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Abstract: The representations of trees and graphs in general, as known from most textbooks 
on data structures and algorithms or similar sources, are in various ways deficient and outdated. 
We offer a straightforward approach, based on the notions of set and map, which is at once 
abstract, general, and efficient, and thus beneficial to the theory, practice, and teaching of 
programming. 
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1. Introduction 
In mathematics as well as in computing, graphs as combinatorial structures enjoy 

deserved popularity for their ability to model networks of diverse kind, size, and 
complexity. In particular, trees, and more precisely, rooted ones, have numerous 
applications in modelling hierarchies. 

The usefulness of graphs in computing is strongly related to how they are re-
presented as data structures, as the feasibility and eficciency — both theoretical and 
practical — of the algorithms that we perform on graphs for solving various kinds of 
problems is highly dependent on data representation. 

The representations that serve expository purposes, such as in textbooks, are 
important in two ways. On the one hand, they are expected to ensure clear and un-
ambiguous understanding of how algorithm implementation can be based on them. 
On the other hand, the very use of representations in teaching tends to them being 
perceived as a standard to follow and thus they get entrenched in the practice of 
programming. 

Moreover, graph representation in informatics is naturally correlated with the 
design and implementation of data structures in general — a fundamental part of 
computing science. In this respect, the theory and practice of representing graphs as 
data structures is an indication of the current state and trends in the said fundamental 
field. 

However, studying the classic and current textbooks on algorithms and data 
structures, one can observe that representing graphs (and trees, in particular) in them 
is insufficient, outdated, or both. There is a significant amount of space for 
improvement, and in this paper we offer a straightforward, sound and efficient ap-
proach, based on simple, few, and general mathematical concepts. But before doing 
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that, we discuss in a little more detail how the current approaches to representing 
graphs, as seen in textbooks, are imperfect. 

2. Representations and shortcomings 
Some authors of books on algorithms, such as [1,2,7] choose to present the 

algorithms in pseudocode or even less formal language, and, accordingly, also do not 
pay much attention to how data structures, including trees and graphs, need to be 
represented. In effect, this means that discussion of implementations is avoided, 
which may be assumed to be motivated by the wish to let the student concentrate on 
the algorithms' essence. However, such a tradeoff may well be, and often is, un-
justified, as the proper understanding of the algorithm may depend substantially on 
the details of its implementation. 

Where representing trees and graphs is indeed discussed, it is often too simple 
and based on a primitive data structure, such as an array. 

For example, a rooted tree is unambiguously defined by mapping each node to 
its parrent. If, in addition, the nodes are associated with sequential natural numbers, 
then mapping a node to its parent is simply that of an array index to an array value, 
where that value is another index. But if a tree is represented like this, navigating from 
a node to its descendants or siblings, or even only finding the number of descendants, 
is highly time inefficient, as it requires searching through the array. 

Arrays of integers, where integers play the roles of both nodes and links (in the 
guise of array indices) to nodes are commonly used for representing not only trees 
but graphs in general. A simple linear array is incapable, or at least very inconvenient 
for representing even a simple kind of graph, so it is complemented or modified in one 
way or another. The need to handle nodes with an arbitrary number of neighbours 
brings to life two-dimensional arrays which must be either rectangular but consuming 
much unused storage when the graph is sparse, or jagged to fit the number of 
neighbours for each node separately. In either case one arrives at a structure which 
lacks flexibility with respect to resizing the graph or changing the connections between 
its nodes. The very use of integers in different roles can also be confusing in practice. 

The above describes scheme of representing graphs is a variant of what is called 
‘adjacency list’, as for each node there is a list of nodes adjacent to it. The lists 
themselves can be linked sequences instead of arrays, but this variant, albeit a little 
more flexible, is less efficient in terms of both time and storage consumption. 

A common method of representing trees is using another kind of tree on which 
the former one can be modelled. An ordered rooted tree, and even a forest of such 
trees, is typically represented by a binary tree, where a ‘left’ branch leads to a des-
cendant and a ‘right’ branch links to a sibling. Thus, any representation of a binary 
tree can serve as a representation of general ordered trees. Furthermore, represent-
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ing unordered rooted trees is most commonly done by simply using a representation 
of an ordered rooted tree and not paying attention to the order. 

This is the approach taken or suggested in [1,2,6,8]. Although apparently working, 
it blurs the distinction between the different kinds of trees. Also, due to the linking, 
which is inherent to binary trees but tends to be excessive for rooted ones, the unifying 
approach lowers the speed of some algorithms on rooted trees. 

Notably, some authors, e.g. [4,7], omit discussing general rooted trees com-
pletely, which is, in our opinion, hard to justify. 

A generally useful means for designing and presenting data structures, including 
graphs, is building an abstract representation first. An abstract representation is a 
collection of datatype declarations, procedures and other data that constitute the 
programmer's interface to the data structure. It admits further development, as done 
in [6], into an implementation of the said interface, but when that is omitted, as in [3], 
then the abstract approach is, just like the use of pseudocode, only a way to evade 
discussing the actual representation of the data structure. 

A notable flaw in most graph representations that one finds in textbooks is that 
they do not assume any data to be associated with the nodes of the graph. Typically, 
having once chosen integers (array indexes) to represent nodes, the authors seem to 
forget that a graph, like any other data structure, is expected to be a container of 
interlinked data items. Such empty graphs, although sufficient to illustrate the 
workings of most algorithms on graphs, are nevertheless conceptually and practically 
inadequate. 

Overall, we consider the graph representations widely known from textbooks and 
elsewhere to be functionally incomplete, too rigid to meet different uses, not always 
efficient, and also too low-level to conveniently develop and teach algorithms based 
on them. 

3. Programming with sets and maps 
The notions of set, map and order are among the most fundamental to mathe-

matics. Finite sets are simple and intuitive, appealing to our very basic mental skills, 
such as distinguishing between objects, construing a whole out of distinct units, and 
choosing among many items. Order is what we think of when we consider how things 
make up a sequence. Maps, being sets of ordered pairs, come next and are almost 
as easily grasped. 

Sets and maps are also not new to programming languages. SETL [5], known 
since the early 1970s, was the first to introduce ordered and unordered sets, maps, 
and set-theoretic operations as principal data structures and operations in a pro-
gramming language. At that time neither computer hardware nor implementation 
techniques were sufficiently developed to ensure efficient performance for programs 
in a very high-level language, as SETL was dubbed. But the call for using sets and 
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operations on sets as programming constructs was well heeded and, as time was 
passing, more and more languages acquired such capabilities. 

Today's hardware is hugely more productive, and implementing complex data 
structures, as well as compiling techniques in general, have advanced to the point 
that we no more have to consider sets and maps ‘very high level’ constructs. In fact, 
they are quickly becoming commonplace. In particular, since its latest editions C++ 
has begun to offer, through its standard library, excellent support for set-theoretic 
programming — which is very fortunate, in view of C++ being one of the most widely 
used and dependable languages of today. Very importantly, the said support comes 
with guarantees for time efficiency of all set-related operations. 

What we just observed encourages rethinking the ways in which we represent 
complex data structures, so that more use is made of set-theoretic constructs. We 
consider trees and graphs to be an obvious target of such an effort. 

The examples that follow use C++. 

4. Representing trees 
A (non-empty) rooted tree can be recursively defined as a pair (N,S) of a node N 

and a (possibly empty) set S of rooted trees. Then N is considered a root from which 
other trees descend, hence are regarded as subtrees. Thus, ultimately, a rooted tree 
is a collection of hierarchically linked nodes. We usually consider that collection to be 
finite. 

A program representation of a tree would need to associate some data with each 
node, so we can use the respective datatype as a parameter that marks out a member 
of the family of tree types that we want to construct. In fact, rather than defining an 
entire tree, we define a type representing a single node, along with links to 
descendants. The resulting parameterized datatype is 

template <typename N> 
struct RTnode {N data; unordered_set<RTnode<N> *> * heirs;}; 

where data is the value to be stored in a node and heirs is a pointer to a set of 
pointers to the descendants of that node. Note that the datatype definition closely 
follows the above given informal definition of a tree. We use unordered_set for 
descendants to stress that no order is assumed among them. 

A node with no descendants will be represented as an ‘empty’ pointer, i.e. 
nullptr in C++. As the set of descendants itself can be empty, we do not formally 
need heirs to be a pointer — it could be the set itself. However, then we would have 
to create and store an empty set for each leaf node, which is less efficient. 

The tree node datatype can be split into a definition of a forest and one of a node 
itself: 

template <typename N> struct RTnode; 
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template <typename N> 
using Forest = unordered_set<RTnode<N> *>; 
template <typename N> 
struct RTnode {N data; Forest<N> * heirs;}; 

Defining the set of descendants of a node to be a forest where the latter con-
stitutes a separate type — a collection of (pointers to) tree nodes — has the advan-
tage of making it possible to use forests for other purposes as well. In fact, tree and 
forest are notions dual to each other, each of them being used to define the other, 
and this version of their program definition reflects the said duality. 

Representing trees as above is simple, yet versatile enough to handle trees with 
any kind of values in their nodes: primitive, such as int or char, or composite, or 
pointers to actual values stored elsewhere. 

As an example of using the tree definition, here is a procedure performing a pre-
order traversal of a rooted tree or its subtree. The result is a sequence (vector) of 
the values kept in the visited nodes. 

template <typename N> 
void rt_preorder(RTnode<N> * & n, vector<N> & ns) { 
  ns.push_back(n->data); 
  if (n->heirs != nullptr) 
    for (auto p : *n->heirs) rt_preorder(p,ns); 
} 

Note that if ordered trees must be represented, unordered_set in the 
Forest's definition can be replaced with set or vector without otherwise 
changing the program. 

5. Representing graphs 
Graphs admit various kinds of representations, of which most often used is the 

previously mentioned ‘adjacency list’. There is no need for the neighbours of a node 
to actually form a linear list, however — they can make up a set instead. 

Let the nodes of a graph store values of type N. We introduce the name Nodes 
to denote a set of nodes and define the generic type 

template<typename N> using Nodes = unordered_set<N>; 

We can use Nodes to represent the collection of neighbours of a graph's node, 
as well as for other purposes. For example, the type that designates a set of nodes 
with values of type char is Nodes<char>. 

A graph is defined then as 
template<typename N> using Graph = 

                                  unordered_map<N,Nodes<N>>; 
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— a map from the set of nodes to that of collections of neighbours, and the type of a 
graph with char nodes is Graph<char>. As with trees, N can be any type. 

In order to illustrate the use of the Graph datatype, let us consider implement-
tations of breadth-first and depth-first traversal procedures. We assume that the graph 
to be traversed can be directed or undirected. In the latter case, we must construct 
our graph so that, if two nodes are adjacent, each of them is in the set of neighbours 
of the other. 

A graph traversal algorithm needs temporary storage to keep track of the already 
visited nodes. Let that storage be the set vis. Then vis is created with capacity 
sufficient to eventually hold all the graph's nodes, used in the traversal, and then 
destroyed. This means that vis must be local with respect to the traversal procedure. 
In the following implementation the bft_graph procedure creates and destroys 
vis, while calling another procedure, bft_graph_do, for doing the actual 
traversal. It also creates a vector nodes for storing the resulting sequence of nodes. 
nodes and vis are passed to bft_graph_do, along with the graph g and the 
node x from which the traversal starts. 

A breadth-first traversal also typically uses a queue data structure to store nodes 
that have been visited and are still to be used for reaching from them, using 
neighbourship, new nodes to visit. That queue, nq, is created, used and destroyed 
within bft_graph_do. The reason for vis having an outer scope of locality is that 
if the graph consists of more than one components, we would need to call 
bft_graph_do once for each of them, keeping the contents of vis between calls: 
once all the graph's nodes become visited, we know that all the components have 
been traversed. 

template<typename N> 
vector<N> * bft_graph(Graph<N> & g, N x) { 
  auto size = g.size(); 
  auto nodes = new vector<N>(); 
  nodes->reserve(size); 
  auto vis = new Nodes<N>(); 
  vis->reserve(size); 
  bft_graph_do(g,x,nodes,vis); 
  delete vis; 
  return nodes; 
} 
 
template<typename N> 
void bft_graph_do(Graph<N> & g, N x, 
                  vector<N> * nodes, Nodes<N> * vis) { 
  auto nq = new queue<N>(); 
  vis->insert(x); 
  nq->push(x); 
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  while (!nq->empty()) { 
    x = nq->front(); 
    nq->pop(); 
    nodes->push_back(x); 
    for (auto n : g[x]) 
      if (!contains(vis,n)) { 
        vis->insert(n); 
        nq->push(n); 
      } 
  } 
  delete nq; 
} 

The following two procedures, dft_graph and dft_graph_do, implement 
depth-first traversal and communicate with each other similarly to the above two. 
Depth-first traversal here is in its iterative form, which is a bit more challenging to 
implement than the recursive one. A stack named prev is locally defined within 
dft_graph_do and plays a similar role to that of nq in bft_graph_do: keeping 
track of visited and not yet to be left nodes. Each item of prev is a pair of a node and 
an iterator, pointing at a member of the set of neighbours of the node currently being 
visited (INodes is defined as Nodes<N>::iterator). The node and the iterator 
together identify at each step which is the next node to visit, if it has not been already 
visited. 

template<typename N> 
vector<N> * dft_graph(Graph<N> & g, N x) { 
  auto size = g.size(); 
  auto nodes = new vector<N>(); 
  nodes->reserve(size); 
  auto vis = new Nodes<N>(); 
  vis->reserve(size); 
  dft_graph_do(g,x,nodes,vis); 
  delete vis; 
  return nodes; 
} 
 

template<typename N> 
void dft_graph_do(Graph<N> & g, N x, 
                  vector<N> * nodes, Nodes<N> * vis) { 
  auto prev = new stack<pair<N,INodes<N>>>(); 
  for (;;) { 
    vis->insert(x); 
    nodes->push_back(x); 
    for (auto n = g[x].begin();; ++n) 
      if (n == g[x].end()) { 
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        if (prev->empty()) { 
          delete prev; 
          return; 
        } 
        tie(x,n) = prev->top(); 
        prev->pop(); 
      } else if (!contains(vis,*n)) { 
        prev->emplace(x,n); 
        x = *n; 
        break; 
      } 
  } 
} 

It is important to point out that the basic operations on sets, such as insertion and 
checking for inclusion, are guaranteed to take only a constant time in average, which 
in turn ensures that traversals have optimal (linear) time complexity with respect to 
the number of nodes. Also constant-time is removal (not used here). 

6. A more elaborate example: Jarník-Prim-Dijkstra algorithm 
So far we have discussed graphs that have no data associated with their edges, 

and the edges themselves were not explicitly represented. Another representation is 
needed if the edges carry weights or costs. 

Let Weight be the respective numeric type. We define the type Nodes as above 
and add these types: 

template<typename N> struct Arc {N node; Weight weight;}; 
template<typename N> using Arcs = unordered_set<Arc<N> *>; 
template<typename N> using EGraph = unordered_map<N,Arcs<N>>; 

A weighted undirected graph is represented by the type EGraph, which is a map 
from nodes to sets of pointers to Arcs, where Arc is a half-edge, consisting of node 
and weight data. Each Arc pointed at within a set contains the node and the weight 
of the edge, connecting that node to the node, associated with the set. 

The Jarník-Prim-Dijkstra algorithm finds a spanning tree with a minimal total cost 
of edges for a given weighted undirected graph by adding edges one by one to an 
initially empty tree. The edge chosen each time for addition is the one of minimal 
weight which links a node in the tree to a node not in the tree. 

Since the resulting tree is also weighted, we need a new tree node datatype to 
represent it: 

template <typename N> 
struct RTnode {N data; 
unordered_set<pair<RTnode<N> *,Weight> *> * heirs;}; 
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The algorithm, although simple in essence, requires some sophistication in order 
to be implemented efficiently. For lack of space, we do not quote the actual code here. 
Instead, we only bring attention to the most substantial details. 

First of all, we maintain a set of nodes 

Nodes<N> vis; 

that have been already added to the spanning tree: this is needed so that we can tell 
whether an edge can be considered for addition to the tree, i.e. whether exactly one 
of its ends belongs to the tree. 

We also need to know for each member of vis precisely where it resides in the 
tree, so we maintain a map 

unordered_map<N,RTnode<N>*> nptr; 

from graph nodes to pointers at tree nodes. As soon as a node is added to the tree, 
a corresponding member is also added to nptr. When a minimal-weight edge and a 
respective node are being added to the tree, we know through nptr to which node 
of the tree to link them. 

Each node not in the tree, which is connected through an edge to a node already 
in the tree, is mapped to a pair, one member of which is an Arc consisting of the 
respective node in the tree and the weight of the edge between the two nodes, and 
the other member is an integer, an index in a heap. The map is defined 

unordered_map<N,pair<Arc<N>,unsigned>> nfree; 

When a new edge and node are added to the tree, the edges from that node that 
lead to nodes not in the tree are traversed. If a newly visited node is found in this 
process, it is included, along with the tree node and the weight of the respective edge, 
to nfree. If a node is not newly visited, then it is already in nfree, and then the 
Arc to which it is mapped may be replaced by the currently visited edge, if the latter 
has smaller weight. Thus, for each node in nfree, the weight of the Arc to which it 
is mapped is always the minimal possible. As the edge to be added to the spanning 
tree at any stage is chosen among those in nfree, it is indeed the minimal possible, 
as needed. 

In order to find an edge with a minimal weight efficiently, a priority queue, i.e. a 
heap, is maintained out of the weights of the Arcs in nfree. The unsigned in 
nfree is the index of the respective weight in the heap. We need to keep the index 
that way so that we can know, upon changing the weight of an Arc to a smaller one, 
which item of the heap changes, and where that item goes after the heap is repaired. 
The C++ library implementation of heaps does not allow for such a close inspection 
of the inner workings of a heap, so we provide a custom implementation. 
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As with the other algorithms on graphs, the use of sets and maps ensures optimal 
time efficiency due to the constant in average complexity of the basic operations 
inclusion, search, and removal for these structures. 

Conclusion 
We have seen that representing trees and graphs and algorithms on them in 

programming using fundamental mathematical constructs such as sets and maps is 
not only feasible but very practical in a modern programming language. Such 
representations are simple, intuitive, and general, usually closely following the way 
we describe these structures and algorithms in common mathematical and less formal 
language. They are also inherently abstract, being at the same time remarkably 
efficient. 

The blend of such virtues makes set-theoretic representations very beneficial to 
the teaching, practice, and further development of the theory of programming. 

In some cases, it opens possibilities for exploring new, closer interactions be-
tween different data structures. 
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ДЪРВЕТА И ГРАФИ – ПРОСТО, ОБЩО, АБСТРАКТНО И ЕФЕКТИВНО 

Бойко Банчев 

Резюме: Представянията на дървета и графи от общ вид, познати от повечето 
учебници по структури от данни и алгоритми и други подобни източници, са в раз-
лични отношения непълноценни и остарели. Предлагаме непосредствен подход за 
представяне, основан на понятията множество и съответствие, който е едновре-
менно абстрактен, общ и ефективен и с това полезен за теорията, практиката и 
обучението по програмиране. 

  


