
1

New Results on Non-normalized Floating-point
Formats

Sonia González-Navarro and Javier Hormigo

Abstract—Compulsory normalization of the represented numbers is a key requirement of the floating-point standard. This requirement
contributes to fundamental characteristics of the standard, such as taking the most of the precision available, reproducibility and
facilitation of comparison and other operations. However, it also imposes a high restriction in effectiveness of basic arithmetic operation
implementation. In many embedded applications may be worth to sacrifice the benefits of normalization for gaining in implementation
metrics. This paper analyzes and measures the effect of removing the normalization requirement in terms of precision and
implementation savings for embedded applications. We propose several adder and multiplier architectures to deal with non-normalized
floating-point numbers, and quantify the accuracy loss and the improvements in hardware implementation. Our experiments show that
it is possible to reduce the area and power consumption up to 78% in ASIC and 50% in FPGA implementations with a reasonable
accuracy loss.

Index Terms—Normalization, embedded systems, DSP, floating-point, standard.

F

1 INTRODUCTION

EMBEDDED systems are becoming a key issue in comput-
ing system development. The growth in new applica-

tions and services based on Internet of Things (IoT), com-
munications and automation has accentuated its interest.
These systems typically have severe restrictions, such as
power or energy consumption limitations, low computing
capabilities, reduced budget, etc. For that reason, fixed-point
formats have been traditionally used for these applications.
However, the increasing complexity of new embedded ap-
plications means that floating-point (FP) computation is re-
quired by many of these applications to reach the minimum
acceptable performance.

When floating-point is required usually the IEEE-754
standard [1] or a very similar format is used because of its
reliability, compatibility and familiarity. However, the IEEE-
754 standard was designed for general purpose processor
applications and the requirements for embedded applica-
tions are not usually the same. In fact, there are many
different variations of the IEEE-754 standard defined by
different companies to support these new requisites. As a
consequence, there are many similar formats close to IEEE-
754 but incompatible among them. We believe it is time to
open a debate to define a new extension of the standard to
cover embedded applications. With this paper, we aim to
provide a step on this direction.

One of the main characteristics of the IEEE-754 stan-
dard for binary numbers is the representation of the nor-
mal numbers. To make the encoding of normal numbers
unique, the value of the significand D is maximized by
increasing/decreasing the exponent until 1 ≤ D < 2.

• S. González-Navarro and J. Hormigo are with the Departamento de
Arquitectura de Computadores, Campus de Teatinos s/n, 29071, Málaga,
Universidad de Málaga, Andalucia Tech, España.
E-mail: sonia@ac.uma.es, fjhormigo@uma.es

Manuscript received October 15, 2018; revised XXX XX, 2018. This work
was supported in part by the following Spanish projects: TIN2016-80920-R,
JA2012 P12-TIC-1692, JA2012 P12-TIC-1470.

This operation is commonly known as normalization, and
it has to be carried out after every arithmetic operation (if
necessary).

Going back to the fifties, far before the IEEE floating-
point standard was approved, several studies were carried
out to establish an unnormalized floating-point arithmetic
[2], [3]. Although the aim was a floating-point format which
allowed a more easily identification of their degree of
precision, the authors claimed that their method had also
advantages from the point of view of operation speed.

Other more recent works have investigated unnormal-
ized floating-point arithmetic, which could be applied to
specific-application data-paths [4], [5]. In these approaches,
the bit-width is internally increased to keep the same pre-
cision. In contrast, in [6] and in this paper, we study the
consequences of having a FP format without compulsory
normalization to be applied to software-base processors
which requires constant-size storage memory (such as DSPs
or microcontrollers). Therefore, keeping the bit-width con-
stant is fundamental. We showed that, since normalization
allows taking advantage of all the bits included in the
significand, removing normalization causes some accuracy
loss, along with a lack of reproducibility [6]. However, at the
same time, it opens the possibility of having important area
and power savings. Removing the normalization condition
allows designers to trade off between implementation cost
and accuracy, and to tune efficiently the target requirements.
Hence, this is a kind of approximate computing [7].

In this paper, we extend the study presented in [6], where
the analysis of the proposed non-normalized FP arithmetic
units was conducted assuming a non-normalized FP format
similar to the binary32 IEEE-754. The details of that format
can be found in [6] but the most important aspects about it
are: it keeps most of the characteristics of the binary IEEE-
754 standard format, except for the necessity of all numbers
being normalized, and therefore, the leading one could not
be implicitly stored; the denormal numbers are naturally

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/225146894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

handled without needing a special treatment. For rounding,
truncation, and rounding to nearest (through Half-Unit Bi-
ased (HUB) approach [8]) were considered in [6]. However,
truncation showed a poor accuracy. Hence, in this paper,
we only consider round-to-nearest implemented by HUB
approach. HUB approach appends an Implicit Least Signif-
icant Bit (ILSB) set to one, allowing rounding-to-nearest by
truncation and two’s complement by bit-wise inversion [9].

The new contributions presented in this paper include:

• the proposal of a new adder architecture, which
improves significantly the accuracy of the previous
ones,

• converters between non-normalized and IEEE-754
binary format,

• formal error analysis for non-normalized arithmetic
units and the evaluation of an additional DSP algo-
rithm for the experimental analysis,

• the implementation results for new sizes and fre-
quencies,

• the analysis of the pipelined architectures,
• the implementation results for FPGA.

We want to clarify that this paper does not pretend to
propose a new FP format, but just to study whether it is
beneficial to include normalization in the definition of a new
FP format specially designed for embedded systems. Thus,
this work has to be seen as a small contribution to define
this format, but not a complete new format proposal.

The rest of the paper is organized as follows: Sec-
tion 2 summarizes other proposals of changes of the
floating-point standard found in the literature; in Section 3,
we present different architectures to operate with non-
normalized FP numbers for addition, multiplication and
conversion from/to IEEE-754 standard; Section 4 provides
a formal error analysis for non-normalized arithmetic units
and experimentally measures how these errors affect some
basic DSP algorithms; in Section 5, we provide, analyze
and compare the implementation results of the proposed
architectures; finally, Section 6 summarizes the conclusions
of this work.

2 RELATED WORK

There have been different attempts to reduce the cost of
implementing floating-point numbers for embedded appli-
cations. Some of them deal with the precision by using
inexact operators, like in [10] and [11], while others deal
with the selection of the FP format used. The latter usually
proposed either slight or deeper modifications of the IEEE-
754 standard.

The proposals with the slightest modifications are pro-
bably Xilinx FP implementations [12] and Flopoco [13].
These ones keep most of the characteristics of the stan-
dard, but adapting them to FPGA requirements. The main
difference is the fact that the bit-width of the significand
and the exponent can be specified in a given range. This
allows users to adapt range and precision to the specific
application in order to adjust the implementation cost. An-
other optimization comes from eliminating features which
are scarcely used in these applications, such as subnormal-
number support and rounding modes different to ”round-
to-nearest even”. Besides those, Flopoco uses two additional

bits to encode special cases [13], which simplifies the logic
for their detection but increasing the cost of transmission
or storage. In the same direction, since barrel-shifters map
very poorly on FPGA, several academic works propose the
use of high-radix digit for the significand in order to reduce
the cost of the shifting [14] [15]. In return, these approaches
require larger significand to keep the same accuracy as the
standard.

Other approaches take advantage of knowing a priori
the specific operations required to build a dedicated and
optimized datapath where several FP operations are chained
for the specific application. In [16], and [4] a fused FP
data-path is proposed. A compiler automatically reduces
the number of alignments and normalizations required by
consecutive operations and adjusts the significand bit-width
to accommodate the bit growths. Therefore, this intermedi-
ate format is not normalized. An average of 50% saving in
both area and latency is reported, and the results are overall
more accurate than the IEEE FP standard implementation.
Nowadays, these savings may have even increased, since
the tool has been probably improved over these ten years,
but new information has not been published related to that.

More recently an even more radical approach has been
proposed by Synopsys, but targeting ASIC implementation
instead of FPGA. In this case, the proposed FP format,
called Flexible Floating-Point (FFP) is radically different to
the IEEE FP standard [5]. The main characteristics of FFP
are: the bit-width of both significand and exponent are
flexible; moreover, they are both represented using two’s
complement instead of Sign-Magnitude (SM) and excess,
respectively; seven status flags are appended to the number
to indicate special cases and other circumstances; and, one’s
complement is also allowed to represent the significand.
Besides those, significand does not need to be in normalized
form, and rounding is not usually applied since significand
size could be accommodated to avoid loss of accuracy.

In all these approaches the main goal is to achieve more
optimized circuits but providing the same as, or more accu-
racy than, that of the IEEE FP standard. As a consequence,
most of them expand the number of bits internally used to
represent the numbers. This increase may not be a problem
when considering a cheap memory available (as in FPGAs)
or a specific-application deep data-path with no interme-
diate results write back to memory. However, in this work
we address software-base systems, i.e., specific-application
processors, such as DSPs, microcontrollers, GPUs or other
more specific ones (implemented on either ASIC or FPGAs).
In these systems storage of intermediate results and commu-
nication is fundamental. Thus, our goal will be to improve
hardware implementations, but keeping the same bit-width
as that of the IEEE-754 standard.

3 ARITHMETIC UNITS FOR NON-NORMALIZED FP
NUMBERS

Being normalization not compulsory, designers have to take
into account that input numbers may be not normalized,
and, for the output results, they could trade accuracy off
for implementation cost. In [6] we presented some architec-
tures to simplify the implementation of addition and mul-
tiplication for non-normalized FP numbers. In this section,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

we review the more effective ones, propose a new adder,
and study the conversion with IEEE-754. To facilitate the
reading, we use the same notation as in [6] for the adder
and multiplier architectures. As mentioned in Section 1, in
this paper, we only consider the architectures implementing
round-to-nearest by HUB approach.

3.1 Adders for non-normalized FP numbers
First, let us present some general ideas about addition in
this context. Due to the fact that input numbers may be
non-normalized, it is complicated to calculate the sign of
the result of the fixed-point addition in advance for effective
subtraction. Since the difference between significands may
be very significant, it could happen that the operand with
the highest exponent were smaller than the other operand.
Therefore, in our proposal, when there is an effective sub-
traction, the operand with the lowest exponent is always
two’s complemented and an absolute value operation may
be required after the fixed-point addition.

On the other hand, there are two options to control
the overflow of the fixed-point addition: as regular FP
adders, selectively performing a one-position right-shifting
and an increment of the exponent if the result produces
an overflow; or consider that an overflow always occurs,
and hard-wiring the one-position right-shifting of the fixed-
point addition result. In the latter case, implementation is
simpler but the LSB of the result is lost, if no real overflow
occurs. Thus, we recommend the first option since fixed-
point overflow in non-normalized numbers is much less
likely.

Two different adders were proposed in [6] (and their
HUB versions which perform round-to-nearest rounding):
A1 on which normalization and rounding circuit are com-
pletely eliminated except for the fixed-point overflow con-
trol; and A2 on which partial normalization is performed.
The A2 design has a special leading zero detector, which
detects up to two leading zeros. Furthermore, it has a barrel
shifter that can perform a one-position right-shifting (in case
of detecting overflow) and left-shifting up to 2-bit positions.
This increase the area and the delay of the critical path, but
it greatly improves the error figures as is shown in [6]. In
this architecture the exponent has to be decremented when
left-shifting is performed, and therefore underflow could
happen. If underflow is detected, the result flushes to zero.

The error performance of A2 could be improved by
taking into account that normalization may be required even
although right-shifting alignment were performed at the
input. Based on that, a new architecture, A3, is proposed
in this paper and its HUB version A3H is shown in Fig. 1.
When normalizing, rather than introducing zeros at the
LSBs, the two MSBs of the discarded bits for alignment are
used instead. This small change has a significant impact on
accuracy as we will see in Section 4. Note that due to using
the HUB approach the implicit least significant bit (ILSB)
of each input number is appended at the shifter and at the
adder, respectively.

3.2 Multipliers for non-normalized FP numbers
For multiplication, the problem of having not normalized
inputs is double. The number of leading zeros of the result

m

m m

2 (MSB)

|d|

a b

Mx My

ovf

sign(d)

Ez

Update

MUX

m+1

m

d

Ex Ey

SWAP sign(d)

R − SHIFTER

Exponent

Bit inverter (cond.)

Mz

ADDER

Difference
Exponent

Two’s complement

1

m+1

m+2

1

c
m+1

ABS
m

LOD
(till 2 pos.)

L2/R1 SHIFTER

m+2

2 (LSBs)

Fig. 1. Architecture of the optimized non-normalized A3H adder.

is the addition of the number of leading zeros of each
input operand. At first, any normalization at the output is
compulsory and these could be implemented reading the
leading zeros directly at the input. In [6], two different
approaches are explored to partially normalizing the output
result: high-radix normalization and limited normalization
(similar to A2 philosophy). However, [6] shows that the
effect of this normalization at the multiplier is minimal if
partial normalization is implemented at the addition (A2
or A3) and the implementation cost increases very signifi-
cantly. Consequently, we discard using normalization at the
multiplier in this paper.

Again, fixed-point overflow could be managed in two
different ways. First, considering that fixed-point overflow
always occurs and hard-wiring the right-shifting. Second,
checking the fixed-point overflow and using a multiplexer
to act accordingly. As for addition, the first option is simpler
but it produces loss of precision when overflow does not
occur, which is very likely. The second has higher implemen-
tation cost but it is more accurate. The architectures, M and
M2, presented in [6] implement the first and second options
respectively (and their HUB versions MH and M2H).

3.3 Converters between non-normalized and IEEE-754
binary format
Conversion from IEEE-754 to non-normalized format, only
requires including the implicit leading one of the significand
and removing the least significant bit (LSB) to fit the bit-
width. The implementation of this converter is simple and
could be hard-wired. In contrast, converting from non-
normalized numbers into IEEE-754 binary ones requires the
hardware needed to perform normalization of the result in
any IEEE compliant arithmetic unit (leading-one detector,
left-shifter and exponent update). In case of having non-
normalized HUB numbers, it is necessary to append the
ILSB into the left-shifter. Fig. 2 depicts this converter, where
grey box represents the hardware added to handle HUB
numbers.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Ex

1

Mx

My

Sx

Sy Ey

LOD Exponent
Update

L−SHIFTER

Fig. 2. Converter from non-normalized to IEEE-754 binary format.

4 ACCURACY OF NON-NORMALIZED FP NUMBERS

Using non-normalized numbers implies loss of accuracy
compared to IEEE-754 standard due to several factors. In
this section, we investigate the different sources of error
through a formal error analysis, and how these errors impact
the quality of the results of several basic DSP algorithms.

4.1 Formal error analysis
To develop the formal error analysis, let us consider that
the non-normalized numbers have an implicit leading zero,
similarly to the implicit leading one of IEEE FP numbers.
This assumption does not modify the error but it allows
us to unify the formulation for both FP representations. Let
XZX be a FP number with a m-bit significand MX , a sign
bit SX , and an exponent EX , which represents a real value
with the form

XZX → (−1)SX ·MX · 2EX + eX , (1)

where eX is the error of the representation, and ZX is the
number of leading zeros of the significand, such that

2−ZX ≤MX < 2−ZX+1. (2)

For an IEEE FP normalized number, ZX is always zero,
whereas for a non-normalized number 1 ≤ ZX < m
(1 ≤ ZX , because there is not implicit leading one, and
ZX < m, because ZX = m would mean a zero value which
is a special case).

Let us call e′X the error of the significand itself, such that

eX = e′X · 2EX , (3)

and let e′′X be the error of the significand expressed in terms
of units round-off,

e′X = e′′Xu (4)

with u being the unit round-off, and u = 2−m [17].
Let us call RX the relative error of the number XZX .

Taking into account Eq. 3 and Eq. 4, it fulfills

RX =
∣∣∣ eX
XZX

∣∣∣ =

∣∣∣∣ eX
MX · 2EX

∣∣∣∣ =

∣∣∣∣ e′XMX

∣∣∣∣ =

∣∣∣∣ e′′XMX

∣∣∣∣u. (5)

After these definitions, below we will compare the rel-
ative errors produced by the proposed designs. Moreover,
for each arithmetic unit, we will provide the bounds for
the significand error of the results (e′′X) as a function of
the corresponding error of the inputs operand. This will
allow the reader to compute the bounds of the error for any
sequence of operations.

Let us study first the error due to the representation itself
by considering a FP number, AZA , whose error comes only
from rounding the significand (e′′A = 1), and then, it fulfills

|eA| ≤ 2EA · u. (6)

Thus, the relative error, RA, fulfills

RA =

∣∣∣∣ e′AMA

∣∣∣∣ ≤ u

2−ZA
= 2ZA · u. (7)

Therefore, taking into account that ZA = 0 for normalized
numbers whereas ZA > 0 for non-normalized numbers, the
bound of the relative error for a non-normalized number is
at least double than the one for a normalized number.

Secondly, let us study the addition operation of two
arbitrary FP numbers, AZA + BZB = CZC , for different
adders, including the IEEE one for comparison purpose. Let
us suppose there is no overflow, underflow, or special cases,
and EA ≥ EB . In this case, the intermediate result of the
addition (without sign) is:

(MA ±MB · 2−d + e′A ± e′B · 2−d) · 2EA , (8)

where ”±” represents an effective addition or subtraction,
respectively, and d, the exponent difference (d = EA −EB).
Then, after normalization (if necessary) and rounding, and
considering Eq. 2 to Eq. 5,

|eC | ≤
∣∣u · 2EC + (e′A ± 2−d · e′B) · 2EA

∣∣
|e′C | ≤

∣∣u+ (e′A ± 2−d · e′B) · 2EA−EC
∣∣

|e′′C | ≤
∣∣1 + (e′′A ± 2−d · e′′B) · 2EA−EC

∣∣
RC ≤

∣∣1 + (e′′A ± 2−d · e′′B) · 2EA−EC
∣∣

2−ZC
u (9)

Let us define δ as the number of new leading zeros in the
significand due to the fixed-point addition. It is fulfilled
that −1 ≤ δ < m, being δ = −1 a significand overflow
or a reduction of one leading zero. For the IEEE case,
ZC = ZA = ZB = 0 and EC = EA − δ, and consequently

|e′′C | ≤
∣∣1 + (e′′A ± 2−de′′B) · 2δ

∣∣
RC ≤

∣∣1 + (e′′A ± 2−de′′B) · 2δ
∣∣u (10)

As it is known, the errors carried by the input operands are
attenuated if a significand overflow occurs (δ = −1) and
highly reinforced for a catastrophic cancellation (δ >> 1).

For the non-normalized adders (A1H, A2H, and A3H),
if overflow of the significand occurs, EC = EA + 1 and
ZC = 1. Then,

|e′′C | ≤
∣∣1 + (e′′A ± 2−de′′B) · 2−1

∣∣
RC ≤

∣∣2 + e′′A ± 2−de′′B
∣∣u. (11)

Thus, the relative error is double that for the IEEE case
(substituting δ = −1 in Eq. 10).

On the other hand, if no significand overflow occurs, for
A1H, EC = EA and then

|e′′C | ≤
∣∣1 + e′′A ± 2−de′′B

∣∣
ZC = min(ZA, ZB + d) + δ

RC ≤
∣∣1 + (e′′A ± 2−d · e′′B)

∣∣ · 2ZCu. (12)

For A2H,EC = EA−min(2,min(ZA, ZB+d)+δ) = EA−∆
where 0 ≤ ∆ ≤ 2 is the number of position left-shifted due
to the partial normalization, then

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

|e′′C | ≤
∣∣1 + (e′′A ± 2−de′′B) · 2∆

∣∣
ZC = min(ZA, ZB + d) + δ −∆

RC ≤
∣∣1 + (e′′A ± 2−d · e′′B) · 2∆

∣∣ · 2ZCu =

=
∣∣2−∆ + (e′′A ± 2−d · e′′B)

∣∣ · 2min(ZA,ZB+d)+δu (13)

For A3H, ZC is the same as for A2H but the error due to
rounding is |erd| ≤ u · 2EC−∆, and then

|e′′C | ≤
∣∣2−∆ + (e′′A ± 2−de′′B) · 2∆

∣∣
RC ≤

∣∣2−2∆ + (e′′A ± 2−d · e′′B)
∣∣ · 2min(ZA,ZB+d)+δu (14)

Comparing Eq. 12, Eq. 13, and Eq. 14, the relative errors
among the non-normalized adders only differ in the first
addend of the equations. In contrast to IEEE one, on which
δ only affects the part of the error coming from the input
operands, the number of leading zeros of the result increases
both components of the error. For A2H, and A3H, the first
addend is reduced when ∆ > 0 (partial normalization), spe-
cially for A3H. Moreover, the partial normalization reduces
ZC which will reduce the error in future operations.

Finally, let us study the multiplication operation AZA ·
BZB = CZC for different multipliers, including IEEE one for
comparison purpose. Let us suppose there is no overflow,
underflow, or special cases. In this case, the intermediate
result of the multiplication (without sign) is:

(MA ·MB +MA · e′B +MB · e′A + e′A · e′B) · 2EA+EB (15)

after normalization (if necessary) and rounding, and consid-
ering Eq. 2 to Eq. 5,

|eC | ≤ |u · 2EC + (e′B · 2−ZA+1 + ...

...+ e′A · 2−ZB+1 + e′A · e′B) · 2EA+EB |
|e′C | ≤ |u+ (e′B · 2−ZA+1 + ...

...+ e′A · 2−ZB+1 + e′A · e′B) · 2EA+EB−EC |
|e′′C | ≤ |1 + (e′′B · 2−ZA+1 + ...

...e′′A · 2−ZB+1 + e′′A · e′′Bu) · 2EA+EB−EC | (16)

RC ≤ |u+ (e′′B · 2−ZA+1u+ ...

...e′′A · 2−ZB+1u+ e′′A · e′′Bu2) · 2EA+EB−EC | · 2ZC .

Taking into account that u = 2−m, in a typical case, the
addend (e′′A · e′′Bu2) can be neglected and consequently

|e′′C | ≤
∣∣1 + (e′′B · 2−ZA+1 + e′′A · 2−ZB+1) · 2EA+EB−EC

∣∣
RC ≤

∣∣1 + (e′′B · 2−ZA+1 + e′′A · 2−ZB+1) · 2EA+EB−EC
∣∣

2−ZC
u.

(17)

For the IEEE case, Zx = 0 and taking into account that
EC = EA + EB + φ where φ = 1, if there is an overflow in
the fixed-point multiplication, and φ = 0 otherwise,

|e′′C | ≤
∣∣1 + (e′′B + e′′A) · 21−φ∣∣

RC ≤
∣∣1 + (e′′B + e′′A) · 21−φ∣∣u. (18)

Most likely φ = 0 and consequently the errors of the input
operands have an important impact on the final error.

For MH, the significand overflow is not checked, and
then,

EC = EA + EB + 1

ZC = ZA + ZB − φ∣∣e′′C∣∣ ≤ ∣∣∣1 + (e′′B · 2−ZA + e′′A · 2−ZB)
∣∣∣

RC ≤
∣∣∣1 + (e′′B · 2−ZA+1 + e′′A · 2−ZB+1) · 2−1

∣∣∣ · 2ZA+ZB−φu

=
∣∣∣2ZA+ZB + (e′′B · 2ZB + e′′A · 2ZA)

∣∣∣ · 2−φu. (19)

For M2H, the overflow is detected and consequently

EC = EA + EB + φ

ZC = ZA + ZB − 1∣∣e′′C∣∣ ≤ ∣∣∣1 + (e′′B · 2−ZA + e′′A · 2−ZB) · 2−φ+1
∣∣∣

RC ≤
∣∣∣1 + (e′′B · 2−ZA+1 + e′′A · 2−ZB+1) · 2−φ

∣∣∣ · 2ZA+ZB−1u

=
∣∣∣2ZA+ZB−1 + (e′′B · 2ZB + e′′A · 2ZA) · 2−φ

∣∣∣u (20)

Comparing both non-normalized multipliers (Eq. 19 and
Eq. 20), as expected, the relative error is identical if a
significand overflow occurs (φ = 1). However, the addend
corresponding to the rounding error for MH will be double
than that of M2H when φ = 0. Comparing with the IEEE,
the number of leading zeros of the input operands has a
strong impact on the final error. Considering the minimum
possible, ZA = ZB = 1, only the first addend would be
different, being double and quadruple than that of IEEE
for M2H and MH, respectively. However, if the number
of leading zeros increases, the relative error would increase
exponentially.

4.2 Experimental error results
In this section, we analyze how using non-normalized FP
impacts on the final accuracy when implementing several
basic DSP algorithms. To do this, we followed the same pro-
cedure that we described in [6]. We designed the different
non-normalized FP architectures using VHDL. Using these
arithmetic units, we have designed an embedded system in
a Xilinx Zynq-7010 FPGA, which contains an ARM dual-
core CortexTM -A9 processor, such that a 32-bit arithmetic
unit for non-normalized numbers works as a coprocessor.
Specific functions have been designed to allow mapping
addition and multiplication into the coprocessor, along with
conversions from/to IEEE FP standard. In this way, the
main program runs in the processor, but the input data are
converted to non-normalized format, and all additions and
multiplications are performed in the coprocessor. When any
other arithmetic operation is required, the non-normalized
numbers are converted to conventional format, the opera-
tion is performed in the processor, and then, the results is
converted back to non-normalized format.

We proceed as follows: the target algorithm is imple-
mented using C programming language for double preci-
sion FP numbers (double) to use it as the reference im-
plementation; moreover, the same function is implemented
for both the IEEE 32-bit precision (float), using the regular
processor, and the 32-bit non-normalized format, using the
coprocessor; the results of both 32-bit implementations are

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

105,00

110,00

115,00

120,00

125,00

130,00

135,00

140,00

145,00

10 20 30 40 50 100 150 200

SN
R
 (
d
B
s)

Number of order

IEEE

A1M2H

A2M2H

A2MH

A3M2H

A3MH

Fig. 3. SNR of FIR filters for different arithmetic architectures.

compared with the double precision results, calculating the
error in terms of signal-to-noise ratio:

SNRdB = 10 · log10

(∑
y2∑

(y − y′)2

)
, (21)

where y is the reference signal, and y′ is the signal to be
evaluated.

This experiment has been carried out for several copro-
cessors with different combination of adders and multipli-
ers. Since the analysis that we provided in [6] clearly shows
that truncation of the results is not enough to guarantee
a minimum accuracy level, in this new study we only
consider rounding to nearest through HUB approach [8].
Moreover, taking into account that partial normalization in
the multiplier does not improve the error when the adder
A2H is utilized [6], the multipliers MRx, which includes
left shifting of the output significand using x-bit digits, and
MLx, which performs left shifting of the output significand
up to x-bit positions, are dismissed in this study. Hence,
in this study, we tested the three HUB adders: the basic
adder A1H, which only implements one-bit right shifting of
the output significand, A2H which implements one-bit right
shifting for the overflow of the significand and also up to 2-
bit left shifting for partial normalization; and A3H which
is very similar to A2H but the partial normalization uses
the bits discarded in the significand alignment for filling
the right bit positions. These adders are combined with two
HUB multipliers: MH, the simplest multiplier without any
shifting of the output; and M2H which only implements 1-
bit right-shifting when an significand overflow occurs. Each
coprocessor is named using the name of the adder utilized
(without the H) followed by the name of the multiplier.
For instance, the coprocessor A2MH uses adder A2H and
multiplier MH. The variations of the SNR when using all
these approaches are studied below.

First, we start with FIR filter implementations because
they are extensively used in DSP applications. We have run
several experiments using low-pass filters with different
cut-off frequencies and a wide range of orders. A linear
chirp signal ranging between [−1, 1] plus a random signal
ranging between [−0.1, 0.1] is used as input signal, which
is a typical input signal to test low-pass filters. Fig. 3 shows
some results obtained for the same cut-off frequency and
different numbers of orders. The main conclusion observing
the results is that A3H improves very significantly the
results obtained by A2H. On the other hand, as was reported

TABLE 1
SNR obtained for Kalman filter implementations

IEEE HUB
146.2 A1H A2H A3H

MH 0.0 135.5 140.0
M2H 133.8 135.9 140.3

70,0

80,0

90,0

100,0

110,0

120,0

130,0

140,0

150,0

1 2 3 4 5 6 7 8 9 10

SN
R
 (
d
B
s)

Number of order

IEEE

A1M2H

A2M2H

A2MH

A3M2H

A3MH

Fig. 4. SNR of IIR filters for different arithmetic architectures.

in [6], M2H only improves very slightly the results of MH
and A1H get much worst results than A2H. The mean of
the difference respect the standard implementation is 13.95
dBs for A1M2H, 10.3 dBs for A2M2H and only 6.3 dBs for
the A3M2H. We should note that this is almost the lost of
precision expected for one bit reduction due to the lost of
the implicit leading one (6 dBs).

In another experiment, we use a very simple Kalman fil-
ter that approximates a constant value through a set of noisy
measurements. As input signal is used a random number
ranging between [−0.1, 0.1] plus 0.5. For this algorithm, any
kind of normalization in either the adder or multiplier is
compulsory in order to obtain acceptable results [6]. Table 1
shows the SNR obtained for the architectures with the best
results. Again the best result is achieved by A3M2H. It is
also observed that the improvement of using A3H instead
of A2H is very significant.

In another experiment, we implemented IIR low-pass
filters using both direct-form I and II implementations for
different cut-off frequencies and orders. The same input
signal as that of the FIR filters is used. As an example,
Fig. 4 shows the SNR obtained for IIR direct-form I filters
for the same cut-off frequency and different numbers of
orders (direct-form II or other cut-off frequencies show a
similar behavior). Similarly to previous examples, A3M2H
obtains the best results, about 6 dBs below the IEEE results.
However, in this case, A2M2H gets the second best results,
showing that the improvement using M2H instead of MH is
more relevant for this algorithm. We should also highlight
that the performance of A1M2H collapse from order 5,
which confirms that A1H adder only could be used for very
specific applications.

Finally, we implemented a Cholesky decomposition al-
gorithm for different matrix sizes. We used a thousand input
matrices generated randomly on each experiment. Fig. 5
shows the mean of the SNR obtained for each matrix size.
As in previous experiments, except FIR filters, the accuracy
of A1M2H degrades very rapidly. This result confirms that
adders should include at least a partial normalization. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

30

50

70

90

110

130

150

4 5 6 7 8 9 10 11 12 13 14 15 16

SN
R
(d
Bs
)

N (Matrix size=NxN)

IEEE

A1M2H

A2M2H

A2MH

A3M2H

A3MH

Fig. 5. SNR of Cholesky decomp. for different arithmetic architectures.

differences among the other non-normalized architectures
are more subtle than in previous algorithms. Again A3M2H
obtains the best results, followed very closely by A3MH.
The difference of A3M2H respect to IEEE decreases with the
matrix size, ranging from 13 dBs to 7 dBs, with a mean of 10
dBs.

5 ANALYSIS OF IMPLEMENTATION RESULTS

5.1 ASIC implementation

The proposed non-normalized architectures, along with the
IEEE-754 and the normalized HUB [9] ones (denoted as
IEEE and HUBnorm, respectively) have been designed us-
ing VHDL and synthesized using Synopsys Design Com-
piler Ultra (version H-2013.03-SP2) and the TSMC 65nm
library. We considered default cell activity and ”typical-
case” operating conditions in which the temperature is 25◦C
and voltage Vdd = 1.0V . All architectures, including IEEE
and HUBnorm, only implement rounding to nearest, and
no special cases or denormals. The implementations have
been conducted for both combinational and pipelined archi-
tectures except the converter, that was implemented only as
combinational. From here on, we mean as non-normalized
adders and multipliers to A1H, A2H, A3H and MH, M2H
architectures.

5.1.1 Analysis of the combinational architectures
This subsection is intended to confirm the trend of the figu-
res of merit of the combinational IEEE and non-normalized
adders and multipliers presented in [6] with the new size
binary16. Furthermore, the new adder A3H is compared to
the previous ones. We carried out implementations increas-
ing the target frequency in steps of 100MHZ, and present
area and power consumption of each architecture.

Fig. 6 and Fig. 7 show the area and power consumption,
respectively, of 16-bit and 32-bit adders. As expected, A2H
and A3H have very similar area and power consumption
since their architectures only differ in the bits introduced
in partial normalization. A1H is the one with better imple-
mentation results whatever the width of the adder because
no normalization is performed. It can be seen also that the
IEEE and HUBnorm adders are not able to reach the same
high frequencies as the non-normalized adders, since the
normalization circuit is in the critical path.

Comparing the non-normalized adders with the IEEE
one, the former have between 35%-84% less area and con-
sume between 30%-87% less power for the 16-bit adders,

200 400 600 800 1000 1200 1400 1600

Frequencies (MHz)

0

1000

2000

3000

4000

A
re

a
(

m
2
)

IEEE
A1H
A2H
A3H
HUBnorm

(a) 16-bit adders

200 400 600 800 1000 1200

Frequencies (MHz)

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
re

a
(

m
2
)

IEEE
A1H
A2H
A3H
HUBnorm

(b) 32-bit adders

Fig. 6. Area of combinational adders of different bit-width.

200 400 600 800 1000 1200 1400 1600

Frequencies (MHz)

0

0.5

1

1.5

2

P
ow

er
 (

 m
W

)

IEEE
A1H
A2H
A3H
HUBnorm

(a) 16-bit adders

200 400 600 800 1000 1200

Frequencies (MHz)

0

0.5

1

1.5

2

2.5

P
ow

er
 (

 m
W

)

IEEE
A1H
A2H
A3H
HUBnorm

(b) 32-bit adders

Fig. 7. Power consump. of combinational adders of different bit-width.

and 38%-78% less area, and 19%-78% less power for 32-bit
adders. That confirms that non-normalized implementation
achieves important savings for all bit-width. Furthermore,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

they reach much higher frequencies. On the other hand,
comparing them with HUBnorm, the improvements are
lower, but still very significant. For example, for 32-bit, on
average A3H needs 34% less area and 27% less power con-
sumption than the HUBnorm adder. That allows us to verify
that the improvements obtained for the non-normalized
adders are not only a merit of using HUB representation.

Similarly, Fig. 8 and Fig. 9 represent the area and power
consumption of the combinational IEEE, MH, M2H and
HUBnorm [9] multipliers. It can be seen that the improve-
ment of non-normalized multipliers is not as great as for the
adder case, because IEEE multipliers do not have norma-
lization logic, and consequently the improvement comes
mainly from the simplification of the rounding. For 32-bit
designs, compared to the IEEE multiplier, MH reduces on
average around 30% of area and 35% of power consumption,
and M2H, 25% of area and 30% of power. Regarding the
HUBnorm multiplier, note that it has practically the same
architecture as M2H, except for the logic due to the implicit
leading one. The improvement is only remarkable in the
case of 16-bits (around 35% less area and power for MH,
and 25% for M2H).

5.1.2 Analysis of the pipelined architectures
In order to study how the savings of the proposed ar-
chitectures are affected when pipelining, we proceeded as
follows: several registers were added at the output of the
combinational datapath of each architecture and the tool
Synopsys Design Compiler was directed to perform auto-
matic retiming of the registers. We targeted several clock
frequencies in the range of embedded applications and
applied pipeline depths from two to five stages. Given a

200 400 600 800 1000 1200 1400 1600

Frequencies (MHz)

500

1000

1500

2000

2500

3000

3500

4000

4500

A
re

a
(

m
2
)

IEEE
MH
M2H
HUBnorm

(a) 16-bit multipliers

200 400 600 800 1000 1200

Frequencies (MHz)

0.4

0.6

0.8

1

1.2

1.4

1.6

A
re

a
(

m
2
)

104

IEEE
MH
M2H
HUBnorm

(b) 32-bit multipliers

Fig. 8. Area of combinational multipliers of different bit-width.

200 400 600 800 1000 1200 1400 1600

Frequencies (MHz)

0

0.5

1

1.5

2

2.5

3

P
ow

er
 (

 m
W

)

IEEE
MH
M2H
HUBnorm

(a) Power of 16-bit multipliers

200 400 600 800 1000 1200

Frequencies (MHz)

0

2

4

6

8

10

P
ow

er
 (

 m
W

)

IEEE
MH
M2H
HUBnorm

(b) Power of 32-bit multipliers

Fig. 9. Power consump. of combinational multipliers of different bit-width.

target frequency, and for each architecture, we selected the
implementation with the minimum area. For these selected
implementations, we provide their area, power consump-
tion and number of pipeline stages, one stage meaning a
combinational implementation.

Table 2 and Table 3 show the results corresponding to
the 32-bit and 16-bit adders, respectively. It is observed
that the area and power savings for non-normalized adders
are still very significant when including pipelining and the
number of pipeline stages are generally less than or equal
to that of the others. The area reduction is very stable when
varying the frequency, with a mean around 50% for A1H,
and around 40% for A2H and A3H, for 32-bit width, and
around 65% for A1H, and 47% for AH2 and AH3, for 16-
bit width. The area reduction of HUBnorm is around 20%
in both cases, which means that this reduction is due to
the simplification of the rounding, but the rest is due to
avoiding normalization. Regarding the power, the savings
varies from one frequency to another. For instance, consid-
ering 32-bit architectures, they range from 18% to 73% for
A1H, from 14% to 58% for A2H, and from 18% to 52% for
A3H, with an average of 55%, 39%, and 35%, respectively.
For 16-bit architectures, this power reduction is even higher
with a mean of 71%, 54%, and 43% for A1H, A2H, and A3H,
respectively.

Similarly, Table 4 and Table 5 show the results corre-
sponding to the 32-bit and 16-bit multipliers, respectively.
As expected, the improvements are lower than for the
adders, but they are still significant. In all cases, non-
normalized multipliers need the same number or fewer
pipeline stages than the others. Compared to IEEE, the area
reduction remains very similar for all frequencies, being on

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE 2
Number of stages (in parenthesis), area (µm2) and power consumption (mW) for 32-bit adders for several frequencies

400MHz 600MHz 800MHz 1GHz 1.2GHz
area (stages) 2797 (1) 3194 (2) 4977 (2) 4979 (2) 5333 (2)

IEEE power 0.34 0.88 1.71 2.19 2.88
area (stages) 1274 (1) 1502 (1) 1877 (1) 2608 (1) 3509 (3)

A1H power 0.16 0.28 0.47 0.82 2.37
area (stages) 1690 (1) 1948 (1) 3154 (1) 3217 (3) 3153 (2)

A2H power 0.22 0.37 0.81 1.88 1.94
area (stages) 1639 (1) 1857 (1) 2819 (1) 3118 (2) 3039 (2)

A3H power 0.25 0.42 0.83 1.79 2.10
area (stages) 2128 (1) 2774 (1) 3824 (2) 3998 (2) 4498 (2)

HUBnorm power 0.28 0.56 1.47 1.80 2.45

TABLE 3
Number of stages (in parenthesis), area (µm2) and power consumption (mW) for 16-bit adders for several frequencies

400MHz 600MHz 800MHz 1GHz 1.2GHz
area (stages) 1142 (1) 1537 (1) 1890 (4) 2081 (2) 2500 (2)

IEEE power 0.18 0.37 0.96 1.11 1.52
area (stages) 433 (1) 516 (1) 610 (1) 649 (1) 1120 (1)

A1H power 0.07 0.11 0.18 0.24 0.53
area (stages) 607 (1) 678 (1) 826 (1) 933 (1) 1358 (3)

A2H power 0.09 0.16 0.26 0.39 1.12
area (stages) 680 (1) 749 (1) 1061 (2) 1030 (1) 1381 (2)

A3H power 0.12 0.19 0.54 0.44 1.06
area (stages) 880 (1) 1139 (1) 1462 (2) 1867 (2) 2036 (2)

HUBnorm power 0.14 0.27 0.67 1.0 1.34

TABLE 4
Number of stages (in parenthesis), area (µm2) and power consumption (mW) for 32-bit multipliers for several frequencies

400MHz 600MHz 800MHz 1GHz 1.2GHz
area (stages) 5930 (1) 6807 (2) 8196 (4) 8322 (2) 8726 (2)

IEEE power 1.41 2.77 4.72 5.29 6.87
area (stages) 4714 (1) 5151 (1) 6454 (2) 6348 (2) 6913 (2)

MH power 1.05 1.73 3.21 4.01 5.23
area (stages) 4886 (1) 5499 (1) 6534 (2) 6569 (2) 7300 (2)

M2H power 1.08 1.94 3.29 4.11 5.44
area (stages) 5084 (1) 6007 (1) 7023 (1) 7428 (3) 7984 (3)

HUBnorm power 1.14 2.11 3.46 4.90 6.24

TABLE 5
Number of stages (in parenthesis), area (µm2) and power consumption (mW) for 16-bit multipliers for several frequencies

400MHz 600MHz 800MHz 1GHz 1.2GHz
area (stages) 1326 (1) 1573 (1) 1838 (1) 1850 (1) 2408 (3)

IEEE power 0.24 0.43 0.69 0.83 1.80
area (stages) 997 (1) 1057 (1) 1218 (1) 1239 (1) 1452 (1)

MH power 0.18 0.29 0.44 0.56 0.81
area (stages) 1000 (1) 1261 (1) 1298 (1) 1353 (1) 1822 (2)

M2H power 0.19 0.35 0.47 0.61 1.34
area (stages) 1321 (1) 1496 (1) 1706 (1) 1828 (1) 2491 (2)

HUBnorm power 0.25 0.41 0.62 0.84 1.74

average 22% and 33% for MH, and 19% and 25% for M2H,
for 32-bit and 16-bit multipliers, respectively. These figures
are more variable and slightly higher for the reduction in
power consumption, on average, 29% and 36% for MH, and
25% and 25% for M2H, for 32-bit and 16-bit multipliers, re-
spectively. These savings are very similar when comparing
with HUBnorm for 16-bit units. However, considering 32-bit
multipliers, the mean area reduction compared to HUBnorm
is 12% for MH, and 9% for M2H, and practically the same
values for the reduction in power consumption.

5.1.3 Converter from non-normalized format to IEEE-754
binary format

In Section 3.3 we presented a converter from HUB non-
normalized format to IEEE-754 one. Fig. 10 shows the imple-
mentation results of that converter for a 32-bit word length.
As can be seen, the area and power are steadily low till
1.7GHz. As example, compared to the combinational A1H
(the less consuming adder) the converter area is between 9%
and 44% (about a 28% on average) of the A1H area and the
power is between 5% and 27% (about a 16% on average) of
the adder power.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

500 1000 1500 2000 2500

Frequencies (MHz)

0

500

1000

1500

2000

2500

A
re

a
(

m
2
)

HUB noNorm to IEEE

(a) Area of 32-bit converters

500 1000 1500 2000 2500

Frequencies (MHz)

0

0.2

0.4

0.6

0.8

1

P
ow

er
 (

 m
W

)

HUB noNorm to IEEE

(b) Power of 32-bit converters

Fig. 10. Non-normalized to IEEE converters area and power consump.

5.2 FPGA implementation

Nowadays, implementations using FPGA are found in
many application-specific systems, specially if ad hoc hard-
ware implementation is required. As showed in Section 2,
the FP formats for FPGA, even the IEEE-like ones, allows
free selection of exponent and significand bit-width. In this
subsection, we analyze the implementation results for the
proposed architectures considering this fact. Then, all the
architectures have been synthesized using Xilinx ISE 14.3
targeting Xilinx Virtex-6 FPGA xc6vlx240t-1 for a significand
bit-width ranging from 8 to 64 bits and an exponent bit-
width from 5 to 12 bits. Next, the main results are shown.

5.2.1 Adders

Although implementation results vary in each case
(exponent-significand combination), the general behavior
is similar when varying the exponent bit-width. In order
to condense as much information as possible, Fig.11 rep-
resents, for each significand bit-width, the mean of the
results of all utilized exponent bit-widths. As expected, A1H
obtains the best results, since it removes completely the
normalization and rounding logic, while A2H and A3H get
similar figures, being A2H slightly better than A3H. Re-
member that A2H and A3H perform partial normalization
up to 2 bits and they only differs in the bits introduced at the
right when the significand is left shifted. In all cases the im-
provement compared to IEEE and HUBnorm architectures
is very significant, due to the fully normalization logic that
these units need.

Regarding the area, except for significand widths of
around 8 and 64 bits, A1H achieves about a 50% reduction

8 16 24 32 40 48 56 64

Significand bit width

0

200

400

600

800

1000

1200

A
re

a
(L

U
T

s)

IEEE
A1H
A2H
A3H
HUBnorm

(a) Area

8 16 24 32 40 48 56 64

Significand bit width

0

5

10

15

20

25

30

D
el

ay
 (

ns
)

IEEE
A1H
A2H
A3H
HUBnorm

(b) Delay

Fig. 11. Mean of adder results when varying the significand bit-width.

compared to IEEE-like adders, while the area reduction goes
from about 35% to near 40% for both A2H and A3H when
the significand bit-width increases, being always slightly
higher for A2H. Similarly, the delay reduction goes up from
40% to 55% for A1H and from 25% to 45% for both A2H
and A3H, although, in general, a little higher for A2H.
Compared to HUBnorm, the improvement goes down, since
HUBnorm also removes the rounding logic, but it is still
very significant, being on average, around 35% for A1H and
around 20% for A3H and A2H, for both area and delay.

It is also observed that close to 64-bit significand, the area
goes up abruptly for the IEEE adders and, consequently,
the delay falls as a result. This is automatically decided by
the implementation tool, and it is not followed by the non-
normalized architectures. As a consequence, area reduction
increases up to 58%, 50% and 47% for A1H, A2H and A3H,
respectively, while delay reduction goes down to 50%, 38%
and 35%, respectively.

Similarly to previous figure, Fig. 12 shows, for each
exponent bit-width, the mean of the results of all significand
bit-widths. Whereas the relative area reduction (compared
to IEEE) for A1H is not affected by the exponent bit-width
(almost 50%), there is a decrease in this reduction for both,
A2H and A3H, when the exponent bit-width increases,
such as it goes down from 45% to 35%. We think that
this is caused by the logic needed to update the exponent
due to partial normalization. That behavior is similar when
compared with HUBnorm. Analyzing the delay reduction,
we have that, except for 5-bit and 12-bit exponents, where
the reduction is higher, the relative delay reduction is only
affected slightly for the exponent bit-width, being about

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

5 6 7 8 9 10 11 12

Exponent bit width

0

100

200

300

400

500

600

700

A
re

a
(L

U
T

s)

IEEE
A1H
A2H
A3H
HUBnorm

(a) Area

5 6 7 8 9 10 11 12

Exponent bit width

0

5

10

15

20

25

D
el

ay
 (

ns
)

IEEE
A1H
A2H
A3H
HUBnorm

(b) Delay

Fig. 12. Mean of adder results when varying the exponent bit-width.

49%, 36% and 34% for A1H, A2H and A3H, respectively.

5.2.2 Multipliers
For the implementation of multipliers, we study the regular
case where a mix of embedded multipliers and logic (LUTs)
is automatically selected by the synthesizer software in
each case. In the text below, we present only the area in
terms of logic, since the number of embedded multipliers
coincides for the four architectures except for several signif-
icand bit widths (specifically, for 19-,26-, 34-, 41-, 51-, 53-bit
significand). In those cases, the tool adds new embedded
multipliers, and since HUBnorm approach needs a bit more
in the multiplier, the transition in the number of embedded
multipliers for HUBnorm architectures occurs a bit earlier
than for IEEE and non-normalized approaches. That is the
reason for having different number of embedded multipliers
at those bit-widths. Note that, although, at first, MH and
M2H would also require a bit more due to using the HUB
approach, they also need one bit less due to the lack of the
implicit leading one, and consequently the number of bits
of their multipliers is the same as for IEEE approach.

As for the adders, we present the average results to
condense as much information as possible, but the specific
gain should be studied in each case. For each significand bit-
width, Fig.13 shows the mean of the results of all utilized
exponent bit-widths. Similarly, Fig. 14 presents, for each
exponent bit-width, the mean of the results of all signifi-
cand bit-widths. Regarding the area, MH and M2H utilize
practically the same area, because the LUTs used for shifting
the significand in M2H are the same as the ones used for
implementing the flush to zero when underflow occurs in
MH and M2H. The area of non-normalized multipliers is
lower than the area of IEEE in all cases. The area increases
steadily with the exponent bit-width but depends more

8 16 24 32 40 48 56 64

Significand bit width

0

100

200

300

400

A
re

a
(L

U
T

s)

IEEE
MH
M2H
HUBnorm

(a) Area

8 16 24 32 40 48 56 64

Significand bit width

0

5

10

15

D
el

ay
 (

ns
)

IEEE
MH
M2H
HUBnorm

(b) Delay

Fig. 13. Mean of multiplier results when varying the significand bit-width.

strongly on the significand bit-width. We have to clarify that
the peaks in the lines of Fig. 13a corresponds to transitions
in the number of embedded multipliers added by the tool.
If we do not consider those transitions, the area reduction
compared to HUBnorm goes from around 20% to 10%.
Regarding IEEE multipliers, the area reduction when using
non-normalized ones moves between 30% and 50%, being
higher in the medium range of significand bit-width.

Regarding the delay, M2H is significantly slower than
MH due to the shifting when there is a significand overflow,
which is in the critical path. Again, the delay depends
strongly on the significand bit-width but not as much on the
exponent bit-width. In this case, there is not big difference
between IEEE and HUBnorm. Higher relative speed im-
provements of non-normalized multipliers are achieved for
significand below 24 bit (a mean of about 45% for MH and
23% for M2H). The average delay reduction compared to
IEEE is about 29% and 12% for MH and M2H, respectively.

At this point, we should note that although area and
speed improvement may seem lower for FPGA than for
ASIC implementation, for the former, both reductions (in
area and delay) are simultaneous. That is, the same architec-
ture produces savings in area and increases the speed.

6 CONCLUSIONS

In this paper, we have broadened the study carried out in [6]
about the impact of eliminating the normalization require-
ment in FP formats. Using non-normalized format allows
designers to trade precision off for reducing hardware cost.
We have proposed several non-normalized architectures for
addition, multiplication and conversion. The effectiveness
of these architectures has been studied in terms of pre-
cision and hardware implementation. The implementation

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

5 6 7 8 9 10 11 12

Exponent bit width

0

50

100

150

200

250

A
re

a
(L

U
T

s)

IEEE
MH
M2H
HUBnorm

(a) Area

5 6 7 8 9 10 11 12

Exponent bit width

0

2

4

6

8

10

12

14

D
el

ay
 (

ns
)

IEEE
MH
M2H
HUBnorm

(b) Delay

Fig. 14. Mean of multiplier results when varying the exponent bit-width.

results have been analyzed for a wide range of sizes and
frequencies, for both combinational and pipeline versions,
and targeting both ASIC and FPGA implementation. In
most of the cases, the savings are very significant with a
moderate precision loss. From the results, we can conclude
that although adder A1H obtains better implementation
figures, it suffers the most from accuracy loss compared with
the other adders. In contrast, it is with adder A3H that, in
most of the cases, there is less accuracy loss. Furthermore,
the cost of the implementation of A3H is similar to A2H for
the combinational case, and a little better for the pipelined
case. On the other hand, regarding the multipliers, MH is
the one with the best implementation results, and, although
M2H may improve the accuracy, this improvement is not
very significant. Therefore, although it should be studied
for each case, in general, the ideal combination of arithmetic
units would be A3MH. Nonetheless, if the specific applica-
tion has severe implementation restrictions and can afford
greater loss of accuracy, then the ideal combination would
be A1MH. We should highlight that using a non-normalized
format has others important drawbacks besides loss of ac-
curacy. First, it makes reproducibility among different archi-
tectures almost impossible. Second, comparison of numbers
costs much more because it needs a previous normalization.
However, these drawbacks are not a problem for many
embedded applications. We hope these results encourage
other researchers to investigate new options to cover the
embedded system characteristics and open a debate on the
necessity to define a new extension of the standard to cover
embedded-system applications.

REFERENCES

[1] IEEE Std 754-2008 (Revision of IEEE Std 754-1985), IEEE Standard
for Floating-Point Arithmetic, 2008.

[2] N. Metropolis and R. L. Ashenhurst, “Significant digit computer
arithmetic,” IRE Transactions on Electronic Computers, no. 4, pp.
265–267, 1958.

[3] R. L. Ashenhurst and N. Metropolis, “Unnormalized floating point
arithmetic,” Journal of the ACM (JACM), vol. 6, no. 3, pp. 415–428,
1959.

[4] M. Langhammer and T. VanCourt, “FPGA floating point datapath
compiler,” in Proceedings - IEEE Symposium on Field Programmable
Custom Computing Machines, FCCM 2009, 2009, pp. 259–262.

[5] Synopsys, “DWFC Flexible Floating Point Overview,” no. August,
pp. 1–6, 2016.

[6] S. Gonzalez-Navarro and J. Hormigo, “Normalizing or not nor-
malizing? an open question for floating-point arithmetic in em-
bedded systems,” in Computer Arithmetic (ARITH), 2017 IEEE 24th
Symposium on. IEEE, 2017, pp. 188–195.

[7] S. Mittal and Sparsh, “A Survey of Techniques for
Approximate Computing,” ACM Computing Surveys, vol. 48,
no. 4,62, pp. 1–33, mar 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2891449.2893356

[8] J. Hormigo and J. Villalba, “New formats for computing with real-
numbers under round-to-nearest,” IEEE Transactions on Computers,
vol. 65, no. 7, pp. 2158–2168, 2016.

[9] ——, “Measuring Improvement When Using HUB Formats to Im-
plement Floating-Point Systems under Round-to-Nearest,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,
no. 6, pp. 2369–2377, 2016.

[10] W. Liu, L. Chen, C. Wang, M. ONeill, and F. Lombardi, “Design
and analysis of inexact floating-point adders,” IEEE Transactions
on Computers, vol. 65, no. 1, pp. 308–314, Jan 2016.

[11] H. Zhang, W. Zhang, and J. Lach, “A low-power accuracy-
configurable floating point multiplier,” in 2014 IEEE 32nd Interna-
tional Conference on Computer Design (ICCD), Oct 2014, pp. 48–54.

[12] Xilinx, “LogiCORE IP floating-point operator v7.0, product guide,
PG060,” www.xilinx.com/support/documentation, 2014.

[13] F. de Dinechin and B. Pasca, “Designing custom arithmetic data
paths with FloPoCo,” Design Test of Computers, IEEE, vol. 28, no. 4,
pp. 18–27, July 2011.

[14] A. Ehliar, “Area efficient floating-point adder and multiplier with
IEEE-754 compatible semantics,” in Field-Programmable Technology
(FPT), 2014 International Conference on, Dec 2014, pp. 131–138.

[15] J. Villalba, J. Hormigo, F. Corbera, M. Gonzalez, and E. Zapata,
“Efficient floating-point representation for balanced codes for
FPGA devices,” in Computer Design (ICCD), 2013 IEEE 31st Int.
Conf. on, Oct 2013, pp. 272–277.

[16] M. Langhammer, “Floating point datapath synthesis for FPGAs,”
in Proceedings - 2008 International Conference on Field Programmable
Logic and Applications, FPL, 2008, pp. 355–360.

[17] J. Muller, N. Brisebarre, F. de Dinechin, C. Jeannerod, V. Lefèvre,
G. Melquiond, N. Revol, D. Stehlé, and S. Torres, Handbook of
Floating-Point Arithmetic. Birkhäuser Boston, 2010.

Sonia Gonzalez-Navarro received the B.S. and
M.S. degrees in Mathematics in 2000 and the
Ph.D. degree in Computer Science in 2006, both
from the University of Malaga, Spain. She is
currently an assistant professor in the Com-
puter Architecture Department at the University
of Malaga. Her research interests include com-
puter arithmetic, floating point number compu-
tation, high-performance architectures for data-
intensive applications and near-data processing.

Javier Hormigo received the M.Sc. and Ph.D.
degrees in telecommunication engineering from
the Universidad de Malaga, Spain, in 1996 and
2000, respectively. He joined the Universidad
de Malaga in 1997, where he is currently an
Associate Professor with the Computer Architec-
ture Department. His current research interests
include computer arithmetic, specific application
architectures, and field-programmable gate ar-
ray.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2019.2929039

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

