 12.0300 0.8347 1642 14.41 < .0001
times years 3.0585 0.2971 1488 10.29 < .0001
BMI 0.06529 0.03481 4699 1.88 0.0607
times years*bmi -0.01767 0.01208 4699 -1.46 0.1435

The parameter estimate of the effect of BMI on square root CD4 count is 0.06529
and it is not statistically significant (P-value = 0.0607). Implying that for every unit
increase in BMI the mean square root CD4 count increases by 0.06529 units, while
setting all the other explanatory variables constant .This is an indication of a positive
correlation between mean square root CD4 count and the BMI of that individual at
that time.

Table 6.13: Covariance Parameter Estimates for square root CD8 count under the univari-
able random effects model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 9.2726 1.2502 7.42 < .0001
UN(2,1) -2.1488 0.2846 -7.55 < .0001
UN(2,2) 2.0961 0.2232 9.39 < .0001
Variance 11.5492 1.3432 8.60 < .0001
SP(SPH) 33.5600 3.6296 9.25 < .0001
Residual 2.4713 0.1725 14.32 < .0001
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Table 6.14: Solution for fixed effects for square root CD8 count under the univariable ran-
dom effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 7.5405 0.3967 1643 19.01 < .0001

times years 4.8707 0.2064 1488 23.60 < .0001

sqrtcd8 0.2096 0.01321 4698 15.86 < .0001

times years*sqrtcd8 -0.07796 0.006272 4698 -12.43 < .0001

For every unit increase in baseline CD8 count, the square root CD4 count increases
by 0.2096 units subject to other effects held constant in the model. The interaction
term times years*sqrtcd8 is statistically significant (P< .0001) meaning that the rate
of change is different for everyone for different baseline square root CD8 values 6.14.

Table 6.15: Covariance Parameter Estimates for log10 under the univariable random effects
model

Effect Estimate Standard Error Z Value Pr > Z

UN(1,1) 12.6457 1.1254 11.24 < .0001

UN(2,1) -3.2545 0.3266 -9.96 < .0001

UN(2,2) 2.4860 0.2432 10.22 < .0001

Variance 11.1154 1.1248 9.88 < .0001

SP(SPH) 32.1992 2.7797 11.58 < .0001

Residual 2.4867 0.1754 14.18 < .0001

Table 6.16: Solution for fixed effects for log10 under the univariable random effects model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 17.4233 0.6518 1642 26.73 < .0001

times years 1.1834 0.3516 1488 3.37 0.0008
Logviral -0.7717 0.1282 4699 -6.02 < .0001

times years*logviral 0.2921 0.07014 4699 4.16 < .0001

Table 6.16 shows that for every unit increase in baseline log10 viral load the square
root CD4 count decreases by 0.7717 units, subject to other effects held constant in the
model. Implying that there is a negative correlation between CD4 count and viral
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load. The interaction term times years*logviral is statistically significant (P< .0001)
meaning that the rate of change is different for everyone for different baseline log
viral load values.

6.2.2 Marginal model

We fitted a marginal model investigating the effect of time on the square root CD4
count. This model is given by

Yij = β0 + β1tij + eij (6.8)

where Yij is the jth square root CD4 count measurement for the ith subject for i =

1, 2, · · · , N and j = 1, 2, · · · , ni. β0 is the intercept, tij represents the years post
infection at the ith visit, while β1 is the slope estimate for the change in square root
CD4 count for every one visit increase. The eij is the random error associated with
the jth measurement for subject i. In this model individuals have the same mean
response over time.

Table 6.17: Covariance Parameter Estimates for the univariable marginal model

Cov Parm Estimate Standard Error Z Value Pr > Z

Variance 26.5566 1.0857 24.46 < .0001

SP(SPH) 54.2824 2.2200 24.45 < .0001

Residual 2.2512 0.2618 8.60 < .0001

Table 6.17 presents the covariance parameter estimates. These are estimates for ran-
dom effects portion of the model. The variance component for patients is highly
significant between patient variation and the residual variance is also significant at
5% level of significance

Table 6.18: Solution for fixed effects for the univariable marginal model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 14.6774 0.1490 1645 98.48 < .0001
times years 1.3610 0.08246 6186 16.51 < .0001

The results in Table 6.18 present an average intercept and slope over time. β0 =

14.6774 is the average intercept across patients and β1 = 1.3610 is the average slope
across all patients. In other words, the average square root CD4 count at baseline is
14.6774. Hence the average person with a square root CD4 count of 14.6774 gained
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square root CD4 count of 1.3610 per visit holding other variables fixed. This is in
line with Figure 2.5a in Chapter 2. We compared the marginal model to the random
effects model and we found that the AIC for this model is 42484.8 which is bigger
than that of the random effects model (41972.9), implying that the random effects
model is a better fit for our data.

6.3 Multivariable models

6.3.1 Marginal model

We fitted a marginal model to the square root CD4 count with all the variables in the
model. Table 6.20 gives a summary of log Likelihood, AIC, AICC and BIC for the
chosen structures using ML and REML as methods of estimation respectively. As il-
lustrated in Table 6.20, spatial spherical structure is the best covariance structure for
our analysis under both ML and REML methods of estimation with AIC= 41865.5
for ML and 41906.9 for REML. The model was then fitted under ML so that insignif-
icant fixed effects will be deleted one at a time starting with the most insignificant
one and the results are presented in table 7.1 and 7.2. The variables TB status, age,
BMI and the interaction terms times years*gender and BMI*times years are statisti-
cally insignificant. We will start by removing the most insignificant term which is
BMI*times years, however TB status will not be removed from the model because it
is involved in a significant interaction and age will not be removed as well because
it is an important variable. According to Hallahan (2003), variables with subject
matter importance should be kept in the model . After removing all the statistically
insignificant terms, the AIC decreased from 41865.5 to 41864.4 and the likelihood ra-
tio test significantly increased from 4852.65 to 4857.48 (P-value< 0.0001) indicating
a much better model fit. The final model was fitted using the REML algorithm and
the results for this model are given in table 6.19, 6.21 and 6.22

Table 6.19: Covariance Parameter Estimates under the marginal multivariable model

Cov Parm Estimate Standard Error Z Value Pr > Z

Variance 22.4176 0.7150 31.35 < .0001

SP(SPH) 52.7733 1.9216 27.46 < .0001

Residual 2.4434 0.1659 14.72 < .0001
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Table 6.20: Fit statistics for different covariance structures by ML and REML under the
marginal multivariable model

Covariance structure -2 Log Likelihood AIC BIC

Maximum Likelihood (ML)

SP(SPH) 41827.5 41865.5 41968.2
SP(POW) 41899.2 41937.2 42039.9
SP(EXP) 41899.2 41937.2 42039.9
SP(GAU) 41876.8 41914.8 42017.5
SP(LIN) 41845.2 41883.2 41985.9
CS 43434.6 43470.6 43567.9

Restricted Maximum Likelihood (REML)

SP(SPH) 41900.9 41906.9 41923.1
SP(POW) 41972.9 41978.9 41995.1
SP(EXP) 41972.9 41978.9 41995.1
SP(GAU) 41949.1 41955.1 41971.3
SP(LIN) 41919.3 41925.3 41941.5
CS 43512.4 43516.4 43527.2

Table 6.21: Solution for Fixed Effects under the marginal multivariable model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 12.4819 1.0194 1639 12.24 < .0001

Site EThekwini -0.9703 0.3086 1639 -3.14 0.0017
Gender Men -1.8233 0.2057 1639 -8.87 < .0001

TB status No TB 0.6263 0.3463 1639 1.81 0.0707
Age -0.00105 0.01358 1639 -0.08 0.9384
logviral -0.7469 0.1402 1639 -5.33 < .0001

sqrtcd8 0.2049 0.01398 1639 14.66 < .0001

times-years 3.1199 0.5809 6181 5.37 < .0001

times-years*site EThekwini 0.5955 0.1885 6181 3.15 0.0016
times-years*TB status No TB -0.7921 0.2503 6181 -3.16 0.0016
times-years*age -0.01628 0.007607 6181 -2.14 0.0323
times-years*logviral 0.3048 0.08102 6181 3.76 0.0002
times-years*sqrtcd8 -0.06364 0.006724 6181 -9.46 < .0001

79



6.3. Multivariable models

Table 6.22: Type 3 Tests of Fixed Effects under the marginal multivariable model

Effect Num DF Den DF F Value Pr > F

Site 1 1639 9.89 0.0017
Gender 1 1639 78.61 < .0001

TB status 1 1639 3.27 0.0707
Age 1 1639 0.01 0.9384
logviral 1 1639 28.39 < .0001

sqrtcd8 1 1639 214.80 < .0001

times years 1 6181 32.24 < .0001

times years*site 1 6181 9.98 0.0016
times years*TB status 1 6181 10.01 0.0016
age1*times years 1 6181 4.58 0.0323
logviral*times years 1 6181 14.15 0.0002
sqrtcd8*times years 1 6181 89.57 < .0001

6.3.2 Random effects model

Just like in the marginal model we compared the covariance structures for the ran-
dom effects model and the unstructured covariance structure was the best fit for the
random intercept and slope but the spatial spherical structure was found to be the
best fit for the repeated measurements under both ML and REML with AIC=41532.2
for ML and 41569.4 for REML, the results are illustrated in Table 7.3.

Table 6.23: Covariance Parameter Estimates under the random effects multivariable model

Cov Parm Estimate Standard Error Z Value Pr > Z

UN(1,1) 8.2187 1.1685 7.03 < .0001

UN(2,1) -1.8707 0.2704 -6.92 < .0001

UN(2,2) 1.9056 0.2074 9.19 < .0001

Variance 11.3421 1.2339 9.19 < .0001

SP(SPH) 33.4894 3.3765 9.92 < .0001

Residual 2.4975 0.1680 14.87 < .0001

The AIC for this model is 41569.4 which is smaller than 41906.9 that we used when
selecting the spatial spherical covariance structure in table 6.20 under the marginal
model. Just like in the marginal model, this model was also fitted under ML first
and the results are illustrated in Table 7.4 and 7.5. The variables prev, age1, BMI
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and the interaction terms, times years*site, times years*gender, age*times years and
BMI*times years are statistically insignificant. We will start by removing the most
insignificant term which is BMI*times years, however TB status will not be removed
from the model because it is involved in a significant interaction and age will not be
removed as well because it is an important variable. After removing all the statis-
tically insignificant terms, the AIC decreased from 41532.2 to 41530.0 and the like-
lihood ratio test significantly increased from 5191.91 to 5206.26 (P-value< 0.0001)
indicating a much better model fit. The final model was fitted using the REML algo-
rithm and the results for this model are given in table 6.24, 6.25 and 6.26

Table 6.24: Covariance Parameter Estimates under the final random effects multivariable
model

Cov Parm Estimate Standard Error Z Value Pr > Z

UN(1,1) 12.9874 0.6773 19.18 < .0001

UN(2,1) -2.5179 0.2827 -8.91 < .0001

UN(2,2) 2.5753 0.2076 12.40 < .0001

Variance 6.1359 1.3262 18.81 < .0001

SP(SPH) 1.7897 0.1099 16.29 < .0001

Residual 2.9862 0.1504 19.85 < .0001

Table 6.25: Solution for Fixed Effects under the final random effects multivariable model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 12.2626 0.8472 1637 14.47 < .0001

Site EThekwini -0.2964 0.2369 4698 -1.25 0.2109
Gender Men -1.6942 0.2054 4698 -8.25 < .0001

TB status No TB 0.5314 0.2848 4698 1.87 0.0621
Age -0.02673 0.01066 4698 -2.51 0.0122
logviral -0.6009 0.1204 4698 -4.99 < .0001

sqrtcd8 0.1903 0.01285 4698 14.80 < .0001

times years 4.8535 0.4411 1487 11.00 < .0001

times years*TB status No TB -1.1629 0.1697 4698 -6.85 < .0001

times years*logviral 0.2045 0.06903 4698 2.96 0.0031
times years*sqrtcd8 -0.07192 0.006586 4698 -10.92 < .0001

Looking at Table 6.25, β0=12.2626 is the average random intercept across patients.
In other words, the average square root CD4 count at baseline is 12.2626. β1=4.8535
is the average random slope across all patients. Hence the average person with
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a square root CD4 count of 12.2626 gained square root CD4+ count of 4.8535 per
visit. Hence for every year post HAART initiation, CD4 count on average increases
significantly by 4.8535 square root cells (P-value< .0001) , showing that over time
CD4 count increases after HAART initiation, which is what is expected. Patients
from the EThekwini site start with low mean square root CD4 count compared to
those from Vulindlela site but this is not significant (P-value= 0.2109). Males and
older people on average have a significantly lower mean rate of change in square
root CD4 count. Patients presenting without TB at ART initiation started HAART
with high mean CD4 count compared to those with prevalent TB but their rate of
change in CD4 count is significantly less compared to those with prevalent TB (P-
value< .0001). For a unit increase in baseline log viral load, CD4 count significantly
decreases by 39.91% (P-value< .0001) subject to other effects held constant in the
model. Implying that there is a negative correlation between CD4 count and viral
load. For every unit increase in baseline square root CD8 count, the square root CD4
count increases by 0.1903 units subject to other effects held constant in the model.

Table 6.26: Type 3 Tests of Fixed Effects under the final random effects multivariable model

Effect Num DF Den DF F Value Pr > F

Site 1 4698 1.57 0.2109
Gender 1 4698 68.07 < .0001

TB status 1 4698 3.48 0.0621
Age 1 4698 6.29 0.0122
logviral 1 4698 24.93 < .0001

sqrtcd8 1 4698 219.17 < .0001

times years 1 4698 105.03 < .0001

times years*TB status 1 4698 46.97 < .0001

logviral*times years 1 4698 8.78 0.0031
sqrtcd8*times years 1 4698 119.24 < .0001

The AIC for this model is 41634.2 which is a considerable reduction compared to
41893.1, the AIC for the marginal model with the same covariance structure in sec-
tion 6.3.1. Variance estimates for the random effects associated with the intercept
and spatial spherical are statistically significant. The code for this model can be
found in Appendix A
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6.4 Survival analysis : modelling mortality

This section examines the survival of HIV patients co-infected with TB who were
enrolled in the CAPRISA AIDS Treatment Project (CAT). First we test for the Cox
PH assumption and those variables that violate the PH assumption will be excluded
from the model. There after we will fit the Cox PH model in an attempt to model the
relationship between mortality and the covariates described in Chapter 2.

The test for equality of strata (namely site, TB status and gender) in Table 7.6 both
yield highly insignificant Chi-square test statistics for the log rank and Wilcoxon.
The Wilcoxon test is a variation of the log rank test weighting the observed minus
expected score of the jth failure time by nj (the number still at risk at the jth failure
time). Both the log rank and Wilcoxon test yield significant chi-square test statistics
for gender.

We plotted the Kaplan-Meier curves and the negative log-log curves for the categor-
ical variables, namely TB status, site, gender and ratio, in an attempt to assess for
the Cox PH assumption. The Kaplan-Meier survival curves appear to steadily drift
apart for gender and ratio but for TB status and site they seem to be crossing. The
Log-log curves looked approximately parallel for gender, and ratio. Again, plots for
TB status and site tended to cross more than once which makes it is difficult to con-
clude whether the assumption has been violated. Figure 6.1c indicates that patients
from the EThekwini site have a lower probability of death when compared to those
from the Vulindlela site. Figure 6.1e shows that men have an increased probability
of death compared to women and those patients presenting without TB at ART initi-
ation have a lower survival prognosis compared to those with prevalent TB. Figure
6.1h shows that patients with CD4:CD8 count ratio of < 0.05 have an elevated haz-
ard of dying due to HIV compared to those with a CD4:CD8 count ratio ≥ 0.05
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(a) K-M curve for TB status (b) negative log-log curve for TB status

(c) K-M curve for site (d) negative log-log curve for site

(e) K-M curve for gender (f) negative log-log curve for gender

(g) K-M curve for ratio (h) negative log-log curve for ratio

Figure 6.1 – Kaplan-Meier curves and negative log-log curves for TB status, site, gender and
ratio
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Since some of the curves in Figure 6.1 cross more than once it is difficult to conclude
whether the assumption has been violated. The formal test ”coxzph” in R gives
an estimate of the time-dependent coefficient b(t) and tests its significance. If the
proportional hazards assumption is true, b(t) will be a constant and graphically a
horizontal line. Thus a statistical test was applied to the current problem to test for
time dependence of the regression coefficients, the result of which appears in Table
6.27.

Table 6.27: An investigation of the proportional hazards assumption

Variable Effect rho chisq P-value

Ratio ≥ 0.05 0.0117 0.0193 0.89
TB status Prevalent TB -0.0654 0.607 0.436
Gender Men 0.0559 0.448 0.503
Site Esite -0.0178 0.0445 0.833
CD4:CD8 ratio -0.0561 0.701 0.403
Age 0.122 2.28 0.131
logviral 0.0658 0.809 0.368
sqrtcd8 0.37 32.5 < .0001

sqrtcd4 0.282 10.4 0.00127
BMI 0.149 7.67 0.00562

Looking at Table 6.27 and p-values, there seems to be no evidence to suggest that the
proportional hazards assumption is violated for variables ratio, TB status, gender,
site, CD4:CD8 ratio, age and logviral. However there seems be some serious viola-
tion of the PH assumption for variables sqrtcd8, sqrtcd4 and BMI and these results
are supported by the plots of the score process in figure 6.2. The cumulative sum of
Schoenfeld residuals, or equivalently the observed score process can also be used to
assess proportional hazards (Lin et al., 1993). Graphically, the solid lines represent
the observed standardized score, while dotted lines represent 20 simulated sets of
standardized score under the null hypothesis that PH assumption holds. A solid
line that falls significantly outside the boundaries set up collectively by the dotted
lines suggest that observed standardized score do not conform to the expected stan-
dardized score. These plots can then be used to assess when the lack of fit is present.
In particular, an observed score well above the simulated process is an indication of
an effect higher than the average one, and conversely. Variables that violate the PH
assumption were not included in our model.
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(a) Age (b) Gender

(c) TB status (d) Ratio

(e) CD4:CD8 ratio (f) Site

(g) Logviral

Figure 6.2 – Score process for the variables that satisfy the PH assumption
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Table 6.28: The un-adjusted hazard ratios from fitting the Cox-proportional hazard model

Effect Estimate HR (95% CI) P-value

Un-adjusted hazards regression

Site EThekwini -0.03 0.97 (0.66-1.43) 0.8850
Gender Men 0.52 1.69 (1.21-2.35) 0.0020
Ratio ≥ 0.05 -0.68 0.50 (0.33-0.77) 0.0016
TB status Prevalent TB -0.12 0.89 (0.59-1.34) 0.5730
Logviral 0.45 1.57 (1.26-1.97) < 0.0001
Age 0.01 1.01 (0.99-1.03) 0.1850
CD4:CD8 ratio -2.91 0.05 (0.01-0.21) < 0.0001

Adjusted hazards regression

Site EThekwini 0.02 1.02 (0.67-1.55) 0.9190
Gender Men 0.42 1.53(1.09-2.14) 0.0132
TB status Prevalent TB -0.33 0.72 (0.46-1.13) 0.1566
Logviral 0.41 1.51 (1.20-1.90) 0.0004
Age 0.01 1.01 (0.99-1.03) 0.2939
CD4:CD8 ratio -2.57 0.08 (0.02-0.30) 0.0002

Un-adjusted Cox proportional hazards regression analysis showed that patients from
the EThekwini site (urban) had a 3% reduced risk of death compared to those from
the Vulindlela site (rural), HR: 0.97, 95% CI: 0.66±1.43, P-value = 0.8850, meaning
the site effect was not significant. Patients presenting with prevalent TB at ART ini-
tiation had a 12% reduced risk of death compared to those without TB, HR: 0.89,
95% CI: 0.59±1.34, P-value = 0.5730, meaning the TB status at baseline was not sig-
nificant. (table 6.28). In addition male patients, older people or those with a higher
mean log10 viral load had a significantly higher risk of death (table 6.28). Further
exploration of Table 6.28 shows that for the adjusted proportional hazards regres-
sion analysis site, TB status and age have no significant effect in predicting death,
but gender, Log10 viral load, and CD4:CD8 ratio has a statistically significant effect
on predicting death. The code for the adjusted hazards model can be found in Ap-
pendix B
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(a) Age (b) CD4:CD8 ratio

(c) Gender (d) Ratio

(e) Site (f) TB status

(g) Logviral

Figure 6.3 – Time trend of the hazard ratio for the variables that satisfy the PH assumption
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Figure 6.3 shows plots for Schoenfield residuals against time for all the variables that
satisfy the PH assumption. The solid line is a smoothing-spline fit to the plot, with
the broken lines representing standard error bands around the fit. This plot reaffirms
the finding in Table 6.27, that the assumption of proportional hazards appears to be
supported for the variables ratio, TB status, gender, site, CD4:CD8 ratio, age and
logviral. Thus, we are confident that the proportional hazards model assumed in
our analysis is justified.

6.5 Jointly modelling the CD4 count and mortality

In this section a joint model for CD4 count and mortality will be fitted using R ver-
sion 3.5.1. This model will be fitted using JM package in R, where we first fit the
linear mixed-effects and Cox models separately, and then supply the returned ob-
jects as main arguments in function ”jointmodel()”. The joint model fitted by ”joint-
model()” has the exact same structure for the longitudinal and survival submodels as
these two separately fitted models, with the addition that in the survival submodel
the effect of the estimated ”true” longitudinal outcome mi(t) is included in the lin-
ear predictor. The Cox model for the survival submodel needs to be fitted in the
dataset containing only the survival information (that is, ”single row per patient”).
The main argument ”timeVar” of ”jointmodel()” is used to specify the name of the
time variable in the linear mixed-effects model, which is required in the internal
computations of mi(t). The ”method” argument specifies the type of baseline risk
function, which in this case is assumed to be piece-wise constant, and the numeri-
cal integration approach. A detailed output of the fitted model is produced by the
R function ”summary()” that returns, among others, the parameter estimates, the
standard errors, and asymptotic Wald tests for both the longitudinal and survival
submodels. In the results for the event process, the parameter labeled ”Assoct” is,
in fact, parameter α in ( 5.1) that measures the association between mi(t) (that is, in
our case of the ”true square root CD4 count) and the risk for death”.
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Table 6.29: Joint model for longitudinal CD4 count and time to death

Effect Estimate Standard Error z-value P-value

Longitudinal Process

Intercept 12.6518 0.7700 16.4307 < .0001

times years 4.1446 0.4222 9.8174 < .0001

Gender Men -1.6809 0.2061 -8.1544 < .0001

Logviral -0.6082 0.1112 5.4687 < .0001

Age -0.0263 0.0111 -2.3731 0.0176
sqrtcd8 0.1838 0.0116 15.8974 < .0001

times years*prev Prevalent TB 1.0438 0.1408 7.4151 < .0001

times years*logviral 0.1554 0.0707 2.1971 0.0280
times years*sqrtcd8 -0.0703 0.0070 -10.1147 < .0001

Event Process

Gender Men 0.0396 0.1767 0.2240 0.8227
Logviral 0.4074 0.1229 3.3146 0.0009
Age 0.0178 0.0100 1.7836 0.0745
CD4:CD8 ratio 1.2047 0.6405 1.8809 0.0600
Assoct -0.3194 0.0309 -10.3314 < .0001

Table 6.30: Confidence intervals for the event process

Variable Effect Estimate (exp(−α)) 95% CI

Gender Men 1.0404 (0.7359, 1.4708)
CD4 CD8 ratio 3.3356 (0.9506, 11.7042)
logviral 1.5029 (1.1812, 1.9123)
Age 1.0179 (0.9982, 1.0380)
Assoct 0.7266 (0.6839, 0.7720)

The joint model finds a significantly strong association between the square root CD4
count and the risk for death, with a unit decrease in the marker corresponding to
a exp(−α)= 0.73 increase in the risk for death (95% CI: 0.68, 0.77). The parameter
labelled ”Assoct” is the parameter that actually measures the association between
CD4 count and the risk of dying due to HIV/AIDS. These results are statistically
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significant indicating that indeed CD4 count is a good predictor of mortality and in
fact confirms that an increase in CD4 counts is associated with better survival. The
code for the adjusted hazards model can be found in Appendix B

6.6 Joint Model Diagnostics

This section examines model diagnostics as they are a prerequisite step in validat-
ing model assumptions. Just like in the separate analysis, assumptions are assessed
using residual plots. Model diagnostics for the joint models have not received much
attention in the literature, with the only the exception being the conditional residuals
of Dobson & Henderson (2003) and the multiple imputation residuals of Rizopoulos
et al. (2010).

Figure 6.4 – Default diagnostic plots for the joint model fitted to the CAT dataset

Figure 6.4 presents the plots for the subject-specific residuals versus the correspond-
ing fitted values, the Q-Q plot of the subject-specific residuals, and the marginal sur-
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vival and cumulative risk functions for the event process. The residuals are scattered
randomly around the 0 line indicating that the assumption that the relationship is
linear is reasonable, also the residuals roughly form a horizontal line around 0 sug-
gesting that the variances of the error terms are equal.The Q-Q plot is symmetric,
with deviations from the Gaussian distribution occurring in both the left and right
tails.

Figure 6.5 – Marginal standardized residuals versus fitted values for the longitudinal out-
come for the CAT dataset

In Figure 6.5 we observe that the fitted loess curve in the plot of the standardized
marginal residuals versus the fitted values shows a systematic trend with more nege-
tive residuals for large fitted values. This maybe an indication that the form of the
design matrix of the fixed effects X is not the appropriate one. However its impor-
tant to note that low levels of CD4 count indicate a worsening of a patients condi-
tion resulting in higher death rates, which is why we cannot conclude solely from
this figure that the lack-of-fit is attributed to a misspecification of X . Thus accord-
ing to Rizopoulos (2012) who encountered the same problem for both the AIDS and
PBC data explains that ”residuals based on the observed data alone can be proven
misleading when it comes to validating the joint model’s assumption”.
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Figure 6.6 – Martingale residuals versus the subject-specific fitted values of the longitudinal
outcome for the CAT dataset. The red solid line denotes the fit of the loess
smoother

Figure 6.6 shows the scatter plot with a superimposed loess curve, we can observe
that for small fitted values there’s a slight deviation of the loess smoother from zero,
this deviation is very small suggesting that the functional form for the CD4 count is
appropriate, however it is advisable to additionally check for systemaic trend in the
martingale residuals when we condition on other baseline covariates.

93



6.6. Joint Model Diagnostics

Figure 6.7 – Martingale residuals versus the subject-specific fitted values of the longitudinal
outcome for the CAT dataset. The grey solid line denotes the fit of the loess
smoother

Figure 6.7 again shows some small deviations from the null horizontal line for both
sites. We proceed in our residual analysis for the survival outcome by assesing the
overall fit of the survival submodel using the Cox-Snell residuals. Comparing the
fit of the Kaplan-Meier estimate to the expected asymptotic distribution, we do not
observe any discrepancies. As can be seen in Figure 6.8 the survival function of the
unit exponential distribution lies within the 95% pointwise confidence intervals of
the Kaplan-Meier estimate. To further scrutinize the fit of the model, we stratify the
residuals by site, and we plot survival function estimates. ”When the model fits the
data well, we expect the survival function estimates for each strata to hover around
the unit exponential distribution” (Rizopoulos, 2012). Figure 6.9 shows no lack of
fit for residuals from the two sites.
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Figure 6.8 – Cox-Snell residuals for the CAT dataset. The black solid lines denote the Kaplan-
Meier estimates of the survival function of the residuals (with the dashed lines
corresponding to the 95% pointwise confidence intervals), and the grey solid
line, the survival function of the unit exponential distribution

Figure 6.9 – Cox-Snell residuals for the CAT dataset. The black solid lines denote the Kaplan-
Meier estimates of the survival functions of the Cox-Snell residuals for the two
sites, and the grey solid line, the survival function of the unit exponential distri-
bution

Thus in summary we can conclude that our joint model fitted quite well with fairly
good diagnostic attributes.
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6.6.1 Summary

We fitted different types of linear mixed models using SAS procedure MIXED, namely;
marginal and random effects models under univariable and multivariable models.
After comparing the models, the random effects model was found to be the best
model for our data under univarible and multivariable using the AIC. Moreover, the
best covariance structures to model the between and within subject variation were
the unstructured and the spatial spherical covariance structure under both ML and
REML. Results from the un-adjusted and adjusted hazards regression both found
CD4:CD8 ratio, viral load, gender and age of patients to be significant predictors
of mortality. The joint model indicated that CD4 count change due to HAART and
mortality had been influenced jointly by gender, age, baseline viral load, baseline
CD8 count, time (in years) , CD4:CD8 ratio and by the interaction effects of time
(in years) with TB status, baseline viral load and baseline CD8 cell count. Model
diagnostics showed that the joint model was the best fit to our data.
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Chapter 7

Discussion and concluding
remarks

The main aim of this research project was to use joint modelling data analysis tech-
niques for longitudinal and time-to-event data to study the effect of CD4 count on
mortality in patients initiated on HAART from rural and urban KwaZulu-Natal. In
addition to determine if the patients baseline BMI, baseline age, gender, baseline vi-
ral load, baseline CD8 count, TB status and clinic site, influences the rate of change
in CD4 count over time .

An in depth literature review on joint models for longitudinal and time-to-event
data was done and discussed in chapter 1.

Chapter 2 explored the patients baseline characteristics and distributional proper-
ties of the biomarkers. CD4 count, CD8 count and CD4:CD8 ratio violated the nor-
mality assumption and had to be square root transformed based on previous lit-
erature, after the transformation a better approximation to the normal distribution
was observed. The viral load was transformed using a logarithm approximation.
The spaghetti plots indicated some within and between patient variation which sug-
gested that a model with both random intercepts and slopes could be plausible. The
mean plots suggested an increase in the evolution of CD4 count over time after pa-
tients had been initiated on HAART. The mean plots of CD4 count by site, gender
and TB status showed that female patients, those patients from the EThekwini site
and patients with prevalent TB had a higher rate of change in CD4 count compared
to their counterparts.

The linear mixed model was examined in Chapter 3. Two estimation methods (Maxi-
mum likelihood and Restricted maximum likelihood) were discussed including their
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advantages and draw backs. The linear regression that is used for a continuous out-
come assumes that the observations being used are independent and identically dis-
tributed. However, longitudinal data may be correlated. Thus modeling correlated
data without factoring in the lack of independence either over estimates or under-
estimates the standard errors; which consequently also affects the p-values and con-
fidence intervals. As such, one either over-estimates or under-estimates the effect
of the covariates on the outcome. Capturing the best covariance structure of the re-
peated measurements within subjects is of great importance in longitudinal analysis.
This is because misspecification of the covariance structure for repeated measures in
longitudinal analysis may lead to biased estimates of the model parameters. Dif-
ferent types of covariance structures were briefly described and the best structure
can be selected by choosing the model with a structure that gives the lowest Akaike
Information Criteria (AIC). Different types of residuals for model diagnostics were
discussed

Chapter 4 examined the theory of survival analysis, the main focus was on the Cox
proportional hazards model. Different resdiuals for checking the PH assumptions
were briefly described. Strategies for dealing with non proportionality were also
briefly described including an alternative method for modelling survival data when
the PH assumption fails.

In chapter 5, the joint modelling approach of Rizopoulos (2012) was examined. Es-
timation methods such as the two stage methods and likelihood methods were dis-
cussed. Advantages for joint models over separate analyses were briefly discussed
and residuals for model diagnostics were briefly discussed.

In chapter 6, the methods developed in Chapters 3, 4 and 5 were applied to data
on HIV positive individuals initiated on HAART in the CAT study. This data had a
lot of missing values thus mixed model were very powerful in handling this miss-
ingness because the model is valid under MAR (missing at random) which is a less
restrictive assumption than the MCAR (missing completely at random) assumption.
Furthermore linear mixed models allowed us to explicitly model individual change
across time, and presented a very flexible specification of the covariance structure
among repeated measure. Often longitudinally measured data and time-to-event or
survival data are associated in some ways. In this research project patients infected
with HIV were monitored until they developed AIDS or died, and they were regu-
larly measured on intermittent visit for the condition of the immune system using
markers such as the CD4 count and CD8 count or the estimated viral load. Thus
introducing the association between time to event and the longitudinal trajectories.
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Separate analyses of longitudinal data and survival data are not applicable in this
case because they may lead to inefficient or biased results. Joint models, on the other
hand, provide valid and efficient inferences by optimally incorporating all available
information.

Results from the linear mixed models, showed that the random effects model both
under uni-variable and multi-variable proved to be a better fit for our data com-
pared to the marginal model because it had the smaller AIC. The best covariance
structures to model the between and within subject variation were the unstructured
and the spatial spherical covariance structure under both ML and REML. The results
from the multi-variable random effects model in particular showed no statistical dif-
ference between the eThekwini and Vulindlela sites in terms of the CD4 count im-
provement over time, with patients from the EThekwini site having a higher rate of
change. This finding reaffirms the results obtained by Yende (2010). Men and older
people on average had a significantly lower mean rate of change in CD4 count. These
results support those obtained by Maskew et al. (2013) who found that men gained
fewer CD4 cells after treatment initiation compared to women. Patients presenting
without TB at ART initiation started HAART with high mean CD4 count compared
to those with prevalent TB but their rate of change in CD4 count was significantly
less compared to those with prevalent TB . (Yende (2010); Maskew et al. (2013); Sey-
oum & Temesgen (2017) and Prins et al. (1999)) also found that CD4 count change
was affected by covariates such as age, weight, gender and visiting times, thereby
affirming our results. Previous studies using the CAPRISA CAT data and similar
datasets in South Africa focused on separately modelling mortality and the longitu-
dinal HIV biomarkers such as CD4 counts. In this work, we consider joint modelling
as the best approach for with dealing the two outcomes.

Results from the Cox proportional hazards regression analysis showed that patients
from the EThekwini site (urban) had a higher survival prognosis compared to those
from the Vulindlela site (rural), however this was not significant at 5% level of sig-
nificance. Patients presenting without TB at ART initiation had an elevated risk
of dying compared to those with prevalent TB. These results reaffirms the results
obtained by (Dawood et al., 2018). Prevalent TB also previously showed to be as-
sociated with a low mortality, maybe related to TB care being an access point to
earlier ART initiation (Dawood et al., 2018). Published literature has cited that undi-
agnosed TB is higher among patients accessing ART than in the general population;
with the majority of incident TB diagnosed in the early weeks of ART initiation be-
ing TB prevalent but missed at baseline screening (Etard et al., 2006). In addition
male patients, older people or those with a higher mean Log10 viral load had a sig-
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nificantly higher risk of death (refer to Table 6.28). The finding is in consonance with
previous research which showed that men and older patients were at an increased
risk of mortality (Maskew et al. (2013); Dawood et al. (2018) and Prins et al. (1999)).
Furthermore, patients with a CD4:CD8 ratio greater than or equal to 0.05 had a sig-
nificantly lower risk of death compared to those with CD4:CD8 ratio less than 0.05.

Joint models were advantageous for answering multivariate questions at the same
time (in our case CD4 count and mortality). One of the most important tools in joint
models is its ability to capture or take into consideration the association between the
survival time and repeated measurement of a risk factor variable (Rizopoulos, 2012).
The joint model found a significantly strong association between the square root CD4
count and the risk for death, implying that CD4 count is a really good predictor of
mortality. The joint model also helped assess the correlation between the two re-
sponse variables and gave ample opportunity to see predictors of the two response
variables jointly. The result in this study indicated that CD4 count change due to
to HAART and mortality had been influenced jointly by some of the covariates like
gender, age, baseline viral load, baseline CD8 count, time (in years) , CD4:CD8 ratio
and by the interaction effects of time (in years) with TB status, baseline viral load
and baseline CD8 count (refer to Table 6.29). Research findings from a longitudinal
study by Guo & Carlin (2004) also proved that CD4 count change was affected by
many of these covariates. The joint models were fitted using the JM package in R.
Model residuals were calculated and the traditional approach of inspection of resid-
ual plots was used to check model assumptions (Rizopoulos et al., 2010).

All the objectives of this study were met. We found that after ART initiation the CD4
count increases and is influenced by measured covariates such as age, gender and
TB status. Furthermore, gender, baseline viral load and CD4:CD8 ratio were found
to be significant predictors of mortality due to HIV/AIDS. The joint model found
a strong association between CD4 count and mortality which means that CD4 is a
predictor of mortality. These results are consonant with previous research.

The application of linear mixed models revealed that residual correlation is present.
The joint model, however, makes the somewhat restrictive assumption in the longi-
tudinal component that, conditional on the random effects, the residuals are uncorre-
lated. However, as discussed by Rizopoulos (2012), extending a linear mixed model
by including a more elaborate random effects structure is computationally simpler
to implement and can produce almost indistinguishable fits to the data when com-
pared with a model that includes a serial correlation term.
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Discussion and Conclusion

In biomedical research where measurements of various outcomes are taken over a
time period in an attempt to understand patients health or the risk of an event oc-
curring, the joint modelling approach will be the most useful tool to consider in an
effort to link the longitudinal and survival outcomes. Though joint modelling maybe
the most suitable approach, it has a low convergence rate mainly because there are a
very large number of parameters that need to be estimated when considered under
the Markov Chain Monte Carlo method (Guure et al., 2017).

An area for future work would be to jointly model multiple longitudinal outcomes
(CD4:CD8 ratio counts and viral loads), mortality and TB infection status adjusting
for possible informative drop-out (i.e. departures from the MAR assumption).
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Asar, Ö., Ritchie, J., Kalra, P. A., & Diggle, P. J. (2015). Joint modelling of repeated
measurement and time-to-event data: an introductory tutorial. International jour-
nal of epidemiology, 44(1), 334–344.

Beckman, R. J., Nachtsheim, C. J., & Cook, R. D. (1987). Diagnostics for mixed–model
analysis of variance. Technometrics, 29(4), 413–426.

Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. j.

Bennett, D. E., Bertagnolio, S., Sutherland, D., Gilks, C. F., et al. (2008). The World
Health Organization’s global strategy for prevention and assessment of HIV drug
resistance. Antiviral therapy, 13, 1.

Britton, T. (1997). Tests to detect clustering of infected individuals within families.
Biometrics, (pp. 98–109).

Chen, Q., May, R. C., Ibrahim, J. G., Chu, H., & Cole, S. R. (2014). Joint modeling
of longitudinal and survival data with missing and left-censored time-varying co-
variates. Statistics in medicine, 33(26), 4560–4576.

Cohen, J., Cohen, P., West, S. G., Aiken, L. S., et al. (1983). Applied multiple regres-
sion/correlation analysis for the behavioral sciences.

102



REFERENCES

Collett, D. (2015). Modelling survival data in medical research. Chapman and Hall/CRC.

Cook, R. D. (1977). Detection of influential observation in linear regression. Techno-
metrics, 19(1), 15–18.

Cox, D. R. (1972). Models and life-tables regression. JR Stat. Soc. Ser. B, 34, 187–220.

Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269–276.

Cox, D. R. (1983). Some remarks on overdispersion. Biometrika, 70(1), 269–274.

Dawood, H., Hassan-Moosa, R., Zuma, N.-Y., & Naidoo, K. (2018). Mortality and
treatment response amongst HIV-infected patients 50 years and older accessing
antiretroviral services in South Africa. BMC infectious diseases, 18(1), 168.

De Beaudrap, P., Etard, J.-F., Diouf, A., Ndiaye, I., Guèye, N. F., Guèye, P. M., Sow,
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Appendix A

A.1 LINEAR MIXED MODEL FOR SQUARE ROOT CD4
COUNT

The SAS codes for the final models used in the analysis of the CAT data are given
below:

/****************************** FINAL MARGINAL MULTIVARIATE MODEL *****************************/

proc mixed data=nobuhle.forjoint method=reml covtest noclprint empirical;
class pid gender1 site prev times;
model sqrtcd4=site gender1 prev age1 sqrtcd8 logviral times years times years*site
times years*prev times years*age1 times years*logviral times years*sqrtcd8 /s;
repeated times/type=sp(SPH)(times) local subject=pid ;
run;

/************************** FINAL RANDOM EFFECTS MULTIVARIATE MODEL ************************/

proc mixed data=nobuhle.forjoint method=reml covtest noclprint empirical;
class pid gender1 site prev times;
model sqrtcd4=site gender1 prev age1 logviral sqrtcd8 times years times years*prev
times years*logviral times years*sqrtcd8 /s;
repeated times/type=sp(SPH)(times years) local subject=pid ;
random intercept times years/ subject=pid type=un ;
run;
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Appendix B

B.1 COX PH MODEL

res.cox← coxph(Surv(timetodeath, death) ∼ factor(gender1) +factor(prev)+factor(site)+
logviral+CD4 CD8 ratio+age1, data = long.id)
summary(res.cox)

B.2 JOINT MODEL

lmeFit.long← lme(sqrtcd4 ∼ times years +age1+logviral+factor(gender1)+times years:factor(prev)+
times years:logviral+sqrtcd8+times years:sqrtcd8, random = times years | pid, data=long)

survFit← coxph(Surv(timetodeath, death) v factor(gender1)+CD4 CD8 ratio+logviral+age1,
data = long.id, x = TRUE)

jointFit.p1 ← jointModel(lmeFit.long, survFit, timeVar = ”times years”, method =
”piecewise-PH-aGH”)

summary(jointFit.p1)
exp(confint(jointFit.p1,parm = ”Event”))
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Appendix C

Table 7.1: Covariance Parameter Estimates by ML under the marginal multivariable model

Cov Parm Estimate Standard Error Z Value Pr > Z

Variance 22.3900 0.7152 31.30 < .0001

SP(SPH) 52.4357 1.9016 27.57 < .0001

Residual 2.4140 0.1664 14.51 < .0001

Table 7.2: Solution for Fixed Effects by ML under the marginal multivariable model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 12.0075 1.1281 1638 10.64 < .0001
site Esite -0.9664 0.3082 1638 -3.14 0.0017
gender1 Men -1.9279 0.2741 1638 -7.03 < .0001
prev No TB 0.5807 0.3458 1638 1.68 0.0933
age1 -0.00106 0.01357 1638 -0.08 0.9380
logviral -0.7176 0.1423 1638 -5.04 < .0001
sqrtcd8 0.2026 0.01408 1638 14.39 < .0001
bmi 0.01934 0.01741 1638 1.11 0.2667
times years 3.1422 0.6356 6179 4.94 < .0001
times years*site Esite 0.5905 0.1872 6179 3.15 0.0016
times years*gender1 Men 0.1467 0.1530 6179 0.96 0.3376
times years*prev No TB -0.7718 0.2488 6179 -3.10 0.0019
times years*age1 -0.01693 0.007595 6179 -2.23 0.0258
times years*logviral 0.2976 0.08282 6179 3.59 0.0003
times years*sqrtcd8 -0.06253 0.006749 6179 -9.27 < .0001
times years*bmi -0.00232 0.007293 6179 -0.32 0.7506
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Table 7.3: Fit statistics for different covariance structures by ML and REML under the ran-
dom effects model

Covariance structure -2 Log Likelihood AIC BIC

Maximum Likelihood (ML)

SP(SPH) 41488.2 41532.2 41651.1
SP(POW) 41488.4 41532.4 41651.3
SP(EXP) 41488.4 41532.4 41651.3
SP(GAU) 41553.0 41597.0 41715.9
SP(LIN) 41623.7 41667.7 41786.7
CS 42061.3 42103.3 42216.9

Restricted Maximum Likelihood (REML)

SP(SPH) 41557.4 41569.4 41601.8
SP(POW) 41557.5 41569.5 41602.0
SP(EXP) 41557.5 41569.5 41602.0
SP(GAU) 41621.8 41633.8 41666.2
SP(LIN) 41692.5 41704.5 41737.0
CS 42129.4 42139.4 42166.4

Table 7.4: Covariance Parameter Estimates by ML under the random effects multivariable
model

Cov Parm Estimate Standard Error Z Value Pr > Z

UN(1,1) 8.1372 1.1608 7.01 < .0001

UN(2,1) -1.8472 0.2677 -6.90 < .0001

UN(2,2) 1.8731 0.2047 9.15 < .0001

Variance 11.3461 1.2279 9.24 < .0001

SP(SPH) 33.4508 3.3528 9.98 < .0001

Residual 2.4942 0.1681 14.84 < .0001
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Table 7.5: Solution for Fixed Effects by ML under the random effects multivariable model

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 11.3982 0.9704 1633 11.75 < .0001
site Esite -0.5513 0.2711 4698 -2.03 0.0420
gender1 Men -0.5541 0.2337 4698 -6.65 < .0001
prev No TB 0.5114 0.2931 4698 1.74 0.0811
age1 -0.01795 0.01168 4698 -1.54 0.1246
logviral -0.6234 0.1243 4698 -5.02 < .0001
sqrtcd8 0.1977 0.01287 4698 15.37 < .0001
bmi 0.01941 0.01545 4698 1.26 0.2090
times years 4.8063 0.5377 1486 8.94 < .0001
times years*site Esite 0.2897 0.1655 4698 1.75 0.0801
times years*gender1 Men -0.09629 0.1310 4698 -0.73 0.4624
times years*prev No TB -1.0345 0.1869 4698 -5.54 < .0001
times years*age1 -0.00848 0.006646 4698 -1.28 0.2022
times years*logviral 0.2150 0.06937 4698 3.10 0.0019
times years*sqrtcd8 -0.07244 0.006183 4698 -11.72 < .0001
times years*bmi -0.00423 0.006346 4698 -0.67 0.5056

Table 7.6: Test of Equality over Strata

Test Chi-Square DF P-value

TB status
Log-Rank 0.3242 1 0.5691
Wilcoxon 0.2075 1 0.6487
-2Log(LR) 0.00029 1 0.9881

Site
Log-Rank 0.3242 1 0.5691
Wilcoxon 0.2075 1 0.6487
-2Log(LR) 0.00029 1 0.9881

Gender
Log-Rank 0.3242 1 0.5691
Wilcoxon 0.2075 1 0.6487
-2Log(LR) 0.00029 1 0.9881
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(a) BMI (b) sqrtcd4

(c) sqrtcd8

Figure 7.1 – Score process for variables that violate the Cox PH assumption
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(a) sqrtcd4
(b) sqrtcd8

(c) BMI

Figure 7.2 – Time trend of the hazard ratio for variables that violate the Cox PH assumption
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