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Abstract. Object detection in video is a relevant task in computer vi-
sion. Standard and current detectors are typically trained in a strongly
supervised way, what requires a huge amount of labelled data. In con-
trast, in this paper we focus on object discovery in video sequences by
using sets of unlabelled data. Thus, we present an approach based on
the use of two region proposal algorithms (a pretrained Region Proposal
Network and an Optical Flow Proposal) to produce regions of interest
that will be grouped using a clustering algorithm. Therefore, our system
does not require the collaboration of a human except for assigning hu-
man understandable labels to the discovered clusters. We evaluate our
approach in a set of videos recorded at apron area, where the aeroplanes
park to load passengers and luggage. Our experimental results suggest
that the use of an unsupervised approach is valid for automatic object
discovery in video sequences, obtaining a CorLoc of 86.8 and a mAP of
0.374 compared to a CorLoc of 70.4 and mAP of 0.683 achieved by a
supervised Faster R-CNN trained and tested on the same dataset.

Keywords: Object discovery ·Weakly-supervised learning · Region pro-
posal · Deep Neural Networks.

1 Introduction

The goal of object detection is to define the spatial extent and the kind of objects
present in an image or video sequence. The object detection problem has been
studied for a long time from multiple points of view [1, 7, 20, 23]. Traditional
approaches are based on manually designed descriptors that are computed, and
then classified, along the image in a sliding window setup [7, 23]. With the ad-
vent of deep learning techniques, the features are self-learnt by the model, what
greatly boosted the performance of the proposed approaches [1, 20].
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However, all those approaches required to be trained in a strongly super-
vised way, that is, using manually labelled data for training. This requirement,
coupled with the large amount of data needed for training a deep learning ap-
proach, makes costly the use of deep learning models with new classes that
are not present in public datasets. Therefore, in order to add new classes to a
dataset, it is necessary to label thousands of images in order to perform a good
training process. Thus, there is a bottleneck that hampers the scaling of the
detection models to larger number of classes: the lack of annotated images, as
the annotation process is tedious and time-consuming.

The ideal solution to this problem would be to to train the models using
the huge amount of unlabelled data available in many online media sharing
pages, such as Flickr. However, only few works apply fully unsupervised solu-
tions, and most of them have serious limitations, like having only one object in
the scene [3,12] or being focused on a specific kind of object (e.g. humans) [29].
Moreover, the unsupervised solutions produce lower results than using a super-
vised one. Borrowing ideas from supervised and unsupervised learning, we found
the weakly-supervised learning that uses unlabelled data combined with either
some labelled samples or coarse grained information about some samples. The
key idea is to combine the huge amount of unlabelled information available with
some labelled data in order to facilitate the training process. In this category of
learning approaches we find works that use image-level labels (i.e. the label of
the visually dominant object) to learn to localise the object [8, 25], or, on the
other hand, they use some labelled samples like in [4, 31].

In contrast to all those previous works, we propose a weakly-supervised ap-
proach for object discovery in videos. In Fig. 1 we show a sketch of our pipeline.
Firstly, we automatically find regions of candidate objects in a sequence of frames
by using the Region Proposal Network (RPN) of a Convolutional Neural Net-
work (CNN) previously trained for object detection. In addition, we compute
the optical flow maps between consecutive frames to discover areas with moving
objects. The obtained regions are described by a feature vector obtained from a
pretrained CNN. After that, the descriptors are grouped using a clustering algo-
rithm in order to find similar objects. Finally, to assign the labels to the detected
objects, a human may optionally revise some samples from each cluster. This
labelling process will be performed only when new clusters are obtained, what
means that there are new classes present in the video. Thus, instead of labelling
hundreds of thousands images, it is only necessary to label a set of clusters.

Therefore, the main contributions of this work are: (i) a novel pipeline for
weakly-supervised object discovery in videos; (ii) a combination of two com-
plementary region proposals specially designed for video sequences; (iii) a fast
weakly-supervised labelling process based on a clustering process; and, (iv) a
thorough experimental study to validate the proposed framework.

In our experiments, we use videos obtained from a RGB camera that is
continuously recording the apron area (area where the aeroplanes park to load
passengers and luggage) of the Gdansk Airport, although it can be used in other
scenarios with static cameras, like bus or train stations, ports, etc. According to
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Fig. 1. Pipeline for weakly-supervised object discovery. a) The input is a se-
quence of RGB video frames. b) The RPN process a set of detections for each input
frame. c) The OFRP obtains another set of detections. d) Non-maximum suppression
is applied to combine overlapped detections. A final clustering step is performed to
obtain a label per detection.

the results, our region proposal approach is more robust than a fully-supervised
approach (fine-tuned model for this specific domain), specially with small regions
or classes with changes in the shape such as persons. However, during the au-
tomatic labelling of discovered regions, our approach obtains worse results than
the fully-supervised approach, mainly for classes with few samples.

The rest of the paper is organised as follows. We start by reviewing related
work in Sec. 2. Then, Sec. 3 explains the proposed approach. Sec. 4 contains the
experiments and results. Finally, we present the conclusions in Sec. 5.

2 Related Work

Weakly-supervised approaches. Weakly-supervised learning has gained im-
portance in the last years [5, 17, 26–28] due to the huge amount of publicly
available unlabelled data. By contrast, the amount of labelled data is very re-
duced, what penalises supervised approaches. Focusing on the problems of ob-
ject detection/localisation, many researches use the key idea of having an image
level label that only contains the object that appears in the image, without
bounding-boxes (like in an image classification problem). In [8], the authors pro-
pose a multiple-instance learning approach that iteratively trains a detector and
infers the bounding-boxes. Kantorov et al. [10] use two context aware models to
improve the localisation taking into account the surrounding context region of
the bounding-box. In [13], Li et al. propose the use of an object detector trained
only with positive samples of a class to produce a set of heat maps that are
refined and segmented to localise the trained class. Wang et al. [25] propose a
different approach using a spatio-temporal minimisation process for video object
discovery and segmentation across videos with irrelevant frames. In contrast to
those previous approaches, some authors propose the use of some labelled sam-
ples together with a big amount of unlabelled samples. An example of this kind
of work is the proposed in [4] where the authors use conditional random fields
initialised from generic knowledge and, iteratively, they adapt to new classes.
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Shi et al. [21] propose a different approach using a Bayesian joint topic mod-
elling that uses a single generative model for all objects improving learning and
localisation. A more complex approach is presented in [31] where the authors in-
troduce a deep model that uses a joint learning to localise and segment objects.
A completely different approach is presented in [30] where the weak information
is provided as a sentence that describes the image.

Unsupervised approaches. Unlike weakly-supervised learning, unsuper-
vised approaches do not use any kind of labelled data. Due to the difficulty
of this type of approach, there are very few works that applies unsupervised
learning to the object detection/localisation task. In [3,12], the authors propose
an approach for dominant object discovery and tracking in videos using region
proposals and a matching scheme in order to produce spatio-temporal tubes of
detections in videos. A more recent point of view of this work is presented in [24]
where the authors reformulate the approach as an optimization process improv-
ing previous results by a wide margin. Koh et al. [11] propose an approach for
primary object discovery in videos exploiting the recurrence of a primary object
in a video using a modelling scheme from motion and colour proposals. A specific
approach for pedestrian detection in proposed in [29] where an iterative process
of object discovery, object enforcement and label propagation is performed for
training a progressive latent model for pedestrian detection. Ošep et al. [16]
propose an automatic approach for object discovery in stereo videos using a
generic tracker to find the objects, and a clustering process to group similar
tracks. Note that, although this approach is somehow similar to ours, they use
stereo cameras together with a tracker, while we use a single camera as input.
Moreover, we rely on the optical flow maps to find out moving objects, while
they use a pretrained object tracker that could tend to detect only objects that
were seen during training. A similar approach is presented in [18] where they
also use stereo cameras and depth information to perform object discovering and
a clustering process to group similar detections.

In this work, we explore the weakly-supervised object discovery problem in
videos obtained from common RGB cameras. Our approach is composed of two
main parts: a region proposal step to produce interest areas and a clustering
step to group similar areas. Finally, the obtained set of clusters can be manually
labelled in order to use human understandable labels. Note that our approach
can be applied in a fully unsupervised way using as labels the cluster indices.

3 Proposed Approach

In this section we describe our proposed framework to address the problem of
weakly-supervised object discovery in videos using CNNs. The pipeline proposed
is represented in Fig. 1. Using a sequence of consecutive frames as input, the
following steps are performed: (i) region proposal using the RPN branch of a
Faster R-CNN [20]; (ii) region proposal based on the optical flow maps obtained
from consecutive frames; (iii) non-maximum suppression to combine and remove
overlapped regions from both proposals; (iv) clustering process to group similar
regions; and, (v) manual labelling of the obtained clusters.
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3.1 Region Proposal

We describe here the two region proposal strategies used in our approach. In par-
ticular, we use the RPN branch of a pretrained Faster R-CNN [20] and the optical
flow maps obtained from a pretrained Spatial Pyramid Network (SpyNet) [19].
Our intuition is that the RPN will be able to detect big objects present in the
foreground, which are the most common kind of detections used for training this
type of networks. Similarly, the region proposal based on the optical flow maps
will be able to find out subtle and small objects.

Region Proposal Network. In our approach, we use the Region Proposal
Network (RPN) of a pretrained Faster R-CNN [20] model. A RPN uses an image
as input to produce a set of object proposals. To generate the regions, the input
sample is fed into a set of convolutional layers in order to produce a feature map.
After that, a small network is slided over that feature map with a window size
of n × n. This small network is composed of two sibling fully-connected layers,
a box regression layer (reg) to obtain the bounding box coordinates and a box-
classification layer (cls) to obtain the class of the detected object. Note that the
sliding window is implemented in a direct way by using a n × n convolutional
layer followed by two sibling 1×1 convolutional layers for reg and cls. Note that
in this step the pretrained model applies a suppression of detections whose score
is lower than a threshold TS . The regions kept after the filtering process are fed
into the next step of our pipeline.

Optical Flow Proposal. The optical flow proposal (OFRP) is based on
the optical flow maps obtained from a pretrained Spatial Pyramid Network
(SpyNet) [19] model. Two consecutive frames are fed into the network to produce
an optical flow map Ft. To remove noise from the optical flow map produced
by changes in the illumination or the conditions of the scenario, all positions
whose optical flow components (x and y) are smaller than a threshold TF are
set to 0. After that, we binarize the optical flow map and find the contours to
obtain the regions of the objects present in the map. In order to do this, we use
the well known algorithm proposed by Suzuki et al. [22]. To avoid intermittent
detections, we track each region in Ft to the next optical flow map Ft+1 using
the mean optical flow components of that region. If the region is missed in Ft+1,
we remove the original detection from Ft. Finally, in order to prevent insignif-
icant regions, we remove those proposed regions whose area is smaller than a
threshold TA. The regions kept after the filtering process are fed into the next
step of our pipeline.

3.2 Non-Maxima Suppression

Since there are two region proposal algorithms running at the same time, when a
big object is moving in consecutive frames, it is probable that the RPN proposal
and the OFRP produce detections of the same object. Therefore, it is necessary
to combine both detections into a single one to avoid overlapping regions. To
combine both detections, we compute the Intersection over Union (IoU) metric
between both detections. If the IoU is bigger than a threshold TI and the aspect
ratio of both regions is similar (i.e. the ratio of the biggest one between the
smallest one must be bigger than a threshold TAR), we keep the region proposed
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by the RPN algorithm, as it is more accurate than the optical flow one. More-
over, we apply non-maxima suppression to each individual proposal algorithm
to remove overlapped regions whose IoU is greater than the same threshold TI .
After this step, we have the final set of regions used by the clustering algorithm.

3.3 Clustering

The objective of this step is grouping similar regions into clusters. By this way,
instead of learning a classifier that assigns a label according to the features of a
region, we just find the closest cluster to a region. In order to do this, we first
have to describe the detected regions to fed that information into the clustering
algorithm. To describe the regions we employ a pretrained ResNet-50 [9] model as
feature extractor, where descriptors are given by the activations of the average
pooling before the classification layer. Once the features of each region have
been extracted, we apply a L2-normalisation to the features and we reduce their
dimensionality to 128 with the UMAP algorithm [15]. This method is specially
useful as it is able to reduce the dimensionality keeping the global structure of
the data but preserving local neighbours relations. Finally we use them as input
to the clustering algorithm. For this purpose, we use the HDBSCAN clustering
algorithm [2] which is able to deal with different cluster shapes and densities with
a good performance. These capabilities are really important in our problem since
there could exist objects with many different number of samples or even objects
with many different shapes, and the algorithm should deal with those situations.

3.4 Labelling Process

The last step of our pipeline is completely optional, since it is only necessary
in order to assign a human understandable label to each cluster obtained in
the previous step. To do this, we show the set of N samples with the highest
scores, obtained by HDBSCAN, for each cluster to a human who establishes the
labels of the clusters. Note that a higher score indicates a better membership of
a sample to a given cluster. In order to assign a label to a cluster, at least, half
of the showed cluster samples must belong to one of the considered classes. By
this way, the labelling is robust against outliers. Note that this is the only step
where the intervention of a human is necessary. Once clusters are labelled, that
information can be used in order to remove false positives detections if they are
grouped into different clusters. Thus, if a cluster only contains false positives,
we can ignore that cluster to produce better detections.

4 Experiments and Results

4.1 Dataset

In our experiments, we are going to use a video dataset obtained from a RGB
camera that is continuously recording the apron area (area where the aeroplanes
park to load passengers and luggage) of the Gdansk Airport. Those cameras
are publicly available online 3. The dataset consists of 96 video-clips of one
minute length recorded by a FullHD camera which provides a video stream with

3 Live cameras: http://www.airport.gdansk.pl/airport/kamery-internetowe

http://www.airport.gdansk.pl/airport/kamery-internetowe
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Fig. 2. Dataset. Different frames obtained from a RGB camera recording the apron
area of the Gdansk Airport. Top row shows the ground-truth labels obtained manually.
Bottom row shows the output of our weakly-supervised approach.

a resolution of 1920× 1080 pixels and a frame rate of approximately 15 fps. Ap-
proximately, 60% of the videos are recorded during the morning and the other
40% are recorded during the afternoon/evening in order to deal with different
illumination conditions. Some examples can be seen in Fig. 2. Note that in our
experiments we are going to focus on the closest apron area since the other areas
are excessively far to identify the appearing objects. Thus, in our experiments
we are going to consider the following categories of objects: car (‘car’), fire-
truck (‘ft’), fuel-truck (‘fuel’), luggagetrain-manual (‘lgm’), luggagetrain (‘lg’),
mobile-belt (‘mb’), person (‘pe’), plane (‘pl’), pushback-truck (‘pb’), stairs (‘st’)
and van (‘van’). Note that the abbreviated name of each class used in the tables
is included in parenthesis. For training the clustering algorithm and our dimen-
sionality reduction, we use odd id video clips and, for testing, the even id video
clips, i.e. half for training and half for testing.

Finally, in order to obtain test metrics and compare our approach with a
fully-supervised method, we have manually labelled all videos. Then, the training
labels are used for training a supervised approach and the test labels are used
to compute the CorLoc and mAP metrics. Roughly, we have labelled a total of
32238 objects where the less frequent class is ‘van’ with 30 samples and the most
common is ‘mobile-belt’ with 6082.

4.2 Implementation details

We ran our experiments on a computer with 32 cores at 2.3 GHz, 256 GB
of RAM and a GPU NVidia Titan X Pascal running with Python 3.6 and
Ubuntu 18.04. Faster R-CNN is implemented in TensorFlow 1.13 and we use
the pretrained weights on the Open Images dataset provided in the Tensor-
Flow detection model zoo4. SpyNet is implemented in PyTorch 1.0 and we
use the pretrained weights available in the project repository 5. Finally, the

4 We use the model faster rcnn inception resnet v2 atrous oid 2018 01 28.tar.gz
5 SpyNet: https://github.com/sniklaus/pytorch-spynet

https://github.com/sniklaus/pytorch-spynet
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we use a ResNet-50 model implemented in TensorFlow 1.3 with the pretrained
weights available in the samples repository of TensorFlow 6. For the clustering
process, we use the implementation of HDBSCAN available in pip repository.
Regarding the parameters commented in Sec. 3, after a cross-validation pro-
cess on a subset of the training data, we have selected the following values:
TS = 0.3, TFx

= 0.3, TFy
= 0.003, TA = 200, TAR = 0.5, TI = 0.75.

4.3 Performance evaluation

We use two metrics to evaluate the performance of our approach. On the one
hand, for region localisation we use the Correct Localisation metric (CorLoc),
adopted as well in [12,24]. This metric is defined as the percentage of objects cor-
rectly localised according to the Pascal criterion: the IoU between the predicted
region and the ground-truth region is bigger than 0.5 for the RPN and bigger
than 0.3 for the OFRP. Note that we use a smaller threshold for the optical flow
case because the bounding-boxes tend to include the shadows, i.e. making the
bounding-boxes wider or higher. On the other hand, for the object classification
task, we use the Mean Average Precision (mAP) [6], which is the mean of the
average precision (AP) across all classes.

4.4 Experimental results

We first examine the impact of our two region proposal algorithms (i.e. RPN
and OFRP) described in Sec. 3 according to their individual CorLoc metrics.
Secondly, we evaluate the accuracy of the clustering algorithm compared with
other traditional clustering algorithms. Finally, we compare the performance of
our proposed approach with a pretrained CNN for object detection and the same
CNN but fine-tuned for our dataset.

Region Proposal comparative. In this experiment, we evaluate the per-
formance of each region proposal algorithm (i.e. RPN and OFRP), in terms
of the CorLoc metric, by comparing the proposals produced by each approach
with the annotated ground-truth. Moreover, we compare the performance of each
algorithm depending on the category of object to be detected.

Tab. 1 summarizes the CorLoc results (higher is better) for our two pro-
posal algorithms (‘RPN’ and ‘OFRP’), together with the combination of both
(‘RPN+OFRP’) and our final approach (‘Ours’) considering the clustering la-
bels to filter detections (more details in Sec. 3.4). Moreover, we also include
the results of a fine-tuned Faster R-CNN with manually labelled training data
(‘Supervised-Faster’) as explained in Sec. 4.1. Note that each row contains re-
sults using a different IoU threshold during the computation of the metric. In
the first row, we use the standard value of 0.5. However, as explained in the
previous section, the OFRP requires a smaller threshold. Thus, in the second
row we use two different thresholds, one for the ‘RPN’ (0.5) and a second one
for the optical flow (0.3). According to the results, it is clear that the ‘OFRP’
produces more and more accurate regions than the ‘RPN’, mainly due to the
huge scale differences between objects, as we pointed out in Sec. 3. If we focus

6 ResNet-50: https://github.com/tensorflow/models/tree/master/official/resnet

https://github.com/tensorflow/models/tree/master/official/resnet
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RPN OFRP RPN+OFRP Ours Supervised-Faster
CorLoc (0.5) 12.3 24.8 37.1 86.8 70.4

CorLoc (RPN@0.5, OFRP@0.3) 12.3 33.5 45.8 96.2 -

Table 1. CorLoc results for our two region proposal algorithms. Each row
shows the results for a different IoU threshold used to compute the metric. Each column
represents a different approach. Best result is marked in bold. More details in the text.

car ft fuel lgm lg mb pe pl pb st van
RPN 8.3 37.5 41.4 3.7 11.3 7.1 1.3 95.2 7.7 3 25
OFRP 78.4 60.7 57.8 74.2 88.2 72.8 79.1 4.8 64.7 84.8 37.5

Table 2. CorLoc results per class using only true positives during the compu-
tation. Each row represents a different proposal algorithm and each column represents
a different class. Best results are marked in bold. More details in the text.

on the effect of the threshold, we can see that the performance increases clearly
when the threshold is softer because it allows the metric to take into account
bounding-boxes that contain objects and their shadows. Finally, if we apply the
clustering step and the manual label of clusters, we are able to remove detections
grouped into useless clusters (i.e. containing only false positives) improving the
results as shown in column ‘Ours’. Comparing our final results with the fully-
supervised network, our approach is able to produce better proposals even using
the more restrictive metric with an IoU of 0.5.

In order to clarify the contribution of each proposal algorithm, we measure
the CorLoc metric over the true positive set of each class. By this way, we will see
the detection capabilities per class of the two algorithms. Tab. 2 summarizes the
results for this experiment. As we can see, the ‘OFRP’ produces better regions
for most of the classes and only for the ‘plane’ class obtains worse results. This
is because the planes appear in a static situation in most of the frames, thus,
there is no optical flow in that situation. Focusing on the the ‘RPN’ results, we
can see that it only obtains better results for bigger object classes (i.e. planes,
cars, vans, and different types of tracks), what validates our intuition and makes
necessary the use of the ‘OFRP’ for small objects (e.g. persons) since the RPN
has never seen objects with such an small area.

Class prediction comparative. In this experiment we focus on the class
prediction part of the detection problem. Therefore, we try to predict the class
appearing in the bounding boxes obtained from the previous step. Firstly, we
compare two clustering algorithms: k-Means [14] and HDBSCAN (i.e. the one
selected). Moreover, we compare two algorithms for dimensionality reduction:
UMAP (see Sec. 3) and PCA. To measure the performance of the different
approaches, we compare the AP per class and the mAP using the labels obtained
after the clustering process of the detected objects. Tab. 3 summarises the results
for this experiment. Each row represents a different algorithm, where ‘kNC’
means k-Means with NC clusters and ‘HSC’ means HDBSCAN with SC samples
per cluster. Moreover, each row includes the dimensionality reduction algorithm
used (i.e. PCA or UMAP). On the other hand, each column represents a different
class. ‘mAP’ column represents the mean AP for all classes and ‘mAPv’ is the
mean of the common classes to all rows (i.e. ‘ft’, ‘fuel’, ‘mb’ and ‘pl’). Note
that ‘-’ means that there is no cluster that predicts that specific class, so there
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Algorithm car ft* fuel* lgm lg mb* pe pl* pb st van mAP mAPv
k50+PCA - 0.718 0.532 - - 0.249 0.515 0.303 - - - 0.210 0.450
H30+PCA - 0.714 0.471 0.159 - 0.341 0.367 0.364 - - - 0.219 0.472
H30+UMAP - 0.718 0.746 0.264 - 0.487 0.451 0.419 0.001 - - 0.280 0.592
H50+PCA - 0.383 0.439 - - 0.347 0.436 0.404 - - - 0.182 0.393
H50+UMAP - 0.730 0.970 - - 0.513 0.542 0.454 - - - 0.291 0.666
Baseline - 0.561 0.640 - - 0.102 - 0.831 - - - 0.194 0.533

Supervised-Faster 0.899 0.782 0.980 0.873 0.970 0.969 0.105 0.969 0.949 0.04 0 0.685 0.925

Table 3. AP results per class. Each row represents a different algorithm and each
column represents a different class. ‘mAP’ column represents the mean AP for all
classes and ‘mAPv’ is the mean of valid AP values. Only classes marked with ‘*’ are
considered for mAPv metric. Best results are marked in bold. More details in the text.

are no valid AP results and we ignore them during the computation of ‘mAPv’.
Focusing on the k-Means results, we can see that the performance is worse than
using HDBSCAN with a cluster size of 30 samples with PCA. Therefore for the
next experiments we focus on HDBSCAN. Comparing PCA with UMAP, we can
see that in all cases, UMAP clearly boosts the results demonstrating their better
dimensionality reduction performance. Then, if we compare the different cluster
size values for HDBSCAN, it is clear that bigger clusters benefit the performance
of our approach, specially if we only take into account the valid classes. We want
to clarify that non-valid classes are due to the low number of samples (i.e. around
one hundred compared to thousands of images for the other classes) available
during training for those classes. Thus, the clustering algorithms tend to assign
them to bigger clusters. For example, ‘car’ and ‘push-back’ objects only appear in
the scene during the arrival and departure of the planes, respectively. Therefore,
the number of samples is very limited compared with other classes that appear
more frequently in the scene. Finally, the last two rows summarise the results
for the baseline using a pretrained Faster R-CNN and a fine-tuned model using
our trained data, respectively. Comparing both results with our best approach
(H50+UMAP), we can see that our approach improves the results obtained by
the baseline. However, the fine-tuned model obtains the best results on average,
as it has been trained in a supervised way. Comparing the class-specific results
with our best approach, we can see that the model also suffers with classes that
have few samples (i.e. stairs or van). Moreover, focusing on person class – which
appears in the videos with low contrast, very noisy frames, many shape changes
and small bounding-boxes – our approach overcomes the results obtained by
the fine-tuned model. Mainly, because our OF-based region proposal is more
robust in those situations, as the fine-tuned model is not able to obtain a good
representation for persons.

5 Conclusions

We have presented a weakly-supervised approach for automatic object discovery
in videos. Our method consists of two main components: a region proposal, which
produces the bounding-boxes, and a clustering algorithm, which groups similar
detections to assign them an unsupervised label. We have tested our approach
on video sequences of the apron area of an airport showing that it is able to
detect and classify automatically objects appearing on those videos. Moreover,
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the collaboration of the human is only necessary in order to assign human under-
standable labels. Therefore, our approach is able to run automatically without
the collaboration of the human.

Regarding the region proposal algorithms (RPN or OFRP), we have demon-
strated that the combination of a pretrained RPN together with an pretrained
OFRP, is able to improve the results obtained by a fine-tuned model for the
specific problem. Moreover, our approach is especially robust dealing with small
regions and classes with changes in the shape (e.g. persons).

Regarding the clustering algorithm, our results show that HDBSCAN com-
bined with UMAP improves traditional approaches such as k-Means and PCA. In
this case, the fully-supervised approach (fine-tuned Faster R-CNN) obtains the
best results, but our weakly-supervised approach is able to obtain better results
than the evaluated baseline. As future work, we plan to use the detections pro-
duced by our approach to retrain iteratively the CNN models in order to obtain
better results in each iterative step with a minimum labelling process. By this
way, the gap between our weakly-supervised approach and the fully-supervised
network should decrease in each iteration.
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