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1 Introduction 

1.1 Hematopoiesis 

The formation of all cellular blood components from hematopoietic stem cells (HSCs), which reside in 

the bone marrow, is called hematopoiesis. These important cells are capable to self-renew and have 

the potential to differentiate into diverse precursor cells ensuring continuous sustenance with all blood 

cells
1
. Hematopoiesis in vertebrates begins in the extraembryonic yolk salc and placenta with erythroid 

progenitors having no pluripotency and no self-renewal potential. This first so called primitive wave or 

embryonic hematopoiesis is followed by the definitive wave (adult hematopoiesis), involving 

multipotent HSCs born in the aorta-gonad-mesonephros (AGM) region and placenta followed by 

migration to the fetal liver and bone marrow
1,2

. Development of all blood cell lines takes place in a 

hierarchical manner, with Long-term HSC (LT-HSC) and Short-term HSCs (ST-HSC) on top giving rise 

to various progenitor cells accompanied by successive loss of self-renewal capacity. The multipotent 

progenitor (MPP) either commits to the lymphoid or myeloid lineage, generating the common myeloid 

progenitor (CMP) or the granulocyte-monocyte-lymphoid progenitor (GMLP), respectively. The last 

progenitors in the hierarchy, involving the megakaryocyte-erythrocyte progenitor (MEP), granulocyte-

monocyte progenitor (GMP) and the common lymphoid progenitor (CLP) finally generate functional 

blood cells
3,4

 (see Figure 1-1). 

Regulation of hematopoiesis is carried out by two categories of transcription factors, one for formation 

and function of hematopoietic stem cells (HSCs) and one for cell lineage specific differentiation. The 

first class includes transcription factors like MLL (mixed lineage-leukemia gene), RUNX1 (Runt-related 

transcription factor 1), ETV6 (Ets variant 6) or LMO2 (LIM domain only 2). Transcription factors like 

PU.1 (Spi-1 Proto-Oncogene), GATA (GATA Binding Protein) or C/EBP (CCAAT/Enhancer Binding 

Protein) are involved in expression of lineage-specific genes and are assigned in the second class of 

before mentioned TFs. Alterations in this regulatory network of transcription factors, either due to 

mutations or altered signal transduction result in loss of differentiation potential and uncontrolled cell 

proliferation. This state can lead to the formation of leukemia, whereas one has to distinguish between 

acute or chronic ones as well as between myeloid or lymphoid leukemia
4,5

. 
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Figure 1-1 - Normal hematopoiesis 

LT- and ST-HSCs give rise to various types of progenitor cells, finally leading to functional blood cells. LT-HSC: 

Long-term HSC, ST-HSC: Short-term HSC, MPP: multipotent progenitor, CMP: common myeloid progenitor, 

MEP: megakaryocyte-erythrocyte progenitor, GMP: granulocyte-monocyte progenitor, GMLP: granulocyte-

monocyte-lymphoid progenitor, CLP: common lymphoid progenitor (modified from Blank et al.
3
).  

1.2 Concept of epigenetics 

In 1942, Conrad Waddington initially defined the term „epigenetics“ as „the branch of biology which 

studies the causal interactions between genes and their products which bring the phenotype into 

being”
6
. Nowadays this refers to a variety of processes that have heritable effects on gene expression 

programs without changes in DNA sequence during mitosis or meiosis. These processes are essential 

in multiple normal cellular processes, like embryonic development, imprinting or differentiation
7,8

. Gene 

expression is controlled by four different epigenetic mechanisms, involving posttranslational histone 

modifications, non-coding RNAs (ncRNAs)
9
, chromosomal architecture and DNA methylation

10
. 

Besides genetic changes, many common diseases such as cancer are caused by alterations in gene 

expression due to epigenetic changes. Hence, integrated analysis of epigenetic and genetic changes 

may help to figure out where diseases, especially cancer, originate
11

. The present work mainly focuses 

on DNA methylation, where cancer cells often show aberrant patterns which can be addressed in 

some cases by medical treatment. 
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1.2.1 Histone code 

In eukaryotes, DNA is packed into chromatin, which consists of DNA, histone proteins and non-histone 

proteins
12,13

. The complex of DNA and histones is designated as nucleosome. This basic subunit of 

chromatin consists of 147 base pairs (bp) of DNA that is ~1.7 times wrapped around a histone 

octamer comprised of two copies each of histones H2A, H2B, H3 and H4
14

. The arrangement of the 

nucleosomes resembles a structure similar to beads on a string linked by short stretches of DNA, the 

so called linker DNA
15

. A flexible and non-structured N-terminal tail that protrudes from the 

nucleosome is subject to extensive post-translational modifications (PTMs)
16,17

. Those different 

chemical modifications of histones, also known as histone marks, are important for transcriptional 

regulation. Depending on the influence of adjacent modifications, the “histone code” can be decoded 

in different ways, meaning that one specific histone modification can have either activating or 

repressive consequences
18,19

. There are several different histone modifications, including acetylation, 

methylation, phosphorylation, deamination, β-N-acetylglucosamination, ADP ribosylation, 

ubiquitylation and sumoylation, that can be found on over 60 distinct histone positions
20,21

 (see Figure 

1-2). The two histone modifications, acetylation and methylation, are the most important ones 

regulating the transcriptional state and are therefore highlighted in the following sections. 

 

 

 

Figure 1-2 - Post-translational histone modifications 

The N-terminal tails of the four core histones H2A, H2B, H3 and H4 are subject of acetylation (ac) and 

methylation (me) on lysine (K) and arginine (R) residues. Moreover, histone tails can be phosphorylated, 

sumoylated and ubquitinylated, not only at lysine and arginine but also at serine and threonine residues (adopted 

from Bhartiya et al.
22

).  
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1.2.1.1 Histone acetylation 

Histone acetylation is set and erased by histone acetyltransferases (HATs) and histone deacetylases 

(HDACs), respectively
7
. This modification occurs on lysine residues and is associated with active 

transcription (see Figure 1-3). The neutralizing effect of acetylation on the positive charge of histones 

weakens the interaction between the negatively charged DNA and histones resulting in an open 

chromatin structure. Due to this accessible state, transcription can be promoted by binding of several 

bromodomain-containing factors
23

.  

1.2.1.2 Histone methylation 

Histone methylation mainly occurs on the two basic residues lysine and arginine and is controlled by 

histone methyl transferases (HMTs) and histone demethylases, that possess stronger site specificity 

than HAT or HDAC
20,24,25

. In contrast to histone acetylation, histone methylation is associated with 

activation or repression, depending on the influence of the neighborhood. Another thing one has to 

keep in mind is that histone methyltransferases can methylate their target residues to a different 

extend. Lysine residues can be mono-, di- and trimethylated, whereas arginine can be 

monomethylated as well as symmetrically or unsymmetrically dimethylated
21,26

. Histone H3 

methylation including H3K4, H3K36 and H3K79 are associated with active transcribed chromatin, 

while di- as well as trimethylation of H3K9 and H3K27 is linked to transcriptional repression
13,27

 (see 

Figure 1-3). Important examples of both groups are H3K4me3 that marks promoters of actively 

transcribed genes, whereas H3K27me3 is associated with transcriptional repressed genes
28

. 

 

 

Figure 1-3 - Distribution of active and repressive histone marks 

Active genes are associated with H3 and H4 acetylation, trimethylation of H3K4, trimethylation of H3K79, 

trimethylation of H3K36 and ubiquitylation of H2B on lysine 120. Repressed genes typically carry trimethylation of 

H3K27, trimethylation of H3K9 and ubiquitylation of H2A on lysine 119 (adopted from Zhang et al.
28

). 
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1.2.2 DNA methylation 

5-methylcytosine, also known as “the fifth base” of DNA is produced by the attachment of a methyl 

group (CH3) to the 5’ carbon atom of the base cytosine, catalyzed by DNA methyltransferases 

(DNMTs)
29

. DNA methylation mainly occurs in CpG dinucleotides (cytosines adjacent to guanines) but 

can also be observed at non-CpG sites, such as CpA, CpT, and CpC, primarily found in embryonic 

stem (ES) cells, induced pluripotent stem cells (iPS cells), neurons, oocytes and glial cells
30

. CpG 

dinucleotides are not equally distributed throughout the genome and are underrepresented compared 

to other dinucleotides possibly because of the higher tendency of 5-methylcytosine for deamination
31

. 

Deamination of cytosine gives rise to uracil and is recognized as foreign, which is then repaired 

subsequently. In contrast, deamination of 5-methylcytosine results in the formation of the naturally 

occurring base thymidine and is not replaced resulting in loss of cytosines throughout the genome. 

CpG dinucleotides are enriched in so called CpG islands (CGIs) that are often associated (37%) with 

promoter regions and are preferentially unmethylated in comparison to CpG dinucleotides located 

beyond CGIs. Basically, the methylation status of CpGs influences regulation of gene expression and 

is involved in several biological processes such as embryonic development
32,33

, genomic 

imprinting
34,35

, mammalian X-chromosome inactivation
35–37

 or tissue-specific gene expression
38–40

. 

Misregulation of DNA methylation may result in aberrant DNA methylation patterns and can lead to 

different diseases, particularly hematopoietic malignancies such as acute myeloid leukemia or 

myelodysplastic syndromes
41–43

, underpinning the important role of DNA methylation. 

1.2.2.1 DNA methyltransferases and TET enzymes 

There are five different DNA methyltransferases in mammals belonging to three distinct families, 

namely DNMT1, DNMT2 and DNMT3
44–46

. DNMT3a and DNMT3b are de novo methyltransferases 

targeting former unmethylated CpG dinucleotides and are important during embryonic development. 

DNMT1, also known as maintenance methyltransferase, shows a higher preference for 

hemimethylated DNA and reestablishes DNA methylation patterns after DNA replication
45,47,48

. 

Recognition and recruitment of DNMT1 to hemimethylated CpGs during replication is carried out by 

the cofactor UHRF1 (ubiquitin like with PHD and ring finger domains 1)
47,49

. The last two remaining 

members of mammalian DNMTs do not methylate DNA. DNMT2 was shown to methylate RNA 

molecules, while DNMT3L is catalytically inactive and furthermore highly expressed in germ and ES 

cells probably acting as a cofactor. But all have a common structure consisting of an N-terminal 

regulatory domain and a C-terminal catalytic domain, with DNMT2 as exception lacking the N-terminal 

domain. Moreover they share ten characteristic sequence motifs, most of them being highly conserved 

(see Figure 1-4)
46,50,51

. 
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Figure 1-4 – The DNA methyltransferase family 

The four different mammalian DNA methyltransferases share a conserved catalytic domain (red), with DNMT3L 

as exception lacking the C-terminal part of this catalytic domain. The regulatory domain of DNMT1 consists of four 

different domains, namely the DMAP1 binding (blue), the RFTS (yellow), the CXXC (light blue) domain and two 

BAH (green) domains. DNMT3 isoforms contain a PWWP (light purple) and ADD (purple) domain, whereas 

DNMT3L is lacking the latter domain.  DMAP1: DNA methyltransferase 1-associated protein 1, RFTS: replication 

foci targeting sequence, CXXC: cysteine-rich zinc finger, BAH: bromo-adjacent homology, PWWP: proline-

tryptophan-tryptophan-proline, ADD: ATRX–DNMT3–DNMT3L (modified from Lyko et al.
46

). 

 

Although in general DNA methylation is a stable and heritable modification, locally, DNA methylation 

patterns undergo dynamic changes including both, methylation and demethylation in a tissue specific 

manner
52–55

. Demethylation of 5mC can occur in several ways, either passively by inhibition of the 

DNA methylation machinery and subsequent dilution of methylation during replication (passive DNA 

methylation) or actively by removal of methyl groups mediated by Ten-Eleven-Translocation proteins 

(active DNA methylation). This TET protein family comprises three members, TET1, TET2 and TET3, 

which have a common core catalytic domain required for oxidation of 5mC (see Figure 1-5). This core 

catalytic domain consists of a conserved double-stranded β-helix (DSBH) domain, a cysteine-rich 

domain as well as Fe(II) and 2-oxoglutarate (2-OG) binding sites and is responsible for binding to 

CpGs
56

. 

 

Figure 1-5 – The Ten-Eleven-Translocation (TET) protein family 

The core catalytic domain of all TET enzymes consists of a cysteine-rich (Cys) domain, binding sites for the 

cofactors Fe(II) and 2-oxoglutarate and the DSBH (conserved double-stranded β-helix) domain.  

TET1 and TET3 have an additional CXXC domain on their N-terminus important for binding to DNA (adopted from 

Rasmussen et al.
56

). 
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TET proteins iteratively oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5- formylcytosine (5fC) and 

5-carboxylcytosine (5caC) (see Figure 1-6). The last two mentioned variants of cytosine can be 

replaced by an unmodified cytosine via base excision repair (BER) or thymine DNA glycosylase 

(TDG)-mediated excision.  

Alternatively, the two deaminases APOBEC3 and AID can convert 5hmC into 5-hydroxymethyluracil 

(5hmU) which is then replaced by an unmodified cytosine via TDG/BER
57–61

. 

 

 

Figure 1-6 - Cycle of DNA methylation and demethylation 

Cytosine is methylated via DNA methyltransferases to 5mC and this in turn is demethylated by repeated oxidation 

through TET oxygenases including the intermediates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) 

and 5-carboxylcytosine (5caC). The two oxidized forms 5fC and 5caC can be removed via TDG (thymine DNA 

glycosylase) mediated excision or BER and replaced by an unmodified cytosine. Involvement of the two 

deaminases AID and APOBEC leads to the formation of 5-hydroxymethyluracil (5hmU) from 5hmC and 

subsequent conversion into cytosine via base excision repair (BER) (modified from Kunimoto et al.
62

).  

1.2.2.2 Methyl-CpG binding proteins 

Transcriptional repression of genes through DNA methylation is caused by two different mechanisms. 

Firstly, the methyl group may prevent binding of sequence specific transcription factors (TFs) required 

for gene expression. The second possibility involves the recruitment of Methyl-CpG-binding proteins 

(MBPs) which either prevent binding of other factors or directly influence repression
37,48,63

. 

In the early 90s, the first two proteins possessing affinity for methylated DNA were described. MeCP1 

and MeCP2 are both able to bind methylated CpGs, whereas MeCP1 requires a group of at least 

twelve methylated sites for strong binding and MeCP2 only a single methyl-CpG pair
64,65

. Later it was 
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shown that MeCP1 is a big complex containing MBD2 as well as all NuRD (Nucleosome Remodeling 

Deacetylase) components and represses transcription by recruitment of histone deacetylases and 

corepressor proteins
66–68

. Today, the MBD family consists of seven members: MeCP2, MBD1, MBD2, 

MBD3, MBD4, MBD5 and MBD6 (see Figure 1-7). Despite their shared conserved Methyl-CpG binding 

domain, only MeCP2, MBD1, MBD2 and MBD4 are able to bind methylated DNA
69

. 

 

 

Figure 1-7 - Members of the Methyl-CpG-binding (MBP) protein family 

The MBD family comprises MeCP2, MBD1-MBD6 with MeCP2 as founding member. All MBPs contain a highly 

conserved methyl-binding domain (MBD) for binding methylated DNA, whereas MBD3 has a point mutation (*) in 

this domain. In addition, MeCP2, MBD1 and MBD2 have a common transcriptional repressor domain (TRD). 

MBD1 also contains 3 cysteine rich zinc fingers (CXXC) and MBD2 harbors a glycine-arginine (GR) repeat as well 

as a C-terminal coiled-coil (CC) domain. This CC domain can also be found in MBD3. Besides the conserved 

MBD, MBD4 contains a C-terminal DNA glycosylase domain important for DNA repair. The last two members, 

MBD5 and MBD6, contain proline rich domains (P rich) while MBD5 has an additional PWWP motif that binds 

methylated histones (modified from Wood et al.
70

). 

 

Structural analyses of MeCP2 identified two important domains, the MBD and the transcriptional 

repressor domain (TRD). The same is true for MBD1, but it contains three additional cysteine-rich 

domains (CXXC) where one of those is able to bind unmethylated DNA, therefore allowing repression 

of methylated and unmethylated DNA. MBD2 is a component of the MeCP1 complex and harbors a 

CpG-density dependent binding affinity. Structurally, it is characterized by two additional domains, the 

glycine/arginine rich domain (G/R) and the coiled-coil (CC) domain
71,72

. 

MBD3 is exceptional among the MBD protein family in that harboring a point mutation in the Methyl-

CpG binding domain resulting in loss of methyl-CpG binding capacity. Furthermore, MBD3 represents 

a subunit of the NuRD complex
73

. Another outstanding feature among MBPs is the glycosylase 

domain of MBD4 allowing involvement in DNA repair
66,69,70

. The last two remaining members, MBD5 
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and MBD6, are not able to bind methylated DNA and localize preferentially to pericentric 

heterochromatin
74

. 

Besides the MBD proteins, the group of the so called DNA methylation readers includes the Kaiso 

family proteins and the SRA (SET- and Ring finger-associated) domain family. They can be 

differentiated due to their lack of the MBD domain. In contrast, Kaiso harbors several C-terminal zinc 

finger domains facilitating the binding to methyl-CpGs. Kaiso is also able to bind to an unmethylated 

specific consensus sequence, the Kaiso binding sequence (KBS), making it a bifunctional protein
75–77

. 

The last group of DNA methylation readers, the SET- and Ring finger-associated protein family, 

comprises the two members UHRF1 and UHRF2 which are known to bind hemimethylated DNA
66

. 

1.2.2.3 Crosstalk between DNA methylation and histone modifications 

Gene expression is regulated by DNA methylation as well as histone modifications, while DNA 

methylation is a stable long-term repressive mark compared to histone modifications. Since these two 

mechanisms do not act independently, interaction partners are necessary facilitating the epigenetic 

crosstalk. Both, Polycomb (PcG) and Trithorax (TrxG) group proteins, are the main interaction partners 

and are maintaining the balance of stable repression and activation of gene expression
49,78

. They are 

evolutionarily conserved and working antagonistically to enable the correct expression of genes 

necessary for cell differentiation and developmental processes
79

. It was shown that recruitment of 

these two protein groups to chromatin is carried out by regulatory elements, called PcG and TrxG 

response elements (PREs and TREs)
80

.  

The Polycomb group proteins (PcGs) are responsible for gene silencing and can be divided into two 

main complexes, Polycomb repressive complex 1 (PRC1) and PRC2. Polycomb repressive complex 1 

consists of chromobox-domain (CBX) proteins and one member each of the PCGF (Polycomb group 

ring fingers) family, RING1 family and the HPH family. Polycomb repressive complex 2 contains three 

core members, namely EZH1 or EZH2 (enhancer of zeste), EED (embryonic ectoderm development) 

and SUZ12 (suppressor of zeste 12)
81

. The SET domain containing methyltransferases, EZH1 and 

EZH2, are able to catalyze mono-, di- and trimethylation of H3K27, a histone mark associated with 

transcriptional repression. In turn, H3K27me3 acts as a binding platform for PRC1 that establishes a 

compact chromatin structure repressing gene transcription
82–84

. 

The Trithorax group acts like a PcG antagonist by activating gene expression due to different 

mechanisms. This is carried out by different members of the TrxG proteins: ATP-dependent chromatin 

remodeling complexes, SET domain containing factors and histone modifying proteins whose 

interaction is resulting in a more accessible chromatin structure facilitating transcription
85,86

. 

As mentioned before, histone modifications and DNA methylation are interconnected and one 

example for such interplay is the PcG-mediated silencing through DNA methylation. The EZH2 subunit 

of PRC2 catalyzes trimethylation of H3K27 functioning as the first layer of repression and due to 

interaction of EZH2 with DNA methyltransferases (DNMTs) the second and more stable layer of 

repression is set
49,87

. This phenomenon is often seen in different cancer types, where PcG targets are 

more frequently de novo methylated leading to aberrant DNA methylation patterns
88–90

. Moreover, the 

aforementioned Methyl-CpG binding proteins (MBPs) participate on the epigenetic crosstalk between 
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DNA methylation and histone modifications. MeCP2 for example interacts with histone deacetylases 

and the Sin3 corepressor complex via its TR domain leading to transcriptional repression. Another 

example is MBD1 which may act as a transcriptional repressor by binding to methylated DNA. On the 

other hand, unmethylated DNA is specifically bound by CXXC finger protein 1 (CFP1), a subunit of the 

Set1 complex and thus leading to H3K4 trimethylation at bound CpG islands representing a chromatin 

environment favoring transcription
88,91–93

. 

Another crosstalk between histone modifications and DNA methylation can be observed between 

H3K36me3 and DNMT3. Trimethylation of histone H3 at lysine residue 36 is preferentially found in 

gene bodies of actively transcribed genes and is mediated by the histone methyltransferase SETD2 

(SET domain containing 2)
94

. This methyltransferase is recruited by RNA polymerase II during 

transcriptional elongation to maintain a repressive chromatin state preventing spurious transcription of 

cryptic promoters or transposon remnants
95–97

. The repressive histone mark H3K36me3 is then 

recognized by DNMT3 enzymes and subsequent DNA methylation of gene bodies take place
95,98

. 

1.2.3 Non-coding RNAs 

Besides DNA methylation and histone modifications, non-coding RNAs (ncRNAs) are regulatory 

elements of chromatin structure and gene expression, thus providing a third epigenetic mechanism
99

. 

In contrast to tRNA (transfer RNA) and rRNA (ribosomal RNA), ncRNAs are only transcribed and not 

translated into proteins. They can be divided into small (< 200 nt) and long ncRNAs ( > 200 nt), while 

small ncRNAs include the most prominent ones like microRNA (miRNA), small nucleolar RNA 

(snoRNA) and PIWI-interacting RNA (piRNA)
99,100

. The best studied class of ncRNAs, miRNA, are 

involved in post-transcriptional gene silencing by the RISC (RNA-induced silencing) complex or 

complementary interaction with mRNA
101,102

. Besides regulation of a variety of biological processes, 

long non-coding RNAs are also known to function in epigenetic regulation
103

. This epigenetic 

regulation typically results in transcriptional repression with the lncRNA Xist (X-inactivation specific 

transcripts) as prime example. After transcription from the inactive X chromosome, XIST binds to the 

Polycomb Repressive Complex 2 and trimethylation of histone H3K27 takes place, overall resulting in 

inactivation of the marked copy
100,104,105

.  

Nowadays, light was shed on lncRNAs due to their dysregulated expression and consequential role in 

cancer development or progression. One example is the lncRNA HOTAIR which normally represses 

homeobox genes (HOX) by recruitment of PRC2 and LSD1 (Lysine-specific histone demethylase 1). 

Overexpression of HOTAIR has been found in breast cancer, hepatocellular carcinoma or colorectal 

cancer playing a role in the initiation and progression of these different cancer types
103,104,106,107

.  

  



Introduction 

11 
 

1.3 Myelodysplastic syndromes 

Myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal hematopoietic 

neoplasms characterized by ineffective hematopoiesis resulting in peripheral blood (PB) cytopenias 

and an increased risk for leukemic evolution
108–110

. About 30% of patients are progressing towards 

acute myeloid leukemia (AML)
111

. MDS predominantly occurs in patients older than 65 and shows an 

incidence in the general population of about 30 – 50 cases per 1.000.000 individuals per year
108,109

.  

In contrast, myelodysplastic syndromes are rather rare in children with an annual incidence of 0.5 – 4 

per 1.000.000 individuals
112

.  

Based on the WHO classification of 2016, MDS can be divided into six different clinical subtypes: MDS 

with single lineage dysplasia (MDS-SLD), MDS with multilineage dysplasia (MDS-MLD), MDS with ring 

sideroblasts (MDS-RS), MDS with isolated del(5q), MDS with excess blasts (MDS-EB) and MDS, 

unclassifiable (MDS-U)
113

. Concerning the highly variable prognosis the IPSS-R (International 

Prognostic Scoring System-Revised) represents an useful and important system for prognostication of 

MDS patients which classifies patients into different groups including very low risk, low risk, 

intermediate, high risk and very high risk
108

. Regarding the quantitative alterations in these subtypes, 

low risk and high risk group patients show a remarkable expansion of hematopoietic stem cells with 

the highest expansion rates seen in high risk MDS patients. In addition, low risk MDS subtypes show a 

marked increase of common myeloid progenitors (CMPs) and a decrease of megakaryocyte-erythroid 

progenitors (MEPs) resulting in cytopenias. High risk MDS is furthermore characterized by MEP 

expansion and a higher risk to develop acute myeloid leukemia
114

 (see Figure 1-8).  
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Figure 1-8 - Alterations in stem and progenitor cells in different MDS risk classes 

This simplified model compares differentiation in healthy and low risk / high risk MDS cells. In patients with MDS, 

genetic and epigenetic alterations in long-term hematopoietic stem cells (LT-HSCs) are observed. Expansion of 

CMPs (common myeloid progenitor) and decrease of MEPs (megakaryocyte-erythroid progenitor), resulting in 

cytopenias, are characteristic for low risk MDS patients. High risk MDS is associated with GMP (granulocyte-

macrophage progenitor) expansion as well as a greater increase of LT-HSCs and ST-HSCs (short-term HSCs), 

frequently resulting in acute myeloid leukemia (adopted from Shastri et al.
114

).  

1.3.1 Pathogenesis of MDS 

Cytogenetic and molecular genetics are well studied for myelodysplastic syndromes and are important 

for progression and prognosis, whereas epigenetic changes are rarely characterized. With the 

emergence of cost-effective high-throughput sequencing, mutational profiling improved understanding 

of the heterogeneous disease MDS and is incorporated with increasing frequency into clinical routine 

investigations
115

. With this approach, it was found that over 90% of patients with MDS show genetic 

lesions, including mutations, deletions or copy number variations
109,116

. Moreover, about 50% of MDS 

patients show cytogenetic abnormalities
117

. One has to keep in mind that heterogeneity of MDS is not 

only induced by genetic aberrations but also by the co-occurrence of cytogenetic and epigenetic 

alterations and for that reason following chapters will focus on those three underlying “roots” of MDS. 
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1.3.1.1 Gene mutations 

Several studies identified a set of genes frequently mutated in myeloid malignancies that has been 

further investigated by targeted approaches
116,118,119

. 

These include genes involved in different cellular processes, like RNA splicing factors, transcription 

factors, cohesin components, factors important for DNA methylation and histone modification as well 

as signal transduction molecules
115

 (see Figure 1-9).  

 

 

Figure 1-9 – Mutation frequency of genes in myelodysplastic syndromes 

Recurrently mutated genes in MDS can be classified into different biological categories with mutations in splicing 

factors and DNA methylation factors resembling the most common ones with 55% to ~40%, respectively. 

Examples for every category are listed on the right side of the bar (adopted from Kennedy et al.
115

). 

 

1.3.1.1.1 RNA splicing 

Mutations affecting the RNA splicing machinery occur in almost 60% of patients with MDS, among 

SF3B1, SRSF2, U2AF1 and ZRSR2 being the most common ones. SF3B1 (Splicing Factor 3b 

Subunit 1) shows the highest mutational rate with 28% and is strongly associated with ring 

sideroblasts and a better overall survival (OS)
108,120–124

. In 12 % of patients with MDS mutations in 

SRSF2 (Serine And Arginine Rich Splicing Factor 2) can be observed, which are often found together 

with other mutations such as RUNX1, IDH2 and ASXL1 and have a poorer OS
125

. Other components 

of the RNA splicing machinery are mutated at lower frequencies.  

In general, mutations in splicing factors were characterized by mutual exclusiveness, that means more 

than one mutation is almost not seen in a single neoplasia. Furthermore, mutations tend to appear in 

early stages of the disease and have a heterozygous character. Besides the success of understanding 

the importance of splicing factor mutations in MDS for pathogenesis and therapy, major questions 

about their biological consequences remain
108,126–128

.  
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1.3.1.1.2 Epigenetic regulators 

Mutations in factors regulating DNA methylation and histone modifications are the second most 

affected genes in myelodysplastic syndromes. Mutated epigenetic regulators bring along a higher risk 

for alterations in transcriptional processes that can be retained during cell division and the 

establishment of a stable MDS clone
125,129

. Mutations in genes involved in DNA methylation processes 

can be observed in DNMT3A and TET2 with a mutational frequency of 2 – 8% and 21 %, respectively. 

Mutations in the DNA methyltransferase 3A are known to be loss-of-function, often co-occurring with 

mutations in SF3B1 and U2AF1 but are not the decisive factor alone for development of MDS. On the 

other hand, these mutations are associated with a poorer overall survival and a higher risk for 

leukemia development
108,130,131

. TET2 is acting as an opponent of DNMT3A and is the second most 

mutated gene in patients with MDS
108,132

. Several studies showed that impaired function of TET2 

increases HSC self-renewal rate and promotes differentiation into myelomonocytic direction. 

Furthermore, TET2 mutations are often found in early stages of the disease suggesting to be one 

possible initiator of MDS
133,134

. Mutations in the metabolic enzymes IDH1 and IDH2 are directly 

influencing TET2 activity by production of 2-hydroxyglutarate, inhibiting the hydroxylation of 5mC. 

Moreover IDH1/2 and TET2 mutations are mutually exclusive
115,130,134,135

.  

The two histone modifying enzymes, ASXL1 and EZH2, are also recurrently mutated in MDS with 

about 14% and 6%, respectively
108

. ASXL1 is involved in histone methylation via interaction with 

PRC2 components and is associated with a poor overall survival in MDS
136

. EZH2 is a component of 

the PRC2 complex and also a predictor of poor prognosis. In addition to mutations of EZH2, 

chromosomal aberrations of chromosome 7 or 7q can lead to the deletion of EZH2 (located on 7q36.1) 

and thereby also play a role in the pathogenesis of MDS
130,136,137

.  

1.3.1.1.3 Transcription factors 

With about 18% of mutation frequency, transcription factors (TFs) are a minor class of genes affected 

in patients with myelodysplastic syndromes. Mutated transcription factors are important for lineage-

specific gene expression and mutations are commonly observed in hematologic malignancies, both 

myeloid and lymphoid ones
115

.  

One example is RUNX1, which regulates hematopoiesis and is mutated in about 6% of MDS patients. 

Moreover RUNX1 mutations are associated with more advanced diseases, a decreased overall 

survival and chromosome 7 abnormalities (-7 / 7q-)
129,138,139

. Another component mutated in MDS and 

important for hematopoietic development is the zinc finger transcription factor GATA2 which is highly 

expressed in hematopoietic stem cells (see Figure 1-10). Important roles are the regulation of HSC 

survival and self-renewal and therefore disruption of this balance can contribute to 

leukemogenesis
132,140

. RUNX1 and GATA2 can be mutated in both ways, somatic or germline, 

whereas somatic mutations are only present in 1-2% of MDS patients
116

. (Germline) GATA2 mutations 

are related with several diseases including familial MDS/AML, MonoMAC syndrome (monocytopenia 

and mycobacterial infection), Emberger syndrome, DCML (dendritic cell, monocyte, B and NK 

lymphoid deficiency) and pediatric MDS
140,141

. In addition to that, familial cases of MDS/AML with 

GATA2 mutations show a high incidence of monosomy 7 and trisomy 8
142

. 
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Figure 1-10 - Impact of the transcription factor GATA2  

Involvement of GATA2 is essential during transition from hemogenic endothelium to hematopoietic stem cells 

(HSCs). Later on, GATA2 is important for HSC proliferation and self-renewal as well as for lineage development 

(adopted from Wlodarski et al.
140

). 

1.3.1.2 Cytogenetic aberrations 

For prognostication of MDS patients, the karyotype plays an important role and is determined in 

clinical routine. About 50% of patients were found to have cytogenetic aberrations which are known to 

be of poor prognosis. The most common ones are isolated deletions of 5q and loss of 

chromosome 7
129,132,143

. In 10 - 15% of patients with MDS, partial or complete deletions of the long arm 

of the chromosome 5 are observed and represent a separate MDS subtype according to the WHO 

classification. Deletion of 5q leads to haploinsufficiency of CSNK1A1 (casein kinase 1 α 1) and results 

in upregulation of WNT signaling as well as stem cell expansion
132,144,145

. Nevertheless, patients with 

isolated del(5q) have a good prognosis and can be treated with lenalidomide
129,146

. 

The underlying mechanism of the immunomodulatory agent lenalidomide includes binding to the 

CRL4
CRBN

 E3 ubiquitin ligase, altering its substrate affinity and inducing selective degradation of the 

CSNK1A1 gene product, CK1α. Loss of CK1α results then in activation of p53-mediated 

apoptosis
115,132,147,148

 (see Figure 1-11). 

Another frequently observed cytogenetic aberration in MDS is the deletion of 7q and/or monosomy 7 

which is associated with poor prognosis. This chromosomal alteration leads to haploinsufficiency of 

several genes, like CUX1, EZH2 and MLL3 that may contribute to disease pathogenesis
132,149–152

. 
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Figure 1-11 - Mechanism of lenalidomide in MDS patients with del5q 

(A) CRBN (cereblon), the substrate adaptor of the E3 ubiquitin ligase, shows low affinity for CK1α, whereas 

presence of lenalidomide increases affinity and therefore catalyzes ubiquitination and degradation of CK1α. 

(B) Due to the lack of one copy of CSNK1A1 and a resulting lower CK1α level, HSCs have a clonal advantage 

over wildtype cells at baseline. Lenalidomide treatment selectively depletes CK1α in all HSCs, whereas in 5q-

 cells levels drop under baseline resulting in apoptosis. On the other side, wildtype cells retain enough CK1α for 

survival (adopted from Sperling et al.
132

).  

1.3.1.3 Role of DNA methylation in MDS 

Specific DNA methylation patterns are responsible for sustaining genomic stability and normal gene 

expression. Several studies showed that MDS and AML are associated with altered DNA methylation 

pattern suggesting an important role for this epigenetic modification in pathogenesis of MDS
153–157

. 

Changes in DNA methylation comprise global hypomethylation as well as hypermethylation of CpG 

islands in promoter regions, such as those of tumor suppressor genes
158

.  

Application of hypomethylating agents (HMAs), like the nucleoside analogs 5-azacitidine (Vidaza®) 

and 5-aza-2’-deoxycytidine (Decitabine, Dacogen®), induce clinic response in a distinct subset of 

MDS patients and delays progression to AML
159,160

. These two azanucleosides show either cytotoxicity 

due to incorporation into DNA or RNA or hypomethylation of DNA through inhibition of DNA 

methyltransferases resulting overall in antitumoral effects
161

. Recently published work also suggests 

immunomodulatory effects of 5-azacitidine
162,163

. In summary, DNA methylation changes somehow 

play a role in myelodysplastic syndromes, but how this epigenetic mechanism is exactly involved in 

disease pathogenesis and progression is still unclear.  
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1.3.1.4 Differences between adult and pediatric MDS 

The very heterogeneous group of clonal hematopoietic disorders is observed in adults as well as in 

children, but several morphological, clinical and cytogenetic differences exist.  

First, the clinical incidence in older adults is much higher with 30 – 50 / 10
6
 per year than in children 

with 0.5 – 4 / 10
6
 
108,112

. Clinical characteristics in adult MDS patients are isolated anemia and mostly 

hypercellular bone marrow (BM) compared to bilineage cytopenia and hypocellularity of BM in 

pediatric MDS. Regarding cytogenetics, MDS with del(5q) are much more frequently found in adults 

compared to children. Here deletions of chromosome 7 or 7q are the most frequent cytogenetic 

aberrations
112,164

. On genetic level, mutations in adult MDS patients are mainly observed in DNMT3A, 

ASXL1, TET2 and SF3B1, while children often exhibit mutations in the GATA2, SAMD9
165

 or FANC 

(Fanconi anemia) members
166

. Differences between MDS in adults and children are also made in 

clinical treatment options. In pediatric MDS the treatment of choice represents hematopoietic stem cell 

transplantation (HSCT), the only curative therapy. Contrary, adult MDS patients are treated due to the 

severity, low / intermediate risk or high risk, either supportive, immunomodulatory with lenalidomide or 

with hypomethylating agents, intensive chemotherapy and HSCT
112,164

.  

1.3.2 Clonal evolution during disease progression 

The emergence of next-generation sequencing greatly expanded our knowledge about the 

pathogenesis of myelodysplastic syndromes and other malignant disorders, whereas mechanisms 

during disease progression are not well studied at all.  

MDS progression is a dynamic event characterized by increasing malignant potential and clonal 

evolution, whereas the origin of this disease lies within acquired mutations in hematopoietic stem cells 

(HSCs)
167

. Here one has to differentiate between MDS and clonal hematopoiesis with indeterminate 

potential (CHIP) which can be distinguished due to the presence or absence of hematopoietic 

dysplasia in bone marrow, respectively
168,169

.  

The progression from MDS to secondary AML (sAML) was shown to be associated with the presence 

of mutations as well as the clonal architecture of these mutations. Founding clones are predominantly 

associated with mutations of epigenetic modifiers (e.g. ASXL1, TET2) and RNA splicing factors (e.g. 

SF3B1, SRSF2). Daughter clones tend to acquire mutations in signaling cascade factors, transcription 

factors or show cytogenetic lesions
170

. In general, it could be shown that sAML clones derive from a 

MDS founding clone and both entities show the same clonality despite different bone marrow blast 

counts (Figure 1-12). Each new clone during tumor progression carries all preexisting pathogenic and 

nonpathogenic mutations
171

. Furthermore, disease progression and thus complex clonal architecture 

was correlated with phenotype progression into worse WHO categories
170

.  

Epigenetic changes during disease progression of myelodysplastic syndromes have been scarcely 

explored so far. One study examined the epigenetic heterogeneity of 138 AML patients in comparison 

to their genetic landscape during disease progression. They showed that genetic and epigenetic 
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patterns arise independent during leukemic progression, but both of them playing a unique significant 

function
172

.  

In summary, the sequential acquisition of mutations and cytogenetic aberrations result in clonal 

evolution of MDS and is probably not associated with underlying epigenetic patterns. 

 

 

Figure 1-12 - Clonal evolution from MDS to sAML 

A model of the clonal evolution from myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia 

(sAML) is represented by this fish plot. The first clone exhibiting mutations is indicated with yellow and is present 

in 52 % of the bone marrow cells. This clone is characterized by Cluster 1 somatic single-nucleotide variants 

(SNVs). Cells indicated in orange originated from clone 1 and are labeled as clone 2 with specific Cluster 2 SNVs. 

Clone 2 evolved three subsequent subclones (red, purple and black) through serial acquisition of SNVs and is the 

dominant clone in the sAML sample (adopted from Walter et al.
171

). 
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2 Research Objectives 

DNA methylation and in general all epigenetic mechanisms are important for sustaining genome 

stability and gene expression. It was shown that alterations of DNA methylation patterns occur in 

several diseases, like acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS)
154,157

, and 

may be involved in pathogenesis and / or progression. The observation that inhibitors of DNA 

methyltransferases can delay the progression of MDS points to an additional role of epigenetic 

mechanisms in disease pathology. 

The main goal of this thesis was the integrated analysis of epigenetic and genetic changes during 

MDS development to identify potential epigenetic target genes that are involved in the progression of 

MDS to AML. For this purpose, two different approaches were used including methyl-CpG-

immunoprecipitation (MCIp) and targeted bisulfite sequencing. The MCIp protocol allows a global DNA 

methylation analysis and should reveal the inter-individual variability between different patients. To 

analyze DNA methylation alterations in regions important for myeloid differentiation, a targeted bisulfite 

approach was used including active regulatory regions as well as promoter regions observed to be 

involved in development of myeloid cells.  

By integrating both, epigenetic and genetic alterations, the analysis of consecutive patient samples 

may reveal the order of appearance for both types of aberrations. Summarizing all aspects, the 

analysis of global and specific DNA methylation patterns as well as genetic changes in different patient 

groups and during disease progression should provide insights into the pathogenesis of MDS and may 

help to improve clinical treatment.  
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3 Materials and Equipment 

3.1 Equipment 

Autoclave Walter, Geislingen, Germany 

Bioanalyzer 2100 Agilent Technologies, Böblingen, Germany 

BioPhotometer  Eppendorf, Hamburg, Germany 

Caliper LapChip XT Perkin Elmer, Waltham, USA 

Centrifuges Sigma, Osterode; Heraeus, Hanau;  

 Germany 

ChemiDoc XRS + system Biorad, Munich, Germany 

Covaris S220 Covaris, Woburn, USA 

Eppendorf centrifuge 5804 R Eppendorf, Hamburg, Germany 

Eppendorf Mastercycler Nexus X2 Eppendorf, Hamburg, Germany 

Electrophoresis equipment  Biometra, Göttingen, BioRad, Munich,  

 Germany 

Fast blot machine Biometra, Göttingen, Germany 

Heat block Stuart Scientific, Staffordshire, UK 

HiSeq 1000/2000 Illumina, San Diego, USA 

HiSeq 3000/4000 Illumina, San Diego, USA 

Incubators Heraeus, Hanau, Germany 

Intelli Mixer RM-2L Elmi-Tech, Riga, Latvia 

Lightcycler LC480 Roche, Mannheim, Germany 

Luminometer  Sirius Berthold, Oakville, Canada 

Magnetic particle concentrator Thermo Fisher Scientific, Waltham, USA 

MassARRAY compact system Sequenom, San Diego, USA 

MassARRAY MATRIX liquid handler Sequenom, San Diego, USA 

MassARRAY Phusio chip module Sequenom, San Diego, USA 

Megafuge 3.0R Heraeus, Hanau, Germany 

Microscopes  Leitz, Heidelberg, Germany 

Mr. Frosty
TM

 Freezing Container Thermo Fisher Scientific, Waltham, USA 

Multifuge 3S-R Heraeus, Hanau, Germany 

Multipipette Eppendorf, Hamburg, Germany 

NanoDrop 1000 PeqLab, Erlangen, Germany 

PCR-Thermocycler PTC-200  MJ-Research/Biometra, Oldendorf, Germany 

pH meter  Knick, Berlin, Germany 
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Picofuge Heraeus, Hanau, Germany 

Pipetboy Integra Biosciences, Fernwald, Germany 

Pipettes Eppendorf, Hamburg, Germany 

Pipettes Gilson, Middleton, USA 

Power supplies Biometra, Göttingen, Germany 

QIAvac 24 Plus Qiagen, Hilden, Germany 

Qubit 2.0 fluorometer Thermo Fisher Scientific, Waltham, USA 

Realplex Mastercycler epGradientS Eppendorf, Hamburg, Germany 

Heat sealer Eppendorf, Hamburg, Germany 

Sonifier 250 Emerson, St. Louis, USA 

Sorvall RC 6 plus Thermo Fisher Scientific, Waltham, USA 

Speed Vac  Christ, Osterode, Germany 

Laminar air flow cabinet (Lamin Air: HA 2472)  Heraeus, Osterode, Germany 

TapeStation 2200 Agilent Technologies, Böblingen, Germany 

Thermomixer Eppendorf, Hamburg, Germany 

Typhoon 9200  Molecular Dynamics, Krefeld, Germany 

Vortex-Genie Scientific Industries Ink., Bohemia, USA 

Waterbath   Julabo, Seelstadt, Germany 

Water purification system  Millipore, Eschborn, Germany 
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3.2 Consumables 

384-well PCR plates  Thermo Fisher Scientific, Hudson, USA 

Adhesive PCR sealing film  Thermo Fisher Scientific, Hudson, USA 

Agencourt AMPure XP magnetic beads Beckman Coulter Genomics, Krefeld,  

 Germany 

Cell culture dishes Greiner, Frickenhausen, Germany 

Cell culture dishes Nunc/Thermo Fisher Scientific, Hudson,  

 USA 

Cell culture flasks Costar, Cambridge, USA 

Cryo tubes  Corning, Corning, USA 

Heat sealing Film  Eppendorf, Hamburg, Germany 

Luminometer vials  Falcon, Heidelberg, Germany 

Micro test tubes (0.5, 1.5, 2 ml)  Eppendorf, Hamburg, Germany 

Multiwell cell culture plates  Falcon, Heidelberg, Germany 

nProteinA Sepharose 4 FastFlow  GE Healthcare, Munich, Germany 

PCR plate Twin.tec 96 well  Eppendorf, Hamburg, Germany 

PCR plate 384 well (LightCycler) Roche, Basel, Switzerland 

PCR plate 384 well (MassARRAY) Thermo Fisher Scientific, Hudson, USA 

rProteinA Sepharose 4 FastFlow  GE Healthcare, Munich, Germany 

Sepharose CL-4 beads Sigma-Aldrich, Munich, Germany 

Sterile combitips for Eppendorf multipette  Eppendorf, Hamburg, Germany 

Sterile plastic pipettes  Costar, Cambridge, USA 

Syringes and needles Becton Dickinson, Heidelberg, Germany 

Tubes (15 ml, 50 ml, 220 ml) Falcon, Heidelberg, Germany 
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3.3 Chemicals 

All chemicals were purchased from Sigma-Aldrich (Deisendorf, Germany), Merck Millipore (Darmstadt, 

Germany) or Carl Roth (Karlsruhe, Germany). 

3.4 Enzymes, kits and products for molecular biology 

Agilent DNA 1000 Kit Agilent Technologies, Santa Clara, USA 

Agilent High Sensitivity DNA Kit Agilent Technologies, Santa Clara, USA 

Agilent RNA 6000 Nano Kit Agilent Technologies, Santa Clara, USA 

Alkaline Phosphatase  Roche, Basel, Switzerland 

Amersham ECL Prime Western Blotting  GE Healthcare, Freiburg, Germany 

Detection Reagent  

Amersham Hyperfilm ECL GE Healthcare, Freiburg, Germany 

Beetle-Juice BIG KIT PJK, Kleinblittersdorf, Germany 

CpG Methyltransferase M.SssI NEB, Frankfurt, Germany 

D1000 Screen Tape and reagents Agilent Technologies, Santa Clara, USA 

DNA ladder 1 kb plus Invitrogen, Karlsruhe, Germany 

DNA 50 bp ladder NEB, Frankfurt, Germany 

DNeasy Blood & Tissue Kit Qiagen, Hilden, Germany 

dNTPs GE Healthcare, Buckinghamshire, UK 

Effectene® transfection reagent Qiagen, Hilden, Germany 

EpiMark® Methylated DNA Enrichment Kit NEB, Frankfurt, Germany 

Ethidium bromide Sigma-Aldrich, Munich, Germany 

EZ DNA Methylation-Lightning Kit  Zymo Research, Orange, USA 

Fermentas DNA loading dye (6x) Thermo Fisher Scientific, Hudson, USA 

Gibson Assembly Master Mix NEB, Frankfurt, Germany 

Glycogen Ambion/Life Technologies, Carlsbad, USA 

High Sensitivity D1000 Screen Tape Agilent Technologies, Santa Clara, USA 

and reagents  

Kapa Library Preparation Kit Kapa Biosystems, Wilmington, USA 

Klenow exo- (3’-5’ exo minus)  Enzymatics, Beverly, USA 

Klenow fragment Enzymatics, Beverly, USA 

λ DNA/Hind III Fragments Invitrogen, Karlsruhe, Germany 

LapChip XT DNA 300/750 Kit and Chips Perkin Elmer, Waltham, USA 

M-MLV Reverse Transcriptase Promega, Madison, USA 

MinElute Gel Extraction Kit Qiagen, Hilden, Germany 

MinElute PCR Purification Kit Qiagen, Hilden, Germany 
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Monarch® PCR & DNA Cleanup Kit NEB, Frankfurt, Germany 

NEBNext Multiplex Oligos for Illumina NEB, Frankfurt, Germany 

NEBNext Ultra II DNA Library Prep Kit  NEB, Frankfurt, Germany 

for Illumina  

NEXTflex DNA Barcodes Bioo Scientific, Austin, USA 

Nuclease-free water Gibco/Life Technologies, Carlsbad,  

 USA 

NucleoSpin Plasmid Quick Pure Kit Macherey-Nagel, Duren, Germany 

Pancoll Pan Biotech, Aidenbach, Germany 

Phusion High-Fidelity DNA Polymerase NEB, Frankfurt, Germany 

Protease Inhibitor Cocktail Tablets, EDTA-free Roche, Basel, Switzerland 

Proteinase K Roche, Basel, Switzerland 

QIAGEN Plasmid Plus Midi Kit  Qiagen, Hilden, Germany 

QIAquick Gel Extraction Kit Qiagen, Hilden, Germany 

QIAquick PCR Purification Kit  Qiagen, Hilden, Germany 

QuantiFast SYBR green Qiagen, Hilden, Germany 

Qubit DNA HS Kit Life Technologies, Carlsbad, USA 

Random Decamers Ambion/Life Technologies, Carlsbad,  

 USA 

Renilla-Juice BIG KIT PJK, Kleinblittersdorf, Germany 

Restriction endonucleases NEB, Frankfurt, Germany; Roche,  

 Basel, Switzerland 

RNase A Sequenom, San Diego, USA 

S-adenosyl-methionine (SAM) NEB, Frankfurt, Germany 

ScriptSeq
TM

 Complete Kit Epicenter (an Illumina company),  

 Madison, USA 

SeqCap Adapter Kit A Roche, Basel, Switzerland 

SeqCap Epi Accessory Kit Roche, Basel, Switzerland 

SeqCap Hybridization and Wash Kit Roche, Basel, Switzerland 

SeqCap Pure Capture Bead Kit Roche, Basel, Switzerland 

(S)-JQ1 Dana-Farber Cancer Institute, Boston,  

 USA 

TaqDNA Polymerase  Roche, Basel, Switzerland 

T4 DNA Polymerase Enzymatics, Beverly, USA 

T4 DNA Ligase  Promega, Madison, USA 

T4 DNA Ligase (Rapid) Enzymatics, Beverly, USA 

T4 Polynucleotide Kinase Enzymatics, Beverly, USA 
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3.5 Antibodies 

Table 3-1 - List of antibodies 

Antigene Application Origin Company Order# 

BRD4 ChIP rabbit Bethyl Laboratories A301-985A100-3 

BRD4 ChIP rabbit Bethyl Laboratories  

Goat anti-IgG F(c), 

HRP conjugated 
Western Blot goat Rockland   

H3K27ac ChIP rabbit abcam ab4729 

H3K27me3 ChIP rabbit diagenode C15410069 

IgG ChIP rabbit Millipore 12-370 

3.6 Antibiotics 

Ampicillin Ratiopharm, Ulm, Germany 

Hygromycin Clontech, Mountain View, USA 

Zeocin Invitrogen, Karlsruhe, Germany 

3.7 Cell lines 

Drosophila Schneider S2 cells macrophage-like insect cell line (provided by  

 Prof. Werner Falk) 

THP-1 human acute monocytic leukemia (DSMZ no:  

 ACC 16) 

U937 human histiocytic lymphoma (DSMZ no: ACC 5) 

3.8 E. coli strains 

DH10B Invitrogen / Life Technologies, Darmstadt,  

 Germany 

One Shot PIR1 Invitrogen / Life Technologies, Darmstadt,  

 Germany 
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3.9 Plasmids 

pCoHygro Invitrogen, Karlsruhe, Germany 

phRL-TK Promega, Madison, USA 

pMT/BiP/V5-His B Invitrogen, Karlsruhe, Germany 

pCpGL-basic (#861) AG Rehli, Regensburg, Germany 

pCpGL-CMV/T.EF1A (#1341) AG Rehli, Regensburg, Germany 

pCpGL-CMV1/T.A1FE (#1366) AG Rehli, Regensburg, Germany 

3.10 Oligonucleotides 

3.10.1 PCR primers 

BiooPrimer1 5’-AATGATACGGCGACCACCGAGATCTACAC-3’ 

Bioo Primer 2 5’-CAAGCAGAAGACGGCATACGAGAT-3’ 

KDM2B_NheI_for 5’-ATCGCTAGCAACCGGACAACGGCAGGAGC-3’ 

KDM2B_XbaI_rev 5’-ACTTTCTAGACTCCTTGAGCAGGGAGCCGG-3’ 

SIX5_PstI_1_for 5’- CTTCCTGCAGTTTCACAACAAAGGCAGAAGACGG-3’ 

SIX5_BglII_1_rev 5’- ATGCAGATCTGTCGCTCACGCAGGTCAG-3’ 

SIX5_PstI_2_for 5’- CCTTCCTGCAGGGGTGGGAGGAGAAGGGTTTG-3’ 

SIX5_BglII_2_rev 5’- ATGCAGATCTTGTCGCTCACGCAGGTCA-3’ 

SIX5_PstI_3_for 5’- CCTTCCTGCAGTTGGGTTACAGGGAAACCGGAG-3’ 

SIX5_BglII_3_rev 5’- ACTCAGATCTGCTCACGCAGGTCAGCAA-3’ 

Ventx_PstI_1_for 5’- CCTTCCTGCAGCCTGACTCTCCCAGCCTGAA-3’ 

Ventx_BglII_1_rev 5’- ATGCAGATCTCCAGTCCACGGAGCCAAAG-3’ 

Ventx_PstI_2_for 5’- CCTTCCTGCAGGGAGAGGAGAGGTCGCCC-3’ 

Ventx_BglII_2_rev 5’- ATGCAGATCTCAGGGAGAAGTCGGCAG-3’ 

Ventx_PstI_3_for 5’- CCTTCCTGCAGCTGAAGCCTGCTCGCCCT-3’ 

Ventx_BglII_3_rev 5’-ATGCAGATCTGGAGAGCCAGTCCACGGAG-3’ 

Ventx_PstI_4_for 5’- CCTTCCTGCAGGCCCTGACTCTCCCAGCC-3’ 

Ventx_BglII_4_rev 5’- ATGCAGATCTCGCAGGCAGATTTGAGGACCC-3’ 

Ventx_PstI_5_for 5’- CCTTCCTGCAGCCAACCTAAGTCCGCCCTGA-3’ 

Ventx_BglII_5_rev 5’- ATGCAGATCTGCAGGCAGATTTGAGGACCC-3’ 
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3.10.2 qPCR primers 

bAct_for 5’-GCAACTTTCGGAACGGCGCA-3’ 

bAct_rev 5’-GCGAAGCCGGTGAGTGAGC-3’ 

BCL3_1_for 5’-ACTTCTCTGTGCCTGTTTCCTCCT-3’ 

BCL3_1_rev 5’-GCAACTAAGAATTGGCCCACTTAATCCT-3’ 

BCL3_2_for 5’-CTTCTCTGTGCCTGTTTCCTCCTC-3’ 

BCL3_2_rev 5’-AATTGGCCCACTTAATCCTCTTAACACC-3’ 

BCL6_1 for 5’-TTCCCTTTGCCACTCCACTCTTAGC-3’ 

BCL6_1 rev 5’-TCTGGCTGGTTCTACTACTGCCTTAGAG-3’ 

BHLHE40_1_for 5’-GGTGAGGAGCAAAGAAATTGACATACGA-3’ 

BHLHE40_1_rev 5’-ACAATTCCTACGTGGCATAGATCTTTCC-3’ 

BHLHE40_2_for 5’-GGGCTCTAAATTCTTGCACAGGAAGG-3’ 

BHLHE40_2_rev 5’-CCTATTGGGACTCAGCATCTTGGTGG-3’ 

ChIP-GAPDH_1 for 5’-AGGCTGGATGGAATGAAAGGCAC-3’ 

ChIP-GAPDH_1 rev 5’-CTCCCACAAAGGCACTCCTG-3’ 

empty6.2_for 5’-GAAACCCTCACCCAGGAGATACAC-3’ 

empty6.2_rev 5’-TGCAGTGGGACTTTATTCCATAGAAGAG-3’ 

GAPDH_up75 for 5’-GCTTCTCACAGGACTTCCCTTGTCTC-3’ 

GAPDH_up75 rev 5’-ACTGCCTATGGATCTGGAACTCCC-3’ 

GSX2_2F 5’-GAAGGTCTATCTAATCCCTGCTGCGT-3’ 

GSX2_2R 5’-CATTCCAGGGCAATCCTACAAACTCCA-3’ 

ID2_1 for 5’-CCTGTCAGTGAGATGATGCGTATACC-3’ 

ID2_1 rev 5’-TGGCTCTGGCGAGGGTACAAA-3’ 

ID2_2 for 5’-AGGAAACACCTGTAATGGCTGCTG-3’ 

ID2_2 rev 5’-CTACCGGATCACCCTAACAACCCT-3’ 

KDM2B_NheI_for 5’-GATCGCTAGCAACCGGACAACGGCAGGAGC-3’ 

KDM2B_XbaI_rev 5’-ACTTTCTAGACTCCTTGAGCAGGGAGCCGG-3’ 

MBNL1_1 for 5’-ATTAACGCTGGGAAGAGGCACCAT-3’ 

MBNL1_1 rev 5’-TCCAGAGGCACTAATAGCCGACT-3’ 

MBNL1_2 for 5’-ATGGCAAGGTTGTGATACTGTAGGACAT-3’ 

MBNL1_2 rev 5’-ACGTCAGGAAAGGCACTTCTTAGTACCA-3’ 

MBNL1_3_for 5’-GAGCTCGACGAGTCCGCC-3’ 

MBNL1_3_rev 5’-GGTCTGGCTTCCGCTGCTG-3’ 

MBNL1_4 for 5’-CGCGTGCATTAGGAGCTCGAC-3’ 

MBNL1_4 rev 5’-AGGTCTGGCTTCCGCTGCT-3’ 

MBNL1_5 for 5’-CATTAGGAGCTCGACGAGTCCGC-3’ 

MBNL1_5 rev 5’-AGGTCTGGCTTCCGCTGCT-3’ 

MBNL1_neg for 5’-GCACCCAGAACACAAGCCCA-3’ 

MBNL1_neg rev 5’-CCATCAAGCCTCTAGCTGCCTTT-3’ 

Myc-1 for 5’-GGACCCGCTTCTCTGAAAGGCT-3’ 
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Myc-1 rev 5’-AGGCAAGTGGACTTCGGTGCTTA-3’ 

Myc-2 for 5’-TTGCGGTCACACCCTTCTCCC-3’ 

Myc-2 rev 5’-GTTCACCATGTCTCCTCCCAGCAG-3’ 

Myc-3 for 5’-CAGCAAACCTCCTCACAGCCC-3’ 

Myc-3 rev 5’-ACACTGTCCAACTTGACCCTCTTG-3’ 

NCL_1 for 5’-CTGCCCAGTAATCGCCTGTGGAA-3’ 

NCL_1 rev 5’-GCCGCGAGCTTTGGTTGGT-3’ 

PTPN6 for 5’-TCCGCCTTCCTTGTGACTTGAG-3’ 

PTPN6 rev 5’-ACCAGAGGCAAAGAGAAACGCAG-3’ 

SNRPN_for 5’-TACATCAGGGTGATTGCAGTTCC-3’ 

SNRPN_rev 5’-TACCGATCACTTCACGTACCTTCG-3’ 

SRFP2_2F 5’-GGAGGGCGAAGTTCTTTCATATGTAAGG-3’ 

SRFP2_2R 5’-TCTGAGCCTGTGAATGACTCTTAAGTGG-3’ 

Suv420h1_for 5’-CTCACCTCGCCTCGCGCA-3’ 

Suv420h1_rev 5’-CCTGGGACGCGGAGTCCT-3’ 

3.10.3 RT-qPCR primers 

ACTB_1 for 5’-CGAGAAGATGACCCAGATCATGTTTGAG-3’ 

ACTB_1 rev 5’-CAGAGGCGTACAGGGATAGCACAG-3’ 

GAPDH for 5’-CCACATCGCTCAGACACCAT-3’ 

GAPDH rev 5’-GCCACCAATATCCACTTTACCAGAGT-3’ 

HPRT1_1 for 5’-AATTATGGACAGGACTGAACGTCTTGC-3’ 

HPRT1_1 rev 5’-GCTTTGATGTAATCCAGCAGGTCAGC-3’ 

Myc_RTPCR_1 for 5’-GTCCTCGGATTCTCTGCTCTCCT-3’ 

Myc_RTPCR_1 rev 5’-CTCATCTTCTTGTTCCTCCTCAGAGTCG-3’ 

Myc_RTPCR_2 for 5’-CGACTCTGAGGAGGAACAAGAAGATGAG-3’ 

Myc_RTPCR_2 rev 5’-GGCTGTGAGGAGGTTTGCTGTG-3’ 

3.10.4 Sequencing primers 

MT forward 5’-CATCTCAGTGCAACTAAA-3’ 

pcDNA3.1/BGH rev 5’-TAGAAGGCACAGTCGAGG-3’ 

pCG sense 5’-TAAATCTCTTTGTTCAGCTCTCTG-3’ 

pMT_rev 5’-GCATTCTAGTTGTGGTTTGTCC-3’ 
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3.11 gblocks® gene fragments 

CREB3L 

5’-CAAACAGCAGATTAAAAGGAATTCCTGCAGGAAGGGTCTCCGTTCCCGTTCCACCCCTCGGCACCCGTCC 

TCGCGGCGCGCCTGGGCCCCTAGAAGGACCCGACTACACATCACTGGGCAGGAGCCGGGGAGAGGGTTCA

GCGCAGGGTCTCCAGGAGCGACATGTGTTTGGAGCTAAGCGCCCCTCCTGGGGGCTCAATCTTTGAATACA

CTGGCCTCCACCTTCTAGGGGGAAGGGGCCATCGAGGTATCGGGTCCGTCCGATCCTCGGATCTGAGCTCA

AGAGACACCAATCCCGCCCTCCACCCACGTCTTCTAGCCGTCCCCAACCCACCCCAGGTTCCAGGACCAGA

CTGGGCGCAAAGTGGCAGCGCCCTTTCCTGCGCCTCCCTTGGGGCTTCGGTGGCTCATAGGCTGGATCTCC

GCTGGGGGGCGCACCGGGGAACGTTCAGAGGGCCTGAGACCCGACCCCTCGGGGAAGCCAGGCCCAGAA

ATTTCAGGGTGCTACCCTGGCAGCCCCAGGGAATCAGGCCCAGAGACCCCCCACCCCAGGGAGGGACCTG

AGGCTGGGGGCTGGGAAGAGGCGGTCAGGGCAACATAGGGTGATGGCAGATCTTCATAATAAAATATCTTT

ATTTTC-3‘ 

 

FOXO3_1 

5‘-CAAACAGCAGATTAAAAGGAATTCCTGCAGCAGGGGACGCCGGCGAGGGAAGGGCGAACGGACAGGAG 

TACATTTGCTGGATTCTCCGGACAGCACCGAGGAGGTAGGTCCGCAGCCAACTTTGGAGTAGAGTTTACCGT

AGTGGGGGTCTGGTGCGGGCGCTGTGGCTGGAGTGAGAGGTGTGGGGGTGTTTGGGACGCAGTGTCTGGA

GGAGGGGTTGGATGTGTGGTTTCCAGTCTGTCGCAGGAGCATGTTGCGTCGTCACTAGCTGAATGAGAACC

TTCGGGTCCAAGTTTCAGCTTGTGGGTGTTAACACCTACAGGCACATCGATCCGATTAGAAAAAGCAGTGGT

TGCAAACCTTTTCCTGGACGGCTTCCTTTCCTTGCCTATATTGATACCTTTTCTTCTCGGAGATGTCGCTCCA

GTAAACCTGCTTCTGACTAGCTGCTTCTGAAATGTTCTGGGGCCTCGAACCGGCCGGTCTGGCCACCTCAAT

CCAGACTGGCTGCACCCGCTGCTCCAGATCTTCATAATAAAATATCTTTATTTTC-3‘ 

 

FOXO3_2 

5’-CAAACAGCAGATTAAAAGGAATTCCTGCAGAGGGGATCCCGCTGCTCCCGCCGAGGCCTGGATTCAGGC 

ACTGTTTGAGGGAAGGGCTCTGGTGTGGGGGACGCGGGGCCTGCGCTTCATTCACTCTGGCGTTTGGGAG

GAGGTTTGGGGGCTGGGCCGGGCCGTAATGGCTTCTACCTGTAAATGAACCCGAAGAGAGACTCTCTACCG

TTCCTTATCATCCTCTTGGGGCACGGGACACGTGGTAGGGAGAGAGGTGTGGAAAGGCCTATGATGTAATG

ACTTCCTGCAGTTGGGTATCCAAAGAGATTAACTCCTCTGCCCCTGCTGGGCTGCTGATATCCAGCTGCTTT

CCTCTTCCTAGGCACCTCCCTGGCCCCTTCCCCCAAGACAGTGTGTGTCAGTACCAGGCCAAAGAGTCCTGT

GCGATTGGAGATATACATCTCTTATCAGCTGCCCATATTAATCCAGACTGGCTGCACCCGCTGCTCCAGATCT

TCATAATAAAATATCTTTATTTTC-3’ 

 

GADD45B 

5‘-CAAACAGCAGATTAAAAGGAATTCCTGCAGGCCACACAGTGGGAAGGCCAAGGACCTGCTCCCCAGGAC 

GCTGGGCCAGGGAGACCGCAGGCACACGGGACAGCCACACCAGAGCTGCATCTGGAGAAGGGGTGGGGG

GTTTCCTCTCGCCGCTCCTCGCTATTCTTTCCCTACATTGTTCCGTTCCGTGCTCCCAGTTCCCACCCCACTC

CCTCCACCCGGACGCCGGCGGTTCCCAGGCCCCGGAGCCGGGGTGCATTGGGGGTGGGGGTGGGGTAGA

GTGAGGGGCCTCGTGAAGAGCGCTGCGGGCCAAGACCCTCTTGCGCATGTGACGAGAGCGCACGAGTGTG

GGAGCTTCGGCCTGCGCTCACAGGCGTGTGCGTGGGGAAGTGTTTGGGCCGCCGTGTACACAGCAGGCAC

GCCATAAACGCTTCTTGGATGGCTCCATGCGAGGGAAGGGAGGGAGGGCAGAGTTCAGGCCCTACAGGGA

GGAAAAGGGAGGGGCGGAGGCCTGGCTTTAGGTTTGAATCTCCGCGGCTTACTAGCTCCAGCAGCTCAGCA



Materials & Equipment 

30 
 

AAAGCGTGACTCAGTTTCCCTCGTCCATAAAAGGGAAAGCCGAATCGCCCTCCCACGTGTCGAGGTGAAGAT

CTTCATAATAAAATATCTTTATTTTC-3‘ 

 

ZFPM1 

5’-CAAACAGCAGATTAAAAGGAATTCCTGCAGAGGGGATCCCCGGGGATGCAGGACGCATCCACCGTCATG 

CGGCTGGGAGGTGGTGGAGCTGGGTTTAGGCCTGGAGTTCATAGACACTGGTTTGATCGCCACCCCAAGGG

TCCCTGTCCATCCCTGCGGTGTTGAGAGGGGTTAGATCATCCTCCTGTTCTCCAGACGGAGAAGGCCCTGG

GGGATGGAGCCTGGCGCCGGGAAGGGCCGGGCCCCTGAGGCCGGCCGTGGTTTGGGGCTGGGGCACAC

CCCCGAGCTTCCTGTGCTGTGTGCATCCTCAGGACCAGGCGGTGCCCTATCGGCTCCCGCAGATATGAATT

TCTGTGCAGTGGGCGGTGATGGGCTGATACGCGGCCGCTGGCCAACCGCTGCAGTGGCTACGGCCTATCA

GACCCACACAGGCTGAGCTATCACCCGCGGGGAAGCCAAGGAGGCTCTGTGGGCTGTTATCTCTCGGGGC

GGCCCGTGCGTCGATGGCCAGCAGGGTCAGTGGCCCCAAGGGCAGTGCCCAGCCAGGTGACCGGTCCAG

ATCTTCATAATAAAATATCTTTATTTTC-3’ 

 

1341_RUNX1  

5‘-CAAACAGCAGATTAAAAGGAATTCCTGCAGAGGGAAACCTTTTCGCCTGGTCTCCAATGCATTTCCCCGA 

GATCCCACCCAGGGCTCCTGGGGCCACCCCCACGTGCATCCCCCGGAACCCCCGAGATGCGGGAGGGAG

CACGAGGGTGTGGCGGCTCCAAAAGTAGGCTTTTGACTCCAGGGGAAATAGCAGACTCGGGTGATTTGCCC

CTCGGAAAGGTCCAGGGAGCTCCTCTGGGTCTCGGGCCGCTTGCCTAAAACCCTAAACCCCGCGACGGGG

GCTGCGAGTCGGACTCGGGCTGCGGTCTCCCAGGAGGGAGTCAAGTTCCTTTATCGAGTAAGGAAAGTTGG

TCCCAGCCTTGCATGCACCGAGTTTAGCCGTCAGAGGCAGCGTCGTGGGAGCTGCTCAGCTAGGAGTTTCA

ACCGATAAACCCCGAGTTTGAAGCCCGACAAAAAGCTGATAGCAATCACAGCTTTTGCTCCTTGACTCGATG

GGATCGCGGGACATTTGGGTTTCCCCGGAGCGGCGCAGGCTGTTAACTGCGCAGCGCGGTGCCCTCTTGA

AAAGAAGAAACAGACCAACCTCTGCCCTTCCTTACTGAGGATCTAAAATGAATGGAAAGAGGCAGGGGCTCC

GGGGAAAGGGAACCCCTTAGTCGGCCGGGAGATCTTCATAATAAAATATCTTTATTTTC-3‘ 

 

861_VENTX 

5‘-CAAACAGCAGATTAAAAGGAATTCCTGCAGAGGGAAACCTTTTCGCCTGGTCTCCAATGCATTTCCCCGA 

GATCCCACCCAGGGCTCCTGGGGCCACCCCCACGTGCATCCCCCGGAACCCCCGAGATGCGGGAGGGAG

CACGAGGGTGTGGCGGCTCCAAAAGTAGGCTTTTGACTCCAGGGGAAATAGCAGACTCGGGTGATTTGCCC

CTCGGAAAGGTCCAGGGAGCTCCTCTGGGTCTCGGGCCGCTTGCCTAAAACCCTAAACCCCGCGACGGGG

GCTGCGAGTCGGACTCGGGCTGCGGTCTCCCAGGAGGGAGTCAAGTTCCTTTATCGAGTAAGGAAAGTTGG

TCCCAGCCTTGCATGCACCGAGTTTAGCCGTCAGAGGCAGCGTCGTGGGAGCTGCTCAGCTAGGAGTTTCA

ACCGATAAACCCCGAGTTTGAAGCCCGACAAAAAGCTGATAGCAATCACAGCTTTTGCTCCTTGACTCGATG

GGATCGCGGGACATTTGGGTTTCCCCGGAGCGGCGCAGGCTGTTAACTGCGCAGCGCGGTGCCCTCTTGA

AAAGAAGAAACAGACCAACCTCTGCCCTTCCTTACTGAGGATCTAAAATGAATGGAAAGAGGCAGGGGCTCC

GGGGAAAGGGAACCCCTTAGTCGGCCGGGAGATCTTAAGCTTAGTCCATGGAGGATGCC-3‘ 
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3.12 Databases and software 

Bioconductor https://bioconductor.org/ 

BioEdit http://www.mbio.ncsu.edu/bioedit/bioedit.html 

BioLayout https://kajeka.com/biolayout-express-upgrade/ 

Blueprint Epigenome http://www.blueprint-epigenome.eu/ 

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml 

BSMAP https://code.google.com/archive/p/bsmap/ 

EGA https://www.ebi.ac.uk/ega/home 

Enrichr http://amp.pharm.mssm.edu/Enrichr/ 

EpiTYPER 1.2 

Fastqc http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

GeneRunner http://generunner.net/ 

GENTle http://gentle.magnusmanske.de/ 

G.R.E.A.T http://bejerano.stanford.edu/great/public/html/ 

Homer http://homer.salk.edu/homer/ 

IGV https://www.broadinstitute.org/igv/ 

ImageLab v4.0 

Integrative Genomics Viewer http://software.broadinstitute.org/software/igv/ 

Metascape http://metascape.org/gp/index.html#/main/step1 

metilene https://www.bioinf.uni-leipzig.de/Software/metilene/ 

PerlPrimer http://perlprimer.sourceforge.net/ 

Picard https://broadinstitute.github.io/picard/ 

R https://bioconductor.org/biocLite.R 

UCSC Genome Browser http://genome.ucsc.edu/ 
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4 Methods 

4.1 General cell and bacteria culture methods 

4.1.1 Cell line culture 

4.1.1.1 Assessing cell number and vitality 

The total number of cells and their vitality can be determined by Trypan blue exclusion. The cell 

suspension was diluted suitably with Trypan blue solution and counted in a Neubauer hemocytometer. 

Dead cells appear blue since the blue stain is able to enter the cytoplasm. The concentration of viable 

cells was then calculated using the following equation: 

 

Number of viable cells/ml = N ∙ D ∙ 104 

 

N: average of unstained cells per corner square (1 mm containing 16 sub-squares) 

D: dilution factor 

 

Required solutions and materials: 

Trypan blue solution: 0.2 % (w/v) Trypan blue in 0.9 % NaCl solution 

Neubauer hemocytometer 

4.1.1.2 Culture conditions and passaging 

Cells were cultured in RPMI 1640 (w/o L-glutamine; Gibco) routinely supplemented with 10% 

inactivated FCS, L-glutamine (2 mM), sodium pyruvate (1 mM), antibiotics (50 U/ml penicillin and 

50 U/ml streptomycin), 2 ml vitamins (100x), 5 ml non-essential amino acids (100x) and 0.05 mM 

β-mercaptoethanol. Media supplements were purchased from Gibco, Biochrome or Sigma 

respectively. FCS was heat inactivated for 30 min at 56°C before use. Each batch of FCS as well as 

each RPMI batch was tested before use. 

Culturing of cells was performed at 37°C, with 5% CO2 and 95% relative humidity in an incubator. 

U937 and THP-1 cells grow in suspension and were split 1:2 to 1:4 in fresh medium every 2-4 days. 

For washing and harvesting, mammalian cells were centrifuged using the general cell program: 8 min, 

300xg, 4°C. 
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4.1.1.3 Freezing and thawing cells 

Cells were harvested and resuspended at 10×10
6
 cells/ml in 900 µl ice cold medium including 10% 

FCS. After inverting the mix and transferring it into cryo-vials 100 µl DMSO (10% final) were added 

and the tubes were rapidly inverted to mix cells properly. To allow gradual freezing at a rate of 

1°C/min, the cryo-vials were placed in isopropanol-filled cryo-containers (Nalgene). For long-term 

storage, samples were transferred in liquid nitrogen (-196°C). 

4.1.1.4 Transfection of THP-1 cells with DEAE dextran 

One day prior transfection, a sufficient number of THP-1 cells was seeded into tissue culture flasks 

with a density of 0.5x10
6
 cells / ml. After o/n culture at normal conditions, 6 ml cell suspension per 

transfection (equals 3x10
6
 cells per transfection) was transferred into a Falcon tube and centrifuged 

(1200rpm, 10min, 4°C). Supernatant was discarded and 5 ml STBS buffer added to wash remaining 

cells. A second centrifugation round was performed and supernatant discarded. For each transfection, 

200 ng of the luciferase reporter plasmid and 20 ng of the renilla control plasmid (pHRL-TK) in 70 µl 

STBS are combined with 70 µl DEAE-Dextran (800 µg/ml), mixed and immediately added drop-wise 

directly onto the THP-1 cell pellets. The cells were shaken shortly and incubated for 20 min at 37°C, 

washed twice with 5 ml STBS each, resuspended in 6 ml RPMI (with 10% FCS) and cultured in 60 mm 

tissue culture dishes. Cells are harvested after 48h, the culture dishes washed once with 5 ml PBS at 

RT and the cells are pelleted (10 min, 400xg, 4°C). Pellets are washed once with 10 ml PBS and the 

PBS removed completely by decanting and briefly inverting the centrifuge tubes onto Kleenex paper 

towels. After 48h cells were lysed and assayed (see section 4.1.1.5). 

 

Required materials: 

 

STBS buffer: 3.029 g (25 mM) Tris/HCl, pH 7.5 

 8.01 g (137 mM) NaCl 

 0.373 g (5 mM) KCl 

 0.084 g (0.6 mM) Na2HPO4 

 0.103 g (0.7 mM) CaCl2∙2H2O 

 0.102 g (0.5 mM) MgCl2∙6H2O 

   Ad 1000 ml ddH2O, autoclave 

 

DEAE dextran: 10 mg/ml in STBS 
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4.1.1.5 Measuring Luciferase activity 

Luciferase activity was tested with the Dual-Luciferase Reporter Assay System (Promega) following 

the manufacturer’s instructions.48 hours after transfection, cells were transferred to 14 ml polystyrene 

round-bottom tubes, centrifuged at 300×g for 10 minutes and washed with PBS. After discarding the 

supernatant, cells were lysed by adding 300 μl diluted passive lysis buffer and incubation for 15 min at 

RT. The lysate was cleared and Firefly as well as Renilla luciferase activities were measured on a 

Sirius photometer. Firefly luciferase activity of individual transfections was normalized against Renilla 

luciferase activity. 

4.1.2 Bacterial culture 

4.1.2.1 Bacterial growth medium 

E .coli strains were streaked out on solid LB agar with required selection antibiotics and grown for 12-

36 h. DH10B, PIR1 and TOP10 strains were grown at 37 °C. Single colonies were picked and 

inoculated in LB medium containing the appropriate selection antibiotics and grown overnight at 37 °C 

on a shaker at 200 rpm. 

Table 4-1 - Antibiotics for selective bacterial culture 

Antibiotic Stock concentration Final concentration Dilution 

Ampicillin 100 mg/ml 100 µg/ml 1:1000 

Zeocin 100 mg/ml 25 µg/ml 1:4000 

 

Required reagents and materials: 

 

LB medium:  10 g  1%  Bacto Tryptone (BD, #211705) 

   10 g  170 mM NaCl (AppliChem, #A3597) 

   5 g  0.5%   Bacto yeast extract (BD, #212720) 

   Ad 1000 ml ddH2O, adjust to pH 7.5, autoclave 

 

LB agar plates:  10 g    Bacto Tryptone (BD, #211705) 

   10 g    NaCl (AppliChem, #A3597) 

   5 g    Bacto yeast extract (BD, #212720) 

   15 g    Bacto agar (BD, #214010) 

   Ad 1000 ml ddH2O, adjust to pH 7.5, autoclave, cool to 50°C and add  

   the required antibiotics. Pour solution into 10 cm Petri dishes and  

   store at 4°C. 

 

Petri dishes:  94 mm diameter Greiner Bio-one, #633102 
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4.1.2.2 Glycerol stocks 

For long-term storage, bacteria were stored in autoclaved LB-Glycerol medium (60%). 200 µl of 

bacterial suspension was added to 1000 µl of LB-Glycerol media, mixed, and stored at -80 °C. 

4.1.2.3 Transformation of chemically competent E.coli 

Chemically competent E.coli (50 µl) were thawed on ice, 1-25 ng plasmid DNA was added and the 

suspension was mixed gently and incubated on ice for 30 min. Cells were then heat-shocked at 42°C 

for 30 s, immediately cooled on ice for 2 min and 250 µl SOC medium was added. To express the 

resistance, bacteria were incubated for 1 h at 37°C with shaking. Afterwards 50-150 µl of the 

transformation reaction were plated and incubated at 37°C on LB agar containing the antibiotic 

necessary for selection of transformed cells overnight. 

 

Required reagents: 

 

SOC medium:  20 g  2%  Bacto Tryptone (BD, #211705) 

   0.6 g  10 mM  NaCl (AppliChem, #A3597) 

   5 g  0.5%   Bacto yeast extract (BD, #212720) 

   0.2 g  3 mM  KCl 

   Ad 1000 ml ddH2O, autoclave and  

   Add to the cooled solution: 

    

   10 ml   10 mM  MgCl2 (1 M), sterile filtered 

   10 ml   10 mM  MgSO4 (1 M), sterile filtered 

   10 ml   20 mM  Glucose (2 M), sterile filtered 

4.1.2.4 Isolation of human white blood cells 

Peripheral white blood cells of humans were obtained after ammonium-chloride-potassium lysis of red 

blood cells (RBCs). RBCs are permeable to ammonium chloride and the uptake results in the 

accumulation of cytoplasmic ions and subsequent osmotic lysis through uptake of water.  

For ACK lysis 5-10 ml peripheral blood (EDTA or heparin treated) were mixed with 25 ml ACK lysis 

buffer, vortexed and incubated for 5 min at room temperature. After centrifugation (10 min, 1300rpm, 

4-20°C) supernatant was removed carefully with a pipette and cell pellet was resuspended with 25 ml 

fresh ACK lysis buffer. Incubation for 5 min at room temperature was followed by centrifugation and 

removal of supernatant. The cell pellet was washed three times with PBS (phosphate buffered saline) 

and is then ready for further treatment or can be stored at -20°C. 
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Required reagents: 

 

6x ACK lysis buffer: 49.64 g  0.155 M NH4Cl 

   6.00 g  0.1 M  KHCO3 

   0.222 g  0.1 mM  EDTA-disodium dihydrate 

   Ad 1000 ml ddH2O, adjust to pH 7.4, sterile filtered 

4.1.2.5 Isolation of human mononuclear cells by density gradient 

centrifugation 

Mononuclear cells (MNCs) from peripheral blood (PB) or bone marrow (BM) were isolated by density 

gradient centrifugation over Pancoll (Pan Biotech). Bone marrow samples or anticoagulant-treated 

blood samples were diluted 1:2 with PBS and layered carefully over Pancoll (10 ml). After 

centrifugation for 25 min at 2000 rpm and with soft break, several layers with separate cell types 

according to the differential migration can be observed. The bottom layer contains erythrocytes and 

erythrocytes followed by a Pancoll layer. Between the Pancoll layer and the top layer containing the 

plasma, the mononuclear cells can be found in the interface. This interface layer is aspirated using a 

5 ml transfer pipette and washed three times with PBS. Cells were then counted using Tuerk solution 

and either frozen in FCS including 10% DMSO or subsequently further processed.   

4.2 General molecular biological methods 

4.2.1 Preparation and analysis of DNA 

4.2.1.1 Isolation of plasmid DNA from E. coli 

Plasmid preparation for up to 50 µg plasmid DNA was done using the NucleoSpin® Plasmid Quick 

Pure Kit (Macherey-Nagel) following the manufacturer´s instructions. For higher plasmid DNA content 

up to 100 µg plasmid preparation was done with the Plasmid Midi Kit (Qiagen) following the 

manufacturer´s instructions. After preparation plasmids were verified by restriction digest with suitable 

restriction enzymes (1.5 h at 37°C). The resulting fragments were separated by gel electrophoresis 

together with a suitable DNA ladder to test for insert presence and size. 

4.2.1.2 Isolation of genomic DNA from mammalian cells 

Genomic DNA from human blood cells was isolated after ACK lysis (see No. x) using the Blood & 

Tissue Culture Kit (Qiagen) according to the manufacturer´s instructions. DNA concentration was 

determined with the NanoDrop 1000 spectrophotometer. 
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4.2.1.3 Fragmentation of genomic DNA and chromatin 

4.2.1.3.1 Sonication of genomic DNA 

For Methyl-CpG-immunoprecipitation (MCIp) or targeted bisulfite sequencing genomic DNA was 

fragmented to a mean size of 200-300 bp or 180-220 bp respectively using the Covaris S2 system. 

This system works with focused ultrasonication and leads to high reproducibility.  

Ultrasonication was done in microTUBEs (6 mm x 16 mm) either screw-capped or snap-capped with a 

maximum volume of 130 µl. Following settings were used for ultrasonication: 

Table 4-2 - Parameters for focused ultrasonication with Covaris 

Parameters Settings for MCIp Settings for targeted BS-seq 

Intensity 5 5 

Duty Cycle 10% 10% 

Cycles per burst 200 200 

Treatment time [s] 180 120 

Temperature [°C] 7 7 

Water Level S2 12 12 

Mode Frequency sweeping Frequency sweeping 

 

Fragment range was controlled by agarose gel electrophoresis (2%, 110 V, 1h, see section 4.2.1.4). 

4.2.1.3.2 Sonication of chromatin 

Crosslinked chromatin for Chromatin immunoprecipitation (ChIP) was fragmented by sonication using 

the Branson Sonifier 250. The following settings were used: 

 

Output    3 

Sonication time  5 x 10 sec 

 

After each sonication step the sample was placed for 30 sec on ice to cool again. The fragmented 

lysates were centrifuged at 4°C for 5 min at 13000 g to pellet remaining cell debris. Supernatant was 

transferred to a new 1.5 ml tube. Fragment range was controlled by agarose gel electrophoresis (2%, 

110 V, 1h, see section 4.2.1.4). 

4.2.1.4 Agarose gel electrophoresis 

The required amount of agarose according to Table 4-3 was added to the corresponding amount of 

TAE (1x). The slurry was heated in a microwave oven until the agarose was completely dissolved. 

Ethidium bromide was added after cooling the solution to 50-60 °C. The gel was cast, mounted in the 

electrophoresis tank and covered with TAE (1x). DNA-containing samples were diluted 4:1 with DNA 
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loading dye (5x), mixed, and loaded into the slots of the submerged gel. Depending on the size and 

the desired resolution, gels were run at 35-120 V for 30 min to 3 h. 

 

Table 4-3 - Agarose concentrations for different separation ranges 

% agarose in gel Efficient range of separation (kb) 

0.5 Genomic DNA 

1 0.4 – 6 

1.5 0.2 – 3 

2.0 0.1 – 2 

 

Required reagents: 

 

TAE (50x) 252.3 g 2 M  Tris 

 250 ml 250 mM NaOAc/HOAc, pH 7.8 

 18.5 g 50 mM  EDTA 

 Ad 1000 ml ddH2O, autoclave 

 

DNA loading dye (5x) 500 µl 50 mM  Tris/HCl, pH 8.0 

 500 µl 1%  SDS (20%) 

 1 ml 50 mM  EDTA (0.5 M), pH 8.0 

 4 ml 40%  Glycerol 

 10 mg 1%  Bromophenol blue 

 Ad 10 ml nuclease-free ddH2O, store at 4°C 

4.2.1.5 Molecular cloning of vectors 

Subcloning of PCR products into a sequencing or expression vector was done by digestion of both, 

PCR product and vector, with the appropriate restriction endonuclease (see section 4.2.1.8) or using 

the Gibson assembly (see section 4.2.1.7). For directional cloning, restriction sites were introduced by 

adding the correct recognition sequences to the primer sequences. Following ligation reaction and 

transformation in chemically competent cells was done as described in section 4.2.1.9 and 4.1.2.3, 

respectively. Successful insertion of the fragment into the vector was controlled by preparing plasmid 

DNA from liquid cultures (see section 4.2.1.1) and subsequent sequencing using vector-specific 

primers.  

4.2.1.6 Reporter gene assays 

Differentially methylated regions (DMRs) ranging from 400 – 800 bp were ordered as gblocks® gene 

fragments at the IDT company and solved with TE buffer according the manufacturer’s instructions 

(final concentration: 10 ng / µl). Reporter plasmids pCpGL-basic (empty reporter vector, CpG-free), 
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pCpGL-CMV/T.EF1A (heterologous EF1A promoter with upstream terminator, CpG-free) and pCpGL-

CMV/T.A1FE (inverted EF1A promoter with upstream terminator, CpG-free) were linearized (see 

4.2.1.8) and assembled with the appropriate gblocks® using the Gibson assembly reaction (see 

4.2.1.7). Ligated constructs were transformed into competent PIR1 E.coli cells (see4.1.2.3) and 

plasmids were isolated as described in 4.2.1.1. Inserts were verified by sequencing and luciferase 

reporter constructs were either mock-treated or methylated in vitro with SssI methylase and purified 

using PEG precipitation. Transfection of THP-1 with DEAE and Luciferase measurement was done 

according to sections 4.1.1.4 and 4.1.1.5.  

4.2.1.7 Gibson assembly 

DMRs (differentially methylated regions) were cloned using the isothermal single tube Gibson 

assembly reaction. After linearization of the plasmid with the appropriate restriction endonuclease (see 

section 4.2.1.8) following reaction was set up: 

 

Table 4-4 - Reaction composition for Gibson assembly 

Component Volume 

50 ng linearized plasmid x µl 

Insert (3-fold molar excess) z  µl 

Gibson Assembly Master Mix (2x) 10 µl 

H2O 20 µl – (x +z) µl 

Final Volume 20 µl 

 

Reaction mix was incubated for 1h at 50°C in a thermal cycler and subsequently used for 

transformation into bacteria (see section 4.1.2.3). The recommended 3-fold molar excess of insert was 

calculated using following formula:  

 

mInsert(ng) =  
3 x mPlasmid(ng) x lengthInsert(bp)

lengthPlasmid(bp)
 

4.2.1.8 Restriction endonuclease digestion 

Control digest from Mini/Midi preparations was done using 1-2 µl Plasmid DNA and the appropriate 

restriction endonucleases. The Plasmid DNA was digested at 37°C for 1.5 h and controlled with 

agarose gel electrophoresis. 

To avoid relegation of digested vector ends, dephosphorylation of 5’ end was done using 1 Unit 

alkaline phosphatase (Roche). Reaction mixture was incubated at 37°C for 30 min and subsequent 

purification of the linearized vector was done using gel extraction (see section 4.2.1.11).  



Methods 

40 
 

4.2.1.9 Ligation reaction 

Restriction enzyme treated vectors and PCR products were ligated in a 10 μl reaction at a 3-fold molar 

excess of insert to vector, using 25-50 ng of vector. Ligation was carried out overnight at 16°C with 1U 

T4 DNA ligase. 

4.2.1.10 Quantification of DNA 

The exact DNA concentration was determined either by using the PicoGreen dsDNA Quantitation 

Reagent (Molecular Probes) or by using the NanoDrop spectrophotometer. 

4.2.1.11 Purification of DNA fragments by gel extraction 

DNA fragments were size-separated by agarose gel electrophoresis (see section 4.2.1.4) and the 

desired fragment was excised under UV illumination. DNA fragments were purified by gel extraction 

using QIAquick Gel Extraction Kit (Qiagen) following the manufacturer´s instructions. 

4.2.1.12 Polyethylene glycol precipitation of DNA 

For precipitation of DNA from small volumes, e.g. PCR reactions or endonuclease digestions, 

one volume of PEG 8000 Mix was added to the DNA-containing solution, vortexed and incubated for 

10 min at RT. After centrifugation (10 min, 13000 rpm, RT), the supernatant was discarded and the 

precipitated DNA was washed by carefully adding 200 µl EtOH (100%) to the tube wall opposite of the 

pellet. Following centrifugation (10 min, 13000 rpm, RT), the supernatant was carefully removed. The 

pellet was dried and resuspended in H2O in 50-75% of the initial volume. 

 

Required reagents: 

 

PEG 8000 Mix 26.2 g 26.2 % PEG 8000 

 20 ml 0.67 M NaOAc (3 M) pH 5.2 

 660µl 0.67 mM MgCl2 (1 M) 

 Ad 250 ml ddH2O 
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4.2.1.13 Polymerase chain reaction 

Polymerase chain reaction (PCR) allows in vitro amplification of specific DNA segments. A thermo 

stable DNA polymerase synthesizes the sister strand of a heat-denatured single-stranded DNA when 

deoxynucleotide triphosphates are added under appropriate conditions
173

. The polymerization reaction 

is “primed” with small oligonucleotides that anneal to the template DNA strand through base pairing 

giving the reaction its specificity by defining the borders of the amplified segment. Standard 

applications of PCR reactions are explained in the following and are used unless otherwise 

mentioned. More specialized applications are explained in more detail within the specific method. 

 

Primer design 

Unless otherwise mentioned sequences for generating primers were extracted using the UCSC 

Genome Browser. In general primers were designed using PerlPrimer Software and controlled using 

PCR and BLAT functions of the UCSC Genome Browser. Following settings were used to design 

primers: 

 

Primer Tm:  65 – 68°C 

Primer length:  18 – 28 bp 

Amplicon size:  80 – 150 bp 

 

Standard PCR 

PCRs were generally performed in 0.5 ml PCR tubes in a MJ research PTC 200 thermocycler 

(Biozym). The "calculated temperature" feature was used to decrease temperature hold times and 

additionally the lid was heated to 105°C to prevent vaporization. 

Standard PCR to amplify specific target regions was performed with the PhusionTM Hot Start II High 

Fidelity DNA Polymerase (Thermo Fisher Scientific) according to the following protocol. 

Table 4-5 - Reaction composition for standard PCR 

Component Volume Final concentration 

H2O Add 50.00 µl  

5 x Phusion HF buffer 10.00 µl 1 x 

10 mM dNTPs 1.00 µl 200 µM each 

Primer for 1.00 µl 0.5 µM 

Primer rev 1.00 µl 0.5 µM 

Template DNA x µl  

Phusion Hot Start High Fidelity DNA Polymerase (2 U/µl) 0.50 µl 0.02 U/µl 

 

General parameter settings for analytical PCR are summarized in Table 4-6. 
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Table 4-6 - Cycling protocol for standard PCR 

 

Cycle step 

2-step protocol  

Cycles Temperature Time 

Initial denaturation 98°C 30 sec 1 

Denaturation 

Annealing 

Extension 

98°C 

- 

72°C 

7 sec 

- 

30 sec 

 

32 

Final extension 72°C 

4°C 

10 min 

hold 

1 

 

 

Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was used to test for specific DNA enrichment by Methyl-CpG 

immunoprecipitation (MCIp, see section 4.2.1.16), Chromatin immunoprecipitation (ChIP, see section 

4.2.1.17) as well as for local expression analysis after reverse transcription quantitative PCR (see 

section 4.2.1.13). QPCR was performed with the QuantiFast SYBR Green Kit (Qiagen) in 96-well 

format adapted to the Eppendorf Realplex Mastercycler EpGradient S system (Eppendorf) and 384-

well format adapted to the LightCycler480 system (Roche). The relative amount of amplified DNA was 

measured through the emission of light by the SYBR green dye after each extension step. Specificity 

of the amplification product was determined by a melting curve. 

The reaction was composed of following reagents with conditions shown in Table 4-7 and Table 4-8. 

Table 4-7 - Reaction composition for qPCR 

Component Volume Final concentration 

SYBR Green mix (2x) 5.00 µl 1 x 

Nuclease-free ddH2O 2.00 µl  

Primer forward (10 µM) 0.50 µl 0.5 µM 

Primer reverse (10 µM) 0.50 µl 0.5 µM 

Template DNA 2.00 µl  

Final Volume 10.00 µl  
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Table 4-8 - Cycling protocol for qPCR 

Cycle step Temperature Time Number of cycles 

Initial denaturation 95°C 5 min 1 x 

Denaturation 95°C 8 sec 
45 x 

Annealing & Extension 60°C 20 sec 

Final denaturation 95°C 15 sec 1 x 

Final extension 60°C 15 sec 1 x 

Melting Curve 60 → 95°C 10 min 1 x 

Cooling 4°C hold  

 

To calculate amplification efficiency, a dilution series (e.g. 1:10; 1:50; 1:100, 1:1000) of a suitable DNA 

sample was additionally measured for each amplicon. The software automatically calculated relative 

DNA amounts based on the generated slope and intercept. Specific amplification was determined by 

melting curve analyses. Data were imported and processed in Microsoft Excel 2010. All samples were 

generally measured in duplicates. 

4.2.1.14 In vitro methylation of DNA 

As a control for methylation analysis fully methylated DNA was generated using SssI 

methyltransferase (New England Biolabs). S-adenosyl methionine (SAM) was used as a methyl donor. 

In general the following reaction conditions were used: 

 

Table 4-9 - Reaction composition for in vitro methylation  

Component Volume Final concentration 

DNA x µl 2 µg 

Nuclease-free ddH2O 39.1 – x µl  

Alternative buffer (5x) 10.00 µl 1 x 

S-adenosyl methionine (32 mM) 0.40 µl 160 µM 

SssI (20.000 U / ml) 0.50 µl 10 U 

Final Volume 50.00 µl  

 

After 2 hours incubation at 37°C the reaction was supplied with additional 0.5 µl SAM and 0.2 µl 

M.SssI followed by incubation of another two hours. 

After methylation reaction in vitro methylated genomic DNA was purified with PEG precipitation and 

finally quantified using a NanoDrop spectrophotometer. Completeness of methylation was controlled 

by digesting both methylated and unmethylated DNA using the methylation-sensitive restriction 

enzyme HpaII. 
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Alternative buffer: 

 0.029 g 50 mM NaCl 

 100 µl 10 mM Tris-HCl (1 M) pH 7.9 

 0.029 g 10 mM EDTA 

 50 µl 160 µM S-adenosylmethionine (32 mM) 

 Ad 10 ml ddH2O 

4.2.1.15 Sanger Sequencing 

Sanger sequencing was done by Geneart/Life Technologies (Regensburg, Germany) with the Applied 

BiosystemsTM system. The obtained sequence was analyzed with the BioEdit or GeneRunner 

Software or with the Blat function from the UCSC genome browser. 

4.2.1.16 Methyl-CpG-immunoprecipitation (MCIp) 

MCIp is based on a fusion protein consisting of the methyl-CpG-binding domain of MBD2 fused to the 

Fc-tail of human IgG1. The method enables rapid enrichment of methylated CpG rich DNA as well as 

fractionation of DNA fragments according to their methylation level. DNA affinity of the antibody-like 

protein is dependent on the density of methylated CpGs and salt concentrations in the buffer. MCIp 

was performed with the EpiMark® Methylated DNA Enrichment Kit (NEB), which is based on a method 

established in our laboratory. The method allows for the fractionation of DNA fragments according to 

their level of methylated CpGs as well as the enrichment of methylated DNA fragments. Fractionation 

is achieved by washing the immobilized MBD2-Fc-bound DNA fragments with increasing NaCl 

concentration in the wash buffer. Genomic DNA fragments that exhibit low to intermediate methylation 

levels reside in fractions obtained from washing with buffer of 150-500 mM NaCl concentration. 

Remaining bound DNA fragments, which exhibit high methylation levels, can be totally recovered by 

washing with buffer of ≥ 1000 mM NaCl concentration. To enrich in general for methylated DNA 

fragments, all remaining bound DNA fragments after washing with buffer of 150 mM NaCl 

concentration can be recovered by incubating the immobilized DNA in nuclease-free ddH2O at 65 °C 

for 15 min. Both protocols can be combined. 

MCIp was performed according to the manufacturer’s instructions. Fragments with low to intermediate 

methylation level were eluted by washing with 150 mM and 500 mM NaCl wash buffer. Highly 

methylated fragments were recovered by incubation with 52 µl nuclease-free ddH2O at 65 °C for 

15 min.  Successful fractionation was confirmed by quantitative PCR with control loci listed in the 

following table. 

Table 4-10 - qPCR control loci for MCIp 

Gene symbol Expected outcome in H2O fraction 

‘empty 6.2’ CpG-free region  depletion of mCpGs (no signal) 

Snrpn (promoter) Imprinted region  50 % enrichment of mCpGs 
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In somatic cells, imprinted regions exhibit allele-specific DNA methylation depending on the parental 

origin. For Snrpn, the paternal allele is, in contrast to the completely methylated maternal allele, free of 

DNA methylation. The paternal allele resides in the lower salt fractions (50% recovery) whereas the 

maternal allele was enriched in the fraction with the highest salt concentration (1000 mM) (50% 

recovery). In contrast, wash fractions with intermediate salt concentration are depleted of fragments 

from the Snrpn locus.  

The ‘empty 6.2’ control locus comprises a region without any CpGs, resulting in no binding to the 

fusion protein and therefore no signal in the qPCR. 

4.2.1.17 Chromatin immunoprecipitation (ChIP) 

20 Mio cells were harvested by centrifugation at 4°C for 10 min at 300xg and subsequently 

resuspended in 20 ml RPMI inclusive 10 % FCS.  Crosslink reaction was started by addition of 1.33 ml 

p-Formaldehyde (16 %) per 20 ml cell suspension and incubation for 10 min at RT. Reaction was 

stopped by addition of 1/20 Vol Glycine (2.625 M) followed by two washing steps with cold PBS/PMSF 

(1 mM). Pellets can be stored at -80 °C up to months after snap freezing in N2 (l). 

Cell lysis of crosslinked cells was carried out in 500 µl Suspension buffer and 500 µl Cell lysis buffer 

for 10 min on ice. The lysate was transferred to a new 1.5 ml tube and centrifuged at 4 °C for 5 min at 

700 xg to pellet the nuclei. The nuclei were then lysed by resuspension in 450 µl Nuclear Lysis Buffer 

(for Branson Sonifier) or 800 µl (for Covaris). The lysed nuclei can be stored in Nuclear Lysis Buffer at 

-80 °C up to months after snap freezing in N2 (l). 

After sonication according to section 4.2.1.3.2, lysate was cleared from remaining cell debris by 

centrifugation at 4 °C for 5 min at 13000xg.  

To evaluate the fragmentation size, 30 µl of the sonicated and cleared lysate was mixed with 14 µl 

NaCl (5 M) and 26 µl L2 (without PMSF and inhibitors) and incubated o/n at 65 °C to reverse the 

crosslinking. After digestion of RNAs with 10 µg RNase A for 1 h at 37 °C, the sample was purified 

with the NEB Monarch® PCR & DNA Cleanup Kit according the manufacturer’s instructions. The 

sample was eluted in 30 µl EB buffer and size-separated by agarose gel electrophoresis (2% agarose 

gel, 50 bp ladder) according to section 4.2.1.4. The remaining lysate can be stored at -80 °C up to 

months. 

For each immunoprecipitation (IP), 80 µl of cleared lysate (chromatin of ~2 Mio cells) were used. For 

normalization purposes, per sample 4 µl of lysate (5% of IP) were retained as input.  

The first step included preparation of Sepharose CL-4B beads for preclearing of the chromatin 

samples. 50 µl beads per immunoprecipitation (IP) were washed twice with TE buffer (pH 8.0) and 

centrifuged for 1 min at 600xg at RT. Dilution buffer was added to the previous volume as well as 25 µl 

20 % BSA /1 ml beadsand 4 µl Glycogen/1 ml beads. Mixture was rotated for 2 h at room temperature.  

For pre-clearing, the chromatin batch was diluted with 1.5x volume Dilution buffer (with inhibitors, 

results in 200 µl diluted lysate per IP) and incubated with 50 µl pre-clearing beads per IP on a rotor at 

4 °C for 2 h. To recover the pre-cleared lysate, the mix was centrifuged at 4 °C for 5 min at 13000xg 

and the supernatant (200 µl) transferred to a new 0.5 ml tube. In the next step, appropriate antibodies 

(2.5 µg per IP) were added to the supernatant and incubated over night at 4°C on a rotor.  
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In parallel to the o/n incubation of the chromatin antibody mixture, 40 µl Protein A-coated beads per 

individual IP for the subsequent pull down of the antibody-bound chromatin fragments were prepared. 

The beads were washed twice by repeated centrifugation at RT for 1 min at 600 xg and resuspension 

in TE buffer. The washed beads were diluted to the initial volume with Dilution buffer (DB, w/o 

inhibitors). After addition of 25 µl BSA (20%) and 4 µl Glycogen per ml Protein A-coated beads, the 

beads were incubated o/n on a rotor at 4 °C.  

To pull down the chromatin-antibody complexes, 50 µl of blocked beads were added to each IP 

sample and incubated on a rotor for 3 h at 4 °C. The beads with the bound chromatin-antibody 

complex were centrifuged at 4 °C for 5 min at 500xg. Supernatant was discarded and unspecifically 

bound chromatin was washed away by repeated washing steps with increasing stringency.  

The beads were resuspended twice in 400 µl of each of the three washing buffers (WBI-III) and 

incubated on a rotor for 5 min at RT after each resuspension. Final washing step was performed by 

three times resuspension in 400 µl TE buffer. To elute the bound chromatin-antibody complexes, the 

beads were incubated with 110 µl Elution Buffer (EB) for 20 min at RT (shaking every 5 min). After 

centrifugation at 4 °C for 1 min at 500xg, 100 µl supernatant were transferred to a new 1.5 ml tube. 

Elution was repeated with additional 110 µl Elution Buffer and incubation for 10 min and after 

centrifugation, another 100 µl supernatant was combined with the first 100 µl eluate. Crosslinking of 

the eluted chromatin fragments was reversed by incubation with 5 µl Proteinase K (20 µg/µl) o/n at 

65 °C. In parallel, 4 µl input were diluted to 200 µl with Elution Buffer and also subject to Proteinase K 

treatment. 

The DNA fragments released from the recovered chromatin as well as from the input sample by 

Proteinase K treatment were purified by RNase A digestion (0.33 µg/µl, 2 h at 37 °C) and subsequent 

clean up with the NEB Monarch® PCR & DNA Cleanup Kit according to the manufacturer’s 

instructions. DNA is loaded onto the column by centrifugation at 16000xg and eluted after 2 min 

incubation at RT with 53 µl pre-warmed Elution Buffer (55 °C, part of the kit). 

To validate specific enrichment by immunoprecipitation, 10 µl of the eluate were diluted with Elution 

Buffer for subsequent qPCR according to section 4.2.1.13.  

 

Required materials: 

 

Formaldehyde  16%    Formaldehyde 

       (ThermoFisher,  # 28906) 

 

Glycine   2.625 M 9.85 g  Glycine 

       (Roth, #3908.1) 

        Ad 50 ml nuclease-free ddH2O 

 

BSA   20%  2 g  Bovine serum albumin 

       (Sigma-Aldrich, #A4503) 

        Ad 10 ml nuclease-free ddH2O 
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Glycogen    5 mg/ml Glycogen 

       (Life Techn., #AM9510) 

 

HEPES/KOH  1 M  238.3 g  4-(2-hydroxyethyl)-1-Piperazineethanesulfonic  

(pH 7.9)      acid 

       (Sigma-Aldrich, #H3357) 

        Adjust with KOH to pH 7.9 

        Ad 1 l nuclease-free ddH2O 

 

KCl   2 M  149.1 g  Potassium chloride 

       (Merck Millipore, #1049360250) 

        Ad 1 l nuclease-free ddH2O 

 

EDTA/NaOH  0.5 M  186.1 g  Ethylenediaminotetraacetic acid  

(pH 8)       disodium salt dehydrate  

(AppliChem, #A2937) 

        Dissolve in 500 ml nuclease-free ddH2O 

        Adjust with NaOH to pH 8.0 

 Ad 1 l nuclease-free ddH2O 

 

PMSF   100 mM 1.74 g  Phenylmethanesulfonyl fluoride 

       (Sigma-Aldrich, #P7626) 

        Ad 100 ml Isopropanol (p.a.) 

       (Merck Millipore, #1096342511) 

 

NaCl   5 M  29.2 g  Sodium chloride     

(AppliChem, #A3597) 

        Ad 100 ml nuclease-free ddH2O 

 

Tris/HCl  1 M  121.1 g  Tris ultrapure 

(pH 7.4)      (AppliChem, #A1086) 

        Adjust with HCl to pH 7.4 

        Ad 1 l nuclease-free ddH2O 

 

TE   10 mM  10 ml  Tris/HCl (1 M, pH 8.0) 

(1x, pH 8.0)  1 mM  2 ml  EDTA/NaOH (0.5 M, pH 8.0) 

        Ad 1 l nuclease-free ddH2O 
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SDS   20%  20 g  Sodium dodecyl sulfate  

       (Sigma-Aldrich, #L4390) 

        Ad 100 ml nuclease-free ddH2O 

 

Empigen BB  30%  3 ml  Empigen BB detergent (100%) 

       (Sigma-Aldrich, #45165) 

     7 ml  nuclease-free ddH2O 

 

Triton X-100  10%  1 ml  Triton X-100 (100%) 

       (Sigma-Aldrich, #T8787) 

     9 ml  nuclease-free ddH2O 

 

LiCl   2.5 M  10.6 g  Lithium chloride 

       (Merck Millipore, # 438002) 

        Ad 100 ml nuclease-free ddH2O 

 

Deoxycholate  10%  1g  Sodium deoxycholate 

       (Sigma-Aldrich, #D6750) 

        Ad 10 ml nuclease-free ddH2O 

 

NaHCO3  1 M  84 g  Sodium hydrogen carbonate 

       (Merck Millipore, #1063290500) 

        Ad 1 l nuclease-free ddH2O 

 

Cell Buffer Mix  10 mM  1 ml  HEPES/KOH (1 M, pH 7.9) 

   85 mM  4.25 ml  KCl (2 M) 

   1 mM  200 µl  EDTA/NaOH (500 mM, pH 8.0) 

     91.55 ml  nuclease-free ddH2O 

 

Immediately before use, add the following inhibitors per ml CBM: 

   1 mM  10 µl  PMSF (100 mM) 

     20 µl  Inhibitor Mix (50x) 

       (Roche, #04693132001) 

 

Suspension Buffer   900 µl  CBM 

     100 µl  nuclease-free ddH2O 

 

Cell Lysis Buffer   900 µl  CBM 

   1%  100 µl  NP-40 (10%) 

       (Roche, #11332473001) 
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Nuclear Lysis Buffer 50 mM  5 ml  Tris/HCl (1 M, pH 7.4) 

   1%  5 ml  SDS (20%) 

   0.5%  1.667 ml  Empigen BB (30%) 

   10 mM  2 ml  EDTA/NaOH (500 mM, pH 8.0) 

   83.33 ml   nuclease-free ddH2O 

 

Immediately before use, add the following inhibitors per ml Nuclear Lysis Buffer: 

   1 mM  10 µl  PMSF (100 mM) 

     20 µl  Inhibitor Mix (50x) 

       (Roche, #04693132001) 

 

Dilution Buffer (DB) 20 mM  2 ml  Tris/HCl (1 M, pH 7.4) 

   100 mM 2 ml  NaCl (5 M) 

   2 mM  400 µl  EDTA/NaOH (500 mM, pH 8.0) 

   0.5%  5 ml  Triton X-100 (10%) 

     87.6 ml  nuclease-free ddH2O 

 

Immediately before use, add the following inhibitors per ml Dilution Buffer: 

   1 mM  10 µl  PMSF (100 mM) 

     20 µl  Inhibitor Mix (50x) 

       (Roche, #04693132001) 

Wash Buffer 

 WBI  20 mM  2 ml  Tris/HCl (1 M, pH 7.4) 

   150 mM 3 ml  NaCl (5 M) 

   0.1%  500 µl  SDS (20%) 

   1%  10 ml  Triton X-100 (10%) 

   2 mM  400 µl  EDTA/NaOH (500 mM, pH 8.0) 

     84.1 ml  nuclease-free ddH2O 

 

 WBII  20 mM  2 ml  Tris/HCl (1 M, pH 7.4) 

   500 mM 10 ml  NaCl (5 M) 

   1%  10 ml  Triton X-100 (10%) 

   2 mM  400 µl  EDTA/NaOH (500 mM, pH 8.0) 

     84.1 ml  nuclease-free ddH2O 

 

 WBIII  10 mM  1 ml  Tris/HCl (1 M, pH 7.4) 

 (protect from light!) 250 mM 10 ml  LiCl (2.5 M) 

   1%  10 ml  NP-40 (10%) 

   1%  10 ml  Deoxycholat (10%) 

   1 mM  200 µl  EDTA/NaOH (500 mM, pH 8.0) 

     68.8 ml  nuclease-free ddH2O 
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Elution Buffer  0.1 M  500 µl  NaHCO3 (1 M) 

   1%  250 µl  SDS (20%) 

     4.25 ml  nuclease-free ddH2O 
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4.2.1.18 Library preparation for next generation sequencing 

Next generation sequencing (NGS) libraries were prepared to be sequenced on Illumina platforms 

(HiSeq1000). In general, DNA low binding tubes (Sarstedt) were used. Library preparation was 

subsequently enhanced during the time of this thesis, resulting in four different preparation protocols 

(NGS library protocol I, II, III & NEBNext Ultra II DNA Library Prep Kit for Illumina).  

 

NGS library protocol I 

The first library preparation step is an end repair to convert overhangs of double stranded DNA 

fragments into phosphorylated blunt ends. Following reaction set up was used: 

Table 4-11 - Reaction composition for end repair (NGS library protocol I) 

Component Volume [µl] 

DNA sample 40.00 

H2O 3.34  

T4 DNA ligase buffer (10x) 5.00 

dNTP mix (10 mM each) 1.00 

T4 DNA polymerase 0.30 

Klenow fragment 0.06 

T4 Polynucleotide kinase 0.30 

Total Volume 50.00 

  

The reaction was incubated in a thermal cycler at 20°C for 30 min (without heated lid) and cleaned up 

with AMPure XP magnetic beads (equilibrated for 30 min at RT on a rotor) at a ratio 1:1.8.  

90 µl beads were added to the end repair mix (50 µl), vortexed (speed 6) two times, inverted and 

vortexed again and then incubated at RT for 5 min. The tube was placed on a magnetic particle 

concentrator (MPC) for 2 min. After removal of the supernatant, the trapped beads were washed twice 

with 500 µl Ethanol (70%, prepared freshly) for 30 sec each. To remove residual Ethanol, the beads 

were air-dried at 37 °C for 2-5 min. The bound DNA fragments were eluted by incubation with 44.4 µl 

nuclease-free ddH2O at RT for 5 min. After centrifugation at RT for 1 sec at 13000xg, the tubes were 

placed on a MPC for 2 min and the supernatant was transferred to a new 1.5 ml tube for a second 

round of clean up.  

For introduction of A-overhangs to the 3’ end of the phosphorylated blunt ends of DNA fragments 

following reaction was done: 
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Table 4-12 - Reaction composition for A-overhang introduction (NGS library protocol I) 

Component Volume [µl] 

Blue buffer (10x) 5.00 

dATP (10 mM) 0.10 

Klenow (3’-5’ exo-) 0.50 

Total Volume 5.60 

 

The reaction mix was added to the end-repaired sample and incubated at 37°C for 30 min in a thermal 

cycler. After a cleanup with AMPure XP beads (1:1.8 ratio) as described above, adapters were ligated 

to the end of the DNA fragments allowing later hybridization to an Illumina Next Generation 

Sequencing flow cell.  

 

Table 4-13 - Reaction composition for adapter ligation (NGS library protocol I) 

Component Volume [µl] 

Rapid Ligation buffer (2x) 16.00 

Bioo NEXTflex adapter (1:2 dilution) 1.00 

T4 DNA Ligase 1.00 

Sample with A-overhangs 14.50 

Total Volume 32.50 

 

After incubation at 30°C for 10 min in a thermal cycler reaction mix was filled up with 1 µl of 0.5  M 

EDTA (pH 8.0) and 16.5 µl water to a total volume of 50 µl. To remove unligated adapters or adapter 

dimers purification with AMPure XP beads was done using a ratio of 1:1.8. 

Size selection of DNA fragments was performed by gel electrophoresis and excision of the desired 

fragment size. The eluate (12 µl) was mixed with 2 µl loading dye (6x) and loaded together with 1 µg 

50 bp DNA ladder (NEB) (separated by one lane) on a 2% agarose gel (50 ml, 1x TAE). The gel was 

run for 60 min at 100 V. Using a clean razor, fragments in the range of 200-380 bp were excised and 

subject to DNA extraction with the QIAquick Gel Extraction Kit. The gel piece was weighted and 

dissolved in 6 Volumes QG buffer and incubated at RT on a rotor until gel is dissolved completely 

(approx.10 min). The dissolved gel sample was mixed with 2 Volumes Isopropanol and loaded twice 

onto the column by centrifugation at RT for 30 sec at 13000xg. The flow-through was discarded and 

the column washed with 500 µl QG buffer. The column was washed twice with 750 µl PE buffer and 

centrifuged at RT for 45 sec at 13000xg. The empty column was centrifuged again at RT for 2 min at 

13000xg and transferred to a new 1.5 ml tube. After residual PE buffer was aspirated from the purple 

ring, the column was air-dried for 1 min. To elute the bound DNA fragments, the column was 

incubated with 27 µl prewarmed EB buffer (50 °C) for 5 min at RT and subsequently centrifuged at RT 

for 1 min at 13000xg. 25 µl elute were recovered. 
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Following excess adapter removal and size selection, the adapter-modified DNA fragments were 

enriched by PCR according to Table 4-14 and Table 4-15.  

 

Table 4-14 - Reaction composition for PCR enrichment (NGS library protocol I) 

Component Volume [µl] 

Phusion HF reaction buffer (5x) 10.00 

Betaine (5 M) 13.00 

BiooPrimer1 (100 µM) 0.25 

BiooPrimer2 (100 µM) 0.25 

dNTPs (10 mM) 1.00 

Phusion DNA polymerase 0.50 

Total Volume 25.00 

 

Table 4-15 – Cycling protocol for PCR enrichment (NGS library protocol I) 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98°C 2 min 1 x 

Denaturation 98°C 30 sec 18 x 

Annealing & Extension 65°C 30 sec 

Final denaturation 72°C 45 sec 1 x 

Final extension 72°C 5 min 1 x 

Cooling 4°C hold  

 

The PCR-enriched DNA fragments were purified with AMPure XP beads (ration 1:1.8) as described 

above and eluted with 13 µl water.  

To validate the successful enrichment of the size-selected DNA fragments, 1 µl of the library sample 

was analyzed on a Bioanalyzer DNA HS assay on a TapeStation High Sensitivity D1000 ScreenTape. 

The library samples were further processed for NGS data acquisition by the KFB (Biopark, 

Regensburg). 
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NGS library protocol II 

The first library preparation step is an end repair to convert overhangs of double stranded DNA 

fragments into phosphorylated blunt ends. Following reaction set up was used: 

 

Table 4-16 - Reaction composition for end repair (NGS library protocol II) 

Component Volume [µl] 

DNA sample 40.00 

H2O 3.34  

T4 DNA ligase buffer (10x) 5.00 

dNTP mix (10 mM each) 1.00 

T4 DNA polymerase 0.30 

Klenow fragment 0.06 

T4 Polynucleotide kinase 0.30 

Total Volume 50.00 

 

The reaction was incubated in a thermal cycler at 20°C for 30 min (without heated lid) and cleaned up 

with AMPure XP magnetic beads (equilibrated for 30 min at RT on a rotor) at a ratio 1:1.8.  

90 µl beads were added to the end repair mix (50 µl), vortexed (speed 6) two times, inverted and 

vortexed again and then incubated at RT for 5 min. The tube was placed on a magnetic particle 

concentrator (MPC) for 2 min. After removal of the supernatant, the trapped beads were washed twice 

with 500 µl Ethanol (70%, prepared freshly) for 30 sec each. To remove residual Ethanol, the beads 

were air-dried at 37 °C for 2-5 min. The bound DNA fragments were eluted by incubation with 44.4 µl 

nuclease-free ddH2O at RT for 5 min. After centrifugation at RT for 1 sec at 13000xg, the tubes were 

placed on a MPC for 2 min and the supernatant was transferred to a new 1.5 ml tube for a second 

round of clean up.  

For introduction of A-overhangs to the 3’ end of the phosphorylated blunt ends of DNA fragments 

following reaction was done: 

 

Table 4-17 - Reaction composition for A-overhang introduction (NGS library protocol II) 

Component Volume [µl] 

Blue buffer (10x) 5.00 

dATP (10 mM) 0.10 

Klenow (3’-5’ exo-) 0.50 

Total Volume 5.60 

 

The reaction mix was added to the end-repaired sample and incubated at 37°C for 30 min in a thermal 

cycler. After a cleanup with AMPure XP beads (1:1.8 ratio) as described above, adapters were ligated 
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to the end of the DNA fragments allowing later hybridization to an Illumina Next Generation 

Sequencing flow cell.  

 

Table 4-18 - Reaction composition for adapter ligation (NGS library protocol II) 

Component Volume [µl] 

Rapid Ligation buffer (2x) 16.00 

Bioo NEXTflex adapter (1:2 dilution) 1.00 

T4 DNA Ligase 1.00 

Sample with A-overhangs 14.50 

Total Volume 32.50 

 

After incubation at 30°C for 10 min in a thermal cycler excess adapter removal was done by 

purification with AMPure XP beads using a ratio of 1:1.1.  

Adapter-modified DNA fragments were then enriched by PCR according to Table 4-19 and Table 4-20. 

 

Table 4-19 - Reaction composition for PCR enrichment (NGS library protocol II) 

Component Volume [µl] 

Phusion HF reaction buffer (5x) 10.00 

Betaine (5 M) 13.00 

BiooPrimer1 (100 µM) 0.25 

BiooPrimer2 (100 µM) 0.25 

dNTPs (10 mM) 1.00 

Phusion DNA polymerase 0.50 

Total Volume 25.00 

 

Table 4-20 - Cycling protocol for PCR enrichment (NGS library protocol II) 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98°C 2 min 1 x 

Denaturation 98°C 30 sec 18 x 

Annealing & Extension 65°C 30 sec 

Final denaturation 72°C 45 sec 1 x 

Final extension 72°C 5 min 1 x 

Cooling 4°C hold  

 



Methods 

56 
 

The PCR-enriched DNA fragments were purified with AMPure XP beads (ration 1:1.1) as described 

above and eluted with 12 µl water, followed by size selection by gel electrophoresis and excision of 

the desired fragment size. The eluate (12 µl) was mixed with 2 µl loading dye (6x) and loaded together 

with 1 µg 50 bp DNA ladder (NEB) (separated by one lane) on a 2% agarose gel (50 ml, 1x TAE). The 

gel was run for 60 min at 100 V. Using a clean razor, fragments in the range of 200-380 bp were 

excised and subject to DNA extraction with the QIAquick Gel Extraction Kit. The gel piece was 

weighted and dissolved in 6 Volumes QG buffer and incubated at RT on a rotor until gel is dissolved 

completely (approx.10 min). The dissolved gel sample was mixed with 2 Volumes Isopropanol and 

loaded twice onto the column by centrifugation at RT for 30 sec at 13000xg. The flow-through was 

discarded and the column washed with 500 µl QG buffer. The column was washed twice with 750 µl 

PE buffer and centrifuged at RT for 45 sec at 13000xg. The empty column was centrifuged again at 

RT for 2 min at 13000xg and transferred to a new 1.5 ml tube. After residual PE buffer was aspirated 

from the purple ring, the column was air-dried for 1 min. To elute the bound DNA fragments, the 

column was incubated with 13 µl prewarmed EB buffer (50 °C) for 5 min at RT and subsequently 

centrifuged at RT for 1 min at 13000xg. To validate the successful enrichment of the size-selected 

DNA fragments, 1 µl of the library sample was analyzed on a Bioanalyzer DNA HS assay on a 

TapeStation High Sensitivity D1000 ScreenTape. The library samples were further processed for NGS 

data acquisition by the KFB (Biopark, Regensburg). 

 

 

NGS library protocol III 

This protocol is similar to NGS protocol II except for the PCR enrichment and size selection procedure. 

Relevant alterations to the established protocol are stated accordingly. 

Following excess adapter removal, the adapter-modified DNA fragments were enriched by PCR in two 

rounds; round one was performed according to the following tables. In between the two PCR 

reactions, purification with AMPure XP beads (ration 1:1.8) and size selection using the Caliper 

LabChip approach (PerkinElmer) was performed. 

 

Table 4-21 - Reaction composition for PCR enrichment (NGS library protocol III) 

Component Volume [µl] 

Phusion HF reaction buffer (5x) 10.00 

Betaine (5 M) 13.00 

BiooPrimer1 (100 µM) 0.25 

BiooPrimer2 (100 µM) 0.25 

dNTPs (10 mM) 1.00 

Phusion DNA polymerase 0.50 

Total Volume 25.00 
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Table 4-22 – Cycling protocol for PCR enrichment (NGS library protocol III) 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98°C 2 min 1 x 

Denaturation 98°C 30 sec 4 x 

Annealing & Extension 65°C 30 sec 

Final denaturation 72°C 45 sec 1 x 

Final extension 72°C 5 min 1 x 

Cooling 4°C hold  

 

Excess primers were removed by clean up with AMPure XP magnetic beads (equilibrated for 30 min at 

RT on a rotor) at a ratio 1:1.8. 90 µl beads were added to the PCR reaction mix (50 µl) and processed 

as before. The bound DNA fragments were eluted with 10 µl nuclease-free ddH2O and transferred to 

a new tube for the Caliper approach. Normally, 2 µl dye was added to the eluted fragments and 

fragments of 275 bp  15% (234-316 bp) using the LabChip XT DNA 700 Chip were recovered.  

 

After adjusting the sample volume with nuclease-free ddH2O to 25 µl, the second round of PCR 

enrichment of the size selected DNA fragments was performed. For round two, reaction composition is 

the same as for round one (see Table 4-21), but the cycle number was increased (see Table 4-23).  

 

Table 4-23 - Cycling protocol part 2 for PCR enrichment (NGS library protocol III) 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98°C 2 min 1 x 

Denaturation 98°C 30 sec 12 x 

Annealing & Extension 65°C 30 sec 

Final denaturation 72°C 45 sec 1 x 

Final extension 72°C 5 min 1 x 

Cooling 4°C hold  

 

The PCR product was again depleted of excessive primers with AMPure XP beads (twice) as 

described above (1:1.1 ratio). Elution volume of the first round was 50 µl nuclease-free ddH2O, of the 

second 11 µl. 1 µl of the final eluate was run on a Bioanalyzer DNA HS Chip or on a TapeStation High 

Sensitivity D1000 ScreenTape to validate successful enrichment of size-selected DNA fragments. 

The library samples were further processed for NGS data acquisition by the KFB (Biopark, 

Regensburg). 
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NGS library protocol IV 

Using the NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB) and NEBNext Multiplex Oligos for 

Illumina (NEB) the sample was first subject to end repair converting overhangs of dsDNA into 

phosphorylated blunt ends and subsequent dA-tailing according to the manufacturer´s instructions 

(see Table 4-24). 

Table 4-24 - Reaction composition for end repair reaction (NGS library protocol IV) 

Component Volume [µl] 

NEBNext Ultra II End Prep Enzyme Mix 3.00 

NEBNext Ultra II End Prep Reaction Buffer 7.00 

Fragmented DNA 50.00 

Total Volume 60.00 

 

Reaction was mixed by pipetting up and down at least 10 times and then incubated in a thermocycler 

(heated lid ≥ 75°C) for 30 minutes at 20°C followed by 30 minutes at 65°C and subsequent cooling to 

4°C.  

In the next step, adapters were ligated to the end of the DNA fragments allowing later hybridization to 

an Illumina Next Generation Sequencing flow cell (see Table 4-26). Adapter dilution depends on input 

concentration and is provided in the manual (see Table 4-25). 

 

Table 4-25 - Recommended adapter working concentrations 

Input Adapter dilution Working adapter concentration 

1 µg – 101 ng No dilution 15 µM 

100 ng – 5 ng 1:10 1.5 µM 

Less than 5 ng 1:25 0.6 µM 

 

Table 4-26 - Reaction composition for adapter ligation (NGS library protocol IV) 

Component Volume [µl] 

End Prep Reaction Mixture 60.00 

NEBNext Ultra II Ligation Master Mix 60.00 

NEBNext Ligation Enhancer 1.00 

Adapter for Illumina 2.50 

Total Volume 93.50 

 

The reaction mix was incubated at 20 °C for 15 min in a thermal cycler with the heated lid off. After 

addition of 3 µl USER
TM

 Enzyme the mix was incubated for 15 min at 37°C with the heated lid set 

to ≥ 47°C. 
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Subsequent size selection was done using AMPure XP magnetic beads and recommended condition 

for 200 bp inserts.  

40 µl beads were added to the ligation mix (96.5 µl), mixed well by pipetting up and down 10 times and 

then incubated at RT for 5 min. The tube was placed on a magnetic particle concentrator (MPC) for 

2 min. The supernatant containing the DNA fragments of interest is carefully transferred to a new tube 

and beads with the unwanted large fragments are discarded.  

Another 20 µl of AMPure XP beads are added to the supernatant and mixed well by pipetting up and 

down 10 times. After separation of the beads on a magnetic particle concentrator, supernatant is 

removed carefully and trapped beads were washed twice with 200 µl Ethanol for 30 seconds (80%, 

prepared freshly). To remove residual Ethanol, the beads were air-dried for 2-5 min. The bound DNA 

fragments were eluted by incubation with 17 µl of 0.1 x TE buffer at RT for 5 min. After short 

centrifugation, the tubes were placed on a MPC for 2 min and 15 µl of the supernatant was transferred 

to a new 1.5 ml tube for PCR amplification (see Table 4-27 and Table 4-28). 

Table 4-27 - Reaction composition for PCR enrichment (NGS library protocol IV) 

Component Volume [µl] 

Adaptor ligated DNA fragments 15.00 

Index Primer / i7 Primer* 2.00 

Universal PCR Primer / i5 Primer 2.00 

NEBNext Ultra II Q5 Master Mix 25.00 

Sterile H2O 6.00 

Total Volume 50.00 

* Index Primer are provided in the NEBNext Multiplex Oligos for Illumina (#E7335, #E7500) 

 

Table 4-28 - Cycling protocol for PCR enrichment (NGS library protocol IV) 

Cycle step Temperature Time Number of cycles 

Initial denaturation 98°C 30 sec 1 x 

Denaturation 98°C 10 sec 
10-15 x 

Annealing & Extension 65°C 75 sec 

Final extension 65°C 5 min 1 x 

Cooling 4°C hold  

 

The PCR product was again depleted of excessive primers with AMPure XP beads as described 

above (1:0.9 ratio). Elution volume was 17 µl 0.1 x TE. 1 µl of the final eluate was run on a Bioanalyzer 

DNA HS Chip or on a TapeStation High Sensitivity D1000 ScreenTape to validate successful 

enrichment of size-selected DNA fragments. 

The library samples were further processed for NGS data acquisition by the KFB (Biopark, 

Regensburg) or BSF (Vienna). 



Methods 

60 
 

4.2.1.19 Next generation sequencing on the Illumina platform 

High-throughput DNA sequencing with the Sequencing-by-Synthesis (SBS) Technology (Illumina) is 

based on iterative sequencing using reversible terminator chemistry. Labeling the modified nucleotides 

with different fluorescent dyes permits parallel readout of all immobilized library molecules. The 

sequencing-by-synthesis workflow is illustrated in Figure 4-1. The advantage to Sanger sequencing is 

the massive parallel sequencing of millions of DNA fragments. Due to the high sequencing depth, up 

to 4 billion reads per lane, multiplexing of samples by using barcoded libraries dramatically reduces 

costs. Samples analyzed by NGS in this work included ChIP, MCIp and targeted bisulfite enrichment. 

 

 

Figure 4-1 - Next generation sequencing technology 
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1, 2 – Single strands of the NGS library generated according to the NGS library protocols listed in 4.2.1.18 bind to 

complementary adapters. 3-6 – Clusters with more than 100 copies of the starting library molecule are generated 

by bridge amplification. 7 – Sequencing primer anneal to the adapter sequence of the cluster molecule and 3’-

terminated, fluorescent-labeled nucleotides are incorporated at the 3’ end of the sequencing primer by a modified 

polymerase (due to the 3’ terminating modification, only one nucleotide per cycle is incorporated). 8 – Using 

different lasers for excitation and filters, an image is generated of the attached fluorophores, which reflects the 

incorporation positions of the individual nucleotides. 9-11 – Following each imaging cycle, the 3’ terminators as 

well as the fluorescent labels are chemically removed permitting for a new cycle of incorporation and imaging. 

The read length for all clusters is determined by the numbers of repeated incorporation and imaging cycles. 

Barcodes of pooled libraries are encoded in the adapter sequence and assessed accordingly. Different 

sequences of left and right adapter allows for paired-end sequencing. 12 – Following sequencing, the Illumina 

base caller analyzes the images. The collected sequence data are aligned and compared with a reference 

sequence. (Taken and modified from Illumina, www.illumina.com) 

 

4.2.1.20 Targeted bisulfite sequencing 

Investigation of DNA methylation in selected regulatory regions was done using hybridization-based 

target enrichment (NimbleGen SeqCap® Epi Enrichment System) followed by next-generation 

sequencing. These customer chosen regions are active in human AML and healthy monocytic cells 

and comprise 71K regions corresponding to 86 Mb of the human genome.  

In this approach pools of biotinylated oligonucleotide probes specific for target regions of interests are 

hybridized to a sequencing library in solution and pulled down by streptavidin-coated magnetic beads.  

The first step of the protocol requires fragmentation of the input DNA using the Covaris S2 system 

(see 4.2.1.3). 400 ng of input DNA were diluted with 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA to a final 

volume of 53 µl and sonicated in a microTUBE AFA snap-cap (6 mm x 16 mm). Following settings 

were used 4 times per sample whereas in between sample was centrifuged shortly. 

 

Table 4-29 - Parameters for focused ultrasonication with Covaris for targeted Bis-Seq 

Parameters Settings 

Intensity 5 

Duty Cycle 10% 

Cycles per burst 200 

Treatment time [s] 120 

Temperature [°C] 7 

Water Level S2 12 

Mode Frequency sweeping 

 

Dilute 1 µl of fragmented DNA 1:5 with 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA and run sample on a 

Bioanalyzer High Sensitivity DNA 1000 chip to check average fragment size.  
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The following step comprises end repair of the fragmented DNA to convert overhangs of double 

stranded DNA fragments into phosphorylated blunt ends and was set up as followed: 

 

Table 4-30 - Reaction composition for end repair reaction (Targeted bisulfite sequencing) 

Reagent Volume 

Water 8 µl 

10x KAPA End Repair Buffer 7 µl 

KAPA End Repair Enzyme 5 µl 

Fragmented DNA 50 µl 

Total 70 µl 

 

The reaction mix was incubated at 20°C for 30 min in a thermocycler and subsequently purified using 

AMPure XP beads (ratio 1:1.7). 70 µl beads were added to the end repair mix and incubated for 

15 min at room temperature. After separation on a magnetic particle concentrator remove and discard 

supernatant and wash beads twice with 200 µl of 80% ethanol for 30 sec. Beads were air-dried at 

37°C for 3-5 min to remove residual ethanol and A-tailing master mix for elution of beads was 

prepared(see Table 4-31). 

 

Table 4-31 - Reaction composition for A-tailing reaction (Targeted bisulfite sequencing) 

Reagent Volume 

Water 42 µl 

10x KAPA A-Tailing Buffer 7 µl 

KAPA A-Tailing Enzyme 5 µl 

Total 50 µl 

 

A-tailing master mix was added to the beads, resuspend thoroughly by pipetting up and down and 

incubated at 30°C for 30 min. After this, 90 µl of PEG/NaCl SPRI solution (adapted to room 

temperature) were added to each 50 µl A-tailing reaction with beads. Solution was mixed thoroughly, 

incubated for 15 min at room temperature and placed on a magnet to capture beads. Supernatant was 

removed and discarded and trapped beads were washed twice with 200 µl of 80% ethanol for 30 

seconds. Beads were dried at room temperature to remove residual ethanol.  

Resuspend beads with the Ligation Master Mix (see Table 4-32) and incubate at 20°C for 15 min in a 

thermocycler.  
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Table 4-32 - Reaction composition for ligation reaction (Targeted bisulfite sequencing) 

Reagent Volume 

Water 30 µl 

5x KAPA Ligation Buffer 10 µl 

KAPA T4 DNA Ligase 5 µl 

Indexed Adapter 5 µl 

Total 50 µl 

 

In the next step, 50 µl PEG/NaCl SPRI solution was added to each 50 µl ligation reaction with beads 

and incubated for 15 min at room temperature. Following bead procedure was done as described 

above. Beads were resuspended in 100 µl elution buffer (10  mM Tris-HCl, pH 8.0) and incubated for 2 

min at room temperature to allow the DNA to elute of the beads. Afterwards 60 µl PEG/NaCl SPRI 

solution was added and mixed thoroughly by pipetting up and down. After incubation for 15 min at 

room temperature beads were put on a magnetic particle concentrator and 155 µl of the supernatant 

were transferred to a new tube. Next, 20 µl of AMPure XP beads were added to the supernatant and 

again incubated for 15 min at room temperature. After concentration of magnetic particles, 

supernatant is removed and discarded and trapped beads were washed twice with 200 µl 80% 

ethanol. Beads were then air-dried at room temperature and eluted in 25 µl elution buffer (10 mM Tris-

HCl, pH 8.0).  

To differentiate between unmethylated and methylated cytosines, 20 µl of the eluate were treated with 

sodium bisulfite using the EZ DNA Methylation-Lightning Kit according to the manufacturer´s 

instructions. Cytosine derivates undergo reversible reactions with sodium bisulfite, yielding a 5,6-

Dihydro-6-sulfonate, which deaminates under alkaline conditions leaving uracil whereas 5-

methylcytosine is not affected by this reaction. After PCR amplification, unmethylated cytosine 

appears as thymine in contrast to 5-methylcytosine, which remains a cytosine
174

. The bisulfite-treated 

DNA was recovered by adding 21.5 µl of PCR-grade water directly to the column matrix and 

centrifugation for 30 sec at 10.000 x g. 

For amplification of the bisulfite-converted DNA the following LM-PCR Master Mix was prepared on ice 

(see Table 4-33). 

 

Table 4-33 - Reaction composition for PCR enrichment (Targeted bisulfite sequencing) 

Reagent Volume 

KAPA HiFi HotStart Uracil + Ready Mix (2x) 25 µl 

PCR grade water 2 µl 

Pre LM-PCR Oligos 1 & 2 (5 µM) 3 µl 

Total 30 µl 
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This master mix was pipetted to 20 µl of bisulfite-converted DNA and incubated in a thermocycler 

using the Pre-Capture LM-PCR program (see Table 4-34). 

 

Table 4-34 - Cycling protocol for PCR enrichment (Targeted bisulfite sequencing) 

Cycle step Temperature Time Number of cycles 

1 95°C 2 min 1 x 

2 98°C 30 sec 

12 x 3 60°C 30 sec 

4 72°C 4 min 

5 72°C 10 min 1 x 

6 4°C hold  

 

PCR reaction was cleaned up with SeqCap EZ Purification beads by adding 90 µl to 50 µl amplified 

sample library and incubation for 15 min at room temperature. After concentrating the beads on a 

magnetic rack, supernatant was removed and discarded. Trapped beads were then washed twice with 

200 µl freshly prepared 80 % ethanol and air dried at room temperature to remove all residual ethanol. 

DNA was recovered by resuspending the beads with 52 µl of PCR-grade water and incubation for 

2 min at room temperature. After putting the tube in a magnetic particle concentrator 50 µl of the 

supernatant were transferred into a new 1.5 ml tube. Next, A260/A280 ratio was measured on a 

NanoDrop spectrophotometer and checked via automated electrophoresis using the Bioanalyzer 

instrument. The average fragment size should be between 150 and 500 bp and library yield at least 

1 µg.  

The next step comprised hybridization of the sample library to a pool of biotinylated oligonucleotide 

probes to enrich for target regions of interest. Here 10 µl of Bisulfite Capture Enhancer and 1 µg of 

amplified bisulfite-converted DNA were put in a 1.5 ml tube. 1000 pmol (1 µl) of SeqCap HE Universal 

Oligo 1 and 1000 pmol (1 µl) of the appropriate SeqCap HE Index Oligo were added to this mix.  

Tube was closed and a hole was made in the top of the tube´s cap with an 18 – 20 gauge needle to 

suppress contamination in the DNA vacuum concentrator. 

Multiplexed DNA sample library pool was dried in a DNA vacuum concentrator at high heat (> 60°C) 

and the hole was covered with a sticker. The following components were added to the reaction (see 

Table 4-35), mixed and incubated for 10 min at 95°C.  

 

Table 4-35 - Reaction composition for hybridization reaction (Targeted bisulfite sequencing) 

Reagent Volume 

2x SC Hybridization Buffer  7.5 µl 

SC Hybridization Component A 3 µl 
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Transfer 4.5 µl SeqCap Epi Library aliquot to the reaction mix and vortex for 3 sec followed by 

centrifugation for 10 sec at full speed. The mixture was incubated in a thermocycler at 47°C for 72 h. 

Recovery of captured sample was done using 100 µl Capture Beads per reaction which have to be 

washed twice with 200 µl 1x Bead Wash Buffer before using. After resuspending the Capture Beads in 

100 µl 1x Bead Wash Buffer and addition of the hybridization sample mixture is incubated at 47°C for 

45 min. Next, beads were washed according to the table below (Table 4-36).  

 

Table 4-36 - Guide for washing beads (Targeted bisulfite sequencing) 

Wash Buffer Wash 

Volume 

Mixture Time Time in 

Water Bath 

Temperature 

1x Wash Buffer I 100 µl Vortex for 10 sec  47°C 

1x Stringent Wash Buffer 200 µl Pipette up and down 10 

times 

5 min 47°C 

1x Stringent Wash Buffer 200 µl Pipette up and down 10 

times 

5 min 47°C 

1x Wash Buffer I 200 µl Vortex for 2 min - RT 

1x Wash Buffer II 200 µl Vortex for 1 min - RT 

1x Wash Buffer III 200 µl Vortex for 30 sec  RT 

Recovering of captured sample was done by adding 50 µl PCR grade water to the tube and 

subsequently these captured fragments were amplified by adding the Post-Capture LM-PCR Master 

Mix (see table x) and incubation as described in the following table (Table 4-37). 

 

Table 4-37 - Reaction composition for Post-Capture LM-PCR (Targeted bisulfite sequencing) 

Reagent Volume 

KAPA HiFi HotStart Ready Mix 50 µl 

Post-LM-PCR Oligos 1 & 2 (5 µM) 10 µl 

Total 60 µl 

 

Table 4-38 - Cycling protocol for Post-Capture LM-PCR (Targeted bisulfite sequencing) 

Cycle step Temperature Time Number of cycles 

1 98°C 45 sec 1 x 

2 98°C 15 sec 

16 x 3 60°C 30 sec 

4 72°C 30 sec 

5 72°C 1 min 1 x 

6 4°C hold  
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Purification of PCR reaction mixture was done with 180 µl (ratio 1:1.8) SeqCap EZ Purification Beads 

(equilibrated for 30 min at RT) like described above. The bound DNA fragments were eluted with 52 µl 

of PCR-grade water and 50 µl transferred to a new tube.   

Quality and quantity of the library samples were checked with the Bioanalyzer device and NanoDrop 

spectrophotometer, respectively, followed by further processing of the library samples for NGS data 

acquisition by the KFB (Biopark, Regensburg). 

 

 

Selection of the myeloid regulome 

To design a region set for targeted enrichment that would capture as many regulatory regions that 

may be relevant for myeloid cell biology and acute myeloid leukemias, we used both publicly available 

data sets as well as own data. From the FANTOM5 CAGE atlas data sets we used both 

transcriptionally active promoters and enhancers from available myeloid cell types including cell lines 

(Kasumi-3, KG-1, HYT-1, Kasumi-1, Kasumi-6, NKM-1, HL60, FKH-1, HNT-34, EoL-1, EoL-3, NOMO-

1, P31_FUJ, THP-1, U-937_DE-4, EEB, F-36E, F-36P, M-MOK, MKPL-1) and primary cells (CD14+ 

monocytes (0h and 2h), monocyte subsets (classical, intermediate and non-classical), CD34+ 

progenitors (blood and bone marrow), CD133+ stem cells (bone marrow and cord blood), common 

myeloid progenitors (CMP), monocyte-derived immature dendritic cells, plasmacytoid dendritic cells, 

eosinophils, granulocyte macrophage progenitor, mast cells, neutrophils). For promoters we counted 

power law-normalized read counts for the 180K CAGE promoter set across all samples and kept all 

promoter regions (-300 to +50) with a normalized read count of at least four, resulting in 54K 

promoters. From the atlas of bidirectionally expressed enhancers, we kept those with a score above 

three with detectable expression in any of the samples and within a lower size limit of 100 bp. 

Enhancers were symmetrically extended to at least 400bp. The remaining myeloid enhancer set 

comprised 15K enhancers. For CD34 cells we used available ENCODE data, including DNase 

hypersensitivity (DHS) sequencing, ChIP sequencing for H3K4me3 and H3K4me1 to determine active 

and poised regulatory elements. H3K4me3 peak regions were defined using the findPeaks script 

provided in the HOMER package and the following options: -region -size 250 -L 0 -F 5 -minDist 350 -

fdr 0.00001 -ntagThreshold 10, resulting in 24K H3K4me3 peak regions. Peaks in DHS regions were 

called using findPeaks and options -fragLength 1 -region -size 10 and extended by 50 bp on each 

side. Strongest DHS peaks (peak score > 40) were selected (14K CD34+ open chromatin regions). 

We also identified all DHS regions overlapping with H3K4me1 peaks, extended them by 100 bp on 

either side and merged them to a resulting set of 79K DHS regions with proximal H3K4me1 

enrichment. Lastly, we identified H3K27ac peak regions in normal primary cells (monocytes, 

neutrophils, CD34+ progenitors) as well as data from 44 AML patients using findPeaks and -region -

size 250 -L 0 -F 5 -minDist 350 -fdr 0.00001 -ntagThreshold 20 generating a merged peak set of 43K 

regions. The resulting six region sets (myeloid promotors and enhancers from CAGE, CD34+ 

H3K4me3 peaks, CD34+ wide open chromatin, CD34+ DHS regions overlapping H3K4me1 and 

myeloid H3K27ac peaks) were merged and further extended by any overlapping DHS region in CD34+ 

cells. Regions that were previously determined as problematic in ChIP seq experiments were 

excluded, remaining regions were further extended by 50bp on each side, and merged within a 
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distance of 400 bp. The final myeloid regulome comprised 71K regions and 86 Mb of the human 

genome. 

 

 

Figure 4-2 - Definition of the active myeloid regulome for targeted enrichment 

(A) Workflow for the selection of regulatory regions that are active or poised in myeloid cell types, including 

monocytes, granulocytes, CD34+ hematopoietic progenitor cells, and acute myeloid leukemia cells from 44 

patients. For targeted enrichment on the genomic DNA level, the selected myeloid regulatory regions were 

merged with the human exome (myeloid regulome v1.0 plus) (B) Pie chart showing the genomic distribution of the 

selected myeloid regulome. (C). Comparison of coverage with currently available methods, including Agilent’s 

targeted Methylseq Kit (SureSelect), Illumina´s 450K and EPIC (860K) methylation bead arrays, and a recently 

described enhanced RRBS protocol (Akalin et al., 2012). While existing methods cover the large majority of 

promoter and 5’UTR regions that are likely relevant for myeloid cells, the coverage of distal myeloid regulatory 

sites (intron/intergenic) is relatively poor, suggesting that the custom design will cover myeloid enhancers more 

comprehensively. 
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4.2.2 Preparation and analysis of RNA 

4.2.2.1 Isolation of total RNA 

Total RNA was isolated using the RNeasy Midi, mini or Micro Kit (Qiagen) depending on the available 

number of cells according to the manufacturer’s instructions. To remove potential DNA 

contaminations, on-column DNA digestion with the RNase-free DNase Set (Qiagen) was integrated 

according to the protocol. RNA concentration was then determined with the NanoDrop 

spectrophotometer and quality assessed with the Agilent TapeStation (Agilent Technologies) 

according to the manufacturer’s instructions.  

4.2.2.2 Reverse transcription quantitative real-time PCR (RT-qPCR) 

To analyse transcription levels, total RNA was transcribed into complementary DNA (cDNA) with the 

M-MLV RT (H- point mutant) enzyme (Promega) combined with random decamers (Promega) to prime 

cDNA synthesis. Individual expression levels were subsequently assessed by quantitative PCR (see 

section 4.2.1.13) on cDNA level. Reaction setup is depicted in the following table (Table 4-39). 

 

Table 4-39 - Reaction composition for RT-qPCR 

Component Volume 

RNA (1 µg) x µl 

Random decamers (50 µM) 1 µl 

dNTPs (10 mM) 1 µl 

Water (15 – x) µl 

Total 15 µl 

 

Incubate reaction mix for 5 min at 65°C in a thermal cycler to dissolve secondary structures followed 

by immediate incubation on ice for 1 min. After centrifugation, 4 µl M-MLV Buffer (5x) were added, 

mixed and incubated for 2 min at 42°C.  

Reverse transcription started upon addition of 1 µl M-MLV Reverse transcriptase at 42 °C for 50 min 

and was stopped by heat inactivation of the enzyme (15 min, 70 °C).  
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4.2.3 Analyses of NGS data sets 

Bioinformatic analyses of next generation sequencing (NGS) data were performed on an Apple Mac 

Pro workstation with the indicated programs and versions. Raw read files were delivered in fastq or 

bam format from the sequencing facilities. 

4.2.3.1 Targeted bisulfite sequencing data 

DNA methylation of the myeloid regulome either in bone marrow or blood tissues from adult MDS 

patients was analyzed using the targeted bisulfite sequencing approach (NimbleGen). The following 

script is representative for all analyzed samples, but will be illustrated for one example. If not stated 

otherwise in the command line, default settings were applied. For this bisulfite sequencing data, 

special programs were required, e.g. bsmap or metilene.  

 

### Conversion of unaligned bam file into fastq file using Picard tools 

# converting a SAMPLE.bam file into paired end SAMPLE_r1.fastq and SAMPLE_r2.fastq 

java -jar $PICARD SamToFastq I= /path-to-raw-data-archive/MDS53_ATGTCA_S16114.bam \ 

F= /path-to-read1-fastq-file/MDS53_timepoint1_ATGTCA_S16114_r1.fastq \ 

F2= /path-to-read2-fastq-file/MDS53_ timepoint1_ATGTCA_S16114_r2.fastq 

 

### Quality assessment with Fastqc 

 

### Alignment of raw reads to GRCh38 plus Lambda reference genome with BSMAP 

bsmap -r 0 -s 16 -n 1 -a \ 

/path-to-fastq-file/ MDS53_ timepoint1_ATGTCA_S16114_r1.fastq -b \ 

/path-to-fastq-file/ MDS53_ timepoint1_ATGTCA_S16114_r2.fastq -d \ 

/path-to-genome-file/GRCh38.plusLambda.genome.fa -p <#CPU> -o \ 

/path-to-output-folder/MDS53_ timepoint1.sam 

 

### convert sam to bam file format 

java -Xmx8G -Xms8G -jar $PICARD AddOrReplaceReadGroups \ 

VALIDATION_STRINGENCY=LENIENT INPUT=/path-to-sam-file/MDS53_ timepoint1.sam \ 

OUTPUT=/output-path-for-bam-file/MDS53_timepoint1.bam CREATE_INDEX=TRUE \ 

RGID=MDS53_ timepoint1 RGLB=MDS53_timepoint1 RGPL=illumina RGSM=MDS53_timepoint1\ 

RGPU= ATGTCA 

### split bam file into top and bottom strands using bamtools 

cd /path-for-output-folder/ bamtools split -tag ZS -in MDS53_timepoint1.bam 

 

### merge strand bam files 

bamtools merge -in MDS53_timepoint1.TAG_ZS_++.bam -in \ 

MDS53_timepoint1.TAG_ZS_+-.bam -out MDS53_timepoint1.top.bam; \ 

bamtools merge -in MDS53_timepoint1.TAG_ZS_-+.bam -in \ 

MDS53_timepoint1.TAG_ZS_--.bam -out MDS53_timepoint1.bottom.bam 
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### sort bam files  

samtools sort MDS53_timepoint1.top.bam MDS53_timepoint1.top.sorted 

samtools sort MDS53_timepoint1.bottom.bam MDS53_timepoint1.bottom.sorted 

 

### remove duplicates 

java -Xmx8G -Xms8G -jar $PICARD MarkDuplicates VALIDATION_STRINGENCY=LENIENT \ 

INPUT= MDS53_timepoint1.bottom.sorted.bam UTPUT=MDS53_timepoint1.bottom.rmdups.bam\ 

METRICS_FILE=MDS53_timepoint1.bottom.rmdups_metrics.txt REMOVE_DUPLICATES=true \ 

ASSUME_SORTED=true CREATE_INDEX=true 

 

### Merge duplicate removed bam files 

cd /path-to-output-folder/bamtools merge -in MDS53_timepoint1.top.rmdups.bam \ 

-in MDS53_timepoint1.rmdups.bam -out MDS53_timepoint1.rmdups.bam 

 

### filter and clip overhang (removing overlapping reads) 

bamtools filter -isMapped true -isPaired true -isProperPair true –forceCompression\ 

-in /path-to-input-file/MDS53_timepoint1.rmdups.bam \ 

-out /path-to-output-file/MDS53_timepoint1.filtered.bam  

 

bam clipOverlap --stats --in \ 

/path-to-filtered-bam-file/MDS53_timepoint1.filtered.bam \ 

--out /path-to-output-file/MDS53_timepoint1.clipped.bam    

 

samtools sort -f /path-to-input-file/MDS53_timepoint1.bam \ 

/path-to-output-file/MDS53_timepoint1.sorted.bam   

 

### indexing bam files 

samtools index /path-to-input-file/MDS53_timepoint1.sorted.bam  

samtools index /path-to-input-file/MDS53_timepoint1.clipped.bam   

 

### basic mapping metrics 

java -Xmx8G -Xms8G -jar $PICARD CollectAlignmentSummaryMetrics \ 

METRIC_ACCUMULATION_LEVEL=ALL_READS \ 

INPUT=/path-to-input-file/MDS53_timepoint1.sorted.bam \ 

OUTPUT=/path-to-output-file/MDS53_timepoint1_picard_alignment_metrics.txt \ 

REFERENCE_SEQUENCE=/path-to-genome-file/GRCh38.plusLambda.genome.fa \ 

VALIDATION_STRINGENCY=LENIENT   

samtools view -H /path-to-input-file/MDS53_timepoint1.sorted.bam \ 

> /path-for-output-file/MDS53_timepoint1_bam_header.txt 

 

### Hybrid Selection (HS) Analysis Metrics 

java -Xmx16G -Xms16G -jar $PICARD CalculateHsMetrics \ 

BAIT_INTERVALS=/path-to-capture-design-file/Regulome_bait_intervals.txt \ 

TARGET_INTERVALS=/path-to-capture-design/Regulome_target_intervals.txt \ 

INPUT=/path-to-input-file/MDS53_timepoint1.clipped.bam \ 
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OUTPUT=/path-for-output-file/MDS53_timepoint1_picard_hs_metrics.txt \ 

METRIC_ACCUMULATION_LEVEL=ALL_READS \ 

REFERENCE_SEQUENCE=/path-to-genome-file/GRCh38.plusLambda.genome.fa \ 

VALIDATION_STRINGENCY=LENIENT TMP_DIR=.    

 

### Estimate insert size 

java -Xmx16g -jar $PICARD CollectInsertSizeMetrics VALIDATION_STRINGENCY=LENIENT \ 

HISTOGRAM_FILE=/path-to-input-file/MDS53_timepoint1_picard_insert_size_plot.pdf \ 

INPUT=/path-to-input-file/MDS53_timepoint1.filtered.bam \ 

OUTPUT=/path-for-output-file/MDS53_timepoint1_picard_insert_size_metrics.txt   

 

### Count on-target reads and calculate depth of coverage 

bedtools intersect -bed -abam /path-to-bam-file/MDS53_timepoint1.sorted.bam -b \ 

/path-to-capture-design/Regulome_primary_targets.bed | wc -l \ 

> /path-for-output-file/MDS53_timepoint1.on_primary_targets.txt ;  

bedtools intersect -bed -abam /path-to-input-file/MDS53_timepoint1.sorted.bam -b \ 

/path-to-capture-design/Regulome_capture_targets.bed | wc -l \ 

> /path-for-output-file/MDS53_timepoint1.on_capture_targets.txt ;  

java -Xmx8G -Xms8G -jar $GATK -T DepthOfCoverage -R \ 

/path-to-genome-file/GRCh38.plusLambda.genome.fa -I \ 

/path-to-input-file/MDS53_timepoint1.clipped.bam -o \ 

/path-for-output-file/MDS53_timepoint1_gatk_capture_target_coverage \ 

-L /path-to-capture-design/Regulome_capture_targets.bed -ct 1 -ct 10 -ct 20 

 

### Determine methylation percentage using BSMAP 

python /path-to-bsmap-software/methratio.py -d \ 

/path-to-genome-file/GRCh38.plusLambda.genome.fa -m 1 -z -i skip \ 

-o /path-for-output-file/MDS53_timepoint1.methylation_results.txt \ 

/path-to-bam-file/MDS53_timepoint1.clipped.bam 

 

### Determine bisulfite conversion efficiency using BSMAP 

python /path-to-bsmap-software/methratio.py -d \  

/path-to-genome-file/GRCh38.plusLambda.genome.fa -m 1 -z -i skip --chr=lambda –o \ 

/path-for-output-file/MDS53_timepoint1.NC_001416.methylation_results.txt \ 

/path-to-bam-file/MDS53_timepoint1.bam 

 

### Combined SNP/methylation calling using BisSNP 

java -Xmx20g -jar $BisSNP -R /path-to-genome-file/GRCh38.plusLambda.genome.fa \ 

-I /path-to-input-file/MDS53_timepoint1.clipped.bam -T BisulfiteCountCovariates \ 

-cov ReadGroupCovariate -cov QualityScoreCovariate -cov CycleCovariate –recalFile \ 

/path-for-output-file/MDS53_timepoint1.recalFile_before.csv -nt 12 -knownSites \ 

/path-to-genome-file/human_9606_b142_GRCh38_reformated.vcf 

 

java -Xmx20g -jar $BisSNP -R /path-to-genome-file/GRCh38.plusLambda.genome.fa  

-I /path-to-input-file/EPI_MDS_Goett_timepointA.clipped.bam –o \ 
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/path-for-output-file/ MDS53_timepoint1.recal.bam -T BisulfiteTableRecalibration \ 

-recalFile /path-to-csv-file/EPI_MDS_Goett_timepointA.recalFile_before.csv -maxQ 40 

 

java -Xmx20g -jar $BisSNP -R /path-to-genome-file/GRCh38.plusLambda.genome.fa –I \ 

/path-to-input-file/MDS53_timepoint1.recal.bam -T BisulfiteGenotyper –D \  

/path-to-genome-file/human_9606_b142_GRCh38_reformated.vcf -vfn1 \ 

/path-for-output-file1/EPI_MDS_Goett_timepointA.cpg.raw.vcf -vfn2 \ 

/path-for-output-file2/EPI_MDS_Goett_timepointA.snp.raw.vcf -L \ 

/path-to-capture-design/Regulome_capture_targets.bed -stand_call_conf 20 \ 

-stand_emit_conf 0 -mmq 30 -mbq 0 -nt 12 

 

sortByRefAndCor.pl --k 1 --c 2 /path-to-input-file/MDS53_timepoint1.snp.raw.vcf \ 

/path-to-genome-file/GRCh38.plusLambda.genome.fa.fai \ 

> /path-for-output-file/MDS53_timepoint1.snp.raw.sorted.vcf 

 

sortByRefAndCor.pl --k 1 --c 2 /path-to-input-file/MDS53_timepoint1.cpg.raw.vcf \ 

/path-to-genome-file/GRCh38.plusLambda.genome.fa.fai \ 

> /path-for-output-file/MDS53_timepoint1.cpg.raw.sorted.vcf 

 

myVcf2bedGraph.pl /path-to-input-file/MDS53_timepoint1.cpg.raw.sorted.vcf CG 

 

vcf2coverage.pl /path-to-input-file/MDS53_timepoint1.cpg.raw.sorted.vcf CG 

 

myFixBedGraph.pl /path-to-input-file/MDS53_timepoint1.cpg.raw.sorted.CG.bedgraph \ 

> /path-for-output-file/MDS53_timepoint1.cpg.cleared.CG.bedgraph 

 

myFixBedGraph.pl \ 

/path-to-input-file/MDS53_timepoint1.cpg.raw.sorted.CG.coverage.bedgraph \ 

> /path-for-output-file/MDS53_timepoint1.cpg.cleared.CG.coverage.bedgraph 

 

bedGraphToBigWig /path-to-input-file/MDS53_timepoint1.cpg.cleared.CG.bedgraph \ 

/path-to-genome-file/GRCh38.chromosome.sizes \ 

/path-for-output-file/MDS53_timepoint1.cpg.CG.bigWig 

 

bedGraphToBigWig  

/path-to-input-file/MDS53_timepoint1.cpg.cleared.CG.coverage.bedgraph \ 

/path-to-genome-file/GRCh38.chromosome.sizes \ 

/path-for-output-file/MDS53_timepoint1.cpg.CG.coverage.bigWig 

 

### Convert results for HOMER 

myVcf2allC.pl /path-to-input-file/MDS53_timepoint1.cpg.raw.sorted.vcf ; sed -f \ 

/path-to-genome-file/GRCh38.hg38.sed < \ 

/path-to-txt-file/MDS53_timepoint1.cpg.raw.sorted.allC.txt > \ 

/path-for-output-file/MDS53_timepoint1.cpg.raw.sorted.allC.hg38.txt 
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makeTagDirectory /path-to-tag-directory/MDS53_timepoint1 -format allC \ 

-minCounts 5 -genome hg38 -checkGC \ 

/path-for-output-file/MDS53_timepoint1.cpg.raw.sorted.allC.hg38.txt 

 

makeUCSCfile /path-to-tag-directory/MDS53_timepoint1 -style unmethylated \ 

-bigWig /path-to-hg38-genome-file/chrom.sizes -o \ 

/path-for-output-file/MDS53_timepoint1.unmethylated.bigwig ;  

makeUCSCfile /path-to-tag-directory/ MDS53_timepoint1 -style methylated \ 

-bigWig /path-to-hg38-genome-file/chrom.sizes -o \ 

/path-for-output-file/MDS53_timepoint1.methylated.bigwig 

 

### Creating scatter plots using methylKit 

library(methylKit) 

setwd("/path-to-working-directory /") 

file.list = list("/path-to-input-

file/CD34_589.cpg.methylKitFormat.hg38.txt","/path-to-input-

file/MDS53_timepoint1.cpg.methylKitFormat.hg38.txt","/path-to-input-

file/MDS53_timepoint2.cpg.methylKitFormat.hg38.txt","/path-to-input-file/ 

MDS53_timepoint3.cpg.methylKitFormat.hg38.txt","/path-to-input-

file/MDS53_timepoint4.cpg.methylKitFormat.hg38.txt","/Vpath-to-input-

file/MDS53_timepoint5.cpg.methylKitFormat.hg38.txt") 

sample.list = list("CD34","P53_1","P53_2","P53_3","P53_4","P53_5") 

methData <-read( 

file.list, 

sample.id=sample.list, 

treatment=c(0,1,1,1,1,1), 

assembly="hg38",\ 

resolution="base", 

context="CpG", 

) 

filtered.methData=filterByCoverage(methData,lo.count=5,lo.perc=NULL,hi.count=NULL,\ 

hi.perc=NULL) 

meth=unite(filtered.methData,destrand=TRUE) 

png(filename="correlationMDS53.png", height=4000, width=4000) 

getCorrelation(meth,plot=T) 

dev.off() 

 

The R package “methylKit”
175

 was used for several bioinformatic analyses, including principal 

component analysis (PCA). Vcf input files obtained with BisSNP need to be converted into a special 

methylKit format.  

 

### Converting vcf file into methylkit format file 

myVcf2methylKit.pl /path-to-input-file/EPI_THP1_1_749.cpg.raw.sorted.vcf CG ; \ 

sed -f /path-to-genome-indices/GRCh38.hg38.sed < \ 

/path-of-methylkit-format-file/EPI_THP1_1_749.cpg.raw.sorted.methylKitFormat.txt \ 

> /path-for-output-file/EPI_THP1_1_749.cpg.methylKitFormat.hg38.txt ;  
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### Correlation and principal component analysis (PCA) 

library(methylKit) 

setwd("/path-to-working-directory /") 

file.list = list("<all desired methylKit input files in a comma separated list>”) 

sample.list = list("<comma separated list of corresponding sample names>") 

methData <-read( 

file.list, 

sample.id=sample.list, 

treatment=c(<vector of numbers \ indicating the different patient samples>), 

assembly="hg38", \ 

resolution="base", 

context="CpG", 

) 

filtered.methData=filterByCoverage(methData,lo.count=5,lo.perc=NULL,hi.count=NULL,\

hi.perc=NULL) 

meth=unite(filtered.methData,destrand=TRUE) 

pdf(file="clusterSamples.pdf", height=8, width=8) 

clusterSamples(meth, dist="correlation", method="ward", plot=TRUE) 

dev.off() 

png(filename="correlation.png", height=10000, width=10000) 

getCorrelation(meth,plot=T) 

dev.off()  

pdf(file="PCASamples.pdf", height=8, width=8) 

PCASamples(meth) 

dev.off() 

 

 

The identification of differentially methylated regions (DMRs) was done with the software tool metilene 

(v0.2-6)
176

. Input files have to be divided by 100 because metilene needs values between 0 and 1. 

DMRs from pairwise comparison of sorted tab separated files were output in a bed-like format. 

 

### Reformat input file for metilene 

myReformatCpGBedgraph100to1.pl \ 

/path-to-input-file/MDS53_timepoint1.cpg.cleared.CG.bedgraph \ 

> /path-for-output-file/conv_MDS53_timepoint1.cpg.cleared.CG.bedgraph 

 

### Pairwise comparison of patients with metilene to find DMRs 

metilene_input.pl -in1 /path-to-input-file1/conv_CD34.cpg.cleared.CG.bedgraph \ 

-in2 /path-to-input-file2/convMDS53_timepoint1.cpg.cleared.CG.bedgraph -out \ 

/path-for-output-file/conv_CD34vsMDS53_timepoint1_metilene.input -h1 CD34 -h2 P53_1  

 

metilene -M 100 -f 1 -t 12 -a CD34 -b P53_1 \ 

/path-to-input-file/conv_CD34vsMDS53_timepoint1_metilene.input \ 

> /path-for-output-file/conv_CD34vsMDS53_timepoint1_metilene.output 

 



Methods 

75 
 

sort -k1,1 -k2,2n /path-to-input-file/conv_CD34vsMDS53_timepoiont1_metilene.output\ 

> /path-for-output-file/conv_CD34vsMDS53_timepoint1_metilene.sorted.output 

 

metilene_output.pl -q \ 

/path-to-input-file/conv_CD34vsMDS53_timepoint1_metilene.sorted.output \ 

-o /path-for-output-folder/CD34_vs_MDS53_timepoint1/ -c 5 -d 0.1 -a CD34 -b P53_1 

 

 

To distinguish between DMRs that lost or gained DNA methylation in contrast to CD34+ cells, metilene 

output files were filtered for both categories. Then all DMRs between patient time points were put into 

one file, sorted and then merged. Merging of the files gives you the total number of DMRs with 

information about the distribution of these regions in the single patients. Gene ontology analysis with 

metascape was done after annotation of these regions to gencode transcripts. For this annotation, 

input files have to be converted to the genome hg19 since gencode data is only available for this 

genome version.  

 

### Annotation of DMRs 

getAllGeneEnhancerAssociations.pl \ 

/path-to-input-file/CD34vsMDSall_commonDMRs_loss_merged_liftOverhg19.txt \ 

/path-to-gencode-file/gencode.v19.transcripts.txt D34vsMDSall_commonDMRs_loss_hg19\ 

/path-to-output-folder/commonDMRs -gtex /path-to-GTEx-file/WBA.snpgenes.1000.bed 

 

 

Patient specific DMRs were analyzed by putting together all found DMRs of one patient, merging and 

annotating these regions. K-means clustering and annotation of epigenetic data in CD34+ cells was 

done with R as described above (section 4.2.3.2.1), while the later one was drawn as histogram with 

95% confidence interval: 

 

library(ggplot2) 

library(reshape) 

setwd("/path-to-working-directory/") 

data <- read.table("input-file.txt", header=T, sep="\t", stringsAsFactors=FALSE, 

check.names = FALSE) 

tdata <- t(data[,-1]) 

m <- apply(tdata, 1, mean) 

s <- apply(tdata, 1, sd) 

n <- nrow(as.matrix(tdata)) 

error <- qnorm(0.975)*s/sqrt(n) 

ci975 <- m+error 

ci025 <- m-error 

d <- as.numeric(as.character(rownames(tdata))) 

result <- data.frame(cbind(d,m, s,ci975,ci025)) 

colband <- "gray" 

colline <- "blue" 

p <- ggplot(result, aes(d,m)) +  
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      geom_ribbon(aes(x=d, ymax=ci975, ymin=ci025), fill=colband, alpha=.25) + 

      geom_line(colour = colline) + 

      theme_bw(base_size=12) +  

      xlab("Distance from peak center") +  

      ylab("ChIPseq coverage") + 

      xlim(-3000, 3000) 

plot(p) 

pdf(file="output-file.pdf", height=4, width=4) 

plot(p) 

dev.off() 

 

 

To visualize changes in the subclonal architecture of the patients, fish plots were drawn using the 

fishplot package for R (exemplary script for one patient). 

 

library(gplots) 

library(RColorBrewer) 

library(fishplot) 

setwd("\path-to-working-directory \") 

timepoints=c(1,2,3,4,5)    

frac.table = matrix( 

      c( 95.7, 30.4, 0, 0, 0,     

         45, 14.5, 0, 0, 0,  

         0.1, 0.05, 33.3, 0, 0,   

  0.1, 0.05, 8, 0, 0,  

  86.7, 0, 0, 73.3, 66.7), 

      ncol=length(timepoints)) 

parents = c(0,1,0,1,4) 

fish = createFishObject(frac.table,parents,timepoints=timepoints, col = 

c("violetred4", "ivory4", "darkorange", "darkgreen", "royalblue4")) 

fish = layoutClones(fish) 

pdf(file="fishplot.pdf", height=3, width=3) 

fishPlot(fish,shape="spline",title.btm="MDS", 

             cex.title=0.5, vlines=c(1,2,3,4,5), col.vline="grey", 

             vlab=c("1","2","3","4","5"), cex.vlab=1.0, border = 0.5, col.border = 

"midnightblue", 

      bg.type = "solid", bg.col = "white") 

dev.off() 

 

 

Motif analysis for adult and pediatric MDS patients was done with the software HOMER
177

 and could 

be done either with or without subtraction of a specific background (option “-bg”). The following 

command shows one example with background subtraction.  
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LAYOUTfindMotifsGenome.pl \ 

/path-to-input-file/MDS25_DMRs_kmeans5_cluster1forMotifs.txt hg38r \ 

/path-to-output-folder/motifs -size given -len 7,8,9,10,11,12,13,14 -p <#CPU> \ 

-h -sample Name-for-output-folder -sampleID Name-for-output-folder_bg -bg \ 

/path-to-background-file/Regulome_capture_targets.txt -chopify 

4.2.3.2 MCIp-seq data 

MCIp-seq data sets were generated by indexed single 50 bp sequencing (~ 25 million reads per 

sample) on a HiSeq 1000 (Illumina) or HiSeq 3000/4000 (Illumina). The general NGS workflow is 

stated in section 4.2.1.19.  

 

4.2.3.2.1 Analyzing global DNA methylation in pediatric MDS patients 

using MCIp-seq 

Global DNA methylation in purified bone marrow granulocytes from pediatric MDS patients was 

analyzed using the MCIp-seq approach. The following script is representative for all analyzed 

samples, but will be illustrated for one example. If not stated otherwise in the command line, default 

settings were applied. 

The first steps, from conversion of bam to fastq to alignment with bowtie2 are identical like described 

above (section 4.2.3.2.2). To remove clonality from the sequencing data, we cleaned up downstream 

analysis by forcing tag counts at each position to have a maximum of 1 (indicated with “tbp1”). 

Furthermore, we normalized the data to the 99
th
 percentile to compensate different sequencing depth 

levels of the samples.  This is done using a norm factor that results from division of total tag positions 

with the 99
th
 percentile value.  

 

###Creating tbp1 Tag Directories with the homer tool pipeline 

makeTagDirectory /path-to-output-folder/MCIp_D770_186406_19 \ 

/path-to-tag-directory/MCIp_D770_186406_19 –tbp1 

 

###Creating USCC custom tracks to visualize aligned sequence tags 

makeUCSCfile /path-to-tbp1-tag-directory/KM_MDS01550292_62 -norm <norm factor> \ 

-bigWig /path-to-genome-file/chrom.sizes -fsize 1e20 -o \ 

/path-to-output-file/MDS.1.0.bigWig 

 

### normalization to 99
th
 percentile 

normalizeMCIpToXpercentile.pl \ 

/path-to-region-file/MCIp_detected_AutoNonRepeatRegionsMappable.txt \ 

/Volumes/path-to-tbp1-tag-directory/MCIp_D770_186406_19 output-name 0.99 

 

### pasting all normalized patient files into one file 

 

### t-SNE (t-distributed Stochastic Neighbor Embedding) approach with R   
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library(ggplot2) 

library(Rtsne) 

library(edgeR) 

setwd("/path-to-working-directory /") 

data <- read.delim("McIpPeaks_allWoTimecourses_ann_tbp1.counts.txt", header=TRUE, 

row.names="ID") 

mydata <- data.matrix(t(data)) 

set.seed(35) 

rtsne_out <- Rtsne(mydata, check_duplicates = FALSE, pca = TRUE, perplexity=5, 

theta=0.125, dims=2, max_iter = 50000) 

group <- factor(c(rep("TL_208021_1",1), rep("D801_203226_2",1), <list of all 

patients> ))) 

embedding <- as.data.frame(rtsne_out$Y) 

embedding$Class <- as.factor(group) 

p <- ggplot(embedding, aes(x=V1, y=V2, color=Class)) + 

     geom_point(size=5) + 

     guides(colour = guide_legend(override.aes = list(size=5))) + 

     xlab("") + ylab("") + 

     theme_light(base_size=10) + 

     theme(strip.background = element_blank(), 

    panel.background = element_rect(fill = NA, colour = "black"), 

    legend.position  = "none", 

           strip.text.x     = element_text(size = 3), 

           axis.text.x      = element_text(size = 20, color="black"), 

           axis.text.y      = element_text(size = 20, color="black"), 

           panel.border     = element_blank()) 

pdf(file="tSNE_allWoTimecourses_tbp1.counts_seed35_2.pdf", height=6, width=6) 

plot(p, labels=TRUE) 

dev.off() 

 

### Wilcoxon test for calculation of significance levels of distinct clinical 

features 

library(ggplot2) 

library(plyr) 

setwd("/path-to-working-directory /") 

data <- read.table("completeCohort_woTC_tSNEclustering_GATA2.txt", header=TRUE, 

sep=" ", row.names="ID") 

colnames(data) <- c("GATA2","cluster") 

df <- data.frame(data) 

p1 <- ggplot(df, aes(factor(cluster), GATA2, fill=factor(cluster))) 

p2 <- p1 + geom_boxplot(position=position_dodge(0.8)) 

p3 <- p2 + geom_dotplot(binaxis='y', 

stackdir='center',position=position_dodge(0.8), binwidth = .02, stackratio=1.5) + 

labs(x="Cluster", y = "GATA2") 

p <- p3 + scale_fill_brewer(palette="Blues") + theme_minimal() 

pdf(file="ScatterPlot_allPatientswoTC_tSNE_GATA2.pdf", height=3, width=4) 
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plot(p) 

dev.off() 

wilcox.test(GATA2 ~ cluster, data=df) 

 

### identifying DMRs between different t-SNE region clusters 

#Paste all specific peaks from patients belonging to the same cluster into one file 

#and merge peaks. Do peak annotation using a script that overlaps regions with 

#promoters and then filters out GTEx associated peaks. The resulting gene list was 

#analyzed regarding gene ontology using metascape.  

getAllGeneEnhancerAssociations.pl \ 

/path-to-peak-file-folder/McIpPeaks_tSNE_DMRs_merged_cluster1.txt \ 

/path-to-gencode-file/gencode.v19.transcripts.txt <output name> \ 

/path-to-output-folder -gtex /path-to-GTEx-file/WBA.snpgenes.1000.bed 

 

### Creating scatter plots with total and patient specific regions 

library(ggplot2) 

setwd("/path-to-working-directory /") 

data <- read.table("input-file.txt", header=T, sep="\t") 

attach(log10 (data + 0.1)) 

d <- data.frame(log10 (data + 0.1)) 

lm_eqn = function(d){ 

    m = lm(total regions control ~ total regions patient_sample1, d); 

    eq <- substitute(italic(r)^2~"="~r2,  

         list(r2 = format(summary(m)$r.squared, digits = 3))) 

    as.character(as.expression(eq)); } 

p1 <- ggplot(d,aes(x= total regions control, y= total regions patient_sample1)) + 

theme_bw(base_size = 8, base_family = "Helvetica") + 

coord_cartesian(xlim=c(0,4),ylim=c(-0,4))  + 

geom_point(size=.20,colour="black",alpha=0.25) + annotate("text", x = 3, y = .25, 

label = lm_eqn(d), size = 3, colour="black", parse = TRUE) + 

geom_point(aes(x=specific regions control, y=specific regions 

patient_sample1),size=.20,colour="firebrick2")  

pdf(file="Scatter.control_patient_sample1.pdf", height=2, width=2)  

plot(p1) 

dev.off() 

 

### k-means clustering of patient specific regions 

x <- read.table("input-file.txt", header=TRUE, sep=" ", row.names="ID") 

data <- as.matrix(log2(x+0.01)) 

breaks = col_breaks, na.rm=TRUE, scale="none", margins=c(10,10), #cexRow=0.5, 

cexCol=1.0, key=TRUE, density.info="none", trace="none") 

#Kmeans cluster number: 

wss <- (nrow(data)-1)*sum(apply(data,2,var)) 

for (i in 2:15) wss[i] <- sum(kmeans(data,  

    centers=i)$withinss) 

plot(1:15, wss, type="b", xlab="Number of Clusters", 
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  ylab="Within groups sum of squares") 

fit <- kmeans(data, <preferred cluster number>) 

aggregate(data,by=list(fit$cluster),FUN=mean) 

mydata <- data.frame(data, fit$cluster) 

attach(mydata) 

mysorteddata <- mydata[order(-fit.cluster), ] 

write.table(as.matrix(mysorteddata),file="kmeans-clustered-file.txt",sep="\t", 

col.names=NA) 

mysorteddata <- read.table("kmeans-clustered-file.txt ", header=TRUE, sep=" ", 

row.names="ID") 

data <- as.matrix(mysorteddata[,c("<time point1>","<time point2>")]) 

mycol <- colorRampPalette(c("blue","white","red"))(299) 

col_breaks = c(seq(-6,-2,length=100), seq(-2,2,length=100), seq(2,6,length=100)) 

pdf(file="kmeans-clustered-file.pdf", height=8, width=8) 

heatmap.2(data, Rowv=NA, Colv=NA, col = mycol, breaks = col_breaks, na.rm=TRUE, 

scale="none", margins=c(10,10), cexRow=0.5, cexCol=1.0, key=TRUE, 

density.info="none", trace="none") 

dev.off() 

 

### annotate epigenetic data from CD34+ cells in k-means region clusters and make 

heatmap 

annotatePeaks.pl \ 

/path-to-kmeans-output-position-file/kmeans-clustered-position-file.txt hg19 \ 

-size 6000 -hist 100 -ghist -d /path-to-tag-directory/epigeneticDataInCD34 \ 

/path-to-output-folder/kmeans-clustered-file-with-epigenetic-data-in-CD34.txt 

 

library(gplots) 

library(RColorBrewer) 

setwd("/path-to-working-directory /") 

data <- read.delim("kmeans-clustered-file-with-epigenetic-data-in-CD34.txt.txt", 

row.names="Gene") 

d <- data.matrix(data) 

mycol <- colorRampPalette(c("white","blue"))(199) 

col_breaks = c(seq(0,5,length=100), seq(5,10,length=100)) 

png(filename=" kmeans-clustered-file-with-epigenetic-data-in-CD34.png", 

height=8000, width=8000) 

heatmap.2(d, scale="none", Rowv=NA, Colv=NA, col = mycol, breaks = col_breaks, 

dendrogram = "none", margins=c(0,0), cexRow=0.5, cexCol=1.0, key=TRUE, 

density.info="none", trace="none", symm=FALSE,symkey=F,symbreaks=TRUE) 

dev.off() 

 

### find DMRs between patient time points 

setwd("/path-to-working-directory /") 

library(edgeR) 

data <- read.delim("patient-specific-peaks.tbp1txt", row.names="ID") 

group <- factor(c(rep("time point1",1), rep("time point 2",1))) 
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d <- DGEList(counts=data,group=group) 

colnames(d) <- c("time point 1", "time point 2")  

d <- calcNormFactors(d) 

d$common.dispersion <- 0.05 

de.com <- exactTest(d, pair=c("time point 1","time point 2")) 

results <- topTags(de.com,n = Inf) 

write.table (as.matrix(results$table), file = "patient-specific-peaks-tbp1-

timepoint1VStimepoint2.txt", sep = " ", col.names=NA) 

counts.per.m <- cpm(d, normalized.lib.sizes=TRUE) 

write.table (counts.per.m, file = "patient-specific-peaks-tbp1-counts.txt", sep = "

 ", col.names=NA) 

 

 

4.2.3.2.2 Comparison of MCIp-seq data sets from peripheral blood and 

bone marrow 

MCIp-seq data from peripheral blood and bone marrow allowed analysis of global DNA methylation in 

these tissues. The following scripts were used to compare MCIp-seq data from those different tissues. 

It is shown exemplary for sample “KM_62” but is representative for all analyzed samples. If not stated 

otherwise in the command line, default settings were applied.  

 

### Conversion from bam to fastq file using bedtools 

bedtools bamtofastq -i /path-to-file/01550292_KM_62_TGACCA_L002_R1_001.bam\ -fq 

/path-to-file/01550292_KM_62_TGACCA_L002_R1_001.fastq  

 

### Quality assessment with Fastqc 

 

### Alignment of raw reads to hg19 reference genome with bowtie2 

myMap-bowtie2.pl -x hg19 -p <#CPU> -name /path-to-output-folder/name-of-sample\  

/path-to-file/01550292_KM_62_TGACCA_L002_R1_001.fastq.gz 

 

### Creating Tag Directories with the homer tool pipeline 

makeTagDirectory /path-to-output-folder/KM_MDS01550292_62 \ 

/path-to-file/KM_MDS01550292_62.sam -keepOne -genome hg19 -checkGC  

 

### Creating USCC custom tracks to visualize aligned sequence tags 

makeUCSCfile /path-to-tag-directory/KM_MDS01550292_62 -bigWig \ 

/path-to-genome-file/chrom.sizes -o /path-to-output-file/ KM_MDS01550292_62 .bigWig 

 

### Annotating region files  

annotatePeaks.pl /path-to-region-file \ 

/MCIp_detected_AutoNonRepeatRegionsMappable.txt hg19 -size given –d  

<space separated list of tag directories> -nogene -noadj > \ 

/path-to-output-file/MCIp_detected_AutoNonRepeatRegionsMappable_tagAnn.txt 
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### Clustering of samples and drawing correlation heat map with R 

library(gplots) 

library(RColorBrewer) 

setwd("/path-to-working-directory/") 

data <- read.table("input-filename.txt", header=TRUE, sep=" ", row.names="ID") 

x  <- data.matrix(data) 

#logx <- log10(x) 

y <- cor(x, use="complete.obs", method="pearson")  

h <- hclust(dist(y, method = "manhattan"), method="ward.D2") 

mycol <- colorRampPalette(c("white","red"))(199) 

col_breaks = c(seq(0.6,0.8,length=100), seq(0.81,1,length=100)) 

pdf(file="output-filename.pdf", height=6, width=6) 

heatmap.2(y, Rowv=as.dendrogram(h), Colv=as.dendrogram(h), col = mycol, 

breaks=col_breaks, scale="none", margins=c(5,5), cexRow=0.5, cexCol=1.0, key=TRUE, 

density.info="none", trace="none", symm=FALSE,symkey=FALSE,symbreaks=TRUE) 

dev.off() 
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5 Results 

5.1 Adult MDS 

The maintenance of genomic stability and normal gene expression is ensured via specific DNA 

methylation patterns in the cell, while aberrant DNA methylation may cause a number of diseases, like 

AML or MDS. Several studies showed that patients with MDS or AML display alterations in DNA 

methylation compared to healthy donors
154,156,178

. Aberrations comprise global hypomethylation as well 

as hypermethylation of CpG islands (CGIs) in promoter regions. Hypermethylated promoters of tumor 

suppressor genes lead to inactivation of the affected gene and could promote tumorigenesis and / or 

progression to secondary AML.  

Targeted bisulfite sequencing of the myeloid regulome in longitudinal samples from MDS patients was 

performed in order to identify promising biomarkers that could be useful for diagnosis and prognosis. 

This is a cost effective alternative to study evolution of DNA methylation patterns in comparison to 

genetic events and biomarkers. Our region set (“myeloid regulome”) for targeted enrichment 

comprises a customized set of regulatory regions important for myeloid differentiation and AML 

pathogenesis and its selection is described in section 4.2.3.1.  

One limitation of targeted bisulfite sequencing is the interpretation of resulting data. It has to be taken 

into account that the extent of DNA methylation depends on the number of altered cells. Since we 

were analyzing whole bone marrow samples from patients, consecutive samples are always varying in 

the number of altered cells. Furthermore myelodysplastic syndromes are known to be a very 

heterogeneous group of diseases making it difficult to compare different patients amongst each other.  

But here, the clonal architecture of the bone marrow defined by the variant allele frequency can be 

very helpful for data interpretation. 

 

To illuminate disease progression of myelodysplastic syndromes in adults, DNA methylation of the 

myeloid regulome was studied in a cohort of 6 patients (2 females and 4 males) with a median age of 

69.5 (50 – 79) years (see Table 5-1). Bone marrow samples from patients P02 – P20 were kindly 

provided by Dr. Daniel Nowak (Department of Hematology and Oncology, Medical Faculty Mannheim) 

and the peripheral blood sample from patient P53 by Dr. Detlef Haase (Department of Hematology 

and Oncology, Goettingen). Longitudinal samples for patients P02 – P20 and P53 were available for 4 

time points or 5 time points, respectively. As we aimed for an integrated analysis regarding epigenetic, 

cytogenetic and genetic changes, we focused on more advanced subtypes due to the increased 

occurrence of alterations in high-risk MDS patients and on the other hand the higher probability to 

progress into acute myeloid leukemia.  
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Recurrent somatic mutations encountered in MDS, such as SF3B1 or TET2, were observed in all 

patients, ranging from two to seven mutations per patient. Out of six patients, two had normal 

karyotypes (P19 and P20), while three patients were found with del(5q) (P02, P13 and P15) and one 

patient with complex karyotype (P53). The percentage of bone marrow blasts ranged from 0 % to 

13 %. Since patients underwent different clinical treatment regimes, DNA methylation changes due to 

distinct medication needed to be considered additionally.  

 

Table 5-1 - Clinical data of six adult MDS patients 

Patient Sex 
Age 

at Dx 

WHO at 

Dx 
Cytogenetics 

Gene 

mutations 

BM blast 

count (%) 
Therapy 

P02 f 50 
MDS with 

del(5q) 

46,XX[8]/46 XX 

del(5)(q14q33)[12] 

DNMT3A, 

CHRM2, RAET1G 
0 

Lenalidomide, 

phlebotomy 

P13 f 66 
MDS with 

del(5q) 

46,XX,del(5)(q13q33) 

[20]/ 46, XX [3] 

TET2, SF3B1, 

TP53, PML, C7, 

TNIK 

<5 - 

P15 m 73 
MDS with 

del(5q) 

46,XY,del(5)(q14q34)  

[20] 

ASXL1, EZH2 

(2x), ETV6, 

RUNX1, NF1, 

CSNK1A1 

0 Lenalidomide 

P19 m 74 
MDS-RS-

SLD 
46,XY [22] 

ASXL1, SF3B1, 

TTBK1 
1-2 APG101 

P20 m 66 MDS-EB1 46,XY [20] 

IDH2, SRSF2, 

SPEG2, BRCC3, 

NF1 

NA 
Lenalidomide, 

APG101 

P53 m 79 MDS-EB2 

46,XY,del(20) 

(q12q13.2?) [15] 

/47,idem, +12, 

i(12)(q10)[7]/46,XY[1] 

RUNX1, SRSF2 13 Azacitidine 

Abbreviations: Dx: diagnosis; BM: bone marrow 
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5.1.1 Comprehensive analysis of DNA methylation data of all 

patients 

5.1.1.1 Identification of DMRs in patients during disease progression 

 

To get an overview of differences and commonalities we looked for differentially methylated regions 

(DMRs) during disease progression among all six patients. DMRs that were found in comparison 

between consecutive samples of individual patients were merged and resulted in a total of 1740 

DMRs. 

The number of overlapping DMRs within samples of single patients is shown in Figure 5-1 A. The 

Venn diagram depicted shows that there are no common differentially methylated regions between all 

six patients. Most of the identified DMRs were patient specific, meaning that there was only a small 

amount of overlapping DMRs between the patients. Figure 5-1 B illustrates this phenomenon, showing 

that the amount of common DMRs between patients decreased with number of patients. In summary, 

1352 DMRs were found only in one patient, 271 DMRs were common in two patients, while the 

number of common DMRs further decreased with higher patient numbers (85 DMRs in three patients, 

30 DMRs in four patients, 2 DMRs in five patients). This demonstrated that most progression 

associated changes in DNA methylation were individual and only few commonalities were observed in 

this patient cohort. 

 

 

Figure 5-1 – Distribution of differentially methylated regions between all patients 

(A) Venn diagram of differentially methylated regions (DMRs) showing the number of overlapping DMRs between 

distinct patients. (B) Bar plot which depicts the amount of DMRs for a distinct number of patients. 
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5.1.1.2 Identification of DMRs in comparison to CD34+ cells 

Next, we compared methylation profiles of patients with CD34+ cells. These cells serve as a control 

group representing a normal state of CGI methylome. Furthermore, comparison with these cells allows 

the identification of disease specific alterations and differentiation dependent changes.  

Additionally we separated the DMRs into regions that gained or lost DNA methylation in comparison to 

CD34+ cells. In detail, differentially methylated regions between the single time points of the patients 

were filtered for gain and loss of methylation and then merged into one file. These DMRs were further 

analyzed regarding their overlap with other patients, their gene ontology and epigenetic landscapes in 

HSC (Figure 5-2 A – D).  

The upper part of Figure 5-2 shows regions that lost DNA methylation in patients in comparison to 

CD34+ cells. The Venn diagram depicts that 42 DMRs out of 1165 DMRs are commonly demethylated 

in patients compared to hematopoietic stem cells (Figure 5-2 A). Proportional distribution of DMRs 

over the different number of patients is depicted as bar plot and showed a negative correlation (Figure 

5-2 B). The higher the number of patients incorporated, the lower was the amount of overlapping 

DMRs. For instance, 538 regions were found to be differentially methylated in one patient only and 

therefore altered individually, whereas 78 DMRs were altered in five patients. In order to functionally 

annotate DMRs, we assigned them to neighboring genes using an approach similar to GREAT which 

also considered eQTL associations of closeby SNPs provided by GTEx
179

. 

Significantly enriched GO terms found with the online tool Metascape
180

 were for instance 

“hematopoietic or lymphoid organ development”, “leukocyte activation involved in immune response”, 

“pathways in cancer” or “myeloid differentiation” (Figure 5-2 C). By integrating analysis of epigenetic 

marks associated in these regions, more details could be gathered regarding the characteristics of 

these DMRs. Histograms depicted in Figure 5-2 D show that these hypomethylated regions are rarely 

associated with the repressive histone mark H3K27me3 (blue), while active marks like H3K4me3 

(orange) and H3K27ac (purple) are highly enriched. Furthermore regions are accessible for DNase I, 

indicated by the signal of DHSs (DNase I hypersensitive site, green).  

Using the approach mentioned above, DMRs hypermethylated in patients compared to CD34+ cells 

included 53 regions that were commonly more methylated in all patients than in stem cells (Figure 

5-2 E). In total, 3068 DMRs were observed, while 1720 DMRs showed again individual DNA 

methylation alterations. The negative correlation between abundance of DMRs and number of patients 

is depicted in the bar plot in Figure 5-2 F.  

Gene ontology analysis of hypermethylated regions depicted in Figure 5-2 G, generally revealed terms 

with higher significance compared to hypomethylated ones. Associated interesting pathways were 

“hematopoietic or lymphoid organ development”, “negative regulation of cell proliferation”, “negative 

regulation of cell differentiation”, “regulation of cell migration”, or “regulation of hemopoiesis”.  

Histone H3K27 trimethylation (blue) showed a high signal in DMRs which gained DNA methylation in 

comparison to CD34+ cells, but also active marks like H3K4me3 (orange), H3K27ac (purple) and 

DNase I hypersensitive sites (green). Due to this results regions seemed to be bivalent ones (Figure 

5-2 H). The phenomenon of bivalent promoters, that become hypermethylated in cancer cells was 

described in several studies
181–183

. 
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Figure 5-2 - Analysis of DMRs between CD34+ cells and adult MDS patients 

Differentially methylated regions in comparison to hematopoietic stem cells were distributed into regions either 

losing (A – D) or gaining (E – H) DNA methylation compared to CD34+ cells. (A & E) Venn diagram of DMRs 

illustrates the overlapping regions between the different patients. (B & F) Proportional distribution of DMRs in the 

different number of patients is depicted as bar plot. (C & G) Table of enriched gene ontology terms in analyzed 

DMRs obtained with Metascape and associated q-values. (D & H) Histograms show the average coverage of 

different epigenetic marks in the analyzed regions done with ChIPseq (Chromatin immunoprecipitation 

sequencing), while the 95% confidence interval is depicted in gray. 
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5.1.1.2.1 Detailed characterization of common DMRs in comparison to 

CD34+ cells 

In order to characterize the identified differentially methylated regions in greater detail, we analyzed 

the localization across the genome of these DMRs. This was done by annotating the DMRs to the 

reference genome using the software HOMER.  

Analysis was restricted to DMRs that were common in all patients in comparison to CD34+ cells, since 

we were looking for potential common target regions that could serve as biomarkers.  

Distribution of DMRs that are losing or gaining DNA methylation in comparison to CD34+ cells is 

depicted in the two pie charts below (Figure 5-3). In both cases, the majority of DMRs were assigned 

to intronic and intergenic regions followed by transcription start sites and exons. The only difference is 

that hypomethylated DMRs could be observed with a higher percentage in intergenic regions and less 

in introns than hypermethylated DMRs compared to CD34+ cells. 

 

 

 

Figure 5-3 – Genomic distribution of common DMRs in comparison to CD34+ cells 

Pie chart showing the percentage of DMRs localized in different genomic parts with DMRs losing (A) or gaining 

(B) DNA methylation in patients compared to hematopoietic stem cells. Annotation of identified differentially 

methylated regions to the human genome was done using the software HOMER.  

 

Due to their localization, some DMRs may have important effects on gene expression, especially on 

tumor suppressor genes or oncogenes, and could play a role in the pathogenesis of MDS or during 

progression to acute myeloid leukemia. For every subset of DMRs, hypomethylated and 

hypermethylated ones respectively, results of GO term analysis were used to identify interesting 

affected genes.  

Focusing on DMRs which were common in all patients and lost DNA methylation in comparison to 

CD34+ cells (in total 42 DMRs), GO term analysis revealed several interesting genes (see Table 5-2). 

They were found in the term “chromatin organization”, including for instance PRDM2, PRDM14 and 

YEATS4. PRDM2 and PRDM14 (PR/SET Domain 2) are members of the nuclear histone/protein 
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methyltransferase superfamily and are acting as tumor suppressor genes in solid tumors and 

leukemia
184–187

. Normally, YEATS4 (YEATS Domain-Containing Protein 4) is a component of the 

NuA4 histone acetyltransferase (HAT) complex and therefore involved in transcriptional activation, 

whereas overexpression of this oncogene is involved in the development of various tumors
188,189

. 

 

Table 5-2 - GO analysis of common DMRs with loss of DNA methylation in comparison to CD34+ cells 

GO term Involved genes 

Chromatin organization  HNRNPC, PRDM2, YEATS4, HIST1H2BL, HDAC4, EP400, 

PRDM14, MYSM1 

actin cytoskeleton reorganization PRKCZ, CAPN10, MICALL2 

negative regulation of 

phosphorylation 

GFRA2, PRKCZ, HDAC4, RPTOR 

HATs acetylate histones YEATS4, HIST1H2BL, EP400 

 

 

Table 5-3 summarizes the results of gene ontology analysis obtained with common DMRs which 

gained DNA methylation in contrast to hematopoietic stem cells (53 DMRs in total). With the aim to 

identify potential epigenetic target genes that are involved in pathogenesis of myelodysplastic 

syndromes and / or progression to acute myeloid leukemia, genes involved in the GO terms “positive 

regulation of hemopoiesis” and “methylation” seemed to be promising.  

The important transcription factor RUNX1 is involved in generation of hematopoietic stem cells and 

lineage-specific differentiation
190

. Therefore the observed hypermethylation in the promoter region 

could repress RUNX1 expression and misbalance hematopoiesis. Another affected and interesting 

transcription factor is FOXO3, which plays important roles in cellular processes, including 

differentiation, proliferation and apoptosis. Dysregulation of FOXO3 expression was found to be 

involved in tumorigenesis and progression
191,192

. ZFPM1 (Zinc Finger Protein, FOG Family Member 1) 

or also known as FOG1 (friend of GATA protein 1) that was found in hypermethylated DMRs acts as a 

cofactor of GATA1 in regulating erythroid and megakaryocytic cell differentiation
193,194

. 
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Table 5-3 - GO analysis of common DMRs with gain of DNA methylation in comparison to CD34+ cells 

GO term Involved genes 

Vibrio cholera infection  GNAS, PLCG2, ZFPM1 

Muscle cell development ENG, NFATC2, CTDP1, BIN3, EGR3, ZFPM1 

Positive regulation of hemopoiesis RUNX1, EGR3, FOXO3, GNAS, ZFPM1, PLCG2 

Positive regulation of transporter activity PLCG2, SYNGR3, CRACR2A, COX7A1, KCNN4 

Transforming growth factor β receptor 

signaling pathway 

LDLRAD4, ENG, DUSP22, PRDM16, EGR3, 

FOXO3 

Methylation AMT, GNAS, PRDM8, PRDM16, ZFP57 

Regulation of fat cell differentiation PRDM16, ZFPM1, ZADH2, LDLRAD4, FOXE3, 

FOXO3 

Negative regulation of transcription from 

RNA polymerase II promoter 

FOXO3, NFATC2, BHLHE40, DUSP22, PRDM16, 

ZFPM1, ZFP57 

Positive regulation of angiogenesis RUNX1, ENG, HSPB6, EGR3, FBXW8, EGFL7 

Antigen receptor-mediated signaling 

pathway 

KCNN4, NFATC2, PLCG2, DUSP22 

Oxidative phosphorylation COX7A1, ATP6V1H, NDUFA11 

Regulation of homeostatic process FOXO3, PLCG2, XRCC3, SMG5, ZFPM1 

Positive regulation of epithelial cell 

proliferation 

EGR3, FOXE3, EGFL7 

 

5.1.1.2.2 Functional analysis of DNA methylation dependence in DMRs 

To address DNA methylation sensitivity of these differentially methylated regions (RUNX1, FOXO3 

and ZFPM1), affected regulatory genomic regions were analyzed in reporter gene assays (see section 

4.2.1.6). Genome browser tracks of selected regions were listed in Appendix (Figure 11-1 - Figure 

11-4), where chosen sequences were highlighted in red.  

All three regions were tested for their enhancer activity and the RUNX1 region additionally regarding 

the promoter activity. For this approach, a CpG-free luciferase reporter plasmid (pCpGL-basic, #861) 

was used
195

, where effects of DNA methylation in promoter constructs can be tested. Based on this 

method, further plasmids were developed to test enhancer activity depending on DNA methylation 

status. This reporter plasmid consists of the E1AF-promoter/CMV-enhancer cassette with an upstream 

located terminator (pCpGL-CMV/T.E1AF, #1341), where the CMV enhancer was replaced by the DMR 

region via cloning. Luciferase reporter constructs were either mock-treated or methylated in vitro with 

SssI methylase (suffix “methyl”).  
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The bar plot in Figure 5-4 shows that only one DMR (FOXO3_2) showed activity in the unmethylated 

state above the one of the control plasmid pCpGL-CMV/T.E1AF (#1341). In this case, in vitro 

methylation showed a loss of enhancer activity at a significant level suggesting that differentially 

methylation in the FOXO3_2 region could have an effect on gene expression. As mentioned above, 

alterations in FOXO3 expression were shown to be involved in tumorigenesis and progression
191,192

 

and therefore may also play a role in development of myelodysplastic syndromes.  

All other tested DMRs showed no activity above the corresponding control reporter plasmid indicating 

to be not active and therefore we were not able to make a statement regarding DNA methylation 

dependence of these regions. 

 

 

 

Figure 5-4 - Bar plot of gene reporter assays in adult MDS patients 

Differentially methylated regions of adult MDS patients that were hypermethylated in contrast to CD34+ cells were 

cloned into the reporter gene vector #1341 (pCpGL-CMV/T.E1AF) or #861 (pCpGL-basic). The indicated 

plasmids were either unmethylated or in vitro SssI-methylated (“methyl”) and transiently transfected into THP-1 

cells. Luciferase activity was normalized against the activity of a co-transfected Renilla construct and mean values 

of RLUs (relative luminometer units) +/- standard deviation are shown. Significance levels were calculated using 

the Student´s t-test (one-tailed, unequal variance).  
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5.1.2 Comprehensive analysis of DNA methylation in consecutive 

samples 

The data above demonstrated that DNA methylation changes in MDS patients are mostly private. Only 

few similarities between all patients could be found. In order to get further insights into disease 

progression, we analyzed DNA methylation in consecutive samples of individual patients. 

Furthermore, existing cytogenetic and genetic data were included allowing integrated analyses of all 

three possible causes of myelodysplastic syndromes.  

The initial question how related the MDS samples are, was addressed using principal component 

analysis (PCA) (see Figure 5-5). This unsupervised technique reduces high dimensionality data sets 

to fewer dimensions allowing easier interpretation of the data
196,197

.  

In detail, we used the R package “methylKit”
198

, that allows analysis and annotation of DNA 

methylation information obtained by high-throughput bisulfite sequencing. The control group 

comprised bisulfite sequencing data from CD34+ cells (hematopoietic progenitors), CD14+ cells 

(monocytes) and CD15+ cells (granulocytes). Principal component analysis included methylation data 

from all measured CpGs from all patients and control cells (command see section 4.2.3.1, “Correlation 

and principal component analysis (PCA)”). 

In general, the two control sets of granulocytes and monocytes were found to be in close proximity to 

each other illustrating the similarity between these two cell types regarding DNA methylation. In 

contrast, CD34+ cells were localized further away, which was not surprising since hematopoietic stem 

cells exhibit a different landscape of DNA methylation
199

. With one exception, the different time points 

of the single patients were very similar represented by their close vicinity. Patient P15 was the outlier, 

where the sample of time point one (P15.1) was far away from the other three samples, suggesting a 

bigger difference in DNA methylation. Moreover, the individual longitudinal samples of patient P53 

were not as close together as consecutive samples of the other patients, suggesting more differences. 

In summary, longitudinal samples of single patients showed a high degree of similarity regarding DNA 

methylation, with one exception (time point one of patient P15). Furthermore different patients showed 

also a distinct DNA methylation pattern due to the different localizations over the plot. 
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Figure 5-5 - PCA of all adult MDS patients with consecutive samples and controls 

Principal component analysis (PCA) of methylation data in all measured CpGs in six different MDS patients with 

four or five time points each as well as CD34+ cells, CD14+ cells (monocytes) and CD15+ cells (granulocytes). 

Single patients were colored differently and numbers at the end of the sample labeling indicates consecutive 

samples of individual patients in a time-dependent manner.   

 

 

5.1.2.1 Detailed analysis of patient P02 

5.1.2.1.1 Analysis in comparison to CD34+ cells  

Since the principal component analysis showed little correlation between all patients, we performed a 

detailed analysis for every single patient to shed more light on disease progression. This was 

implemented by two different approaches, first by comparing DNA methylation profiles of consecutive 

patient samples with CD34+ cells as a reference. And secondly, we compared the data across 

longitudinal samples of each individual patient to reveal DNA methylation changes over time.  

In order to assign the similarity between CD34+ cells and samples of MDS patients, Pearson 

correlation of CpG methylation was calculated using the R software package “methylKit”. Percentage 

of CpG methylation was depicted as a scatter plot (see Figure 5-6 A) and was generated with the code 

described in section 4.2.3.1 (“Correlation and principal component analysis (PCA)”). 

Regarding the relationship between hematopoietic stem cells and the single time points, we saw a 

high correlation and an even higher one between the longitudinal samples among each other. 
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Figure 5-6 – DNA methylation analysis and associated epigenetics of patient P02 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of samples. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 1093 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups. Each horizontal line represents a single DMR. Epigenetic marks 

in CD34+ cells in these DMRs are depicted on the right histograms for every cluster of regions. Average ChIPseq 

coverage for every cluster was drawn over a 4 kb region of the analyzed DMRs. (C) Histogram of average DNA 

methylation over 2 kb regions of FANTOM5 (F5) promoter, F5 enhancer and GATA2 bound regions in CD34+ 

cells (purple), different time points of patients (different blue shades) as well as CD14+ (red) and CD15+ (yellow) 

cells. DNA methylation data in all observed 1093 DMRs was overlapped with publicly available data of the 

FANTOM5 consortium for promoter regions or enhancer regions as well as with ChIPseq data of GATA2 binding 

motifs.  

 

In order to determine the similarities and differences between DNA methylation of the individual 

longitudinal samples in comparison to CD34+ cells, we identified differentially methylated regions 

(DMRs) between CD34+ and each time point using the software “metilene”
176

. DMRs obtained 

between each pair were merged into one file, annotated to the human reference genome (GRCh37/ 

hg19) and clustered using the K-means algorithm. Figure 5-6 B depicts this K-means clustering of 

1093 DMRs regarding their DNA methylation degree. 

Corresponding data of granulocytes (CD15+) and monocytes (CD14+) were also annotated across 

these regions and are shown in panels 6-9 of the heat map in Figure 5-6. To get some information 

about the analyzed DMRs, epigenetic data of CD34+ cells were annotated and depicted as histograms 

on the right side. Here, average ChIPseq coverage for every cluster was drawn over a 4 kb region of 

the analyzed DMRs. Data were available for the repressive histone mark H3K27me3, for DHSs 

(DNase I hypersensitive sites), H3K4me3 and H3K27ac, whereby H3K4me3 marks promoters and 

H3K27ac promoters and enhancers.  

K-means clusters 1, 3, 6 and 7 were hypermethylated in contrast to stem cells, whereas the remaining 

clusters 2, 4 and 5 show a demethylated state. Considering epigenetic data of clusters 2, 4 and 5 (loss 

of DNA methylation, gain of H3K27ac and loss of H3K27me3 modifications), they likely correspond to 

regulatory elements associated with differentiation.  

This was supported by the identification of distinct TF binding motifs in the analyzed clusters using 

HOMER. In cluster 4 we observed an enrichment of binding motifs for the transcription factors CEBP 

(q-value = 0.0057) and AP-1 (q-value = 0.094), both being involved in myeloid differentiation. In 

contrast, regions of clusters 1, 3, 6 and 7 were specific for MDS and are not associated with 

maturation. This statement was made due to their hypermethylation and H3K27me3 signature (except 

for some regions in cluster 1 showing no H3K27me3 and already marked levels of DNA methylation in 

CD34+ cells).  

Interestingly, motif analysis in DMRs belonging to cluster 3 revealed a high frequency of GATA binding 

motifs (q-value = 0.0076), whereas remaining clusters 1, 6 and 7 were not significantly enriched for TF 

binding motifs.  
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Regarding DNA methylation degree in this patient, the first sample exhibited a higher extent of DNA 

methylation than the other time points. This was also seen in our next approach, where we looked at 

distribution of DNA methylation in subtypes of regions, including promoter regions (defined in the 

FANTOM5 promoter atlas), potential enhancer regions (defined in the FANTOM5 enhancer atlas) or 

those regions bound by GATA2 in HSCs. The reason for the selection of these promoter and 

enhancer regions is that DNA methylation influences gene expression and aberrations in this 

epigenetic mark may lead to malfunctions in this system. The GATA2 transcription factor is known to 

play a role in normal and malignant hematopoiesis
132,140

 and therefore analysis of DNA methylation in 

regions bound by this TF could be very informative.   

Regarding DNA methylation in promoter regions (see Figure 5-6 C), we could see lowest level of DNA 

methylation in CD34+ cells followed by CD14+ and CD15+ cells. Longitudinal samples 2, 3 and 4 

displayed only a slight increase compared to monocytes and granulocytes in DNA methylation, 

whereas the sample from time point 1 showed the highest degree of methylation. Almost the same 

pattern could be observed in enhancer regions, where all samples with exception of time point 1 

displayed the same degree of DNA methylation. Regions preferentially bound by GATA2 in HSCs 

were methylated at low levels in hematopoietic stem cells, increasing in CD14+ / CD15+ control cells 

and patient samples 2-4, while time point 1 exhibited again the highest DNA methylation. Moreover, 

average DNA methylation differences across the three region subsets were similar.  

 

In addition to our targeted bisulfite sequencing data, we analyzed publicly available data sets obtained 

by whole genome bisulfite sequencing (Blueprint) from several precursor cells as well as more 

differentiated cells in the three region compartments (Figure 5-7). Here, we used the same regions as 

before (Figure 5-6 C), only adding public data instead of our own data sets. With this approach we 

intended to somehow class MDS patients to a certain state of differentiation. Unfortunately, data sets 

were obtained with two different methods (whole genome bisulfite sequencing versus targeted bisulfite 

sequencing) and comparison of equivalent samples between these two approaches showed strong 

likely platform dependent differences. Nevertheless, annotation of WGBS data gave an indication of 

the behavior of DNA methylation in our analyzed regions on distinct levels of differentiation.  

Generally, we observed B- and T-lymphocyte samples to be methylated the most (Treg, CD8+ T cell, 

precursor lymphocyte of B lineage and naïve B cell), while myeloid precursor and mature cells 

(neutrophilic metamyelocyte and myelocyte, band form neutrophil and classical monocyte) showed a 

lower level of DNA methylation. Hematopoietic multipotent progenitor cells exhibited DNA methylation 

ratios in between these two groups. The same was seen for FANTOM5 enhancer and GATA2 bound 

regions, whereby regulatory T cells (Treg) and CD8+ T cells showed even higher DNA methylation 

levels compared to promoter regions.  

 

 



Results 

97 
 

 

Figure 5-7 - Histogram of DNA methylation in different genomic regions using publicly available data sets 

(P02) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in P02 in comparison to CD34+ cells in hematopoietic 

precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data in the patient 

specific 1093 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.  

 

5.1.2.1.2 Integrated analysis of DNA methylation and genetics / 

cytogenetics of patient P02 

So far, we analyzed differences regarding DNA methylation in comparison to hematopoietic stem cells 

(CD34+) resulting in a general overview. Variance between the distinct longitudinal samples could be 

better analyzed when comparing the samples among each other.  

Without CD34+ cells as the reference, differentially methylated regions are restricted only to the 

longitudinal samples of the patient and changes during disease progression could be easier 

addressed. Pairwise comparison of samples with the software “metilene” revealed subsets of DMRs 

which were merged into one DMR set. For patient P02 we obtained 287 differentially methylated 

regions which were split into 5 clusters using K-means. DNA methylation data from control cells were 

annotated in these regions and plotted next to the patient samples (Figure 5-8). The corresponding 

heat map showed that consecutive samples of one patient exhibit individual DNA methylation patterns, 

while time point 1 and 2 look similar as well as time point 3 and 4. In order to visualize the 

relationships to genetic and cytogenetic data, fish plots were drawn (command see section 4.2.3.1) 

with corresponding clinical characteristics and therapy added below (lower part of Figure 5-8). Fish 

plots were used to illustrate the clonal architecture over time and were created using the R package 

“fishplots”. The first two consecutive samples of patient P02 were classified as MDS with del(5q) and 

exhibit the same clonal architecture with two coexisting clones, a CHRM2/del(5q) clone (green) and a 

DNMT3A/RAET1G mutated clone (blue/orange). Upon treatment with lenalidomide (LEN) the patient 

achieved hematologic remission and the CHRM2/del(5q) clone completely disappeared. In addition, 

the clone with mutated DNMT3A and RAET1G fully expanded and the patient received a phlebotomy 

at the same time.  
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Figure 5-8 - DNA methylation analysis between time points and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 287 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Dendrogram shows clustering of the patients 

into two groups. Each horizontal line represents a single DMR while DNA methylation degree is indicated in 

different shades of red, ranging from 0 % methylation (white) to 50 % methylation (red). The bar on the left side 

shows classification of DMRs into the five different clusters. Below, fish plot displays mutational evolution during 

clinical follow-up at analyzed time points (marked with a dashed line). The height of the “fishes” are reflecting the 

variant allele frequencies of depicted clones, the higher the more alleles are mutated. Different (sub)-clones were 

colored separately. Clinical classification as well as therapy is drawn at the bottom of the figure.  

 

In summary, samples of patient P02 exhibited two different genetic architectures, where the first one 

was characterized by the coexistence of a CHRM2/del(5q) clone and a DNMT3A/RAET1G mutated 

clone. At time point 3, the CHRM2/del(5q) clone completely disappeared due to treatment with 

lenalidomide and the DNMT3A/RAET1G clone expanded which was generally accompanied by DNA 

methylation changes. Also in line with the clustering in Figure 5-6 B, DNA methylation changes 

between consecutive samples correlated with changes in the clonal composition.  
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5.1.2.2 Detailed analysis of patient P13 

5.1.2.2.1 Analysis in comparison to CD34+ cells  

The same analyses were performed with all other patients. Patient P13 showed high Pearson 

correlation coefficients of CpG methylation compared to CD34+. Correlation values between the single 

time points of patient P13 were even higher (see Figure 5-9 A). In total, we obtained 1675 differentially 

methylated regions compared to CD34+ cells, which were comparted in six different clusters using K-

means algorithm (see Figure 5-9 B). The heat map showed that patient samples at time point 1 and 2 

were very similar and showed a lower DNA methylation degree than longitudinal samples 3 and 4, 

while the methylation pattern remained constant indicating a lower amount of aberrant cells in samples 

1 and 2. Increasing DNA methylation in comparison to hematopoietic stem cells and an H3K27me3 

signature could be observed in clusters 1, 2, 4 and 6. The remaining cluster 3 and 5 showed 

demethylation compared to CD34+ cells. The corresponding epigenetic signature, like loss of DNA 

methylation and H3K27me3 as well as gain of H3K27ac suggested an association with differentiation. 

Motif analysis in those six clusters of DMRs only revealed a GATA signature (q-value = 1e-9) in cluster 

6, while clusters 1, 2 and 4 didn´t show significant enrichment for TF binding motifs.  

The histogram of DNA methylation data in FANTOM5 promoter regions showed an overlap of all 

control cells (CD34+, CD14+ and CD15+) and a higher DNA methylation degree in the patient (Figure 

5-9 C). There, time point 1 and 2 displayed a lower methylation compared to time point 3 and 4, which 

was already pointed out in the heat map of Figure 5-9 B. A similar picture could be seen in F5 

enhancer regions, while in GATA2 bound regions CD34+ cells were preferentially demethylated, as 

already observed with patient P02.  

 

Figure 5-10 depicts DNA methylation of publicly available data sets of precursor and mature cells in 

regions described above (Figure 5-9 C). As observed for patient P02 in F5 promoter regions, lymphoid 

samples (precursor lymphocyte of B lineage, Treg, CD8+ T cell) showed the highest DNA methylation 

degree, followed by naïve B cells and hematopoietic multipotent progenitor cells. The three myeloid 

samples (neutrophilic metamyelocyte and myelocyte, band from neutrophil) were the least methylated. 

The same picture was obtained for FANTOM5 enhancer regions and GATA2 bound regions, whereas 

only DNA methylation extent is a bit higher in these two compartments than in promoter regions. 
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Figure 5-9 - DNA methylation analysis and associated epigenetics of patient P13 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of samples. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 1675 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups. Each horizontal line represents a single DMR. Epigenetic marks 

in CD34+ cells in these DMRs are depicted on the right histograms for every cluster of regions. Average ChIPseq 

coverage for every cluster was drawn over a 4 kb region of the analyzed DMRs. (C) Histogram of average DNA 

methylation over 2 kb regions of FANTOM5 (F5) promoter, F5 enhancer and GATA2 bound regions in CD34+ 

cells (purple), different time points of patients (different blue shades) as well as CD14+ (red) and CD15+ (yellow) 

cells. DNA methylation data in all observed 1675 DMRs was overlapped with publicly available data of the 

FANTOM5 consortium for promoter regions or enhancer regions as well as with ChIPseq data of GATA2 binding 

motifs. 

 

 

 

Figure 5-10 - Histogram of DNA methylation in different genomic regions using publicly available data 

sets (P13) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in patient P13 in comparison to CD34+ cells in 

hematopoietic precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data 

in the patient specific 1675 DMRs was overlapped with publicly available data of the FANTOM5 consortium for 

promoter regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.  

 

Patient P13 exhibited 348 regions differentially methylated among all longitudinal samples, which were 

clustered into four groups using the K-means algorithm. Overall, the intensities of DNA methylation 

signals were weaker for time points 1 and 2 compared to 3 and 4 (Figure 5-11).  

Regarding clinical classifications during the analyzed time period, progression from MDS with del(5q) 

(time point 1) over MDS with excess blast (time points 2 and 3) until transition into secondary AML 

(time point 4) was observed. Genetic data provided from the group in Mannheim made it possible to 

draw a fish plot with variant allele frequencies of mutations. Cells with PML lesions were shown to be 

the founder clone and VAFs were very stable over all 4 time points. A TET2 mutated subclone arose 

from this PML clone, which was more or less stable during progression. This TET2 clone exhibited 

acquisition of two different subclones with TNIK or del(5q) lesions, respectively, while SF3B1/TP53 
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mutations appeared in aberrant del(5q) cells as a further subclone. Over time, VAFs for SF3B1/TP53 

and del(5q) increased with climax at time point 3, while frequency of cells with TNIK lesions slightly 

decreased, indicating a marked clonal shift between samples 2 and 3.  

In summary, patient P13 did not acquire novel mutations during disease progression, only VAFs of the 

different lesions varied on a small scale, which could be seen on DNA methylation level.  

 

 

 

Figure 5-11 - DNA methylation analysis of patient P13 and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 348 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Dendrogram shows clustering of the patients 

into two groups. Each horizontal line represents a single DMR while DNA methylation degree is indicated in 

different shades of red, ranging from 0 % methylation (white) to 50 % methylation (red). The bar on the left side 

shows classification of DMRs into the five different clusters. Below, fish plot displays mutational evolution during 

clinical follow-up at the analyzed time points (marked with a dashed line). The height of the “fishes” are reflecting 

the variant allele frequencies of depicted clones, the higher the more alleles are mutated. Different (sub)-clones 

were colored separately. Clinical classification as well as therapy is drawn at the bottom of the figure.  
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5.1.2.3 Detailed analysis of patient P15 

5.1.2.3.1 Analysis in comparison to CD34+ cells  

Comparison of Pearson correlation coefficients of CpG methylation between CD34+ cells and 

longitudinal samples of patient P15 revealed lower values compared to patients P02 and P13. A 

generally higher correlation was obtained by comparison of the patient samples amongst each other 

(Figure 5-12 A). Interestingly we noticed a lower correlation between time point 1 and all other time 

points suggesting larger differences in CpG methylation. This phenomenon was also seen in the K-

means clustering of 2208 differentially methylated regions that were found between all consecutive 

samples of patient P15 in comparison to CD34+ cells (see Figure B). The sample of time point 1 

showed a clear decrease of DNA methylation in contrast to longitudinal samples 2-4, which exhibited 

almost the same pattern. The first sample was taken under treatment with lenalidomide and therefore 

lower DNA methylation degree was probably due to the reduction of aberrant cells. 

The six different K-means clusters of DMRs could be divided into clusters associated with 

differentiation (cluster number 3 and 4) and those specific for MDS (clusters 1, 2, 5 and 6).  

Differentiation specific clusters were demethylated in patients compared to CD34+ cells and showed 

low signals of H3K27 trimethylation. In addition, cluster 4 exhibited histone marks associated with 

regulatory activity, namely H3K4me3 and H3K27ac. The remaining DMR clusters showed higher DNA 

methylation than in CD34+ cells and were already repressed in hematopoietic stem cells by 

H3K27me3. Furthermore these regions showed active histone H3K4 trimethylation supposing 

preferentially primer regions that were hypermethylated. Findings of motif analysis in these K-means 

clusters showed that cluster 3 was linked with binding motifs for CEBP (q-value = 1e-8) and AP-1 

(q-value = 0.009) and also cluster 4 was linked with CEBP motifs (q-value = 1e-8), both transcription 

factors necessary for normal differentiation processes.  

Analysis of DNA methylation degree in F5 promoter regions (Figure 5-12 C) revealed a generally 

higher DNA methylation of patient samples than control cells (CD34+, CD14+ and CD15+). 

Remarkably, the first sample time point showed a lower DNA methylation than all other time points, 

but still a slightly higher one than control cells. Enhancer regions were methylated to a similar extent 

regarding patient samples as well as control cells. Regions which were preferentially bound by GATA2 

exhibited the lowest DNA methylation in CD34+ cells, whereas signals of all other samples and 

controls (CD14+ and CD15+) were found at almost the same level, but generally higher than in stem 

cells.  

In summary, this suggested that aberrant MDS cells in this specific patient were similar to monocytes 

and granulocytes regarding their differentiation level apparently shown by complete overlap of DNA 

methylation signals in GATA2 bound regions. 
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Figure 5-12 - DNA methylation analysis and associated epigenetics of patient P15 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of sample. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 2208 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups, while sample 1 forms a separate group. Each horizontal line 

represents a single DMR. Epigenetic marks in CD34+ cells in these DMRs are depicted on the right histograms 

for every cluster of regions. Average ChIPseq coverage for every cluster was drawn over a 4 kb region of the 

analyzed DMRs. (C) Histogram of average DNA methylation over 2 kb regions of FANTOM5 (F5) promoter, F5 

enhancer and GATA2 bound regions in CD34+ cells (purple), different time points of patients (different blue 

shades) as well as CD14+ (red) and CD15+ (yellow) cells. DNA methylation data in all observed 2208 DMRs was 

overlapped with publicly available data of the FANTOM5 consortium for promoter regions or enhancer regions as 

well as with ChIPseq data of GATA2 binding motifs. 

 

In those differentially methylated regions obtained for patient P15 which overlapped with regulatory 

features (F5 promoter, F5 enhancer, GATA2 binding), we noticed again a higher DNA methylation 

degree in T cells (Treg and precursor lymphocyte of B lineage) (see Figure 5-13). Regarding F5 

promoter regions, the remaining data sets showed a similar extent, while CD8+ T cells and naïve B 

cells were slightly more methylated. In FANTOM5 enhancer and GATA2 bound regions, the signals 

were more separate, but the order due to DNA methylation degree was similar to patients shown 

before.  

 

 

Figure 5-13 - Histogram of DNA methylation in different genomic regions using publicly available data 

sets (P15) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in P02 in comparison to CD34+ cells in hematopoietic 

precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data in the patient 

specific 1675 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.  
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5.1.2.3.2 Integrated analysis of DNA methylation and genetics / 

cytogenetics of patient P15 

All merged DMRs of patient P15 obtained by pairwise comparison of the time points, were divided into 

five clusters using K-means algorithm (Figure 5-14).  

Consecutive samples 2-4 showed a very similar DNA methylation pattern across those regions, while 

time point 1 was methylated to a lower extent in all clusters. This might be due to the fact that the first 

sample was taken under treatment with lenalidomide, where a reduction of aberrant cells was already 

observed.  

The following time points were clinically classified as MDS with multilineage dysplasia. Genetic 

evolution during disease progression was depicted in the fish plot, where ASXL1 was identified to be 

the founder clone. Sequential acquisition of subclonal lesions could be noticed, while time point 1 was 

characterized by the presence of ASXL1, EZH2/del(5q), CSNK1A1/NF1 and EZH2/5qUPD. Lesions in 

ETV6 were arising between the first and second time point. After the second longitudinal sample, the 

ETV6 mutated subclone was fully substituted by an independent branching subclone carrying 

monosomy 7/RUNX1/ETV6 lesion.  

Altogether, the composition of genetic lesions varied between time point 1 and the other consecutive 

samples of the patient, whereas an additional subclone arose at time point 3. But apparently this new 

subclone seemed to have no effect on DNA methylation patterns perhaps due to low variant allele 

frequency.  
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Figure 5-14 - DNA methylation analysis of patient P15 and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 1069 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Dendrogram shows clustering of the patients 

into two groups, while sample one represents a single group. Each horizontal line represents a single DMR while 

DNA methylation degree is indicated in different shades of red, ranging from 0 % methylation (white) to 50 % 

methylation (red). The bar on the left side shows classification of DMRs into the five different clusters. Below, fish 

plot displays mutational evolution during clinical follow-up at analyzed time points (marked with a dashed line). 

The height of the “fishes” are reflecting the variant allele frequencies of depicted clones, the higher the more 

alleles are mutated. Different (sub)-clones were colored separately. Clinical classification as well as therapy is 

drawn at the bottom of the figure.  
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5.1.2.4 Detailed analysis of patient P19 

5.1.2.4.1 Analysis in comparison to CD34+ cells  

CpG methylation between hematopoietic stem cells and consecutive samples of patient P19 showed 

correlation values between 0.91 and 0.92. Almost perfect consistency could be observed between the 

single time points of the patient (Figure 5-15 A).  

Pairwise comparison of DNA methylation degree between CD34+ cells and longitudinal samples 

resulted in 940 merged DMRs dividing into 8 different clusters using K-means algorithm (Figure 

5-15 B). Clusters 1, 3, 4 and 7 were epigenetically characterized with signals for H3K27me3, 

H3K4me3 and H3K27ac, while H3K27 acetylation was low in cluster 1 and 7. Furthermore DNA 

methylation increased in these clusters in contrast to CD34+ cells suggesting those regions to be 

disease specific. The opposite could be found in clusters 2, 5, 6 and 8, where regions were 

hypomethylated and epigenetic signature reveals a differentiation associated phenotype (loss of 

H3K27me3 and gain of H3K27ac). Significantly enriched binding motifs for transcription factors 

important for differentiation (CEBP, AP-1) could be found via motif analysis with HOMER in clusters 2, 

5, 6 and 8. Furthermore, cluster 1 comprised regions which were found to be preferentially bound by 

HOX transcription factors.  

As described above, DNA methylation degree and pattern between the single time points of the 

patient were very similar. This could also be shown by analyzing DNA methylation in the three 

different region compartments, F5 promoter, F5 enhancer and GATA2 bound regions.  

Here, signals for the longitudinal samples lay perfectly on top of each other, while located a little bit 

higher than control cells (Figure 5-15 C). This is not the case for GATA2 bound regions, where patient 

samples show the same DNA methylation compared to CD14+ and CD15+ cells, but CD34+ cells 

exhibit a lower DNA methylation extent. Taken together, there were almost no differences in DNA 

methylation between the single time points of the patient. However, changes could be observed in 

comparison to CD34+ cells, but to a lesser extent due to the small number of differentially methylated 

regions.  

Histograms in Figure 5-16 depict DNA methylation data in the above mentioned region compartments 

(F5 promoter/enhancer, GATA2 bound regions) of precursor and mature blood cells obtained from 

publicly available databases. FANTOM5 promoter regions overlapping with DMRs found between 

CD34+ cells and patient samples showed a similar DNA methylation degree in different cell types with 

regulatory T cells (Treg) and CD8+ T cells having the highest one. Signals in F5 enhancer regions 

were somewhat scattered probably due to the small number of regions.  

Nevertheless, we could observe the same picture like in promoter regions. GATA2 bound regions 

were generally higher methylated than the other two region compartments and displayed three cell 

types exhibiting the highest DNA methylation extent (Treg, CD8+ T cell and precursor lymphocyte of B 

lineage). Naïve B cells were a little less methylated followed by the remaining data sets (neutrophilic 

metamyelocyte and myelocyte, band form neutrophil, classical monocyte and hematopoietic 

multipotent progenitor cell). 
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Figure 5-15 - A methylation analysis and associated epigenetics of patient P19 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of samples. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 940 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups. Each horizontal line represents a single DMR. Epigenetic marks 

in CD34+ cells in these DMRs are depicted on the right histograms for every cluster of regions. Average ChIPseq 

coverage for every cluster was drawn over a 4 kb region of the analyzed DMRs. (C) Histogram of average DNA 

methylation over 2 kb regions of FANTOM5 (F5) promoter, F5 enhancer and GATA2 bound regions in CD34+ 

cells (purple), different time points of patients (different blue shades) as well as CD14+ (red) and CD15+ (yellow) 

cells. DNA methylation data in all observed 940 DMRs was overlapped with publicly available data of the 

FANTOM5 consortium for promoter regions or enhancer regions as well as with ChIPseq data of GATA2 binding 

motifs. 

 

 

 

Figure 5-16 -Histogram of DNA methylation in different genomic regions using publicly available data sets 

(P19) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in P02 in comparison to CD34+ cells in hematopoietic 

precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data in the patient 

specific 1675 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.  

 

5.1.2.4.2 Integrated analysis of DNA methylation and 

genetics/cytogenetics of patient P19 

In order to get a more detailed view of the differences between the consecutive samples, we identified 

DMRs between the time points and did a comparative analysis with genetic data (Figure 5-17). DMRs 

were clustered into 4 compartments using the K-means algorithm, while regions displayed few 

changes regarding DNA methylation over time. At each time point, the patient was classified as MDS 

with single lineage dysplasia and ring sideroblasts (MDS-RS-SLD) and the only therapy obtained was 

APG101 application at time point 1. APG101 was found to rescue erythropoiesis in low risk MDS 

patients with severe impairment of hematopoiesis
200

. This fusion protein consisting of the extracellular 
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domain of human CD95 (Fas receptor) and the Fc region of IgG1 binds to CD95L on target cells and 

in solution, thus inhibiting activation of CD95 mediated apoptosis.  

The fish plot displayed the clonal evolution during disease progression, where ASXL1/SF3B1 was 

determined as founder clone. Two different subclones emerged before sampling of time point 1 with 

lesions in TTBK1 and del(ETV6). Over time, the four different patient samples showed almost the 

same VAF. Taken together, constancy of both, clinical classification and genetic landscape, probably 

coincide the low variance of DNA methylation between the single sample time points of the patient. 

 

 

Figure 5-17 - DNA methylation analysis of patient P19 and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 31 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Dendrogram shows clustering of the patients 

into two groups. Each horizontal line represents a single DMR while DNA methylation degree is indicated in 

different shades of red, ranging from 0 % methylation (white) to 50 % methylation (red). The bar on the left side 

shows classification of DMRs into the five different clusters. Below, fish plot displays mutational evolution during 

clinical follow-up at analyzed time points (marked with a dashed line). The height of the “fishes” are reflecting the 

variant allele frequencies of depicted clones, the higher the more alleles are mutated. Different (sub)-clones were 

colored separately. Clinical classification as well as therapy is drawn at the bottom of the figure.  
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5.1.2.5 Detailed analysis of patient P20 

5.1.2.5.1 Analysis in comparison to CD34+ cells  

Similar patient characteristics as described above (patient P19), were observed in the analyses of 

patient P20. When comparing the single samples of different time points amongst each other, almost 

no differences in DNA methylation could be observed (see Figure 5-18 A). However, correlation 

values between CD34+ cells and patient samples were lower. The heat map in Figure 5-18 B 

represents DNA methylation degree in 975 differentially methylated regions in comparison to 

hematopoietic stem cells. There, the similarity between the single patient samples is well illustrated, 

while some slight differences were observed in sample of time point 2. Using the K-means algorithm, 

regions were split into 8 different clusters. Similar region clusters based on DNA methylation and 

epigenetic signature in HSCs were number 1, 5 and 7 as well as 2, 3, 4, 6 and 8. 

The first group is characterized by loss of DNA methylation in the patient together with loss of 

H3K27me3. Clusters 1 and 5 additionally gained H3K27ac, all in all supposing to be regions affected 

by differentiation. Results of motif finding only revealed significant enrichment of CEBP 

(q-value = 0.005) as transcription factor important for differentiation processes. The second group of 

region clusters (2, 3, 4, 6, 8) became methylated in patient samples in comparison to CD34+ cells and 

showed an H3K27me3 signature. Some of those clusters also exhibited a signal for the activating 

histone mark H3K4me3, indicating that these regions were specific for MDS.  Moreover, cluster 4 was 

significantly enriched for GATA binding motifs.  

The high correlation between the four samples of the patient was also reflected in DNA methylation 

analysis in three different region compartments (Figure 5-18 C). DMRs overlapping with FANTOM5 

promoter or enhancer regions displayed higher DNA methylation degree in all patient samples 

compared to control cells (CD34+, CD14+ and CD15+), whereas signals of the consecutive time 

points lied on top of each other. Overlapping GATA2 bound regions were found to be less methylated 

in CD34+ cells, followed by CD14+/CD15+ cells and patient samples. 
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Figure 5-18 - DNA methylation analysis and associated epigenetics of patient P20 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of samples. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 975 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups with sample 1 in the first group and samples 2,3 and 4 in the 

second group.  Each horizontal line represents a single DMR. Epigenetic marks in CD34+ cells in these DMRs 

are depicted on the right histograms for every cluster of regions. Average ChIPseq coverage for every cluster was 

drawn over a 4 kb region of the analyzed DMRs. (C) Histogram of average DNA methylation over 2 kb regions of 

FANTOM5 (F5) promoter, F5 enhancer and GATA2 bound regions in CD34+ cells (purple), different time points of 

patients (different blue shades) as well as CD14+ (red) and CD15+ (yellow) cells. DNA methylation data in all 

observed 975 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs. 

 

 

A very uniform DNA methylation degree is observed in F5 promoter regions which were overlapping 

with DMRs found between CD34+ cells and longitudinal patient samples of P20 (Figure 5-19). 

Different maturation states as well as cells from distinct hematopoietic lineages showed almost the 

same DNA methylation signal in those regions. Regarding F5 enhancer regions, we saw the same 

characteristic picture as in the samples before. Regulatory T cells (Treg), CD8+ T cells and precursor 

of B lineage were methylated the most followed by naïve B cells and hematopoietic multipotent 

progenitor cells. Signals from classical monocytes, neutrophilic metamyelocytes and myelocytes as 

well as band form neutrophils were found to be on top of each other and methylated about one half of 

Tregs. The same is true for GATA2 bound regions with the difference that all data sets showed a 

generally higher DNA methylation degree.  

 

 

Figure 5-19 -Histogram of DNA methylation in different genomic regions using publicly available data sets 

(P20) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in P02 in comparison to CD34+ cells in hematopoietic 

precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data in the patient 

specific 1675 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.   



Results 

115 
 

5.1.2.5.2 Integrated analysis of DNA methylation and 

genetics/cytogenetics of patient P20 

Comparison of DNA methylation in DMRs between the longitudinal samples allowed K-means 

clustering into six compartments (Figure 5-20). Patterns across these six clusters were, with exception 

of time point 2, very similar. The second sample showed a lower DNA methylation extent in clusters 5 

and 6 and a higher one in clusters 1 and 2. Considering clinical classification and genetic landscape 

over time, we saw a very stable disease in patient P20. Classification of MDS-EB1 did not change. 

The existing genetic lesions IDH2/SRSF2 were identified as founder clone with subsequent acquisition 

of SPEG2, BRCC3 and NF1 mutated subclones. However, regarding the clonal evolution during 

disease progression, only small changes in subclonal VAFs were observed, while composition was the 

same. To sum up, DNA methylation during disease progression was consistent and accompanied by a 

stable clinical subtype and almost invariable genetic landscape, despite treatment with lenalidomide 

and APG101 at two different time points.  

 

 

Figure 5-20 - DNA methylation analysis of patient P20 and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 62 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Dendrogram shows clustering of the patients 

into two groups. Each horizontal line represents a single DMR while DNA methylation degree is indicated in 

different shades of red, ranging from 0 % methylation (white) to 50 % methylation (red). The bar on the left side 

shows classification of DMRs into the five different clusters. Below, fish plot displays mutational evolution during 

clinical follow-up at analyzed time points (marked with a dashed line). The height of the “fishes” are reflecting the 

variant allele frequencies of depicted clones, the higher the more alleles are mutated. Different (sub)-clones were 

colored separately. Clinical classification as well as therapy is drawn at the bottom of the figure.  
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5.1.2.6 Detailed analysis of patient P53 

5.1.2.6.1 Analysis in comparison to CD34+ cells  

Calculation of CpG Pearson correlation values (Figure 5-21 A) between hematopoietic stem cells and 

each of the longitudinal patient samples revealed high similarities. Correlation values were increasing 

when comparing the different patient samples amongst each other. After identifying and merging 

differentially methylated regions between every single sample and CD34+ cells, 1925 DMRs were split 

into 8 clusters using K-means algorithm (Figure 5-21 B). DNA methylation patterns in those 8 clusters 

generally looked similar between consecutive samples, but the DNA methylation degree varied. Time 

points 1 and 2 displayed a greater methylation in cluster 7 compared to the other samples and time 

point 3 was observed to be the time point with lowest DNA methylation. Overall, clusters could be 

divided in those which were hypermethylated in contrast to CD34+ cells (2, 3, 4, 7 and 8) and those 

which were hypomethylated (5 and 6). The only cluster with stable DNA methylation degree over time 

was cluster number 1 with almost no differences between CD34+ and patient samples. 

Hypermethylated regions in the clusters mentioned before displayed an H3K27me3 signature in 

hematopoietic stem cells, whereas this effect was strongest in clusters 7 and 8. The additional 

activating mark H3K4me3 suggested those regions to be bivalent and disease specific. Furthermore, 

motif analysis showed a significant occurrence of binding motifs for GATA transcription factors in 

clusters 2 and 3. Regions of cluster 8 were enriched for RUNX1 (q-value = 1e-8), MEF2C 

(q-value = 1e-7) and SPIB (q-value = 0.002) binding sequences. RUNX1 is known to be important for 

hematopoietic differentiation
138,138

. MEF2C (Myocyte Enhancer Factor 2C) is normally highly 

expressed in common myeloid progenitors and decreases with further differentiation of the cell 
201

. 

Spi-B transcription factor (SPIB) plays an important role for differentiation of mature B-cells into 

plasma cells and plasmacytoid dendritic cells
202

.  

Clusters 5 and 6 were associated with hypomethylation in comparison to CD34+ cells and showed 

only slight signals for H3K4me3 and H3K27ac. Enriched motifs for transcription factors BATF 

(q-value = 0.0034), AP-1 (q-value = 0.0034) and FRA-1 (q-value = 0.0065) were found in cluster 5, 

while these TFs are known to play a role in several differentiation processes. All in all, these regions 

were probably “opened” during differentiation processes
203,204

. 

When analyzing DNA methylation in FANTOM5 promoter and enhancer as well as in GATA2 bound 

regions, variation between the longitudinal patient samples was also clearly evident (Figure 5-21 C). 

Promoter regions showed the lowest DNA methylation degree in CD34+ cells, followed by CD14+ and 

CD15+ cells. Patient P53 was generally higher methylated, while time point 5 exhibited the highest 

and time point 3 the lowest DNA methylation degrees. Samples from the other time points were 

located in between.  
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Figure 5-21 - DNA methylation analysis and associated epigenetics of patient P53 in comparison to CD34+ 

cells 

(A) Scatter plots of % CpG methylation for each pair of samples. Signal density is represented in different colors 

ranging from yellow to blue indicating a high and low density, respectively. Numbers on the upper right corner 

denote pair-wise Pearson correlation coefficients. (B) Heat map depicting K-means clustering of 1925 DMRs 

obtained in comparison to CD34+ cells as well as corresponding data of CD14+ and CD15+ cells. Dendrogram 

shows clustering of the patients into two groups, while samples 1 and 2 represent one group and samples 3, 4 

and 5 the second group. Each horizontal line represents a single DMR. Epigenetic marks in CD34+ cells in these 

DMRs are depicted on the right histograms for every cluster of regions. Average ChIPseq coverage for every 

cluster was drawn over a 4 kb region of the analyzed DMRs. (C) Histogram of average DNA methylation over 2 kb 

regions of FANTOM5 (F5) promoter, F5 enhancer and GATA2 bound regions in CD34+ cells (purple), different 

time points of patients (different blue shades) as well as CD14+ (red) and CD15+ (yellow) cells. DNA methylation 

data in all observed 1925 DMRs was overlapped with publicly available data of the FANTOM5 consortium for 

promoter regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs. 

 

 

The same scenario could be observed for FANTOM5 enhancer regions and for GATA2 bound regions. 

Publicly available data from different hematopoietic cells were used to compare DNA methylation 

degrees in regions analyzed above (Figure 5-21 C). The lowest DNA methylation was displayed by 

classical monocytes, band form neutrophils, neutrophilic metamyelocytes and neutrophilic myelocytes. 

A higher extent was observed in the two B lineage derived cells (naïve B cells and precursor 

lymphocyte of B lineage) followed by Treg and CD8+ T cells. The same applied for FANTOM5 

enhancer and GATA2 bound regions (Figure 5-22). 

 

 

Figure 5-22 -Histogram of DNA methylation in different genomic regions using publicly available data sets 

(P53) 

Histogram of DNA methylation ratios over 2 kb regions across FANTOM5 (F5) promoter, F5 enhancer and 

GATA2 bound regions overlapping with DMRs found in P02 in comparison to CD34+ cells in hematopoietic 

precursor and more differentiated cells. Publicly available whole genome bisulfite sequencing data in the patient 

specific 1675 DMRs was overlapped with publicly available data of the FANTOM5 consortium for promoter 

regions or enhancer regions as well as with ChIPseq data of GATA2 binding motifs.  
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5.1.2.6.2 Integrated analysis of DNA methylation and 

genetics/cytogenetics of patient P53 

The above described variation among the longitudinal samples became more obvious when looking 

for DMRs between the different sample time points. 415 differentially methylated regions were 

identified and were split into 8 K-means clusters. DNA methylation patterns over time were similar with 

exceptions at time point 2 and 5, where clusters 6 and 4/7 showed higher methylation degree than 

other samples, respectively (see Figure 5-23). 

Differences regarding DNA methylation during disease progression were linked to genetic and 

cytogenetic changes, which are displayed in the corresponding fish plots (Figure 5-23). Since DNA 

methylation analysis was done from peripheral blood, analysis of molecular genetics was performed 

with the same material (first fish plot, labeled with “PB”).  

Complete cytogenetic analysis was not feasible in peripheral blood of the patient. A karyotype analysis 

with chromosome banding relies on proliferating cells. In peripheral blood only a very small amount of 

those cells can be found and therefore banding analysis is done by default with bone marrow. 

Therefore chromosome banding analysis in bone marrow of corresponding samples was displayed as 

additional fish plot (labeled with “BM”). Aberrations in peripheral blood comprised lesions in RUNX1 

and SRSF2, while RUNX1 was identified to be the founder clone with later acquisition of SRSF2 

mutations. Variant allele frequency of these lesions rapidly dropped at time point 3 and remained more 

or less stable until end of monitoring. Only a small shift in the VAF could be observed at the last time 

point. A more complex situation was seen in the bone marrow of the patient.  

At diagnosis, most of the cells exhibited 20q deletions harboring a subclone with lower frequency for 

i(12q) aberrations. The same composition, but with lower frequency for both, was observed at time 

point 2. At time point 3, changes in clinical classification, cytogenetics, molecular genetics and DNA 

methylation occurred. Transition into acute myeloid leukemia came along with disappearance of the 

20q-/i(20q) clone, shrinkage of RUNX1 / SRSF2 lesions and upcoming of a new clone with trisomy 12. 

Starting with time point 4 through to time point 5, this +12 clone was fading out until complete 

disappearance. This came along with the recurrence of the 20q- clone having new subclones with +12 

and t(X;14) aberrations, but unlike before this trisomy 12 is a new alteration.  

Summarizing, it could not be determined which aberrations were responsible for the changes in DNA 

methylation patterns in the different patient samples. In order to clarify this, cytogenetic and genetic 

analysis has to be done with the same material. But it is clear that several independent subclones 

existed during disease progression. This is reflected by the observed variation of DNA methylation 

between consecutive samples.  
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Figure 5-23 - DNA methylation analysis of patient P53 and comparison with genetic and clinical data 

The upper part depicts a heat map of K-means clustering of DNA methylation data from 415 DMRs between the 

single time points and control cells (CD34+, CD15+ and CD14+). Each horizontal line represents a single DMR 

while DNA methylation degree is indicated in different shades of red, ranging from 0 % methylation (white) to 

50 % methylation (red). The bar on the left side shows classification of DMRs into the five different clusters. 

Below, fish plot displays mutational evolution during clinical follow-up at analyzed time points (marked with a 

dashed line) in peripheral blood (PB) and bone marrow (BM). The height of the “fishes” are reflecting the variant 

allele frequencies of depicted clones, the higher the more alleles are mutated. Different (sub)-clones were colored 

separately. Clinical classification as well as therapy is drawn at the bottom of the figure.  
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5.2 Pediatric MDS 

5.2.1 DNA methylation analysis in pediatric MDS  

With an incidence of 0.5 – 4 / 10
6 

per year pediatric myelodysplastic syndromes (MDS) are very rare 

hematopoietic disorders
112

. Therefore, studies of genetic and epigenetic alterations in pediatric 

population are challenging and thus there is less knowledge compared to adult MDS. Since MDS in 

children and adults show evident differences in clinics, cytogenetics, molecular genetics and probably 

in epigenetics, an integrated analysis of the different aberrations is interesting and might shed light on 

disease pathogenesis and / or progression. 

For this purpose we studied a cohort of 42 children (18 females and 24 males) with a median age of 

10.5 years (Table 5-4). Since the group of Dr. Wlodarski, who kindly provided the samples, was 

interested whether germline GATA2 mutations in familial MDS cases were linked to aberrant DNA 

methylation, our study cohort was enriched for those cases (59.5 %). Wlodarski et al. showed that 

germline GATA2 mutations occur in 15 % of advanced and 7 % of all primary MDS cases in children. 

Furthermore they pointed out that GATA2 mutations were preferentially associated with 

monosomy 7
205

, explaining the high percentage of this cytogenetic alteration (71.4 %) in our patient 

cohort. The majority of the patients were classified with refractory cytopenia (RC, 42.9 %) or RAEB 

(33.3 %), while a smaller portion was diagnosed with advanced subtypes (RAEB-t, 14.3 % and MDR-

AML, 9.5 %). 

Besides GATA2 mutations, lesions in ASXL1 and SETBP1 could be observed in 19.0 % and 28.6 %, 

respectively. ASXL1 mutations were shown to significantly co-occur with GATA2 deficiency in 

MDS/AML
206

 and SETBP1 lesions were enriched among MDS patients with ASXL1 mutations
135

. 

Furthermore, available longitudinal samples from eight out of the 42 patients allowed analysis during 

disease progression. DNA from purified bone marrow granulocytes was kindly provided from Dr. 

Wlodarski´s group (Pediatric Hematology and Oncology, University of Freiburg) and further processed 

in our lab using the Methyl-CpG immunoprecipitation (MCIp). This method allows genome-wide 

profiling of aberrant DNA methylation of CpG-rich regions, including CpG islands (CGIs). Those 

regions are prone to disease-related changes, since their DNA methylation status rarely changes 

during differentiation
207

. 

Subsequent library preparation and next-generation sequencing on the Illumina HiSeq 1000/2000 

platform were performed. Sequences were mapped to the human reference genome (hg18) using 

Bowtie 2
208

. Downstream analysis of uniquely mapped tags including quality control, annotation, 

normalization and motif analysis were done using HOMER
177

. To compensate variations in clonality, 

data was normalized to one tag per base pair (tbp) and analysis was done after removal of sex 

chromosomes. The free software “R”
209

 was used for the calculation of Pearson correlation 

coefficients, scatter plots, t-SNE visualization (t-Distributed Stochastic Neighbor Embedding), K-means 

clustering and drawing of corresponding heat maps as well as Wilcoxon sign tests. 
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Table 5-4 - Clinical data and mutational frequencies of 42 pediatric MDS patients 

N = 42 Number (percentage) 

gender 

female 

male 

 

18 (42.9 %) 

24 (57.1 %) 

Median age at diagnosis 10.5 years 

WHO subtype 

RC 

RAEB 

RAEB-t 

MDR-AML 

 

18 (42.9 %) 

14 (33.3 %) 

6 (14.3 %) 

4 (9.5 %) 

Mutations 

GATA2 germline 

ASXL1 

SETBP1 

 

25 (59.5 %) 

8 (19.0 %) 

12 (28.6 %) 

Karyotype 

Normal 

Monosomy 7* 

Trisomy 8 

Monosomy 7 & Trisomy 8 

 

4 (9.5 %) 

30 (71.4 %) 

7 (16.7 %) 

1 (0.024 %) 

Abbreviations: RC: Refractory Cytopenia; RAEB: Refractory Anemia with 
Excess Blasts; RAEB-t: RAEB in transformation; MDR-AML: MDS-related 
AML;  *Includes monosomy 7 with one additional aberration.  

 

 

The first subset analysis was done with all available patients at first diagnosis, but without consecutive 

samples of the progressed patients to check for commonalities between all pediatric MDS patients. To 

visualize the complex next-generation sequencing data of global DNA methylation in our patient 

cohort, we used the t-Distributed Stochastic Neighbor Embedding (t-SNE) technique (see Figure 

5-24 A). As mentioned above, data was first normalized to one tag per base pair (tbp1) and sex 

chromosomes were removed. Furthermore, data were normalized to the 99
th
 percentile to compensate 

different sequencing depth levels of the samples. In this step, regions were restricted to those that 

could be detected with the MCIp approach and moreover to non-repeat regions.  

In the t-SNE we saw that patients formed two different clusters due to their global DNA methylation 

pattern. Cluster 1 comprised 18 patients and 24 patients were found in the bigger cluster 2. To test 

whether clustering occurred due to the significant occurrence of genetic, cytogenetic or clinical 

differences, we applied the non-parametric Wilcoxon test (Figure 5-24 B). Interestingly, only 2 events 

were significantly enriched in cluster 2, namely GATA2 mutations (p value = 0.0205) and refractory 

cytopenia (RC, p value = 0.022).  
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Figure 5-24 – T-SNE with global DNA methylation data in 42 pediatric MDS patients and Wilcoxon test 

(A) Global DNA methylation data obtained with Methyl-CpG-immunoprecipitation (MCIp) followed by NGS was 

analyzed using the t-SNE (t-Distributed Stochastic Neighbor Embedding) approach. Each of the 42 patients was 

colored differently and the two obvious clusters were encircled. (B) Table with results from Wilcoxon test applied 

for different mutations, WHO subtypes and cytogenetic aberrations. (C) T-SNE plots with highlighting the 

occurrence of different mutations, cytogenetic aberrations and WHO subtypes (turquoise) in the two clusters. 

Patients without the analyzed feature were plotted in gray.  

 

To illustrate the results of the above described Wilcoxon test, we highlighted patients with the 

analyzed events in turquoise and patients without this feature in gray (Figure 5-24 C). This figure 

visualizes that the different events (with exception of GATA2
mut

 and RC) were distributed equally over 

the two patient clusters. The observation of Wlodarski et al.
205

 that GATA2 mutations were 

preferentially associated with monosomy 7 could be confirmed, but this was probably due to the bias 

of these two abnormalities in our analyzed patient cohort. Furthermore, the study from Inoue et al.
210

 in 

2015 showed that MDS patients with SETBP1 mutations were enriched in those with ASXL1 
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mutations. Comparing these two mutations in our t-SNE plots, we could also see the occurrence 

between these two lesions. Moreover, these two mutations tend to be more frequent in cluster 1, 

which is associated with the more advanced clinical subtypes (RAEB, RAEBt and MDR-AML). These 

two findings suggested patients in cluster 1 to be more advanced and associated with poorer overall 

survival, while those in cluster 2 seemed to be low risk patients.  

 

Next, we wanted to figure out regions that were differentially methylated between patients of the two 

clusters. In the first step, patient specific MCIp peaks had to be identified by comparison of DNA 

methylation data of patients with control cells (granulocytes, monocytes and hematopoietic stem 

cells).These patient specific MCIp peaks are specifically methylated or demethylated in contrast to all 

three sets of control cells. In the next step, patient specific MCIp peaks from all patients were merged 

into one peak set and overlapped with promoter regions. DNA methylation data of patients was then 

annotated in these identified DMRs between cluster 1 and 2 and furthermore analysed regarding their 

gene ontology using Metascape
180

. Interesting significantly enriched GO terms were for instance “cell 

fate commitment”, “negative regulation of cell differentiation” and “connective tissue development” 

(see Table 5-5). To limit the amount of DMRs, regions were further restricted whether they are 

associated with a transcription factor (TF) or chromatin factor (CF). Via comparison of mean 

methylation values in control monocytes, patients of cluster 1 and patients of cluster 2 we obtained 

interesting DMRs that were specifically methylated in cluster 1. 

One example is ZIC5, a zinc finger protein with transcriptional repressor function. Elevated expression 

has been observed in various human cancers and it may contribute to cancer progression
211–213

. DNA 

methylation data in this ZIC5 region (chr13:100624101-100624465) as well as ChIPseq data (e.g. 

H3K4me1, H3K27ac…) in hematopoietic stem cells are depicted in Figure 5-25. Patients were colored 

according to their cluster membership (orange for cluster 1 and blue for cluster 2), while control cells 

were drawn in green. Patients in cluster 1 were specifically methylated in this promoter region of ZIC5, 

whereas patients in cluster 2 showed either no or only small DNA methylation signals.   
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Table 5-5 - GO term analysis of DMRs between pediatric MDS patients of the two clusters 

 

 

 

We found two further DMRs associated with cancer, namely VILL and TRIM45, which were methylated 

to a greater extent in patients belonging to cluster 1. Only few publications are available regarding the 

link of VILL with tumors, but Senchenko et al.
214

 pointed out the possible role of VILL as tumor 

suppressor gene in cervical cancer.  

TRIM45 is a transcriptional repressor of the mitogen-activated protein kinase (MAPK) pathway and 

was shown to function as tumor suppressor in the brain
215,216

.  

Unfortunately, functional analysis (DNA methylation sensitivity) of the three mentioned DMRs was not 

possible due to lack of patient material. Therefore we could only suppose that differential methylation 

of ZIC5, VILL and TRIM45 may contribute to disease pathogenesis or progression.  

Nevertheless we could divide the patient cohort according to different characteristics. Patients 

belonging to cluster 1 were associated with more advanced clinical subtypes, mutations of ASXL1 and 

SETBP1 as well as higher DNA methylation in regions potentially relevant in cancer (ZIC5, VILL, 

TRIM45). Cluster 2 comprised patients which were significantly associated with GATA2 mutations, 

refractory cytopenia and fewer DNA methylation aberrations in the three DMRs (ZIC5, VILL, TRIM45).  

GO term Log(q-value) 

Embryonic organ development -31.4 

Sensory organ development -26.7 

Tube development -22.9 

Negative regulation of transcription from RNA polymerase II promoter -21.4 

Head development -20.8 

Cell fate commitment -18.8 

Central nervous system neuron differentiation -14.9 

Negative regulation of cell differentiation -13.9 

Gland development -13.7 

Neuron fate commitment -13.4 

Behavior -13.1 

regulation of nervous system development -12.2 

connective tissue development -10.2 
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Figure 5-25 - Genome browser snapshot of the DMR located in ZIC5 

Integrated Genome Viewer (IGV) track of DNA methylation data (MCIp-seq) from MDS patients in the ZIC5 

promoter region (hg19_chr13:100624101-100624465). Patients were ordered according to obtained t-SNE 

clusters 1 and 2, whereas patients belonging to cluster 1 were depicted in orange (upper part) and patients from 

cluster 2 were displayed in blue (middle part). In the lower part MCIp-seq data from control cells were depicted in 

green as well as epigenetic marks in stem cells (dark blue).  
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5.2.2 Changes of DNA methylation during disease progression in 

pediatric MDS 

One of the major goals in our project was to identify potential epigenetic marker genes that are 

involved in progression from MDS to acute myeloid leukemia. For this purpose, we analyzed 

consecutive patient samples using the MCIp-seq approach as mentioned in section 4.2.1.16. The 

study cohort comprised eight patients (3 females, 5 males) with 2-5 consecutive samples of each 

patient (see Table 5-6). Most of the patients (6 out of 8) were diagnosed with refractory cytopenia (RC) 

and the other two patients with RAEB. All MDS patients carry germline GATA2 mutations, with one 

patient having additional SETBP1 and ASXL1 lesions. 50 % of the patients exhibit monosomy 7 

aberrations and the same percentage received a hematopoietic stem cell transplant.  

 

Table 5-6 - Clinical data of pediatric MDS patients with consecutive samples 

ID 
# of 

samples 
Sex 

Age at 

Dx 

WHO  

at DX 
Cytogenetics 

Gene 

 mutation 

BM blast 

count (%) 
Therapy 

D151 2 f 16.0 RC normal GATA2 1 - 

D271 2 m 12.5 RAEB 45,XY,-7 GATA2 9 HSCT 

D342 2 m 16.6 RC 45,XY,-7 GATA2 0 HSCT 

D569 2 f 10.3 RC normal GATA2 0 - 

D762 3 m 9.7 RC 45,XY,-7 GATA2 1 HSCT 

D770 5 f 10.2 RAEB 46,XX,-7,+22 
GATA2; ASXL1; 

SETBP1; CBL 
3 HSCT 

D801 2 m 15.6 RC normal GATA2 0 - 

D807 4 m 13.7 RC normal GATA2 0 - 

 

 

Global DNA methylation data from consecutive samples was visualized using the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) approach to get a general idea of similarities and differences 

between the longitudinal samples of the patients (see Figure 5-26). In general, consecutive samples 

from the different patients showed a high similarity due to their close vicinity in the t-SNE plot.  

The only exception was patient D271, where the two time points were not in close proximity to each 

other.  

In order to get more details regarding DNA methylation changes during disease progression, we 

analyzed longitudinal patients separately (see following section).  

 



Results 

128 
 

 

Figure 5-26 - T-SNE with global DNA methylation data in 8 pediatric MDS patients with longitudinal 

samples 

Global DNA methylation data obtained with Methyl-CpG-immunoprecipitation (MCIp) followed by NGS was 

analyzed using the t-SNE (t-Distributed Stochastic Neighbor Embedding) approach. Each of the longitudinal 

patients with their corresponding consecutive samples was colored differently and sample time points were 

marked with increasing numbers.   

 

5.2.2.1 Detailed analysis of patient D770 – a case with progression 

Of all patients, only patient D770 showed significant changes of DNA methylation during disease 

progression. This patient was analyzed at five consecutive time points with a total of 18 months 

between first and last sample (see Figure 5-27). The patient exhibited a germline GATA2 mutation, 

ASXL1, SETBP1 and CBL mutations as well as an aberrant karyotype with monosomy 7 and trisomy 

22. The WHO classification (RAEB) did not change over time but increasing bone marrow blast counts 

could be observed from 3 % to 52 %. Treatments included hypomethylating agents (Azacitidine) and 

hematopoietic stem cell transplantation.  

It is important to mention, that variant allele frequencies (VAFs) of gene mutations changed during 

disease progression. At the beginning, the patient revealed mutations in GATA2, SETBP1, ASXL1 and 

CBL with VAFs of 46 %, 44 %, 38 % and 4 %, respectively. Then, time point 3 showed altered 

distribution of gene mutations, with decrease of SETBP1 and ASXL1 to VAFs of about 25 %, whereas 

CBL mutations increased significantly to about 23 %. After disease progression, ASXL1 mutations 

completely disappeared at time point 5, while CBL mutations dramatically increased to VAFs of about 

90 % and VAFs for SETBP1 returned to levels similarly to initial ones.  
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Figure 5-27 – Time line with clinical data of patient D770 during disease progression 

The upper part depicts bar plots of variant allele frequencies (VAFs) regarding mutations in SETBP1, ASXL1, 

CBL and GATA2 for various time points. Below, information about therapy, BM blast count and karyotype is 

shown, while analyzed samples were marked with a red arrow.  

 

Global DNA methylation data of the MCIp-seq approach was compared between the five time points of 

the patient and between control monocytes (MO) using scatter plots (Figure 5-28). In these scatter 

plots, DNA methylation signals in all mappable and detectable regions were depicted in black and 

DNA methylation signals in regions specific for the patient were drawn in red. Correlation values 

calculated with regard to all mappable and detectable regions were shown in the bottom right corner of 

each plot.  

Correlation values between monocytes and the five samples were found between 75.1 % and 81.4 %, 

indicating several differences in DNA methylation between control and patient cells. What could be 

seen very nicely is the high number of regions (red dots), that were specifically methylated in patient 

D770 compared to monocytes. These patient specific regions were mainly hypermethylated compared 

to control monocytes. Comparing DNA methylation between the single consecutive patient samples, 

correlation was observed at higher values ranging from 86.6 % to 94.4 %. With a few exceptions, 

specific regions of the patient were also methylated differentially in the consecutive samples indicated 

by the scattering of these dots, while DNA methylation pattern over time tend to be stable. This 

hypothesis was supported by the similar signal cloud between the patient time points, only the shift of 

the signals demonstrated some changes in DNA methylation during disease progression.  

Interestingly, one could see a connection between the hematopoietic stem cell transplantation before 

time point 3 and DNA methylation pattern. This pair showed the highest Pearson correlation with 

81.4 % and exhibited the least changes in patient specific regions. Here we could see that the 

transplanted patient showed features similar to healthy control monocytes indicating a successful 

treatment.  

But other than expected, treatment with Azacitidine didn´t influence DNA methylation pattern 

significantly
217

. 
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Figure 5-28 - Scatter plots of global DNA methylation data from patient D770 and control monocytes 

Comparison of DNA methylation patterns between different time points of patient D770 and control monocytes 

depicted as scatterplots. In black all mappable and detectable regions were depicted, while patient specific 

regions were displayed in red. Correlation values could be found on the bottom right corner of the plots.  

 

To get more information about DNA methylation changes over time, patient specific regions were 

clustered using the K-means algorithm. The six obtained region clusters were compared with 

epigenetic data (H3K27me3, H3K4me3, H3K27ac and DHSs) in hematopoietic stem cells providing 

insight into activity states of the regions (see Figure 5-29). This heat map revealed clusters of regions 

that gained DNA methylation during progression (clusters 1-3) and those that lost this epigenetic mark 

(clusters 4-6). Regions with an increase of DNA methylation over time were already marked with 

H3K27me3 in CD34+ progenitor cells indicating an early repressive state of these regions. Therefore 

additional DNA methylation likely plays a less important role and thus we focused on regions which 

were hypomethylated during disease progression and exhibited no repressive trimethylation of H3K27 

(clusters 4-6).  
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Figure 5-29 - K-means clustering of patient specific regions and annotation of epigenetic data in HSCs 

Heat map depicts clustering of specific regions from patient D770 using the K-means algorithm with DNA 

methylation degrees ranging from high (indicated with red) to low levels (indicated with blue). The obtained six 

region clusters were compared with epigenetic data in hematopoietic stem cells (HSC), while intensity ranged 

from white to blue.  

 

 

After checking associations of regions with transcription or chromatin factors, we obtained interesting 

regions potentially important for disease progression, including VENTX, SIX5, CREB3L1, GADD45B, 

ETV5, ETV2 and FOXO6. The influence of DNA methylation in these regions was tested with the 

above described reporter gene assay (see 4.2.1.6), either regarding promoter activity (VENTX) or 

enhancer activity. Figure 5-30 A depicts box plots for gene reporter assays with SIX5 and VENTX, the 

only two regions with significant changes in luciferase activity (other data see Appendix 11.2). As 

controls we used the empty vector pCpGL-basic, either unmethylated (pCpGL) or treated with CpG 

methyltransferase (pCpGL-methyl). All analyzed constructs were also tested in both states, 

unmethylated and fully methylated.  

Reporter gene activity in the unmethylated state above the one of the control plasmid pCpGL-

CMV/T.E1AF (#1341) was observed for almost all DMRs with exception of CREB3L1 and ETV5. 

The box plot showed that methylation of the two regions VENTX and SIX5 resulted in a significant 

lower reporter gene activity compared to control gene activity. This result suggested that differential 

methylation in those regions could have an effect on gene expression and therefore contribute to 

disease progression or pathogenesis. In the literature, VENTX was shown to play a role in cancer, to 

promote human erythroid differentiation, and to also highly expressed in acute myeloid leukemia
218

. To 

illustrate the differences in DNA methylation in the promoter region of VENTX, we had a look at the 

data with the integrated genome viewer (IGV) (Figure 5-30 B). The upper part showed DNA 
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methylation signals in all five consecutive patient samples with decreasing signals in the promoter 

region. At the same time, DNA methylation signals in control cells (CD34+ cells, granulocytes, 

monocytes, T- and B-cells) showed very similar pattern amongst each other. In summary, this 

demethylation of the promoter region of VENTX and the resulting elevated expression could contribute 

to disease progression, specifically in the case of patient D770.  

 

 

 

Figure 5-30 - Box plot of gene reporter assays in patient D770 and genome browser of VENTX region 

(A) Relative luminometer units (RLUs) were shown in a box plot for pCpGL as control and for SIX5 and VENTX. 

All constructs were additionally tested in a fully methylated state and marked with the suffix “methyl”. The bold 

black line denotes medians, boxes the interquartile ranges and whiskers the 5
th

 and 95
th

 percentiles. Significance 

between corresponding pairs was tested via one-tailed t-test (** p<0.001, * p<0.01).  (B) IGV snapshot from 

analyzed VENTX promoter region with DNA methylation signals in all five samples from patient D770 (purple) as 

well as in CD34+ cells, granulocytes, monocytes, T- and B-cells (turquoise).  

  

A B 
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5.2.2.2 Detailed analysis of patients with stable disease 

The remaining seven patients of this cohort were analyzed the same way. We observed that all of 

them did not show big differences in DNA methylation over disease progression. Consecutive samples 

of each single patient were very similar, thus identifying DMRs between the time points was very 

challenging.  

In this section I will describe one example patient (D151) with stable disease since all others displayed 

the same behavior. Figures from additional patients can be found in the Appendix 11.2. 

DNA methylation from patient D151 was analyzed at two different time points 26 months apart. The 

patient was diagnosed with refractory cytopenia, germline GATA2 mutation and normal karyotype. The 

only difference between these two time points was the percentage of bone marrow blasts with slight 

increase from 1 % to 3 % (see Figure 5-31 C). Scatter plots in Figure 5-31 A depict correlation values 

between control monocytes and patient samples from 85.5 % to 87.5 %, whereas correlation between 

the two longitudinal patient samples was little bit higher with 88.2 %. Only 241 patient specific regions 

(red dots) were observed for patient D151 and they were methylated similarly in both samples.  

The patient specific regions were clustered using the K-means algorithm to get more information about 

DNA methylation during disease progression (Figure 5-31 B). In addition, the six obtained region 

clusters were compared with epigenetic data (H3K27me3, H3K4me3, H3K27ac and DHSs) in 

hematopoietic stem cells (Figure 5-31 B) to check association with active or repressive marks. 

Clusters 1, 5 and 6 gained DNA methylation during disease progression, whereas clusters 2, 3 and 4 

lost DNA methylation. We couldn´t see any correlation of the regions with active or repressive histone 

marks, probably due to the low number of DMRs.  

To sum up, the patient D151 did not show strong DNA methylation changes over the time period of 26 

months and DMRs contributing to disease progression (same approach as described in 5.2.2.1) 

couldn’t be found either. This could be associated with the fact that there were no changes in WHO 

classification, genetics or cytogenetics between the consecutive samples which could result in 

changes of DNA methylation pattern and degree. As mentioned above, the other patient samples 

behaved similarly in the way that DNA methylation during disease progression was very constant and 

furthermore they had stable genetic and cytogenetic patterns.  

Thus, these results led us to the conclusion that DNA methylation changes over time were associated 

with changes in genetic or cytogenetic landscape of the patient and were not the cause for 

progression of the disease.  
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Figure 5-31 - DNA methylation analysis and clinical data of patient D151 

(A) Comparison of DNA methylation patterns between different time points of patient D151 and control monocytes 

depicted as scatterplots. In black all mappable and detectable regions were depicted, while patient specific 

regions were displayed in red. Correlation values can be found on the bottom right corner of the plots. (B) K-

means clustering of DNA methylation data in patient specific regions and corresponding epigenetic data in 

hematopoietic stem cells (HSCs). (C) Overview of clinical data from consecutive samples of patient D151 with 

cumulative time between diagnosis and follow up sample, WHO classification, treatment, BM blast count, 

mutational and cytogenetic status. 
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5.3 Comparison PB and KM 

The possibility to diagnose and monitor myelodysplastic syndromes in peripheral blood (PB) would be 

very advantageous for both, patients and clinical practicability. In contrast to bone marrow (BM), 

peripheral blood is easily obtained during routine check-ups and disease-related alterations in DNA 

methylation are maintained, allowing detection in mature blood cells
207

. To study the behavior of both 

materials, DNA methylation patterns were compared using the Methyl-CpG-immunoprecipitation 

followed by next-generation sequencing (MCIp-seq).  

We studied a cohort of eight donors of whom four were patients diagnosed with MDS and four healthy 

donors served as control group. From MDS patients both materials were acquired and analyzed, 

whereas only peripheral blood samples were available from healthy donors. Samples in both groups 

were matched regarding age and sex. For all healthy donors a laboratory workup including peripheral 

blast count was performed with no abnormalities found. Furthermore, MDS patients showed a good 

mixture regarding WHO subtypes and cytogenetic characteristics showed a wide variety ensuring no 

bias in clinical data (see Table 5-7). 

 

Table 5-7 - Clinical data of healthy donors and MDS patients 

Abbreviations: PB, peripheral blood; BM, bone marrow; MDS, myelodysplastic syndrome; f, female; m, male; 

MDS-MLD, MDS with multilineage dysplasia, MDS-EB1, MDS with excess blasts 1;del(5q), deletion of 5q 

 

Peripheral blood and bone marrow samples were equally treated, first separating the mononuclear 

cells (MNCs) via density gradient centrifugation (see section 4.1.2.5) followed by isolation of genomic 

DNA. 200 ng of patient DNA was sonicated and methylated fragments were enriched using the MCIp 

protocol. Subsequent steps included library preparation and next generation sequencing on the 

Illumina HiSeq 3000/4000 platform. 

Bowtie 2
208

 was used to map the obtained sequencing data to the human reference genome 

(GRCh37/hg19). Downstream analysis (peak annotation, creation of tag directories, genome browser 

no Sample type sex Age (y) WHO Cytogenetic BM blasts (%) 

1 PB & BM MDS f 49 MDS with del(5q) del(5q) <2 / 0 (BM / PB) 

2 PB & BM MDS m 67 MDS-MLD 46 XY <5 / 3 (BM / PB) 

3 PB & BM MDS m 64 MDS-EB1 t(3;8) 7 / 0   (BM / PB) 

4 PB & BM MDS m 73 MDS-MLD 
Complex 

karyotype 
<5 / 0 (BM / PB) 

6 PB healthy m 64 - - - 

7 PB healthy m 64 - - - 

8 PB healthy f 58 - - - 

9 PB healthy m 87 - - - 
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visualization) of uniquely mapped tags were done using the HOMER software (Hypergeometric 

Optimization of Motif EnRichment)
177

. To compensate variations in sequencing depth, data was 

normalized to one tag per base pair (tbp) and analysis was done regardless of gender by removal of 

sex chromosomes. The free software “R”
209

 was used for calculation of Pearson correlation 

coefficients, t-SNE visualization (t-Distributed Stochastic Neighbor Embedding) and drawing of 

corresponding heat maps. The Pearson correlation coefficient is a measure of the linear correlation 

between two variables, ranging from values of -1 to +1, the latter indicating a perfect correlation. 

All commands used for this analysis can be found in section 4.2.3.2.2.  

The resulting heat map of correlation coefficients showed a strong correlation between the paired 

samples (see Figure 5-32 A). The corresponding samples, BM and PB, of one patient were always 

located in the same cluster and are highly correlated. Comparison of clinical data with clustered 

patients showed no correlation regarding WHO subtype or sex. 

 

 

Figure 5-32 - Comparison of global DNA methylation in peripheral blood and bone marrow samples 

(A) Heat map representing pairwise correlations using global DNA methylation data. Ordering of patients is based 

on hierarchical clustering using Pearson correlation, which results in three clusters with similar correlation 

illustrated by the dendrogram on top. The colors of the cells depict a high correlation (red) and a low correlation 

(blue). Same numbers were used for corresponding samples of one patient. The bar on the left shows sample 

category with MDS samples in grey and healthy donors in green. (B) t-SNE (t-Distributed Stochastic Neighbor 

Embedding) visualization of the global DNA methylation data. MDS patients were colored in red shades and 

healthy peripheral blood samples in green/blue ones.  

 

A second approach to illustrate similarity of PB and BM samples was made with the t-Distributed 

Stochastic Neighbor Embedding (t-SNE) technique. It allows the visualization of high-dimensional data 

sets by reducing the dimensions to a two-dimensional map (see Figure 5-32 B).  

The t-SNE plot also represented similarity of peripheral blood and bone marrow samples due to close 

localization of the corresponding data points of one patient to each other. Moreover, we could see that 
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MDS patients exhibit only little aberrations on DNA methylation level because the distance to healthy 

PB samples is not very high. The only patient exhibiting more alterations in DNA methylation was 

patient #4, which could be explained by several cytogenetic lesions.  

As depicted in Table 5-7, patient #4 shows a complex karyotype, whereas the other MDS patients 

show only one or even no cytogenetic aberration. Figure 5-33 exemplarily shows a section of the 

HOXA cluster, where differentially methylated regions were highlighted with black boxes. The left box 

shows a region where patient #4 shows less DNA methylation and the right box with more DNA 

methylation in comparison to other MDS samples. 

In summary, two independent techniques suggested close resemblance of the two different sample 

types, peripheral blood and bone marrow, regarding global DNA methylation at CpG-rich regions. 

Nevertheless, a clear classification of healthy and diseased samples was not possible. This could due 

to the fact that the restriction to CpG rich regions using the MCIp-Seq approach leads to some loss of 

information regarding DNA methylation changes in CpG poor regions or maybe patients were not 

methylated differentially.  
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Figure 5-33 - Genome browser track of HOXA cluster for MDS patients and healthy donors 

IGV snapshot of the HOXA cluster (hg19_chr7:27067803-27467424) with DNA methylation data derived from 

MCIp-seq for MDS patients and healthy donors. The first rows represent paired peripheral blood and bone 

marrow samples (shades of red and pink), whereas the bottom rows comprises all healthy peripheral blood 

samples (shades of green and turquoise). Reference genes are depicted at the bottom of the figure (blue). Black 

boxes represent differentially methylated regions regarding KM_4 and PB_4. 
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6 Discussion & Perspectives 

Epigenetic mechanisms are known to control gene expression without changing the underlying 

genomic sequence. Besides genetic and cytogenetic alterations, DNA methylation changes were 

shown to play important roles in the development of several diseases
153–156,219,220

. Predominantly, 

hypermethylation in CpG-rich areas of the genome could be observed as well as global 

hypomethylation
158

. Myelodysplastic syndromes are one of these diseases showing DNA methylation 

alterations where extensive studies regarding the role of this epigenetic modification for disease 

development or progression are still missing. 

With this thesis, I aimed to identify potential epigenetic marker genes that are involved in the 

progression from myelodysplastic syndromes (MDS) to acute myeloid leukemia (AML) or those playing 

a role in the pathogenesis of this heterogeneous disease. With an integrated analysis of epigenetic 

and genetic changes, we investigated the relationship between these two types of alterations. The 

studies were performed in cohorts of pediatric and adult MDS patients, which feature different genetic 

changes. For DNA methylation analysis we used two different approaches, methyl-CpG-

immunoprecipitation-sequencing (MCIp-seq) for global analyses and bisulfite-sequencing for targeted 

analyses.  

Global DNA methylation analyses in pediatric MDS patients allowed the separation of patients into two 

groups featuring consistent changes in DNA methylation at several interesting loci. However, analysis 

of consecutive samples in adults and in children did not show common patterns of differentially 

methylated regions (DMRs) which could serve as biomarkers for disease progression. Instead, 

progression associated changes were mostly private to individual patients and reflected their clonal 

evolution.  

6.1 Epigenetic and genetic changes in MDS 

Beside cytogenetic and genetic changes, epigenetic alterations, especially DNA methylation changes, 

may play a role in the pathogenesis and disease progression of myelodysplastic syndromes
154–156

. 

Genetic lesions were found in over 90 % and cytogenetic aberrations in about 50 % of MDS patients, 

while the latter is contributing to the classification into prognostic subgroups
109,116,117

. In contrast, DNA 

methylation changes are not routinely implemented for prognostication or classification, although 

several studies have shown an association of DNA methylation changes at specific genes with 

prognosis or pathogenesis
157

. DNA methylation is used as a therapeutic target during MDS 

treatment
157,221

, while studies regarding the correlation of DNA methylation pattern and response to 

distinct treatments are still missing. Since one could possibly improve the diagnosis and risk 
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stratification of MDS by combining both, the analysis of genetic and epigenetic changes, we studied 

these two features in adult and pediatric patients suffering from MDS. 

6.1.1 Comparison of DNA methylation data in adult MDS patients 

in order to identify common DMRs 

As already mentioned, changes in DNA methylation patterns can alter gene expression and contribute 

to the development of different diseases. Frequent abnormal DNA methylation has been described in 

acute myeloid leukemia (AML)
153,178,222

 and few studies revealed changes in specific genes in 

myelodysplastic syndromes (MDS)
223–225

. The list of aberrant methylated targets in MDS contains for 

instance p15INK4b, HIC1, CD1, ER
226

, DLX4
224

 or GPX3
223

. Few studies have investigated DNA 

methylation changes during the progression of myelodysplastic syndromes. These studies suggest 

that MDS stem cells generally exhibit DNA methylation changes and that methylation changes at gene 

promoters correlate with the progress of MDS
156,227

. 

In order to extend the set of marker genes and to identify potential target genes that are involved in 

the progression from MDS to AML, we analyzed a cohort of six adult MDS patients with a targeted 

bisulfite sequencing approach. This method analyzes DNA methylation of regions that are relevant for 

myeloid cell biology and acute myeloid leukemia. Our customized “myeloid regulome” comprises 

85 mega bases (95K regions) equivalent to approximately 2.8 % of the human genome and includes 

2,600,000 CpGs (see section 4.2.3.1). 

Using Principal Component Analysis (PCA), segregation of the single patients could be observed, 

whereas the longitudinal samples from one patient were found to be in close proximity indicating high 

similarity between these samples. In addition, we included control data sets from CD34+ cells, CD14+ 

and CD15+ cells. Regarding these three healthy cell types, PCA segregated monocytes and 

granulocytes from CD34+ cells, reflecting the distinct DNA methylation landscape during differentiation 

that was demonstrated in a recent study. There, Farlik et al.
199

 studied lineage-specific DNA 

methylation using WGBS (whole genome bisulfite sequencing) of 10 hematopoietic cell populations 

sorted by FACS (fluorescence-activated cell sorting). They observed lower average DNA methylation 

levels in differentiated cells of the myeloid lineage compared to all stem and progenitor cell types.  

This first view on our DNA methylation data with PCA suggests that DNA methylation patterns 

between longitudinal samples from individual patients show few differences. To figure out similarities 

and differences between patients, we looked for differentially methylated regions (DMRs). Comparison 

of DMRs between the six patients revealed no common DMRs, but many DMRs in single patients 

during disease progression. This indicated that each patient shows private patterns of DNA 

methylation and almost no overlapping DMRs with other patients.  

This point was analyzed with another approach by comparing differentially methylated regions in 

patients with those in CD34+ cells. Since hematopoietic stem cells show a different DNA methylation 

landscape than differentiated cells, we expected to get more DMRs that are common between all 

patients. In total, we observed 95 common DMRs in comparison to CD34+ cells and those could be 
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divided into 42 DMRs and 53 DMRs, which loose or gain DNA methylation in contrast to CD34+ cells, 

respectively. Nevertheless, most of DMRs found in contrast to CD34+ cells are again individually 

altered in each patient reflecting the heterogeneity of the disease. 

Previous studies suggested that DNA methylation in cancer occurs at regions marked by the 

repressive mark H3K27me3 as well as at bivalent regions marked with both, H3K27me3 and 

H3K4me3
181–183,228

. Furthermore it was shown by Wong et al.
229

 that DNA methylation preferentially 

occurs at H3K27me3 marked regions that regulate developmental processes. This hypothesis could 

also be confirmed with our data, where hypermethylated DMRs in contrast to CD34+ cells show an 

association with the PcG mark H3K27me3 and trimethylation of H3K4 indicating bivalent regions. 

Those DMRs were furthermore enriched in gene ontology terms affecting different developmental 

processes including “hematopoietic or lymphoid organ development”, “blood vessel development” or 

“regulation of cell development”, to name important ones for hematologic malignancies. 

Moreover it was shown that tumors undergo global hypomethylation
158

 as well as demethylation at 

specific sites. This demethylation process is normally associated with transcriptional reactivation and 

could lead to activation of proto-oncogenes in several tumors
36,230–232

. In gastric cancer, the group 

around Nam-Soon Kim
230

 identified ZNF312b as a cell proliferation-associated oncogene and that its 

promoter demethylation promotes gastric tumorigenesis. Another study from Watt et al.
231

 

demonstrated that the HOX11 proto-oncogene is frequently activated in T-cell acute lymphoblastic 

leukemia (T-ALL) due to promoter demethylation.  

For this reason, we also analyzed DMRs loosing DNA methylation in contrast to CD34+ cells. The 

regions affected by hypomethylation in this work were involved for instance in gene pathways 

responsible for “hematopoietic or lymphoid organ development”, “pathways in cancer”, “myeloid cell 

differentiation” or “regulation of catabolic processes”. We also observed an association of these DMRs 

in hematopoietic stem cells with the active histone marks H3K4me3 and H3K27ac. But we were not 

able to assign regions either specific for differentiation or cancer. Summarizing, we could say that 

hypomethylation of DMRs in patients may activate oncogenes that play a role for development or 

progress of the disease. 

In both cases, hypermethylation and hypomethylation, DMRs were preferentially located in introns, 

while only 10 % were located close to transcription start sites. Hypomethylated DMRs were 

additionally located in intergenic regions, which is typical for global hypomethylation in cancer
43

. 

Since we aimed to find common regions that are differentially methylated in all patients, we focused on 

the 42 DMRs getting hypomethylated and on the 53 DMRs getting hypermethylated in contrast to 

CD34+ cells. The latter mentioned group contained DMRs involved in interesting gene pathways, like 

“positive regulation of hemopoiesis” and “methylation”. Especially genes enriched in the first term 

attracted our attention with RUNX1, FOXO3 and ZFPM1 as examples. The transcription factor RUNX1 

is involved in lineage-specific differentiation and in the generation of hematopoietic stem cells
190

. 

Hypermethylation of the promoter region of RUNX1 could therefore lead to altered gene expression 

and misbalance proper hematopoiesis. Furthermore, it is known that mutations in RUNX1 are 

described in about 10 % of acute myeloid leukemias emphasizing the important role of this 

transcription factor for normal hematopoiesis
233,234

.  
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Another important transcription factor for the regulation of several cellular processes, including 

differentiation, proliferation and apoptosis, is the Forkhead box O 3 factor (FOXO3). Alterations of 

FOXO3 expression were found to be involved in tumorigenesis and progression
191,192

. As 

demonstrated by Ticchioni et al., transcriptional activation of FOXO3 is required to prevent B-chronic 

lymphocytic leukemia
235

.  

Another transcription factor enriched in gene ontology analysis in our hypermethylated DMRs was 

ZFPM1. This TF is regulating erythroid and megakaryocytic cell differentiation
193,194

. 

When tested in luciferase reporter assays, FOXO3 showed enhancer function that was abrogated by 

in vitro methylation of the reporter construct. This observation shows that hypermethylation of this 

DMR could play a role in the pathogenesis or progress of myelodysplastic syndromes. The other 

regions showed no significant alterations of reporter gene expression due to in vitro methylation. One 

reason for this may be the wrong selection of the analysed region or of the used cell line. To prove 

this, one has to choose another region around the target DMR and/or use another cell line.  

 

In the last years, molecular profiling of myelodysplastic syndromes has been done to a large extent 

contributing to our understanding of the pathogenesis of this disease
116,236,237

. 

In myelodysplastic syndromes genetic lesions are found in over 90 % of patients
109,116

 and mutational 

hierarchies dynamically change upon disease progression and treatment
170,238

. The clonal architecture 

plays an important role for therapy response
170

 and may be associated with DNA methylation 

changes. To investigate this theory, we analyzed the interplay between genetic and epigenetic 

alterations at different stages of the disease. 

All analyzed adult MDS patients were genetically and cytogenetically characterized by the group of 

Prof. Dr. Nowak (Mannheim) and Prof. Dr. Haase (Goettingen) allowing integrated analysis with DNA 

methylation data. All patients exhibit recurrent mutations affecting epigenetic modifiers (e.g. TET2, 

ASXL1, DNMT3A, EZH2), RNA splicing factors (e.g. SF3B1, SRSF2) or transcription factors (e.g. 

RUNX1, ETV6) and underwent different epigenetic therapy regimes. Although our DNA methylation 

study was limited to six patients with four to five consecutive samples each, we observed on the one 

hand common differences compared to CD34+ cells and on the other hand consistent inter-individual 

changes in DNA methylation correlating with the genetic landscape. 

Pairwise comparison of DNA methylation data revealed a higher Pearson correlation between single 

samples from one patient than between the patient samples and CD34+ cells. This phenomenon is 

expected since hematopoietic stem cells exhibit a different DNA methylation pattern than more 

differentiated cells as described above
199

. Detailed analyses revealed clusters of differentially 

methylated regions in patients in comparison to CD34+ cells that can be divided into regions 

associated with differentiation and those specific for MDS. Differentiation specific clusters of regions 

were typically demethylated in contrast to CD34+ cells and showed less trimethylation of H3K27 but a 

high signal for H3K4 trimethylation. This indicates that those regions are probably transcriptionally 

active and promote transcription programs important for cellular maturation. Analysis of common 

transcription factor binding motifs in those demethylated regions showed enrichment of binding motifs 

for CEBPA, AP-1, BATF and FRA-1. 



Discussion & Perspectives 

143 
 

It was shown that these transcription factors regulate several differentiation processes
201,203,204

 

underpinning the hypothesis that those hypomethylated regions are involved in maturation of cells. 

One enriched binding motif in our demethylated regions is CEBPA, where the group around 

Subramaniam Agatheeswaran
201

 demonstrated that elevated expression of CEBPA leads to arrest of 

CML blasts and enforcement of granulocytic differentiation.  

The function of the AP-1 transcription factor Fra1 was analysed by Grötsch et al.
204

 and they 

demonstrated that it negatively regulates B cell function. This in turn inhibits plasma cell differentiation.  

Another TF motif enriched in hypomethylated regions of our patients was BATF (basic leucine zipper 

transcription factor). The study from Kurachi et al.
203

 revealed that BATF is required for CD8+ T cell 

effector differentiation. Therefore the enrichment of binding sites for CEBP, FRA-1 and BATF in these 

hypomethylated regions indicates a role of those regions for differentiation processes.  

 

Clusters of regions which are hypermethylated in contrast to CD34+ cells showed high signals of 

H3K27 trimethylation indicating to be methylated in a disease-dependent manner. Moreover these 

regions were enriched for binding motifs for GATA and HOX, which are important for cellular 

differentiation and identity. Due to DNA methylation of these binding sites, processes regulated by 

GATA and HOX transcription factors may be disrupted and could contribute to MDS development or 

progression. On the other hand, these regions were already marked with H3K27me3 in HSCs and it is 

also possible that these regions were hypermethylated in the course of differentiation.  

Comparison of DMRs with publicly available data of the FANTOM5 (F5) consortium showed a 

generally higher CpG methylation degree in F5 promoter, F5 enhancer or GATA2 bound regions in 

patient samples than in control cells (CD14+, CD15+ and CD34+ cells). As mentioned above, this is 

due to different DNA methylation landscapes occurring during hematopoiesis. 

In order to see how different hematopoietic precursor cells are methylated in the patient specific 

DMRs, we annotated publicly available data sets into those regions. We generally observed the 

highest DNA methylation degree in all 3 subsets (F5 promoter, F5 enhancer and GATA2 bound 

regions) in Treg and CD8+ T cells, followed by naïve B cells and precursor lymphocyte of B lineage. 

Myeloid precursor cells (neutrophilic metamyelocyte and neutrophilic myelocyte) and mature myeloid 

cells (band form neutrophil and CD14+ CD16- classical monocyte) exhibit a similar or lower DNA 

methylation degree than hematopoietic multipotent progenitor cells. This phenomenon was previously 

demonstrated by Farlik et al.
199

 where they analyzed single-cell methylomes in 10 different 

hematopoietic cell types revealing many regions with lower DNA methylation levels in myeloid cells 

than in lymphoid cells. To sum up, comparison of DNA methylation data of patients and CD34+ cells 

revealed differences in DNA methylation patterns with DMRs showing hypo- or hypermethylation due 

to differentiation processes or disease specific methylation processes, respectively. 

 

Integrated analysis of genetics and epigenetics on the basis of individual patients indicated an 

association of DNA methylation changes with alterations in the genetic landscape. 

In our cohort, 3 out of 6 patients showed disease progression with regard to the WHO subtype, while 

two of them showed a stable disease and one turned into hematologic remission. Mossner et al.
170

 

could demonstrate that clinical progress regarding WHO subtypes is associated with complex 
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mutational hierarchies. 52 MDS patients at several time points were analysed using whole exome 

sequencing and targeted deep-sequencing to resolve molecular dynamics during drug treatment and 

progression. They demonstrated that clonal architecture changes upon treatment with lenalidomide 

and other drugs as well as with disease progression into worse WHO categories.  

In our study, upon treatment with lenalidomide (LEN), patients P02 and P15 showed a loss of their 

del(5q) bearing subclones, while earlier founding clones carrying DNMT3A/RAET1G (P02) or ASXL1 

(P15) strongly expanded. Clinically, P02 turned into hematologic remission after treatment with LEN 

accompanied by changes in DNA methylation pattern. In patient P15 we observed a switch from MDS 

with del(5q) into MDS-MLD and simultaneous shifts in clonal architecture between sample one and 

two. DNA methylation data nicely correlates with these changes, where sample one shows completely 

different DNA methylation patterns than samples two to four with stable genetic landscape and WHO 

subtype. 

Patient P20 underwent also treatment with lenalidomide despite the absence of the target lesion, 

del(5q). Here, only small changes in mutational burden were observed and furthermore WHO subtype 

(MDS-EB1) remained stable over time. At time point two, VAFs of all mutations were a little bit lower 

and there we observed a slight different DNA methylation pattern tending to be less methylated than 

the other samples. This phenomenon could possibly attribute to the preceding treatment with LEN that 

is known to have also cytotoxic effects
239

 resulting in a lower cell frequency included in analysis. 

Patient P19 was a case observed with MDS-RS-SLD over all four samples and was treated with an 

experimental anti-CD95 antibody (APG101). DNA methylation pattern showed very low variance 

between the different samples of this patient, consistent with the molecularly and clinically stable 

disease. Serial follow up bone marrow samples from patient P13 demonstrated the existence of the 

same mutations over time but with varying VAFs. After sample 2 variant allele frequencies for 

SF3B1/TP53 increased rapidly with climax at sample 3. In parallel, a slight decrease of the TNIK 

subclone could be observed. The patient was classified initially with MDS with del(5q), progressed 

towards MDS-EB1 and finally turned into a secondary AML. Comparison with DNA methylation data 

presented a link between this epigenetic mark and changes in VAFs for mutations. 

A more complex situation was found in patient P53, where DNA methylation analysis was done in 

peripheral blood samples, but genetic and cytogenetic assays with both, peripheral blood (PB) and 

bone marrow (BM) samples. This was due to implementation problems of cytogenetic analysis in 

peripheral blood and therefore switching to bone marrow was necessary. Clinically, the patient 

progressed from MDS-EB2 to secondary AML (sAML) despite treatment with 5’-Azacitidine. Results of 

molecular genetics in peripheral blood showed decreasing VAFs for the RUNX1 founder clone and the 

SRSF2 subclone over time. Changes of cytogenetic aberrations in the bone marrow were more 

complex with complicated clonal hierarchies for every single sample. Regarding DNA methylation 

data, which show various patterns over all time points, we could not identify an association between 

those patterns and cytogenetic / molecular changes. 

A recent study of epigenetic and genetic heterogeneity in AML suggests that epigenetic heterogeneity 

is associated with inferior outcome and shows significant variation during disease progression
172

. 

Herein epigenetic heterogeneity represents the pattern of DNA methylation at defined genomic loci 

with four CpGs, the so called epigenetic alleles. Furthermore they claimed that epigenetic and genetic 



Discussion & Perspectives 

145 
 

heterogeneity develops independently during disease progression. Since sequencing depth of our 

DNA methylation data was not sufficient for epigenetic heterogeneity analysis like described here, we 

were not able to assign the same phenomenon in myelodysplastic syndromes.  

But we could demonstrate a patient specific and globally stable DNA methylation pattern during 

disease progression. There was very little progressive DNA hypermethylation observed. However, 

changes in DNA methylation patterns correlate with selection of genetically different subclones.  

But it has to be considered that every single sample of the patient is an individual mixture of healthy 

and diseased cells with different ratios. Therefore some changes in DNA methylation patterns could 

also be due to the heterogeneity of the analyzed samples. 

However, it remains still unclear what came first – changes in genetics or DNA methylation. There is 

some evidence that genetic changes trigger DNA methylation alterations. On the one hand, DNA 

methylation profiles correlate with the selection of genetically distinct subclones indicating DNA 

methylation changes to be more “passenger” like events. On the other hand, observed mutations 

occur mainly in genes coding for epigenetic modifiers. Therefore it is postulated, that alterations in 

molecular genetics triggers the development of MDS
240

.  

Nevertheless, the “chicken-egg-problem” needs to be solved by further integrating analysis of MDS 

patients with disease progression, perhaps using single-cell technologies.  

6.2 Integrated analysis of epigenetic and genetic changes 

in pediatric MDS patients 

In contrast to adult MDS, pediatric MDS is rather rare with an incidence of 0.5 – 4 / 10
6
 per year

108,112
 

and extensive studies regarding epigenetics and genetics are still missing. Another difference between 

the two entities is the mutational pattern where adult MDS patients preferentially exhibit acquired 

mutations in DNMT3A, ASXL1, TET2 and SF3B1 and children often inherited mutations in GATA2, 

SAMD9
165

 or FANC members
166

. Furthermore, adult MDS patients were preferentially found with 

del(5q) lesions, whereas children often carry deletions of chromosome 7 or 7q
110,164

. Due to the 

discrepancy regarding pathogenesis of pediatric and adult MDS, we wanted to investigate DNA 

methylation in childhood MDS separately. Despite the rarity of pediatric MDS, our cohort comprises 42 

patients with a median age of 10.5 years and a balanced female to male ratio. From eight out of these 

42 patients, longitudinal sample were available allowing DNA methylation analysis during disease 

progression. The patient cohort was furthermore enriched for germline GATA2 mutations (59.5 %) and 

monosomy 7 (71.4 %). It was previously demonstrated by Marcin et al.
205

, that monosomy 7 lesions 

are preferentially associated with GATA2 mutations. Therefore we were interested in potentially 

different DNA methylation patterns in GATA2 mutated and non-GATA2 mutated patients.  

Global DNA methylation data was obtained from purified bone marrow granulocytes using the Methyl-

CpG-immunoprecipitation (MCIp) approach followed by next-generation sequencing. In a first subset 

analysis with all 42 patients, but without consecutive samples, t-SNE segregated the patients into two 
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clusters according to their DNA methylation data. One of those clusters could be observed with a 

significant correlation of GATA2 mutation status (p-value = 0.0205) and WHO subtype “refractory 

cytopenia” (p-value = 0.022). Moreover we could confirm the findings by Marcin et al.
205

 that GATA2 

mutations were preferentially associated with monosomy 7 lesions. But here one has to keep in mind 

that this patient cohort was biased towards these two aberrations.  

Another connection in childhood MDS was found between mutations of SETBP1 and ASXL1. Inoue et 

al.
210

 demonstrated that in MDS patients SETBP1 mutations were enriched in those with mutated 

ASXL1. Our results of t-SNE clustering revealed that 6 out of 8 patients (75 %) with mutations in 

ASXL1 carry mutations in SETBP1. This correlation is preferentially found in the cluster of patients 

with more advanced subtypes. Summarizing the above, we could identify two groups of patients 

according to their DNA methylation data. The first cluster predominantly comprises MDS patients with 

GATA2 mutations and refractory cytopenia (RC) indicating to include patients with low risk. Patients in 

the second cluster tend to be more advanced due to their mutations in SETBP1 and ASXL1 as well as 

their WHO classification into RAEB, RAEB-t and MDR-AML. 

In order to get more details about differences in DNA methylation between the two clusters of patients, 

we identified differentially methylated regions (DMRs) restricted to promoter regions associated with 

transcription or chromatin factors. Three interesting DMRs specifically methylated in cluster 1 

compared to cluster 2 could be identified, namely ZIC5, VILL and TRIM45. Zinc finger protein of the 

cerebellum 5 (ZIC5) exhibits transcriptional repressor function and was shown to be higher expressed 

in several human cancers. Studies in melanoma
211

, non-small cell lung cancer
213

 as well as in prostate 

and colorectal cancer
212

 demonstrated that elevated expression of ZIC5 could contribute to cancer 

progression. DNA methylation data in the ZIC5 promoter region revealed a DNA methylation signal in 

patients belonging to cluster 1 and a loss of this epigenetic mark in cluster 2. 

Methylation and subsequent transcriptional repression of the potential tumor suppressors VILL and 

TRIM45 in patients belonging to cluster 1 could also contribute to disease development or 

progression. Senchenko et al.
214

 identified VILL as novel tumor suppressor in cervical cancer and 

TRIM45 was shown to play important roles in the brain regarding tumor suppression
215,216

. 

Altogether, those demethylation events probably contribute to higher transcription rates and therefore 

might contribute for disease progression in this patient group.  

 

A major aim of this thesis was to identify potential epigenetic target genes that are involved in the 

progression from MDS to AML. The above mentioned results focused on global DNA methylation 

analysis in the complete patient cohort, but not in longitudinal samples and thus do not provide 

information regarding alterations during disease progression. In order to investigate this topic, we 

analyzed global DNA methylation in consecutive patient samples from eight children suffering from 

MDS. To our knowledge, analysis of DNA methylation in longitudinal pediatric MDS samples does not 

exist until now thus representing very valuable results. All eight patients in this study cohort carried 

germline GATA2 mutations and were classified as RC or RAEB. 

Interestingly, global DNA methylation patterns of consecutive samples from each patient remained 

very stable over time. Quantitative changes correlate with alterations of clonal sizes. Contrary to the 

literature
172

, our findings suggest that there is an association between kinetics and patterns in the 
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genetic compartment with DNA methylation changes. However, the groups around Mason and Melnick 

demonstrated that epigenetic and genetic heterogeneity in AML show different kinetics and patterns 

during disease progression. It has to be mentioned, that they studied the interplay of genetic and 

epigenetic heterogeneity in acute myeloid leukemia and that these two features could be linked 

differently in other types of tumors.  

 

We divided our patient cohort into those with stable disease and those with disease progression. A 

case with progression was found in patient D770 that was analyzed at five different stages of the 

disease and DNA methylation changes could be observed in every single sample. In addition to 

germline GATA2 mutations, the patient exhibited mutations in ASXL1, SETBP1 and CBL with varying 

VAFs of these lesions during progression. Moreover, the patient received several cycles of 

5’-Azacitidine and hematopoietic stem cell transplantation (HSCT). The first two samples were taken 

before HSCT and show the most similar DNA methylation patterns. After HSCT, clonal architecture 

changed completely which was accompanied by abundant changes in DNA methylation data. We 

furthermore observed that 5’-Azacitidine did not have an impact on DNA methylation pattern.  

In the past, 5’-Azacitidine (Aza) was believed to be cytostatic at higher doses
241

. Nowadays, 

5’-Azacitidine is known to have inhibitory roles regarding DNA methylation when used at lower 

doses
161

. Recently, a structured study from Tobiasson et al.
217

 suggested Aza to have several 

mechanisms of actions including immunomodulatory effects. They showed a general increase in gene 

expression but no correlation with DNA methylation changes upon treatment with Azacitidine. In detail, 

they analyzed gene expression, DNA methylation and histone modifications H3K18ac and H3K9me3 

(via ChIP-seq) in primary bone marrow MDS cells from 11 patients. Treatment with Aza did not 

influence H3K18ac modifications and only weak changes could be observed regarding the repressive 

H3K9 trimethylation. Regarding DNA methylation, only a very modest degree of demethylation was 

observed, especially in regions annotated as heterochromatin. Therefore demethylation of these 

regions was probably not responsible for increased gene expression. Furthermore, 5`-Azacitidine was 

observed to have immunomodulatory functions on natural killer cells, T cells and dendritic cells 

indicating Aza to have anti-tumor benefits
242

. 

Beside these effects, Aza induced expression of several endogenous retroviruses (ERVs) which in 

turn is correlated with embryonal cell differentiation. This was confirmed by a recent study by the 

group around Christoph Plass, which demonstrated that Aza activates endogenous retroviral elements 

and promoters from long terminal repeats (LTRs)
243

. ERV reactivation comes along with synthesis of 

double-stranded RNA which in turn activates antiviral response pathways leading to apoptosis of the 

cell. So overall, it is not surprising that DNA methylation changes upon treatment with 5’-Azacitidine 

were not observed.  

 

A more detailed view on differentially methylated regions of the distinct time points revealed seven 

interesting regions potentially important for disease progression (VENTX, SIX5, CREB3L1, GADD45B, 

ETV5, ETV2 and FOXO6). Tested in luciferase reporter assays, only VENTX and SIX5 showed 

significant abrogation by in vitro methylation of the reporter construct suggesting to be important 

methylation sensitive regions for disease progression. Literature research yielded interesting 
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information about the role of VENTX in cancer. Gentner et al.
218

 published a report in 2016 showing 

that VENTX is highly expressed in acute myeloid leukemia (AML) and is furthermore involved in 

human erythroid differentiation. Strikingly, DNA methylation signals in the promoter region of VENTX 

significantly dropped during disease progression. This demethylation and the resulting elevated 

transcription of VENTX could be involved in the development of MDS or contribute to disease 

progression.  

So far, SIX5 is only poorly investigated in leukemia. There are two studies in solid tumors 

demonstrating that SIX5 is involved in tumor initiation and progression. Xu et al. showed in breast 

cancer that patients with overexpression of SIX factors are associated with poorer clinical outcome
244

. 

In non-small cell lung cancer, Liu et al. obtained similar results with greater possibility of tumorigenesis 

due to higher expression of Sineoculis homeobox homolog (SIX) family proteins
245

. Observed 

methylation dependent downregulation of the SIX5 reporter gene suggests that demethylation of this 

region in patients may play a role in development of myelodysplastic syndromes.  

The enhancer region of GADD45B was also observed to be demethylated between the different time 

points. This tumor suppressor gene was shown to be overexpressed in colorectal cancer by Wang et 

al.
246

. Since the enhancer region of GADD45B didn´t show significant abrogation due to in vitro 

methylation, it is possible that expression of this gene is not reduced via DNA methylation and is 

therefore not as important as expected.  

The ETS Variant 2 transcription factor is required for tumor angiogenesis, which was recently 

demonstrated by the group around Saulius Sumanas
247

. But intensive studies regarding the role of 

ETV2 are still missing. Elevated expression of FOXO6 were associated with progressive gastric 

cancer, respectively
248

. Analysis of DNA methylation dependence of these last 2 mentioned enhancer 

regions did not show an abrogation due to in vitro methylation. This leads to the conclusion that these 

cancer relevant genes probably do not play a role during MDS progression.  

The remaining seven patients in our pediatric MDS cohort showed a stable disease with no 

progression regarding WHO subtype, molecular genetics or cytogenetics. All patients exhibited 

germline GATA2 mutations. Scatter plots of DNA methylation data revealed a very high correlation 

between the single time points of each patient. Generally, lower correlation values between patient 

samples were observed in patients D271 and D762 that received hematopoietic stem cell transplants 

(HSCT) and suffered a relapse. The decrease in correlation can be explained by the presence of 

donor cells as well as recipient cells resulting in a different DNA methylation pattern. Patients with a 

stable disease did not show many regions specifically methylated compared to control monocytes and 

analysis of DMRs which could be different between the samples of one single patient revealed no 

results. We only see changes in DNA methylation data to a distinct degree after stem cell 

transplantation. There we have to mention that all analyzed patients relapsed after HSCT and 

therefore DNA methylation changes could be on the one hand due to a distinct upcoming diseased 

cell population or on the other hand due to the different donor hematopoiesis.  

In summary, DNA methylation patterns correlate with changes in genetics, cytogenetics and WHO 

subtype but remain stable if no progression in these parameters is observed. One has to keep in mind 

that this result could be due to detection limitation of the method. Since all patient samples consist of 

healthy and diseased cells to a different extent, with very few bone marrow blasts in most cases, DNA 
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methylation data always represents a mean of these two entities. The problem could be circumvented 

by using single cell analysis or samples with sorted population of cells. 

6.3 Comparability of DNA methylation data in paired 

samples of peripheral blood and bone marrow 

Routine diagnosis for myelodysplastic syndromes still comprises morphologic and cytogenetic analysis 

of bone marrow aspirates. In contrast to peripheral blood, which is readily accessible, bone marrow 

samples are hard to obtain. Despite differences in cell composition in peripheral blood and bone 

marrow, it was shown that disease-related alterations in DNA methylation are maintained in mature 

blood cells
249

. Zhou et al. analysed the methylome of MDS peripheral blood cells using the HELP 

assay (HpaII tiny fragment enrichment by ligation-mediated PCR assay). The epigenetic pattern found 

in MDS leukocytes was globally distinct from age-matched controls and characterized by numerous, 

aberrant hypermethylated marks. By an integrative epigenetic-genetic approach combining HELP 

assay and aCGH (comparative genomic hybridization) Dock4 could be found as a candidate 

pathogenic gene on chromosome 7q. To sum up, this study showed that disease-specific DNA 

methylation alterations - relating here to MDS - are maintained in mature blood cells. Affected regions 

in the course of the disease are mainly CpG islands (CGI), which are not regulated during 

hematopoietic differentiation
250

. Those CGIs have a high CpG content and are therefore predominantly 

enriched with our methyl-CpG-immunoprecipitation (MCIp) approach. Altogether, this indicates that 

peripheral blood could also serve as a material source for analyzing disease specific DNA methylation 

changes.  

In this work, analysis of MCIp-seq data from paired samples of peripheral blood and bone marrow 

demonstrated a high similarity of DNA methylation patterns in both materials. This was shown with two 

different bioinformatic approaches, hierarchical clustering of Pearson correlation values and 

t-Distributed Stochastic Neighbor Embedding (t-SNE).  

Pearson correlation values were overall greater than 0.8 for comparison of peripheral blood and bone 

marrow samples indicating a high degree of similarity in two different materials from one patient. The 

reasons why there is no perfect correlation could be on the one hand experimental variation or on the 

other hand the different amount of aberrant cells analyzed in both tissues. Since every patient sample 

is an individual mixture of healthy and aberrant cells, one will never obtain the same composition of 

cells in two samples of the same origin. To circumvent this problem, one would have to perform single-

cell-analysis, which however is expensive, time consuming and not well established for DNA 

methylation so far and therefore not practicable for routine MDS diagnosis.  

Furthermore, we see that healthy control peripheral blood samples did not form their own cluster 

demonstrating that healthy donors show individual DNA methylation patterns to some degree. But it 

must be taken into account that we used aged-matched healthy controls which already may exhibit 

age-related alterations in DNA methylation patterns. Until now, there is no literature available 
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regarding DNA methylation and age-related hematopoiesis. But there are several studies about the 

connection of molecular genetics and age-related clonal hematopoiesis. In general it was observed 

that somatic mutations in genes associated with hematological neoplasia (e.g. DNMT3A, TET2, JAK2, 

SF3B1, ASXL1, TP53…) are frequently acquired during human aging without evidence of a blood 

disorder
169,251–253

. This phenomenon has been termed clonal hematopoiesis of indeterminate potential 

(CHIP) and appears in 10 % among persons between 70 and 80 years
168

. CHIP is furthermore 

associated with an increased risk to develop hematologic cancer and all-cause mortality
254

.  

So these studies illustrated that molecular genetics can be changed during aging representing a pre-

malignant state. The same may apply for alterations in DNA methylation patterns, which would explain 

our observed results. And as described above, we detected a close relationship between the genetic 

architecture and epigenetic changes during MDS progression underpinning the theory that DNA 

methylation changes may occur together with aging and emergence of somatic mutations.  

With regard to MDS patients, similarities were hardly detected which is probably due to the small 

cohort and therefore almost no statistical significance.  

Altogether, the data provide strong evidence that DNA methylation data from the two different tissue 

samples, peripheral blood and bone marrow of the same patient, show high similarity. Therefore 

peripheral blood samples could be used instead of bone marrow samples at least for selected 

methods or questioning.  

6.4 Perspectives 

Analysis of DNA methylation in adult and pediatric MDS patients revealed the co-occurrence of DNA 

methylation changes with alterations in clonal architecture. Global patterns of DNA methylation were 

very consistent over time and furthermore specific for every single patient.  

The individuality of DNA methylation patterns in patients led to identification of only few commonly 

differentially methylated regions that may be involved in disease pathogenesis or progression. Here 

additional studies in a greater patient cohort will be necessary to find an optimal set of epigenetic 

markers. This is true for both, adult and pediatric MDS patients, where the focus should be on patients 

undergoing disease progression since we could demonstrate that patients with a stable disease also 

show consistent DNA methylation patterns. After identification of a potential set of epigenetic marker 

genes, validation of these regions should be done with another method that monitors exactly 

epigenetic alterations during disease progression. This could be realized with the Epityper® 

MassARRAY, that uses bisulfite treated DNA to measure quantitatively DNA methylation at single 

CpG levels.  

Our integrated analysis of epigenetic and genetic changes during disease progression did not reveal a 

clear chronological order of these two events. There are two possible scenarios explaining the 

emergence of DNA methylation differences. On the one hand, there could be accumulation of DNA 

methylation changes over time leading to genomic instability and finally results in genomic or 

cytogenetic aberrations
255,256

. On the other hand, it could be the other way round, that a genetic hit 
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triggers changes in DNA methylation
257

. In order to clarify this, one could do DNA methylation and 

mutational analysis in single cells. Furthermore it would be beneficial to increase the number of 

analyzed samples from one patient during observation period, to get a close monitoring of changes in 

epigenetics and genetics. This would facilitate correlation of these two changes and maybe dissolve 

the hierarchy of chronological appearance. 

Another interesting study could be the characterization of DNA methylation pattern in hematopoietic 

precursor cells. Comparison of diseased patient samples could then reveal the similarity with distinct 

stages of differentiation and maybe improve diagnosis and prognostication. 

Since DNA methylation changes could occur across the whole genome and our methods were 

focused on specific targets (myeloid regulome) or CGIs (MCIp), it would be more informative to do 

whole genome bisulfite sequencing (WGBS). However, this method is very expensive and is thus not 

applicable for clinical routine investigations.  
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7 Summary 

DNA methylation is important during development of vertebrate organisms as well as for sustaining 

genome integrity and gene expression. Alterations of DNA methylation patterns are often associated 

with different diseases, for instance myelodysplastic syndromes (MDS) or acute myeloid leukemia 

(AML). Consequences of aberrant DNA methylation are the silencing of tumor suppressor genes due 

to hypermethylation as well as the hypomethylation‐mediated weakening of transcriptional repression, 

reactivation of retrotransposons and genomic instability.  

The major aim of this thesis was the integrated analysis of epigenetic and genetic changes during 

disease progression to identify target genes that could be involved in development or progression of 

myelodysplastic syndromes. To address this issue, DNA methylation analysis was performed in 

pediatric and adult MDS patients using the methyl-CpG-immunoprecipitation sequencing approach 

(MCIp-seq) and the targeted bisulfite sequencing of the myeloid regulome, respectively. 

It could be demonstrated that adult MDS patients show largely private DNA methylation changes and 

almost no common differentially methylated regions. Identified DMRs include RUNX1, FOXO3 and 

ZFPM1, which show methylation sensitivity in in vitro reporter gene assays. Another observation was 

made in this patient cohort in which DNA methylation changes only occur with alterations in clonal 

architecture. In cases of a genetically stable disease, no differences in DNA methylation patterns were 

observed over time. 

In pediatric MDS patients global DNA methylation analysis revealed a correlation of DNA methylation 

changes with germline GATA2 mutations and refractory cytopenia (RC). In detail, a patient cluster with 

lower DNA methylation degree exhibited the mentioned two features, while the other cluster of 

patients was associated with more advanced subtypes and higher DNA methylation. DMRs identified 

between these two patient groups are ZIC5, VILL and TRIM45, possibly playing a role in cancer. 

Methylation sensitivity of these regions has to be tested with in vitro reporter gene assays and will give 

information about a possible role for the development or progress of MDS. 

Regarding longitudinal studies in pediatric MDS patients, we could show the same result like in adult 

patients where DNA methylation changes correlate with alterations in genetic landscape. One 

potential epigenetic target gene found to be methylation sensitive and already described to play an 

important role in AML is the VENTX promoter region. 

In summary, our data suggest a tight correlation of epigenetic changes with clonal architecture of the 

diseased hematopoiesis, but the chronological order of appearance is still an open issue. 

 



Zusammenfassung 

153 
 

8 Zusammenfassung 

DNA‐Methylierung ist ein wichtiger Prozess bei der Entwicklung von Organismen und spielt ebenfalls 

eine wichtige Rolle bei der Aufrechterhaltung der genomischen Integrität sowie der Genexpression. 

Eine Assoziation von Veränderungen im DNA-Methylierungsmuster konnte für verschiedene 

Erkrankungen festgestellt werden, unter anderen bei den myelodysplastischen Syndromen (MDS) und 

der akuten myeloischen Leukämie (AML). Durch die aberrante DNA-Methylierung kommt es zur 

Stilllegung von Tumorsuppressorgenen, die durch eine Hypermethylierung hervorgerufen wird und auf 

der anderen Seite zu einer Abschwächung der transkriptionellen Repression, Reaktivierung von 

Retrotransposons sowie genomischer Instabilität aufgrund einer Hypomethylierung. 

Das Ziel der vorliegenden Arbeit war die integrierte Analyse epigenetischer und genetischer 

Veränderungen während dem Progress des MDS, um potentielle Zielgenen zu identifizieren, die bei 

der Entwicklung oder dem Voranschreiten der Erkrankung involviert sind. 

Im Zuge dessen wurden globale DNA-Methylierungsanalysen in einer kindlichen MDS-Kohorte mittels 

Sequenzierung von Methyl-CpG-Immunopräzipitationen (MCIp-Seq) durchgeführt. Bei den adulten 

MDS-Patienten wurde gezielt die DNA-Methylierung in myeloischen, regulatorischen Komponenten 

mittels Bisulfit-Sequenzierung analysiert, wodurch der Fokus auf die für die Entwicklung myeloischer 

Zelltypen wichtigen Regionen gelegt wurde. 

Die globale DNA-Methylierungsanalyse der 42 kindlichen MDS-Patienten zeigte, dass diese ein 

differenzielles DNA-Methylierungsmuster im Vergleich zu den Kontrollen sowie eine signifikante 

Korrelation der DNA-Methylierung mit dem GATA2-Mutationsstatus und dem WHO-Subtyp „Refraktäre 

Zytopenie“ aufweisen. Im Detail sind die Patienten mit einer geringeren DNA-Methylierung mit den 

beiden genannten Merkmalen assoziiert, während die andere Patientengruppe eine Korrelation mit 

höheren DNA-Methylierungen und fortgeschritteneren WHO-Subtypen aufweist. Zwischen diesen 

beiden Entitäten konnten differentiell methylierte Regionen (DMRs) ausfindig gemacht werden, die 

eine Rolle bei Tumoren spielen. Diese Liste beinhaltet ZIC5, VILL und TRIM45. Die 

Methylierungssensitivität dieser Regionen mithilfe von in-vitro Reportergenassays bleibt noch zu 

testen, um Aussagen über ihre mögliche Rolle bei der Entwicklung und dem Progress von MDS 

treffen zu können. Longitudinale Analysen in kindlichen MDS-Patienten zeigten ein analoges Ergebnis 

wie bei den adulten Patienten. Das DNA-Methylierungsmuster bleibt während des 

Krankheitsprogresses gleich, die quantitativen Veränderungen korrelieren jedoch mit der Klongröße. 

Es konnte eine differentiell methylierte Region gefunden werden, die Promoterregion von VENTX, 

welche methylierungssensitiv ist und bereits bei der AML beschrieben wurde. 

Zusammenfassend können wir sagen, dass unsere Daten eine enge Korrelation der epigenetischen 

Veränderungen mit der klonalen Architektur der erkrankten Hämatopoese aufzeigt, jedoch bleibt die 

chronologische Abfolge dieser Veränderungen noch zu klären. 
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10 Abbreviations 

% Percent 

°C Degree Celsius 

µg Microgram 

µl Microliter 

µM Micromolar 

3‘ 3-prime 

5‘ 5-prime 

5caC 5-carboxycytosine 

5fC 5-formylcytosine 

5hmC 5-hydroxymethylcytosine 

5mC 5-methylcytosine 

A Adenine 

aa Amino acids 

ac Acetylation 

ACK ammonium-chloride-potassium 

AcOH Acetic Acid 

AGM aorta-gonad-mesonephros 

AML Acute myeloid leukemia 

Amp Ampicillin 

ATP Adenosine triphosphate 

Aza Azacitidine 

BER Base excision repair 

BM bone marrow 

bp Base pair 

BS Bisulfite sequencing 

BSA Bovine Serum Albumin 

BS-Seq bisulfite-sequencing 

C Cytosine 

C/EBP CCAAT/Enhancer Binding Protein 

CAGE Cap analyses gene expression 

CBM Cell Buffer Mix  

CD  cluster of differentiation  

cDNA Complementary DNA 

CF Chromatin factor 

CFP1 CXXC zinc finger protein 1 

CGI CpG island 

ChIP Chromatin immunoprecipitation 

Chr Chromosome 

CLP common lymphoid progenitor 

cm Centimeter 
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cM Centimorgan 

CM Chloramphenicol 

cm
2
 Square centimeter 

CMP common myeloid progenitor 

CMV cytomegalie virus 

CO2 Carbon dioxide 

CpA CpA dinucleotide 

CpC CpC dinucleotide 

CpG CpG dinucleotide 

CpT CpT dinucleotide 

CTX Clinical trial exemption 

CXXC Cysteine-rich zinc finger domain 

Da Dalton 

dATP Deoxyadenosine triphosphate 

DB Dilution Buffer 

ddH2O Double-distilled H2O 

ddNTP Dideoxyribonucleotide triphosphate 

DEAE Diethylaminoethyl 

del deletion 

DHS DNase I hypersensitive site 

DMR Differentially methylated region 

DMSO dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNMT DNA methyltransferase 

dNTP Deoxyribonucleotide triphosphate 

DOB date of birth 

DTT Dithiothreitol 

dUTP Deoxyuridine triphosphate 

Dx diagnosis 

E. coli Escherichia coli 

EDTA/Na2EDTA Ethylenediaminotetraacetic acid disodium salt dehydrate 

ESC / ES cell Embryonic stem cell 

EtBr Ethidium bromide 

EtOH Ethanol 

ETV6 Ets variant 6 

Ezh2 Enhancer of zeste homolog 2  

f female 

Fc fragment crystallizable 

FCS Fetal  calf serum 

for forward 

G Guanine 

g Gram 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 

GATA GATA Binding Protein 

GC Guanine/Cytosine 

gDNA Genomic DNA 
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GMLP granulocyte-monocyte-lymphoid progenitor 

GMP granulocyte-monocyte progenitor 

GO gene ontology 

GRCh38 Genome Reference Consortium Human Build 38 

H Histone 

h Hour 

HAT Histone acetyltransferase 

HCl Hydrochloric acid 

HDAC Histone deacetylase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HF high fidelity 

hg18 Human genome assembly 18 

hg19 Human genome assembly 19 

hMeDIP Hydroxymethylcytosine methylated DNA immunoprecipitation 

HMT Histone methyltransferase 

HOAc acetic acid 

Hpa Haemophilus parainfluenzae 

HS high sensitivity 

HSC hematopoietic stem cells  

HSCT hematopoietic stem cell transplantation  

Hz Hertz 

IDT Integrated DNA Technologies 

IgG Immunoglobulin G 

IGV Integrative Genomics Viewer 

IP Immunoprecipitation 

iPS induced pluripotent stem cells 

K Lysine / Kilo 

kb Kilo base 

KCl Potassium chloride 

kDa Kilodalton 

KFB Kompetenzzentrum für fluoreszente Bioanalytik 

KOH Potassium hydroxide 

KZF KRAB-containing zinc finger 

l Liter 

LB Lysogeny broth 

LEN Lenalidomide 

LMO2 LIM domain only 2 

LM-PCR ligation-mediated PCR 

lncRNA Long non-coding RNA 

LT-HSC Long-term hematopoietic stem cell 

m mass / male 

M Molar 

M.SssI Methyltransferase Spiroplasma sp. Strain MQ1  

mA Milliampere 

MALDI-TOF MS 
Matrix-assisted laser desorption/ionization coupled with mass spectrometry analyses by 
Time-of-flight 

Mb Mega base 
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MBD Methyl-binding domain 

MBP Methyl-CpG binding protein family 

MCIp Methyl-CpG immunoprecipitation 

mCpG Methylated CpG 

MDR-AML MDS-derived AML 

MDS myelodysplastic syndromes 

MDS-EB MDS with excess blasts 

MDS-MLD MDS with multilineage dysplasia  

MDS-RS MDS with ring sideroblasts  

MDS-SLD MDS with single lineage dysplasia  

MDS-U unclassifiable MDS 

me1 Monomethylation 

me3 Trimethylation 

MeCP Methyl-CpG binding protein 

MEP megakaryocyte-erythrocyte progenitor 

mg Milligram 

MgCl2 Magnesium chloride 

min Minute 

Mio Million 

miRNA Micro RNA 

ml Milliliter 

MLL megakaryocyte-erythrocyte progenitor 

mm millimeter 

mM Millimolar 

M-MLV RT Moloney Murine Leukemia Virus Reverse Transcriptase 

MNC mononuclear cells  

MPC magnetic particle concentrator 

MPP multipotent progenitor 

mRNA Messenger RNA 

msec Millisecond 

NaCl Sodium chloride 

NaHCO3 Sodium hydrogen carbonate 

NaOAc Sodium acetate 

ncRNA Non-coding RNA 

ng Nanogram 

NGS Next generation sequencing 

NH2 Amino 

nm Nanometer 

nM nanomolar 

nt Nucleotide 

NuRD Nucleosome remodeling deacetylase  

o/n Overnight 

Oligo Oligonucleotide 

ORF Open reading frame 

OS Overall survival 

PB peripheral blood 

PBS Phosphate-buffered saline 
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PCA Principal component analysis 

Pc Polycomb 

PcG Polycomb-Group 

PCR Polymerase chain reaction 

PEG Polyethylenglycol 

PMSF Phenylmethanesulfonyl fluoride 

PRC(1/2) Polycomb repressor complex (1/2) 

qPCR Quantitative Real-time PCR 

RAEB (-t) refractory anemia with excess blasts (in transformation) 

RBC red blood cell 

RC refractory cytopenia 

rev reverse  

RLU Relative luminometer unit 

RNA Ribonucleic acid 

RNAi RNA-mediated interference 

Rnase Ribonuclease 

rpm Rounds per minute 

RPMI Roswell Park Memorial Institute medium 

rRNA Ribosomal RNA 

RT Room temperature 

RT-qPCR Reverse-transcription quantitative real-time PCR 

RUNX1 Runt-related transcription factor 1 

SAM S-adenosylmethionin 

SAP Shrimp alkaline phosphatase 

SBS sequencing by synthesis 

SC SeqCap 

SDS Sodium dodecyl sulfate 

sec Second 

SET Su(var)3-9 and ‘Enhancer of zeste’ domain 

SINE Short interspersed elements 

siRNA Small interfering RNA 

snoRNA Small nucleolar RNA 

SNP Single nucleotide polymorphism 

snRNA Small nuclear RNA 

Snrpn small nuclear ribonucleoprotein N 

SOC super optimal broth 

SPRI solid phase reversible immobilization 

ST-HSC Short-term hematopoietic stem cell 

t translocation 

T Thymine 

Ta Annealing temperature 

TAE Tris/Acetate/EDTA 

T-ALL T-cell acute lymphoblastic leukemia 

tbp tags per base pair 

TE Tris/EDTA 

TET Ten-eleven translocation 

TF Transcription factor 
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Tm Melting temperature 

TRD Transcriptional repressor domain  

Tris Tris(hydroxymethyl)-aminomethan 

tRNA Transfer RNA 

t-SNE t-Distributed Stochastic Neighbor Embedding 

TSS transcription start site 

TTS transcription termination site 

Tyr Tyrosinase 

U Unit 

ub Ubiquitinylation 

UCSC University of California, Santa Cruz  

UTR untranslated region 

UV Ultra violet 

V Volt 

Vol Volume 

W Watt 

w/o Without 

WBI-III Wash buffer I-III 

WHO world health organization 

WT Wild type 

xg G-force acceleration 
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11 Appendix 

 

Appendix I – Gene reporter assays with DMRs obtained in adult MDS patients (section 

11.1, page 176)  

Figure 11-1 to Figure 11-4 display genome browser snapshots from genomic regions, which were 

used for gene reporter assays in adult patients suffering from MDS. The precise position of the chosen 

region is indicated with a red horizontal bar. Targeted bisulfite data sets are shown in the upper part 

with different colors for distinct samples. Additional ChIP-seq data sets are colored in blue and 

depicted at the bottom of the figure.  

 

 

Appendix II – Gene reporter assays in pediatric MDS patient D770 (section 11.2, page 180)  

Differentially methylated regions of pediatric MDS patient D770 that were hypomethylated during 

disease progression were cloned into the reporter gene vector #1341 (pCpGL-CMV/T.E1AF) or #861 

(pCpGL-basic). The indicated plasmids were either unmethylated or in vitro SssI-methylated 

(“methylated”) and transiently transfected into THP-1 cells. Luciferase activity was normalized against 

the activity of a co-transfected Renilla construct and mean values of RLUs (relative luminometer units) 

+/- standard deviation are shown.  

 

 

Appendix III – DNA methylation analyses and clinical data from longitudinal MDS 

patients (section 11.3, page 181) 

(A) Comparison of DNA methylation patterns between different time points of longitudinal patients and 

control monocytes depicted as scatterplots. All mappable and detectable regions were depicted in 

black, while patient specific regions were displayed in red. Correlation values could be found on the 

bottom right corner of the plots. (B) K-means clustering of DNA methylation data in patient specific 

regions and corresponding epigenetic data in hematopoietic stem cells (HSCs). (C) Overview table of 

clinical data from consecutive samples of the respective patient with cumulative time between 

diagnosis and follow up sample, WHO classification, treatment, BM blast count, mutational and 

cytogenetic status.  
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11.1 Appendix I – Gene reporter assays with DMRs 

obtained in adult MDS patients 

 

 

Figure 11-1 - Genome browser track of selected region for RUNX1 gene reporter assay 
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Figure 11-2 - Genome browser track of selected first region for FOXO3 gene reporter assay 
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Figure 11-3 - Genome browser track of selected second region for FOXO3 gene reporter assay 
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Figure 11-4 - Genome browser track of selected region for ZFPM1 gene reporter assay 
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11.2 Appendix II – Reporter gene assay from pediatric MDS 

patient D770 

 

Figure 11-5 – Bar plot of gene reporter assay in pediatric MDS patient D770 
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11.3 Appendix III – DNA methylation analyses and clinical 

data from longitudinal MDS patients 

 

Figure 11-6 - DNA methylation analyses and clinical data from patient D271 
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Figure 11-7 - DNA methylation analyses and clinical data from patient D342 
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Figure 11-8 - DNA methylation analyses and clinical data from patient D569 
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Figure 11-9 - DNA methylation analyses and clinical data from patient D762 
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Figure 11-10 - DNA methylation analyses and clinical data from patient D801 
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Figure 11-11 - DNA methylation analyses and clinical data from patient D807 
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