
Automatic Configuration of NSGA-II with jMetal and irace
Antonio J. Nebro
University of Málaga

Málaga, Spain
antonio@lcc.uma.es

Manuel López-Ibáñez
University of Manchester

Manchester, United Kindom
manuel.lopez-ibanez@manchester.ac.uk

Cristóbal Barba-González
University of Málaga

Málaga, Spain
cbarba@lcc.uma.es

José García-Nieto
University of Málaga

Málaga, Spain
jnieto@lcc.uma.es

ABSTRACT
jMetal is a Java-based framework for multi-objective optimization
with metaheuristics providing, among other features, a wide set of
algorithms that are representative of the state-of-the-art. Although
it has become a widely used tool in the area, it lacks support for
automatic tuning of algorithm parameter settings, which can pre-
vent obtaining accurate Pareto front approximations, especially
for inexperienced users. In this paper, we present a first approach
to combine jMetal and irace, a package for automatic algorithm
configuration; the NSGA-II is chosen as the target algorithm to
be tuned. The goal is to facilitate the combined use of both tools
to jMetal users to avoid wasting time in adjusting manually the
parameters of the algorithms. Our proposal involves the definition
of a new algorithm template for evolutionary algorithms, which
allows the flexible composition of multi-objective evolutionary al-
gorithms from a set of configurable components, as well as the
generation of configuration files for adjusting the algorithm pa-
rameters with irace. To validate our approach, NSGA-II is tuned
with a benchmark problems and compared with the same algorithm
using standard settings, resulting in a new variant that shows a
competitive behavior.

CCS CONCEPTS
• Computing methodologies→ Optimization algorithms; • The-
ory of computation → Bio-inspired optimization;

KEYWORDS
Multi-objective Optimization, Metaheuristics, Software Tools, Au-
tomatic Algorithm Configuration

ACM Reference Format:
Antonio J. Nebro, Manuel López-Ibáñez, Cristóbal Barba-González, and José
García-Nieto. 2019. Automatic Configuration of NSGA-II with jMetal and
irace. InGenetic and Evolutionary Computation Conference Companion (GECCO

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6748-6/19/07. . . $15.00
https://doi.org/10.1145/3319619.3326832

’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3319619.3326832

1 INTRODUCTION
The field of multi-objective optimization with evolutionary algo-
rithms and other metaheuristic techniques is an active research area
since the last twenty years. Around year 2000, the most widely used
algorithm since then, NSGA-II [5], was proposed, and two seminal
books about solving multi-objective problems with evolutionary
algorithms were published [3, 4].

A factor that has promoted the development and application of
multi-objective metaheuristics has been the availability of software
tools. Since the emergence of PISA [2] in 2003, many frameworks
have been proposed, being jMetal one of them. jMetal started in
2006 [9] as a research project to develop a Java-based software
framework for multi-objective optimization with metaheuristic
techniques. The source code is freely available since 2008, and it is
hosted in GitHub under MIT license1. It has become a popular tool,
and the papers describing it [7][9][8][13] sum up more than 1300
cites at the time of writing this paper according to Google Scholar.

jMetal was redesigned from scratch in 2015 [13] to be improved
in a number of aspects (architecture, code quality, project organiza-
tion, algorithm templates, parallelism support), but an aspect that
is becoming a hot topic, the automatic configuration of metaheuris-
tics, was not considered then. Most of metaheuristics depend on
a number of parameters, and their performance is bound largely
by finding proper values for them. This is usually a cumbersome
task, particularly in the case of users who are expert in the problem
domain but are unfamiliar with the algorithms.

In this paper, we present a proposal to extend jMetal with sup-
port for automatic parameter tuning. Our approach is based, on
the one hand, on designing a very flexible template for evolution-
ary algorithms in such a way that a multi-objective evolutionary
algorithm can be composed of a number of building blocks that can
be configured as parameters which can take a range of values. On
the other hand, these parameters are described in a way that they
can be tuned by irace [11], an R-based package which has not only
been used for algorithm configuration, but also for the automatic
design of multi-objective evolutionary algorithms [1]. The goal is to
facilitate the combined use of both tools to jMetal users interested
in solving a given problem, but not in wasting time in adjusting
manually algorithms’ parameters.

1jMetal site in GitHub: https://github.com/jMetal/jMetal

1374

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/225146909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3319619.3326832
https://doi.org/10.1145/3319619.3326832
https://github.com/jMetal/jMetal

	Abstract
	1 Introduction
	2 Software Tools
	2.1 The jMetal Framework
	2.2 The irace Package

	3 Approach for Extending jMetal to Work with irace: Redesigning NSGA-II
	3.1 New Template for Evolutionary Algorithms
	3.2 Autoconfiguring NSGA-II
	3.3 Creating the irace Parameter File

	4 Experimentation
	5 Conclusions and Future Work
	6 Acknowledgements
	References

