
10 XII Национална конференция „Образованието и изследванията в информационното общество” 2019

TREES AND GRAPHS:
SIMPLE, GENERAL, ABSTRACT, AND EFFICIENT

Boyko Bantchev

Institute of Mathematics and Informatics – Bulgarian Academy of Sciences
boykobb@gmail.com

Abstract: The representations of trees and graphs in general, as known from most textbooks
on data structures and algorithms or similar sources, are in various ways deficient and outdated.
We offer a straightforward approach, based on the notions of set and map, which is at once
abstract, general, and efficient, and thus beneficial to the theory, practice, and teaching of
programming.

Keywords: graph, tree, representation, algorithm, set, map

1. Introduction
In mathematics as well as in computing, graphs as combinatorial structures enjoy

deserved popularity for their ability to model networks of diverse kind, size, and
complexity. In particular, trees, and more precisely, rooted ones, have numerous
applications in modelling hierarchies.

The usefulness of graphs in computing is strongly related to how they are re-
presented as data structures, as the feasibility and eficciency — both theoretical and
practical — of the algorithms that we perform on graphs for solving various kinds of
problems is highly dependent on data representation.

The representations that serve expository purposes, such as in textbooks, are
important in two ways. On the one hand, they are expected to ensure clear and un-
ambiguous understanding of how algorithm implementation can be based on them.
On the other hand, the very use of representations in teaching tends to them being
perceived as a standard to follow and thus they get entrenched in the practice of
programming.

Moreover, graph representation in informatics is naturally correlated with the
design and implementation of data structures in general — a fundamental part of
computing science. In this respect, the theory and practice of representing graphs as
data structures is an indication of the current state and trends in the said fundamental
field.

However, studying the classic and current textbooks on algorithms and data
structures, one can observe that representing graphs (and trees, in particular) in them
is insufficient, outdated, or both. There is a significant amount of space for
improvement, and in this paper we offer a straightforward, sound and efficient ap-
proach, based on simple, few, and general mathematical concepts. But before doing

XII Национална конференция „Образованието и изследванията в информационното общество” 2019 11

that, we discuss in a little more detail how the current approaches to representing
graphs, as seen in textbooks, are imperfect.

2. Representations and shortcomings
Some authors of books on algorithms, such as [1,2,7] choose to present the

algorithms in pseudocode or even less formal language, and, accordingly, also do not
pay much attention to how data structures, including trees and graphs, need to be
represented. In effect, this means that discussion of implementations is avoided,
which may be assumed to be motivated by the wish to let the student concentrate on
the algorithms' essence. However, such a tradeoff may well be, and often is, un-
justified, as the proper understanding of the algorithm may depend substantially on
the details of its implementation.

Where representing trees and graphs is indeed discussed, it is often too simple
and based on a primitive data structure, such as an array.

For example, a rooted tree is unambiguously defined by mapping each node to
its parrent. If, in addition, the nodes are associated with sequential natural numbers,
then mapping a node to its parent is simply that of an array index to an array value,
where that value is another index. But if a tree is represented like this, navigating from
a node to its descendants or siblings, or even only finding the number of descendants,
is highly time inefficient, as it requires searching through the array.

Arrays of integers, where integers play the roles of both nodes and links (in the
guise of array indices) to nodes are commonly used for representing not only trees
but graphs in general. A simple linear array is incapable, or at least very inconvenient
for representing even a simple kind of graph, so it is complemented or modified in one
way or another. The need to handle nodes with an arbitrary number of neighbours
brings to life two-dimensional arrays which must be either rectangular but consuming
much unused storage when the graph is sparse, or jagged to fit the number of
neighbours for each node separately. In either case one arrives at a structure which
lacks flexibility with respect to resizing the graph or changing the connections between
its nodes. The very use of integers in different roles can also be confusing in practice.

The above describes scheme of representing graphs is a variant of what is called
‘adjacency list’, as for each node there is a list of nodes adjacent to it. The lists
themselves can be linked sequences instead of arrays, but this variant, albeit a little
more flexible, is less efficient in terms of both time and storage consumption.

A common method of representing trees is using another kind of tree on which
the former one can be modelled. An ordered rooted tree, and even a forest of such
trees, is typically represented by a binary tree, where a ‘left’ branch leads to a des-
cendant and a ‘right’ branch links to a sibling. Thus, any representation of a binary
tree can serve as a representation of general ordered trees. Furthermore, represent-

12 XII Национална конференция „Образованието и изследванията в информационното общество” 2019

ing unordered rooted trees is most commonly done by simply using a representation
of an ordered rooted tree and not paying attention to the order.

This is the approach taken or suggested in [1,2,6,8]. Although apparently working,
it blurs the distinction between the different kinds of trees. Also, due to the linking,
which is inherent to binary trees but tends to be excessive for rooted ones, the unifying
approach lowers the speed of some algorithms on rooted trees.

Notably, some authors, e.g. [4,7], omit discussing general rooted trees com-
pletely, which is, in our opinion, hard to justify.

A generally useful means for designing and presenting data structures, including
graphs, is building an abstract representation first. An abstract representation is a
collection of datatype declarations, procedures and other data that constitute the
programmer's interface to the data structure. It admits further development, as done
in [6], into an implementation of the said interface, but when that is omitted, as in [3],
then the abstract approach is, just like the use of pseudocode, only a way to evade
discussing the actual representation of the data structure.

A notable flaw in most graph representations that one finds in textbooks is that
they do not assume any data to be associated with the nodes of the graph. Typically,
having once chosen integers (array indexes) to represent nodes, the authors seem to
forget that a graph, like any other data structure, is expected to be a container of
interlinked data items. Such empty graphs, although sufficient to illustrate the
workings of most algorithms on graphs, are nevertheless conceptually and practically
inadequate.

Overall, we consider the graph representations widely known from textbooks and
elsewhere to be functionally incomplete, too rigid to meet different uses, not always
efficient, and also too low-level to conveniently develop and teach algorithms based
on them.

3. Programming with sets and maps
The notions of set, map and order are among the most fundamental to mathe-

matics. Finite sets are simple and intuitive, appealing to our very basic mental skills,
such as distinguishing between objects, construing a whole out of distinct units, and
choosing among many items. Order is what we think of when we consider how things
make up a sequence. Maps, being sets of ordered pairs, come next and are almost
as easily grasped.

Sets and maps are also not new to programming languages. SETL [5], known
since the early 1970s, was the first to introduce ordered and unordered sets, maps,
and set-theoretic operations as principal data structures and operations in a pro-
gramming language. At that time neither computer hardware nor implementation
techniques were sufficiently developed to ensure efficient performance for programs
in a very high-level language, as SETL was dubbed. But the call for using sets and

XII Национална конференция „Образованието и изследванията в информационното общество” 2019 13

operations on sets as programming constructs was well heeded and, as time was
passing, more and more languages acquired such capabilities.

Today's hardware is hugely more productive, and implementing complex data
structures, as well as compiling techniques in general, have advanced to the point
that we no more have to consider sets and maps ‘very high level’ constructs. In fact,
they are quickly becoming commonplace. In particular, since its latest editions C++
has begun to offer, through its standard library, excellent support for set-theoretic
programming — which is very fortunate, in view of C++ being one of the most widely
used and dependable languages of today. Very importantly, the said support comes
with guarantees for time efficiency of all set-related operations.

What we just observed encourages rethinking the ways in which we represent
complex data structures, so that more use is made of set-theoretic constructs. We
consider trees and graphs to be an obvious target of such an effort.

The examples that follow use C++.

4. Representing trees
A (non-empty) rooted tree can be recursively defined as a pair (N,S) of a node N

and a (possibly empty) set S of rooted trees. Then N is considered a root from which
other trees descend, hence are regarded as subtrees. Thus, ultimately, a rooted tree
is a collection of hierarchically linked nodes. We usually consider that collection to be
finite.

A program representation of a tree would need to associate some data with each
node, so we can use the respective datatype as a parameter that marks out a member
of the family of tree types that we want to construct. In fact, rather than defining an
entire tree, we define a type representing a single node, along with links to
descendants. The resulting parameterized datatype is

template <typename N>
struct RTnode {N data; unordered_set<RTnode<N> *> * heirs;};

where data is the value to be stored in a node and heirs is a pointer to a set of
pointers to the descendants of that node. Note that the datatype definition closely
follows the above given informal definition of a tree. We use unordered_set for
descendants to stress that no order is assumed among them.

A node with no descendants will be represented as an ‘empty’ pointer, i.e.
nullptr in C++. As the set of descendants itself can be empty, we do not formally
need heirs to be a pointer — it could be the set itself. However, then we would have
to create and store an empty set for each leaf node, which is less efficient.

The tree node datatype can be split into a definition of a forest and one of a node
itself:

template <typename N> struct RTnode;

14 XII Национална конференция „Образованието и изследванията в информационното общество” 2019

template <typename N>
using Forest = unordered_set<RTnode<N> *>;
template <typename N>
struct RTnode {N data; Forest<N> * heirs;};

Defining the set of descendants of a node to be a forest where the latter con-
stitutes a separate type — a collection of (pointers to) tree nodes — has the advan-
tage of making it possible to use forests for other purposes as well. In fact, tree and
forest are notions dual to each other, each of them being used to define the other,
and this version of their program definition reflects the said duality.

Representing trees as above is simple, yet versatile enough to handle trees with
any kind of values in their nodes: primitive, such as int or char, or composite, or
pointers to actual values stored elsewhere.

As an example of using the tree definition, here is a procedure performing a pre-
order traversal of a rooted tree or its subtree. The result is a sequence (vector) of
the values kept in the visited nodes.

template <typename N>
void rt_preorder(RTnode<N> * & n, vector<N> & ns) {
 ns.push_back(n->data);
 if (n->heirs != nullptr)
 for (auto p : *n->heirs) rt_preorder(p,ns);
}

Note that if ordered trees must be represented, unordered_set in the
Forest's definition can be replaced with set or vector without otherwise
changing the program.

5. Representing graphs
Graphs admit various kinds of representations, of which most often used is the

previously mentioned ‘adjacency list’. There is no need for the neighbours of a node
to actually form a linear list, however — they can make up a set instead.

Let the nodes of a graph store values of type N. We introduce the name Nodes
to denote a set of nodes and define the generic type

template<typename N> using Nodes = unordered_set<N>;

We can use Nodes to represent the collection of neighbours of a graph's node,
as well as for other purposes. For example, the type that designates a set of nodes
with values of type char is Nodes<char>.

A graph is defined then as
template<typename N> using Graph =

 unordered_map<N,Nodes<N>>;

XII Национална конференция „Образованието и изследванията в информационното общество” 2019 15

— a map from the set of nodes to that of collections of neighbours, and the type of a
graph with char nodes is Graph<char>. As with trees, N can be any type.

In order to illustrate the use of the Graph datatype, let us consider implement-
tations of breadth-first and depth-first traversal procedures. We assume that the graph
to be traversed can be directed or undirected. In the latter case, we must construct
our graph so that, if two nodes are adjacent, each of them is in the set of neighbours
of the other.

A graph traversal algorithm needs temporary storage to keep track of the already
visited nodes. Let that storage be the set vis. Then vis is created with capacity
sufficient to eventually hold all the graph's nodes, used in the traversal, and then
destroyed. This means that vis must be local with respect to the traversal procedure.
In the following implementation the bft_graph procedure creates and destroys
vis, while calling another procedure, bft_graph_do, for doing the actual
traversal. It also creates a vector nodes for storing the resulting sequence of nodes.
nodes and vis are passed to bft_graph_do, along with the graph g and the
node x from which the traversal starts.

A breadth-first traversal also typically uses a queue data structure to store nodes
that have been visited and are still to be used for reaching from them, using
neighbourship, new nodes to visit. That queue, nq, is created, used and destroyed
within bft_graph_do. The reason for vis having an outer scope of locality is that
if the graph consists of more than one components, we would need to call
bft_graph_do once for each of them, keeping the contents of vis between calls:
once all the graph's nodes become visited, we know that all the components have
been traversed.

template<typename N>
vector<N> * bft_graph(Graph<N> & g, N x) {
 auto size = g.size();
 auto nodes = new vector<N>();
 nodes->reserve(size);
 auto vis = new Nodes<N>();
 vis->reserve(size);
 bft_graph_do(g,x,nodes,vis);
 delete vis;
 return nodes;
}

template<typename N>
void bft_graph_do(Graph<N> & g, N x,
 vector<N> * nodes, Nodes<N> * vis) {
 auto nq = new queue<N>();
 vis->insert(x);
 nq->push(x);

16 XII Национална конференция „Образованието и изследванията в информационното общество” 2019

 while (!nq->empty()) {
 x = nq->front();
 nq->pop();
 nodes->push_back(x);
 for (auto n : g[x])
 if (!contains(vis,n)) {
 vis->insert(n);
 nq->push(n);
 }
 }
 delete nq;
}

The following two procedures, dft_graph and dft_graph_do, implement
depth-first traversal and communicate with each other similarly to the above two.
Depth-first traversal here is in its iterative form, which is a bit more challenging to
implement than the recursive one. A stack named prev is locally defined within
dft_graph_do and plays a similar role to that of nq in bft_graph_do: keeping
track of visited and not yet to be left nodes. Each item of prev is a pair of a node and
an iterator, pointing at a member of the set of neighbours of the node currently being
visited (INodes is defined as Nodes<N>::iterator). The node and the iterator
together identify at each step which is the next node to visit, if it has not been already
visited.

template<typename N>
vector<N> * dft_graph(Graph<N> & g, N x) {
 auto size = g.size();
 auto nodes = new vector<N>();
 nodes->reserve(size);
 auto vis = new Nodes<N>();
 vis->reserve(size);
 dft_graph_do(g,x,nodes,vis);
 delete vis;
 return nodes;
}

template<typename N>
void dft_graph_do(Graph<N> & g, N x,
 vector<N> * nodes, Nodes<N> * vis) {
 auto prev = new stack<pair<N,INodes<N>>>();
 for (;;) {
 vis->insert(x);
 nodes->push_back(x);
 for (auto n = g[x].begin();; ++n)
 if (n == g[x].end()) {

XII Национална конференция „Образованието и изследванията в информационното общество” 2019 17

 if (prev->empty()) {
 delete prev;
 return;
 }
 tie(x,n) = prev->top();
 prev->pop();
 } else if (!contains(vis,*n)) {
 prev->emplace(x,n);
 x = *n;
 break;
 }
 }
}

It is important to point out that the basic operations on sets, such as insertion and
checking for inclusion, are guaranteed to take only a constant time in average, which
in turn ensures that traversals have optimal (linear) time complexity with respect to
the number of nodes. Also constant-time is removal (not used here).

6. A more elaborate example: Jarník-Prim-Dijkstra algorithm
So far we have discussed graphs that have no data associated with their edges,

and the edges themselves were not explicitly represented. Another representation is
needed if the edges carry weights or costs.

Let Weight be the respective numeric type. We define the type Nodes as above
and add these types:

template<typename N> struct Arc {N node; Weight weight;};
template<typename N> using Arcs = unordered_set<Arc<N> *>;
template<typename N> using EGraph = unordered_map<N,Arcs<N>>;

A weighted undirected graph is represented by the type EGraph, which is a map
from nodes to sets of pointers to Arcs, where Arc is a half-edge, consisting of node
and weight data. Each Arc pointed at within a set contains the node and the weight
of the edge, connecting that node to the node, associated with the set.

The Jarník-Prim-Dijkstra algorithm finds a spanning tree with a minimal total cost
of edges for a given weighted undirected graph by adding edges one by one to an
initially empty tree. The edge chosen each time for addition is the one of minimal
weight which links a node in the tree to a node not in the tree.

Since the resulting tree is also weighted, we need a new tree node datatype to
represent it:

template <typename N>
struct RTnode {N data;
unordered_set<pair<RTnode<N> *,Weight> *> * heirs;};

18 XII Национална конференция „Образованието и изследванията в информационното общество” 2019

The algorithm, although simple in essence, requires some sophistication in order
to be implemented efficiently. For lack of space, we do not quote the actual code here.
Instead, we only bring attention to the most substantial details.

First of all, we maintain a set of nodes

Nodes<N> vis;

that have been already added to the spanning tree: this is needed so that we can tell
whether an edge can be considered for addition to the tree, i.e. whether exactly one
of its ends belongs to the tree.

We also need to know for each member of vis precisely where it resides in the
tree, so we maintain a map

unordered_map<N,RTnode<N>*> nptr;

from graph nodes to pointers at tree nodes. As soon as a node is added to the tree,
a corresponding member is also added to nptr. When a minimal-weight edge and a
respective node are being added to the tree, we know through nptr to which node
of the tree to link them.

Each node not in the tree, which is connected through an edge to a node already
in the tree, is mapped to a pair, one member of which is an Arc consisting of the
respective node in the tree and the weight of the edge between the two nodes, and
the other member is an integer, an index in a heap. The map is defined

unordered_map<N,pair<Arc<N>,unsigned>> nfree;

When a new edge and node are added to the tree, the edges from that node that
lead to nodes not in the tree are traversed. If a newly visited node is found in this
process, it is included, along with the tree node and the weight of the respective edge,
to nfree. If a node is not newly visited, then it is already in nfree, and then the
Arc to which it is mapped may be replaced by the currently visited edge, if the latter
has smaller weight. Thus, for each node in nfree, the weight of the Arc to which it
is mapped is always the minimal possible. As the edge to be added to the spanning
tree at any stage is chosen among those in nfree, it is indeed the minimal possible,
as needed.

In order to find an edge with a minimal weight efficiently, a priority queue, i.e. a
heap, is maintained out of the weights of the Arcs in nfree. The unsigned in
nfree is the index of the respective weight in the heap. We need to keep the index
that way so that we can know, upon changing the weight of an Arc to a smaller one,
which item of the heap changes, and where that item goes after the heap is repaired.
The C++ library implementation of heaps does not allow for such a close inspection
of the inner workings of a heap, so we provide a custom implementation.

XII Национална конференция „Образованието и изследванията в информационното общество” 2019 19

As with the other algorithms on graphs, the use of sets and maps ensures optimal
time efficiency due to the constant in average complexity of the basic operations
inclusion, search, and removal for these structures.

Conclusion
We have seen that representing trees and graphs and algorithms on them in

programming using fundamental mathematical constructs such as sets and maps is
not only feasible but very practical in a modern programming language. Such
representations are simple, intuitive, and general, usually closely following the way
we describe these structures and algorithms in common mathematical and less formal
language. They are also inherently abstract, being at the same time remarkably
efficient.

The blend of such virtues makes set-theoretic representations very beneficial to
the teaching, practice, and further development of the theory of programming.

In some cases, it opens possibilities for exploring new, closer interactions be-
tween different data structures.

References
Th.H. Cormen et al., Introduction to algorithms, 3rd ed., MIT Press, 2009.
S. Dasgupta et al., Algorithms, McGraw-Hill, 2006.
M.T. Goodrich et al., Data structures and algorithms in C++, 2nd ed., John Wiley & Sons,

2011.
G.T. Heineman et al., Algorithms in a nutshell, 2nd ed., O'Reilly, 2015.
J.T. Schwartz et al., Programming with sets: an introduction to SETL. Springer-Verlag, 1986.
R. Sedgewick, Algorithms in C++, 3rd ed., Addison-Wesley, 2001.
R. Stephens, Essential algorithms, Wiley, 2013.
M.A. Weiss, Data structures and algorithm analysis in C++, 4th ed., Pearson, 2013.

ДЪРВЕТА И ГРАФИ – ПРОСТО, ОБЩО, АБСТРАКТНО И ЕФЕКТИВНО

Бойко Банчев

Резюме: Представянията на дървета и графи от общ вид, познати от повечето
учебници по структури от данни и алгоритми и други подобни източници, са в раз-
лични отношения непълноценни и остарели. Предлагаме непосредствен подход за
представяне, основан на понятията множество и съответствие, който е едновре-
менно абстрактен, общ и ефективен и с това полезен за теорията, практиката и
обучението по програмиране.

