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ABSTRACT
Local Optima Networks (LONs) are a valuable tool to understand
fitness landscapes of optimization problems observed from the
perspective of a search algorithm. Local optima of the optimization
problem are linked by an edge in LONs when an operation in
the search algorithm allows one of them to be reached from the
other. Previous work analyzed several combinatorial optimization
problems using LONs and provided a visual guide to understand
why the instances are difficult or easy for the search algorithms.
In this work we analyze for the first time the MAX-SAT problem.
Given a Boolean formula in Conjunctive Normal Form, the goal
of the MAX-SAT problem is to find an assignment maximizing
the number of satistified clauses. Several random and industrial
instances of MAX-SAT are analyzed using Iterated Local Search to
sample the search space.
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1 INTRODUCTION
Local Optima Networks (LONs) have proven to be a valuable tool
to analize and visualize the search landscape of combinatorial op-
timization problems [5, 10]. A LON is a graph where the set of
vertices are local optima of an optimization problem and an edge
between two nodes exists if there is a way to “jump” from one to
the other. Depending on which relationship the edges represent we
have different kinds of LONs. In this paper, two local optima x  and
y will be connected by an edge if it is possible to reach y from x
after perturbing x and applying a hill climber.

Local Optima Networks have been computed and analyzed for
many combinatorial problems, including Quadratic Assignment [3],
Permutation Flow-Shop [4], Traveling Salesman [6], and Number
Partitioning [7]. Several different local optima structures have been
identified in the LONs of the studied fitness landscapes, including
plateaus and funnels. Their presence (or absence) serves to explain
the performance of trajectory-based methods such as Iterated Local
Search on the underlying optimization problems. And LONs are a
useful tool to analyse the global structure of fitness landscapes.

MAX-SAT is the optimization version of the Satisfiability (SAT)
problem. Given a Boolean formula, SAT checks if there is an as-
signment of variables to Boolean values such that the formula is
satisfiable. The Boolean formula is commonly expressed as a con-
junction of clauses (Conjunctive Normal Form). A clause is a list of
literals (a Boolean variable or its negated) that is satisfied if at least
one literal is true. The Boolean formula is satisfiable if all the clauses
are. The goal of MAX-SAT is to find an assignment to maximize
the number of satisfied clauses. Thus, the objective function (to be
maximized) is the number of satisfied clauses.

To the best of our knowledge the LONmodel has not been applied
before to the MAX-SAT problem. Indeed, MAX-SAT has proven
difficult to model with LONs in the past, due to the existence of large
plateaus in the underlying search space. An analysis with LONs can
shed light onto the structure of MAX-SAT fitness landscapes, which
can help to increase our understanding and improve the design and
selection of optimization algorithms.

The organization of the paper is as follows. In Section 2 the
basic concepts of Local Optima Networks are introduced. Section 3
introduces Gray Box Optimization and the hill climber used in
our Iterated Local Search algorithm. Sections 4 and 5 present the
methodology used in the experimental evaluation and the results
obtained. The paper concludes with Section 6.

2 LOCAL OPTIMA NETWORKS
A recent variant of LONs, the Compressed Monotonic LONs (CM-
LONS) [7], allows modelling the funnel structure of landscapes
with neutrality (i.e. existence of plateaus of local optima with equal
fitness). We describe below the LON model, before introducing the
Compressed Monotonic model (CMLON).

2.1 LON Model
A fitness landscape [8] is a triplet (S,N , f ) where S is a set of po-
tential solutions i.e., a search space, N : S −→ 2S , a neighbourhood
structure, is a function that assigns to every s ∈ S a set of neigh-
boursN (s), and f : S −→ R is a fitness function that can be pictured
as the height of the corresponding solutions.

In our study, the search space is BN , i.e. the space of binary
strings of lengthN , so its size is 2N . As neighbourhood, we consider
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the standard Hamming distance 1 neighbourhoods, that is, the set
of all solutions at most Hamming distance 1, respectively, from the
current solution.

LON. Is the directed graph LON = (L,E), where L is the set of
the local optima, and E is the set of escape (perturbation) edges.

Local optima. A local optimum, which in MAX-SAT is a maxi-
mum, is a solution l such that ∀s ∈ N (l), f (l) ≥ f (s). Notice that the
inequality is not strict, in order to allow the treatment of neutrality
(local optima of equal fitness), which is known to widely occur on
MAX-SAT. The set of local optima, which corresponds to the set
of nodes in the network model, is denoted by L. Local optima are
determined with the efficient local search algorithm described in
Section 3.2.

Perturbation edges. Edges are directed and based on the per-
turbation operator (k-bitflips). There is an edge from local optimum
l1 to local optimum l2, if l2 can be obtained after applying a random
perturbation (k-bitflips) to l1 followed by local search. Edges are
weighted with estimated frequencies of transition. We determined
the edge weights in a sampling process. The weight is the number
of times a transition between two local optima occurred. The set of
edges is denoted by E.

2.2 Compressed Monotonic LON Model
Compressed local optima. A compressed local optimum (also

called a local optima plateau) is a set of connected nodes in the
LON with the same fitness value. Two nodes are connected if there
is an edge between them. The set of compressed optima with the
same fitness, denoted by CL, corresponds to the set of nodes in the
Compressed Monotonic LON model.

Monotonic Perturbation edges. The set of perturbation edges
E as defined for the LON model above, but after removing deterio-
rating edges, that is, edges connecting a pair of nodes where the
end node has inferior fitness than the start node. We call this set
monotonic, ME, as it contains only non-deteriorating transitions
between optima.

Compressed Monotonic LON. Is the directed graph CMLON
= (CL,CE), where nodes are the compressed local optima CL. The
edges CE are aggregated from the monotonic edge setME by sum-
ming up the edge weights.

Monotonic Sequence. A monotonic sequence is a path of con-
nected nodesMS = {cl1, cl2, . . . , cls } where cli ∈ CL. By definition
of the edges, f (cli ) ≥ f (cli−1). There is a natural end to every
monotonic sequence, cls , when no improving transitions can be
found. In the directed CMLON network, cls will be a node without
outgoing edges (called a sink in the graph theory terminology).

Funnel. A funnel can be loosely described a grouping of local
optima, conforming a coarse-grained gradient towards a high fitness
optimum. More formally, we characterise funnels in the CMLON
as the aggregation of all monotonic sequences ending at the same
point (funnel top or sink). Funnels can be seen as basins of attraction
at the level of local optima.

3 GRAY BOX OPTIMIZATION
We will work along the paper with functions defined over a set
of Boolean variables xi , each one taking values 0 and 1. We say
that a function f of n variables has k-bounded epistasis if it can be
written as a sum ofm subfunctions fl , each one depending on at
most k variables:

f (x) =
m∑
l=1

fl (xil,1 ,xil,2 , . . . ,xil,k ), (1)

where il, j is the index of the j-th variable in subfunction fl . In
the case of binary variables, these functions have been named Mk
Landscapes by Whitley et al. [12]. In Gray Box Optimization, the
optimizer can evaluate the set ofm subfunctions in Equation (1)
(although their internal structure is unknown). This contrasts with
Black Box Optimization, where the optimizer can only evaluate
solutions and get their fitness value.

3.1 Variable Interaction Graph
The Variable Interaction Graph (VIG) [12] is a useful tool that
can be constructed under Gray Box Optimization. It is a graph
V IG = (V ,E), where V is the set of variables and E is the set of
edges representing all pairs of variables (xi ,x j ) having nonlinear
interactions. These nonlinear interactions can be captured in two
ways. First, assuming that every pair of variables appearing together
in a subfunction have a nonlinear interaction. A second approach
is to apply the Fourier transform [9], and then look at every pair of
variables to determine if there is a non-zero Fourier coefficient as-
sociated with a term with the two variables. This second method is
more precise and not very expensive, because the Fourier transform
can be constructed in O(n) time for k-bounded epistasis functions.

An example of the construction of the variable interaction graph
for a function with n = 18 variables (numbered from 0 to 17) and
k = 3, is given below. We will refer to variables using numbers,
e.g., 9 = x9. The objective function is the sum over the following
18 subfunctions:

f0(0, 6, 14) f5(5, 4, 2) f10(10, 2, 17) f15(15, 7, 13)
f1(1, 0, 6) f6(6, 10, 13) f11(11, 16, 17) f16(16, 9, 11)
f2(2, 1, 6) f7(7, 12, 15) f12(12, 10, 17) f17(17, 5, 2)
f3(3, 7, 13) f8(8, 3, 6) f13(13, 12, 15)
f4(4, 1, 14) f9(9, 11, 14) f14(14, 4, 16)

From these subfunctions, assume we extract the nonlinear in-
teractions that are shown in Figure 1. In this example, every pair
of variables that appear together in a subfunction has a nonlinear
interaction.

3.2 Efficient Local Search
For Mk landscapes, Whitley and Chen [11] proved that the location
of improving moves can be determined in constant time for the
Hamming distance 1 neighborhood. Two solutions are neighboring
in this neighborhood if they differ in one bit. This result was later
generalized by Chicano et al. [2], who proposed a hill climber that
explores the solutions contained in a Hamming ball of radius r
around a solution in constant time. The concept of Score function
is at the core of both results. For v,x ∈ Bn , and a pseudo-Boolean
function f : Bn → R, we denote the Score of x with respect to
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Figure 1: Sample Variable Interaction Graph (VIG).

move v as Sv (x), defined as follows:

Sv (x) = f (x ⊕ v) − f (x), (2)

where ⊕ denotes the exclusive OR bitwise operation. The Score
Sv (x) is the change in the objective function when we move from
solution x to solution x ⊕ v , that is obtained by flipping in x all
the bits that are 1 in v . Storing the Score function in memory
makes it possible to explore all the solutions at Hamming distance 1
in constant time. When a move is performed, the Score function
is updated. If the number of subfunctions a variable appears in
is bounded by a constant, then the time required to update the
Score function is constant, yielding a very efficient hill climber
for pseudo-Boolean problems [2]. This hill climber is used in our
implementation of Iterated Local Search used in the experimental
evaluation.

4 METHODOLOGY
4.1 Benchmark Instances
We used benchmark instances having a low number of variables
in order to be able to compute the global optimum in all of them.
In particular, we used instances with 40 variables, which is the
minimum number of variables found in instances of the MAX-SAT
Evaluation 20171. The ratio of the number of clauses to the number
of variables is known to have an impact on the search difficulty [13].
Therefore, we generated random MAX-SAT instances with n = 40
variables and varying the number of clauses (m). In particular, we
generated instances with m/n ∈ {2, 4, 6, 8, 10, 11}. The instance
generator and the instances themselves can be found with the
source code in GitHub2.

We also considered three industrial instances from the MAX-
SAT Evaluation 2017. The instances are maxcut-san400_0.5_1,
maxcut-sanr200_0.7 and maxcut-brock400_2, with m = 790,
m = 1092, andm = 1188 clauses, respectively.

For all the instances we computed the global optimum using an
exact method, in order to be certain that the sampling processes
reached it. Instead of using an exhaustive enumeration (which could
take a long time) we applied the recently proposed Dynastic Poten-
tial Crossover Operator (DPX) [1]. This operator is able to explore
the full dynastic potential of two parent solutions providing the
best among the solutions in that space. When one parent solution is
1http://mse17.cs.helsinki.fi/benchmarks.html
2https://github.com/jfrchicanog/EfficientHillClimbers

exactly the complement of the second parent, the dynastic potential
is the whole search space and the global optimum is provided. DPX
worked well for the instances with the lowest number of clauses
but failed to run for largest instances due to memory problems.
To overcome this, we made equal some variables in both parent
solutions, thus exploring only one hyperplane in the search space.
After enumerating all the possible hyperplanes we can obtain the
global optimum. The exploration of these hyperplanes was paral-
lelized in different machines, thus reducing the time to compute the
optimum from days to minutes, thanks to a cluster of more than
100 machines.

4.2 Sampling Method
The sampling procedure consists of aggregating the local maxima
and transition edges obtained by 100 runs of an Iterated Local Search
(Algorithm 1). The stopping condition was set as fixed running time
(60 s). Weights are added to edges indicating the number of times
they appear in the sampling process.

Algorithm 1 Iterated Local Search
1: x ← generateRandomSolution();
2: x ← applyLocalSearch(x );
3: while not stopping condition do
4: y ← perturb (x );
5: y ← applyLocalSearch(y);
6: reportEdge(x ,y);
7: if f (y) > f (x) then
8: x ← y;
9: end if
10: end while
11: return x ;

Table 1: Description of Metrics.

Performance Metrics
hitrate Proportion of runs that reached the global optimum.
iter Number of iterations before reaching the global optimum.

Network Metrics
noptima Number of optima (including local and global).
nglobal Number of global optima.
edgesi Proportion of edges that are improving.
edgesn Proportion of edges that are neutral.
edgesw Proportion of edges that are worsening.
ncoptima Number of compressed optima (plateaus).
ncglobal Number of compressed global optima.
ncedges Number of compressed edges.
neutrality Ratio of compressed to total number of optima.
lplateau Size of the largest plateau.
nlfunnels Number of sub-optimal funnels.

In our ILS implementation, the perturbation flips 5% of the vari-
ables selected at random (which corresponds to 2-bitflips forn = 40).
The local search operator iterates the hill climber explained in Sec-
tion 3.2 until a local optima is found (no neighbor can improve the
objective function). A new local optimum is only accepted in Line 7
if it improves the incumbent solution. However, we report all the
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edges encountered between local optima in Line 6, which includes
neutral and worsening edges.

4.3 Network and Performance Metrics
For each instance, we extracted the LON models and computed
the measurements described in Table 1. Metrics are reported as
aggregations over 100 runs.

5 RESULTS
5.1 Network Analysis
Table 2 reports the network statistics described in Table 1 for the
sampled local optima networks on the random and industrial in-
stances with n = 40 and increasing clause to variable ratiom/n.

For the random instances, results show that the the size of the
networks, as measured by the number of local optima, noptima,
and compressed local optima, ncoptima, decreases with increasing
number of clauses. This seems counter-intuitive, a small connected
network should, in principle, be easier to traverse than a larger
one, as the possible trajectories towards the global optimum are
shorter. But we know that search difficulty tends to increase with
the number of clauses [13]. Some networkmetrics help us to explain
this. Looking at the number of global optima, nglobal, we can ob-
serve a sharp decline in this metric when going fromm/n = 4 to 6.
Moreover, looking at the size of the largest plateau size lplateau,
we can observe that for m/n ∈ {1, 2} the largest plateau is the
global optimum plateau (as the size coincides with the number of
global optima), but this is not the case for m/n ≥ 4, where the
largest plateau is a sub-optimal plateau. Another network metric
explaining the increased difficulty for largerm/n ratios is the pro-
portion of worsening edges, edgesw . This metric reflects the effort
required across the search process to find an improving transition.
This value is found to be larger for the instances with largem/n
ratios. The instance with 440 clauses is the only random instance
revealing a sub-optimal funnel, nlfunnels = 1. All the instances
show a high level of neutrality, which is a well known feature of
MAX-SAT fitness landscapes. This can be appreciated by looking at
the proportion of neutral edges edgesn, and the ratio of compressed
to total number of optima neutrality3, which both decrease with
the number of clauses.

Regarding the performance metrics in random instances, we
observe that the hit rate is maximum in all the instances except
the largest one. In these cases we can use the average number of
iterations to reach the global optimum as a search difficulty metric
and we observe an increase in this value with the number of clauses.
The largest instance (m/n = 11) does not reach the global optimum
in all the cases and this biased the average number of iterations
to reach the global optimum, which cannot be compared with the
other random instances. The conclusions is that the difficulty of
the random instances increase with the number of clauses, as was
observed in previous work [13]

The industrial instances show a larger proportion of worsening
edges edgesw , when compared to the random instances, indicating
higher search difficulty. The less constrained instance (m/n = 20)
reveals a network of similar size than the studied random instances.
3neutrality is reported as as the reciprocal of the ratio of compressed to total number
of optima, so that higher values represent higher neutrality.

However, the two instances with ratio m/n > 1000 show larger
networks; they also show two global optima plateaus. The instance
with largest ratio (m/n = 1188) shows a sub-optimal funnel. The
industrial instances also show a high level of neutrality as indicated
by the high neutrality value. Regarding the performance metric, we
observe that the instance withm = 1092 clauses is the most difficult
one. This highlights an interesting fact: in industrial instances more
clauses do not necessarily means more difficulty. The number of
improving edges seems to be a good indicator of search difficulty
in this the industrial instances.

In order to give a more detailed characterisation of the plateau
sizes, Figure 2 shows bar-plots of the sizes of compressed optima
(plateaus) in decreasing order for all the studied instances. The
instance type, number of clauses and clause to variable ratio are
indicated in the sub-captions. In order to better compare the magni-
tude differences, the square root of the sizes is reported. The scale
of the y axis goes from 0 to 25 for first three plots (a), (b) and (c),
while for the rest, it goes from 0 to 10. A general trend across all
instances is the existence of a few large plateaus, followed by a
larger set of smaller plateaus, ending with a number of plateaus
of size one (i.e. single optima). On the random instances (plots (a)
- (f)), the size and number of plateaus decreases with increasing
m/n ratios. In contrast, the number of plateaus does not seem to
decrease with them/n ratio on the industrial instances.

5.2 Visualization
Visualization is a useful tool in the analysis of network data, allow-
ing us to appreciate structural features which could be difficult to
infer from the raw data and statistical analysis. In particular, the
sampled compressed monotonic LONs for the studied benchmark
instances are relatively small and not very dense (with less than
300 nodes and edges as can be seen in Table 2), which facilitates
visualization.

Figure 3 illustrates 2D projections of the LONs for all the stud-
ied instances. The instance type, number of clauses and clause to
variable ratio are indicated in the sub-captions. Network plots were
produced using the R statistical language together with the igraph
package. Graph layouts consider force-directed methods. Networks
are decorated to reflect features relevant to search dynamic. The
rectangular nodes indicate plateaus with lengths proportional to
plateau sizes (i.e. the number of single local optimawithin a plateau),
while the circular nodes indicate single optima. The color of nodes
indicates the funnel membership with pink reflecting nodes that
belong to global optimal funnels, and light blue indicating nodes
that belong to sub-optimal funnels. Red nodes correspond to the
global optimum (optima), while dark blue nodes indicate the top of
sub-optimal funnels. Edges widths are proportional to their weight,
which is the estimated probability of transitions. That is, the most
probable transitions are thicker in the plots.

On the random instances (plots (a)-(f) in Fig. 3), the overall
size of the networks decreases with them/n ratio. The amount of
neutrality also decreases with the number of clauses, which can
be appreciated in the network plots as the reduction in number
and length of the rectangular nodes. For the instances with lower
number of clauses (plots (a) and (b) in Fig. 3) the global optimum is
a large plateau (red rectangle), whereas form/n > 4 (plots (c) - (f) in
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Figure 2: Barplots indicating the distribution of local optima plateau sizes for the benchmark instances with n = 40. The
instance type, number of clauses and clause to variable ratio are indicated in the sub-captions. The square roots of the plateau
sizes is used to account for the magnitude differences across instances. Notice that the y axis of the first 3 plots (a), (b) and (c)
goes from 0 to 25, while for the rest it goes from 0 to 10.
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Table 2: Performance and networkmetrics for the random and industrial benchmark instances with n = 40 variables. The first
two columns indicate the number of clausesm and clause to variable ratiom/n.

Random Instances
m m

n hitrate iter noptima nglobal edgesi edgesn edgesw ncoptima ncglobal ncedges neutrality lplateau nlfunnels
80 2 1.00 27 9 678 648 0.003 0.705 0.292 52 1 89 0.995 648 0
160 4 1.00 20 1989 184 0.012 0.627 0.361 61 1 91 0.969 184 0
240 6 1.00 55 568 1 0.156 0.702 0.143 87 1 121 0.847 159 0
320 8 1.00 39 305 2 0.124 0.551 0.325 44 1 53 0.856 88 0
400 10 1.00 120 282 3 0.081 0.585 0.335 32 2 41 0.887 47 0
440 11 0.95 8 180 4 0.137 0.382 0.481 20 1 23 0.889 25 1

Industrial Instances (maxcut)
790 20 1.00 93 437 5 0.125 0.263 0.611 50 1 76 0.886 17 0
1092 27 0.96 60424 3154 12 0.053 0.133 0.814 225 2 282 0.929 29 0
1188 30 0.99 408 1885 6 0.105 0.200 0.695 141 2 250 0.925 51 1

Fig. 3), the global optimum becomes a single node or a small plateau,
with large sub-optimal plateaus appearing (pink rectangles). The
random instance with m = 440, is the only one revealing a sub-
optimal funnel Plot (b), which can be appreciated as the subset of
blue nodes pointing towards the small dark blue node (the funnel
top or sink).

The LON for less constrained of the industrial instances (plot (g)
in Fig. 3) resembles in size and structure the LON of the random
instance withm/n = 8 (plot (d)). However, the most constrained
industrial instances (plots (h) and (i) in Fig. 3) show visibly larger
networks, with two separated global optima small plateaus. More-
over, the industrial instance withm/n = 30 (plot (i)) also shows
a very small sub-optimal funnel, visualised as the two light blue
nodes, ending in a dark blue small plateau acting as trap to the
search process (no outgoing edges).

6 CONCLUSIONS
We conducted a preliminary study extracting, analysing and vi-
sualising LONs for the MAX-SAT problem. This article joins two
recent active research strands, Local Optima Networks and Gray-
Box Optimization. The recently proposed Compressed Monotonic
LON model allowed us to deal with the large plateaus observed in
MAX-SAT, while Gray-box optimization allowed us a fast extrac-
tion of the LON data. We studied both randomly generated and
industrial instances. All the instances studied showed high degrees
of neutrality, as expected. On the random instances, increasing
the number of clauses produced smaller networks. This seemed
counter-intuitive initially, as smaller connected networks seem to
reflect easier search. But we know that search difficulty in MAX-
SAT tends to increase with the number of clauses. A closer analysis
revealed that it takes longer for the algorithm to find improving
transitions on the more constrained instances. So even though the
monotonic trajectories towards the global optimum in the networks
are shorter, it takes longer for the algorithm to find the improving
hops. Moreover, the random instances with low number of clauses
have a large global optima plateau, indicating that it is easier to
reach it. The industrial instances showed a different pattern than the
random instances, producing larger networks when the number of
clauses increases. This difference deserves further investigation. We
also observed the appearance of a sub-optimal funnel in the most

constrained random instance and the most constrained industrial
instance. Sub-optimal funnels are associated with increased search
difficulty, another promising sign indicating that LON analysis can
help in understanding search difficulty.

Future work will explore larger instances and will investigate
correlations between LON features and algorithm performance. We
will also explore LONs induced by hybrid algorithms incorporating
partition crossover. The improving, neutral andworsening edges are
biased by the stopping condition. The reason is that after the global
optimum is found no improving edges can be found, thus reducing
its proportion. To avoid this bias, in future work the analysis should
be stopped once the global optimum is found.

ACKNOWLEDGEMENTS
This work is partially funded by the University of Stirling, the Uni-
versity of Malaga (Exhauro project) and the Ministry of Innovation
and Competitiveness under contract (TIN2017-88213-R).

REFERENCES
[1] Francisco Chicano, Gabriela Ochoa, Darrell Whitley, and Renato Tinós. 2019.

Quasi-Optimal Recombination Operator. In Proceedings of the European Confer-
ence on Evolutionary computation for Combinatorial Optimisation.

[2] Francisco Chicano, Darrell Whitley, and Andrew M. Sutton. 2014. Efficient
identification of improving moves in a ball for pseudo-boolean problems. In
Genetic and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC,
Canada, July 12-16, 2014, Dirk V. Arnold (Ed.). ACM, ACM, NY, USA, 437–444.
https://doi.org/10.1145/2576768.2598304

[3] Fabio Daolio, Sébastien Vérel, Gabriela Ochoa, and Marco Tomassini. 2010. Local
Optima Networks of the Quadratic Assignment Problem. In Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 18-23
July 2010. IEEE, 1–8. https://doi.org/10.1109/CEC.2010.5586481

[4] Fabio Daolio, Sébastien Vérel, Gabriela Ochoa, and Marco Tomassini. 2013. Local
Optima Networks of the Permutation Flow-Shop Problem. In Artificial Evolution
(Lecture Notes in Computer Science), Vol. 8752. Springer, 41–52. https://doi.org/10.
1007/978-3-319-11683-9_4

[5] G. Ochoa, M. Tomassini, S. Verel, and C. Darabos. 2008. A Study of NK Landscapes’
Basins and Local Optima Networks. In Genetic and Evolutionary Computation
Conference, GECCO. ACM, 555–562.

[6] Gabriela Ochoa and Nadarajen Veerapen. 2016. Deconstructing the Big Valley
Search Space Hypothesis. In Evolutionary Computation in Combinatorial Opti-
mization, EvoCOP 2016 (Lecture Notes in Computer Science), Vol. 9595. Springer,
58–73. https://doi.org/10.1007/978-3-319-30698-8_5

[7] Gabriela Ochoa, Nadarajen Veerapen, Fabio Daolio, and Marco Tomassini. 2017.
Understanding Phase Transitionswith Local OptimaNetworks: Number Partition-
ing as a Case Study. In Evolutionary Computation in Combinatorial Optimization,
(EVOCOP) (LNCS), Vol. 10197. Springer, 233–248.

[8] P. Stadler. 2002. Fitness landscapes. Biological evolution and statistical physics
(2002), 183–204.



Local Optima Network Analysis for MAX-SAT GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic

●

●

●

●

●

●

●

●

(a) random,m = 80,m/n = 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) random,m = 160,m/n = 4
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(d) random,m = 320,m/n = 8
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(f) random,m = 440,m/n = 11
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(g) maxcut,m = 790,m/n = 20
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(h) maxcut,m = 1092,m/n = 27

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(i) maxcut,m = 1188,m/n = 30

Figure 3: Local optima networks for the benchmark instances with n = 40 variables. The instance type, number of clauses and
clause to variable ratio are indicated in the sub-captions. Rectangular nodes indicates plateaus, that is, nodes compressing two
or more connected local optima, while circular nodes indicate single local optima. The lengths of rectangles is proportional to
the size of plateaus, specifically, to the square root of the number of optima in the plateaus. Pink nodes belong to the funnel
containing the global optimum, while light blue to sub-optimal funnels. Red indicates the global optimum(a), while dark blue
indicates the bottom of a sub-optimal funnel.
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