

MULTILINGUAL INVESTIGATION OF

THEORY-BASED INTERVENTION FOR

PROGRAM COMPREHENSION
Bachelor Thesis

Celia García Ledesma
Supervised by Birte Heinemann

Paderborn University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Documental de la Universidad de Valladolid

https://core.ac.uk/display/225143771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

1

DECLARATION OF AUTHORSHIP

I hereby declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has been

quoted either literally or by content from the used sources. According to my knowledge, the

content or parts of this thesis have not been presented to any other examination authority and

have not been published. I am aware that the respective work can be considered as “fail” in the

event of a false declaration. In case of justified suspicion, the thesis in digital form can be

examined with the help of “Turnitin”. For the comparison of my work with existing sources [X] I

agree to storage in the institutional repository to enable comparison with future theses

submitted / [] I do not agree to storage in the repository. Further rights of reproduction and

usage, however, are not granted here. In any case, the examination and evaluation of my work

has to be carried out individually and independently from the results of the plagiarism detection

service.

Signature, city, date

ACKNOWLEDGEMENTS

I would like to thank everyone who helped me during these months. To the professionals in the

Computing Education Department. To all participants that took part in the experiment. Thank

you Birte for helping me and showing me that working can be also fun. Thanks to my friends

Daniel and Miriam for helping me editing the intervention, to my mother Raquel for letting me

enjoy this opportunity and to my family, who has sent love everyday along these months. Finally,

thank you Pablo for supporting me always even though you do not understand anything about

Computer Science.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

2

Content
Figures ... 3

Tables .. 3

Introduction .. 4

Problem Analysis ... 4

Theoretical Background .. 5

The Block Model .. 5

Bloom’s Taxonomy .. 6

Related Work ... 7

Explanation of the Experiment .. 8

Method .. 8

Participants .. 8

Design .. 8

Apparatus and Materials ... 17

Example ... 19

Results of the Experiment ... 20

Conclusions ... 26

Discussion and Follow up Study Ideas ... 27

References ... 30

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

3

Figures
Figure 1: The Block Model. ... 6

Figure 2: Welcome Message. .. 8

Figure 3: Calibration. ... 10

Figure 4: Introduction to Read the Source Code. ... 12

Figure 5: Block Model and Bloom's Taxonomy in the Multiple-Choice Questions. 13

Figure 6: End of the Experiment. .. 17

Figure 7: Master Workstation. .. 17

Figure 8: 20 Equipped Workstations with SMI REDn Scientific Eye Trackers. 18

Figure 9: Workstation. .. 18

Figure 10: Logitech Camera with Integrated Microphone. .. 19

Figure 11: SMI REDn Scientific Eye Tracker... 19

Tables
Table 1: Questionnaire. ... 9

Table 2: German Intervention. .. 10

Table 3: English Intervention. ... 11

Table 4: Spanish Intervention... 11

Table 5: List Program and Comprehension Questions. ... 15

Table 6: Rectangle Program and Comprehension Questions. .. 16

Table 7: Vehicle Program. ... 20

Table 8: Correct Answers. ... 21

Table 9: Length. ... 21

Table 10: Number of Fixations. ... 22

Table 11: Number of Saccades.. 22

Table 12: Programming Expertise. .. 22

Table 13: Java Expertise. ... 23

Table 14: Gender... 23

Table 15: List Heat Maps. .. 24

Table 16: Rectangle Heat Maps. ... 25

Table 17: Conclusions. .. 27

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

4

Introduction
Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a

human model (e.g., a teacher), with the model’s eye movements superimposed on the task to

guide learners’ attention (Tim van Marlen, 2016) along with the model’s verbal explanations

(Jarodzka, Van Gog, Dorr, Scheiter, & Gerjets, 2013).

This thesis is the continuation of an experiment called “Eye-movement Modeling Examples in

Source Code Comprehension: A Classroom Study”. This first experiment studies how effective is

showing novice programmers how experts read code with a video with the expert’s gaze guided

by a verbal explanation. Therefore, this thesis studies, using a similar experiment, whether only

verbal explanation and visual stimuli without the expert’s gaze could be also helpful for the

programming novices.

The goal is to find teaching methods and ideas how to help novice programmers, so that they

can overcome the obstacle of program code comprehension faster. If it is understood how

novices read source code, and what hardships they face during initial learning, better tools and

working environments can be designed (Beelders & du Plessis, 2016). In order to achieve this, it

might be helpful to use Eye-movement Modeling Examples (EMME) at some point of the

beginning of their studies.

Problem Analysis
When novice programmers read source code for the first time, they usually do not know how to

read it since reading program text differs from reading natural text (Busjahn, et al., 2015)

(Busjahn, Bednarik, & Schulte, What influences dwell time during source code reading?: analysis

of element type and frequency as factors, 2014) and it is also difficult for them to comprehend

how the code works. Due to this, is interesting to find how EMME can support reading and

comprehending source code.

The experiment that is going to take place is based on the concept of Block - and Relation -

reading (BR-reading). BR-Reading is that (Reading) Blocks are basic entities capturing a coherent

idea to be understood while reading. Understanding the hole text thus requires understanding

the parts (the blocks) and how they are connected (the relation between blocks) (Bednarik,

Budde, Heinemann, Schulte, & Vrzakova, 2018). The Block Model is explained carefully in the

section “Theoretical Background” below.

In the previous experiment, it is hypothesized that an EMME-based intervention should be

effective by guiding attention to important parts of the code and provide ways to integrate

elements of the code to a meaningful whole and thereby aid comprehension (Bednarik, Budde,

Heinemann, Schulte, & Vrzakova, 2018). However, for motor tasks, the central steps are directly

observable, but for cognitive tasks this is not the case. Instead, the model has to be asked to

unravel these covert processes by verbalizing them while performing the task (Collins, Brown, &

Newman, 1989). In this thesis, it is hypothesized that the verbal explanation is an important part

of the process. As the learner is told what to look at, why and how to look at some points of the

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

5

source code, he/she should understand the process and should be able to achieve better

performance in comprehension (quicker or better understanding).

Nevertheless, EMME with verbal explanations might not be always a helpful resource, since

sometimes the given information, both the gaze and the verbal explanation, instead of

complementing each other, result not being effective for learning. When verbal explanations

are sufficient to guide visual attention, displaying the eye movements would be redundant

(Sweller, 2005). In addition, research has shown that redundant information tends to distract

students’ attention, which can lead to detrimental effects on learning outcomes (Kalyuga,

Chandler, & Sweller, 1999). Van Gog presented in other study that the verbal explanation and

the eye movements of the model were probably redundant. This was the case because the

students could easily infer from the verbalizations alone where to look (Jarodzka, Van Gog, Dorr,

Scheiter, & Gerjets, 2013).

In consequence of the ideas presented, the goal of this experiment is to know whether verbal

explanation in reading source code foster learning source code reading by novice programmers.

Theoretical Background
In this section, two main references that we used to design the multiple-choice comprehension

questions are shortly explained. The multiple-choice questions are defined in the section

“Design”.

The Block Model
The Block Model (Schulte, 2008) is an educational model for program understanding that

suggests three dimensions and four distinct abstraction levels: firstly atoms/words are read and

build the Atom Level, where it is understood the language elements, the operation of the

statements and its function. Then, they are joined in semantic units, known as blocks, which are

a sequence of statements that function as a sub-goal of the program, this is called the Block

Level. After that, relations between blocks are considered and it is understood how they are

related to the goals (Relation Level). As the last step the Macrostructure Level, where the overall

structure of the program is understood, the algorithm and the final purpose of the program

(Bednarik, Budde, Heinemann, Schulte, & Vrzakova, 2018).

The intervention video that is used in the experiment is based in this model as well as in the

previous study because of the purpose of comparing both studies after, therefore it was desired

to maintain the intervention as similar as possible to the previous one.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

6

Figure 1: The Block Model.

Bloom’s Taxonomy
Bloom’s taxonomy establishes a hierarchy of six levels with an increasing level of student

learning. Each level presupposes the training of the student at the preceding levels (Hernán-

Losada, Velázquez-Iturbide, & Lázaro, 2019).

- Level 1 or level of knowledge. The student can recognize or remember the information

without needing any kind of understanding or reasoning about its content.

- Level 2 or level of comprehension. The student can understand and explain the meaning of

the information received.

- Level 3 or application level. The student may select and use data and methods to solve a

given task or problem.

- Level 4 or level of analysis. The student can distinguish, classify and relate hypotheses and

evidences of the given information, as well as to decompose a problem in their parts.

- Level 5 or synthesis level. The student can generalize ideas and apply them to solve a new

problem.

- Level 6 or assessment level. The student can compare, criticize and evaluate methods or

solutions to solve a problem or to choose the best one.

To test the level of comprehension that the participants reach, Bloom taxonomy as well as the

Block Model are used to design the experiment’s multiple-choice questions, since it allows a

better overview about how deep the participants comprehend the given source code.

As in “Design” section below, there are three different multiple-choice questions that reach

three different levels in the Block Model as in the Bloom’s taxonomy from the lowest to the

highest to test how well the student understood the program. There is a free text answer as

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

7

well, where the participants may explain themselves what they understood, which is in level 2

or level of comprehension.

Related Work
There are two main documents that guide me and are related to the topic treated in this thesis.

The first one is the previous study called “Eye-movement Modeling Examples in Source Code

Comprehension: A Classroom Study”, that is like this one and is thought to be used to compare

the results of this study. The authors created a classroom experiment in which their

comprehension strategies were cued by an educational intervention based on theories of

program comprehension and companied by a visualization of eye-movement strategies of an

advanced programmer (Bednarik, Budde, Heinemann, Schulte, & Vrzakova, 2018).

The other related work is the Eye Movements in Programming Dataset, which establishes that

programming education and practice mainly focus on writing code, while the reading skills are

often taken for granted. Reading occurs in debugging, maintenance and the learning of

programming languages. It provides the essential basis for comprehension. By analysing

behavioural data such as gaze during code reading processes, we explore this essential part of

programming (Bednarik, et al., 2018). Related to this dataset, in this thesis it is used some of the

stimulus material (rectangle and vehicle source codes) and at first, we wanted to use the same

questions, but we found them to be not enough accurate to show if the participant understood

properly or not, so we decided to change them, as explained in “Design” section.

As the previous experiment is also related to the EMIP dataset, the limitations of these works

are similar. First, there is only one question to find if the participant has understood the program

shown. I find it difficult to know if the participant really understood the code with just one

question, therefore in this study there will be three comprehension questions plus a free text

answer based in the Block Model and in Bloom taxonomy with different levels to know how

deeply the participant understood the code. Later in “Design” section these questions and their

design are explained.

The source codes used to test the participants’ comprehension in these experiments were

obvious since they have the class, methods and variables names related to their function.

Therefore, it can be thought that the person did not understand but read carefully the content

and he/she was able to answer the question without having understood the code. In this

experiment, it is changed to names that do not give any cue to the participants (mystery,

calculation, etc), so they must do the effort to understand the code and read it carefully. Even

though it is known that any experienced programmer would name a class “Mystery” and a

method “calculation”, we thought that it could be more helpful to know if they really

comprehend the program and its purpose.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

8

Explanation of the Experiment

Method
This study is drawing on a previous experimental design called “Distributed Collection of Eye

Movement Data in Programming” (Bednarik, et al., 2018), where a large data set was collected

as above mentioned. The intervention instructions and the source code of both short programs

are changed in the design.

Participants
The participants which take part in the experiment are recruited from Paderborn University, for

the English version and from different universities from Spain, such as Universidad Carlos III de

Madrid, Universidad Pública de Navarra, Universidad de Valencia, Universidad de Murcia,

among other, for the Spanish version. The demographic data and expertise levels were collected

according to the EMIP experiment design. A total of 27 participants took part in the experiment,

14 male and 13 female participants, with a mean age of 23’9 years old.

Design
The design of the experiment was based in the EMIP dataset (Bednarik, et al., 2018). At first, the

whole intervention is explained by the person in charge. Each of the participants will be seated

in each workstation prepared for this purpose. Then, the intervention will take place. First, the

students will see a welcome message, as shown in Figure 2, and after that, the intervention will

begin. Second, they must answer some demographic and expertise questions, which are defined

in Table 1.

Figure 2: Welcome Message.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

9

Table 1: Questionnaire.

Questionnaire

• How old are you?

• What is your gender?
o Female
o Male
o Other

• What is your mothertonge / native language?
o Español
o English
o Deutsch
o Free text answer if it is other

• What is your English level? (so, if they do not understand the code, we will know why)
o Low
o Medium
o High

• What is your programming experience?
o None
o Low
o Medium
o High

• What is your Java experience?
o None
o Low
o Medium
o High

• How long have you been programming (in years)?

• How long have you been programming in Java (in years)?

• How often do you use programming languages other than Java?
o Never
o Less than 1 hour per month
o Less than 1 hour per week
o Less than 1 hour per day
o More than 1 hour per day

• How often do you program in Java?
o Never
o Less than 1 hour per month
o Less than 1 hour per week
o Less than 1 hour per day
o More than 1 hour per day

• What other programming languages do you use? Please rate their expertise (low, medium,
high), for example: Python (medium), C (high).

• Are you wearing glasses or contact lenses right now? (It is a technical question important for
the accuracy).

o No
o Glasses
o Contact lenses

• Are you currently wearing mascara or any other eye makeup? (It is a technical question
important for the accuracy).

o Yes
o No

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

10

After answering all these demographic questions, the next step is to calibrate the eye tracker as

shown in Figure 3. This process ensures that the gaze data is being collected properly.

Figure 3: Calibration.

After the calibration, the participants will see a video with the explanation of two different

experts, one is an English native speaker, Mr. Careth Davies, and one Spanish native speaker,

Mr. José Vicente Álvarez Bravo, who is a professor of Object-Oriented Programming in

Universidad de Valladolid (Spain), who will explain the instructions in each language. There is an

intervention in English, and other one is in Spanish, for the participants to understand it as best

as possible.

The instructions are shown below in German, English and Spanish. The verbal explanation is very

similar to the previous used in the gaze intervention, but we upgraded it to a better

comprehension, since the gaze it is not shown in this case.

Table 2: German Intervention.

German

Programmieren lernen bedeutet, Programme zu schreiben - das Lesen und Verstehen wird dabei
manchmal unterschätzt. Klar ist aber, das man verstehen muss was man da geschrieben hat. Das
scheint leicht zu sein, weil man ja ständig liest. Doch es gibt große Unterschiede zu normalem, wir
sagen: natürlichsprachlichem Text.

Normaler Text ist so geschrieben, dass man ihn möglichst Satz für Satz lesen kann und den Text
dann versteht. Der Inhalt ist in einer für das Verstehen sinnvollen Weise aufgeschrieben. Quelltext
aber richtet sich ja auch an den Computer, der ihn ausführt - daher ist die dargestellte Reihenfolge
und das was in einem Satz oder Absatz - wir sagen hier Block - steht nicht immer direkt zu
verstehen.

Schauen wir uns das Beispiel genauer an.

Wir zeigen euch nun, wie das Lesen bei einem Experten ablaufen kann. Die Bereiche über die wir
reden markieren wir mit Rechtecken.

Im ersten Moment verschaffen sich viele Experten einen Überblick über den gesamten
Programmcode.
Nachdem der Code gescannt wurde, geht man den Code blockweise durch. [Stop]

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

11

Immer wenn ein Block gelesen wird, wird der Inhalt mit den anderen schon gelesenen Blöcken
verknüpft. Wenn wir Experten beim Lesen beobachten, können wir dieses Verknüpfen der
Bedeutung verschiedener Blöcke oft sehen.
Experten erkennen auch die wichtigen und schwierigen Blöcke und das lesen dieser Blöcke dauert
länger.

Am Ende hat man dann manchmal noch eine Phase, in der Teile des Programms ein weiteres mal
gelesen werden - und eine Phase in der der Gesamtzusammenhang gelesen wird.

Table 3: English Intervention.

English

Learning to program means writing programs, however reading and understanding is sometimes
underestimated. What is clear is that you must understand what you wrote. That seems easy
because you read all the time. But there are big differences to normal text, or what we call: natural
language text.

Normal text is written in sentences, and the order of sentences in natural language text is written
for reading sentence by sentence, in a way that fosters understanding in a meaningful way. But
source code is also directed to the computer that executes it - therefore the order shown is not
like we would like to have as humans. What is done in a sentence or paragraph - we say here a
block - cannot be understood directly.

Let's take a closer look at the example.

We will now show you how reading can be done by an expert. We mark the areas we are talking
about with rectangles.

At first, most experts get an overview of the entire program code.
After the code has been scanned, you go through the code block by block.
Whenever a block is read, the content is linked to the previous ones. If we observe experts reading
program code, we can often see that they link the meaning of different blocks.
Experts also recognize the important and difficult blocks and the reading of these blocks takes
longer.

In the end, there is sometimes a phase in which parts of the program are read again - and a phase
in which all the previous steps of reading and understanding are connected to each other.

Table 4: Spanish Intervention.

Spanish

Aprender a programar significa escribir programas - a veces se subestima la lectura y la
comprensión.
Lo que está claro, sin embargo, es que hay que entender lo que se ha escrito. Eso parece fácil
porque leemos continuamente.
Pero hay grandes diferencias respecto al texto normal, al que llamamos: texto en lenguaje natural.

El texto normal está escrito en oraciones, es decir, se debe leer frase por frase y luego entenderlo,
porque el contenido del texto está escrito para entenderlo de una manera significativa.
Pero el código fuente también está dirigido al ordenador que lo ejecuta - por lo tanto, el orden en
el que se muestra no es el que nos gustaría tener como lectores y lo que se hace en una frase o
párrafo -aquí llamado bloque- no siempre se entiende directamente.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

12

Echemos un vistazo más de cerca al ejemplo.

A continuación, le mostraremos cómo puede realizar la lectura un experto. Marcamos las áreas
de las que estamos hablando con rectángulos.

Al principio, la mayoría de los expertos obtienen una visión general de todo el código del
programa. Una vez escaneado el código, se lee el código bloque a bloque.
Cada vez que se lee un bloque, el contenido se vincula a los otros bloques ya leídos. Si observamos
cómo expertos leen el código del programa, a menudo podemos ver que enlazan el significado de
diferentes bloques.
Los expertos reconocen también los bloques más importantes y difíciles y dedican más tiempo a
la lectura de estos bloques.

Al final, a veces hay una fase en la que se vuelven a leer partes del programa y otra en la que todos
los pasos previos de lectura y comprensión se conectan entre sí.

After the instruction video with the verbal explanation in the proper language, the participants

will read two short programs List and Rectangle, named Mystery 1 and Mystery 2 respectively,

which are shown below in Table 5 and 6, and there is no time restriction to read the code and,

after each program, they will be asked three multiple-choice questions and there is one text

field where they can explain with their own words what is the program doing or what they

understood.

Figure 4: Introduction to Read the Source Code.

The programming language used in the study is Java, since the previous intervention example

and source codes were written in Java as well. If we used a different programming language, it

would be difficult to compare results after. List program was originally in Python and it comes

from this study (Duran, Sorva, & Leite, 2018) but we changed it to Java to maintain the same

language in the whole experiment.

In the explanation video the syntax is not highlighted, and we wanted the rest code to be as

much similar as the one in the explanation, therefore we wrote them as plain black text. In

addition, for experts, reading highlighted syntaxis is helpful but here we want to achieve that

the participant reads all parts carefully, so we did not want any part to stand out more than the

rest. Moreover, it is possible that some participants are used to program in other languages, so

it may be confusing for them to see the code highlighted different.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

13

In a study about the influence of syntax highlighting it is demonstrated that black-and-white

code require more fixations than when the syntax is highlighting, which indicates that the

comprehension may be easier if syntax highlighting is present. However, the difference is not

significant. The study concludes that the learning curve is not impacted by the presentation of

learning materials without the use of syntax highlighting (Beelders & du Plessis, 2016).

As it is known, experienced programmers always comment the code, due to it is easier for them

to understand the program. In this case, as we wanted the participant to investigate by his/her

own the meaning of the program, there are no comments in the given source codes.

The previous intervention only tested the participants comprehension level asking one multiple-

choice question. This question, referred to the Rectangle program, gives the goal in the options,

as it says “computes the area of rectangles by…” (Bednarik, et al., 2018), then it is hard to know

whether the participant understood the code. Therefore, we thought that only one question is

not enough because in this case, it reaches the Level of Knowledge or level 1 in Bloom’s

taxonomy and the Atom Level in the Block Model, which are the lowest levels and we accomplish

them in the first multiple-choice question, as can be seen in Figure 5 below, and we want to

achieve higher levels of comprehension to get a better view of the participants understanding.

Consequently, we decided to reach three different comprehension levels, as shown in Figure 5,

based in Bloom’s taxonomy and the Block Model, as it becomes more accurate to find the

comprehension level the participants achieved.

Figure 5: Block Model and Bloom's Taxonomy in the Multiple-Choice Questions.

We wrote three different multiple-choice questions and then added a free text question that

reaches the level of comprehension or level 2 in Bloom’s taxonomy, where the participant can

explain himself/herself, because we thought that maybe it could be helpful for us to know if the

participant is able to demonstrate that he/she understood the program and explain the meaning

of the information received with his/her own words.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

14

At first, the questions may seem tricky and difficult to answer but, if the participant understood

what the program does, it is so easy to know the correct answer. In the second multiple-choice

question in List program, for example, to know the answer the participants just need to think

what the program does to find the solution, and they do not really need to remember the code.

The same happens with Rectangle program, where the participants just need to know that they

are calculating a rectangle area.

In the first question, we wanted to reach the level 1 in Bloom’s taxonomy, which is the level of

knowledge, where the student can recognize or remember the information without needing any

kind of understanding or reasoning about its content. Referring to the Block Model, this question

is in the Atom level, since it refers to just the language elements. In this question, we want to

know if the participant read the code carefully. The first multiple-choice question in Rectangle

program is the most related to the previous experiment, since it is asking about the order of the

variables, but we decided to change it to four possible answers because with three combinations

the correct answer could be deducted easier.

The second question is defined in the level 3 or application level of Bloom’s taxonomy, where

the student may select and use data and methods to solve a given task o problem. In this case,

we asked the participants to solve a new case of the given problem. This question could also be

placed in the level 5 or synthesis level, where the student can apply ideas to solve a new

problem. This questions also refers to the Block level as well as the Relation level in the Block

Model, since it is asking about the operation of a block and to know the answer, it is important

to know the references between the blocks. In this question, we want to know if the participants

understand what the program does and apply it to a similar problem, then it results as if the

participants could use the program in their minds to solve it.

The third question is defined in the level 5 or synthesis level, where the student can generalize

ideas. In this last question, we can finally know if the participant understood the whole program

and its goal. This question is related to the Macrostructure level in the Block Model, with which

we know if the student understands the algorithm of the program and the purpose of it in its

context.

About the free text part, we discussed about which order should it have, and we decided to put

it as the last one to not change the structure of the experiment, so it doesn’t differ too much

from the previous one. A further explanation is in “Discussion and Follow up Study Ideas”

section.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

15

Table 5: List Program and Comprehension Questions.

List

public class Mystery1{

 public static void mystery1(int[] list){

 int var1 = 0;

 int count = 0;

 int index = 0;

 int sent = 9;

 int element = list[index];

 while(element != sent){

 if(element > 0){

 var1 = var1 + element;

 count += 1;

 }

 index += 1;

 element = list[index];

 }

 if(count > 0){

 System.out.println("var1: " + var1 + " count: " + count + "var/count: " +

var1/count);

 }

 else {

 System.out.println(-1);

 }

 }

 public static void main (String args[]){

 int[] list = {2, -1, 3, 0, 1, 0, -1, 2, 9, 1, 2, 3};

 mystery1(list);

 }

}

Comprehension Questions for List

1. This program:
a. Prints ("var1: " + var1 + " count: " + count + "var/count:

" + var1/count) if count = 0

b. Prints (-1) if count = 0

c. Prints ("var1: " + var1 + " count: " + count + "var/count:

" + var1/count) if index = 0

d. Prints (-1) if index = 0

e. I am not sure
2. Imagine there is a new list = {3, -2, 4, 0, -1, 0, 2, -2, 0, 9, 0, 3}. What would

System.out.println("var1: " + var1 + " count: " + count +

"var/count: " + var1/count); print?

a. var1: 9, count: 3, var/count: 3

b. var1: 12, count: 3, var/count: 4

c. var1: 18, count: 3, var/count: 6

d. I am not sure

3. This program:

a. Sums the numbers in the list and then divides the sum by the total of numbers

found until reached a “9”.

b. Sums the natural numbers until reached a number greater than or equal to “9” and

then divides the sum by the quantity of the numbers found.

c. Sums the natural numbers until reached a “9” and then divides the sum by the

quantity of the numbers found.

d. Sums the numbers in the list and then divides the sum by the total of numbers until

reached a number greater than or equal to “9”.

e. I am not sure.

4. Free text answer.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

16

Table 6: Rectangle Program and Comprehension Questions.

Rectangle

public class Mystery2 {

 private int x1, y1, x2, y2;

 public mystery2(int x1, int y1, int x2, int y2) {

 this.x1 = x1;

 this.y1 = y1;

 this.x2 = x2;

 this.y2 = y2;

 }

 public int calculation1 (){

 return this.x2 - this.x1;

 }

 public int calculation2 (){

 return this.y2 - this.y1;

 }

 public double calculation3 (){

 return this.calculation1() * this.calculation2();

 }

 public static void main (String[] args) {

 Mystery2 m1 = new Mystery2 (0, 0, 10, 10);

 System.out.println (m1.calculation3 ());

 Mystery2 m2 = new Mystery2 (5, 5, 10, 10);

 System.out.println (m2.calculation3 ());

 }

}

Comprehension Questions for Rectangle

1. This program:
a. Calculates x1 – x2 in calculation1

b. Calculates x2 – y2 in calculation1

c. Calculates x1 – y1 in calculation1

d. Calculates x2 – x1 in calculation1

e. I am not sure

2. Imagine a Mystery m3 with variables x1 = 2, y1 = 2, x2 = 4, y2 = 4, what would calculation3

return?

a. 4.0

b. 2.0

c. 8.0

d. I am not sure

3. This program:

a. Calculates the area of a Square.

b. Calculates the area of a Rectangle.

c. Calculates the area of a Trapezium/Trapezoid.

d. I am not sure.

4. Free text answer.

At the end, the participants will be asked to wait until the rest of the participants are finished as

shown in Figure 6 and then they will leave, and the intervention will be finished.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

17

Figure 6: End of the Experiment.

Apparatus and Materials
The experiment was taken in the PIN-Lab of Paderborn University, located in the Furstenalle

building. The explanation about the setup of this laboratory is based in this Master Thesis

(Schlichtig, 2018).

The PIN-Lab is a class- and a seminar room of the Computing Education Research chair at

Paderborn University. It provides 20 equal workstations equipped with SMI REDn Scientific eye

trackers attached to 27-inch LCD screens and Logitech webcams with integrated microphones,

as shown in Figure 10. The SMI REDn Scientific eye tracker is attached under the display as shown

in Figure 11.

Group experiments can be conducted using another workstation administrated by the educator.

This setup enables recording of up to 20 subjects at once and tracking eye movements when

participants are working at the workstations, for instance, pupils during class.

Figure 7: Master Workstation.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

18

Figure 8: 20 Equipped Workstations with SMI REDn Scientific Eye Trackers.

Figure 9: Workstation.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

19

Figure 10: Logitech Camera with Integrated Microphone.

Figure 11: SMI REDn Scientific Eye Tracker.

Example
In this subsection the example used in the intervention video is shown. This example was taken

from the EMIP experiment (Bednarik, et al., 2018). This program was originally used in the

previous experiment as the other program apart from the Rectangle program, as we decided to

use List program instead, we use Vehicle for the explanation part. We decided not to use Vehicle

program since the variables in the code give a lot of information about what the program does

and instead of renaming them all, we decided to use another program code. In Table 7 below

the code is shown.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

20

Table 7: Vehicle Program.

Vehicle

public class Vehicle {

 String producer, type;

 int topSpeed, currentSpeed;

 public Vehicle (String p, String t, int tp){

 this.producer = p;

 this. type = t;

 this.topSpeed = tp;

 this.currentSpeed = 0;

 }

 public int accelerate (int kmh) {

 if ((this.currentSpeed + kmh) > this.topSpeed){

 this.currentSpeed = this.topSpeed;

 } else {

 this.currentSpeed = this.currentSpeed + kmh;

 }

 return this.currentSpeed;

 }

 public static void main (String args []) {

 Vehicle v = new Vehicle ("Audi", "A6", 200);

 v.accelerate(10);

 }

}

Results of the Experiment
In this section the results of the experiment are explained. First thoughts were to compare the

outcomes from this experiment with the ones in the previous study, but due to time

constrictions the results are going to be presented with its own conclusions.

As in the “Design” section above described, there are two different versions of the experiment.

The List-Rectangle version counted with 14 participants and the Rectangle-List counted with 13

participants. Even though is almost the same amount, the percentages of correct answers of the

participants in each version are calculated to make sure that the conclusions are based in the

correct results.

In Table 8 below the number of correct answers in general and both versions of the experiment

are shown. The first thing noticed is that the program with the best answers is the Rectangle

program, which can lead us to think that the List program is more difficult than the Rectangle

program, in which the participants haven’t had such difficulties to choose the correct answer

like in the other one. It is noticed as well that the worst question answered was the third one in

the List program and the best question answered was the second in the Rectangle program.

If we compare the correct answers in the List program, we can notice that the participants did

it lightly better in the second version, when it was placed second. Comparing the Rectangle

program, it is lightly better in the second version as well. In the Rectangle program, it happens

the same, in the second version the participants did it better. We can conclude that the

participants did it better in the second version, since they reached more correct answers.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

21

Table 8: Correct Answers.

 Program Q1 Q2 Q3 TOTAL %

General
List 16 10 7 33 40’74

Rectangle 22 24 13 59 72’83

List-
Rectangle

List 8 5 2 15 35’71

Rectangle 12 12 6 30 71’43

Rectangle-
List

List 8 5 5 18 46’15

Rectangle 10 12 7 29 74’36

In Table 9, the mean length is shown. It is noticed that, in general, it took longer to the

participants to read the List program, 1’ 32” more than to read the Rectangle program. When

we compare both versions, we appreciate that the participants in the first version spent less

time reading the program than in the second version. In the List program in the second version,

the length is much higher if we compare with the first version, and this could be the reason why

these participants reached more correct answers (18 in second version versus 15 in first version).

Table 9: Length.

Program General List-Rectangle Rectangle-List

List 3’ 17” 2’ 22” 4’ 15”

Rectangle 1’ 44” 1’ 37” 1’ 52”

In Table 10, the number of fixations is shown. The fixation is the settling of the eye gaze on an

object of interest for a minimum period of time (Busjahn, et al., ACM, 2014). The number of

fixations is directly related to the effort that the participant put. The interpretation of visual

effort variable can be simplified as follows:

• Low fixation count and low time indicate less effort (Sharafi, Soh, Gueheneuc, &

Antoniol, 2012) (Sharafi, Marchetto, Susi, Antoniol, & Gueheneuc, 2013).

• High fixation count and more time indicate more effort (Turner, Falcone, Sharif, & Lazar,

ACM, 2014) (Sharif & Maletic, 2010).

If we compare in general, the List program counts with a higher number of fixations than the

Rectangle program, which indicates the participants needed more effort to understand the

program. When comparing the first version and the second, we can appreciate that the second

version has a higher number of fixations and the List program counts with almost the double

comparing to the first version and to the Rectangle program. This indicates that the participants

put more effort in this part, in which the correct answers are higher than in List program in the

first version.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

22

Table 10: Number of Fixations.

Program General List-Rectangle Rectangle-List

List 628’19 465’21 803

Rectangle 420 366’36 479’54

The saccades are a quick movement of the eyes from one location to another (Busjahn, et al.,

ACM, 2014). In Table 11, we appreciate that comparing between both versions, the number of

saccades in the second are the around the double than in the first version. I could not find any

study explaining what these values mean, but probably has something to do about the

comprehension and the number of correct answers as well, since this version has more correct

answers.

Table 11: Number of Saccades.

Program General List-Rectangle Rectangle-List

List 526’85 368’71 697’15

Rectangle 362’15 298 431’23

About the programming expertise of the participants, there are four different levels, as seen in

Table 12. The most noticeable fact is that the participants with a high level of expertise did not

reach the most correct answers, while the participants with a medium level did. Apart from this,

the most correct answers in the Rectangle program were acquired by the participants with a low

programming expertise level, while in List program were the participants with a medium

programming expertise.

In the attached “Demographic Questions” excel file, it can be found the respective tables of each

version about programming expertise. There are not shown in this document since the

information that they give is not differing much from the one presented in the table below.

Table 12: Programming Expertise.

Expertise Part. List Rectangle Total %

 Q1 Q2 Q3 Q1 Q2 Q3 List Rect Total

None 6 1 1 0 5 4 2 13 11’12 61’12 36’11

Low 2 0 1 1 2 2 1 7 33’3 83’34 58’34

Medium 12 10 6 4 11 11 6 48 55’56 77’78 66’67

High 7 5 2 2 4 7 4 24 42’86 71’43 57’14

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

23

About the level of java expertise, as shown in Table 13, participants with a high java expertise

level as well as participants with a medium level, had the most correct answers. In this case,

when we investigate each program, in the Rectangle program the most correct answers were

reached by the participants with a high level, while in List program the most correct answers

were reached by the participants with a low level. It is possible that in List program, the

participants with a high java expertise level, got confused by the multiple-choice questions and

could not find the correct answers.

Table 13: Java Expertise.

Expertise Part. List Rectangle Total %

 Q1 Q2 Q3 Q1 Q2 Q3 List Rect Total

None 9 3 3 2 8 7 4 27 29’63 70’37 50

Low 3 2 1 1 3 3 0 10 44’45 66’67 55’56

Medium 9 7 4 3 7 8 4 33 25’93 70’37 61’12

High 6 4 2 1 4 6 5 22 38’89 83’34 61’12

As the experiment counts with a similar number of females and males, I found interesting to

know whether one gender did better than the other one. Fortunately, the differences between

one gender and another are not significant, reaching most correct answers the male participants

than the females, but only 3,4% of correct answers more.

Table 14: Gender.

Expertise Part. List Rectangle Total %

 Q1 Q2 Q3 Q1 Q2 Q3 List Rect Total

Female 13 9 3 2 10 12 5 41 35’9 69’23 52’56

Male 14 7 3 5 12 12 8 47 35,7 76,19 55,96

In Table 15 and Table 16, the heat maps of both program codes are shown. The first thing that

we notice is the red areas, which are bigger in the List program than in the Rectangle program,

which means that the List program needed more attention than the Rectangle program. If we

observe the Rectangle – List Spanish heat map, we notice that this part counts with the biggest

red area, which explains the high values of the number of fixations above mentioned.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

24

Table 15: List Heat Maps.

List Heat Maps

List – Rectangle English Rectangle – List English

List – Rectangle Spanish Rectangle – List Spanish

In Table 16, we observe that the less highlighted parts are in the English version. This means that

the participants needed less effort to understand the program, which is possible since all

participants in the English version were Computer Science students who had completed their

bachelor studies. On the other hand, in the Spanish version, the red areas are bigger since the

participants of this version were not students in the field of Computer Science.

The participants from the Rectangle – List version were Engineering students, but the ones from

the List – Rectangle version were Business students, which explains that they put more effort to

understand this program. If we observe the Table 15 above, we can notice that these

participants, the ones that do not know anything about program code, present the smallest heat

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

25

map since List program is harder than Rectangle program, where these participants put more

effort and reached more correct answers.

Table 16: Rectangle Heat Maps.

Rectangle Heat Maps

List – Rectangle English Rectangle – List English

List – Rectangle Spanish Rectangle – List Spanish

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

26

Conclusions
There are general as well as particular conclusions that are found during this process. The

experiment took time to be design in order to acquire the best solution possible but, after taking

place and while doing it, I noticed some details that I have not noticed when designing it. First, I

think that the codes that we used are not the best desired, because List program is too difficult

when it comes to novice programmers, and Rectangle program is maybe too easy for them. I

think Rectangle program is more accurate because some of the participants, that did not have

any experience programming, understood the purpose of the program. But when it comes to

List program, most of the participants did not comprehend it. In my opinion, the programs

should have been chosen in a way that none of them are too easy or too difficult for the

participant.

The participants that took the experiment are not the best desired, since almost all of them were

not novice students. In my opinion, the best participants for this study would have been students

that have started the bachelor last semester (October 2018), so they know a little about

programming, but they are not experienced programmers yet. As the experiment took part in

March, when there were no classes, we did not have that plenty of participants as if it took place

another month. Apart from that, we found people who did not have any experience (because

their study field is not Computer Science or similar) and some people who had finished their

bachelor studies but are not experts yet.

Considering this, in Table 17, the total of correct answers, number of fixations and length are

shown. In general, in List program it took longer and more fixations to reach less correct

answers. As explained before when investigating the number of fixations, this means that the

participants put more effort to understand the program and the low quantity of correct answers

indicates two things: the first one is that the program was difficult for them; the second is that

it is possible that the questions were not designed properly and it resulted being confusing for

the participants. On the other hand, participants in Rectangle program needed less time and less

fixations to reach more correct answers if we compare with List, which means that this program

is easier for the participants to understand.

If we compare the first program in each version, List in first and Rectangle in second, we notice

that the number of fixations is the almost the same, and the gap between the length is the

smallest if we compare with the rest. This could mean that independently which program was

first, the participants put the same effort to understand the program, while their behaviour

changed when they started reading the second program. In the first version, as the Rectangle

program is no as hard as the List program, the participants needed less fixations and less time

to understand it. On the other hand, in the second version, when they changed to List program,

is when they could realize that the program is harder to understand and that is the reason the

number of fixations and the length is higher. If we had one more program, we could prove

whether the effort that the participants put is the same independently of which program is first

or is only coincidence.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

27

Table 17: Conclusions.

 Program Total Fixations Length

General
List 33 628’19 3’ 17”

Rectangle 59 420 1’ 44”

List-Rectangle
List 15 465’21 2’ 22”

Rectangle 30 366’36 1’ 37”

Rectangle-List
List 18 803 4’ 15”

Rectangle 29 479,54 1’ 52”

Discussion and Follow up Study Ideas
In several parts of this thesis we had a lot of choices to choose and in this section the reasons of

the choices taken that do not appear in the rest of the paper are going to be explained here.

Most of them were taken in the intervention part, since is the hardest part of the thesis, because

we wanted the questions and the process to be as perfect and useful as possible. Although the

intervention part is the most complex, there are other questions in the thesis in which we had

to decide as well.

Some of the decisions that we made sometimes are not the best solution that we found, but it

is because of the limitation of the thesis, since it is a Bachelor Thesis and we had not enough

time to include them, but they ended up being some ideas to a future work in this field.

Nevertheless, along this paper and in this section, the reasons and the thoughts that we had

during these months are explained.

When designing the intervention questions about the codes showed, the first thing that we

discussed about was the order of the questions. As mention before in this paper, we added a

new free text question. Since we wanted the intervention to be as similar as the one in the EMIP

dataset, we thought to place it as the last question. However, I find this fact not as helpful as if

it was in the first place because, as being in the last place, the participant could base his/her

answers in the free text part in the answer of the previous multiple-choice questions, while being

the first part to answer, would really let us know what are their first thoughts about the code.

One of the participants wrote “If I had to answer this question just after reading the code

(without answering other questions), probably I wouldn’t be able to write anything. However,

after the last question, is it true that it can be the calculation of some geometric figure.”, this

quote induces that by answering this question in the last position, the answer may be influenced

by the previous questions.

About the fact that first we show the code and then, the multiple-choice questions are asked to

the participants, I found that it is more realistic to see the questions and the code next to them,

since in real life there are not scenarios where the code cannot be seen when asking questions

about it. Normally it is not necessary, and it is useless to remember (or study) the code and then

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

28

work on it, because it is common to have to have access to it and see it while working. This could

be an interesting position to a next study, due to that it could be more realistic and maybe the

level of comprehension could be reached better than we do here, since sometimes a participant

maybe does not know the answer not because he does not understand the code, but he/she did

not remember it. At the end, we decided to maintain the process as the last intervention,

because if not, I would not be able to compare the results obtained in this intervention with the

previous ones as thought in first place.

As we used Java language to proceed with the intervention, the complete code was in one class

where all parts could be read at the same time. But in Java, normally the main method is in a

class by its own, but in this case, it is in the same class as the methods mystery1 and mystery2

(List and Rectangle program respectively) in each. We put the main method in the lowest part

of the text, but sometimes it is placed just after the construction method, so it is interesting to

know if this is maybe distracting for some students that are used to see it in the upper part.

Other reason about putting it into the lowest part it is because we took the mystery1 (List

program) from (Duran, Sorva, & Leite, 2018), and we did not want to change it since it was in

Python and we already changed it to Java.

Following with the ideas that came up when thinking about the code, I found a possible

misunderstanding in the intervention. In the expert’s explanation, the hardest part of the code

is accidentally the biggest block of the code, which can lead to a quick shortcut that the biggest

part is the hardest, and that is not true. This is not explicitly explained in the intervention, so this

possible misconception could happen. This fact could appear because when hearing the

explanation, the participant is focused on what the expert is saying, and he/she is not reading

carefully inside the block highlights but just noticing them. Due to this, maybe it would be helpful

to have the real expert’s gaze, so the participant focusses on the time aspect (spending more

time on the hardest blocks) and not on the block length like in this intervention or make sure to

explain carefully this fact in the verbal explanation. In a next study, gaze, pictures instead of

video, only voice (just hearing without stimuli) and see the speaker as in YouTube lectures could

be interesting to investigate and what the participant is looking while the explanation as well as

adding a question about where the hardest part of the code is.

About the level of comprehension that the participants reach, I wonder if we are able to know

that the participant understood the programs or not. We supposed that if the participant

reached all correct answers, he/she had understood the program. But three of the participants

did not reach all correct answers but then, in the free text answer, they explained the programs

successfully. Because of this, we should not think that the participant only understood the

program if they had all correct answers. This leads me to think again that maybe the questions

were not design as clear as we wanted to, since this fact demonstrates that some of the

participants got confused by the different options in the multiple-choice questions.

Experiment Center does not give the possibility to change the format inside the questions, and

we would like to change the format of the code in them, so it would be easier to distinguish

between code parts and normal text parts.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

29

BeGaze does not open different experiments at the same time, so we couldn’t compare inside

the program the XY experiment in English version with the XY experiment in Spanish version,

even though they are the same experiment but different language; this happens also vice versa.

About the voices of the intervention, both interventions, English and Spanish, were recorded by

a male voice. It would be interesting to study whether the participants reach better level

comprehensions when listening a female voice instead.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

30

References
Ali, N., Sharafi, Z., Guegeneuc, Y., & Antoniol, G. (IEEE, 2012). An empirical study on

requirements traceability using eye tracking. In Proceedings of the 28th IEEE

International Conference on Software Maintenance (ICSM)., 191-200.

Bednarik, R., Budde, L., Heinemann, B., Schulte, C., & Vrzakova, H. (2018, November 18th).

Eye-movement Modeling Examples in Source Code Comprehension: A Classroom

Study. In 18th Koli Calling International Conference on Computing Education Research

(Koli Calling '18), 22-25. Retrieved from https://doi.org/10.1145/3279720.3279722

Bednarik, R., Busiahn, T., Gibaldi, A., Sharif, B., Bielikova, M., & Tvarozek, J. (2018). The EMIP

dataset. Technical Report. Retrieved from http://emipws.org/emip_dataset/

Beelders, T., & du Plessis, J.-P. (2016). The influence of syntax highlighting on scanning and

reading behaviour for source code. In Proceedings of the Annual Cnference of the

South African Institute of Computer Scientists and Information Technologists, 5.

Brooks, R. (1983). Towards a theory of the comprehension of computer programs.

International Journal of Man-Machine Studies, 18, 543-554.

Busjahn, T., Bednarik, R., & Schulte, C. (2014). What influences dwell time during source code

reading?: analysis of element type and frequency as factors. In Proceedings of the

Symposium on Eye Tracking Research and Applications., 335-338.

Busjahn, T., Bednarik, R., Begel, A., Crosby, M., Paterson, J. H., Schulte, C., . . . Tamm, S. (2015).

Eye Movements in Code Reading: Relaxing the Linear Order. Proceedings of the 2015

IEEE 23rd International Conference on Program Comprehension (ICPC '15), 255-265.

Retrieved from https://dl.acm.org/citation.cfm?id=2820282.2820320

Busjahn, T., Schulte, C., Sharif, B., Begel, A., Hansen, M., Bednarik, R., . . . Antropova, M. (ACM,

2014). Eye tracking in computing education. In Proceedings of the 10th Annual

Conference on International Computing Education Research, 3-10.

Collins, A., & Newman, S. (1989). Cognitive apprenticeship: teaching the craft of reading,

writing and mathematics. In L. B. Resnick (Ed.), Cognition and instruction: Issues and

agendas, 453-494.

Duran, R., Sorva, J., & Leite, S. (2018). Towards an Analysis of Program Complexity From a

Cognitive Perspective. In Proceedings of the 2018 ACM Conference on International

Computing Education Research (ICER '18)., 21-30.

doi:https://doi.org/10.1145/3230977.3230986

Hernán-Losada, I., Velázquez-Iturbide, J., & Lázaro, C. (2019). Dos herramientas educativas

para el aprendizaje de programación: generación de comentarios y creación de

objetos.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

31

Jarodzka, H., Van Gog, T., Dorr, M., Scheiter, K., & Gerjets, P. (2013). Learning to see: Guiding

students' attention via a Model's eye movements fosters learning. Learning and

Instruction, 25, 62-70. Retrieved from

http://doi.org/10.1016/j.learninstruc.2012.11.004

Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in

multimedia instruction. Applied Cognitive Psycholohy, 13, 351-371.

Lister, R., Fidge, C., & Teague, D. (2009). Further evidence of a relationship between explaining,

tracing and writing skills in introductory programming. SIGCSE, 41(3), 161-165.

Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology, 295-341.

Schlichtig, M. (2018). Infrastructure Conception for Evaluation of Interactive Tutorials in the

Context of a Jupyter Notebook Data Science Course. M.Sc. Thesis, Universität

Paderborn, Paderborn, Germany.

Schulte, C. (2008). Block Model: An Educational Model of Program Comprehension As a Tool

for a Scholary Approach to Teaching. In Proceedings of the Fourth International

Workshop on Computing Education Research (ICER '08)., 149-160. Retrieved from

https://doi.org/10.1145/1404520.1404535

Sharafi, Z., Marchetto, A., Susi, A., Antoniol, G., & Gueheneuc, Y. (2013, May). An empirical

study on the efficiency of graphical vs. textual representations in requirements

comprehension. In Proceedings of the 2013 IEEE 21st International Conference on

Program Comprehension (ICPC), 33-42.

Sharafi, Z., Soh, Z., Gueheneuc, Y., & Antoniol, G. (2012, June). Woman and men- Different but

equal: On the impact of identifier style on source code reading. In Proceedings of the

2012 IEEE 20th International Conference on Program Comprehension (ICPC), 27-36.

Sharif, B., & Maletic, J. (2010, June). An eye-tracking study on camel-case and under score

identifier styles. In Proceedings of the 2010 IEEE 18th International Conference on

Program Comprehension (ICPC)., 196-205.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in programmer

behaviour: A model and experimental results. International Journal of Computer and

Information Sciences., 8(3), 219-238.

Soloway, E., & Ehrlich, K. (1984, September). Empirical studies of programming knowledge.

IEEE Transactions on Software Engineering, 10(5), 595-609.

Sweller, J. (2005). The redundancy principle in multimedia learning. In R. E. Mayer (Ed.), The

Cambridge handbook of multimedia learning., 159-167.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

32

Tim van Marlen, M. v. (2016, December). Showing a model's eye movements in examples does

not improve learning of problem-solving tasks. Computers in Human Behaviour, 448-

459.

Turner, R., Falcone, M., Sharif, B., & Lazar, A. (ACM, 2014). An eyetracking study assesing the

comprehension of C++ and Python source code. In Proceedings of the Symposium on

Eye Tracking Research and Applications (ETRA '14), 231-234.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

33

Appendix I: Free Text Answers
English

(List-Rectangle) version
Name Mystery1 (List) Mystery2 (Rectangle)

P01

Main program calls function by
sending a list of integers. In the
function the variables are initialized
to 0 It calculates the 2 variables var1
and count. It sums all the positive
integers in the list. Sum is added to
var1 and number of integers added
are stored in count. Until a number
which is greater than 9 is found, loop
gets broken and if the count value is
more than 0 it prints var1, count and
var1/count or it prints -1.

The main function initializes
Multiplication class with the integers
x1, y1, x2, y2. Then it calls the function
calculation3 which inturn calls
calculation1 and calculation2 such that
x2-x1 and y2-y1 is calculated
respectively. Finally, calculation3
multiplies the results and print the
results as double.

P01(1)
(excluded)

The program code sums the numbers
in the list and divides it until a
number greater than 9 is obtained.

The program calculates the area of the
square by multiplying its sides which
are obtained by the calculation
functions. Once the side is known by
the calculation function area is
calculated by the other functions there
by generating the area at the end.

P02
It calculates the sum, counts the
elements in the array and also
calculates the average.

It gets the border points of a rectangle
and can calculate the width (calc1),
height (calc2) and size (calc3)

P03
only
reached
Q1

Add all numbers greater than zero
from an array until a 9 is reached.
When a 9 is reached, the while loop
breaks. Then the program prints the
sum of the numbers greater than
zero and then the count of all the
numbers greater than zero (until the
9 is reached, of course!) and the
result of sum/count.

Given 2 points represented in 2D, this
program calculates (difference
between the x co-ordinates) *
(difference between the y co-
ordinates)

P01(2)

The program reads the numbers
entered in an array and keeps
incrementing the value of val1 by
adding elements in the array list and
this will happen until the value of
val1 becomes equal to or greater
than 9. And in every iteration the
count value gets incremented inside
the while loop. And once the value of

In this program we actually calculate
the area of a rectangle where its x1, x2
and y1, y2 coordinates are entered.
The difference between x coordinates
(x2-x1) will give the length and the
difference between the y coordinates
(y2-y1) will give us the height of the
rectangle. And the product of length

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

34

val1 becomes greater than or equal
to 9. The control comes out of the
while loop and if the count value is
greater than zero, it will print the
values of 3 variables they are val1,
count and val1/count. The program
returns -1 if count value is 0.

and height will return the area of the
rectangle.

P01(3)

The main method creates a list and
calls the method "calculate" with the
list as an argument. The Method
calculate sums up all positive
integers (>0) and keeps track of how
many it has counted. Then it prints
out the sum, the amount of positive
integers and the average of those.

Main Method creates objects that hold
4 integers (x1, x2, y1, y2) Then it prints
out the result of the calculation (x2-
x1)*(y2-y1). (x2-x1) is the result of
calc(1) and (y2-y1) is the result of calc2.
Calc3 multiplies these two results. It
could happen that you get a negative
"surface area".

P04
Reached
All

This program takes a list of integers
and find the sum of the natural
numbers (numbers greater than 0)
until the number 9 is encountered in
the list (9 is excluded from the sum).
It also finds the count of the natural
numbers until the number 9 is
encountered.

This program takes the positions of
two lines (possibly 2 lines that forms
the side of a rectangle) and find the
area. For the positions x1, x2, y1, y2, it
finds (x2-x1)*(y2-y1)

P02(1)

It takes a list as an input and add the
numbers if greater than zero till you
find 9 in last you print the count,
total, total/count.

Takes two coordinates and finds (x2-
x1)*(y2-y1) and prints it

P02(2)
The program prints the variable,
count and the sum/count value of
the list unless a 9 is found.

The program contains a calculation3
method. This method takes the
returned value of calculation1 and
calculation2 method as the parameters
and then computes their product.
Calculation1 and calculation2 methods
take two variables as parameters and
then returns their difference. The
points (x1, y1) and (x2, y2) are the
coordinates of two points. Calculation1
and calculation2 calculates (x2-x2) and
(y2-y1) respectively. Calculation3
computes (x2-x1)*(y2-y1) which is the
magnitude of the vector.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

35

Rectangle-List version
Name Mystery1 (List) Mystery2 (Rectangle)

P01

The program contains a list and
variables like var1, count, index
initialized. The main logic says that if
the element > 0, then var1+element
else print -1 (also the element should
not be equal to 9 which is also already
initialized). The sum of the numbers
greater than 0 and less than 9 are
taken and divided by the count.

There are 4 variables x1, y1, x2, y2, and
they are initialized using this variable.
The program contains 3 functions
calculation1(), calculation2() and
calculation3(). Calculation1() returns
the difference between x2 and x1.
calculation2() returns the difference
between y2 and y1. calculation3() is
returns the product of calculation1()
and calculation2() with respect to the
parameters passed in the main function
to the newMystery function.

P01(1)

A list is sent to function calculation.
Variables are assigned and while loop
with a condition is given. Till the loop
satisfy the condition, given operation
are performed. And output is printed.

Initially all variables are initialized.
Three functions named calculation1,
calculation2 and calculation3 are
defined. In the main function the actual
values are passed to the function and
answer is calculated and returned.
Answer for the 1st is 100 and for 2nd is
25.

P02
n/a in
Q1
reached
the rest

This program sums up all non-
negative numbers from a list until
reading a specified value. It also
counts the number of those values
that were added to the sum. Then it
gives the sum, the counter and sum
divided by counter as an output.

The first function calculates the
difference of two points in x
coordinates, the second one the one in
y coordinates. Those two functions are
then used in the third one to calculate
the area of a square with lengths from
both functions.

P02(1)

In this static program a list with int
elements is created in the main
method and afterwards a calculation
with the elements in this list is done
(all static). The calculation sum up all
elements in the list, starting at the
beginning with index 0, until an
element with the value 9 is reached in
the list. Then the while loop ends and
if the sum is greater than 0, an output
via the command line is produced and
it shows the results.

It is a class with three int variables
called x1, x2, y1, y2. They are all set in
the constructor when creating an object
of this kind. The class also has three
methods. The first one calculates and
returns the following (x2-x1). The
second method calculates (y2-y1). And
the third one calculates the result of
method 1 * the result of method 2, so
(x2-x1)*(y2-y1). There is also the main
method to start the program. Here, two
objects of the class are created. The
values of the first object are set (by the
constructor) to x1=0, x2=10, y1=0,
y2=10. After that, method 3 is called, so
(10-0)*(10-0)=100 is calculated.
Afterwards, the second object is
created. The values of the second
object are set (by the constructor) to
x1=5, x2=10, y1=5, y2=10. After that,

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

36

method 3 is called, so (10-5)*(10-5)=25
is calculated.

P01(2)

We pass a list of integers to the
program, it sums up the list elements
until encounters a number >9. The
total value is divided by the number
of elements counted. The result after
the division is printed by the main
function.

In the program, the object mystery
takes 4 arguments. It sends 2 x
coordinates to one function
calculation1(). It sends 2 Y coordinates
to calculation2(). The result of the
functions calculation1() and
calculation2() are then multiplied. The
result is then returned to the main
function, where it is sent to the output
screen to be printed.

P01(3)
Reached
All

The program takes a list as input and
calculates the sum of all the numbers
that are greater that 0 before
encountering 9 in the list. It
calculates the count of such numbers
and the sum of the numbers greater
that 0 is divided by the count of such
numbers.

The program code takes the value of x1,
y1, x2 and y2. Calculate1() calculates
the value x2-x1. Calculate2() calculates
y2-y1. Calculate3 function returns
(calculate1()*calculate2()). For example:
if x1, x2, y1 and y2 are considered as
coordinated of a rectangle, the
calculate3() will return the area as
calculate1()*calculate().

P02(2)

This program contains a list in which
the no which is greater than zero is
only taken into account and while the
counter goes to 9 its checking the list
and after that it display the result.

The program contains the three
methods in which the last methods
have input from other two methods.
This program deals with two objects of
class and implement the result.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

37

Spanish

List-Rectangle version
Name Mystery1 (List) Mystery2 (Rectangle)

P02(2)

The operation of the program goes in
blocks, which have different lengths
depending on the difficulty they have
and the need to explain it. In addition
these blocks can be divided into sub-
blocks and do not have to be in order.

The functioning of the program was
divided into several parts. There were
four variables (X1; X2, Y1; Y2) and it
asked to do the subtraction X2-x1 and
the subtraction Y2-Y1; and then
multiply the result of both previous
operations.

P03
I haven't finished understanding how
the program works, I imagine it
describes the work done by a printer.

If you had to answer this question after
reading the code (without answering
other questions), you probably wouldn't
have been able to write anything.
However, after the last question, it is
true that it could be the calculation of
the area of some geometric figure.

P04

I'm not quite sure how the program
works. The program may add several
numbers, use the variance, the total
number of numbers, and finally divide
the result.

This program calculates the difference
between X1 and X3, subtracting the first
from the second. It then calculates the
difference between Y1 and Y2 in the
same way. The final step is double
calculation, which consists of
multiplying both results. If we imagine a
square, multiplying the distances of the
base and height we obtain the area.

P03(1)

The program describes a problem and
defines the different possibilities of
result. In this way, patterns for
statistics can be described.

The program gives the points where the
vertices of the square are located and,
following the calculations, you can find
the area of the figure.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

38

Rectangle-List version
Name Mystery1 (List) Mystery2 (Rectangle)

P01 The program sums until it finds a 9.

Calculates the difference between the
positions of the vertices, obtaining the
sides, and then multiplies them,
obtaining the area.

P01(1)
Reach
Q1
n/a Q2
not Q3

The program receives a list of
numbers and passes them on to a
function. This function initializes
some parameters, to then go
through the list of numbers until it
finds a number nine, each number of
the list traveled different from nine
adds one to the counter variable and
another variable increases its value
with the sum of the values of the list
traveled, at the end the program
prints in screen the sum of the
numbers, the quantity of numbers of
the list traveled and the ratio
between the sum of the numbers
and the numbers traveled.

The program receives data passed by
code and makes the calculations
specified in the functions, in the
example it receives two different values
and displays both calculations. The
calculations are the multiplication of
the subtractions.

P02

I didn't understand the program. I
think that at the beginning I posed
five variables, four equal to a number
and the last "element" in function of
another "index" and later I
established hypotheses between the
variables but I did not understand the
meaning of what I was doing.

As a person who has never used this
language, I have understood from the
audio that first everything written in a
square is focused making a general
vision and then it is separated by stripes
reading from top to bottom and relating
each new strip you read with the ones
above. I didn't understand very well the
meaning of what was calculated, but in
the first stripe it was as a description of
the variables. In the following three I
did three simple calculations to use
them in the fourth strip and thus arrive
at the result that we want to obtain.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

39

P03
Reached
All

The program starts a loop where in
each iteration, each element of an
entered list of numbers is analysed.
When the number is natural other
than "9", its value is added to the
variable "var1". When the number is
less than "0", it does not carry out
any operation. When we find a "9",
it leaves the loop and the
subsequent numbers are no longer
analysed. Finally, it will print the
value of the sum, the number of
elements found until it leaves the
loop, and the division between both
values.

The program makes the difference
between x2 and x1 in calculation1. It
then calculates the difference between
y2 and y1 in calculation2. Finally, it
calculates and prints the product of
both differences. In the case of the
program shown, it first prints 100 and
then 25.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

40

List-Rectangle version in Spanish
Name Mystery1 (List) Mystery2 (Rectangle)

P02(2)

El funcionamiento del programa va
por bloques, los cuales tienen distinta
extensión dependiendo de la
dificultad que tengan y la necesidad
de explicarlo. Además estos bloques
pueden estar divididos en sub-
bloques y no tienen por qué estar en
orden.

El funcionamiento del programa se
dividía en varias partes. Había cuatro
variables (X1;X2, Y1;Y2) y pedía hacer la
resta X2-x1 y la resta Y2-Y1; Y después
multiplicar el resultado de ambas
operaciones anteriores.

P03

No he terminado de entender el
funcionamiento del programa,
imagino que describe el trabajo
realizado por una impresora.

Si tuviese que responder a esta
pregunta una vez leído el código (sin
responder a otras preguntas),
probablemente no hubiese sido capaz
de escribir nada. Sin embargo, tras la
última pregunta, es cierto que se podría
tratar del cálculo del área de alguna
figura geométrica.

P04

No estoy muy segura del
funcionamiento del programa. Puede
que el programa sume varios
números, utilice la varianza, el
número total de números y
finalmente divida el resultado.

Este programa calcula la diferencia
entre X1 y X3, restando el primero al
segundo. Después calcula la diferencia
entre Y1 e Y2, de la misma manera. El
paso final es double calculation, el cual
consiste en multiplicar ambos
resultados. Si nos imaginamos un
cuadrado, multiplicando las distancias
de la base y altura obtenemos el área.

P03(1)

El programa describe un problema y
define las diferentes posibilidades de
resultado. De esta forma, se pueden
describir patrones para estadísticas.

El programa da los puntos en los que se
encuentran los vértices del cuadrado y,
siguiendo las calculations, puedes hallar
el área de la figura.

Multilingual Investigation of Theory-Based Intervention for Program Comprehension | Celia García Ledesma

41

Rectangle-List versión in Spanish
Name Mystery1 (List) Mystery2 (Rectangle)

P01
El programa va sumando hasta
encontrar un 9.

Calcula la diferencia entre las posiciones
de los vértices, obteniendo los lados, y a
continuación las multiplica, obteniendo
el área.

P01(1)

El programa recibe una lista de
números y los pasa a una función.
Esta función inicializa unos
parámetros, para luego recorrer la
lista de números hasta encontrar un
número nueve, cada número de la
lista recorrido diferente de nueve
añade uno a la variable contador y
otra variable va incrementando su
valor con la suma de los valores de la
lista recorridos, al final el programa
imprime en pantalla la suma de los
números, la cantidad de números de
la lista recorridos y el ratio entre la
suma de los números y los números
recorridos.

El programa recibe datos pasados por
código y hace los cálculos especificados
en las funciones, en el ejemplo recibe
dos valores diferetes y saca por pantalla
ambos cálculos. Los cálculos son la
multiplicación de las restas.

P02

No he entendido el programa. Creo
que al principio planteaba cinco
variables, cuatro igualadas a un
número y la última "element" en
función de otra "index" y más
adelante establecía hipótesis entre las
variables pero no he entendido el
significado de lo que estaba haciendo.

Como persona que no ha utilizado este
lenguaje nunca, por el audio he
entendido que primero se enfoca todo
lo escrito en un cuadrado haciendo una
visión general y luego se separa por
franjas leyendo de arriba abajo y
relacionando cada franja nueva que leas
con las de arriba. No he entendido muy
bien el significado de lo que se
calculaba, pero en la primera franja
hacía como una descripción de las
variables. En las tres siguientes hacía
tres cálculos simples para poder
utilizarlos en la cuarta franja y así llegar
al resultado que se quiere obtener.

P03

El programa inicia un bucle donde en
cada iteración, se analiza cada elemento
de una lista de números introducida.
Cuando el número es natural distinto de
"9", se añade su valor a la variable "var1".
Cuando el número es menor que "0" no
realiza ninguna operación. Cuando nos
encontramos con un "9", se sale del bucle
y ya no se analizan los números
posteriores. Finalmente, imprimirá el
valor de la suma, el número de elementos
encontrados hasta que se sale del bucle, y
la división entre ambos valores.

El programa realiza la diferencia entre
x2 y x1 en calculation1. Posteriormente
calcula la diferencia entre y2 e y1 en
calculation2. Por último, calcula e
imprime el producto de ambas
diferencias. En el caso del programa
mostrado, primero imprime 100 y
después 25.

