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ABSTRACT 

Background: Diverse microbial communities and inflammatory cytokine responses in the lower female 

genital tract (FGT) are closely associated with increased human immunodeficiency virus (HIV-1) risk, 

possibly through increasing mucosal HIV target cell frequency and T-cell activation. The presence of 

semen in the vagina during unprotected sex has been associated with short-term activation of mucosal 

immunity. Here, we investigated the extent to which partner semen impacts on cytokine and microbial 

profiles measured in 248 HIV-uninfected women at high risk for HIV infection.  

 

Methods: We assessed the semen exposure in SoftCup supernatants by quantifying prostate specific 

antigen (PSA) levels using enzyme-linked immunosorbent assay (ELISA). Luminex was used to 

measure 48 cytokines in SoftCup supernatants and the vaginal swabs were used for diagnosis of 

bacterial vaginosis by Nugent score.  

 

Results: PSA, which denotes semen exposure within 48 hours prior to sampling, was detected in 19% 

(43/248) of SoftCup supernatants. Of the 43 PSA positive women, 70% (30/43) had self-reported 

condom use at their last sex act and 84% (36/43) had non-Lactobacillus dominant microbiota (Nugent 

score >7). In addition, PSA was significantly associated with prevalent bacterial vaginosis (Relative 

Risk (RR), 2.609; 95% Confidence Interval (CI), 1.104 - 6.165; p = 0.029), after adjusting for potential 

confounders such as age, STIs, current contraceptive use and condom use. Furthermore, women with 

detectable PSA had high median concentrations of Macrophage inflammatory protein- beta (MIP-1β) 

(p=0.047) compared to those without PSA.  

 

Conclusion: These findings suggest that the presence of semen has a potential to alter the inflammatory 

response and microbial communities of the FGT, which may facilitate recruitment of HIV susceptible 

cells, resulting in increased susceptibility to HIV-1 infection. 

.
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CHAPTER 1: INTRODUCTION 

 

Despite efforts to improve the formatting and phrasing of sexual behaviour questionnaires, over-

reporting of condom use and safe sexual practices have been identified as shortcomings in several 

clinical prevention studies (Turner and Miller, 1997, Zenilman et al., 1995, Minnis et al., 2009). Over-

reporting of condom use may lead to inaccurate estimates of the effectiveness of interventions, such as 

vaginal microbicides to reduce risk of HIV and other sexually transmitted infections (STIs). 

 

Several studies have demonstrated that the presence of semen in the vagina during unprotected sex is 

associated with inflammatory response and short-term activation of mucosal immunity (Robertson, 

2005, Robertson et al., 2009, Sharkey et al., 2012). In addition to spermatozoa, seminal fluid contains 

potent anti-inflammatory cytokines (Transforming growth factor-beta (TGF-β), Interleukin (IL)-10, 

Prostaglandin E2 (PGE2), and pro-inflammatory cytokines [IL-8, secretory leukocyte protease (SLP)-

1], all with the capacity to alter the immune environment of the vaginal mucosa (Sharkey et al., 2007, 

Denison et al., 1999). Seminal fluid also contains signaling molecules that increased expression of IL-

1 beta (IL-1β), IL-6 and leukemia inhibitory factor (LIF) by endometrial epithelial cells in vitro 

(Gutsche et al., 2003, Sharkey et al., 2012). Furthermore, in vitro studies utilising endometrial epithelial 

cells demonstrated that human seminal plasma reduced the secretions of innate antiviral factors (e.g. 

secretory leukocyte protease inhibitor), while inducing a cascade of inflammatory cytokines and 

chemokines (Granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1 alpha (IL-1α), IL-1β, 

Growth regulating alpha (GROα), MIP-1 alpha (MIP-1α), MIP-1β, MIP-3 alpha (MIP-3α)) as well as 

the chemokine ligand for CC chemokine receptor 6 (CCR6) receptor expressed by cluster of 

differentiation 4 (CD4+) T helper (Th)-17  cells and Langerhans cells (Berlier et al., 2006, Sharkey et 

al., 2012). Expression of these cytokines is known to trigger the recruitment and activation of 

susceptible cells (Kachkache et al., 1991, McMaster et al., 1992, Prakash et al., 2003, Sharkey et al., 

2012), suggesting that semen can increase a woman’s susceptibility to STIs, including HIV. 

 

Another contributing factor responsible for semen-induced immunity and inflammatory responses is 

the presence of microbial communities within semen, which has the potential to alter the composition 

of the vaginal microbiota (Mändar et al., 2018, Mändar et al., 2015, Hou et al., 2013). After unprotected 

sexual intercourse, the seminal microbial communities have been associated with a significant decrease 

in the relative abundance of the naturally occurring Lactobacillus species and an increased relative 

abundance of diverse bacterial species linked to bacterial vaginosis (BV) (Hou et al., 2013, Mändar et 

al., 2015, Cherpes et al., 2008). Recently, studies examining the vaginal microbiota by sequencing the 

16S rRNA bacterial gene showed diverse vaginal microbiota in young women elevated inflammation, 

which subsequently led to increased HIV risk by inducing the mucosal HIV target cell frequency and 
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activation (Anahtar et al., 2015, Gosmann et al., 2017). The diversity of microbial assemblages have 

also been shown to increase HIV risk by weakening the mucosal epithelial barrier function and reducing 

protective factors such as antimicrobial agents (Nunn et al., 2014).  

 

Given the impact unprotected sexual intercourse has on vaginal immune response and microbiome, an 

objective assessment of semen exposure is needed to accurately interpret mucosal immunity and 

microbiota data from vaginal fluids within women enrolled in HIV prevention trials for vaccines, 

microbicides, and pre-exposure prophylaxis (PrEP). Therefore, researchers have focused on identifying 

more robust methods to determine sexual and semen exposure, further reducing the reliance on self-

reporting in studies investigating immunological factors in the female genital tract, risk of infection or 

probability of pregnancy (Mauck et al., 2007, Walsh et al., 2003). Two semen biomarkers; prostate-

specific antigen (PSA) and the Y-chromosome DNA, have been used to indicate the presence of semen 

within the FGT (Chomont et al., 2001, Bahamondes et al., 2008). Y-chromosome DNA is detectable 

for up to 2 weeks post sexual intercourse, using a polymerase chain reaction (PCR) based assay 

(Zenilman et al., 2005, Penrose et al., 2014), while the PSA protein has a short half-life of 48 hours 

within the vaginal tract. The PSA, which can be found in high concentrations in vaginal fluids obtained 

from self-collected swabs post recent semen exposure (Gallo et al., 2006, Hobbs et al., 2009, Mauck, 

2009), is more frequently used as a surrogate indicator for unprotected sexual intercourse than the Y-

chromosome DNA (Gallo et al., 2013, Jamshidi et al., 2013, Jespers et al., 2017). However, very few 

studies have used PSA to control for the potential confounding effect of semen in the female genital 

tract (Jespers et al., 2014, Aho et al., 2010). Most studies use self-reported frequency of sex, the number 

of partners and condom use to control for confounding (Ravel et al., 2011, Anahtar et al., 2015).  
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CHAPTER 2:  

LITERATURE REVIEW 

 

2.1 PSA as a surrogate indicator for unprotected sexual intercourse 

PSA (also known as human tissue kallikrein-3), is a 33kDa glycoprotein secreted in large amounts (0.2–

5 mg/mL) by the epithelial cells covering the acini and ducts of prostate gland of males (Sensabaugh, 

1978, Lilja et al., 1987). It liquefies the seminal coagulum and promotes the release of motile 

spermatozoa via degradation of fibronectin and seminogen I and II (Lilja et al., 1987). Studies 

demonstrated that PSA is not confined to males but levels about 1000-fold lower than those produced 

by the prostate gland are also found in females (Mannello et al., 1997, Melegos et al., 1996, Diamandis 

and Yu, 1997). PSA is one of the major proteins of seminal fluid that can be detected at concentrations 

of ≥1ng/ml within the female genital tract up to 48 hours after unprotected sexual intercourse (Gallo et 

al., 2013, Jamshidi et al., 2013). Currently, there are several commercially available PSA kits, including 

quantitative ELISA, rocket immune-electrophoresis (RIE) and chromatographic immunoassay (CIA), 

with varying specificities and sensitivities (Walsh et al., 2012).  

 

2.2 PSA as a validation marker for self-reported condom use  

Several studies have shown that self-reported condom use may be biased towards over- or under-

reporting due to participants perceiving some topics as sensitive or the perceived fear of being non-

compliant with barrier method use recommended during counselling sessions with study staff, inability 

to recall experience (including distortion and reconstruction), and unknown condom leakage 

(Anglewicz et al., 2013, Brener et al., 2003).  

 

To circumvent this bias, PSA has been used to improve the validity of unprotected sexual measurement 

(Walsh et al., 1999, Thomsen et al., 2007). Table 2.1 shows a summary of previous studies that have 

investigated the relationship between self-reported condom use and PSA use as a biomarker of recent 

semen exposure. Findings demonstrated that PSA was detected in the vaginal fluids of women who 

reported consistent (100%) condom use (Mose et al., 2013, Aho et al., 2010). Similarly, a significant 

degree of discordance was observed between self-reports and PSA positivity in the vaginal fluids of 

women reporting no sexual activity or condom-protected vaginal sexual acts within 48 hours prior 

sample collection (Gallo et al., 2007, Minnis et al., 2009, Woolf-King et al., 2017). A randomised 

controlled study in Zimbabwe, demonstrated that regardless of the interview approach, self-report was 

a poor predictor of recent sexual activity and condom use. In this study, 48% (94/196) of women were 

PSA positive, of which 12% (23/94) had reported no recent sexual activity while 36% (71/94) reported 

condom protected sexual intercourse (Minnis et al., 2009). Similarly, a study among HIV discordant 

couples from Kenya showed that 10% (10/98) of women who reported 100% condom-protected vaginal 
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sex in the previous 4 weeks tested positive for PSA (Mose et al., 2013). In another study among female 

sex workers (FSW), PSA was detected in 35.8% (77/215) of women who self-reported condom use at 

their last sexual activity (Aho et al., 2010). In contrast, there was no correlation between positive PSA 

results and condom use in the vaginal fluids of women who reported condom failures (Walsh et al., 

2012, Walsh et al., 1999). The contrasting findings with PSA testing may be due to PSA’s rapid half-

life of 48 hours (Macaluso et al., 1999), low amount of detectable PSA, use of different PSA assays 

between the studies or use of vaginal products such as spermicides and lubricants (Snead et al., 2013). 

A more sensitive Y-chromosome PCR assay, which detects DNA, could be used in conjunction with 

the PSA assay. However, it would be costly to run both assays in large size cohorts and Y chromosome 

may also not be a reliable biomarker of recent semen exposure, since the Y-chromosome DNA can be 

detected up to 10 days after unprotected sexual intercourse (Zenilman et al., 2005). 

 

2.3 Effect of PSA on genital inflammation   

The mucosal epithelium of the lower female reproductive tract provides the first line of defence against 

pathogen entry and mediates the initial host immune response against invading pathogens such as STIs 

and HIV (Kaushic, 2011, Wira et al., 2005b). The vagina and cervix are common sites for transmission 

of the virus because semen containing HIV would come into contact with these sites (Hladik and Hope, 

2009). The surface area of the lower reproductive tract exposed during sexual intercourse in women is 

greater than the reproductive tissue of men, which may increase the surface area exposed, time in 

contact with infectious fluids post-coitus, and exposure of intraepithelial HIV target cells to pathogens 

(Kaushic, 2011, Wira et al., 2005a, Wira et al., 2005b). Seminal fluid contains potent anti-inflammatory 

(TGF-β, IL-10, and PGE2), pro-inflammatory cytokines (IL-8, SLP1) and bacteria, all with the capacity 

to alter the immune environment of the vaginal mucosa (Figure 2.1) (Mändar et al., 2015, Hou et al., 

2013, Mändar et al., 2018, Sharkey et al., 2007, Denison et al., 1999). Therefore, objective assessment 

of semen exposure is important to assist in the accurate interpretation of data in studies of the 

immunological environment in the female genital tract. 
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Table 2. 1: Summary of studies exploring the relationship between self-reported sexual activity 

and PSA detection 

Study N, population PSA detection 

Mose et al., 2013 

125 HIV discordant 

couples, 124 were tested for 

PSA 

10% of 98 women who reported 100% use of condoms in 

previous month tested positive for PSA 

Minnis et al., 2009 
910 sexually active, HIV 

uninfected 18-49 years old 

Among those with PSA detected, 48% reported no 

unprotected coitus in the past 2 days 

Gallo et al., 2006 332 female sex workers 

Study found an important discordance between self-

reported recent condom use and the presence of PSA in 

FSW, with PSA being present in 39% of FSW who 

reported protected sexual intercourse only in the preceding 

48 h & 21% reporting no sex 

Aho et al., 2010 223 female sex workers 
Found PSA in 70 of the 196 FSW (38.4%) who reported no 

unprotected intercourse in the past 48 h 

Jespers et al., 2014 

 

430 women from Kenya, 

South Africa, Rwanda 

The detection of PSA in the cervicovaginal lavages of all 

these women was a better predictor of BV than self-

reported sexual behaviour, which then shows that self-

reported sexual behaviour is often inaccurate 

McCoy et al., 2014     
195  Zimbabwean women, 

HIV uninfected 

Of the 195 women tested positive for PSA,  94 women 

misreported sexual behaviour, reporting no sex or only 

condom-protected sex in the previous 2 days 

Zia et al., 2017                         

73 HIV-infected & 24 HIV 

uninfected  Malawian 

women on DMPA and LVG 

Tested 539 vaginal swabs from 97 women, of these women 

55 were PSA-positive and 54 had reported unprotected 

coitus, while among the PSA positive samples, 62% 

(65/105) of these women reported no unprotected sex 

 PSA=Prostate specific antigen, FSW=Female sex workers; DMPA= Depot Medroxyprogesterone Acetate; LVG= Levonorgestrel  

 

To eliminate the hidden effects of semen on immunological data, several immunological studies 

measure the presence of semen contamination using PSA in vaginal swab supernatants. PSA results can 

be used to adjust for the confounding effect of semen and/or stratify participants according to those with 

presence or absence of PSA to delineate the effect of semen contamination. In one study, recent sexual 

intercourse, as measured by the presence of PSA in vaginal fluids, was associated with significantly 

higher levels of pro-inflammatory cytokines (IL-6, IL-12 p70 , Interferon gamma (IFN-), and IFN--

induced protein 10 (IP-10)) (Jespers et al., 2017). These findings are in agreement with previous studies 

that reported a significant association between the presence of PSA and levels of IL-6 and IP-10 in the 

vaginal fluids of women (Francis et al., 2016, Kyongo et al., 2012). Similar semen-induced expression 

of female genital tract pro-inflammatory cytokines and chemokines such as IL-6, IL-8, monocyte 



6 
 

chemoattractant protein (MCP)-1, and GM-CSF by endometrial epithelial cells in vitro have been 

reported (Kyongo et al., 2012, Francis et al., 2016). Expression of these cytokines is known to trigger 

the recruitment and activation of macrophages, dendritic cells, T lymphocytes and granulocytes 

(Prakash et al., 2003, Sharkey et al., 2007). Although inflammation is thought to promote conducive 

environments for conception and pregnancy (Robertson, 2005, Schuberth et al., 2008), genital 

inflammation has also been associated with an increased risk of infections through disruption of the 

epithelial barrier and/or recruitment of susceptible target cells to a site of viral infection (Lawn et al., 

2001, Masson et al., 2015). While non-human primate studies did not demonstrate significant effect on 

recruitment of target cells and transmission following in vitro/in vivo semen exposure (Miller et al., 

1994, Neildez et al., 1998, Allen et al., 2015), the semen-mediated effects emphasize a need to assess 

the camouflaged effects of recent semen exposure on the immune environment in the female genital 

tract. 
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Figure 2.1: Impact of semen on female genital tract microenvironment. In addition to spermatozoa, 

seminal fluid contains potent anti-inflammatory cytokines, soluble proteins, bacteria, viruses and pro-

inflammatory cytokines, all with the capacity to alter the immune environment of the vaginal mucosa. 

It has been shown that presence of semen in the female genital tract induced inflammatory response 

which resulted in activation of tissue residence macrophages, neutrophils and T cells. Mucosal T 

regulatory cells (T regs) have been shown to prevent the semen-induced inflammatory response in the 

female genital tract. Figure modified from (Rametse et al., 2014) (Viral immunology).

SEMINAL PLASMA FLUID

APC

CD4+T cell recruitment

neutrophils

IL-6, IL-8, MCP-1 

IFN-g
Macrophage activation

CXCL-1,-2,-5

Cytokines/chemokines Bacteria & viruses
PSA & other proteins PGE-2, IL-10 & TGF-β

spermatozoa

Endocervix Transformation zone Ectocervix Vagina

T reg

Mucus & Stratum corneum

Reticular region

Stratified squamous epithelium

Stratum basale

Columnar epithelium



8 
 

2.4 Effect of PSA on genital microbial community  

The female genital tract contains many microbial species, with lactic-acid producing Lactobacillus 

species typically dominating the genital mucosa of reproductive-age women (Aroutcheva et al., 2001, 

Selle and Klaenhammer, 2013). The genital mucosal surface not dominated by Lactobacillus species 

may facilitate transmission of STIs, including HIV, as well as increase the risk of urogenital disease, 

miscarriages, preterm births and sepsis in pregnant women (van de Wijgert et al., 2008, Srinivasan et 

al., 2012). Lactobacillus species (L. crispatus, L. gasseri and L. jensenii), which are well established as 

healthy vaginal commensal organisms, play a role in inhibiting the colonization and survival of 

reproductive tract pathogens, as they produce lactic acid, hydrogen peroxide (H2O2) and bacteriocins 

(Buve et al., 2014, Hayes et al., 2010). The absence of lactic acid producing Lactobacillus species may 

lead to BV, a common vaginal dysbiosis that has been associated with increased risk of HIV acquisition 

in observational studies (Buve et al., 2014, van de Wijgert et al., 2014). 

 

Semen can serve as a medium for the transmission of bacterial communities between men and women 

(Hou et al., 2013, Gallo et al., 2011). It is expected that vaginal microbiota would be affected by the 

seminal communities transferred into the FGT during unprotected sexual intercourse. Although data is 

inconsistent, several studies have demonstrated that new or multiple sexual partners and frequent 

unprotected sexual intercourse have been significantly associated with an increased risk of BV (Cherpes 

et al., 2008, Fethers et al., 2008, Schwebke et al., 1999), while others did not show similar findings 

(Baeten et al., 2009, Newton et al., 2001, Eschenbach et al., 2001). Unprotected sexual intercourse has 

been associated with an increase in the BV-related microbiota, with a significant reduction in 

Lactobacillus species (Brotman et al., 2010, Gajer et al., 2012). Similarly, unprotected sexual 

intercourse has been associated with significant decrease in relative abundance of Lactobacillus 

crispatus in couples (Mändar et al., 2015). Recent semen exposure, as measured by the presence of PSA 

in the vaginal fluid, has been associated with significant decrease in the abundance of Lactobacillus 

species (Jespers et al., 2017, Jespers et al., 2015) and increased BV recurrence (Turner et al., 2016). 

The association between semen exposure and changes in the vaginal microbiota confirms the need to 

frequently screen vaginal fluids for the presence of semen and to adjust for recent semen exposure, even 

if the study participant did not report sexual intercourse.  
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2.5 Study Aims, Objectives & Hypothesis 

2.5.1 Aims: 

• To determine the extent to which partner semen contamination impacts on cytokine profiles 

measured in SoftCup supernatants from sexually active women. 

• To evaluate the relationship between presence of PSA and incident and recurrent STIs and 

BV. 

Objectives:  

• To detect presence of semen in SoftCup supernatants using PSA ELISA. 

• To determine the concordance between self-reporting of consistent condom use and the 

presence of PSA. 

• To measure the impact of semen contamination on cytokine profiles. 

• Correlate the detection of PSA with incident and recurrent STIs and BV in women on 

antimicrobial therapy. 

Hypothesis: 

SoftCup supernatants from sexually active women will be contaminated with trace amounts of 

semen that will alter cytokine levels in women enrolled in CAPRISA 083 cohort. Furthermore, 

recent unprotected sexual intercourse will be associated with recurrence of BV and STIs, 

regardless of treatment exposure. 
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CHAPTER 3:  

Impact of semen exposure on cytokine response and bacterial vaginosis in the female 

genital tract 

3.1 Introduction 

Despite improvements in study questionnaire format, self-reported condom use is still a drawback that 

may lead to bias estimates of the influence of prevention strategies on risk for sexual transmitted 

infections, including HIV (Ghanem et al., 2007). To circumvent this, PSA has been applied in 

biomedical prevention strategies as biomarker of semen exposure (Macaluso et al., 1999, Aho et al., 

2010).  

 

Semen exposure through unprotected sexual intercourse as well as inconsistent and incorrect condom 

use has been associated with increased recruitment of mucosal immune cells and a change in the vaginal 

microbiota with impairment in H2O2 producing lactobacilli colonization (Jespers et al., 2017, 

Eschenbach et al., 2001, Jespers et al., 2015, O'Hanlon et al., 2010). Both high levels of female genital 

tract inflammatory cytokines and altered vaginal bacterial communities have been associated with 

elevated genital inflammation and increased HIV risk, likely by increasing mucosal HIV target cell 

frequency and T cell activation (Anahtar et al., 2015, Gosmann et al., 2017, Masson et al., 2015). 

Furthermore, semen effect on the mucosal micro-environment may impact both physiological and 

patho-physiological events at the FGT. This includes tissue remodelling, response to foreign antigens 

in seminal fluid and bacterial and viral infections such as HIV. Thus, an objective assessment of how 

semen contamination impacts the immunological environment as well as the vaginal microbiota is 

important. 

 

Taking this into consideration, these recent findings highlight the importance of understanding the 

concordance between self-reporting of consistent condom use and the presence of semen biomarkers, 

as measured by PSA. In addition, it is also clear that an extensive understanding of the impact of semen 

exposure on FGT cytokine milieu and microbial communities is warranted. In this study, we determined 

the concordance between self-reporting of consistent condom use and the presence of semen 

biomarkers. We also evaluated the extent to which partner semen contamination impacts on cytokine 

profiles, STIs and BV measured in SoftCup supernatant samples from sexually active women. 

Furthermore, we proposed to investigate the relationship between semen exposure and incident and 

recurrent STIs and BV.  
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3.2 Methods and Materials  

3.2.1 Study design, participants and specimen collection 

SoftCup supernatant, genital swabs, cytobrushes and cervicovaginal fluids were collected at baseline, 

week 6 and month 3 from 248 women undergoing STI management in the CAPRISA 083 study. 

CAPRISA 083 is a prospective study aimed at reducing STIs in women by enhancing the STI 

management package offered for targeted laboratory-diagnosed STI care, ensuring that the individual 

is cured and by reducing the risk of reinfection using expedited partner therapy. Participant 

demographics and clinical data were collected at enrolment through structured questionnaire. At each 

study visit, HIV rapid testing, Herpes Simplex Virus type 2 (HSV-2) and Human papilloma virus (HPV) 

were done using real time PCR and conversional PCR to control for the impact of common viral causes 

of female genital tract inflammation. Point of care STI screening was performed using GeneXpert 

(Cepheid, North America) assays for Chlamydia trachomatis (C. trachomatis) and Neisseria 

gonorrhoea (N. gonorrhoea). Trichomonas vaginalis (T .vaginalis) assessment was conducted using 

the wet prep and results were confirmed with PCR. Women infected with C. trachomatis, N. 

gonorrhoea and T. vaginalis were treated with 1g azithromycin, 250mg ceftriaxone IMI and 2g 

metronidazole, respectively. BV was determined by Nugent score (score of < 3 was regarded as normal 

vaginal flora, 4-6 as intermediate flora and 7-10 as BV). Women who were diagnosed with intermediate 

flora, BV and T. vaginalis were offered a single dose of oral metronidazole 2g.  

 

3.2.2 ELISA to detect prostate specific antigen (PSA) 

Human tissue kallikrein 3 (R&D Systems, Inc., Minneapolis, USA), commonly known as PSA, was 

measured in SoftCup supernatants using ELISA. Briefly, 50 µl of SoftCup supernatant was used for 

PSA detection, with upper limit of detection of 60 ng/ml and a threshold positivity of 0.94 ng/ml, as per 

manufacturer’s protocol. Every plate included PSA standards (provided in the kit) and negative control 

containing sterile PCR-grade water and reaction mix. The average absorbance values for each set of 

reference standards, negative control, positive control and the samples were measured at 450 nm 

wavelength using the VersaMax™ absorbance microplate reader (Molecular Devices, Inc., Sunnyvale, 

USA). For a detailed method refer to (Appendix A, 1.1). 

 

3.2.3 Cytokines measurements 

At baseline, concentration levels of 48 cytokines were detected in SoftCup supernatants and expressed 

in log10 (pg/ml) from CAP083 female participants. The cytokine panel included chemokines, pro-

inflammatory cytokines, adaptive, growth factors and anti-inflammatory: IL-1β, IL-1Rα, IL-2, IL-4, IL-

5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-12p40, IL-16, IL-18, IL-1A, IL-2RA, IL-3, IL-13, IL-15, 

IL-17, basic fibroblast growth factor (FGF-basic), cutaneous T-cell attracting chemokine (CTACK), 

Eotaxin, granulocyte colony-stimulating factor (G-CSF), GM–CSF,GRO-α, hepatocyte growth factor 
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(HGF), IFN-γ, IFN-α2, IP-10, LIF, MCP-1, MCP-3, macrophage colony-stimulating factor (M-CSF), 

monokine induced by gamma- interferon (MIG), Macrophage migration inhibitory factor (MIF), MIP–

1α, MIP-1β, nerve growth factor-beta (NGF-β), platelet derived growth factor (PDGF-ββ), regulated 

upon activation normal T cell expressed and presumably secreted (RANTES),stem cell factor (SCF), 

stem cell growth factor-beta (SCGF-β), stromal cell-derived factors 1- alpha (SDF-1α), tumour necrosis 

factor alpha (TNF–α), TNF-beta (TNF-β), TNF-related apoptosis-inducing ligand (TRAIL), and 

vascular endothelial growth factor (VEGF) were measured using the Bio-Plex Pro Human Cytokine 

kits Group I (27-Plex Panel) and Group II (21-Plex Panel) in a Bio-Plex Reader™200 system (Bio-Rad 

Laboratories, USA). Assays were performed according to the manufacturer’s protocol. SoftCup 

supernatants were thawed overnight on ice and filtered by centrifugation using 0.2 μm cellulose acetate 

filters (Sigma, USA). Bio-Plex manager software (version 5.0; Bio-Rad Laboratories Inc®., USA) was 

also used to analyse the data and all analyte concentrations were extrapolated from the standard curves 

using a 5 PL regression equation. Analyte concentrations that were below the lower limit of detection 

of the assay were reported as the mid-point between zero and the lowest concentration measured for 

each analyte. For a detailed method refer to (Appendix A, 1.2).  

 

3.2.4 Statistical analysis 

Descriptive statistics were summarized using medians and interquartile ranges for continuous variables 

and proportions for categorical variables. The Fisher’s exact test was used to compare proportions 

between groups, whilst the Wilcoxon rank sums test was used to compare two medians. To measure the 

impact of semen exposure on cytokine concentrations, linear mixed models were fitted to log-

transformed cytokine concentrations. Multivariable models adjusted for age, STI, BV, current 

contraception use and condom use. Statistical analyses were conducted using GraphPad Prism 7.05 

(GraphPad Software, USA) and SAS version 9.3 (SAS Institute Inc., Cary). 

 

3.3 Results 

3.3.1 Clinical and socio-behavioural characteristics of the study participants  

Overall, the median age of the women was 23 years (interquartile range (IQR) 21-27 years), with 

majority (73%, 177/244) completing secondary education. About 73% (182/248) of the women reported 

using condoms with a partner to prevent STIs while 65% (161/248) reported using a condom 

occasionally. Only 35.9% (89/248) of study participants reported the use of any form of contraception 

to prevent unplanned pregnancies. Of the 35.9% women who reported contraception use, 58% (52/89) 

were using progesterone based injectables (Table 3.1).  

 

Of the 248 women enrolled in this study, only 43 (19%) women tested positive for PSA in SoftCup 

supernatants by ELISA. About 69% (30/43) of the women who reported condom use with their partner 
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tested positive for PSA, suggesting that condom use was likely over-reported or they engaged in 

unprotected sexual intercourse 48 hours before sample collection. PSA was detected in 37% (16/43) of 

SoftCup supernatants from women who reported no condom use with a partner. Although not 

significant, PSA was more frequently detected in women using progesterone based injectables 

compared to other forms of contraceptive users (oral-contraceptive pill, subdermal implant and 

condoms). 

 

We examined the relationship between PSA and prevalent BV or STIs. Of the 248 women who were 

screened for BV, 31% (76/248) had a normal vaginal flora as indicated by Nugent score of < 3 

(dominated by Lactobacillus spp.), 35% (87/248) had intermediate BV (Nugent score 4-6, with a 

diversity of bacteria) and 34% (85/248) had BV (Nugent score >7, with a diversity of anaerobic 

bacteria). Women in whom PSA was detected had slightly higher BV prevalence than PSA-negative 

women (Table 3.1). Women with intermediate BV were more likely to have PSA detected (49%, 21/43; 

p=0.038), while women with any form of STIs were less likely to have PSA in their genital secretions 

(23%, 10/248) (Table 3.1). At baseline, the majority (14%, 35/248) of women were infected with C. 

trachomatis, followed by N. gonorrhoeae (4%, 11/248) and T. vaginalis (4%, 9/248). PSA was detected 

in 19% (8/43) of women with C. trachomatis and 2% in those with N. gonorrhoeae (1/43) or T. vaginalis 

(1/43), respectively. 

 

Twenty-eight percent (61/228) of women cleared both STI (n=43) and BV (n=18) after treatment at 

baseline, with an exception of 54 women who continued to have persistent STI (n=2) or BV (n=52). Of 

these women 28% (15/54) tested positive for PSA. Persistence of STIs and BV might have been due to 

that the participants may have not completed treatment or engaged in unprotected sex with STI/BV 

infected partner or may have been infected with drug resistant isolate (e.g. C. trachomatis, Gardnerella 

vaginalis etc.). The small number of participants with recurrent STI or BV at follow-up (week 6 and 

month 3) limited our analysis and could not determine the relationship between semen exposure and 

incident and recurrent STI or BV.
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Table 3.1: Baseline participant demographics according to presence of PSA in genital secretions 

Variable Level 

Overall PSA+ PSA- 

P value N=248 N=43 N=205 

% (n/N)  or  Median (IQR) 

Age  Median (IQR) 23 (21 - 27) 23 (21 - 27) 23 (21- 26) 0.291 

Highest level of education 

Primary Education 0.4 (1/244) 0 0.5 (1/201) 0.651 

Secondary Education 72.5 (177/244) 76.7 (33) 71.6 (144/201)  

Tertiary Education 27.0 (66/244) 23.3 (10) 27.9 (56/201)  

Do you use condoms with your partner(s) to protect yourself from STIs? 
Yes 73.4 (182) 69.8 (30) 74.1 (152) 0.572 

No 26.6 (66) 30.2 (13) 25.9 (53)  

How often do you use condoms? 

Always 4.0 (10) 0 4.9 (10) 0.290 

Sometimes 64.9 (161) 62.8 (27) 65.4 (134)  

Never 31.0 (77) 37.2 (16) 29.8 (61)  

Are you using contraception or practicing any form of birth control? 
Yes 35.9 (89) 27.9 (12) 37.6 (77) 0.294 

No 64.1 (159) 72.1 (31) 62.4 (128)  

Contraception use 

Condom only 7.9 (7/89) 0 9.1 (7/77) 0.590 

Oral-contraceptive pill 11.2 (10/89) 8.3 (1/12) 11.7 (9/77)  

Progesterone injections 58.4 (52/89) 83.3 (10/12) 54.5 (42/77)  

Subdermal Implant 20.2 (18/89) 8.3 (1/12) 22.1 (17/77)  

Intra-uterine device (IUD) 2.2 (2/89) 0 2.6 (2/77)  

Bacterial vaginosis: 

Normal 30.6 (76) 16.3 (7) 33.7 (69) 0.038* 

Intermediate 35.1 (87) 48.8 (21) 32.2 (66)  

BV 34.3 (85) 34.9 (15) 34.1 (70) 

Sexual transmitted infections      

T. vaginalis 
Positive 3.6 (9) 2.3 (1) 3.9 (8) 1.000 

Negative 96.4 (239) 97.7 (42) 96.1 (197)  

C. trachomatis 

Positive 14.1 (35) 18.6 (8) 13.2 (27) 0.342 

Negative 85.9 (213) 81.4 (35) 86.8 (178)  
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N. gonorrhoeae 
Positive 4.4 (11) 2.3 (1) 4.9 (10) 0.695 

Negative 95.6 (237) 97.7 (42) 95.1 (195)  

Any STI (C. trachomatis, N. gonorrhoeae or T. vaginalis) 
Positive 20.2 (50) 23.3 (10) 19.5 (40) 0.539 

Negative 79.8 (198) 76.7 (33) 80.5  (165)  

* P < 0.05, PSA=prostate specific antigen, C. trachomatis-Chlamydia Trachomatis, N. gonorrhoeae -Neisseria gonorrhoeae, T. vaginalis-Trichomonas vaginalis, BV-bacterial vaginosis, STIs-

sexually transmitted infections, IQR- interquartile range. Descriptive statistics are reported as medians and IQRs (continuous data) or percentages (categorical data). Numbers were not the 

same in some groups PSA concentrations greater than 1.0 ng/mL were considered as providing evidence of semen exposure within the past 2 day. 
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3.3.2 Recent unprotected sex and relative risk for BV or STI  

We next assessed the relative risk of acquiring BV or STIs in women whom PSA was detected using a 

logistic regression model. After adjusting for potential confounders such as age, STIs, current 

contraceptive use and condom use, PSA was significantly associated with prevalent BV ( RR, 2.607; 

95% CI, 1.086 - 6.258; p=0.032) (Table 3.2). 

 

Table 3.2: Associations between recent unprotected sex and BV  

 

P<0.05, * multivariate analysis (Adjusted for age, STIs, condom use and contraceptive use) 

 

In contrast, we observed no significant association between recent unprotected sex, as measured by 

PSA, and relative risk of acquiring STIs (RR, 1.074; 95% CI, 2.419 – 0.476; p = 0.864) (Table 3.3). 

 

Table 3.3: Associations between recent unprotected sex and STIs 

 

P<0.05, *multivariate analysis (Adjusted for age, condom use, current contraceptive use, BV) 

 

3.3.3 Cytokine expression profiles in women with and without PSA  

The concentrations of 48 cytokines were assessed in the SoftCup supernatants of each participant at 

baseline. Unsupervised hierarchical clustering of cytokines identified no overt differences of cytokine 

expression profiles in women with or without PSA in their genital fluid (Figure 3.1a). Principal 

component analysis (PCA) confirmed this finding, with no notable differences in principal component 

distribution of cytokines observed in women who PSA was detected versus those without PSA (Figure 

3.1b). 

 

 

 

 

 

95% Confidence Interval

Characteristic Level Relative Risk Standard error Lower Upper P value

Negative Ref

Positive (unadjusted) 2.609 1.145 1.104 6.165 0.029

Positive (adjusted)* 2.607 1.165 1.086 6.258 0.032

PSA

Characteristic Level Relative Risk Standard error Lower Upper P value

Negative Ref

Positive (unadjusted) 1.250 0.502 0.569 2.747 0.579

Positive (adjusted)* 1.074 0.445 0.476 2.419 0.864

95% Confidence Interval

PSA
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Figure 3.1: Cytokine concentrations in women with PSA versus those without PSA. (A): 

Hierarchical clustering depicting cytokine expression profiles. Red and blue colours represent the 

standardized cytokine concentration values above and below zero, respectively. Yellow bars indicate 

women who tested positive for PSA while green indicate those without detectable PSA. The vertical 

axes represent the individual cytokines (right) and clusters (left); while horizontal axes represent 

participant identities. Cytokine values were scaled and centred for dendogram plotting. (B): Principal 

component analysis of cytokines in women who PSA was detected versus those without PSA. Red dots 

(n=43) indicate women who tested positive for PSA while blue dots (n=205) indicate those without 

detectable PSA. 

3.3.4 Presence of semen altered interferon gamma in SoftCup supernatants of women 

with BV 

Next, we investigated the impact of semen exposure in SoftCup supernatants cytokine concentrations 

from women with BV. There was no significant difference found in women with BV and tested PSA 

positive compared to those with BV and without PSA (Figure 3.2). To circumvent the potential bias 

BV may have on cytokines (Masson et al., 2015), we removed those that were BV positive and analysed 

only those without BV. Women without BV and who had recent unprotected sex had decreased 

concentrations of IFN-γ (p=0.014), compared to women who tested negative for both BV and PSA 

(Figure 3.2). The association remained strong even after adjusting for age, current contraceptive use, 

STIs and condom use.  
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Figure 3.2: Impact of semen exposure on SoftCup supernatant cytokine concentrations in women who tested for BV and PSA. These were stratified into 

two comparative groups such as (i) BV positive and PSA positive versus BV positive and PSA negative and (ii) BV negative and PSA positive versus BV 

negative and PSA negative. Box-and-whisker plot range between the 25
th
 – 75

th
 percentiles, lines indicate medians, whiskers indicate 10-90

th
 percentiles, dots 

indicate outliers. A significant difference is shown by p<0.05.
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3.3.5 Impact of PSA on innate factors in the female genital tract  

We also assessed the impact of PSA on cytokine milieu of women with STIs. The concentrations of 

soluble factors MIP-1α (p=0.047) were higher in women with STIs and had recent unprotected sex 

compared to women with STIs and tested negative for PSA. However, this did not remain significant 

after adjusting for confounders such as age, condom use, BV and current contraceptive use (Figure 3.3).  

Figure 3.3: Linear regression model was used to evaluate the relationship between cytokine 

concentrations in SoftCup supernatants and PSA from 248 HIV uninfected women. The cytokine 

concentrations were log-transformed and the cytokine concentrations were compared to PSA (whether 

positive or negative). The error bars indicate 95% confidence intervals. A significant association is 

shown by a shade circle and red asterisk (p<0.05). Unadjusted is for the univariate analysis and adjusted 

is for the multivariate analysis. Cytokine functions: pro-inflammatory – black inverted pyramid, 

chemokines – purple diamond, growth factors – red triangle, adaptive - green squares and anti-

inflammatory cytokines – blue circles. 

 

Furthermore, we excluded women with STIs to remove the biased effects STIs have on cytokines 

(Masson et al., 2016, Masson et al., 2014). The concentrations of MIP-1α were significantly increased 

in PSA positive and STI negative women versus PSA negative and STI negative women (p=0.030), but 
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no significant associations were observed after adjusting for age, condom use, BV and current 

contraceptives use (Table 3.4). In addition, IL-1β (p=0.075); IL-6 (p=0.052) and TNF-α (p=0.056) 

concentrations tended to be increased in women who were PSA positive without STIs, although not 

after adjusting for multiple comparisons, except for IL-6 (p=0.094). 
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Table 3.4: Influence of prostate specific antigen (PSA) on cytokine/chemokine profiles in female genital tract secretions 

Functional groups Cytokines 

PSA positive  STI negative PSA negative STI negative              Univariate                 #Multivariate 

Median 

(pg/ml) 
IQR 

Median 

(pg/ml) 
IQR β coefficient (SE) P value βcoefficient (SE) P value 

Pro-Inflammatory IL-1α 3.865 3.340 - 4.335 3.835 3.323 - 4.338 0.048 (0.174) 0.787 -0.016 (0.175) 0.929 

IL-1β 3.851 2.897 - 4.202 3.401 2.763 - 3.855 0.422 (0.235) 0.075 0.267 (0.234) 0.255 

IL-6 2.828 2.548 -3.328 2.520 2.066 - 2.917 0.297 (0.152) 0.052 0.259 (0.155) 0.094 

IL-12p40 3.259 0.705 - 3.792 3.345 0.705 - 3.847 -0.219 (0.306) 0.474 -0.078 (0.306) 0.800 

IL-12p70 3.300 2.674 - 3.610 3.068 2.619 - 3.487 0.062 (0.250) 0.805 0.054 (0.256) 0.833 

IL-18 3.887 3.061 - 4.626 3.900 3.018 -4.306 0.173 (0.221) 0.435 0.089 (0.220) 0.687 

MIF 4.702 4.134 - 5.171 4.739 3.728 - 5.201 0.107 (0.194) 0.582 -0.015 (0.192) 0.937 

TNF-α 3.222 2.793 - 3.508 2.943 2.676 - 3.290 0.266 (0.138) 0.056 0.207 (0.140) 0.142 

TNF-β 2.205 1.597 - 2.568 2.059 1.559 - 2.552 -0.075(0.218) 0.729 -0.081 (0.220) 0.715 

TRAIL 2.472 -0.367 - 3.149 2.339 -0.367 - 3.095 0.272 (0.309) 0.381 0.213(0.309) 0.493 

Chemokines CTACK 3.451 2.870 - 3.632 3.478 2.862 - 3.668 -0.112 (0.275) 0.685 0.038 (0.273) 0.891 

EOTAXIN 2.640 -0.352 - 2.898 2.432 -0.352 - 2.892 0.354 (0.299) 0.237 0.224 (0.302) 0.459 

GRO-a 4.658 3.792  - 5.065 4.609 3.775 - 5.312 0.257 (0.295) 0.386 0.257 (0.291) 0.377 

IL-8 4.466 4.103 - 4.854 4.465 4.042 - 4.931 0.142 (0.204) 0.487 0.032 (0.205) 0.876 

IL-16 3.223 0.158 - 3.760 2.975 0.158 - 3.569 0.189 (0.295) 0.524 0.161 (0.304) 0.597 

IP-10 4.177 3.440 - 4.607 4.252 3.289 - 4.895 0.088 (0.288) 0.761 0.099 (0.282) 0.723 

MCP-1 3.038 2.809 - 3.236 3.102 2.870 - 3.291 -0.041 (0.210) 0.847 0.002 (0.209) 0.994 

MCP-3 -0.629 -0.629 - (2.892) -0.629 -0.629 - (2.829) -0.087 (0.335) 0.795 -0.057 (0.339) 0.866 

MIG 4.270 3.826 - 4.660 4.310 3.699 -  4.786 -0.126 (0.188) 0.500 -0.134 (0.189) 0.480 

MIP-1α 1.682 1.436 - 1.911 1.544 1.180 - 1.920 0.536 (0.245) 0.030 0.383 (0.243) 0.116 

MIP-1β 2.204 1.851 - 2.593 2.230 1.700 - 2.591 0.223 (0.239) 0.353 0.112 (0.241) 0.644 

RANTES 1.897 -0.523 - 2.395 1.737 -0.523 - 2.366 0.287 (0.290) 0.324 0.201 (0.295) 0.496 
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IFN-α2 2.634 2.163 - 2.857 2.550 1.883 - 2.851 -0.127 (0.273) 0.643 -0.131 (0.276) 0.636 

Growth Factors β-NGF 1.794 1.354 - 1.997 1.611 1.076 - 2.070 -0.073 (0.318) 0.818 -0.097 (0.327) 0.767 

FGF-Basic 2.656 -0.171 - 2.840 2.800 -0.171 - 2.991 -0.331 (0.262) 0.207 -0.314 (0.263) 0.234 

G-CSF 4.729 4.246 - 5.005 4.403 3.728 - 4.964 0.243 (0.209) 0.245 0.218 (0.214) 0.310 

GM-CSF 3.093 2.719 - 3.198 3.188 2.936 - 3.341 -0.079 (0.196) 0.688 -0.023 (0.199) 0.906 

HGF 4.162 3.654 - 4.524 4.035 3.487 - 4.470 0.193 (0.224) 0.390 0.095 (0.227) 0.676 

IL-3 3.475 3.032 - 3.767 3.409 3.011 - 4.061 0.139 (0.263) 0.595 0.132 (0.266) 0.620 

IL-7 2.201 1.951 - 2.530 2.046 1.748 - 2.324 0.237 (0.192) 0.219 0.196 (0.197) 0.316 

IL-9 2.317 2.050 - 2.546 2.309 2.013 - 2.546 0.126 (0.170) 0.461 0.089 (0.173) 0.604 

LIF 2.979 2.401 - 3.334 2.788 2.417 - 3.221 0.046 (0.188) 0.809 -0.019 (0.185) 0.918 

M-CSF 3.767 3.452 - 4.240 3.803 3.459 - 4.061 0.106 (0.168) 0.531 0.067 (0.173) 0.700 

PDGF-ββ 2.956 2.514 - 3.316 2.769 2.232 - 3.241 0.386 (0.271) 0.156 0.311 (0.2744) 0.258 

SCF -0.757 -0.757-(3.010) 1.914 -0.757 - 2.922 -0.306 (0.368) 0.407 -0.357 (0.370) 0.337 

SCGF-β 2.073 2.073 - 2.073 2.073 2.073 - 2.073 -0.112 (0.104) 0.286 -0.148 (0.106) 0.167 

SDF-1α 3.84 3.537 - 4.085 3.875 3.499 - 4.139 0.053 (0.102) 0.602 0.053 (0.103) 0.611 

VEGF 4.313 3.763 - 4.672 4.127 3.686 - 4.584 0.243 (0.215) 0.259 0.234 (0.220) 0.289 

Adaptive IFN-γ 3.227 2.947 - 3.572 3.109 2.729 - 3.495 0.119 (0.229) 0.606 -0.001 (0.232) 0.998 

IL-2† -2.301 -2.301 - (-2.301) -2.301 -2.301 - (2.301) - - - - 

IL-4 1.510 1.221 - 1.703 1.443 1.140 - 1.731 0.270 (0.222) 0.224 0.176 (0.225) 0.434 

IL-5† 1.035 -0.745 - (2.044) 1.035 -0.745 - (1.717) - - - - 

IL-13 1.631 1.068 - 1.989 1.647 1.061 - 1.952 0.079 (0.334) 0.813 -0.001 (0.341) 0.999 

IL-15 -0.561 -0.5607-(1.631) -0.561 -0.561 - (1.925) -0.132 (0.251) 0.600 -0.114 (0.253) 0.654 

IL-17 2.392 2.120 - 2.713 2.481 2.027 - 2.898 0.039 (0.341) 0.909 -0.105 (0.345) 0.761 

IL-2RA 2.752 2.062 -3.081 2.65 2.062 - 3.061 0.280 (0.259) 0.280 0.305 (0.263) 0.248 

Anti-Inflammatory IL-10 2.859 2.450 - 3.154 2.822 2.430 - 3.155 0.143 (0.211) 0.499 0.119 (0.215) 0.581 

IL-1RA 8.425 6.115 - 8.425 8.425 6.423 - 8.425 0.002 (0.264) 0.523 0.002 (0.271) 0.993 

SE=standard error, IQR = Interquartile range, PSA = prostate specific antigen. #Multivariate analysis adjusted for age, STIs, BV, current contraceptive use and condom use. †Variables with at 

least a third of concentrations that were undetectable were dichotomised and a logistic regression model was fitted to estimate the effect of PSA on detectability of these cytokine. Bold indicates 

significance p<0.05.
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3.4 DISCUSSION 

This study observed high levels of discordance between participant’s self-report of consistent condom 

use and PSA positivity. This is particularly not surprising especially in large observational reproductive 

and sexual health research studies. Two-thirds of women who reported consistent condom use with their 

partners to protect themselves from STIs tested positive for PSA. A positive PSA ELISA in women 

who reported 100% condom use likely indicates biased self-reporting of condom use or incorrect 

condom use (unprotected exposure to semen) by male partner during sexual act 48 hours prior sampling. 

Several studies have reported high rates (up to 38%) of breakage, leakage, slipping off, reuse, and the 

late application or early removal of condoms in young people (Crosby et al., 2005, Visser and Smith, 

2000). Other than possible false positive results, inconsistencies between self-reported condom use and 

PSA positivity in SoftCup supernatants may also be due to participants perceiving some topics as 

sensitive or the perceived fear of being non-compliant with barrier method use recommended during 

counselling sessions with study staff. Furthermore, use of hormonal contraception may contribute to 

inconsistencies between self-reported condom use and PSA positivity, as contraceptive users are less 

likely to use a condom (McCoy et al., 2014). PSA was also detected in women who had reported never 

using condoms during coitus and this was an expected result for these participants. 

 

Semen has been shown to serve as a medium for the transmission of bacterial communities between 

unprotected sexual partners (Hou et al., 2013, Gallo et al., 2011), resulting in changes in the vaginal 

microbial communities. Our study found that recent semen exposure (as measured by PSA positivity) 

was associated with BV prevalence. These findings are consistent with a study that found a microbial 

shift after unprotected sexual intercourse, resulting in a decreased abundance of Lactobacillus spp. and 

overgrowth of anaerobic BV-associated bacteria such as Gardnerella vaginalis, Prevotella, Atopobium 

vaginae (Brotman et al., 2010, Hou et al., 2013, Jespers et al., 2014). In addition, another study showed 

a significant association between BV, being a sex worker and recent semen exposure amongst female 

sex workers recruited from three different African countries (Jespers et al., 2014). It is plausible to 

assume that the microbial changes brought by the presence of semen exposure are short lived and may 

be due to the alkaline pH found in semen. Lactobacillus spp. thrive in acidic environment with high 

glycogen content while they struggle in environments with pH greater than 4.5 (Ravel et al., 2011, 

Petrova et al., 2015). In contrast, bacterial species such as Gardnerella vaginalis, Prevotella, Atopobium 

vaginae dominate in high pH environments (Onderdonk et al., 2016, Srinivasan et al., 2012, van de 

Wijgert et al., 2014). Despite this strong link between recent semen exposure and women with 

intermediate flora, no differences in prevalence of STIs (including C. trachomatis, N. gonorrhoea, and 

T. vaginalis) were found. 

 

Previous studies have demonstrated a semen induced inflammatory response by endometrial epithelial 

cells in vitro (Robertson, 2007, Robertson, 2005, Robertson et al., 2009). In agreement with previous 
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studies, this study found that SoftCup supernatants of women with BV and semen present (as measured 

by PSA positivity) had reduced concentrations of inflammatory IFN-γ, while an increased expression 

of the MIP-1α was observed in women with STI and semen present. Furthermore, there was a trend for 

increased pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in PSA positive women without any 

STI compared to PSA negative/STI negative women. Several studies showed that high levels of pro-

inflammatory cytokines such as IL-6, IFN-γ, MIP-1α were closely associated with elevated female 

genital tract inflammation and increased HIV risk, likely by increasing mucosal HIV target cell 

frequency and T cell activation (Masson et al., 2015, Anahtar et al., 2015, Francis et al., 2016, Kyongo 

et al., 2012). The associations between cytokines and recent semen exposure should be interpreted 

conservatively as none of these associations were significant after adjusting for multiple comparisons 

and sample sizes for these analyses were relatively small. In addition, seminal fluids might dilute 

mucosal secretions and may result in reduced concentrations of some cytokines in secretions. 

 

This study had several limitations. Firstly, there was a relatively small sample size at the follow-up 

visits due to lost to follow up. Secondly, the present study did not include Y chromosome data, which 

is indicative of unprotected sexual act with 15 days. Furthermore, several studies have reported BV 

and/or STIs recurrence even after successful treatment (Bradshaw et al., 2006, Eschenbach et al., 2001) 

and this recurrence has been attributed to biofilm (produced by microbes such as Gardnerella vaginalis) 

or reinfection from “BV/STI boyfriends”, an untreated sexual partner with BV and/or STIs (Manhart et 

al., 2013). The present study could not evaluate the relationship between the presence of recent semen 

exposure and incident and recurrent STIs and BV. This was attributed to small samples size of those 

who cleared BV/STI and had recurrence. The impact of recent semen exposure on FGT cytokines was 

also assessed cross-sectionally instead of longitudinally, where analytes are investigated in the same 

women prior and post coitus. Furthermore, cytokine levels are higher in mucosal secretions from 

younger women compared to older women, yet this study did not age-match participants for subsequent 

cytokine analyses. All limitations mentioned above are being addressed in further studies. 

 

3.5 Conclusion and future consideration 

This study found a significantly high level of discordance between self-report of consistent condom use 

and presence of semen (PSA positivity). The findings of this study suggest that the presence of semen 

has a potential to alter the inflammatory response and microbial communities of the FGT, which may 

facilitate recruitment of HIV susceptible cells, resulting in increased susceptibility to HIV-1 infection. 

Thus, the detection of recent semen exposure by measuring the presence of PSA in the vaginal fluids is 

a potentially important tool to reduce the biases inherent to self-reporting of condom use in participants 

of HIV prevention trials. In addition, the assessment or validation of self-reported condom use is 

essential in biomedical prevention studies aimed at identifying modifiable behavioural and biological 

factors that increase women’s vulnerability to infection.  
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In future, PSA could be used to reflect sexual risk behaviour and provide an objective interpretation of 

data in studies of the female mucosal microenvironment as semen exposure may substantially modify 

the microbial and immune environment within the female genital mucosa. Detection of PSA in the 

vaginal fluids provides a unique opportunity to be considered as a tool to verify recent semen exposure 

(from an infected male partner) in future studies assessing HIV infection risk by detecting HIV DNA 

in vagina fluids from HIV-uninfected women or those primarily interested in measuring incidence rates 

of STIs. Another opportunity for investigation is the potential for longitudinal analysis to evaluate the 

relationship between the presence of semen biomarkers and recurrent STIs and/or BV. Considering the 

accuracy and sensitivity of PSA assays and the impact of recent semen exposure on mucosal 

microenvironment, clinical trials should consider measuring PSA to objectively measure sexual risky 

behaviours and to accurately assess the immune response in the female genital mucosa.  
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APPENDICES 

APPENDIX A: ELISA to detect PSA 

1.1 ELISA to detect prostate specific antigen (PSA) 

The ELISA was used to detect the human tissue kallikrein 3 (R&D Systems, Inc., Minneapolis, USA), 

commonly known as prostate specific antigen in SoftCup supernatant and this was conducted according 

to the manufacturer’s protocol.  

 

1.1.1 Reagent Preparation  

All the reagents were brought to room temperature before use. 

List of reagents supplied by manufacturer (R&D systems, Inc. USA and Canada) 

• Human KLK3/PSA microplate 

• Human KLK3/PSA conjugate 

• Human KLK3/PSA standard 

• Assay Diluent RD1W 

• Calibrator Diluent RD5-19 

• Wash Buffer Concentrate 

• Colour Reagent A 

• Colour Reagent B 

• Stop solution 

• Plate sealers 

Other supplies used include: 

• VersaMax™ ELISA Microplate Reader  

• BioTek microplate washer 

• Pipettes, pipette tips  

• Deionized water 

• Automated microplate washer 

• 500ml graduated cylinder and test tubes for dilution standards. 

 

1.1.2 Preparation of 500ml wash buffer 

The 500ml wash buffer was prepared by adding 20ml of the wash buffer concentrate to 480ml of 

deionized water and mixed well by shaking the bottle (Figure A1.1).   

 

 

Figure A1.1: Illustration showing 

preparation of wash buffer 
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1.1.3 Preparation of Human KLK3/PSA Standards 

Firstly, the lyophilized standard concentrate was reconstituted with 1000µl of deionized water. The 

powder was dissolved completely by shaking and vortexing, and was left to stand for 15 minutes 

with gentle shaking.  

 

1.1.3.1 Preparation of serial dilutions  

Seven Facs tubes (BD) were labelled from 0 – 8 (60ng/ml, 30ng/ml, 15ng/ml, 7.5ng/ml, 3.75ng/ml, 

1.88ng/ml and 0.94ng/ml) for the different concentrations. To 60ng/ml tube, 900ul of Calibrator 

Diluent RD5-19 (used for cell culture supernatant samples) was added and to the remaining tubes 

500µl was added. The prepared standard stock solution was used to make serial dilutions (Figure 

A1.2). Hundred microliters (100µl) of the stock solution was pipetted into the 60ng/ml tube, the 

solution was then mixed well, vortexed and 500µl transferred into the 30ng/ml tube. Each tube was 

mixed thoroughly before the next transfer. The serial dilution was conducted till the 0.94ng/ml tube. 

Into the tube labelled zero, 500µl of deionized water was added and this tube served as a blank.  

Figure A1.2: Representative diagram of preparation of standards (Adapted from manufacturers 

protocol, R&D systems, Inc., USA and Canada) 

  

1.1.4 PSA ELISA assay procedure 

Briefly, the plate seal was removed and 100µl of Assay Diluent RDW1 (used for cell culture samples) 

was pipetted into each well. Thereafter, 50µl of standards and samples were added to all the designated 

wells and the plate was sealed with the cover strips and then incubated for 2 hours at room temperature 

(RT).  After incubation, the plate was placed in an automated plate washer and each well was aspirated 

and washed using the wash buffer. Each well was washed four times, then after washing, 200µl of 

Human KLK3/PSA conjugate was added to each well and incubated for 2 hours at RT. After the 

incubation period was over, the plate was placed in the automated plate washer, the liquid was aspirated 

and each well washed four times using wash buffer. Next, a volume of 200µl of substrate solution was 

added to each well, the plate was then covered with foil to protect from exposure to light and then 

incubated for 30 minutes at RT. After incubation, 50µl of stop solution was pipetted to each well and a 

colour change was observed. The colour in the wells changed from blue to yellow upon addition of the 
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stop solution. If in some wells the colour was not uniform, the plate was gently tapped to ensure 

thorough mixing. Figure A1.3 shows the PSA ELISA plate with standards, samples and positive wells 

in which the KLK3/PSA conjugate acted on the substrate to produce an initial blue colour and upon 

addition of the stop solution, a yellow-green colour developed. The plate was then placed on the 

VersaMax™ absorbance microplate reader (Molecular Devices, Inc., Sunnyvale, CA, USA) for 

measurement of PSA protein from the samples for 30 minutes. The machine was set at wavelength of 

450nm with wavelength corrections set t 540nm or 570nm. Figure A1.4 shows the readings obtained 

from the microplate reader after 30 minutes. 

 

Figure A1.3: PSA ELISA plate. In the positive wells, the KLK3/PSA conjugate acted on the substrate 

to produce an initial blue colour and upon addition of the stop solution, a yellow-green colour 

developed. 

Figure A1.4: Plate layout with PSA reading (results above 0.1ng/ml were regarded as positive). 

Blank 

Std 1 

Std 2 

Std 3 

Std 4 

Std 6 

Std 7 

Std 8 

Standards Samples 



38 
 

1.2 Female genital tract cytokine concentration measurements 

The concentrations of 48 cytokines were measured in SoftCup supernatants from women enrolled in 

the CAP083 study. The cytokine panel included pro-inflammatory cytokines, chemokines, growth 

factors, adaptive and anti-inflammatory: Interleukin (IL)-1β, IL-1Rα, IL-2, IL-4, IL-5, IL-6, IL-7, IL-

8, IL-9, IL-10, IL-12p70, IL-12p40, IL-16, IL-18, IL-1A, IL-2RA, IL-3, IL-13, IL-15, IL-17, basic FGF, 

CTACK, Eotaxin, G-CSF, GM–CSF, GRO-α, HGF, IFN-γ, IFN-α2, IP-10, LIF, MCP-1, MCP-3, M-

CSF, MIG, MIF, MIP–1α, MIP-1β, β-NGF, PDGF-ββ, RANTES, SCF, SCGF-β, SDF-1α, TNF-α, 

TNF-β, TRAIL, and VEGF were measured using the Bio-Plex Pro Human Cytokine  Group I (27-Plex 

Panel) and Group II (21-Plex Panel)  Bio-Plex  Reader™200 system (Bio-Rad Laboratories,USA). The 

cytokines were grouped according to their immune characteristics as shown Table A1.1. 

 

Table A1.1: Showing cytokines grouped according to their general immune characteristics 

Pro-

inflammatory 
Chemokines 

Growth 

Factors 
Adaptive Anti-inflammatory 

IL-1α CTACK β-NGF IFN-γ IL-10 

IL-1β EOTAXIN FGF-BASIC IL-2 IL-1RA 

IL-6 GRO-α G-CSF IL-4   

IL-12p40 IL-8 GM-CSF IL-5   

IL-12p70 IL-16 HGF IL-13   

IL-18 IP-10 IL-3 IL-15   

MIF MCP-1 IL-9 IL-17   

TNF-α MCP-3 LIF IL-2RA   

TNF-β MIG M-CSF     

TRAIL MIP-1α PDGF-ββ     

  MIP-1β SCF     

  RANTES SCGF-β     

  IFN-α2 SDF-1α     

    VEGF     

    IL-7     

1.2.1 Cytokine measurement assay 

   1.2.1.1 List of reagents supplied by manufacturer (Bio-Rad Laboratories, Inc., USA) 

• Standard diluent 

• Sample diluent 

• Assay buffer 
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• Detection antibody diluent 

• Streptavidin-PE 

• Filter plater and/or flat bottom plate (96 well) 

• Sealing tape 

• Instruction manual 

• Coupled magnetic beads 

• Detection antibodies 

Other supplies recommended:  

• Bio-Plex® 200 system 

• Bio-Plex Pro wash station  

• Microtiter plate shaker,  

• Vortex 

• Reagent reservoirs 

 

Figure A1.5: Representation of cytokine assay plate layout with standards, blanks, controls and 

samples. 

 

1.2.2 Cytokine assay procedure 

To analyse the concentrations of the 48 cytokines, luminex was conducted according to the 

manufacturer’s protocol (Bio-Plex Pro Human Cytokine Group I (27-Plex Panel) and Group II (21-

Plex Panel), Bio-Rad Laboratories, Inc., USA). For sample preparation, prior to assay setup: 50ul of 

SoftCup supernatants was added to 300ul of PBS, spun down and filtered using a spin column. The 

standards and quality control were included in the kit. All buffers, standards, coupled beads and 

samples were brought to room temperature prior to use. To briefly explain the assay, Figure A1.5 

shows the plate layout that was designed. The lyophilized standards was reconstituted with 500µl 

1 2 3 4 5 6 7 8 9 10 11 12

A S1 S1 S9 S9 5 5 21 29 37 45 53

120003_26-Jul -16_1030 120003_26-Jul -16_1030 120010_18-May-16_1000 120014_19-May-16_1000 120017_23-May-16_1000 120020_06-Jul -16_1020 120023_19-Aug-16_1030 120027_26-May-16_1000

B S2 S2 S10 S10 6 6 14 22 30 38 46 54

120004_13-May-16_1000 120004_13-May-16_1000 120010_12-Jul -16_1020 120014_30-Jun-16_1020 120017_19-Jul -16_1020 120020_31-Aug-16_1030 120024_26-May-16_1000 120028_31-May-16_1000

C S3 S3 Blank Blank 7 7 15 23 31 39 47 55

120005_13-May-16_1000 120005_13-May-16_1000 120010_15-Aug-16_1030 120015_23-May-16_1000 120017_16-Aug-16_1030 120021_24-May-16_1000 120024_15-Jul -16_1020 120028_21-Jul -16_1020

D S4 S4 Cntrl Cntrl 8 8 16 24 32 40 48 56

120006_17-May-16_1000 120006_17-May-16_1000 120011_19-May-16_1000 120015_19-Jul -16_1020 120018_24-May-16_1000 120022_25-May-16_1000 120024_19-Aug-16_1030 120028_06-Oct-16_1030

E S5 S5 1 1 9 9 17 25 33 41 49 57

120001_12-May-16_1000 120001_12-May-16_1000 120007_17-May-16_1000 120007_17-May-16_1000 120012_19-May-16_1000 120015_23-Aug-16_1030 120019_24-May-16_1000 120022_07-Jul -16_1020 120025_26-May-16_1000 120029_31-May-16_1000

F S6 S6 2 2 10 10 18 26 34 42 50 58

120002_12-May-16_1000 120002_12-May-16_1000 120008_17-May-16_1000 120008_17-May-16_1000 120013_19-May-16_1000 120016_23-May-16_1000 120019_06-Jul -16_1020 120022_17-Aug-16_1030 120026_26-May-16_1000 120030_31-May-16_1000

G S7 S7 3 3 11 11 19 27 35 43 51 59

120003_13-May-16_1000 120003_13-May-16_1000 120008_17-Aug-16_1030 120008_17-Aug-16_1030 120013_01-Jul -16_1020 120016_04-Jul -16_1020 120019_18-Aug-16_1030 120023_25-May-16_1000 120026_11-Jul -16_1020 120030_20-Jul -16_1020

H S8 S8 4 4 12 12 20 28 36 44 52 60

120003_22-Jun-16_1020 120003_22-Jun-16_1020 120009_18-May-16_1000 120009_18-May-16_1000 120013_12-Aug-16_1030 120016_22-Aug-16_1030 120020_25-May-16_1000 120023_19-Jul -16_1020 120026_24-Aug-16_1030 120030_26-Aug-16_1030
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diluent and mixed gently by vortexing for 3 seconds then incubated on ice for 30 minutes. Following 

reconstitution, the standards were serially diluted to 1:4 dilutions in assay buffer and used as a 

reference for the quantification of the analytes. The coupled beads were diluted to a 1× concentration 

assay buffer and vortexed for 30 seconds and then 50µl of the assay buffer was added to each well. 

The plate was first washed twice with 100µl of wash buffer Bio-Plex Reader™200 system (Bio-Rad 

Laboratories, USA). Following washing, 50µl of standards, controls and samples were added into 

their designated wells and incubated for 30 minutes at RT while on the shaker (the plate was covered 

with aluminium foil for protection from light). After incubation, the plate was washed three times 

with 100µl of wash buffer, then 25µl of detection antibodies were added to each well and the plate 

was sealed and incubated at RT for 30 minutes. Following incubation, the plate was taken to the plate 

washer and washed three times with wash buffer. After washing, a volume of 50µl of streptavidin-

PE was added to each well with 10 minutes incubation at RT on a shaker. Following incubation, the 

beads were re-suspended in 125µl of assay buffer and this was added to each well. The samples were 

then quantified using the Bio-Plex 200 system (Bio-Rad, Inc., USA). 

 

APPENDIX B: Raw data 

Table B1: Univariate linear model for cytokines and PSA (with STI positives) 

      95% CI   

Cytokine β coefficient Std error Upper Lower P value 

b_NGF 0.03 0.27 0.56 -0.51 0.917 

CTACK -0.03 0.24 0.43 -0.50 0.897 

Eotaxin 0.24 0.26 0.76 -0.28 0.367 

FGF_basic -0.35 0.23 0.10 -0.80 0.126 

G_CSF 0.20 0.19 0.57 -0.17 0.280 

GM_CSF -0.09 0.19 0.28 -0.46 0.639 

GROa 0.03 0.24 0.51 -0.45 0.905 

HGF -0.01 0.19 0.37 -0.39 0.964 

IFN_a2 -0.08 0.24 0.39 -0.55 0.738 

IFN_g 0.11 0.19 0.50 -0.27 0.561 

IL_10 0.11 0.18 0.45 -0.24 0.552 

IL_12p70 0.08 0.21 0.49 -0.33 0.710 

IL_12p40 -0.29 0.27 0.25 -0.82 0.296 

IL_13 0.17 0.28 0.73 -0.38 0.539 

IL_15 -0.10 0.22 0.34 -0.53 0.663 

IL_16 0.06 0.26 0.58 -0.46 0.823 

IL_17 0.02 0.30 0.60 -0.57 0.959 
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IL18 0.15 0.18 0.51 -0.21 0.401 

IL_1a 0.01 0.16 0.33 -0.32 0.961 

IL_1b 0.28 0.21 0.70 -0.13 0.177 

IL_1ra 0.13 0.24 0.60 -0.33 0.574 

IL_2 -0.17 0.26 0.35 -0.68 0.527 

IL_2Ra 0.19 0.22 0.62 -0.24 0.382 

IL_3 0.14 0.23 0.59 -0.31 0.546 

IL_4 0.12 0.18 0.48 -0.24 0.506 

IL_5 -0.05 0.23 0.40 -0.50 0.831 

IL_6 0.17 0.13 0.43 -0.09 0.204 

IL_7 0.25 0.16 0.57 -0.07 0.128 

IL_8 -0.004 0.18 0.35 -0.36 0.981 

IL_9 0.02 0.15 0.31 -0.27 0.911 

IP_10 -0.13 0.25 0.36 -0.62 0.610 

LIF 0.05 0.16 0.37 -0.26 0.745 

M_CSF 0.09 0.14 0.36 -0.18 0.516 

MCP_1 -0.12 0.18 0.24 -0.47 0.524 

MCP_3 -0.16 0.30 0.42 -0.74 0.589 

MIF 0.14 0.17 0.48 -0.20 0.413 

MIG -0.17 0.16 0.14 -0.49 0.285 

MIP_1a 0.42 0.21 0.84 0.01 0.047 

MIP_1b -0.02 0.21 0.39 -0.44 0.912 

PDGF_bb 0.32 0.22 0.76 -0.12 0.158 

RANTES 0.11 0.26 0.62 -0.40 0.667 

SCF -0.43 0.32 0.21 -1.06 0.186 

SCGF_b -0.22 0.13 0.04 -0.48 0.101 

SDF_1a -0.01 0.10 0.19 -0.20 0.949 

TNF_a 0.19 0.12 0.43 -0.05 0.111 

TNF_b -0.09 0.19 0.29 -0.46 0.644 

TRAIL 0.13 0.27 0.67 -0.41 0.634 

VEGF 0.22 0.18 0.58 -0.14 0.239 

      
Univariate logistic regression (STI participants included) 

      
Cytokine Relative 

Risk 

Standard 

Error 

95% CI P value 
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    Lower Upper   

IL-2 0.761 0.363 0.299 1.938 0.567 

IL-5 0.831 0.280 0.429 1.609 0.583 

 

Table B2: Multivariate linear model for cytokines and PSA (Adjusted for Age, STI, BV, 

Current contraception use and condom use) 

      95% CI   

Cytokine β coefficient Standard 

Error 

Lower Upper P 

value 

b_NGF -0.002 0.278 -0.549 0.546 0.995 

CTACK 0.077 0.239 -0.393 0.547 0.747 

Eotaxin 0.121 0.266 -0.403 0.645 0.650 

FGF_basic -0.350 0.230 -0.804 0.103 0.129 

G_CSF 0.149 0.187 -0.219 0.517 0.426 

GM_CSF 0.002 0.188 -0.369 0.373 0.991 

GROa 0.033 0.241 -0.442 0.509 0.891 

HGF -0.102 0.193 -0.483 0.279 0.599 

IFN_a2 -0.106 0.242 -0.583 0.371 0.662 

IFN_g 0.022 0.197 -0.367 0.410 0.912 

IL_10 0.084 0.181 -0.272 0.440 0.643 

IL_12p70 0.064 0.212 -0.354 0.483 0.763 

IL_12p40 -0.191 0.276 -0.735 0.353 0.490 

IL_13 0.095 0.288 -0.474 0.663 0.743 

IL_15 -0.067 0.221 -0.502 0.367 0.760 

IL_16 0.045 0.268 -0.483 0.573 0.867 

IL_17 -0.125 0.303 -0.721 0.472 0.681 

IL18 0.093 0.180 -0.263 0.448 0.608 

_IL_1a -0.067 0.161 -0.384 0.250 0.678 

IL_1b 0.160 0.207 -0.249 0.569 0.441 

IL_1ra 0.158 0.241 -0.317 0.634 0.512 

IL_2Ra 0.168 0.221 -0.267 0.603 0.447 

IL_3 0.109 0.232 -0.348 0.566 0.639 

IL_4 0.031 0.182 -0.327 0.390 0.863 

IL_6 0.126 0.133 -0.136 0.388 0.343 

IL_7 0.205 0.165 -0.120 0.530 0.214 
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IL_8 -0.101 0.182 -0.459 0.257 0.579 

IL_9 -0.020 0.150 -0.316 0.276 0.894 

IP_10 -0.143 0.244 -0.623 0.337 0.558 

LIF 0.003 0.156 -0.304 0.309 0.986 

M_CSF 0.051 0.141 -0.226 0.328 0.715 

MCP_1 -0.096 0.181 -0.452 0.259 0.594 

MCP_3 -0.166 0.300 -0.757 0.424 0.579 

MIF 0.032 0.167 -0.298 0.361 0.851 

MIG -0.194 0.159 -0.507 0.120 0.225 

MIP_1a 0.284 0.212 -0.133 0.701 0.181 

MIP_1b -0.116 0.212 -0.534 0.302 0.585 

PDGF_bb 0.229 0.226 -0.215 0.674 0.311 

RANTES 0.021 0.261 -0.493 0.535 0.936 

SCF -0.513 0.320 -1.144 0.118 0.111 

SCGF_b -0.275 0.131 -0.534 -0.016 0.038 

SDF_1a -0.013 0.102 -0.214 0.187 0.896 

TNF_a 0.136 0.122 -0.105 0.377 0.266 

TNF_b -0.101 0.191 -0.479 0.276 0.596 

TRAIL 0.030 0.270 -0.502 0.561 0.912 

VEGF 0.202 0.187 -0.167 0.571 0.282 

      
Multivariate logistic regression (STI participants included) 

Adjusted for age, STI, BV, current contraception use and condom use 

      
Cytokine Relative Risk Standard 

Error 

95% CI P 

value 

    Lower Upper   

IL_2 0.713 0.354 0.269 1.88 0.495 

IL-5 0.723 0.253 0.364 1.434 0.353 

Table B3:  Univariate linear model for cytokines and PSA (No STI) 

      95% CI   

Cytokine β Coefficient Standard 

Error 

Lower Upper P value 

b_NGF -0.073 0.318 -0.699 0.553 0.818 
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CTACK -0.112 0.275 -0.655 0.431 0.685 

Eotaxin 0.354 0.299 -0.235 0.943 0.237 

FGF_basic -0.331 0.262 -0.847 0.184 0.207 

G_CSF 0.243 0.208 -0.168 0.655 0.245 

GM_CSF -0.079 0.196 -0.466 0.308 0.688 

GROa 0.257 0.295 -0.326 0.839 0.386 

HGF 0.193 0.224 -0.249 0.635 0.390 

IFN_a2 -0.126 0.273 -0.664 0.411 0.643 

IFN_g 0.119 0.229 -0.333 0.570 0.606 

IL_10 0.143 0.211 -0.273 0.558 0.499 

IL_12p70 0.062 0.250 -0.432 0.555 0.805 

IL_12p40 -0.220 0.306 -0.823 0.384 0.474 

IL_13 0.079 0.335 -0.581 0.739 0.813 

IL_15 -0.132 0.251 -0.628 0.364 0.600 

IL_16 0.188 0.295 -0.394 0.771 0.524 

IL_17 0.039 0.341 -0.634 0.712 0.909 

IL18 0.173 0.221 -0.263 0.609 0.435 

IL_1a 0.047 0.174 -0.295 0.389 0.787 

IL_1b 0.422 0.235 -0.042 0.886 0.075 

IL_1ra 0.002 0.264 -0.518 0.523 0.993 

IL_2Ra 0.280 0.259 -0.230 0.790 0.280 

IL_3 0.140 0.263 -0.378 0.658 0.595 

IL_4 0.270 0.222 -0.167 0.707 0.224 

IL_6 0.297 0.152 -0.002 0.597 0.052 

IL_7 0.237 0.192 -0.142 0.616 0.219 

IL_8 0.142 0.204 -0.261 0.545 0.487 

IL_9 0.126 0.170 -0.210 0.462 0.461 

IP_10 0.088 0.288 -0.481 0.656 0.761 

LIF 0.045 0.188 -0.325 0.416 0.809 

M_CSF 0.106 0.168 -0.226 0.438 0.531 

MCP_1 -0.041 0.210 -0.456 0.374 0.847 

MCP_3 -0.087 0.334 -0.747 0.573 0.795 

MIF 0.107 0.195 -0.277 0.492 0.582 

MIG -0.127 0.188 -0.497 0.243 0.500 

MIP_1a 0.536 0.245 0.053 1.019 0.030 
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MIP_1b 0.223 0.240 -0.249 0.695 0.353 

PDGF_bb 0.386 0.271 -0.148 0.920 0.156 

RANTES 0.287 0.290 -0.285 0.859 0.324 

SCF -0.306 0.368 -1.031 0.420 0.407 

SCGF_b -0.112 0.104 -0.318 0.094 0.286 

SDF_1a 0.053 0.102 -0.148 0.255 0.602 

TNF_a 0.266 0.138 -0.007 0.538 0.056 

TNF_b -0.075 0.218 -0.505 0.354 0.729 

TRAIL 0.272 0.309 -0.338 0.882 0.381 

VEGF 0.243 0.215 -0.181 0.668 0.259 

      
Univariate logistic regression (STI participants excluded) 

      
Cytokine Relative Risk Standard 

Error 

95% CI P value 

    Lower Upper   

IL-2 1.042 0.516 0.395 2.752 0.934 

IL-5 0.930 0.355 0.440 1.964 0.849 

Table B4: Multivariate linear model for cytokines and PSA (Adjusted for Age, STI, BV, 

Current contraception use and condom use 

      95% CI   

Cytokine β Coefficient Standard Error Lower Upper P value 

b_NGF -0.097 0.327 -0.743 0.549 0.767 

CTACK 0.038 0.273 -0.501 0.576 0.891 

Eotaxin 0.224 0.302 -0.372 0.821 0.459 

FGF_basic -0.314 0.263 -0.832 0.205 0.234 

G_CSF 0.218 0.214 -0.204 0.639 0.310 

GM_CSF -0.023 0.199 -0.416 0.369 0.906 

GROa 0.257 0.291 -0.316 0.831 0.377 

HGF 0.095 0.227 -0.353 0.543 0.676 

IFN_a2 -0.131 0.276 -0.675 0.413 0.636 

IFN_g -0.000 0.232 -0.458 0.457 0.998 

IL_10 0.119 0.215 -0.305 0.544 0.581 
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IL_12p70 0.054 0.257 -0.452 0.561 0.833 

IL_12p40 -0.078 0.306 -0.680 0.525 0.800 

IL_13 -0.001 0.341 -0.672 0.671 0.999 

IL_15 -0.114 0.253 -0.612 0.385 0.654 

IL_16 0.161 0.304 -0.439 0.761 0.597 

IL_17 -0.105 0.345 -0.786 0.576 0.761 

IL18 0.089 0.220 -0.346 0.523 0.687 

_IL_1a -0.016 0.175 -0.360 0.329 0.929 

IL_1b 0.267 0.234 -0.194 0.729 0.255 

IL_2Ra 0.305 0.263 -0.214 0.823 0.248 

IL_3 0.132 0.266 -0.392 0.656 0.620 

IL_4 0.176 0.225 -0.267 0.620 0.434 

IL_6 0.260 0.154 -0.045 0.564 0.094 

IL_7 0.196 0.195 -0.188 0.580 0.316 

IL_8 0.032 0.205 -0.372 0.436 0.876 

IL_9 0.090 0.173 -0.251 0.430 0.604 

IP_10 0.100 0.282 -0.456 0.655 0.723 

LIF -0.019 0.185 -0.384 0.346 0.918 

M_CSF 0.067 0.172 -0.274 0.407 0.700 

MCP_1 0.002 0.210 -0.412 0.415 0.994 

MCP_3 -0.057 0.339 -0.725 0.611 0.866 

MIF -0.015 0.192 -0.394 0.364 0.937 

MIG -0.134 0.189 -0.507 0.239 0.480 

MIP_1a 0.383 0.243 -0.096 0.862 0.116 

MIP_1b 0.112 0.241 -0.363 0.587 0.644 

PDGF_bb 0.311 0.274 -0.230 0.851 0.258 

RANTES 0.201 0.295 -0.381 0.784 0.496 

SCF -0.357 0.370 -1.087 0.374 0.337 

SDF_1a 0.052 0.103 -0.150 0.255 0.611 

TNF_a 0.207 0.140 -0.070 0.483 0.142 

TNF_b -0.080 0.220 -0.515 0.354 0.715 

TRAIL 0.213 0.310 -0.398 0.824 0.493 

VEGF 0.234 0.220 -0.200 0.669 0.289 

      

      
Multivariate logistic regression (STI participants excluded) 
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Adjusted for age, BV, current contraception use and condom use 

      
Cytokine Relative Risk Standard Error 95% CI P value 

    Lower Upper   

IL_2 0.992 0.522 0.354 2.782 0.988 

IL-5 0.794 0.314 0.365 1.723 0.559 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


