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Abstract 

 

The work presented in this thesis aimed to establish the metabolomic profile of urine and breast 

cancer (BC) tissue from BC patients (samples cordially provided by Funchal Hospital), in addition to 

BC cell lines (MCF-7, MDA-MB-231, T-47D) as a powerful strategy to identify metabolites as 

potential BC biomarkers, helping on the development of non-invasive approaches for BC diagnosis 

and management. To achieve the main goal and obtain a deeper and comprehensive knowledge on 

BC metabolome, different analytical platforms, namely headspace solid-phase microextraction (HS-

SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS) and nuclear 

magnetic ressonance (1H NMR) spectroscopy were used. 

The application of multivariate statistical methods - principal component analysis (PCA) and 

orthogonal partial least square – discriminant analysis (OPLS-DA), to data matrix obtained from the 

different target samples allowed to find a set of highly sensitive and specific metabolites metabolites, 

namely, 4-heptanone, acetic acid and glutamine, able to be used as potential biomarkers in BC 

diagnosis. Significant group separation was observed in OPLS-DA score plot between BC and CTL 

indicating intrinsic metabolic alterations in each group. To attest the robustness of the model, a 

random permutation test with 1000 permutations was performed with OPLS-DA. The permutation 

test yielded R2 (represents goodness of fit) and Q2 values (represents predictive ability) with values 

higher than 0.717 and 0.691, respectively. Several metabolic pathways were dysregulated in BC 

considering the analytical approaches used. The main pathways included pyruvate, glutamine and 

sulfur metabolisms, indicating that there might be an association between the metabolites arising from 

the type of biological sample of the same donor used to perform the investigation. 

The integration of data obtained from different analytical platforms (GC-qMS and 1H NMR) for 

urinary and tissue samples revealed that five metabolites (e.g., acetone, 3-hexanone, 4-heptanone, 2-

methyl-5-(methylthio)-furan and acetate), were found significant using a dual analytical approach. 
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Resumo 

 

O trabalho apresentado nesta tese teve como objetivo estabelecer o perfil metabolómico da urina 

e do tecido da mama de doentes com cancro de mama (BC) (amostras cordialmente fornecidas pelo 

Hospital do Funchal), além das linhas celulares de BC (MCF-7, MDA-MB-231, T -47D) como uma 

poderosa estratégia para identificar metabolitos como potenciais biomarcadores de BC, auxiliando no 

desenvolvimento de abordagens não invasivas para o diagnóstico e a gestão da patologia. Para obter 

um conhecimento mais profundo e abrangente do metaboloma de BC, diferentes plataformas 

analíticas, nomeadamente a microextração em fase sólida em modo headspace (HS-SPME) 

combinada com a cromatografia em fase gasosa acoplada à espectrometria de massa (GC-qMS) e 

espectroscopia de ressonância magnética nuclear (1H RMN), foram usadas para atingir o objetivo 

principal. 

A aplicação de métodos estatísticos multivariados - análise de componentes principais (PCA) e 

análise discriminante de mínimos quadrados parciais ortogonais (OPLS-DA) à matriz de dados obtida 

a partir das diferentes amostras alvo, permitiu estabelecer um grupo de metabolitos sensíveis e 

específicos, nomeadamente a 4-heptanona, o ácido acético e a glutamina, possíveis de serem 

utilizados como potenciais biomarcadores no diagnóstico de BC. Uma separação significativa entre 

os grupos BC e CTL foi observada pelo OPLS-DA, indicando alterações metabólicas em cada grupo. 

Para verificar a robustez do modelo, foi realizado um teste de permutação aleatória com 1000 

permutações com o sistema OPLS-DA. Valores de R2 (representa o ajuste) e Q2 (representa a 

capacidade preditiva) superiores a 0,717 e 0,691, foram obtidos utilizando o teste da permutação. 

Diversas vias metabólicas estavam desreguladas no BC considerando as abordagens analíticas 

utilizadas. As principais vias incluíram os metabolismos do piruvato e glutamina, indicando que 

poderá haver uma associação entre os metabolitos derivados do tipo de amostra biológica do mesmo 

doador utilizado para realizar a investigação. 

A integração de dados obtidos pelas diferentes plataformas analíticas (GC-qMS e 1H RMN) para 

amostras urinárias e de tecido revelou cinco metabolitos significativos usando a dupla abordagem 

analítica. (i.e., acetona, 3-hexanona, 4-heptanona, 2-metil-5- (metiltio) - furano e acetato). 

 

 

Palavras-chave: Cancro da Mama; Linhas celulares, urina e tecido; Metabolómica; NMR; GC-

qMS; Ferramentas estatísticas. 
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Regarding to the structure of this thesis, the publications of original research that resulted from the 

experimental data were used to organize the results obtained presented in section 3. In order to 

organize the information and present the developed research, a general introduction, integrated 

discussion and conclusions were made. In summary, this thesis is divided in the following sections: 

 

1. Introduction 

In this section, a brief introduction will be presented about breast cancer (BC) comprising a review 

with the most current analytical thecniques used in BC metabolomic studies and their applications to 

identify metabolites as potential BC biomarkers based on the main advantages and advances in 

metabolomics research. In addition, chemometric methods used in metabolomics will be also focused. 

 

2. Aims and Scope 

The main objectives of this thesis will be presented according to the proposed research. 

 

3. Metabolomic Pattern in Breast Cancer 

In this section, the results obtained as well as their discussion will be presented by manuscripts. 

 

4. Integrated Discussion 

This section provides na integrated discussion of the results obtained through this thesis and 

compared with the results obtained by other authors. 

 

5. Conclusions and Future Perspectives 

A general conclusion is presented regarding to the ability of the analytical techniques to establish 

potential BC biomakers. Also, the improvements that should be taken into account to validate the 

results obtained and to go deeper in knowledge about BC metabolomics. 
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SECTION 1| Breast cancer metabolomics: from 

analytical platforms to multivariate data analysis 
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Introduction 

Cancer is a public health problem and causes a tremendous burden on patients, families and society 

creating a significant problem on global economy. Although has been extensively investigated, cancer 

still remains one of the leading causes of death in the world after coronary diseases [1]. Globally, 

breast cancer (BC) remains at the top of women´s cancers worldwide followed by colorectal, lung, 

cervix, and stomach cancers according to GLOBOCAN series of the International Agency for 

Research on Cancer (IARC), contributing with more than 11.6 % of all cancer types. (Figure 1. 1 A).  

 

Figure 1. 1 - Estimated cancer incidence rates (A) and (B) number of deaths worldwide for 2018. 

Adapted from GLOBOCAN [1]. 

In addition, around 2.1 million BC new cases were diagnosed in 2018 and occured 630 thousands 

deaths (6.6 % of all cancers) (Figure 1. 1 B). 

The incidence rates are highest in North America, Australia and Europe and lowest in Asia. These 

differences might be related to societal changes, as result of industrialization, such as, unhealthy 

lifestyle, expressed by overweight and other symptoms, alcohol consumption, tobacco smoking, 

physical inactivity, early menarche, among others [2,3]. Although its incidence is high in some 

developed countries, mortality is higher in low and middle income countries [4]. The incidence of 

breast cancer increases with age and is generally in the 50–60 age group. Moreover, mortality rates 

affect the group below 35 years and above 75 years, due to the younger group have the most 

aggressive type of the disease and in the older group the treatment cannot be so aggressive [5]. 

Concerning the incidence rates and mortality for breast cancer in Europe, it was observed that in 

2012, the incidence of breast cancer was around 361,608 cases with 91,585 deaths. For 2020, around 

400 thousand new cases will be diagnosed resulting in 100 thousand deaths according to International 

Agency for Research on Cancer (IARC). For Portugal and USA, the expected number of breast cancer 

cases in 2020 will be nearly 6000 and 270 thousand resulting in around 1700 and 51,000 deaths, 

respectively as shown in Figure 1. 2. 
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Figure 1. 2 - BC incidence and mortality rates in Portugal, Europe and USA from 2012, 2015 and 

expected rates for 2020. Data available at IARC. Legend: INC: incidence; MORT: mortality. 

This trend might be as consequence by the availability of better screening procedures resulting in 

an early detection and also in the development of new treatments [2,6,7], which lead to an improved 

survival. Several risk factors associated with BC have been already recognized, namely 

epidemiological factors (e.g., age, reproductive factors, socioeconomic status, ethnicity), often using 

standard analysis approaches (e.g., logistic regression) with adjustment for multiple comparisons. 

Other factors as lifestyle (e.g., alcohol, tobacco, obesity, physical activity), and exposure to radiation 

[8] are also associated. The risk of developing BC increases with age being rare in women younger 

than 25 years, but tending to be more aggressive in younger people. The most common BC that occurs 

is the invasive type independently of age [9]. The highest risk of family history is associated with 

increasing number of first-degree relatives diagnosed with BC (age under 50 years). The risk is further 

increased when the affected relative is diagnosed in both breasts [10]. Particularly, the mutations in 

genes BRCA1, BRCA2 and TP53 are strongly associated with the development of BC [9], even if 

these mutations are low, accounting for a small portion of the total BC incidence [3]. Consistent 

physical activity has many benefits and greater activity has been related to lower BC risk by 

decreasing the circulating estrogen levels in postmenopausal women [11,12]. Extensive literature has 

linked alcohol consumption to BC risk and reveal the role of ethanol in carcinogenesis altering 

estrogen levels through acetaldehyde. Briefly ethanol is converted to acetaldehyde (AA) through 

alcohol dehydrogenase (ADH), that then binds to DNA interfering with the DNA synthesis and repair 

[13]. Obesity is another BC risk factor to take into account as it is involved in insulin resistance and 
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hyperinsulinemia [14]. Insulin has anabolic effects on cellular metabolism and an overexpression of 

insulin receptor has been demonstrated in human cancer cells [9,15]. The involvement of insulin-like 

growth factor (IGFs) in carcinogenesis is attributed to their role in linking high energy intake, 

increased cell proliferation, and suppression of apoptosis to cancer risks [15,16]. With regard to 

obesity and BC risk, some studies indicate that is strongly associated with increased invasive BC risk 

in postmenopausal women particularly for estrogen receptor–positive cancers (ER+) [17–19]. In 

clinical practice, there are nowadays several biomarkers routinely used for prognosis and 

identification of tumors, including the estrogen receptor (ER), progesterone receptor (PR) and the 

human epidermal growth factor receptor-2 (HER2) [20,21]. Another promising prognostic and 

predictive biomarker of BC is Ki-67 (present in dividing cells) as indicator of cell proliferation and 

also as an endpoint for neoadjuvant systemic therapy [20]. However there are other proposed markers 

of proliferation measured by immunohistochemistry (IHC), such as, cyclin D, cyclin E, p27, p21, 

among others that are used to determine the predictive and prognostic levels [22]. 

In the last years, metabolomics emerged as a powerful approach in the advanced disease biomarker 

discovery which includes the comprehensive study of metabolites that are present in biological 

samples [23]. The study of metabolome to search biomarkers for any disease involves the 

identification of endogenous metabolites that have the potential to discriminate between samples 

obtained from healthy subjects and diseased patients. Plasma, serum, urine, tissue and cerebrospinal 

fluid (CSF), are the most commonly used biological samples in metabolomic studies. These biological 

samples contain hundreds of metabolites that vary in chemical and physical properties and 

concentration levels. Metabolomic studies includes two main approaches – targeted and untargeted. 

The targeted analysis is focused in specific groups of chemical characterized and annotated 

metabolites and their related pathways, whereas in the untargeted analysis the study includes a 

comprehensive measurement of all metabolites present in samples [24,25]. 

The type of approach chosen will determine the experimental design, sample preparation, and 

which analytical techniques can be used to obtain the results. Both targeted and untargeted follow the 

similar pipeline. Briefly, the study design includes the population that will be part in the study and 

also the determination of the conditions that are relevant for the hypothesis in investigation, namely 

the sample size, randomization (as a study design consideration), storage (as a sample handling issue), 

freeze/thaw cycles and timing during sample preparation are the most common factors that should be 

taken into account to guarantee reproducible and successful experiments minimizing variability. 

There are three main analytical platforms frequently used in metabolomic studies, which include mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy [26]. Moreover, after data 

acquisition, the obtained dataset, normally is subjected to statistical analysis (univariate and 
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multivariate methods) to find significant variations that allow the discrimination of patients with a 

specific disease (in this case, BC) from a control group [27]. The most common approaches for the 

identification of important metabolites comprise the application of unsupervised methods, such as, 

principal component analysis (PCA), hierarchical cluster analysis (HCA), as well as supervised 

methods, like partial least squares discriminant analysis (PLS-DA), random forest (RF) and support 

vector machines (SVM) [26,28]. A training set is used to construct the multivariate analysis models 

(e.g., PCA or PLS-DA), followed by an external validation set to predict the new cohort of samples 

using the model constructed with the training model. Finally, the putative biomarkers can be placed 

in metabolic networks to allow the biological interpretation or which pathways are up- or down-

regulated.  

 

OMICS science 

The OMICs is a neologism broadly adopted in biomedical research, that comprises the dataset of 

genomics (DNA), transcriptomics (RNA), proteomics (proteins) and metabolomics (metabolites) 

based on the central dogma of molecular biology [29]. The purpose of OMICs science in cancer 

research is to discover cancer-specific biomarkers (diagnostic, prognostic and/or putative). The Food 

and Drug Administration (FDA) defined biomarkers as a “characteristic that is objectively measured 

and evaluated as an indicator of normal biological processes, pathogenic processes, or biological 

responses to a therapeutic intervention” [30]. Biomarkers are powerful tools, when used for the early 

cancer detection and selection of therapeutic strategy, thus improving the outcome of cancer treatment 

and reduce cancer-related mortalities. 

One of the newest promising OMICs sciences is metabolomics being a suitable tool that provides 

state of the art of analytical instrumentation tandem with pattern recognition procedures and 

chemometric tools to discover new disease- biomarkers providing novel insights into disease etiology, 

and more robust assessment of etiological pathways [30,31]. Metabolomics studies the complex 

interaction in biological systems providing a comprehensive and detailed information of the 

phenotype and molecular physiology as result of environmental factors, genetic as well as exogenous 

and endogenous factors (e.g. age, gender, race, diet, drugs, exercise, gut microbiota) [31]. In addition, 

metabolomics can be used in early detection and diagnosis of cancer, in the assessment of therapies 

and medical interventions, since cancer is a disease that promotes changes in cellular metabolism 

[32–35] . This OMICs tool has been extensively applied in clinical health practice due to its ability 

to quickly analyze biological samples (e.g. blood, tissue, saliva and urine) with relatively simple 

sample preparation (10 – 30 min), cost-effective and high-throughput [30,36,37]. Nevertheless, 

metabolomics present several drawbacks resulting from biological and experimental features, such as 
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sampling variability, inter- and intra-individual differences and a lack of validated protocols for 

biological samples handling which have a significant impact on the OMICs data approach [38,39]. 

It will be further discussed the the metabolic profile of several biological samples, including 

lipidomics (lipids), labeled substrates (e.g., 13C labeled glucose), volatomic (volatile organic 

metabolites), and metabolites resulting from Krebs cycle [30,39] with the purpose of an early 

diagnosis, metabolic reprogramming, cancer typing, staging and therapeutic intervention response 

[29,37]. Regarding the Krebs/TCA cycle, there is evidence that the role of TCA for energy production 

and macromolecule synthesis by cancer cells, especially those with dysregulated oncogene and tumor 

suppressor expression [40–42]. Over the last years, there has been a rapidly growing number of 

metabolomic studies intended to discover new biomarkers or make disease diagnosis using different 

biological matrices , such as cell lines [43–46], blood [47], exhaled breath [48], plasma [33,49,50], 

saliva [51–54], tissues [55–57], serum [58] and urine [59]. In Table 1 are resumed the most 

common analytical approaches used in metabolomic studies grouped by type of biological sample 

and objective of the study. Interestingly, the main studies involve a diagnostic purpose using BC cell 

lines with the aim of search biomarkers, inspect the metabolome (endo- and exo-). Moreover, lipids 

as building blocks of cell membranes have their levels changed during the malignant transformation. 

Lipid metabolism plays a vital role in oxidative stress and is correlated with other parameters linked 

to BC risk (e.g. hormonal balance, body mass index, breast density, drug metabolism and growth of 

insulin levels) [43,60] (Table 1.1).
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Table 1. 1 - Summary of metabolomics studies performed in breast cancer biomarker discovery in different biological matrices. 

Biological sample Sample groups Aim 
Analytical 

approaches 
Main conclusions References 

Human cell lines      
     

Diagnostic 

biomarkers  

BC (ZR-75-1, T-74D, 

MCF7, MDA-MB-231, 

MDA-MB-453, MDA-

MB-468, SK-BR-3, 

BT-474, BT-549), 

Control (MCF10A)  

To compare the differences in the lipidomic 

compositions of human cell lines derived from 

normal and BC tissues, and tumor vs. normal tissues 

obtained after the surgery of BC patients. 

LC-MS/MS,  

GC-MS 

* 123 lipids were identified, and a differentiation was observed for MDA 

cells 
[29,43] 

Diagnostic 

biomarkers 

BC (MDA-MB-231, -

453, BT-474), Control 

(MCF-10A) 

To determine endo- and exo-metabolite analysis of 

the BC cell lines 

UPLC-MS/MS, 

LC-MS/MS 

* Statistical analysis allowed a discrimination of the breast epithelial cells 

from the BC cell lines  

* MDA-MB-231 showed an increase in nicotinamide levels, namely in 1-

ribosyl-nicotinamide and NADþ  

[46] 

Diagnostic 

biomarkers 

BC (T-47D, MDA-

MB-231, MCF-7), 

Control (HMEC) 

To establish the BC cell lines volatile metabolomic 

signature 
GC–MS 

* 60 VOMs were identified and six of them were detected only in the 

headspace of cancer cell lines  
[44] 

Diagnostic 

biomarkers 

BC (MDA-MB-468, 

SKBR3, MCF-7) 
To quantify specific metabolites in BC cell extracts NMR 

* Significantly differences were observed between cell lines, namely in the 

concentrations of 15 metabolites* The current method represented a useful 

tool for the establishment of potential biomarkers 

[61] 

Diagnostic 

biomarkers 

BC (Cal 51, SKBR3, 

MCF-7) 

To measure the absolute metabolite concentrations in 

complex mixtures with a high precision in a 

reasonable time 

NMR 

* The proposed approach represented a powerful tool to quantify 14 

metabolites (alanine, lactate, leucine, threonine, taurine, glutathione, 

glutamate, glutamine, choline, valine, isoleucine, myo-inositol, proline, and 

glucose) in cell extracts within 20 min  
 

[45] 
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Diagnostic 

biomarkers 

BC cell lines (MCF-7, 

HCC70, MDA-MB-

231, MDA-MB-436, 

MDA-MB-468), BC 

patients (n= 35) 

To investigate the metabolic profiles of human BC 

cell lines carrying BRCA1 pathogenic mutations 
LC-MS/MS 

* It was possible to collect differential metabolic signature for BC cells 

based on the BRCA1 functionality  
[50] 

Therapy response BC cell line (MCF-7) 
To develop a robust and highly sensitive platform to 

identify endogenous estrones in clinical specimens 

MALDI-MS, LC-

MS/MS 

* The results suggested that MALDI-MS-based quantitative approach can 

be a broad method for the ketone-containing metabolites target analysis thus 

replicating the clinical stage.  

[62] 

Therapy response 

BC tissue (n = 40), 

Blood (n = 27), BC cell 

lines (n = 3) 

To detect alterations in metabolites and their linkage 

to metabolic processes in several pathological 

conditions including BC 

NMR 

* Functional of IP3Rs in causing metabolic disruption was observed in 

MCF-7 and MDA MB-231 cells 

* The results offered new insights regarding the relationship of BC 

metabolites with IP3R.  

[63] 

Metabolic 

reprogramming 

MDA-MB-231, BC 

xenografts 

To study toxic effects of bisphenol and the underlying 

mechanisms on 

tumor metastasis-related tissues 

LC-MS/MS, 

MALDI-MS 

* Metabolites-based studies might be suitable for BC diagnosis 

* The data provided good indication for BPA screening secure option 
[64] 

Human Blood, 

plasma, serum 
     

Diagnostic 

biomarkers 

BC patients (n = 258), 

Benign mammary 

gland (n = 159), 

Control (n = 78) 

To screen metabolite markers with BC diagnosis 

potentials 
MS 

* The method developed allowed the discrimination of BC from non-BC 

using six blood metabolites 
 

[47] 
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Diagnostic 

biomarkers 

Metastatic BC patients 

(n = 95), Early-stage 

BC patients (n = 80) 

To explore whether serum metabolomic spectra could 

distinguish between early and metastatic BC patients 

and predict disease relapse 

NMR 
* Disease relapse was linked with lower and higher levels of histidine and 

glucose, respectively 
[58] 

Diagnostic 

biomarkers 

BC patients (n= 132), 

Control (n= 76) 

To develop a new computational method using 

personalized pathway dysregulation scores for 

disease diagnosis 

LC-TOF-MS, GC-

TOF-MS 

* The method allowed to determine important metabolic pathways 

signature for BC diagnosis, representing a suitable tool for diagnostic and 

therapeutic interventions.  

 

[65] 

Diagnostic 

biomarkers 

BC patients (n = 45), 

Control (n = 45) 

To detect differences between BC and healthy 

individuals 

UHPLC-MS, GC-

MS 

* 661 metabolites were detected, but only 338 metabolites were found in all 

samples, and 490 in more than 80% of samples. 

 

[66] 

Diagnostic 

biomarkers 

BC patients (n = 29), 

Control (n = 29) 

To establish a plasma metabolic fingerprint of 

Colombian Hispanic women with BC 

LC-MS, GC-MS, 

NMR 

* The current report showed the effectiveness of multiplatform strategies in 

metabolic/lipid fingerprinting works  
[49] 

Diagnostic 

biomarkers 

BC patients (n = 91), 

Control (n = 20) 

To explore whether serum metabolomic profile can 

discriminate the presence of human BC irrespective 

of the cancer subtype  

LC-MS/MS 

* From the 1269 metabolites identified in plasma from controls and 

patients; only 35 metabolites were related to BC.  

 

[33] 

Diagnostic 

biomarkers 

BC patients (n = 27), 

control (n = 30) 

To apply 1H NMR and DART-MS for the 

metabolomics analysis of serum samples from BC 

patients and healthy controls. 

NMR, DART-MS 

* The approach allowed the disease classification and  

the biochemical validation useful to identify the mechanisms associated to 

BC development. 

[67] 

Diagnostic 

biomarkers 

Metastatic BC patients 

(n = 39 + 51 for 

validation), Early-stage 

BC patients (n = 85 + 

112 for validation) 

To distinguish between early and metastatic BC NMR 
* Metabolic phenotyping by NMR showed a robust potential for the 

diagnosis, prognosis, and management of BC cancer patients 
[68] 

Diagnostic 

biomarkers 

BC patients (n = 40) BE 

patients (n = 40) and 

healthy controls (n = 

34). BE patients with 

To investigate the free fatty acid (FFA) metabolic 

profiles to identify biomarkers that can be used to 

distinguish patients with BC (BC) from benign (BE) 

patients or healthy controls. 

GC-MS 
The FFA biomarkers proved to be helpful for the prevention and 

characterization of BC patients. 
[69] 
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fibroma (n = 25) and 

chronic fibroadenosis 

of breast (n = 15) 

Therapy response BC patients (n = 19) 

To compare metabolite concentrations and Pearson’s 

correlation coefficients to examine concomitant 

changes in metabolite concentrations and 

psychoneurologic symptoms before and after 

chemotherapy. 

UPLC-MS/MS 

* The post-chemotherapy global metabolites were characterized by higher 

and lower amounts of acetyl-L-alanine and indoxyl sulfate and 5-oxo-L-

proline, respectively. 

* Metabolomics was useful for further understanding of biological 

mechanisms associated with psychoneurologic symptoms. 

[70] 

Therapy response BC patients (n = 28) 
To identify potential biomarker candidates that can 

predict response to neoadjuvant chemotherapy for BC 
LC-MS, NMR 

* The concentrations of threonine, isoleucine, glutamine, linolenic acid had 

significantly different responses to chemotherapy  

* The purposed approach clearly discriminates patients regarding the 

response to drugs providing a valuable tool for a non-invasive prognosis of 

the treatment strategy. 

[71] 

Endogenous factors 
BC patients (n = 206), 

Control (n = 396) 

To investigate whether plasma untargeted 

metabolomic profiles could contribute to predict the 

risk of developing BC 

NMR 
* The study contributed to the development of screening approaches for the 

identification of BC at-risk women. 
[31] 

Endogenous factors 
BC patients (n = 621), 

Control (n= 621) 

To evaluate associations 

 of diet-related metabolites with the risk of BC in the 

prostate, lung, colorectal and ovarian cancer 

screening trial 

GC-MS,  

LC-MS/MS 

* The data obtained showed how nutritional metabolomics might identify 

diet-related exposures associated to cancer risk. 
[72] 

Human urine      

Diagnostic 

biomarkers 

BC patients (n= 30), 

CC (n = 30), Control (n 

= 30) 

To discriminate different types of cancer based on 

urinary volatomic biosignature 
GC-MS 

* The butanoate metabolism was highly activated in studied cancers, as well 

as tyrosine metabolism, but in a reduced proportion 

* Different clusters allowed to establish sets of VOMs fingerprints resulted 

in the discrimination of the studied cancers 

[59] 

Therapy response 
BC patients (n = 31), 

Control (n = 29) 

To identify metabolites which can be helpful in the 

understanding of metabolic alterations driven by BC 

as well as their potential usage as biomarkers 

LC-MS, GC-MS 
* The analytical multiplatform approach enabled a wide coverage of urine 

metabolites revealing significant alterations in BC samples 
[73] 
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Human Saliva      

Diagnostic 

biomarkers 

BC patients (primary, n 

= 8; relapse, n = 22), 

Control (n = 14) 

To determine polyamines including N-acetylated 

forms in human saliva and the diagnostic approach to 

BC Patients 

UPLC−MS/MS 

* The increase on polyamines level in BC patients 

 Ac-SPM, DAc-SPD, and DAc-SPM levels were significantly higher only 

in the relapsed patients  

 

[52] 

Diagnostic 

biomarkers 

BC patients (n = 30), 

Control (n = 25) 

To screen the potential salivary biomarkers for BC 

diagnosis, staging, and biomarker discovery. 
UPLC-MS 

* Saliva metabonomics approach may provide new insights into the 

discovery of BC diagnostic biomarkers. 
[53] 

Diagnostic 

biomarkers 

BC patients (n = 111), 

Control (n = 61) 

To determine of polyamines including their 

acetylated structures for the diagnosis of BC patients. 
UPLC-MS/MS 

* The ratio of N8-Ac-SPD/ (N1-Ac-SPD + N8-Ac-SPD) can be used as a 

health status index after the surgical treatment. 
[54] 

Diagnostic 

biomarkers 

BC patients (n = 66), 

Control (n = 40) 

To explore the potential of the volatile composition of 

saliva samples as biosignatures for BC non-invasive 

diagnosis 

GC-MS 

* This study defined an experimental layout appropriate for the 

characterization of volatile fingerprints from saliva as potential 

biosignatures for BC non-invasive diagnosis.  

[51] 

Human Exhaled 

breath 
     

Diagnostic tool 
BC patients (n = 14), 

Control (n = 11) 

To detect and identify human exhaled BC–related 

volatile profile 
MS 

* Eight metabolites enabled a clear discrimination of exhaled breath of BC 

patients from controls.  

* The analytical technique provided a non-invasive strategy to detect VOMs 

for the BC diagnosis. 

[48] 
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Human Tissues      

Diagnostic 

biomarkers 
BC patients (n = 10) 

To establish a detailed lipidomic characterization 

with the goal to find the statistically differences 

between BC and normal tissues. 

HPLC-MS 

* Total concentrations for phosphatidylinositols, phosphatidylcholines, 

phosphatidylethanolamines and lysophosphatidylcholines were increased 

leading to a clear differentiation by PCA and OPLS-DA. 
 

[55] 

Diagnostic 

biomarkers 

Paired tumor and non-

tumor liver (n = 60), 

breast (n = 130) and 

pancreatic (n = 76) 

To assess the metabolomic profiling as a novel tool 

for multiclass cancer characterization 
GC-MS, LC-MS 

* The findings provided a framework to validate cancer-type specific 

metabolite levels in tumor tissues. 
[56]  

Diagnostic 

biomarkers 

BC patients (n = 37), 

Control (n = 35) 

To identify potential biomarkers that differs TNBC 

from ER+ BC 

GC-MS, LC-

MS/MS 

* 133 metabolites presented significant differences between ER+ and 

TNBC tumors  

* The metabolic pathway of tumors can provide new treatment targets. 

[57] 

Diagnostic 

biomarkers 

BC patients (n = 47), 

Control (n = 35) 

To identify how TNBC differs from LABC subtypes 

within the African-American and Caucasian BC 

patients 

HR-MAS-NMR 

* Increased pyrimidine synthesis was related to TNBC in Caucasian 

women* Novel treatment targets for TNBC could be explored through the 

metabolic changes  

[74] 

Diagnostic 

biomarkers 
BC patients (n = 228) 

To distinguish between tumor and non-involved 

adjacent tissue 
HR-MAS-NMR 

* Metabolic profiling of tumor tissues by NMR can be a suitable method 

for the analysis of the resection margins during BC surgery 
[75] 

Diagnostic 

biomarkers 

BC patients (n = 25), 

Control (n = 5) 

To establish metabolic profiles of ER+ vs. ER– and 

of ER– subtypes linked to genetics 
GC-MS, LC-MS 

* Changes in the metabolic profile of ER- vs. ER + breast tumors were 

observed 

* The data represents a potential tool for the hypothesis testing of tumor 

metabolism 

[76] 

Diagnostic 

biomarkers 

BC patients (n = 270), 

Control (n = 97) 

To quantify the dysregulation of the glutamate-

glutamine equilibrium in BC 
GC-TOFMS 

* A positive correlation between glutamate and glutamine in normal breast 

tissues was observed, whereas a negative correlation was obtained for 

normal tissues 
 

[77] 
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Diagnostic 

biomarkers 

95 OC (84 peritoneal, 

11 pleural), 10 BC (7 

pleural, 2 peritoneal, 1 

pericardial), and 10 

malignant 

mesotheliomas (6 

peritoneal, 4 pleural) 

To identify the metabolic differences between 

ovarian serous carcinoma effusions obtained pre- and 

post-chemotherapy and compare ovarian carcinoma 

(OC) effusions with breast carcinoma and malignant 

mesothelioma specimens. 

1H-NMR 

* Differences in metabolic profiles of different malignant effusions were 

detected  

* Metabolic characterization by NMR can be a technique to additional 

knowledge the mechanisms of effusion development  

[78] 

Therapy response BC patients (n = 122) 
To explore the effect of neoadjuvant therapy on 

metabolic profiles of BC tissues 
HR-MAS-NMR 

* Non-metastatic breast tumor tissue reflected different alterations in all 

patient groups after treatment. 

* Metabolic profiles discriminated pNRs from pMRD patients thus 

complementing other molecular assays allowing the knowledge of the 

underlying mechanisms affecting the response. 

[79] 

Therapy response BC patients (n = 18) 

To study metabolite levels in human BC tissue, 

assessing, for 

instance, correlations with prognostic factors, 

survival outcome or therapeutic response 

HR-MAS-NMR 

* Significant changes between the tumors were identified, indicating that 

the intertumoral changes for numerous metabolites were greater than the 

intratumoral changes for these three tumors. 

 

[80] 

Therapy response BC patients (n = 37) 

To determine whether metabolic profiling of core 

needle biopsy (CNB) samples using HR-MAS-NMR 

could be used for predicting pathologic response to 

neoadjuvant chemotherapy (NAC) in patients with 

locally advanced BC 

HR-MAS-NMR 
* The purposed method can be applied to predict the pathologic response 

before neoadjuvant chemotherapy  
[81] 

Therapy response BC patients (n = 271) To establish metabolic signatures for ER+ vs. ER– BC GC-TOFMS 

Some metabolites levels were increased in ER- subtype, such as, beta-

alanine, glutamate and xanthine 

The down-regulation of the ABAT protein in ER− BC was confirmed by 

immunohistological analysis. 

[82] 
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Mouse BC tissue      

Metabolic 

reprogramming 

MMTVPyMT, 

MMTV-PyMT-DB, 

MMTV-Wnt1, 

MMTV-Her2/neu, and 

C3(1)-SV40 T-antigen 

(C3-TAg) 

To identify global metabolic profiles of breast tumors 

isolated from multiple transgenic mouse models and 

to identify unique metabolic signatures driven by 

these oncogenes 

GC-MS, LC-

MS/MS, CE-MS 

* C3-TAg was the only cohort with a tumor metabolic signature composed 

of ten metabolites with significance prognostic value in BC patients 
[83] 

ANOVA – Analysis of variance; AUC – Area under the curve; BC – BC; BFS– Bootstrap feature selection; CE-MS – Capillary electrophorese-mass spectrometer; DART-MS – Direct analysis in real time mass 

spectrometry; GC-MS – gas chromatography – mass spectrometry; GC-TOF-MS – Gas chromatography time-of-flight mass spectrometry; GGM –  Gaussian graphical modelling; HCA – Hierarchical cluster 

analysis; HR-MAS-NMR - High resolution magic angle spinning nuclear magnetic resonance spectroscopy; LC-MS/MS – Liquid chromatography tandem with mass spectrometer; LC-TOF-MS – Liquid 

chromatography time-of-flight mass spectrometry; LDA – Linear discriminant analysis; MALDI-MS – Matrix-assisted laser desorption/ionization mass spectrometry; MCCV – Monte Carlo cross validation; MS – 

Mass spectrometry; MWT – Mann Whitney U test; NMR – Nuclear resonance magnetic; NRI – Net reclassification improvement; OPLS-DA – Orthogonal projections to latent structures discriminant analysis; 

OSC-PLS – Orthogonal signal correction partial least squares; PC – Pearson correlation; PCA – Principal component analysis; PEA – Pathway enrichment analysis; PLS-DA – Partial least squares discriminant 

analysis; RF – Random Florest classifier; ROC – Receiver operating characteristic; SCC – Spearman correlation coefficient; SVM – Support vector machine ; TNBC – Triple negative BC; UPLC-MS/MS – Ultra 

performance liquid chromatography tandem mass spectrometer; VIP – variable importance in projection. 
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In literature, the reports performed involving human cell lines focus mainly in diagnostic purpose. 

As for example in the volatile composition (VOMs) as described by Silva et al. [44] where the 

volatomic signature of BC cell lines was established, and based on the results, 2-pentanone, 2-

heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were 

detected only in cultured BC cell lines. These VOMs are formed endogenously or obtained from 

exogenous sources (e.g., environmental, lifestyle, biological agents) [51], and can be recognised as a 

useful tool to BC non-invasive diagnosis [44,51]. Other study by Willmann et al. [46] observed the 

changes of the exo- and endometabolite profiles in BC cell lines by LC-MS/MS and observed a clear 

discrimination of the breast epithelial from the BC cell lines through statistical tools. Moreover, a 

decrease on ratio of glutathione (GSH) and glutathione disulfide (GSSG) was observed in BC cell 

lines as a result of oxidative stress. The lipidomic profile of several BC cell lines was compared with 

normal cells obtained from non-cancerous tissues by LC-MS/MS and GC-MS that changes observed 

in breast tumor tissues were caused mainly by difference in lipidomic profiles of tumor cells and these 

alterations can be correlated with the lipidomic composition of the nine breast cancer cell lines. 

Furthermore, Martineau et al. [61], determined the absolute concentration of several metabolites (e.g., 

alanine, lactate, threonine, taurine, glutathione, glutamate, glutamine, choline, valine, isoleucine, myo 

inositol, serine, proline, aspartate and histidine), revealing the usefulness for the establishment of 

potential biomarkers. Also, BC cell lines with BRCA1 pathogenic mutations were investigated by 

LC-MS/MS in order to obtain their metabolic signature as possible diagnostic approach. 

Regarding plasma, serum or blood, many studies have been conducted as observed in Table 1, 

with multiple aims as Cala et al. [49] that developed a pilot control case-study, where a metabolomic 

and lipidomic approach was performed in order to establish a plasma metabolic fingerprint of 

Colombian Hispanic women with BC. According to these authors, the plasma metabolites could 

contribute to an enhanced knowledge of the underlying metabolic shifts driven by BC in women of 

Colombian Hispanic origin. Moreover, despite racial differences, the mapped metabolic signatures in 

BC were comparable but not identical to those described for non-Hispanic women. Wang et al. [47] 

used a dried blood spot approach for rapid BC detection. In the first study, the target analytes were 

23 amino acids and 26 acylcarnitines, and based on the results piperamide, asparagine, proline, 

tetradecenoylcarnitine/palmitoylcarnitine, phenylalanine/tyrosine, and glycine/alanine could be used 

as potential biomarkers to diagnose BC. Lyon et al. [70] established a serum metabolome analysis 

from the tryptophan pathway of 19 women with early-stage BC. The targeted analysis indicated 

higher kynurenine levels and kynurenine/tryptophan ratios post-chemotherapy. Also, the symptoms 

of pain and fatigue had association with several targeted metabolites. An improved metabolic profile 

of human serum samples was obtained using complementary thecniques, namely MS and NMR and 
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this approach may be useful to achieve more accurate disease detection and gain more insights 

regarding disease mechanisms and biology [67]. 

Another study conducted by Lécuyer et al. [31] combined metabolomic and epidemiological 

approaches by NMR to investigate whether plasma untargeted metabolomic profiles could contribute 

to the identification of BC at-risk women, whereas Playdon et al. [72] focused on the evaluation of 

the associations of diet-related metabolites with the risk of breast cancer. It was possible to verify that 

the prediagnostic serum concentrations of metabolites related to alcohol, vitamin E, and animal fats 

were associated with ER+ breast cancer risk. 

Urine became a very interesting biological sample to investigate as diagnostic tool or as result 

of a treatment, as it is easy to collect, and also as ending point of all reactions that occur in the 

body. Furthermore, Porto-Figueira [59] established the urinary volatomic biosignature from breast 

(BC), and colon (CC) cancer patients as well as healthy individuals. This last work observed that 

several pathways are over activated in cancer patients, being phenylalanine pathway in BC and 

limonene and pinene degradation pathway in CC the most relevant. Yu et al. [84] explored the 

relationship between urinary metabolites and clinical chemotherapy response in BC. As results, 

chemotherapy-sensitive patients exhibited 30 % of change in metabolite levels when compared to 

healthy individuals, while chemotherapy-insensitive patients showed only 9 % of change in 

metabolite levels when compared to healthy people that presented recurrence. 

Another explored biological fluid is saliva as described by Zhong et al. [53] that screened the 

putative salivary biomarkers for BC diagnosis, staging, and biomarker discovery. As a result, 18 

biomarkers were identified, but only three up-regulated metabolites, displayed the area under the 

curve (AUC) values higher than 0.920, indicating the high accuracy to predict BC. Also, Cavaco et 

al. [51] screened salivary volatiles for a putative BC discrimination, and from metabolites 

identified, only 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, phenol, p-tert-butyl-phenol, 

acetic, propanoic, benzoic acids, 1,2-decanediol, 2-decanone, and decanal were statistically 

relevant for the discrimination of BC patients in the populations analyzed. Another type of 

molecules, the polyamines were associated with tumor growth due to their biosynthesis and 

accumulation [54]. In this context, Tsutsui et al. [52] and Takayama et al. [54] determined polyamines 

including N-acetylated forms in saliva to diagnose BC. According to Tsutsui et al. [52], the level of 

polyamines increased in BC patients, and the levels of N1-acetyl-spermine, N1N8-diacetyl-spermidine 

and N,N-diacetyl-spermine were significantly higher only in the relapsed patients. Takayama et al. 

[54] demonstrated that eight polyamines are strongly correlated with the BC patients. Furthermore, 

the ratio of N8-acetyl-spermidine/ (N1-acetylspermidine + N8-acetyl-spermidine) may be adopted as 

an index of the health status after the surgical treatment. 
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In-vitro analysis of BC tissues can be a valuable tool to inspect the metabolic differences between 

tissue classes, either using the hydrophilic or the lipophilic part. As a result, one might use the 

metabolomic profile as a novel tool for cancer characterization. Breast tissue is also an interesting 

biological sample used for diagnostic purposes and /or response to a treatment as demonstrated by 

Euceda et al. [79] that explored the effect of the antiangiogenic drug bevacizumab on metabolic 

profile from BC tissue. On the other hand, Budczies et al. [77] studied the glutamate enrichment as a 

new diagnostic opportunity in BC, and a positive correlation between glutamate and glutamine in 

normal breast tissues switched to negative correlation between glutamate and glutamine in BC tissues. 

Euceda et al. [79] observed a metabolic alteration indicating a decline in glucose consumption as an 

effect of chemotherapy. In addition, a lower glucose and higher lactate level was observed in patients 

(≥ 90% of tumor reduction) when compared to those with no response (≤ 10% of tumor reduction). 

In turn, Choi et al. [81] determined the metabolic profiling of core needle biopsy samples in order to 

predict pathologic response to neoadjuvant chemotherapy in patients with locally advanced BC. 

These authors observed that there was a trend of lower levels of phosphocholine/creatine ratio and 

choline-containing metabolite concentrations in the pathologic complete response group when 

compared to the non-pathologic complete response group. Most of the BC patients undergo a cycle 

or more of chemo being the general treatment that uses cancer-killing drugs before (neoadjuvant or 

preoperative therapy) and after (adjuvant therapy) surgery [31,36], Then, the therapeutic chemo effect 

may shift significantly between patients, as a result of BC phenotypes [37] of and intra- and inter- 

individual differences. For this reason, it is necessary to punctually and accurately evaluate the 

therapeutic effects of chemotherapy, which could help to adjust the chemotherapy regimen [71,84]. 

whereas the advances in treatment increased significantly the survival rates for women with BC, as 

women often report psychoneurologic symptoms (e.g. pain, fatigue, depression) during and after 

chemotherapy cycles. 

Regarding exhaled breath a less explored biological sample in terms of BC diagnostic purpose. In 

a study performed by Martinez-Lozano Sinues et al. [48] who developed a pilot study to identify 

cancer–related volatile profile in exhaled breath of BC patients. Concerning exhaled breath and the 

possible mechanisms involved in the production of endogenous VOMs, in Figure 1. 3 is represented 

a schematic illustration about the possible pathways. 
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Figure 1. 3 - Scheme to illustrate the possible origin of some VOMs. 

The principle behind this is based on the fact that cancer growth is promoted by the progressive 

accumulation of genetic and epigenetic changes leading to cellular oxidative stress, which in turn 

increases the liver's production of cytochrome P-450 (CYP450) oxidase enzymes to take into account 

with stress. Both processes affect the abundance of VOMs in breath once oxidative stress causes lipid 

peroxidation of polyunsaturated fatty acids (PUFA) in membranes, producing alkanes and 

methylalkanes which are catabolized by CYP450 [85]. 

 

Analytical approaches 

Metabolomics encompasses targeted and non-targeted analysis of endogenous and exogenous 

metabolites (<1500 Da), such as lipids, amino acids, hormonal steroids, peptides, nucleic acids, 

organic acids, vitamins, thiols and carbohydrates, which represent a promising tool for biomarker 

discovery [86,87]. The complexity of the metabolome, the metabolites properties and their 

concentration levels in biological samples complicates the separation and detection on a single 

analytical platform. For this fact, the integration of high resolution analytical frameworks, mass 

spectrometry (MS) and nuclear magnetic resonance (NMR), appear as an outcome in metabolomics 

studies, providing sensitive, reliable detection and quantification of thousands of metabolites in a 
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biological sample and related metabolic pathways within a few minutes [27,86,87] as shown in Figure 

1.4. 

 

Figure 1. 4 - General flowchart in targeted/untargatet metabolomic approaches. 

MS - based metabolomics 

MS is an analytical tool extensively used in metabolomics applications, ranging from 

understanding the structural characterization of important metabolites to biomarker discovery [86]. 

Metabolic fingerprinting is general obtained by MS direct-injection, but this approach presents 

several drawbacks namely co-suppression and low ionization efficiencies. Thus, generally MS based 

metabolomics includes a separation step, based on gas chromatography (GC–MS) 

[43,44,51,59,65,66,77,82], liquid chromatography (LC–MS) [33,43,46,50,52–55,70] or capillary 

electrophoresis (CE-MS) [83,84], to solve co-suppression and to decrease the complexity of the 

biological sample. The integration of MS with a chromatographic technique (GC, LC) and capillary 

electrophoresis showed high sensitivity, speed, selectivity and improves the accuracy of compound 

identification, detection and quantification. In addition, GC-, LC- and CE-MS are destructive 

methods, requires sample preparation and are expensive, being these facts the main drawbacks of 

these hyphenated frameworks [86,88,89]. 
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Gas Chromatography-Mass Spectrometry (GC-MS) - based metabolomics 

In the last decades, MS and chromatography have been broadly developed, and GC-MS becomes 

a core and reliable separation, detection and identification analytical framework on metabolomics 

analysis [43,44,51,59,65,66,77,82]. After sample collection and metabolites extraction, a small 

volume of sample is common injected in splitess mode, once the metabolites are in trace levels, to 

improve the sensitivity and carrier gas propels the sample through the high resolution capillary 

columns (30 or 60 m columns with 5–50% phenyl stationary phases). The separation in GC occurs in 

an oven at high temperatures, and the metabolites need be thermally stable and volatile (e.g., 

aldehydes, ketones, alkanes, organic acids) or non-volatile metabolites requiring derivatization (e.g., 

amino acids, sugars, phosphorylated metabolites, amines, lipids) [86,88,89]. The samples are ionized 

by electron-impact (EI) or chemical ionization (CI) for MS detection, being EI the most used since it 

provides molecular ion fragmentation to obtain a mass spectrum revealing of the metabolite’s 

structure [88]. The MS employed influences the sensitivity of detection, being the quadrupole (q), 

time-of-flight (TOF) and ion trap the most usually applied in metabolomics. GC-qMS was used to 

screen salivary volatiles for putative BC as an exploratory study involving geographically distant 

populations [51], also to establish the metabolomic signature of human BC cell lines [44] and to 

discriminate different types of cancer based on urinary volatomic biosignature [59], among other 

examples reported in Table 1. In the first study, up to 120 volatiles from distinct chemical classes, 

with significant variations among the groups, were identified [51], whereas Silva et al. [44] and Porto-

Figueira et al. [59] identified 60 and 130 volatiles in BC cell lines and urine, respectively. On the 

other hand, Budczies et al. [77,82] used GC × GC-TOFMS framework to evaluate the glutamate 

enrichment as new diagnostic opportunity in BC and to accomplish a comparative metabolomics of 

estrogen receptor positive (ER+) and estrogen receptor negative (ER-) in BC. Budczies et al. [82] 

identified 19 metabolites and the GC–TOFMS based analysis of metabolites present in BC tissues 

revealed significantly differences in central metabolism in the more aggressive ER− compared to the 

ER+ type. The detected changes included the metabolism of glutamine with a decrease in 

concentration of glutamine and an increase in concentration of glutamate and 2-hydroxyglutaric [82]. 

In turn, Dougan et al. [66] used GC-MS to evaluate the detectability, reliability, and distribution of 

metabolites measured in pre-diagnostic plasma samples in a pilot study of women listed in the 

Northern California site of the BC Family Registry. In this study. 661 metabolites were detected, 338 

(51 %) of them were found in all samples, and 490 (74 %) in more than 80 % of samples. 

The main advantages of GC-MS-based metabolomics are sensitivity, specificity, high-throughput 

technology to handle a large volume of samples and reproducible. Nevertheless, this hyphenated 

technique has limited in mass range (m/z 30 – 550), the molecular ion is often not detected owing to 
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fragmentation, which makes more difficult the identification of unknown metabolites and the 

metabolites need be volatile and thermally stable [89,90]. 

 

Liquid Chromatography-Mass Sectrometry (LC-MS) - based metabolomics 

Currently, liquid chromatography (LC) in particular high performance liquid chromatography-

mass spectrometry (HPLC-MS, LC-MS) represents an easy-going tool on separation and 

characterization of a metabolites pool, namely salts, acids, bases, hydrophilic and hydrophobic 

metabolites. The versatility of LC-MS is due to the several separation procedures and wide-ranging 

mass analyzers [90]. Contrarily to GC-MS, HPLC-MS is not limited to volatile and thermo stable 

metabolites and it is a promising tool for global metabolomics and the establishment of disease 

biomarkers. 

Basically, the metabolites are eluted through a column based on their selective partition between 

a stationary phase (column material) and a mobile liquid phase. The metabolites according to the type 

of stationary phase can be eluted based on their charge, size, hydrophobicity and molecular weight 

[91]. Nowadays, the evolution of the HPLC is focused in miniaturization, smaller columns and low 

solvent volumes to attain a faster separation of metabolites. Ultra-high performance chromatography 

(UHPLC) appears as solution, since compared to HPLC promotes the resolution within a low analysis 

time and requires low volumes of solvent [92,93]. UHPLC columns are packed with 2 µm particles 

and the system operates at higher pressures (1000 bar) and tandem with MS, results in higher peak 

capacity, resolution, specificity and high-throughput abilities (reduced run time per sample) 

compared with HPLC [86,90,92–94]. 

Furthermore, Willmann et al. [46] analyzed the endo- and exometabolite of the BC cell lines MDA-

MB-231, -453 and BT-474 as well as the breast epithelial cell line MCF-10A through two different 

analytical platforms: UHPLC-ESI-QTOF and HPLC-ESI-QqQ, which resulted in the identification 

of 92 annotated exometabolites and 58 endometabolites. In turn, Jové [33] used LC-ESI-

qTOFMS/MS to establish the metabolomic profile of BC, whereas HPCL-ESI-MS was used to 

determine the determine the lipidomic differences between human BC and the surrounding normal 

tissues [55]. UHPLC tandem with MS was applied to explore novel blood plasma biomarkers 

associated to the BRCA1-mutated phenotype of BC [50], to determine polyamines including 

N‑acetylated forms in saliva [52,54], and to screen the potential salivary biomarkers for BC diagnosis, 

staging, and biomarker discovery [53]. 
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NMR – based metabolomics 

NMR spectroscopy has been announced as a promising tool of metabolomics, providing a 

comprehensive view of metabolite fingerprinting, profiling and metabolic flux analysis under specific 

conditions, despite its inherent lower sensitivity compared to MS, limiting its skill with trace level 

metabolites. The main advantages of NMR are automation, requires low or no sample preparation, 

high reproducibility, non-destructive, non-selectivity in metabolite detection and the ability to 

simultaneously quantify multiple classes of metabolites [29,87]. 

The principle of NMR spectroscopy is based on the fact that the nucleic of many isotopes (e.g., 

1H, 13C, 14N, 15N, 17O), when placed in a magnetic field, absorb radiation at a specific frequency [90]. 

The result is a NMR spectrum which corresponds to a unique metabolite pattern and provides 

structural information that can simplify the identification of unknown metabolites [86,89]. A fast 

identification of metabolite results from a combination of chemical shifts, spin–spin coupling, and 

relaxation or diffusion information [86,89]. Jobard et al. [68] reported a 1H NMR-based metabolic 

phenotyping study aiming the identification of metabolic serum changes associated with advanced 

metastatic BC (MBC) in comparison to the localized early disease (EBC). Histidine, acetoacetate, 

glycerol, pyruvate, glycoproteins (N-acetyl), mannose, glutamate and phenylalanine were the 

metabolites that allowed the discrimination between MBC and EBC groups. NMR was also used by 

Tenori et al. [58] to explore whether serum metabolomic spectra could distinguish between early and 

metastatic BC patients and predict disease relapse, whereas Singh et al. [63] used NMR to detect 

alterations in metabolites and their linkage to metabolic processes in a number of pathological 

conditions including BC. In the last study, the authors observed an increase in lipoprotein, lactate, 

lysine and alanine level and a decrease in the levels of pyruvate and glucose in serum of inositol 1, 4, 

5-trisphosphate (IP3R) receptor group patients when compared to control. In addition, NMR offers 

the possibility to study tissue through high-resolution magic angle spinning (HR-MAS) to reduce line 

widths in NMR spectra of tissue samples [74,75,79–81]. Tayyari et al. [74] performed the 

metabolomic analysis of triple-negative and luminal A BC subtypes in African-American using HR-

MAS-NMR. A total of 27 metabolites were assigned and the metabolic profiles of these subtypes 

were also distinct from those revealed in Caucasian women. In turn, the feasibility of HR-MAS-NMR 

of small tissue biopsies to distinguish between tumor and non-involved adjacent tissue was 

investigated by Bathen et al. [75]. The results showed that the samples with a low tumor content have 

higher levels of glucose, while samples with a high tumor content have higher levels of ascorbate, 

lactate, creatine, glycine, taurine and the choline-containing metabolites (glycerophosphocholine 

(GPC), phosphocholine (PCho), and free choline). Euceda et al. [79] evaluate the metabolomic 

changes during neoadjuvant chemotherapy combined with bevacizumab in BC using HR-MAS-
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NMR. According to these authors, despite metabolic profiles not being able to predict the pathological 

complete response (pCR) prior to treatment, a significant metabolic difference in pCR+ patients 

compared to pCR- was detected after neoadjuvant chemotherapy. 

 

Comprehensive analytical frameworks on metabolomics approach 

Comprehensive analytical frameworks are gained popularity on metabolomics fields [86], being 

hundreds of metabolites detected simultaneously through analytical frameworks such as GC×GC-

TOFMS, HPLC-CE-MS, LC×LC-MS, LC-MS-NMR, MALDI-FT-ICR-MS, LC-FT-ICR-MS, 

among others. 

On the last decade, two dimension (2D) liquid-liquid chromatography (LC×LC) as well as gas-gas 

chromatography (GC×GC) have been gained increasing attention since overcome overlapping of 

metabolites by diverting each peak from a GC or LC column to a second GC or LC column, improve 

sensitivity and complementary selectivity being a promising tool in metabolomics field [95]. 

Nevertheless, other comprehensive analytical framework has been purposed in metabolomic field, in 

this context LC-MS-NMR platform is used in the identification of unknown metabolites in biological 

samples at trace levels, providing sample efficiency higher than the conventional flow injection 

methods [86]. In this sense, Reichenbach and co-workers [96] developed a suitable approach based 

on GC×GC-HRMS to analyze a cohort of 18 samples from BC tumors. This approach avoided the 

intractable problem of comprehensive peak matching, through a few reliable peaks for alignment and 

peak-based retention-plane windows to define comprehensive features that can be consistently 

matched for cross-sample analysis. In addition, a clear discrimination was achieved between sample 

of different grades and establish potential BC biomarkers. On the other hand, Yu et al. [97] optimized 

GC×GC-MS for robust BC cells, tissue, serum and urine metabolite profiling. GC×GC-MS analysis 

revealed detection around 600 molecular features from which 165 were characterized representing 

different chemical groups, such as amino acids, fatty acids, lipids, carbohydrates, nucleosides and 

small polar components of glycolysis and the Krebs cycle using EI spectrum matching. NanoLC-FT-

ICR MS was used to analyze protein digests of ~3000 laser capture microdissection (LCM)-derived 

tumor cells from breast carcinoma tissue, corresponding to ~300 ng of total protein [98]. 

 

Data analysis 

Data analysis is crucial in the metabolomics, being indispensable in every step of research, namely 

in sampling and experiment designs, data pre-processing and metabolite identification, as well in 

variables selection, classification modeling and validation procedures. The great challenge of data 

analysis in metabolomics is high dimensionality and complexity of datasets under analysis. Several 
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chemometric tools and statistical software’s are used in order to attribute value for high-dimensional 

metabolomic information obtained previously by the analytical tools [99,100]. Normally, a complete 

data analysis procedure in metabolomics is based on the following steps: dataset pre-treatment 

(centering, scaling, normalization), pre-processing (exploratory projection, variables selection), 

processing (predictive models), validation (model verification) and post-processing (pathway 

analysis) [101]. However, data analysis is adaptable and dependent on the objective of the study, and 

may be simple exploratory research or complex discovery of biomarkers and metabolic pathways, for 

this reason not all steps are always present or are not followed in this order. The data analysis 

procedures of recent metabolomics studies in BC are described in Table 2. 

 

Dataset pre-treatment 

Dataset pre-treatment is the initial step in data analysis, being extensively used in metabolomics 

to resolve the heteroscedasticity of high-dimensional datasets. Commonly, pre-treatment in BC 

metabolomics is done through normalization of dataset based on the centering, scaling, 

transformation and/or experimental corrections of variables values [102–104]. Centering is 

performed when the data analysis is focused on the differences between variables, where all 

measurements (e.g., concentrations, areas) are converted to values around zero based on variation 

measures. Mean [46,67,68,79] is the measure normally used in centering. Scaling is used to adjust 

the variables measurements based on a scaling factor, converting the measurements of all variables 

into values relative to the scaling factor. The scaling factor selected can be a dispersive measure (e.g., 

standard deviation) or size measure (e.g., mean). The main scaling approaches based on dispersive 

measures are autoscaling (standard deviation) [46,51,59] and pareto scaling (square root of the 

standard deviation) [43,53,55]. On the other hand, the most of size measure approaches uses scaling 

factors based on the mean [80], median [51,57,59,66,75,78,83] or total intensity value 

[53,58,67,68,71,73,74,81]. Transformations are mathematical approaches used to decrease the 

heteroscedasticity of dataset, which the variability between variables is dramatically reduce. Log 

[43,57,66,69,70,72,76,79] is the main transformation in BC metabolomics. However, cubic root 

[51,59] and quantile [48] transformations are also used.   
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Table 1. 2 - Chemometric methods applied to metabolomic studies. 

Biological sample Data Pre-treatment Pre-processing Processing Validation Post-processing References 

Diagnostic tool             

Human BC cell lines 

Scaling (Pareto scaled), 

Transformation (log 

transformed) 

PCA, HCA OPLS-DA LOOCV, ROC none [43] 

Centering (mean centered), 

Scaling (autoscaled) 

ANOVA, PCA, HCA, Pearson 

correlation 
PLS-DA LOOCV none [46] 

Experimental correction (sample 

weight corrected) 
PCA none none none [61] 

none none none none none [45] 

none ANOVA, PCA PLS, LDA K-CV none [44] 

Human blood 

none T-test PLS-DA, LRA ROC, Permutation test none [47] 

Scaling (total intensity value 

scaled) 

Wilcoxon 

test 
RF ROC, Bootstrapping none [58] 

Human Exhaled breath 
Transformation (quantile 

transformed)  
T-test RF, SVM 

LOOCV, ROC, 

Bootstrapping 
none [48] 

Human plasma 

none 
Correlation feature selection 

(CFS) 
LRA, SVM, RF K-CV, ROC 

Pathway-based metabolite 

sets analysis (pathifier) 
[65] 

Scaling (median value scaled), 

Transformation (log 

transformed)  

ANOVA, PCA none none none [66] 

none T-test, PCA, HCA PLS-DA, RF K-CV, ROC 
Pathway enrichment 

analysis (metaboanalyst) 
[33] 
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Biological sample Data Pre-treatment Pre-processing Processing Validation Post-processing References 

Human BC cell lines, 

plasma 
none KS-test, T-test, PCA none none none [50] 

Human saliva 

none none none none none [52] 

Scaling (Pareto and total 

intensity value scaled) 
T-test, PCA PLS-DA ROC, Permutation test none [53] 

none none LDA K-CV, ROC none [54] 

Scaling (autoscaled and median 

value scaled), Transformation 

(cubic root transformed) 

MW-test, HCA PLS-DA, OPLS-DA 
MCCV, Permutation 

test 
none [51] 

Experimental correction 

(internal standard corrected) 
MW-test, PCA PLS-DA, SVM, LRA K-CV, ROC none [105] 

Human tissues 

Scaling (Pareto scaled) PCA OPLS K-CV none [55] 

none PCA, HCA none none none [56] 

Scaling (median scaled), 

Transformation (log 

transformed) 

T-test none none none [57] 

Scaling (total intensity value 

scaled) 
T-test PLS-DA LOOCV, ROC 

Pathway enrichment 

analysis (metaboanalyst) 
[74] 

Scaling (median scaled) PCA PLS-DA LOOCV none [75] 

Scaling (median scaled) T-test, PCA PLS-DA LOOCV none [78] 

Transformation (log 

transformed) 

T-test, Pearson correlation, 

HCA 
none none none [76] 

none T-test, Pearson correlation PLS-DA K-CV, ROC none [77] 
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Biological sample Data Pre-treatment Pre-processing Processing Validation Post-processing References 

Human serum 

Centering (mean centered), 

Scaling (total intensity value 

scaled) 

PCA PLS-DA, OPLS-DA K-CV, ROC none [67] 

Centering (mean centered), 

Scaling (total intensity value 

scaled) 

T-test, PCA,  ANOVA OPLS 
K-CV, ROC, 

Bootstrapping 
none [68] 

Transformation (log 

transformed), Experimental 

correction (internal standard 

corrected) 

ANOVA, PCA PLS-DA, LRA K-CV, ROC none [69] 

Human urine 

Scaling (autoscaled and median 

value scaled), Transformation 

(cubic root transformed) 

T-test, HCA PLS-DA, SVM, RF MCCV, ROC 
Pathway enrichment 

analysis (metaboanalyst) 
[59] 

Drug therapy 
      

            

BC cell line none T-test none none none [62] 

Human blood 
Transformation (log 

transformed) 
T-test, Pearson correlation none none none [70] 

BC tissues 

Centering (mean centered), 

Transformation (log transformed 

- only in univariate analysis)  

T-test, Pearson correlation, 

PCA 
PLS-DA K-CV, Permutation test none [79] 

Scaling (mean scaled - only in 

PCA) 

ANOVA, Spearman 

correlation, PCA  
RF 

K-CV, Bootstrapping, 

Permutation test 
none [80] 

Scaling (total intensity value 

scaled) 
MW-test OPLS-DA LOOCV none [81] 

none Spearman correlation none none none [82] 

Serum 
Scaling (total intensity value 

scaled) 
T-test PLS, PLS-DA LOOCV, ROC none [71] 
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Biological sample Data Pre-treatment Pre-processing Processing Validation Post-processing References 

Serum, tissues, cell lines none T-test, ANOVA, PCA PLS-DA K-CV, ROC 
Pathway enrichment 

analysis (metaboanalyst) 
[63] 

Urine 

Scaling (total intensity value 

scaled) 

KS-test, L-test, SW-test, T-test, 

PCA 
OPLS-DA K-CV, ROC 

Pathway enrichment 

analysis (metaboanalyst) 
[73] 

none T-test, PCA PLS-DA K-CV none [84] 

Metabolic reprogramming 
     

          
Human BC cell lines, BC 

xenografts 
none ANOVA, PCA PLS-DA K-CV none [64] 

Mouse BC tissue Scaling (median scaled) ANOVA, PCA none none none [83] 

Endogenous factors     
 

      
            

Human plasma none 
T-test, Spearman correlation, 

PCA 
LRA ROC none [31] 

Human serum 
Transformation (log 

transformed) 
Pearson correlation, PCA LRA none none [72] 

ANOVA – Analysis of variance; ROC – Receiver operating characteristic; LOOCV – leave-one-out-cross validation; AUC – Area under the curve; BFS– Bootstrap feature selection; GGM –  Gaussian graphical 

modelling; HCA – Hierarchical cluster analysis; LDA – Linear discriminant analysis; MCCV – Monte Carlo cross validation; MWT – Mann Whitney U test; NRI – Net reclassification improvement; OPLS-DA – 

Orthogonal projections to latent structures discriminant analysis; LRA - logistic regression analysis; OSC-PLS – Orthogonal signal correction partial least squares; PC – Pearson correlation; PCA – Principal 

component analysis; PEA – Pathway enrichment analysis; PLS-DA – Partial least squares discriminant analysis; RF – Random Florest classifier; SCC – Spearman correlation coefficient; SVM – Support vector 

machine; VIP – variable importance in projection. 
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Other normalization approaches based on experimental corrections are also used in metabolomics, 

such as internal standards [105,106] and sample weight [61]. Internal standards normalization 

assumes that the heteroscedasticity of all variables is systematic and can be corrected by variance of 

internal standards. Sample weight normalization is the direct correction of variables values by 

experimental sample measures (e.g., volume and weight). 

 

Pre-processing 

Pre-processing methods are performed to obtain an exploratory projection of dataset or an 

overview of variables importance prior to prediction models processing. Primarily, normality tests 

are used to determine if the data distribution is normal (parametric) or not normal (non-parametric). 

The most commonly used are Kolmogorov-Smirnov test (KS-test) [50,73], Shapiro-Wilk test (SW-

test) [73] and Lilliefors test (L-test) [73]. Two types of approaches are normally used in exploratory 

projections/variables importance ranking of BC metabolomics datasets: univariate and multivariate 

analysis. Univariate statistical methods are used to analyzed only one variable at a time, being useful 

to easily discover significant differences or measure correlations between samples groups. The 

differentiation is based on variance between groups by rejection of the null hypothesis or acceptation 

the alternate hypothesis [101,107,108]. The most common methods used when the data is parametric 

T-tests [31,47,68,70,71,74,76–79,84,48–50,53,57,59,62,63] and ANOVA 

[33,44,46,63,64,66,68,69,72,83]. T-tests, such as Student and Welch's tests, are recommended to 

analyze differences between two groups, and ANOVA-based methods, such as one-way ANOVA, 

two-way ANOVA, factorial ANOVA and MANOVA are used to evaluate more than two groups. 

Alternative univariate methods are implemented when the assumption of the normal distribution is 

non-parametric, such as Mann-Whitney test (MW-test) [51,81,105] and Wilcoxon test (W-test) [58]. 

In addition, univariate methods are also widely used to measure the correlations between continuous 

variables and response. The Pearson correlation [46,70,72,76,77,79] is the preferred option for linear 

relationships in populations with normal distribution. On the other hand, the Spearman correlation 

[31,80,82] is usually used in non-parametric datasets [109]. More complex correlation methods are 

also used in data analysis, such as Correlation Feature Selection (CFS) [65], where the appropriate 

correlation measure and a heuristic search strategy are performed by experiments on artificial and 

natural datasets based on algorithms. 

Similarly, the multivariate methods are also widely used for exploratory studies to obtain dataset 

patterns based on relationships between groups, being divided into two sub-groups, unsupervised and 

supervised methods. Unsupervised methods are the preferential option for exploratory studies, where 

the modeling process is based only on the explanatory variables, without external intervention of user 
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[100]. The most commons are principal component analysis (PCA) [31,33,63,64,66–

69,72,75,78,79,43,80,83,84,105,44,46,49,53,55,56,61] and hierarchical cluster analysis (HCA) 

[33,43,51,56,59,76]. PCA provides the projection of dataset into low dimensional based on 

orthogonal transformation, converting the variables variability from a set of observations into score 

vectors and loadings, called principal components [100,110]. HCA methods are used to form subsets 

of samples at ordered levels based on variables similarities/dissimilarities (such as distances or 

correlations), and can be performed in agglomerative mode (samples are aggregate into clusters) or 

divisive mode (complete dataset is divide into clusters). In both modes, the linkage criterion need to 

be selected, being that the most commonly used are single-linkage clustering (the minimum of 

distances) and complete linkage clustering (the maximum of distances) [111,112]. 

 

Processing methods 

After the explorative studies and variable selection, the next step is the processing of dataset in 

order to create a predictive response model to classification of new samples (ex. diagnostic tools), 

identification of valuable variables (ex. biomarkers) or exploring the mechanisms of metabolomic 

studies (ex. metabolic pathways). In this stage, the supervised methods are the preferential choice, 

where the response models are mainly based on two types, continuous (regression) and discrete 

(classification) [100,102]. The main methods for continuous response are based on multiple linear 

regression (MLR), sometimes called ordinary least squares (OLS). MLR is performed to predict the 

values of a dependent variable (response) based on a set of continuous explanatory variables, 

assuming a linear combination of the explanatory variables [110]. The most applied MLR-based 

method in metabolomics is partial least squares (PLS) [44,55,68,71]. Unlike PCA, which uses only 

the variables variation, PLS is a predictive and supervised method that use an informative response 

to maximize the covariance between the explanatory variables and the response, producing score 

vectors and loading vectors. The prediction model is based on interaction between the variables and 

response, ignoring the variables with irrelevant importance. The importance of each variable is 

defined according the PLS-based criteria, such as loading weights, variable importance on projection 

scores, regression coefficient, target projection and selectivity ratio [100,101,110]. However, when 

categorical variables are introduced, the discrete models should be used. Discrete models provide a 

predictive classification of response based on continuous and categorical variables, being classified 

into linear or non-linear. In linear methods, the classification is performed by highest probability 

based on linear relationships between explanatory variables, where exist a grouping variable 

(categorical). Linear discriminant analysis (LDA) [44,54] is the preferential method to classification 

models of discrete responses. LDA perform linear transformations of explanatory variables to create 
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discriminant functions that will maximize the separation between multiple classes of samples 

(groups) based on the information of the categorical variables (Liland, 2011). Among the various 

LDA-based methods, PLS-DA [33,46,74,75,77–79,84,105,113,47,51,53,59,63,64,67,69] is most 

widely used in metabolomics studies. PLS-DA is a successful combination of PLS and LDA that 

provides a visual low-dimensional pattern of samples discrimination based on the analysis of 

relationships between continuous and categorical variables [101,110]. Recently, some extensions of 

PLS-DA were used in BC metabolomics, namely the OPLS-DA [43,51,67,73,81]. OPLS-DA 

separates out response orthogonal variations in rotations of the original component [110]. 

On the other hand, non-linear methods are used when metabolomics dataset follow a non-linear 

response. The most applied non-linear methods are support vector machines (SVM) [48,59,65,105], 

random forests (RF) [33,48,58,59,65,80] and logistic regression analysis (LRA) 

[31,47,65,69,72,105]. SVM is a kernel-based model used for regression and classification of non-

linear datasets, transforming the non-linear data into more general spaces (linear) by algorithm based 

on kernels functions. SVM perform the mapping of dataset into a high-dimensional space through 

kernels functions for the separation of two groups of samples into distinctive regions. The separation 

is based on support vectors, which are points (samples) on the boundary or on the incorrect side of 

the margin supporting the separation. SVM is a versatile method that transforms non-linear complex 

datasets into a high-dimensional space where classes are linearly separable [100,101,110]. RF is a 

non-linear method for regression and classification of high-dimensional datasets, where a large 

number of classification and regression trees are created by bootstrapping (replacement) based on 

random selection of a training samples from the original dataset. Afterwards, bootstrapping is 

performed systematically to build a large group of simple trees that are used to estimate classification 

accuracy of the model [100,101]. Another non-linear predictive method widely used is LRA, which 

is similar to linear regression, but with a binomial response variable. LRA is used to explain the 

relationship between one dependent binary variable and one or more nominal, ordinal, interval or 

ratio-level independent variables [114]. 

 

Model validation 

The validation of predictive models is a key step in data analysis of metabolomics studies. 

Validation process analyzes the performance/ability of model to predict correctly the hypothesized 

relationships between variables and responses [101]. Several validation methods have been used in 

BC metabolomics. The coefficient of determination (R2) is the simplest method to evaluate the ability 

of predictive model, being used for continuous responses. The R2 is expressed as the ratio between 0 

and 1, where a value of 1 indicates the perfect prediction. However, this validation is recommended 
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for small datasets, due to fact that the R2 value tends to be increased when a predictor variable is 

added to the model [115]. However, in validation of predictive models used to high-dimensional and 

complex datasets, as the case of metabolomics studies, the cross validation (CV) methods are the 

preferential option. CV provides qualitative and quantitative analysis of the model ability to model’s 

ability to predict new independent samples without collecting additional data. During the CV, the 

available data are split into two sets, where one set is used to create a predictive model using the 

values of continuous and predictor variables (training set). The second set is used to test the 

performance of predictive model (validation set) [100]. The most applied CV procedure is k-fold (K-

CV) [33,44,73,77,79,80,84,105,54,55,63–65,67–69]. K-CV processing is based on random partition 

of original dataset into equal sized subsamples (k). A single k subsample is used as the validation set 

for testing the model, and the remaining k -1 subsamples are used as a training set. This process is 

then repeated k times (folds), with each of the k subsamples being used exactly one time as the 

validation set [106]. One special type of K-CV is the leave-one-out cross validation (LOOCV) 

[43,46,48,74,75,78,81], where the number of folds equals the number of k subsamples. LOOCV is 

considered an exhaustive CV, being recommend for small datasets [106,115]. Another type of CV is 

the Monte Carlo cross validation (MCCV) [51,59]. Although less used in metabolomics than 

LOOCV, MCCV is asymptotically consistent and showed better prediction ability. In MCCV 

proceeding, significant part of dataset is leaved out at a time during model validation, repeating 

systematically this procedure several times [116,117]. The Q2 value, which is the equivalent R2 value, 

is the preferential coefficient of determination for CV procedures.  

A visual and easy model validation method is the receiver operating characteristic (ROC) curve 

[31,33,65,67–69,71,73,74,77,105,43,47,48,53,54,58,59,63] which the prediction ability of a model is 

validated considering the specificity (ratio of the correctly predicted negatives) and sensitivity (ratio 

of correctly predicted positives). The ROC curve is given by plotting the sensitivity versus (1 - 

specificity) across a series of cutoff points. The area under curve (AUC) is a quantitative measure 

(between 0 and 1) of the ability of predictive model, where a AUC value close to 1 indicates a nearly 

perfect prediction response [100,115]. 

Random resampling-based methods are a robust alternative for model validation. The most used 

in BC metabolomics are bootstrapping [48,58,68,80] and permutation tests [47,51,53,79,80]. 

Bootstrapping is a model validation based on replacement of samples, which can be considered non-

parametric when the replacement is from the original dataset, or parametric when random noise is 

added from a recognized distribution to the dataset to estimate underlying sampling distribution or 

establish robust confidence intervals. Normally, in metabolomics studies the common approach is 

non-parametric bootstrapping [115,118]. Permutation tests provide the exact control of false positives 
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from a predictive model (linear or non-linear), under minimal assumptions, based on differences 

between the randomly permuted response variables model and the original model. Permutation tests 

are based on a repeatedly permuting (repetitive reordering) of the N entries in the response variable. 

Permuted vectors containing integers between 1 and N are produced in a random number generator, 

creating new scrambled response variables only by switching their internal positions. The scrambled 

vectors are modelled one by one, where for every test, the R2 and Q2 values are calculated and saved. 

After, these values are compared with the values calculated from the original data. The results of 

permutation tests are displayed as a percentage overlap between the real and permuted R2 and Q2 

values, where a 0% of overlap is the optimal result [110,119]. 

 

Post-processing 

The post-processing step consists in interpretation of metabolomic responses from original dataset. 

Normally, pathway analysis is the most used strategy to provide an overview of 

association/relationship between identified metabolites and metabolic pathways and other general 

biological networks. Pathifier [65] and metaboanalyst [33,59,63,73,74] are the most used software 

for this propose in metabolomics. 

 

Future directions 

The advances in analytical techniques and chemometric methods in metabolomics have been 

growing rapidly becoming possible the identification of potential biomarkers. Furthermore, the 

integration of analytical platforms increases the comprehensive analysis of metabolites in biological 

samples. In this context, metabolites became valuable identifications, regardless their hierarchical 

source, enabling the phenotypic properties in a biological system. Additionally, the identification of 

key metabolic pathways from which significant metabolites are linked, it is possible to reveal 

potential targets for cancer therapy.  

Also, standard procedures for sample collection, data analysis and shared in repositories have 

potential to be adopted by both researchers and medical communities. 

Since the metabolome instantly responds to environmental stimuli including therapeutic or surgical 

intervention, could be also used to monitor the metabolic status of the individual and indicate any 

possible toxic effects. Moreover, metabolomics may help in the detection of potential cancer 

biomarkers, being useful for example in the development of different devices, including biosensors, 

that can significantly improve the cancer diagnosis. These devices include a biorecognition element 

within a biosensor system. The biorecognition molecules interact with the target, which is then 

converted into a measurable signal by a transducer. Basically, these molecules, usually enzymes or 
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antibodies, can be immobilized on the transducer surface and interact with the target (biomarker) to 

produce a signal is interpreted, providing information about the disease and their possible recurrence 

after therapy. 
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SECTION 2| Thesis Aims and Scope 
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Although breast cancer (BC) research is directed towards the improvement of diagnostic/screening 

techniques in the last decades, new tools are needed for BC diagnosis due to the limited sensitivity 

and specificity of current screening methods, as well as the perceived discomfort of mammography 

and potentially hazardous exposure to radiation. In recent years a promising and attractive hypothesis 

is based on small molecular-weight volatile organic metabolites (VOMs), consumed or released by 

cancerous cells, is emerging as an attractive and non-invasive approach for cancer diagnostics. These 

molecules, which can be perceived as odors, have been shown to function as cancer ‘‘biosignatures”. 

In this context, the present thesis incompassed the study of the metabolomic profile of urine, cell lines 

and tissues from BC patients and CTLs with the aim of discover a set of metabolites able to be used 

as potential BC biomarkers. 

 

To achieve the main goal, the experimental design was followed being summarized in the flowchart: 

 

Figure 2. 1 - General diagram of the study performed in the thesis. 

The specific objectives of the thesis included: 

I. The application of a multivariate experimental design (central composite design) to 

optimize the SPME-influencing parameters as a mean to improve VOMs extraction 

efficiency and their application to urine samples from BC patients and CTLs; 
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II. The establishment of the urinary metabolomic profile by 1H NMR from BC patients as 

well as from CTLs as a powerful tool to detect potential BC-specific metabolites; 

 

 

III. Study of VOMs released from human BC cell lines: MCF7, T47D and MDA-MB-231, 

and from normal breast cell lines, as primary mammary epithelial cells (HMEC); 

 

IV. To characterize the metabolomic fingerprint of BC tissues and compare to breast normal 

tissue; 

 

V. Combination of NMR- and GC-qMS-based method, multivariate statistics and metabolic 

correlation networks, in order to find a panel of biologically significant metabolites as 

potential BC biomarkers. 
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SECTION 3| Metabolomic Pattern in Breast 

Cancer 
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3.1| Implementing a Central Composite Design for the 

optimization of solid phase microextraction to establish the 

urinary volatomic expression. A first approach for breast 

cancer 

 

 

 

 

 

 

 

 

 

 

 

 

(Silva et al.; Metabolomics 2019; 15:64) 



 

 

48 Catarina Silva (2019) 

  



 

 

Catarina Silva (2019) 49 

Abstract 

BC is positioned as the second among all cancers remaining at the top of women´s diseases 

worldwide followed by colorectum, lung, cervix, and thyroid cancers. The main drawback of most 

the screening/diagnostic methods is their low sensitivity/specificity and in some cases the invasive 

procedure required to obtain the samples. On the present investigation, we report a statistical design 

was to evaluate by central composite design the influence towards the optimization of the most 

significant variables of solid-phase microextraction (SPME) procedure for the isolation of volatile 

organic metabolites (VOMs) from urine of BC patients (n=31) and healthy individuals (CTL; n=40). 

The establishment of the urinary volatomic composition, through gas chromatography-mass 

spectrometry (GC-MS) analysis, can boost the identification of volatile organic metabolites (VOMs) 

potential BC biomarkers useful to be used together or to complement the current BC diagnostics tools. 

Better early detection methods are needed to improve the outcomes of patients with colorectal cancer 

(CRC). Several combinations of experiments were considered with a Central Composite Design 

(CCD) of Response Surface Methodology (RSM) for the urinary volatomic pattern. Three-level three-

factor CCD was employed assessing the most important extraction-influencing variables - fiber 

coating, NaCl amount, extraction time and temperature. The optimal conditions were achieved using 

a carboxen/polydimethylsiloxane fiber with 15% (w/v) NaCl during 75 min at 50 ºC.  

A total of ten VOMs belonging to sulfur compounds, terpenoids and carbonyl compounds presented 

the highest contribution towards discrimination of BC patients from CTL (variable importance in 

projection (VIP) >1, p < 0.05). The discrimination efficiency and accuracy of urinary metabolites was 

ascertained by receiver operating characteristic (ROC) curve analysis that allowed the identification 

of some metabolites with highest sensitivity and specificity to discriminate the groups. The results 

obtained with this approach suggest the possibility to identify endogenous metabolites as a platform 

to discovery potential BC biomarkers and paves a way to explore the related metabolomic pathways 

in order to improve BC diagnostic tools. 

 

Keywords: Central composite design; Breast cancer; Urine; Metabolomics; Chemometric tools 
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Introduction 

BC remains as the most common invasive cancer in women worldwide , accounting for 24.2% of 

all cancer cases, followed by colorectum, lung, cervix, and thyroid cancers according to the 

International Agency for Research on Cancer (IARC) [3]. Being a disease caused by a combination 

of genetic and environmental factors, BC is often characterized by an absence of early symptoms, 

which results in a late detection of the disease. Detection at advanced stages of BC implies that the 

treatment is harder and uncertain. Appropriate screening methods have been conducted within 

organized preventive examinations and have made significant contributions to early BC detection 

[39,120,121]. Moreover, if the disease is detected at an early stage of development, the healing 

percentage will increase. In this sense, it is necessary to detect disease as earlier as possible [121]. 

Furthermore, there is still the need for the development of new methodologies to support or monitor 

the disease together with current diagnostic tools, namely with mammography, ultrasound imaging 

or tumor marker analysis. Moreover, before the initiation of a BC therapy, complex and time-

consuming analyzes are still required, being the most significant the determination of the histological 

type and grading, and the evaluation of ER, PR and HER-2, among others [122]. The main drawback 

of most of these screening/diagnostic methods is their low sensitivity and specificity and in some 

cases the invasive procedure required to obtain the samples [123]. Taking into account these aspects, 

the investigation is leading towards the research of new tools that can support the clinicians in BC 

treatment and monitoring of their recurrence [124]. In this sense, in recent years the -omic studies 

have emerged as a powerful tool to investigate the changes and/or metabolic responses of living 

systems to stimuli or genetic modifications [39]. The metabolome profile represents the quantitative 

and qualitative analysis of the complete set of metabolites present in cells, body fluids or tissues 

[125]. To date, based on the most used biological specimens (e.g., exhaled breath, urine, saliva, 

blood), the metabolome coverage in BC can be maximized by merging different technologies for 

metabolic profiling, namely with GC-MS. The results obtained can be useful to classify BC, helping 

to identify new prognostic and predictive markers and to discover new targets for future therapeutic 

interventions [126]. Many metabolomic studies have referenced the presence of glycolytic markers 

as an indication of the Warburg effect driven by malignancy, so that it remains a metabolic pathway 

of ongoing interest in cancer research [39]. Among them, the study of VOMs present in biological 

samples, namely in saliva, urine, exhaled breath and tissues can be useful for a cancer diagnosis, in 

particular for BC [107]. The principle is that disease and normal condition can be distinguished from 

each other by changes in their physiology and metabolic rates, which leads to the production of 

disease specific alterations in VOMs [30]. The most common procedure used in extraction of volatile 

compounds in biological samples is SPME, normally in headspace mode, being used in several 
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biological matrices [44,59,127,128]. In fact, SPME offers several advantages over conventional 

solvent extraction procedures: it is rapid, easy to use, solvent-free and does not require any 

concentration step before analysis [129]. Being a technique based on the equilibrium between sample 

matrix /headspace and between headspace/fiber coating, HS-SPME efficiency is dependent on several 

factors, namely the target compounds to be extracted, fiber coating, extraction temperature, extraction 

time and salting-out effect [127]. Taking into account that SPME is affected by several parameters 

and their optimization is a laborious and time-consuming process, the RSM can be a suitable tool for 

optimizing the process. This approach consists of a combination of statistical and mathematical 

techniques and has been highly used in optimization processes, since RSM reduces the number of 

experimental assays. Frequently, CCD is used as an experimental design to fit a second-order 

polynomial function by a least squares technique. An equation is used to define how test variables 

affect the response and determine the interrelationship among the variables [130,131]. Monteiro et 

al. [131] used CCD to optimize the SPME extraction parameters to discriminate patients with renal 

cell carcinoma, whereas Calejo et al. [132] used CCD to select the optimal conditions to extract 

carbonyl compounds to discriminate individuals with smoking habits using an in-solution 

derivatization with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) 

combined with SPME. As for example, GC-qMS was used to screen salivary volatiles for putative 

BC as an exploratory study involving geographically distant populations [51], also to establish the 

metabolomic signature of human BC cell lines [44] and to discriminate different types of cancer based 

on urinary volatomic biosignatures [59]. In the first study, up to 120 VOMs from distinct chemical 

families, with significant variations among the groups, were identified [51], whereas Silva et al. [44] 

and Porto-Figueira et al. [59] identified 60 and 130 VOMs in BC cell lines and urine, respectively. In 

turn, Dougan et al. [66] used GC-MS to evaluate the detectability, reliability, and distribution of 

metabolites measured in pre-diagnostic plasma samples of a pilot study from women listed in the 

Northern California site of the BC Family Registry. In this study, 661 VOMs were detected, 338 (51 

%) of them were found in all samples, and 490 (74 %) in more than 80 % of samples. 

In the current study, CCD was used for the optimization of experimental parameters, such as fiber 

coating, NaCl amount, extraction time and temperature as useful strategy to improve SPME extraction 

efficiency of VOMs from urine samples. The potential of SPME/GC-qMS data combined with 

chemometric tools was evaluated to discriminate the urinary volatomic biosignatures from BC 

patients and healthy controls (CTL), in order to identify a set of potential BC-specific biomarkers that 

could be used together with current BC techniques as a useful tool to improve its diagnosis. 
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Materials and Methods 

Chemicals and materials 

Sodium chloride (NaCl), hydrochloric acid (HCl) and 4-methyl-2-pentanol were supplied by 

Panreac (Barcelona, Spain) and Sigma Aldrich (St. Louis, MO, USA), respectively. The digital 

stirring plate (Cimarec™) was supplied by Thermo Scientific (Waltham, MA, USA) while SPME 

holder for manual sampling, together with 65 µm polydimethylsiloxane/divinylbenzene 

(PDMS/DVB), 50/30 µm (DVB/CAR/PDMS) and 75 µm carboxen/polydimethylsiloxane 

(CAR/PDMS) fibers, were purchased from Supelco (Bellefonte, PA, USA). 

 

Urine samples collection and preparation 

Urine samples (first urine morning) from BC patients (n=30) were taken at the Haemato-Oncology 

Unit from Dr. Nélio Mendonça Hospital, while the urine collection from healthy individuals (n=40) 

(Table 3.1.1) was carried out in Blood Transfusion Medicine Service in the same Hospital at the same 

time. Participants were instructed to collect the first urine morning (after the rejection of the first urine 

stream) into a sterile bottle using a disposable collector that was provided to them. 

 

Table 3. 1. 1 - List of collected urine samples from breast cancer (BC) patients and healthy volunteers 

(CTL). 

Urine Samples BC CTL 

Number 30 40 

Age (range, median) (44-85, 65) (43-80, 64) 

 

The collected urine samples were aliquoted into 4 mL glass vials and stored at -80 °C until analysis. 

The analysis begun with the thawing of urine samples, after this they were centrifuged at 4000 rpm 

for 20 min at 4 °C. Then, the supernatant was collected and used for the extraction procedure. All the 

analyzes were performed in triplicate. 

The research was approved by the Ethics Committee of Funchal Central Hospital Dr. Nélio 

Mendonça and have been performed in accordance with the ethical standards as laid down in the 1964 

Declaration of Helsinki and its later amendments or comparable ethical standards. All the participants 

were fully informed of the objectives of the study and signed the informed consent. 
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HS-SPME optimization: CCD approach 

Three types of fiber coatings (Supelco, Bellefonte, PA, USA) were used to evaluate the extraction 

performance of VOMs from urine samples: PDMS/DVB, DVB/CAR/PDMS and CAR/PDMS. They 

were daily conditioned according to the manufacturer´s recommendations, in order to avoid carryover 

between sets of analyzes. For the HS-SPME optimization, a CCD model was applied for each fiber, 

in order to build a second order (quadratic) model for the response. This model was defined by the 

equation 2k + 2k + n, where k is the number of factors and n is the number of centre runs. In this case, 

k and n were set at 3 and 5, respectively, meaning that 45 experiments (each experiment was 

performed in triplicate) were ran with 15 experiments for each fiber in the centre of the design. The 

factors were salt addition (NaCl, g), extraction time (text, min) and extraction temperature (Text, ◦C). 

The CCD included five different levels (centre runs), k central points (mean value of each variable) 

and 2k star points (minimum and maximum level of the range). The axial distance (α) given by the 

equation, α = 2k/4, was calculated to satisfy the rotatable of the design and was considered α = ±2 

[133]. The 45 experiments (combinations) were run in randomised order to minimise the effects of 

variability in the response due to irrelevant factors (Table 3.1.2). 

 

Table 3. 1. 2 - Experimental conditions and values for the response (expressed in total areas) obtained 

for the CCD used for the optimization of the extraction conditions of urine samples by HS-SPME. 

Run 

order 

Experimental conditions 

Fiber Text, ◦C text, min NaCl (%) Number 

VOMs 

Response 

(total areas) 

1 

CAR/PDMS 

40 30 10 35 1.89E+09 

2 40 30 20 44 2.05E+09 

3 40 60 10 49 4.98E+09 

4 40 60 20 39 3.66E+09 

5 60 30 10 56 5.75E+09 

6 60 30 20 62 6.93E+09 

7 60 60 10 72 1.18E+10 

8 60 60 20 79 1.11E+10 

9 30 45 15 45 2.43E+09 

10 70 45 15 108 1.27E+10 

11 50 15 15 42 1.28E+09 

12 50 75 15 108 1.96E+10 

13 50 45 5 84 5.54E+09 

14 50 45 25 83 4.97E+09 

15 50 45 15 91 5.34E+09 

16 

DVB/CAR/PDMS 

40 30 10 54 2.47E+09 

17 40 30 20 58 1.65E+09 

18 40 60 10 63 2.81E+09 

19 40 60 20 66 3.18E+09 

20 60 30 10 73 5.18E+09 

21 60 30 20 82 6.41E+09 

22 60 60 10 75 6.20E+09 
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Run 

order 

Experimental conditions 

Fiber Text, ◦C text, min NaCl (%) Number 

VOMs 

Response 

(total areas) 

23 60 60 20 82 5.74E+09 

24 30 45 15 56 1.52E+09 

25 70 45 15 75 1.24E+10 

26 50 15 15 57 1.53E+09 

27 50 75 15 68 6.30E+09 

28 50 45 5 49 2.67E+09 

29 50 45 25 64 5.05E+09 

30 50 45 15 57 3.45E+09 

31 

PDMS/DVB 

40 30 10 43 1.11E+09 

32 40 30 20 45 2.21E+09 

33 40 60 10 40 1.74E+09 

34 40 60 20 48 2.13E+09 

35 60 30 10 51 3.37E+09 

36 60 30 20 61 4.68E+09 

37 60 60 10 66 6.01E+09 

38 60 60 20 61 7.20E+09 

39 30 45 15 50 1.69E+09 

40 70 45 15 67 7.59E+09 

41 50 15 15 57 1.38E+09 

42 50 75 15 57 4.65E+09 

43 50 45 5 49 3.82E+09 

44 50 45 25 52 3.73E+09 

45 50 45 15 49 4.65E+09 

a Text, extraction temperature, b text, extraction time 

 

Application to urine samples 

The optimal HS-SPME extraction conditions used to analyze urine samples from CTL and BC 

groups were obtained with CCD model as described in previous section. Briefly, urine samples were 

thawed and then 4 mL of urine was placed into 8 mL vials together with 17 % NaCl (w/v) and 100 

µL of the internal standard (IS, 4-methyl-2-pentanol, 1.6 mg/L). The pH was adjusted to 2 with small 

amounts of HCl 5M. Then, the vial was capped with a Teflon (PTFE) septum using a screw cap and 

the CAR/PDMS fiber was introduced and exposed into the headspace during 75 min at 50 °C at 800 

rpm (0.5 mm × 0.1 mm bar). After this period, the fiber was removed from the vial and inserted into 

the GC injection port and the extracted VOMs were desorbed for 10 min at 250 °C. Each sample was 

analyzed in triplicate and the blanks were performed before each analysis. 

 

Gas chromatography quadrupole mass-spectrometry (GC-qMS) conditions 

After the extraction procedure, the SPME fiber with the analytes was inserted into the injection 

port of an Agilent Technologies 6890N Network gas chromatograph system (Palo Alto, CA, USA) 

where the VOMs were desorbed at 250 °C for 10 min. The gas chromatograph was equipped with a 

60 m × 0.25 mm I.D.× 0.25 µm film thickness, BP-20 (SGE, Dortmund, Germany) fused silica 
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capillary column and interfaced with an Agilent 5975 quadrupole inert mass selective detector. The 

following oven temperature profile was set: (a) 5 min at 45 °C; (b) increase temperature until 150 °C, 

at a rate of 2 °C min−1 (hold for 10 min); (c) 150 °C for 10 min; (d) increase temperature until 220 

°C, at a rate of 7 °C min−1; and (e) 220 °C for 10 min for a total GC run time of 87.5 min. The column 

flow was constant at 1.3 mL min−1 using Helium (He, N60, Air Liquide, Portugal) as the carrier gas. 

The injection port was operated in the splitless mode and held at 250 °C. For the 5975 MS system, 

the operating temperatures of the transfer line, quadrupole and ionization source were 270, 150 and 

230 °C, respectively, while electron impact mass spectra were recorded at 70 eV ionization voltage 

and the ionization current was 10 µA. Data acquisition was performed in the scan mode (30–200 

m/z). Metabolites identification was accomplished through manual interpretation through single ion 

monitorization (SIM) of spectra and matching against the Agilent MS ChemStation Software, 

equipped with a NIST05 mass spectral library with a similarity threshold higher than 80 % and 

comparison with commercially available standard samples when available. The analyzes were 

performed in triplicate and the results expressed by mean ± standard deviation. 

 

Statistical Analysis 

The statistical analysis for the CCD design was performed using Statistica, Version 10.0 (Statsoft 

Inc., Tulsa, OK, USA) while the web server Metaboanalyst 4.0 [134] was used for the multivariate 

statistical analysis - namely, principal component analysis (PCA), partial least squares-discriminant 

analysis (PLS-DA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA) 

applied on urine metabolomic profile dataset in order to provide insights into the separations among 

the groups under study. For the evaluation of the applicability of the developed CCD method, data 

analysis was based on a non-targeted volatile approach. Moreover, the metabolites with Variable 

Importance in Projection (VIP) scores higher than 1.0 were selected by the PLS-DA analysis and used 

for the pathway analysis. Additionally, hierarchical cluster analysis by K-means of the two groups in 

study was carried out and Pearson´s correlation was used to build the heat map with the aim of 

identifying clustering patterns. The receiver operating characteristic curves (ROC) were attained to 

verify which metabolites had the highest sensitivity/specificity for a potential BC diagnosis. Also, 

Random forest (RF) classification was performed to determine the ability of VOMs to accurately 

classify the study subjects into their corresponding groups. Finally, the selected metabolites were 

used for the metabolic pathway analysis to identify the most relevant metabolic pathways involved 

in BC and CTL groups. 
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Results and Discussion 

Optimization of HS-SPME methodology 

Regarding the optimisation of the ideal SPME extraction-influencing parameters- for VOMs 

extraction from urine samples, three different fiber coatings were used. In this case, the authors 

choose to use the fibers with two or more coatings in order to cover the maximum amount of chemical 

classes of metabolites, which is the most appropriate procedure in an untargeted metabolomic 

approach. Overall, the performance of each fiber was evaluated based on the number of identified 

VOMs, relative GC peak area, and reproducibility expressed as the relative standard deviation 

(RSD%). The performance obtained in terms of relative GC peak area for each tested fiber is shown 

in Figure 3.1.1. 

 

Figure 3. 1. 1 - Efficiency of fiber coatings in the extraction of VOMs from urine samples by HS-

SPME. The numbers refer to the number of identified VOMs. 

The CAR/PDMS fiber was the one that provided the uppermost extraction efficiency when 

compared with PDMS/DVB and DVB/CAR/PDMS fibers. In addition, the CAR/PDMS also 

presented the highest number of identified VOMs and the best reproducibility when compared with 

other tested fibers. Regarding the application of the CCD model, other factors that affected the SPME 

extraction efficiency were taken into account. This design was used as an experimental approach to 

assess the optimal value for each parameter with influence in SPME extraction efficiency and 

optimize the response of the process (Table 3.1.2). The particular value of a factor at which an 

experiment is run is called factor level. This approach allows the evaluation of the individual 

significance of each variable on the response, namely in the HS-SPME of VOMs from urine samples 
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and also the correlations among them. The other influencing parameters, such as the sample amount, 

pH and volume (4 mL of urine into a 8 mL glass vial), were fixed by the authors and based in previous 

studies with urine samples [127,128]. In the present case, 45 runs were performed randomly and the 

obtained response was based on the number of identified VOMs and sum of relative GC peak areas. 

The application of this type of statistical optimization procedure is useful over the univariate approach 

where the effect of possible interactions between important variables are not taken into account. 

Furthermore, this type of strategy enables the determination of the optimal conditions with fewer 

number of experiments when compared with full factorial design (FFD) [132,133]. The Pareto charts 

were built to illustrate the influence of each factor regarding the VOMs extraction performance as 

shown in Figure 3.1.2 (A and B).  

 

Figure 3. 1. 2 - Pareto charts of standardized effects of CCD factorial design for total GC peak area; 

(A) based on the extraction temperature and time, (B) extraction time and NaCl amount. The y axis 

of both graphs includes all variables considered in this study, their possible combinations and effects 

on the study. 1L-extraction temperature; 2L-extraction time; 3L-NaCl amount; Q-quadratic function; 

L-linear function. 

This type of chart contains a bar for each evaluated factor as well as their combinations, which are 

ordered from the most to the least significant. Also, the vertical line indicates the critical value for 

Student´s t–test which was considered 0.05, meaning that any factor that extended that line was 

considered significant for the analysis. Regarding the charts obtained, in the case of the number of 

compounds identified, the variable with the greatest influence for the extraction of VOMs from urine 

samples was the extraction temperature (Figure 3.1.2 A) while, in terms of the total GC areas, was 

the extraction time and NaCl amount, as observed in Figure 3.1.2 B. Considering the combination of 
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variables, none of the evaluated combinations had a significant contribution for the analysis. In Figure 

3.1.3 (A-F) the surface response graphs obtained for the CCD model are represented.  

 

Figure 3. 1. 3 - Surface response obtained by central composite design (CCD) in the optimization of 

the SPME conditions and respective combinations. For number of identified compounds; (A) 

extraction time and temperature, (B) NaCl amount and extraction temperature and (C) NaCl amount 

and extraction time. Regarding the total peak areas, (D) extraction time and temperature, (E) NaCl 

amount and extraction temperature and (F) NaCl amount and extraction time. 

Regarding the results, it was expected that for higher temperatures, the number of extracted VOMs 

increased, but also high temperatures are responsible for sample degradation and decrease the fiber 

lifetime. The first parameter that was taken into account was the number of identified VOMs (Figure 

3.1.3 A-C) and as temperature, extraction time and NaCl amount increased (responsible for the 

“salting-out” effect), the extraction efficiency also increased, but when comparing with the total areas 

(Figure 3.1.3 D-F), the surface graphs indicated that the ideal extraction temperature was 70 °C. In 

this case, as mentioned before, this temperature was considered too high once there is the potential 

risk of metabolite degradation as reported in previous studies [127,128]. In this sense, 50 °C as 

extraction temperature and 75 min as extraction time were selected as optimal conditions. In sum, 

according to the results, the optimal conditions for the VOMs extraction from urine samples from BC 
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and CTL groups using 75 min as extraction time, 50 °C as extraction temperature and an addition of 

15 % (w/v) of NaCl. 

 

Urine volatomic pattern based on GC-qMS 

A total of 116 VOMs were identified in BC and CTL urine samples which were classified in 

several chemical families, namely sulphur compounds, furanic compounds, phenols, terpenoids, 

carbonyl compounds, norisoprenoids, acids, alcohols and miscellaneous (Figure 3.1.4). 

 

Figure 3. 1. 4 - Major chemical families identified in BC and CTL urine samples. Legend: SC-sulfur 

compounds; FC-furanic compounds; CC-carbonyl compounds; Alc-alcohols; Terp-terpenoids; 

Norisop-norisoprenoids; Misc-miscellaneous. 

The data obtained was processed using an appropriate software (NIST, 2005; Mass Spectral Search 

Program V.2.0d) which provides quality matching using advanced spectral matching algorithms 

background subtraction. Regarding the chemical families, for the CTL group, all chemical families 

had a higher impact when compared with the BC group, with exception of alcohols. The highest 

contribution for the volatile profile was obtained for phenols in the CTL group, whereas in the BC 

group was alcohols. The main VOMs identified in these families were phenol, 4-methyl-phenol and 

2-ethyl-1-hexanol, respectively. These metabolites were already reported in literature in biological 

matrices such as urine [127,128], cancer cell lines [44,135], saliva [51], and exhaled breath [135,136]. 

Table 3.1.3 presents the identification of VOMs in urine samples, as well as their minimum and 

maximum of relative GC peak areas, together with their frequency of occurrence for each group.  
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Table 3. 1. 3 - Identification of metabolites of urine samples from BC patients and healthy volunteers (CTL) through GC-qMS, minimum (Min) and 

maximum (Max) relative peak areas, variation of relative peak areas regarding to BC group and frequency of occurrence FO (in %) of VOMs from BC 

and CTL groups. 

Peak 

ID 
IECa 

RT 

(min)b 
VOMc 

Relative GC Peak Areas 

Variation FO % BC CTL 

Min Max Min Max 

A1 47 4.72 methanethiol 2.00 78.56 2.20 97.14 ↓ 100 

A2 68 5.03 furan 1.75 108.12 3.48 121.92 ↓ 100 

A3 43,58 5.24 acetone 1.70 77.42 1.01 107.71 ↓ 100 

A4 82 6.09 2-methyl-furan 1.02 69.71 1.44 354.65 ↓ 96 

A5 43 6.40 ethyl acetate 0.23 1.72 1.59 1.71 ↑ 18 

A6 43, 72 6.69 2-butanone 0.30 8.98 0.55 49.61 ↓ 100 

A7 96 8.07 2,5-dimethyl-furan 0.39 60.24 1.15 178.30 ↓ 77 

A8 43, 86 8.79 2-pentanone 3.54 192.37 1.32 99.72 ↑ 96 

A9 95, 110 10.94 1-(2-furanyl)-ethanone 0.07 103.73 0.38 102.50 ↑ 99 

A10 91 11.22 toluene 1.18 65.82 0.32 122.29 ↓ 100 

A11 41, 55 11.37 3,7-dimethyl-1,6-octadiene 0.12 21.71 0.15 19.71 ↑ 83 

A12 43, 57 11.71 3-hexanone 0.21 17.13 0.27 17.39 ↓ 99 

A13 94 12.70 dimethyl disulfide 16.26 693.52 11.84 726.00 ↓ 100 

A14 44, 56 13.13 hexanal 0.42 20.98 0.18 12.96 ↑ 99 

A15 97, 113 13.48 3-methyl-tiophene 0.19 17.45 0.08 6.50 ↑ 69 

A16 43, 71 15.49 4-heptanone 12.03 380.27 17.71 133.36 ↑ 99 

A17 121, 93 17.81 α-terpinene 0.03 18.19 0.07 128.23 ↓ 93 

A18 111 18.12 1,4-cineole 0.03 4.03 0.15 43.21 ↓ 92 

A19 43, 58 18.57 2-heptanone 0.13 8.44 0.56 46.99 ↓ 100 

A20 68, 93 18.73 D-limonene 0.03 2.49 0.05 4.49 ↓ 86 

A21 91 19.36 propyl-benzene - - 0.02 2.28 - 37 

A22 43, 72 19.63 3-methyl-2-heptanone 0.12 1.80 0.09 14.56 ↓ 82 

A23 43 19.76 eucalyptol 0.13 2.86 0.11 4.62 ↓ 59 

A24 105 20.10 1,2,4-trimethylbenzene 0.02 6.51 0.06 17.76 ↓ 93 

A25 81 20.62 2-pentylfuran 0.08 31.71 0.19 92.69 ↓ 94 

A26 41, 55 20.84 2-hexenal 0.09 1.83 0.05 5.46 ↓ 11 

A27 93 21.20 γ-terpinolene 0.01 23.50 0.09 120.92 ↓ 79 
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Peak 

ID 
IECa 

RT 

(min)b 
VOMc 

Relative GC Peak Areas 

Variation FO % BC CTL 

Min Max Min Max 

A28 79 22.19 3,8-p-menthadiene 0.16 6.96 0.16 8.61 ↓ 58 

A29 119 22.69 p-cymene 0.15 350.42 13.54 483.82 ↓ 100 

A30 93, 121 23.16 α-terpinolene 0.11 2.87 0.05 75.80 ↓ 65 

A31 105 23.31 1-ethyl-2-methylbenzene 0.07 20.50 0.05 9.36 ↑ 76 

A32 117, 132 24.11 2-methyl-1-propenylbenzene 0.05 67.38 0.03 45.29 ↑ 75 

A33 119 24.49 1-methyl-2-isopropylbenzene 0.04 69.76 0.11 2.09 ↑ 46 

A34 43,58 24.71 2-octanone 0.08 3.15 0.12 5.22 ↓ 85 

A35 114 25.84 2-methoxythiophene 0.06 19.56 0.30 11.53 ↑ 100 

A36 105 26.86 1,2,3-trimethylbenzene 0.30 104.18 0.80 65.63 ↑ 96 

A37 159 26.96 α-ionene 0.02 12.64 0.12 52.61 ↓ 86 

A38 83, 55 27.73 3-ethylcyclopentanone 0.17 1.26 0.07 7.68 ↓ 70 

A39 128, 113 28.05 2-methyl-5-(methylthio)-furan 0.25 47.44 0.25 27.96 ↑ 97 

A40 45, 55 28.33 2-heptanol 1.95 1.95 0.38 0.40 ↑ 4 

A41 72 28.72 3,4-dimethyl-2-hexanone 0.07 2.43 0.18 3.34 ↓ 65 

A42 99 29.10 allyl Isothiocyanate 0.04 420.94 0.01 27.32 ↑ 48 

A43 159 29.26 1,2,3,4-tetrahydro-1,6,8-trimethylnaphthalene 0.09 12.66 0.03 57.10 ↓ 56 

A44 121 29.47 2,6-dimethyl-2,4,6-octatriene 0.22 0.22 0.03 0.47 ↓ 7 

A45 126 29.83 trimethyl trisulfide 0.56 227.20 6.79 704.86 ↓ 99 

A46 113, 128 30.46 2-methoxy-5-methyl-tiophene 0.11 116.90 0.47 61.27 ↑ 99 

A47 121 30.86 3,4-dimethyl-2,4,6-octatriene 0.07 1.99 0.07 0.97 ↓ 18 

A48 133 31.07 1,3-diethyl-5-methyl-benzene 0.02 7.46 0.05 10.98 ↓ 25 

A49 58, 43 31.21 2-nonanone 0.04 9.61 0.16 4.44 ↑ 90 

A50 82 32.03 2-cyclohexen-1-one 0.52 16.77 0.22 22.70 ↓ 94 

A51 57 32.39 nonanal 0.07 8.52 0.13 5.53 ↑ 45 

A52 159 32.43 1,2,3,4-tetrahydro-1,5,8-trimethylnaphthalene 0.03 24.07 0.34 170.12 ↓ 94 

A53 132 33.19 1-ethenyl-3,5-dimethyl-benzene 0.12 182.80 0.06 150.56 ↑ 37 

A54 105 33.55 (1-methylbutyl)-benzene 0.09 0.77 0.11 1.47 ↓ 14 

A55 132 33.79 1-methyl-4-(1-methylethenyl)-benzene 0.17 62.11 0.48 367.81 ↓ 90 

A56 159 34.04 1,2,3,4-Tetrahydro-1,4,6-trimethyl naphthalene 0.77 100.00 0.38 264.72 ↓ 92 

A57 73 34.84 3,7-dimethyl-3-octanol 0.19 37.82 0.16 23.66 ↑ 80 

A58 117, 132 35.41 1-ethenyl-4-ethyl-benzene 0.05 249.39 0.20 414.60 ↓ 58 

A59 57 35.98 1-octen-3-ol 0.03 2.38 0.09 1.76 ↑ 56 

A60 96 36.77 furfural 1.19 48.59 0.27 148.62 ↓ 83 
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Peak 

ID 
IECa 

RT 

(min)b 
VOMc 

Relative GC Peak Areas 

Variation FO % BC CTL 

Min Max Min Max 

A61 119 36.92 prehnitene 1.59 60.02 0.97 399.65 ↓ 90 

A62 59 37.20 2,6-dimethyl-7-octen-2-ol 0.15 331.07 0.57 184.17 ↑ 93 

A63 43,60 37.33 acetic acid 1.90 93.59 3.45 291.59 ↓ 97 

A64 57 38.49 2-ethyl-1-hexanol 2.97 125.41 1.12 58.98 ↑ 99 

A66 192 39.69 vitispirane I 1.53 317.57 0.95 328.65 ↓ 99 

A67 192 39.85 vitispirane II 0.61 131.23 0.41 119.19 ↑ 99 

A68 105 40.02 benzaldehyde 0.28 7.88 0.21 9.71 ↓ 82 

A69 130 40.10 2-(methylthio)-tiophene 0.30 14.62 0.22 13.52 ↑ 66 

A70 56 42.58 1-octanol 0.09 25.62 0.15 4.66 ↑ 94 

A71 110 43.23 5-methyl-2-furancarboxaldehyde 0.62 30.63 0.27 122.84 ↓ 99 

A72 81 43.54 1-terpinenol 0.19 2.53 0.13 46.41 ↓ 39 

A73 131 43.88 2-methyl-benzofuran 0.03 26.22 0.07 5.24 ↑ 82 

A74 58 44.55 2-undecanone 0.02 3.76 0.17 2.54 ↑ 58 

A75 71 44.62 menthol 0.23 183.84 0.44 123.43 ↑ 73 

A76 84 44.90 4-terpineol 0.03 3.48 0.12 15.35 ↓ 48 

A77 111 46.26 isomaltol 0.11 4.53 0.27 36.11 ↓ 73 

A78 71, 81 47.22 menthomenthol 1.08 550.81 0.41 340.85 ↑ 76 

A79 105, 77 47.54 acetophenone 0.14 8.59 0.27 56.57 ↓ 83 

A80 93 48.16 2,6-dimethyl-5,7-octadien-2-ol 0.06 14.21 0.09 40.14 ↓ 52 

A81 59 48.26 4-methyl-1,4-hexadiene n.d. n.d. 0.14 3.29 - 3 

A82 56 48.55 1-nonanol 0.40 1.43 0.41 0.65 ↑ 6 

A83 134 48.88 1-ethenyl-4-methoxy-benzene 0.09 1.77 0.14 3.08 ↓ 14 

A84 111 49.95 3-thiophenecarboxaldehyde 0.25 15.77 0.60 16.73 ↓ 94 

A85 145 50.31 2-methyl-3-phenyl-2-propenal 0.14 27.65 0.49 123.30 ↓ 99 

A86 59 50.48 α-terpinol 0.70 2.06 0.10 5.54 ↓ 20 

A87 109 51.12 phellandranal 0.03 4.73 0.09 100.55 ↓ 66 

A88 82 52.06 D-carvone 0.55 372.76 0.28 142.95 ↑ 85 

A89 157 52.57 1,2-dihydro-1,1,6-trimethylnaphthalene 2.04 500.14 6.89 629.74 ↓ 97 

A90 120 54.31 methyl salicylate 0.25 25.81 0.55 99.17 ↓ 82 

A91 133 54.63 p-isopropylbenzaldehyde 0.06 8.30 0.27 87.43 ↓ 89 

A92 132 55.30 1-Isopropenyl-4-methylbenzene 0.09 2.48 0.33 356.82 ↓ 48 

A93 121 55.69 4-hydroxy-acetophenone 0.02 3.78 0.13 81.92 ↓ 68 

A94 69 57.00 β-damascenone 0.25 63.23 2.06 51.48 ↑ 99 
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Peak 

ID 
IECa 

RT 

(min)b 
VOMc 

Relative GC Peak Areas 

Variation FO % BC CTL 

Min Max Min Max 

A95 135 58.81 p-cymen-8-ol 0.09 1.60 0.30 7.71 ↓ 21 

A96 60, 73 59.09 hexanoic acid 0.18 3.49 0.28 7.29 ↓ 97 

A97 109, 124 59.38 2-methoxy-phenol 0.60 233.16 1.89 216.04 ↑ 97 

A98 123, 138 59.90 4-methoxy-3-methyl-phenol 0.01 6.78 0.19 1.80 ↑ 18 

A99 123, 138 65.73 2-methoxy-5-methylphenol 0.05 22.64 0.14 83.85 ↓ 68 

A100 73, 88 66.07 2-ethyl-hexanoic acid 0.14 0.17 0.44 5.96 ↓ 10 

A101 60, 73 66.27 heptanoic acid 0.11 25.48 0.23 26.03 ↓ 96 

A102 175 68.94 1-ethyl-3,5-diisopropyl-benzene 0.14 299.80 0.24 91.62 ↑ 99 

A103 94 69.82 phenol 16.94 637.24 8.40 427.47 ↑ 99 

A104 60,73 72.54 octanoic acid 0.29 35.90 0.44 95.05 ↓ 99 

A105 119,169 73.01 1-methyl-7-isopropylnaphthalene 2.07 2.07 0.60 13.57 ↓ 13 

A106 107 73.18 4-methyl-phenol 3.32 254.95 9.60 281.82 ↓ 100 

A107 60,73 75.84 nonanoic acid 0.90 43.87 0.42 61.49 ↓ 96 

A108 107 75.99 4-ethyl-phenol 0.14 20.30 0.11 99.24 ↓ 28 

A109 135,150 76.95 thymol 0.10 177.78 0.41 81.58 ↑ 96 

A110 132 77.26 4-(2,3,6-Trimethylphenyl)-2-butanone 0.24 6.95 0.12 9.10 ↓ 65 

A111 60,73 78.28 decanoic acid 0.27 15.20 0.20 16.64 ↓ 97 

A112 135 78.62 p-tert-butyl-phenol 9.49 177.87 6.11 160.77 ↑ 97 

A113 173 78.74 3,3,5,6-Tetramethyl-1-indanone 0.10 121.92 0.69 120.24 ↑ 86 

A114 105 81.90 benzenecarboxylic acid 0.04 168.85 0.34 87.80 ↑ 92 

A115 117 82.31 indole 0.02 24.02 0.06 7.43 ↑ 85 

A116 105 83.26 benzophenone 0.08 4.55 0.15 3.17 ↑ 76 

aIEC - ion extraction chromatogram; bRetention time (min); c VOM- volatile organic metabolite. 
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It can be observed that most of metabolites were identified in all samples with a FO higher than 

90 %, where the maximum relative area was obtained for dimethyl disulfide both in CTL and BC 

groups, followed by phenol in the CTL group and 1,2-dihydro-1,1,6-trimethylnaphthalene in the BC 

group. Regarding the relative area values obtained for the BC group, most VOMs were down-

regulated with exception of 2-pentanone, 1-(2-furanyl)-ethanone, hexanal, 4-heptanone, 2-

methoxythiophene, 1,2,3-trimethylbenzene, 2-methyl-5-(methylthio)-furan, among others, as shown 

in Table 4.1.3. Some of these have been already reported in literature, namely ethylbenzene and acetic 

acid were found as discriminant when associated with CTL in a study conducted by Ahmed et al. 

[137] where the authors investigated the possibility of faecal VOMs as potential diagnostic 

biomarkers for inflammatory bowel disease. Silva et al. [127,128] also reported phenols as the major 

chemical family identified in urine from the oncologic group. Furthermore, Raman et al. [138] studied 

faecal VOMs in obese humans and identified also acetic acid and phenol as major metabolites. On 

the other hand, Priscilla et al. [59] also identified p-xylene, o-xylene, acetic acid, phenol and p-tert-

butyl-phenol in urine from cancer patients, some of them having higher values in cancer patients. 

 

Multivariate statistical analysis of urine metabolomic profile 

The statistical analysis was performed using the Metaboanalyst 4.0 [134] web server as described 

in the experimental section. Only the VOMs with FO higher than 90% were considered for the 

statistical analysis, in a total of 53 VOMs as presented in Table 3.1.3. Initially, data was transformed 

by log transformation and mean centering approaches, before being subjected to multivariate 

statistical analysis. Partial least square-discriminant analysis (PLS-DA) was used as a supervised 

clustering method to verify the existence of an altered metabolite pattern. Additionally, this type of 

statistical analysis takes into account the variance/covariance between samples of groups where the 

samples are classified into different groups. Regarding the results obtained, a good discrimination 

was achieved (54.3%, total variance) between BC and CTL urine samples suggesting the occurrence 

of metabolic alterations in the groups under study (Figure 3.1.5 A). Then, the top ten metabolites (p-

cymene, 1-methyl-4-(1-methylethenyl)-benzene, 4-heptanone, trimethyl trisulfide, acetic acid, 

dimethyl disulfide, 2-pentylfuran, 1,2-dihydro-1,1,6-trimethylnaphthalene, α-terpinene and 2-

methyl-3-phenyl-2-propenal) with the highest contribution to group discrimination were selected with 

variable importance in projection (VIP >1) (Figure 3.1.5 B). 
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Figure 3. 1. 5 - (A) Score plots of partial least square discriminant analysis (PLS-DA) and (B) VIP 

scores selected by the PLS-DA analysis. For identification please see Table 3.1.3. 

Furthermore, the orthogonal partial least squares-discriminant (OPLS-DA) analysis was applied 

on urine metabolomic profile dataset in order to maximize the separation of BC and CTL groups. 

Significant group separation was observed in OPLS-DA score plot between BC and CTL groups 

indicating intrinsic metabolic alterations in each group (Figure 3.1.6 A). To attest the robustness of 

the model, a random permutation test with 1000 permutations was performed with OPLS-DA (Figure 

3.1.6 B). The permutation test yielded an R2 (represents goodness of fit) as 0.833 and a Q2 (represents 

predictive ability) of 0.742 indicating that the model is not over fitted and have a relative good 

predictive ability to distinguish between study groups. Additionally, the OPLS-DA uses class 

information allowing to show which variables are responsible for class discrimination using the 

predictive information of the first component. The main advantage of OPLS-DA when compared to 

PLS-DA is that a single component is used as a predictor for the class, while the other components 

describe the variation orthogonal to the first predictive component [139]. To further evaluate the 

VOMs predictive value to discriminate between BC patients and CTL, a ROC curve analysis was 

generated using the top ten metabolites identified by VIP values (Fig. 3.1.6 C and D). This type of 

analysis is used for the classification of true positives and false positives and the predictive ability is 

measured using the area under the curve (AUC) [140,141]. Xia et al. [108] reported that a value of 

AUC between 0.9 - 1.0 is excellent, between 0.8 – 0.9 is good, and comparing the results obtained, 

these were very good (AUC = 0.842). The AUC can be interpreted as the probability that a randomly 

select diseased subject is ranked as more probable to be diseased than a randomly select healthy 

(A) (B)
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subject [108]. The greater AUC value gives us indication of the effectiveness to separate the control 

(CTL) group from the BC group. 

 

Figure 3. 1. 6 - (A) Loading score plots of orthogonal projection to OPLS-DA analysis, (B) model 

validation by permutation test based on 1000 permutations of VOMs obtained by GC-qMS of urine 

samples from the 2 groups under study, (C) ROC curves for the predictive model with a combination 

of metabolites calculated from the logistic regression analysis using the ten metabolites selected by 

the VIP (> 1.0) values, and (D) ROC curve for the top 4 metabolites with the highest ability to 

discriminate BC patients against CTLs. 

Furthermore, random forest (RF) was carried out to determine the ability of metabolites to 

accurately classify the study subjects into their corresponding groups.  

  

(A) (B)

(C) (D)
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Figure 3. 1. 7 - (A) RF classification of urine metabolites from BC and CTL groups which indicates and overall error of 0.0 for BC and 0.03 for CTL, 

(B) Features ranked by their contributions to classification accuracy (Mean Decrease Accuracy) and (C) Heat map visualization and hierarchical 

clustering analysis using the 10 metabolites with significance (p<0.05) by Pearson´s distance analysis. 

(A) (C)

(C)
(B)
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It uses an ensemble of classification trees (in this case 1000), each of which is grown by random 

feature selection from a bootstrap sample at each branch. RF classified BC and CTL groups with an 

accuracy of 100 and 90 % respectively, with an out of bag (OOB) classification error rate of 0.0211 

(Figure 3.1.7 A-C) where the major contribution of VOMs for classification are shown in Figure 3.1.7 

B. The OOB error rate is a measure of the prediction error of machine learning models such as RF. 

OOB is calculated by bootstrapping data, training data on one part and calculating error on the 

remaining. Since its calculation is for 1000s of trees, variances of error estimate are reduced. Tests 

have shown that OOB error is a reliable as a cross validation method [142]. 

Additionally, the heat map was constructed with the ten selected VOMs by VIP > 1, using 

Pearson´s correlation, providing intuitive visualization of the data set and was used to identify 

samples or features that are unusually high or low (Figure 3.1.7 C). Here, it could be observed that, 

for the majority of VOMs from the CTL group, the levels were higher than in the BC group. 

Finally, the metabolic pathway analysis was performed using the metabolites with VIP values 

higher than 1, in order to explore which pathways were altered in the groups under study. In tis type 

of analysis, the matched nodes show varied heat map colors and is based on p value while the node 

radius is determined based on the pathway impact values. Then, the pathway name is shown as mouse-

over tooltip. If we click the corresponding node it will launch the corresponding pathway view, 

showing which metabolites allowed the matching. Figure 3.1.8 A and B show the pathway impact for 

BC and CTL groups, respectively. It can be observed that the pathways with the highest impact were 

the pyruvate and sulfur metabolism due to acetic acid that was found lower in BC group when 

compared with CTL group. 
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Figure 3. 1. 8 - (A) The metabolome view map of significant altered metabolic pathways observed in 

urine samples from BC and CTL groups and (B) the pyruvate metabolism. The map was generated 

using reference map by KEGG. C00033 represents acetic acid. 

This metabolite according to the human metabolome database, is normally found in most tissues 

(liver, kidney, among others) and in several biofluids, namely saliva [51] and urine [127]. It results 

from several reactions namely from pyruvate metabolism, ethanol degradation and aspartate 

metabolism.  

Based on the results obtained, a successful discrimination of tissue samples was achieved, 

according to the group showing that the volatomic tissue profile can be a useful approach to identify 

potential BC biomarkers. Also, these results suggested the possibility to identify endogenous 

metabolites as a platform to discover- potential BC biomarkers and paves a way to investigate the 

related metabolomic pathways to improve the BC diagnostic tools. 

 

Conclusions 

This work described the development and optimization of and HS-SPME with GC-qMS 

methodology tandem with chemometric tools to analyze the VOMs of urine samples from BC and 

CTL groups. The CCD model was used in order to optimize the HS-SPME conditions and the results 

showed that the extraction temperature and extraction time were the factors that affected the analytical 

response. The best extraction conditions were reached by adding 15% (w/v) of NaCl to urine samples, 

and then extracting the VOMs using a CAR/PDMS fiber coating for 75 min at 50 °C. The developed 

HS-SPME method was applied to urine samples to discriminate between BC and CTL groups, 

Pyruvate metabolism
Sulfur metabolism
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showing promising results that are essential to be explored. From the GC-qMS analysis, 116 VOMs 

were identified and multivariate statistical analysis revealed some metabolites significantly altered in 

BC patients. Of the metabolites identified, 3-methyl-thiophene, 4-heptanone, α-terpinene, 2-

pentylfuran, p-cymene, trimethyl trisulfide, 1-methyl-4-(1-methylethenyl)-benzene, acetic acid, 2-

methyl-3-phenyl-2-propenal and 1,2-dihydro-1,1,6-trimethylnaphthalene showed the utmost 

sensitivity and specificity to discriminate BC patients from healthy controls. The analysis of the plots 

leads to a metabolomic pattern comprising an array of several biochemical pathways altered in BC 

patients. The metabolic pathway analysis indicated that the discriminatory metabolites could be 

originated from several dysregulated pathways in BC such as pyruvate and sulfur metabolism. These 

results suggested the possibility to identify endogenous metabolites as a platform to discovery 

potential BC biomarkers and paves a way to investigate the related metabolomic pathways to improve 

the diagnostic tools of BC. 
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3.2| 1H NMR metabolomic urinary profile in breast cancer: a 

feasibility study 
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Abstract 

BC remains the second leading cause of death among women worldwide. An emerging approach 

based on the identification of endogenous metabolites (EMs) and the establishment of the 

metabolomic fingerprint of biological fluids constitutes a new frontier in medical diagnostics and a 

promising strategy to differentiate cancer patients from healthy individuals. 

In this work we aimed to establish the urinary metabolomic patterns from 40 BC patients and 38 

CTLs using 1H-NMR, as a powerful approach to identify a set of BC-specific metabolites which 

might be employed in the diagnostic of BC. OPLS-DA analysis was applied to 1H-NMR processed 

data matrix. Metabolomic patterns distinguished BC from CTL urine samples suggesting unique 

metabolite profiles for each investigated group. A total of 10 metabolites exhibited the highest 

contribution towards discriminating BC patients from CTLs (VIP >1, p < 0.05). The discrimination 

efficiency and accuracy of the urinary EMs were ascertained by ROC curve analysis that allowed the 

identification of some metabolites with the highest sensitivities and specificities to discriminate BC 

patients from healthy controls. The metabolomic pathway analysis indicated several metabolism 

pathways disruptions including amino acids and carbohydrates metabolism, in BC patients. The 

obtained results support the high throughput potential of NMR-based urinary metabolomics patterns 

in discrimination BC patients from CTL. Further investigations could unravel novel mechanistic 

insights into disease pathophysiology, monitor disease recurrence and predict patient response 

towards therapy. 

 

Keywords: Breast cancer; 1H NMR; Urine; Metabolomics. 
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Introduction 

The global cancer burden is estimated to have risen to 18.1 million new cases and 9.6 million 

deaths in 2018 [143], being the second leading cause of death after cardiovascular diseases. This 

increasing trend is due to several factors, including ageing, population growth as well as the changing 

prevalence of certain causes of cancer linked to social and economic development [143]. Cancers of 

the lung and female breast are the leading types worldwide in terms of the number of new cases; for 

each of these types, approximately 2.1 million diagnoses were diagnosed in 2018, contributing about 

11.6 % of the total cancer incidence [143]. BC is also the leading cause of cancer death in women 

(15.0 %), followed by lung cancer (13.8 %) and colorectal cancer (9.5 %), which are also the second 

and third most common types of cancer, respectively [143]. Early stage BC patients have higher 5-

year survival rates than those diagnosed at later stages. Improved early BC detection methods could 

reduce patient mortality and improve therapeutic responses and prognosis [123]. Common methods 

of routine surveillance for BC include periodic mammography, self- or physician performed 

examination, and blood tests of tumor markers, including cancer antigens (CA 15.3, CA 27.29), 

carcinoembryonic antigen (CEA), tissue polypeptide specific-antigen, and human epidermal growth 

factor receptor 2 (the shed form). CA 15.3 and CEA represent the most widely used tumor markers 

[122]. An additional factor that contributes to the poor prognosis of patients diagnosed with BC is the 

fact that the diagnosis is often delayed due to limitations in screening tests [144]. A recent approach 

is metabolomics that studies a subset of small molecules derived from the global or targeted analysis 

of metabolic profiles from biological samples, such as blood, urine [145–148], cells, or tissue 

[135,149–152] representing a valuable tool in the detection of several diseases, including cancer. 

Several reports have already demonstrated the importance of studying the metabolome as a mean to 

discover a set of metabolites to be used as cancer biomarkers [127,128,153]. The study of specific 

metabolites to identify cancer fingerprints or signatures can aid in cancer detection and prognosis as 

well as the assessment of pharmacodynamic effects of therapy [149]. The most common approaches 

in metabolomics involve GC-MS [146], LC-MS [154] or NMR [67,123,127,128]. 

MS includes a separation stage using LC or GC and can discriminate between compounds based 

on mass-to-charge (m/z) ratio in charged particles. Although compared with NMR, MS exhibits a 

greater sensitivity, sample preparation is laborious and dependent on metabolite chemical properties 

[155]. In addition, MS lacks accuracy and precision producing an enhanced resolution profile with 

numerous peaks. However, only approximately 5% of these peaks are associated with known 

components [156]. Recently, non-invasive sampling strategies, including exhaled breath, urine and 

saliva, have emerged as attractive and useful approaches when coupled to high-throughput techniques 

such as NMR (1H NMR) [150,157,158]. NMR spectroscopy is a particularly appealing platform based 
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on the energy absorption and re-emission of the nuclei due to the magnetic field, where the selected 

isotopes having a momentum in an external magnetic field will give a signal. The most targeted 

isotope in samples with a biological origin is hydrogen (via 1H NMR) given its abundance in 

biological samples. Furthermore, other isotopes that are less abundant, such as carbon (via 13C NMR) 

or phosphorous (via 31P NMR) can also be used to provide additional information regarding specific 

metabolites[27]. The result is an NMR spectrum, and each separate resonance presented in the 

spectrum corresponds to a part of the spectral pattern of a unique metabolite and provides structural 

information that can simplify the identification of an unknown metabolite. The spectral peak areas 

generated by each molecule are used as an indirect measure of the amount of the metabolite present 

in the sample, not only allowing the quantification of the concentration of a metabolite but also 

providing information regarding its chemical structure. This technique presents several advantages, 

such as being a rapid, robust, cost-effective, highly reproducible, non-destructive, and fully 

quantitative. In addition, it requires no prior compound separation or derivatization generating spectra 

from a biological sample within few minutes being useful for conducting metabolomic studies on 

biofluids [27,159,160]. Zhang et al. [120] reviewed the most common methods for NMR 

spectroscopy based metabolite profiling, data processing and analysis. Bingol et al. [161] recently 

overview some advances in metabolomics field and contribution to targeted and untargeted 

approaches. A variety of studies have been conducted by NMR in disease research using urine 

[123,150], saliva [158,162], serum [163], plasma [164,165], tissue [166–169], and in cell culture 

[170–172].  

The aim of this study was to evaluate the ability of 1H NMR spectroscopy combined with 

multivariate statistical tools to differentiate and discriminate the urinary metabolomic patterns from 

BC patients and CTLs as a powerful approach to identify a set of BC-specific metabolites which 

might be employed in the diagnostic of BC. 

 

Materials and Methods 

Reagents 

3-(Trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) and deuterium oxide (D2O) were 

supplied by Acros Organics (Geel, Belgium).Potassium dihydrogen phosphate (KH2PO4), sodium 

azide (NaN3) and potassium deuteroxide solution (KOD) were purchased from Panreac (Barcelona, 

Spain) and Sigma Aldrich (St. Louis, MO, USA). 
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Urine collection 

To investigate the urinary NMR profile, 40 urine samples from female patients with BC (n=40, 

age range 40-74 years, average 59 ± 10 years) and 38 urine samples from healthy female volunteers 

without any known pathology (n=38, age range 40-72 years, average 53 ± 8 years; control group - 

CTL) were obtained from the Haemato-Oncology Unit of Hospital Dr. Nélio Mendonça (Funchal, 

Portugal) and Blood Donors Bank of the same Hospital, respectively (Table 3.2.1), were randomly 

selected among the volunteers. Patients did not receive any neoadjuvant chemotherapy or radiation 

therapy prior to sample collection. Healthy controls were age- and gender-matched patients, and had 

no declared history of cancer or gastrointestinal symptoms. Exclusion criteria included pregnancy, 

inflammatory conditions, mental disorders, gastrointestinal tract disorders, hypertension, 

uncontrolled bacterial, viral, or fungal infection and diabetes mellitus. 

 

Table 3. 2. 1 - List of collected urine samples from BC patients and CTLs. SD: standard deviation. 

Sample group N. subjects Age range/years Mean Age ± SD 

Breast Cancer(BC) n = 40 40-74 59 ± 10 

Control (CTL) n = 38 40-72 53 ± 8 

 

The study was approved by the Ethic Committee of Hospital Dr. Nélio Mendonça (Approval no. 

S.1708625/2017). Written informed consent for the study was obtained from all participants. Each 

individual (either patient or healthy volunteer) provided a sample of morning urine (after overnight 

fasting) in a 20 mL sterile container. The samples were aliquoted into 4 mL glass vials and frozen at 

-80ºC until use in the experiments. 

Urine samples were thawed and centrifuged (8000 rpm for 5 min) to remove any suspended cells 

and other precipitated material. Then, 540 µL of urine was mixed with 60 µL of a buffer solution 

(KH2PO4, 1.5 M in D2O) containing 0.1% of TSP-d4 (used as chemical shift reference) and sodium 

azide (NaN3, 2 mM). The pH was adjusted to 7.00 ± 0.02 by adding small amounts of KOD. 

 

NMR measurements 

NMR spectral acquisition was performed using a Bruker Advance II Plus NMR spectrometer 

equipped with a 400 MHz magnet UltraShield™ 400 Plus at 300K. All NMR spectra acquisition and 

pre-processing were performed under the control of a workstation with TopSpin 3.5pl7 (Bruker 

BioSpin). For each sample, a standard 1D nuclear overhauser enhancement spectroscopy (NOESY) 

pulse sequence (noesypr1d) was used and solvent signal suppression was achieved by presaturation 

during relaxation and mixing time (SW 4807.692 Hz, TD 64 K data points, relaxation delay 5 s, 128 
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scans). The shimming was calibrated automatically. Also, all spectra were processed using a line 

broadening (1.0 Hz) and baseline automatically corrected. The NMR spectrum of each sample was 

aligned with reference to the TSP signal at δ 0.00 ppm. Spectral regions within the range of 0.94 to 

10 ppm were analyzed after excluding the sub-region δ 4.55-6.05 to remove variability arising from 

water suppression and possible cross-relaxation effect on the urea signal via solvent exchanging 

protons. As already known, the TSP signal may be affected by proteins or other macromolecules 

present in samples [173] and for that reason in the preparation of urine samples before NMR analysis, 

the step of centrifugation was taken into account and the rotations per minute (rpm) was used in order 

to remove any proteins present in samples. 

The analysis of NMR spectral data was performed using the Chenomx NMR Suite 8.2 (Chenomx 

Inc., Alberta, Canada) and relative concentrations (in mM) of metabolites were determined using the 

400MHz library from Chenomx NMR Suite 8.2, which compares the integral of a known reference 

signal (TSP) with signals derived from a library of compounds containing chemical shifts and peak 

multiplicities. 

In addition, the identication of selected metabolites was also cross checked from the Human 

Metabolome Database (HMDB) [174] and literature [175]. Regarding the metabolites that were not 

available in the library, identification was accomplished by running a standard solution and the 

relative concentration was calculated manually. This software not only allows the identification of 

compounds but also access their quantification based on advanced algorithms turning into a very 

straightforward tool to analyze NMR spectra. 

 

Statistical analysis 

Statistical analyses were performed using the web server Metaboanalyst 3.0 [134] where sample 

specific normalization allowed the manual adjustment of relative concentrations based on biological 

inputs (i.e., volume, mass), and row-wise normalization allowed the general-purpose adjustment for 

differences among samples. Regarding data transformation and scaling were accomplished using two 

different approaches to make features more comparable, raw data were scaled using mean-centring 

and cubic root transformation, with sample normalization by the sum. 

Then, multivariate statistical analyzes namely, PCA, PLS-DA and OPLS-DA were applied to the 

urinary metabolomic profile dataset to provide insights into the separations between the groups. 

Furthermore, hierarchical cluster analysis by K-means of the 2 groups in this study was performed 

and Pearson´s correlation was used to generate the heat map using the 32 metabolites to identify 

clustering patterns. RF classification was performed to determine the ability of the metabolites to 

accurately classify the study subjects into their corresponding groups. Moreover, the ROCs were 
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attained to verify which metabolites had the highest sensitivity/specificity for a BC diagnosis. Finally, 

the metabolites were used for the metabolic pathway analysis to identify the most relevant metabolic 

pathways involved in the BC and CTL groups. 

 

Results and Discussion 

Urinary metabolomic pattern based on 1H NMR 

1H NMR analysis was performed according to the procedure described in the Methods section. A 

representative first dimension urine 1H NMR spectrum, referenced to TSP (0. 0 ppm), from a BC 

patient is shown in Figure 3.2.1, and metabolites are indicated based on their chemical shifts. Table 

2 represents the identification of metabolites as well as their minimum and maximum relative 

concentrations (mM) for each group and the respective percentage of occurrence (FO). Each sample 

analysis was performed in triplicate and the relative standard deviation (RSD) was lower than 2 %. 

For most metabolites, the FO was greater than 90 % with the following exceptions: valine, 

glutamine, carnitine, trigonelline, 4-cresol sulphate and hypoxanthine for the BC group; α-

hydroxyisobutyrate, trimethylamine N-oxide, hypoxanthine and glycine for the CTL group. 

Regarding relative concentrations (mM), the highest level was obtained for creatinine followed by 

hippurate in the BC group and citrate in the CTL group. In addition, taurine and mannitol presented 

higher levels in BC group, respectively. It can also be highlighted that the majority of metabolites 

were down-regulated with regard to the BC group, except α-hydroxybutyrate, cis-aconitate, mannitol, 

hippurate and 3-methylhistidine, that were up-regulated, also identified by Carrola et al. [150]. As 

shown in Figure 3.2.1, 33 metabolites were identified and quantified. The main metabolites identified 

in urine mainly resulted from tricarboxylate (e.g., citrate, cis-aconitate), methane (e.g., 

dimethylamine, trimethylamine N-oxide) and amino acid metabolism (e.g., hippurate, glycine). The 

most intense signals in urine were obtained from creatinine, creatine, hippurate, citrate and 

trimethylamine N-oxide. 
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Figure 3. 2. 1 - Typical 400 MHz representative urine 1H NMR spectrum from a BC patient, 

referenced to TSP (δ 0. 0 ppm). For peak identification see Table 3.2.2. 

These metabolites were already identified in several studies that use urine cancer sample 

[150,169,176]. Trimethylamine N-oxide is produced in the liver by intestinal bacteria from dietary 

quaternary amines, such as choline and carnitine trough trimethylamine (TMA) via flavin-containing 

monooxygenase (FMO3), and the levels in urine or plasma are used to determine FMO3 deficiency 

[177–181]. Creatinine is subsequently produced via a biological system involving creatine, 

phosphocreatine, and adenosine triphosphate (ATP), whereas hippurate and citrate are derived from 

phenylalanine metabolism and the citrate cycle [182]. The concentration of creatinine is age and sex 

dependent, decreasing with age and varying throughout the day. Normally, the concentration of 

creatinine is increased in males when compared with females given the increased body mass index 

[183]. Creatinine production from the muscles is proportional to the total muscle mass and muscle 

catabolism. In individuals with a relatively low muscle mass, including children, women, and cancer 

patients,  serum creatinine levels are reduced for a given glomerular filtration rate (GFR), which is 

the flow rate of filtered fluid through the kidney, thus providing information on kidney function [184]. 
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Table 3. 2. 2 - Metabolites identified in urine samples from BC patients and CTL through 1H NMR spectroscopy, relative concentrations (mM), variation 

of relative concentration regarding to BC group, K-S values for BC and CTL groups and frequency of occurrence (FO in %) of metabolites for each 

group. 

Peak n. Metabolite 
δ (ppm) 

Relative concentrations (mM) 
K-S values p-value 

(˂ 0.05) 
 Variation  

FO (%) 
BC CTL 

Multiplicity Min Max Average Min Max Average BC CTL BC CTL 

1 valine 1.030 (d) 0.10 1.24 0.67 0.26 1.63 0.95 0.166 0.180 4.127 e-04 ↓ 68 95 

2 α-hydroxybutyrate 1.188 (d) 0.35 4.89 2.62 0.47 2.06 1.26 0.186 0.175 9.201 e-06 ↑ 95 100 

3 β-hydroxyisovalerate 1.256 (s), 2.352 (s) 0.08 1.91 0.99 0.57 2.89 1.73 0.153 0.984 5.048 e-05 ↓ 100 98 

4 lactate 1.319 (d) 0.54 5.39 2.97 1.57 10.31 5.94 0.107 0.069 1.780 e-06 ↓ 100 98 

5 threonine 1.317 (d) 0.61 5.53 3.07 1.60 8.81 5.21 0.098 0.076 1.599 e-05 ↓ 93 98 

6 α-hydroxyisobutyrate 1.346 (s) 0.07 1.77 0.92 1.13 6.64 3.89 0.149 0.092 2.221 e-03 ↓ 100 78 

7 alanine 1.470 (d) 0.24 5.58 2.91 0.62 8.51 4.57 0.098 0.097 3.421 e-04 ↓ 100 100 

8 acetate 1.901 (s) 0.28 4.31 2.3 1.10 6.23 3.66 0.178 0.141 8.737 e-03 ↓ 96 95 

9 glutamine 2.105 (t) 0.34 11.00 5.67 1.47 20.67 11.07 0.193 0.098 5.407 e-03 ↓ 67 93 

10 acetone 2.221 (s) 0.07 4.10 2.08 0.49 4.84 2.66 0.164 0.084 3.367 e-02 ↓ 92 100 

11 carnitine 2.407 (s), 2.447 (s), 3.213 (s) 0.09 1.94 1.01 0.38 6.25 3.32 0.164 0.104 9.002 e-05 ↓ 80 100 

12 4-cresol sulphate 2.350 (s), 7.200 (d) 0.49 7.09 3.79 1.22 11.91 6.57 0.156 0.097 4.315 e-07 ↓ 84 100 

13 pyruvate 2.362 (s) 0.14 4.75 2.44 1.90 7.36 4.63 0.173 0.174 8.880 e-06 ↓ 100 100 

14 succinate 2.390 (s) 0.07 2.58 1.33 0.55 4.85 2.70 0.122 0.188 1.020 e-02 ↓ 96 100 

15 citrate 2.526 (d), 2.688 (d) 3.17 80.34 41.76 9.14 113.56 61.35 0.157 0.146 6.825 e-07 ↓ 100 100 

16 dimethylamine 2.715 (s) 0.19 11.97 6.08 4.49 15.73 10.11 0.199 0.132 2.488 e-04 ↓ 100 95 

17 α-oxoglutarate 2.996 (t) 0.52 12.35 6.43 1.79 15.55 8.67 0.107 0.144 1.172 e-08 ↓ 92 95 

18 creatinine 3.033 (s), 4.047 (s) 3.29 216.36 109.82 104.24 381.60 242.92 0.129 0.175 1.705 e-04 ↓ 100 100 

19 cis-aconitate 3.114 (d) 0.15 22.15 11.15 1.91 16.44 9.18 0.148 0.149 4.671 e-07 ↑ 100 95 

20 choline 3.189 (s) 0.11 2.93 1.52 0.77 3.85 2.31 0.167 0.164 8.094 e-03 ↓ 96 100 

21 betaine 3.252 (s) 0.08 4.13 2.11 0.46 4.61 2.53 0.152 0.154 8.105 e-03 ↓ 100 93 

22 trimethylamine N-oxide 3.254 (s) 0.52 18.04 9.28 1.70 33.81 17.76 0.146 0.082 1.418 e-02 ↓ 92 85 

23 taurine 3.251 (t) 1.05 21.79 11.42 2.59 18.66 10.63 0.200 0.166 n.s. ↑ 92 98 

24 4-hydroxyphenylacetate 3.438 (s) 0.14 4.63 2.38 0.38 5.95 3.17 0.188 0.087 3.503 e-04 ↓ 88 90 
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Peak n. Metabolite 
δ (ppm) 

Relative concentrations (mM) 
K-S values p-value 

(˂ 0.05) 
 Variation  

FO (%) 
BC CTL 

Multiplicity Min Max Average Min Max Average BC CTL BC CTL 

25 glycine 3.553 (s) 1.81 33.87 17.84 1.93 45.26 23.59 0.153 0.168 1.401 e-02 ↓ 100 88 

26 mannitol 3.671 (m) 2.07 78.45 40.26 13.85 63.76 38.81 0.143 0.153 n.s. ↑ 92 100 

27 guanidoacetate 3.786 (s) 1.71 21.30 11.51 7.10 29.50 18.30 0.122 0.118 4.738 e-03 ↓ 92 100 

28 serine 3.840 (q) 1.71 40.85 21.29 15.00 71.74 43.37 0.104 0.190 9.040 e-05 ↓ 92 95 

29 creatine 3.920 (s) 1.15 28.13 14.64 4.20 46.93 25.56 0.222 0.141 n.s. ↓ 92 98 

30 hippurate 3.957 (d), 7.538 (t), 7.628 (t), 7.823 (d) 2.10 130.18 66.14 5.56 70.01 37.79 0.229 0.163 3.085 e-04 ↑ 96 93 

31 trigonelline 4.428 (s), 8.073 (m), 8.834 (m) 0.10 6.2 3.15 0.44 17.79 9.12 0.136 0.104 1.296 e-03 ↓ 88 100 

32 3-methylhistidine 8.081 (s) 0.32 16.91 8.62 0.56 12.51 6.64 0.220 0.141 n.s. ↑ 100 93 

33 hypoxanthine 8.203 (s) 0.23 2.56 1.4 0.28 2.77 1.53 0.228 0.151 n.s. ↓ 64 80 

Legend: (s), singlet; (d), duplet; (t), triplet; (m), multiplet; (dd), double duplet; Min – minimum concentration; Max: maximum concentration; n.s. none significant between the groups under analysis; K-S- Kolmogorov-

Smirnov tests. 
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Multivariate statistical analysis of urinary metabolomic profile 

The first step before performing multivariate statistical analysis was to verify the normal 

distribution of the urinary metabolomic profile dataset using the Kolmogorov-Smirnov test (Table 

3.2.2). All samples under analysis exhibited a normal distribution within each assigned group (p > 

0.05). 

To obtain a reliable dataset to apply multivariate analysis, the dataset was evaluated to exclude the 

metabolites that had an FO < 90 %. The dataset used to perform the statistical analysis also excluded 

creatinine as mentioned above as its concentration is dependent on age, gender and disease status, 

decreasing with age and varying throughout the day. Regarding creatinine relative concentration 

obtained in this study and the respective differences between groups under study, this metabolite 

might be considered a potential artefact given that creatinine values may be altered, as the generation 

of creatinine may not be simply a product of muscle mass but influenced by muscle function, muscle 

composition, activity, diet and health status [185]. Based on this, the dataset composed of 32 

metabolites and 70 samples (32 BC and 38 CTL) that fulfilled this condition was subject to principal 

component analysis (PCA). PCA is an unsupervised method performed to visualize the 

similarities/differences between urine samples profiles of groups in this study. In this step, the 

samples were analyzed individually, e.g., without classification according to the groups. PCA score 

plot from urine samples are presented in Figure 3.2.2. 

 

Figure 3. 2. 2 - Scores plot of PCA from urine samples based on 32 metabolites. For numbers 

identification see Table 3.2.2. 
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Although the projection of the variance between samples was performed without classification, it 

is possible to observe that the PCA of urine samples from BC patients and those from CTL presented 

a tendency for the formation of two clusters across the first principal component (PC1) that explains 

54.6 % of the total variance. Most of the metabolites exhibited enormous importance in the variance 

projection of samples. Then, the partial least square-discriminant analysis (PLS-DA) was used as a 

supervised clustering method to maximize the separation between the groups and demonstrated that 

the samples had a tendency to be grouped according with health condition of subject (BC and CTL) 

through its variance/covariance along the first component. Ten differently expressed metabolites that 

exhibited a variable importance in projection (VIP) score greater than 1 were identified: creatine, 

glycine, serine, dimethylamine, trimethylamine N-oxide, α-hydroxyisobutyrate, mannitol, glutamine, 

cis-aconitate and trigonelline (Figure 3.2.3 A-B). 

 

Figure 3. 2. 3 - Score plots of PLS-DA (A) and (B) VIP values of metabolites obtained by 1H NMR 

analysis of urine samples from the 2 groups in study. For number identification see Table 3.2.2. 

Many of these metabolites were already identified in various cancer types, including lung 

[150,186], breast, ovarian [123,144], bladder [187], and gastric cancers [188], in previous reports. 

Additionally, Zhou et al. [189] performed a metabonomics study using serum and urine from BC 

patients based on NMR where citrate, phenylacetylglycine and guanidoacetate exhibited significance 

in the discrimination of BC patients from CTLs. In addition, Slupsky et al. [123] accomplished a 

study using urine from breast and ovarian cancer patients to discover metabolites for an early 

diagnosis.  
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Figure 3. 2. 4 - (A) Heat map visualization and hierarchical clustering analysis and was constructed using the 32 metabolites by Pearson distance 

analysis; (B) clustering analysis by K-means of the 2 groups; (C) RF classification of urine metabolites from BC and CTL groups which indicated and 

overall error of 0.19 for BC and 0.08 for CTL. 

8  10  19   7  21  11 15  20 29 16   9   25 27  30  6    2   3   24  33 12   4  26  32 17 13  28 14  23   5  31  22  1

8  10  19   7  21  11 15  20 29 16   9   25 27  30  6    2   3   24  33 12   4  26  32 17 13  28 14  23   5  31  22  1

8  10  19   7  21  11 15  20 29 16   9   25 27  30  6    2   3   24  33 12   4  26  32 17 13  28 14  23   5  31  22  1

(B)

(C)

(A)
30

6

33

8

32

27

26

24

12

9

7

4

5

15

25

28

31

10

17

13

14

23

19

20

3

21

16

22

2

1

11

29



 

 

88 Catarina Silva (2019) 

The authors found that certain intermediates of the tricarboxylic acid cycle and metabolites relating 

to energy metabolism, amino acids, and gut microbial metabolism were perturbed. With regards to 

aminoacids as raw materials of protein synthesis and catabolism products in vivo their changes 

whether in composition and concentration can reflect the metabolic status of patients [189]. 

Moreover, the heat map was constructed using Pearson´s correlation, providing intuitive visualization 

of the data set. The heat map contains the 32 metabolites and was used to identify samples or features 

that are unusually high or low (Figure 3.2.4 A). As noted in Figure 3.2.4, the higher relative 

concentrations for the majority of metabolites were found in the CTL group whereas the lowest 

relative concentrations were noted in the BC group. K-means clustering analysis was also performed 

as a non-hierarchical clustering technique. The method initially creates k random clusters (k is the 

number of groups in the study). The programme then calculates the mean of each cluster (indicated 

by the shaded line). If an observation is closer to the centroid of another cluster, then the observation 

is made by a member of that cluster. This process is repeated until none of the observations are 

reassigned to a different cluster (Figure 3.2.4 B). For this analysis, 8 BC and 25 CTL samples were 

included in cluster 1; 1 BC and 6 CTL samples were included in cluster 2; 23 BC and 7 CTL samples 

were included in cluster 3. 

RF analysis was performed to determine the ability of metabolites to accurately classify the study 

subjects into their corresponding group. The method uses an ensemble of classification trees (in this 

case 1000), and each of tree is grown by random feature selection from a bootstrap sample at each 

branch. Class prediction is based on the majority vote of the ensemble. These out-of-bag (OOB) data 

are then subsequently used as a test sample to obtain an unbiased estimate of the classification error 

(OOB error). The average value was 0.13, indicating that the accuracy of classification was lower 

(approximately 18 %) for the BC than for the CTL group at 8 % (Figure 3.2.4 C). 

Additionally, orthogonal partial least squares-discriminant (OPLS-DA) analysis was applied to the 

urinary metabolomic profile dataset to maximize the separation between the CTL and BC groups as 

presented in Figure 3.2.5 (A and B). OPLS-DA uses class information to demonstrate variables 

responsible for class discrimination using the predictive information of the first component. The main 

advantage of OPLS-DA when compared with PLS-DA is that a single component is used as a 

predictor for the class, whereas the other components describe the variation orthogonal to the first 

predictive component [139]. 
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Figure 3. 2. 5 – (A) Score plots of OPLS-DA analysis and (B) model validation by permutation tests 

based on prediction accuracy of metabolites obtained by 1H NMR analysis of urine samples from the 

2 groups in study. For number identification see Table 3.2.2. 

To attest the robustness of the model, a random permutation test with 1000 permutations was 

performed with OPLS-DA (Figure 3.2.5 C). The permutation test yielded R2 (represents goodness of 

fit) as 0.846 and Q2 (represents predictive ability) as 0.770 indicating that the model is not over fitted 

and have a relative good predictive ability to distinguish between study groups. Moreover, receiver 

operating characteristic curves (ROCs) was generated for the two groups (CTL-BC) using the 32 

identified metabolites and is presented in Figure 3.2.6. 

As noted in the Figure, as the number of metabolites increases the area under the curve (AUC) 

also increases. Thus, using only 2 metabolites, the AUC value obtained was 0.92 for the CTL-BC 

demonstrating the higher sensitivity/specificity to distinguish the groups. The metabolites with 

significance were creatine, glycine, serine, α-hydroxyisobutyrate and trimethylamine N-oxide. In 

addition, using all 32 metabolites it can be achieved the highest area under the curve. These results 

are in accordance with the literature, where Xia et al. [108], an AUC value between 0.9 and 1.0 is 

excellent, and a value between 0.8 and 0.9 is good, comparing the results, the values obtained were 

very good. A greater AUC value indicates a greater ability to distinguish the CTL from the BC group.  

 

(A) (B)
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Figure 3. 2. 6 - ROC curves for the predictive model. A combination metabolites model calculated 

from the logistic regression analysis using the 32 identified metabolites for distinguishing BC patients 

from CTL. 

The AUC can be interpreted as the probability that a randomly selected diseased subject is 

classified as diseased than a casually selected healthy subject [108]. 

Finally, the metabolic pathway analysis was performed to determine which pathways were altered 

in the groups under study.  

 

Figure 3. 2. 7 - The metabolome view map (A) of significant altered metabolic pathways observed in 

urine from BC and CTL groups and (B) metabolic pathways with highest impact that include the most 

promising potential BC biomarkers identified in this study. 
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Figure 3. 2. 7 - The metabolome view map (A) of significant altered metabolic pathways observed in 

urine from BC and CTL groups and (B) metabolic pathways with highest impact that include the most 

promising potential BC biomarkers identified in this study. 

Figure 3.2.7 (A and B) presents the impacted pathways in the CTL-BC groups, respectively. The 

most impacted metabolic pathways were glycine metabolism, glutamate metabolism; butanoate 

metabolism; glycolysis, citrate cycle (TCA cycle), taurine metabolism and pyruvate metabolisms, 

indicated by the red and yellow colors. It can be highlighted that the pathway with highest impact 

was the glycine metabolism (Figure 3.2.7 B). Based on these results, a successful differentiation and 

discrimination of samples was achieved between CTL and BC group. The results indicate that the 1H 

NMR urinary profile represents a useful approach to identify potential BC biomarkers. 

 

Conclusions 

This study assessed the metabolomic urinary profile in BC patients in active and follow-up stages 

compared with that in healthy volunteers using 1H NMR combined with multivariate statistical tools 

(PCA, PLS-DA and OPLS-DA) were applied to two groups (BC and CTL). Thirty-three metabolites 

were identified and quantified using Chenomx software. Multivariate statistical analysis revealed 

some metabolites were significantly altered in BC patients. Of the metabolites detected, creatine, 

glycine, serine, dimethylamine, trimethylamine N-oxide, α-hydroxyisobutyrate, mannitol, glutamine, 

cis-aconitate and trigonelline exhibited the highest sensitivities and specificities to discriminate BC 

patients from healthy controls. Plot analysis revealed a metabolomic biosignature comprising an array 

of several biochemical pathways altered in BC patients. Metabolic pathway analysis indicated that 

the discriminatory metabolites potentially originated from several dysregulated pathways in BC: 

glycine, metabolism, glutamate metabolism; butanoate metabolism; glycolysis, citrate cycle (TCA 
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cycle), taurine metabolism and pyruvate metabolism. These results suggested the possibility of 

identifying endogenous metabolites as a platform to discover potential BC biomarkers and paves a 

way to investigate related metabolomic pathways to improve the diagnostic tools of BC. 
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3.3| Volatile metabolomic signature of human breast cancer 

cell lines 
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Abstract 

BC remains the most prevalent oncologic pathology in women, causing huge psychological, 

economic and social impacts on our society. Currently, the available diagnostic tools have limited 

sensitivity and specificity. Metabolome analysis has emerged as a powerful tool for obtaining 

information about the biological processes that occur in organisms and is a useful platform for 

discovering new biomarkers or make disease diagnosis using different biological samples. VOMs 

from the headspace of cultured BC cells and normal human mammary epithelial cells, were collected 

by HS-SPME and analyzed by GC–MS, thus defining a volatile metabolomic signature. Sixty VOMs 

were identified in all cell lines, belonging to different chemical families. From these, 2-pentanone, 2-

heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were 

detected only in the headspace of cultured cancer cell lines. Multivariate statistical methods were 

used to verify the volatile metabolomic differences between BC cell lines and normal cells to find 

related volatile metabolites that could be associated with BC, providing comprehensive insight into 

VOMs as potential cancer biomarkers. The establishment of the volatile fingerprint of BC cell lines 

presents an opportunity to identify endogenous VOMs to discover biomarkers of BC and the related 

metabolomic pathways, thereby improving the available BC diagnostic tools. 

 

Keywords: BC cell lines; HMEC cells; HS-SPME; GC-MS; VOMs; biomarkers. 
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Introduction 

Although there has been a sustained decline in mortality rates over recent decades, BC continues 

to be the most prevalent malignancy among women worldwide and is a major cause of female deaths. 

A number of associated factors, including age, gender, ethnicity, lifestyle (tobacco, alcohol, diet, and 

lack of exercise) and genetics, such as mutations in the tumor suppressor genes BRCA1 (mutation on 

chromosome 17) and BRCA2 (mutation on chromosome 13), have been identified as the most 

common inherited causes of susceptibility to BC. The BRCA1 and BRCA2 genes encode very large 

proteins that are expressed in a wide variety of different tissues and are implicated in processes such 

as DNA repair and recombination, checkpoint control of the cell cycle, and transcription. Families 

with a high incidence of BC may carry mutations in one or both of these genes, or alternatively, 

members of these families may have similar lifestyle habits and may have been affected by similar 

environmental factors [190,191]. Furthermore, other important gene mutations related to BC 

development include mutations in ATM (ataxia-telangiectasia mutated), TP53 (tumor protein p53), 

and PTEN (phosphatase and tensin homolog deleted on chromosome ten) [192–194]. Most of these 

are rare and often do not increase the risk of BC as much as do mutations in the BRCA genes. 

Detection of BC at an early stage is extremely important to reduce the burden of disease because 

earlier detection leads to better patient outcomes, as  metastatic states are avoided [107,195]. 

Currently, there is no single screening test that is totally reliable, and a number of tests can be 

combined to help detect early stage BC. Current screening techniques include self-examination for 

lumps or nodes, mammography, ultrasound, magnetic resonance imaging and biopsy using a fine 

needle or similar instrument to aspirate or otherwise remove a sample of fluid or cells from any 

suspicious lump or node for microscopic examination [113]. These methods are generally invasive, 

time-consuming and require special medical skills. Therefore, there is a need for non-invasive, 

accurate and rapid screening tests for early detection. In this context, it is useful to identify VOMs 

that may prevent or predict the occurrence of metastasis before it manifests in the patient.  

Metabolomics has emerged as a powerful tool for understanding biological processes that occur 

in humans, and it has mostly been based on the analysis of biofluids, such as blood, saliva, or urine, 

to discover new cancer biomarkers or to  diagnose a disease [196]. The use of cell culture 

metabolomics enables both the discovery of novel biomarkers of pathological conditions and 

investigation of the related metabolomic pathways (Figure 3.3.1). Many of the metabolic processes 

in the body, such as lipid peroxidation, energy metabolism through glycolysis and amino acid 

catabolism are common to all living cells [196]. It is believed that some metabolic pathways might 

be up- or down-regulated in cancer cells and, therefore, metabolome analysis may reveal differences 

between biological samples based on metabolic profiles or fingerprints. Indeed, cancer cells have an 
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altered metabolism compared with normal cells that may lead to the production of specific 

compounds [197]. In recent years, several studies have reported the analysis of cancerous cell lines 

to find potential cancer biomarkers [198–201]. The most recent techniques include the use of 

nanomaterial-based sensors [198], electrochemical sensors [202], or thermal desorption coupled with 

gas chromatography mass spectrometry [152]. However, most of these techniques are expensive and 

time-consuming. In this work, HS-SPME which was developed by the Pawliszyn group [203] in the 

early 90´s and consists of a fiber coated with different polymers extracting a wide range of chemical 

compounds, was selected as an extraction technique. This technique is superior to other extraction 

techniques, in that it is rapid, easy to use, sensitive and does not require a concentration step before 

analysis. 

 

Figure 3. 3. 1 - Formation of some intermediate products of lipid peroxidation. Adapted from Li et 

al. [204]. 

In this study, a comparative analysis of the volatile metabolomic signature of BC cell lines (T-

47D, MDA-MB-231, MCF-7) and normal human mammary epithelial cells (HMEC) was carried out, 

in order to identify BC-specific VOMs and to identify a set of biomarkers that could hopefully be 

correlated with VOMs released in vivo by BC cells. This finding will improve the knowledge about 

the origin of VOMs and providing comprehensive information as potential BC biomarkers. This 

strategy can help reveal novel BC biomarkers that might expand the current understanding of this 
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multi-factorial disease. The GC–qMS analyzes allow specific identification of VOMs, while 

multivariate statistical analysis is able to differentiate and discriminate oncologic from normal cells 

providing proof-of-principle for the detection of different volatile metabolomic patterns in target 

cells.  

 

Materials and Methods 

Reagents and materials 

PBS was purchased from Sigma-Aldrich (St. Louis, MO, USA), sodium chloride was obtained 

from Panreac (Barcelona, Spain), the SPME holder for manual sampling of SPME fiber [50/30 µm 

divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS)] and the glass vials were 

purchased from Supelco (Bellefonte, PA, USA). The SPME fiber was conditioned according to 

manufacturer’s instructions. Before each daily analysis, the fiber was conditioned for 10 min in the 

injector port to prevent carryover. T75 glass flasks were purchased from Ningbo (Ja-Hely 

Technology, China). 

 

Cell lines and cultivation conditions 

The human breast adenocarcinoma cell line MCF-7and human breast carcinoma cell lines T-47D 

and MDA-MB-231 were purchased from the Leibniz Institute DSMZ-German Collection of 

Microorganisms and Cell Cultures (Braunschweig, Germany). MCF-7 was grown in 90% RPMI 1640 

(Life technologies, Gibco®) supplemented with 15% fetal bovine serum (FBS, Life technologies, 

Gibco®), 1% Antibiotic-Antimycotic solution (AA, Life technologies, Gibco®), 1% MEM Non-

Essential Amino Acids solution (Life technologies, Gibco®), 1 mM sodium pyruvate (Sigma-

Aldrich, St. Louis, MO, USA) and 10 µg/mL human insulin (Sigma-Aldrich, St. Louis, MO, USA); 

T-47D cell line was grown in 85% RPMI 1640 supplemented with 15% fetal bovine serum (FBS), 

1% Antibiotic-Antimycotic solution and 10 µg/mL human insulin, while the MDA-MB-231 cell line 

was grown in 85% RPMI 1640 supplemented with 15% fetal bovine serum (FBS) and 1% Antibiotic-

Antimycotic solution. Human mammary epithelial cells (HMEC) were purchased from Life 

technologies (Gibco®) and grown in HUMEC serum-free medium supplemented with 20 µg/mL of 

Antibiotic-Antimycotic solution (Life technologies, Gibco®). All cells were incubated in a 

humidified atmosphere containing 5% CO2 and 95% air at 37ºC. Culture media was changed every 2 

days and the cultures were passaged with 0.25% trypsin-EDTA (Life technologies, Gibco®) when 

80% of confluence was achieved. 
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VOMs extraction from cell cultures  

To extract VOMs from cell cultures, glass flasks were treated with collagen to promote cell 

adherence. Briefly, the glass flasks were covered with a collagen solution (0.2 mg/mL) for 30 min 

and then washed with PBS (3 times). The cells were then cultured in the T75 flasks for 48 h. After 

this period, volatile metabolites were extracted using a DVB/CAR/PDMS SPME fiber exposed in the 

headspace of the flasks for 45 min at 37 ºC, followed by injection into the GC injection port for 10 

min to allow the desorption of VOMs from the fiber. After these extractions, cell-free aliquots were 

collected from the flasks holding 10 mL of the culture medium with growing cells. They were 

centrifuged to remove any suspended cells, and then 1 mL aliquots were adjusted to pH 2, 7 or10 

with 1M HCl  or 1M NaOH [205]. After the addition of 200 mg NaCl and subsequent stirring (0.5 

mm × 0.1 mm bar) at 800 rpm, the vials were capped with PTFE septa through which the SPME fiber 

was inserted in the headspace of the vial and placed in a thermostatic bath at 37 ºC for 45 min. After 

this, the fiber was withdrawn into the needle and injected in the GC port (250 ºC) over 10 min, when 

the analytes were thermally desorbed and transferred to the analytical column. Control headspace 

samples were also collected from flasks containing only empty media treated with the same 

incubation conditions to determine the contribution to the background. The analyzes were performed 

in triplicate. 

 

GC-MS analysis 

VOMs in the headspace were analyzed using an Agilent Technologies 6890N Network gas 

chromatograph system (Palo Alto, CA, USA) equipped with a BP-20 fused silica column (60 m × 

0.25 mm I.D. × 0.25 µm film thickness, SGE, Dortmund, Germany) interfaced with an Agilent 5975 

quadrupole inert mass selective detector. The following oven temperature profile was set: (a) 5 min 

at 45 ºC; (b) increase temperature until 150 ºC, at a rate of 2 ºC min-1 (hold for 10 min); (c) 150 ºC 

for 10 min; (d) increase temperature until 220 ºC, at a rate of 7 ºC min-1; and (e) 220 ºC for 10 min. 

Column flow was constant at 1.0 mL/min using helium (He, N60, Air Liquide, Portugal) as the carrier 

gas. The injection port was maintained at 250ºC and operated in the splitless mode. Regarding MS 

analyzes, the operating temperatures of the transfer line, quadrupole and ionization source were 270, 

150 and 230ºC, respectively. The electron impact mass spectra were recorded at 70 eV and the 

ionization current was 10 µA, and data acquisition was performed in scan mode (30-200 m/z). The 

identification of metabolites was performed comparing mass spectra with the Agilent MS 

ChemStation Software (Palo Alto, CA, USA) equipped with the NIST05 mass spectral library with a 

similarity threshold higher than 80 %, or with commercially standards when available. All 
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experiments were performed in triplicate and the results were expressed as the mean ± standard 

deviation. 

 

Statistical analysis 

Statistical tests were performed using the StatSoft STATISTICA 12.0 (2013) software (Tulsa, OK, 

USA). Differences in VOMs between groups were tested with one-way ANOVA, and p < 0.05 was 

considered as statistically significant. PCA, PLS and LDA were carried out on VOMs selected by 

ANOVA to evaluate differences among the studied groups. PCA was performed in order to obtain 

differentiation between samples under study without classification and PLS was used as a supervised 

linear pattern recognition algorithm for data classification of samples. PCA and PLS were performed 

through variables values scale by unit standard deviation with convergence criterion (0.0001) and 

leave-one-out cross validation for accuracy confirmation. For LDA analysis a backward selection 

method was used with a p < 0.05 through Wilks test. For cross validation a leave-one-out strategy 

was used.  

 

Results and discussion 

VOMs associated with normal breast cells (HMEC) and BC cell lines (T-47D, MDA-MB-231 and 

MCF-7 cells) were investigated. The cell lines for the present study were chosen based on their 

different molecular characteristics (Table 3.3.1): namely, the expression of the estrogen receptor 

(ER), the progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2). It 

is well known that BC is heterogeneous and that its prognosis and treatment depends on the molecular 

subtype of the cancer cells. The VOMs arising from the cellular metabolism were studied using HS-

SPME/GC-MS: a) by direct analysis of the headspace of the culture flasks after cell growth (these 

results are hereinafter designated as “Cells”); and b) by analysis of the volatile metabolites from the 

culture media at different pH values. From the analysis of chromatograms, it was possible to identify 

60 VOMs belonging to distinct chemical groups, namely, alkanes, aldehydes, ketones, acids, alcohols 

and benzene derivatives. 

 

Table 3. 3. 1 - Characteristics of investigated breast cells. 

Cell line Molecular subtype 
Classification 

ER PgR HER2 

HMEC Epithelial Low Low Low 

MCF-7 Luminal A + + - 

T-47D Luminal A + + - 

MDA-MB-231 Triple negative - - - 

ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; PgR, progesterone receptor. 
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VOMs signature of BC cell lines and breast normal cells 

We identified twenty-six VOMs belonging to several chemical groups (Figure 3.3.2): namely, 

alkanes, aldehydes, ketones, acids, alcohols and benzene derivatives (Table 3.3.2). 

 

Table 3. 3. 2 - Identification of VOMs from investigated human mammary epithelial cells and human 

BC cell lines by HS-SPME/GC-MS. 

Peak 

n. 

RT 

(min) 
Abbreviation Ion Compound 

HMEC 

(× 105)  

T-47D 

(× 105)  

MDA-MB-231 

(× 105)  

MCF-7 

(× 105) 

2 4.356 HEXA 57 hexane 0.44  -  -  - 

4 5.127 M4HEPT 43, 70 4-methyl-heptane 4.83  -  -  - 

5 5.739 ACTONE 43, 58 acetone 9.24  501.87  10.82  22.00 

6 6.843 ETHATE 43, 61 ethyl acetate -  8.56  3.16  25.55 

8 8.716 ETHPPATE 57, 44 ethyl propanoate -  18.11  2.17  19.66 

9 9.337 PENTONE2 43, 86 2-pentanone -  -  -  22.74 

10 9.994 DECA 57, 44 decane 3.36  354.35  4.28  12.80 

12 12.341 M2BTATE 57 2-methyl butanoate -  12.83  -  13.88 

17 15.865 ETHBNZ 91, 106 ethylbenzene 12.1  4.02  2.38  10.23 

18 16.646 DMBNZ13 91, 106 1,3-dimethylbenzene 6.32  3.81  2.30  5.23 

19 17.395 BUTOL1 56, 41 1-butanol 1.21  2.84  2.88  5.94 

20 19.379 HPTONE2 43, 58 2-heptanone -  4.96  16.46  40.00 

22 20.157 DODEC 57, 43, 

71 

dodecane 14.19  21.29  19.93  54.42 

25 23.765 M33BUTOL1 41, 56 3-methyl-3-buten-1-ol -  -  -  3.93 

26 24.155 STYENE 104, 78 styrene 64.50  139.81  39.93  125.93 

27 25.511 TMBNZ124 105 1,2,4-trimethylbenzene 3.88  -  -  3.92 

29 26.207 CHEXONE 55, 42, 

98 

cyclohexanone 2.11  20.23  12.83  8.99 

32 33.450 TTDECANE 57 tetradecane 21.92  -  -  - 

33 33.598 CHEXOL 57, 82 cyclohexanol -  99.42  74.31  210.4 

34 35.176 B13DMEBNZ 175, 190 1,3-bis(1,1-

dimethylethyl)-benzene 

4.56  9.42  7.22  31.67 

36 39.305 E2HEXOL1 57, 43 2-ethyl-1-hexanol 28.32  950.78  184.81  1803.82 

38 41.341 BNZAL 106, 77 benzaldehyde 2.81  -  -  - 

45 48.761 ACTPONE 105, 77 acetophenone 4.44  -  -  - 

47 53.752 NPTENE 128 naphthalene 3.60  3.80  3.70  5.61 

54 70.775 PHOL 94 phenol 3.93  3.35  3.96  5.48 

60 79.610 DT24BPHOL 191 2,4-di-tert-butylphenol 51.57  73.53  71.04  160.00 

 

From these VOMs, 13 were found to be common in all studied breast cells (both normal and 

cancerous), 5 were present only in normal breast cells (HMEC), and 2 compounds were identified 

only in the MCF-7 breast cell line. As can be observed in Figure 3.3.2, the MCF-7 cell line 

demonstrated the most complex volatile metabolomic signature in terms of number of the identified 

VOMs and total GC peak areas compared with the other cell lines. Moreover, for all BC cell lines, 

the major chemical group identified was the higher alcohols, represented mainly by 2-ethyl-1-hexanol 

and cyclohexanol. These VOMs have already been reported in previous studies using BC cell lines 

[124,206] and in urine [127,128] from cancer patients. It is believed that their endogenous origin is  

as hydrocarbon metabolism byproducts [204,207]. The obtained data indicated that the levels of both 
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VOMs (2-ethyl–1-hexanol and cyclohexanol) were higher in all investigated BC cells than HMEC. 

This might be due to the production of lipid peroxidation biomarkers with hydroxylase that are 

mediated by cytochrome P450 [199,206]. 

 

Figure 3. 3. 2 - Distribution of VOMs identified in cultured breast cell lines. 

Similar results were reported by Peled and collaborators [208] when studying genetic mutations 

in lung cancer cells, and by Davies and collaborators [209], who compared the volatile  profile from 

the headspace of lung cancer cells with genetic mutations in TP53 and KRAS. Most of the identified 

VOCs were common to all BC cell lines and normal human mammary epithelial cells, but six of them, 

2-pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate, and 2-methyl 

butanoate, were detected only in BC cell lines. This finding justifies a more detailed investigation to 

evaluate of these six VOMs as BC biomarkers. 

 

The influence of pH on the VOMs identified from culture media 

The pH is one of the parameters that influences the extraction efficiency of VOMs and therefore 

it is required an optimization step. This was accomplished by the assessment of volatiles from culture 

media at different pH. We evaluated the effect of pH on the volatile signature obtained from culture 

media. At pH 2, the MCF-7 cells had the highest total GC peak area with acids (hexanoic acid, 

octanoic acid and 2-ethyl-hexanoic acid) being the most dominant chemical group. Aldehydes 

(benzaldehyde and 3,4-dimethyl-benzaldehyde) were the most predominant chemical group in the T-

47D and MDA-MB-231 cells (Figure 3.3.2; Table 3.3.2). At pH 7, for MCF-7 cells, alkanes, ketones 

and alcohols were found the dominant chemical groups, which were represented by dodecane, 2-

heptanone, and 2-ethyl-1-hexanol. For the other breast target cells alcohols (cyclohexanol) were the 
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most representative chemical group. Finally, at pH 10 the main chemical group identified for MCF-

7 cells were alkanes, ketones and alcohols (2-ethoxy-2-methyl-propane, acetone and 2-ethyl-1-

hexanol). For T-47D and MDA-MB-231 cells, alcohols represented by cyclohexanol, presented the 

major contribution. As previously mentioned, it is believed that cancer cells have altered metabolisms 

leading to different volatile metabolomic patterns. This was observed in our study, where we 

identified some differences between BC cell lines and normal cells (Table 3.3.2). 

 

Figure 3. 3. 3 - Distribution by chemical families of VOMs identified in culture media at different pH 

conditions of breast cell lines. 

Several VOMs were found to be common in all breast cell lines for all conditions, including, 2-

ethoxy-2-methyl-propane, acetone, 2-methyl-2-propanol, cyclohexanol, 1,3-bis(1,1-dimethylethyl)-

benzene and 2-ethyl-1-hexanol which had higher levels in BC cells. Ethyl acetate was only present 

in the T-47D cell line (Table 3.3.2). Kwak and collaborators [205] described a similar study using 

melanoma cells and identified higher concentrations of acetone in cancer cells. The metabolomic 

origin of most VOMs is still unknown, as they rely on a variety of endogenous pathways and 

exogenous sources. Huang and collaborators [206] reported that cyclohexanol and 2-ethyl-1-hexanol 

had lower concentrations in BC cells and suggested that they were generated by endogenous 

hydrocarbon metabolism. Hydrocarbons can be metabolized to aldehydes or ketones in the body via 

alcohol dehydrogenase (ADH) and cytochrome P450 activities [199]. The higher activity of 

cytochrome P450 may explain why BC cell lines have less cyclohexanol than normal breast cells 

[206]. It can also induce a variety of biological responses, including the biotransformation of alkanes, 

alkenes and aromatic compounds [210]. Furthermore, Philips et al. suggested that breast diseases are 

associated with increases in oxidative stress and a higher activity of P450 [211]. Nevertheless, 2-
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ethyl-1-hexanol was found at higher levels in BC cells than in to normal cells. According to the human 

metabolome database, 2-ethyl-1-hexanol is involved in cell signaling, membrane integrity/stability 

and energy storage and it was also detected in lung cancer cell lines [152] at increased levels when 

compared with the medium. At pH 10, the levels for most of the VOMs were higher in BC cells than 

in normal breast cells, including those of acetone, 2-pentanone, cyclohexanol, 2-ethyl-1-hexanol and 

acetophenone.  

 

PCA and PLS-DA analyzes of VOMs 

To verify the significance of the identified VOMs from the headspaces of the culture flasks and 

the cell culture media at different pH conditions, a one-way ANOVA test was applied to analyze the 

data matrix. From the identified VOMs, a total of 23 (from cultured flask headspace), 52 (from culture 

media at pH 2), 34 (from the culture media at pH 7) and 43 (from the culture media at pH 10) showed 

significant differences (p < 0.05) (Figure 3.3.4).  

Principal component analysis (PCA) was performed for each condition to identify variables to 

differentiate the VOMs pattern of the HMEC cells from those of the BC cell lines (MCF-7, T-47D 

and MDA-MB-231 cells), and from the VOMs patterns obtained from the culture media at different 

pH values (Figure 3.3.5). The differentiation between the above conditions was shown as the loading 

scores plot of the two principal components of the PCA. The PCA analysis is an unsupervised 

projection method used to visualize the dataset that displays the similarities and differences between 

groups and, in this case, demonstrated that the variables (scaled by standard deviation) used were 

sufficient to describe subsets with similar characteristics. These results demonstrated that the scores 

from the cancer cell lines and those from the normal breast cells exhibited separate trends in the plots. 

Figure 3.3.5 A shows the loading scatterplots of the PCA obtained from the analysis of the VOMs in 

the headspace of cultured flasks. It can be observed that 3 groups were formed, where HMEC cells 

was clearly differentiated from BC cell lines, which showed greater differentiation from MCF-7 cell 

lines across the PC1 and from T-47D and MDA-MB-231 across the PC2. Interestingly, BC cell lines 

formed two separated groups according molecular subtype (luminal A versus triple negative). 

However, no differentiation was achieved between T-47D and MDA-MB-231 cell lines, which 

formed a single group, perhaps this grouping of the two cell lines might be due to the fact that they 

have similar molecular characteristics. The variables that explain the differentiation between cell lines 

are represented in Figure 3.3.5 B.  
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Figure 3. 3. 4 - One-way analysis of variance (ANOVA) test in breast cell lines in studied conditions (for numbers correspondence please see Table 

3.3.2). 

  

Culture media 

at pH 10

Culture media 

at pH 2

0.0

2 000.0

4 000.0

6 000.0

8 000.0

10 000.0

5
0

/2
0

4
8

/2
0

4
6

1
1

3
/1

0

5
8

3
6

4
3

5
4

1
6

/1
0

4
1

1
4

3
4

1
3

5
1

5
5 8

3
0

/1
0

1
8

3
9

5
9

4
5

5
3

3
3 4 5 6 7 9

1
0

1
2

1
5

1
7

1
9

2
0

2
2

2
3

2
4

2
5

2
6

2
9

3
5

3
8

4
0

4
2

4
4

4
7

5
2

5
6

5
7

6
0

2
*

1
0

4
9

*
1
0

3
1

F
is

h
e
r
 v

a
lu

e

0.0

100.0

200.0

300.0

400.0

4 5 6 7 9

1
0

1
2

1
5

1
7

1
9

2
0

2
2

2
3

2
4

2
5

2
6

2
9

3
5

3
8

4
0

4
2

4
4

4
7

5
2

5
6

5
7

6
0

2
*

1
0

4
9

*
1
0

3
1

F
is

h
e
r 

v
a

lu
e

Culture media 

at pH 7

Cultured cells

0.0

1 000.0

2 000.0

3 000.0

4 000.0

5 000.0

6 000.0

32 27 12 9 4 6 17 18 19 20 22 25 26 29 33 34 45 47 54 60

F
is

h
e
r 

v
a

lu
e

0.0

200.0

400.0

600.0

800.0

1 000.0

4 5 6 17 18 19 20 22 25 26 29 33 34 45 47 54 60

F
is

h
e
r 

v
a

lu
e

0.0

2 000.0

4 000.0

6 000.0

8 000.0

10 000.0

12 000.0

4
2

2
5

6
/1

0
0

0

5
2

4
5

1
9
/1

0

2
6

/1
0

0

2
4
/1

0

1
7

2
0
/1

0

1
1

3
9
/1

0
0

3
6

1
4 2 3 4 5 7 9

1
2

1
5

1
8

2
1

2
3

2
9

3
0

3
1

3
3

3
4

3
5

3
7

3
8

4
4

4
7

4
8

4
9

5
0

5
4

5
8

6
0 6

F
is

h
e
r 

v
a

lu
e

0.0

200.0

400.0

600.0

800.0

1 000.0

2 3 4 5 7 9 12 15 18 21 23 29 30 31 33 34 35 37 38 44 47 48 49 50 54 58 60 6

F
is

h
e
r 

v
a

lu
e

0.0

500.0

1 000.0

1 500.0

2 000.0

2 500.0

3 000.0

3 500.0

4 000.0

4 500.0

5 000.0

F
is

h
e
r
 v

a
lu

e

0.000

200.000

400.000

600.000

800.000

1000.000

1 2 4 7 9 10 12 18 20 29 34 36 38 47 54 58

F
is

h
e
r 

v
a

lu
e



 

 

Catarina Silva (2019) 107 

 

Figure 3. 3. 5 - (A) Separation of breast cancer cell lines and normal cells based on PCA scores 

scatter plot and (B) Lineplot of principal component values obtained using selected compounds by 

significance of one-way ANOVA (p ˂ 0.05) obtained from the analysis of 4 types. 

The PCs values of MCF-7 cell lines were influenced by most of variables used in this test. On the 

other hand, PCs values of T-47D and MDA-MB-231 cell lines were highly influenced by 

cyclohexanone, 1,2,4-trimethylbenzene, ethylbenzene and 1,3-dimethylbenzene for PC1, and by 

cyclohexanone for PC2. The HMEC cells were influenced by 4-methyl-heptane, tetradecane, 

benzaldehyde and acetophenone for PC1 values, and by 1,2,4-trimethylbenzene, ethylbenzene, 1,3-

dimethylbenzene and phenol for PC2 values. 

Concerning the other tested conditions, the loading scatterplots of the PCA obtained from the 

analysis of VOMs from cell culture media at pH 2, pH 7 and pH 10, and respective influence of 

variables, are showed in Figure 4.3.6. Surprisingly, four groups were formed encompassing all breast 

cell lines in study under pH 2 and pH 7, where MCF-7 was differentiated from other cell lines mainly 

across PC1, while HMEC, T-47D and MDA-MB-231 were differentiated from each other through 

PC2. Under pH 10, the pattern of differentiation between cell lines is similar to obtained for 

headspace, in which 3 groups (HMEC, T-47D/MDA-MB-231 and MCF-7) were formed. The 

differentiation between cell lines obtained under pH 2 and pH 7 may be due to the alterations of 

molecular components released under more acidic conditions than those normally present in the 

culture medium (pH 7.3). 
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Figure 3. 3. 6 - (A) Loadings of variables on the PC1 × PC2 plane of culture media at different pH 

conditions and (B) Biplots of data obtained from different conditions using selected compounds by 

significance of one-way ANOVA (p ˂ 0.05) obtained from the analysis of 4 types of breast cell lines. 
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However, for differentiation and discrimination between normal breast cell lines and oncological 

breast cell lines based on the VOMs emitted as close to reality as possible in human cell tissues, 

partial least squares analysis (PLS) and linear discriminant analysis (LDA) were performed only with 

data from headspace of cell cultures. The statistical data summary of PLS and LDA are described in 

Tables 3.3.3 and 3.3.4, respectively. 

 

Table 3. 3. 3 - Statistical data summary of Partial Least Square Analysis. 

PC R²X R²X(Cumul.) Eigenvalues R²Y R²Y(Cumul.) Q² Q²(Cumul.) Significance Interations 

1 0.561557 0.561557 14.60037 0.14286 0.14286 -0.03171 -0.03171 S 9 

2 0.306333 0.867891 7.96463 0.14286 0.28571 -0.05208 -0.08543 NS 7 

 

Table 3. 3. 4 - Statistical data summary of Linear Discriminant Analysis. 

Function Eigenvalue Canonical R Wilk's Lambda Chi-Sqr. df p-value 

1 111309.5 0.999996 1.34E-08 81.56097 4.000000 1.11E-16 

2 667.2 0.999251 1.50E-03 29.27062 1.000000 6.29E-08 

 

Sample classification by PLS showed that the differentiation between cell lines was explained 

through one single component. PLS loading lineplot are presented in Figure 3.3.7, which can be 

observed four centroids corresponding to each cell lines. 

 

Figure 3. 3. 7 - (A) Partial Least Square Analysis (PLS) scatter plot and (B) Lineplot of selected 

compounds by significance of one-way ANOVA (p ˂ 0.05) obtained from the analysis of 4 types of 

breast cell lines using cultured headspace analysis. 

Similar to obtained in the PCA, HMEC centroid was clearly differentiated from oncologic breast 

cell lines, and MCF-7 (triple negative type) was distinguished from two luminal A type cell lines. On 

the other hand, T-47D and MDA-MB-231 remain very close to each other, which PLS values was 
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0.0588 and 0.0037, respectively. Regarding the influence of variables on PLS values of cell lines, 

HMEC was highly influenced by 4-methyl-heptane, tetradecane, benzaldehyde and acetophenone, T-

47D and MDA-MB-231 were influenced by cyclohexanone, 1,2,4-trimethylbenzene, ethylbenzene 

and 1,3-dimethylbenzene, and MCF-7 was influenced by the remaining VOMs. 

The linear discriminant analysis (LDA) was applied as a supervised pattern recognition method in 

order to discriminate statistically the cell lines under study, where samples were grouped according 

to molecular type as follows: N (HMEC), BL (T-47D and MDA-MB-231) and BTN (MCF-7). The 

LDA scatterplot of cell lines classification according to canonical functions were showed in Figure 

3.3.8.  

 

Figure 3. 3. 8 - (A) Linear discriminant analysis (LDA) scatter plot of cultured headspace from breast 

cell samples (B) Classification of breast cells according to the canonical discriminant functions. 

Legend: BL-breast luminal; N- normal; BTN- breast triple negative. 

The cell lines samples formed three clearly defined groups with a classification rate of 100%. 

Recognition ability, calculated as the percentage of members of the data set that were correctly 

classified, and prediction ability, calculated as the percentage of members that were correctly 

classified, were 100% in all cases. After applying LDA with backward removal (p ˂ 0.05) of 

variables, only two VOMs proved to be significant for discrimination between three defined 

previously, namely 1,2,4-trimethylbenzene and benzaldehyde. These compounds have been already 

identified in cancer cell studies by Brunner et al. [212] using PTR-MS, by Filipiak et al. [152] in lung 

cancer cells and Mochalski et al. [213] with human hepatocellular carcinoma cells where it was 

observed an increase in the release of this compound. Moreover, these two VOMs appear to be 

promise biomarkers due to fact that achieve a successful discriminant classification of samples 

according to molecular type of breast cell lines, demonstrating that volatile metabolomic signature of 

breast cells can be a useful approach to identify potential BC biomarkers for early diagnosis of BC. 
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Conclusions 

This study demonstrated that HS-SPME/GC-MS is a simple, rapid, sensitive and solvent-free 

method that can be used to establish the volatile metabolomic patterns of normal and cancer breast 

cells. In addition, this study showed the potential of screening the in vitro VOMs associated with BC 

to identify potential volatile biomarkers to be used in early diagnosis. The headspace of culture media 

of normal and cancer cell lines was analyzed at different pH conditions. Sixty VOMs were identified 

as belonging to several chemical groups: namely, alkanes, aldehydes, ketones, acids, alcohols and 

benzene derivatives. Most of the identified VOMs are common to all BC cell lines and normal human 

mammary epithelial cells, but six of them, 2-pentanone, 2-heptanone, 3-methyl-3-buten-1-ol, ethyl 

acetate, ethyl propanoate, and 2-methyl butanoate, were detected only in the headspace of cancer cell 

lines. Multivariate statistical data obtained in this study revealed that combining in vitro assays with 

HS-SPME/GC-MS is a useful strategy to differentiate and discriminate the volatile metabolomic 

signature of normal cells and BC cell lines according to molecular type, thus contributing to the 

discovery of novel biomarkers of BC and investigations of the related metabolomic pathways, and 

thereby improving the diagnostic tools for BC. 
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3.4| Volatomic pattern of breast cancer and cancer-free 

tissues as a powerful strategy to identify potential 

biomarkers 
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Abstract 

BC is ranked as the fifth amongst all cancers, remains at the top of women’s cancers worldwide 

followed by colorectal, lung, cervix, and stomach cancers. The main handicap of most of the 

screening/diagnostic methods is based on their low sensitivity and specificity and the invasive 

behavior of most sampling procedures. The aim of this study was to establish the volatomic pattern 

of BC and cancer-free (CF) tissues (n = 30) from the same patients, as a powerful tool to identify a 

set of volatile organic metabolite (VOM) potential BC biomarkers which might be used together or 

complement with the traditional BC diagnostics strategies, through the integration of 

chromatographic data, obtained by solid-phase microextraction followed by gas chromatography-

mass spectrometry (SPME/GC-qMS), with chemometric tools. A total of four metabolites: limonene, 

decanoic acid, acetic acid and furfural presented the highest contribution towards discrimination of 

BC and CF tissues (VIP > 1, p < 0.05). The discrimination efficiency and accuracy of BC tissue 

metabolites was ascertained by ROC curve analysis that allowed the identification of some 

metabolites with high sensitivity and specificity. The results obtained with this approach suggest the 

possibility of identifying endogenous metabolites as a platform to find potential BC biomarkers and 

pave the way to investigate the related metabolomic pathways in order to improve BC diagnostic 

tools. Moreover, deeper investigations could unravel novel mechanistic insights into the disease 

pathophysiology. 

 

Keywords: Volatile pattern; Breast cancer; Tissue; Metabolomics; Chemometric tools 
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Introduction 

BC is ranked as the fifth amongst all cancers remaining at the top of women´s cancers worldwide 

followed by colorectal, lung, cervix, and stomach cancers according to IARC, contributing with more 

than 11.6 % of all cancers [3]. Although BC is a multifactorial disease, with highly variable clinical 

behavior and response to therapy, it can be curable in early stages. Furthermore, there is still the need 

for the development of new methodologies to aid or monitor the disease together with the current 

diagnostic tools, namely mammography, ultrasound or tumor markers. Moreover, before BC 

treatment, a complex and time-consuming analysis is required that uses many different assays, such 

as the determination of histological type and grading, evaluation of estrogen receptor (ER), 

progesterone receptor (PgR) and human epidermal growth factor receptor 2 (HER-2), among others 

[122]. The main handicap of most of these screening/diagnostic methods is their low sensitivity and 

specificity and the invasive procedure required to obtain the samples [123]. Taking into account these 

aspects, research is being directed towards the use of new tools that can support the clinicians in BC 

treatment and follow-up [124]. In this sense, in recent years, metabolomic studies have emerged as a 

powerful tool to investigate the changes and/or metabolic responses of living systems to stimuli or 

genetic modifications [39]. The metabolome profile represents the unbiased quantitative and 

qualitative analysis of the complete set of metabolites present in cells, body fluids and/or tissues 

[125]. To date, beyond the most used biological specimens (e.g., urine, saliva, blood), BC tissues 

have been used in metabolomics with the aim of discriminating cancer from normal tissues suggesting 

that metabolomic profiles differ within molecular subtypes of BC [66,214]. The metabolome 

coverage in BC tissues can be maximized by combining different technologies for metabolic 

profiling, namely gas chromatography mass-spectrometry (GC-qMS), and the results can be used to 

classify BC helping to identify new prognostic and predictive markers and to discover new targets 

for future therapeutic interventions [126]. Among them, the study of volatile organic metabolites 

(VOMs) present in biological samples, namely in saliva, urine, breath and tissues can be useful for 

cancer diagnosis, in particular for BC. The most common procedure used in extraction of volatile 

compounds in biological samples is solid-phase microextraction (SPME), normally in headspace 

mode (HS-SPME) being used in several biologic matrices [44,59,127,128]. GC-qMS was used to 

screen salivary volatiles for putative BC as an exploratory study involving geographically distant 

populations [51], also to establish the metabolomic signature of human BC cell lines [44] and to 

discriminate different types of cancer based on urinary volatomic biosignatures [59]. In the first study, 

up to 120 VOMs from distinct chemical families, with significant variations among the groups, were 

identified [51], whereas Silva et al. [44] and Porto-Figueira et al. [59] identified 60 and 130 VOMs 

in BC cell lines and urine, respectively. On the other hand, Budczies et al. [77,82] used gas 



 

 

118 Catarina Silva (2019) 

chromatography time of flight mass spectrometry (GC-TOFMS) framework to evaluate the glutamate 

enrichment as a new diagnostic opportunity in BC and to accomplish  comparative metabolomics of 

estrogen receptor positive (ER+) and estrogen receptor negative (ER-) samples. Budczies et al. [82] 

identified 19 VOMs and the GC–TOFMS based analysis of metabolites present in BC tissues revealed 

significantly differences in central metabolism in the more aggressive ER− compared to the ER+ type. 

The detected changes included the metabolism of glutamine with a decrease in concentration of 

glutamine and an increase in concentration of glutamate and 2-hydroxyglutaric acid [82]. In turn, 

Dougan et al. [66] used GC-MS to evaluate the detectability, reliability, and distribution of 

metabolites measured in pre-diagnostic plasma samples in a pilot study of women listed in the 

Northern California site of the BC Family Registry. In this study, 661 VOMs were detected, 338 (51 

%) of them were found in all samples, and 490 (74 %) in more than 80 % of samples. The aim of this 

study was to establish the volatomic pattern of BC tissue and CF tissue samples collected after 

surgery, from the same patient (to minimize the interference of epigenetic and external factors) in 

order to find a set of volatile metabolites to be used as potential BC biomarkers, using HS-SPME/GC-

qMS combined with multivariate statistical tools. This high-throughput strategy might have the 

potential to be applied in a clinical environment as a diagnostic approach or as a complementary way 

with the current diagnostic methods to improve the diagnostic decision. 

 

Materials and Reagents 

Reagents and materials 

Sodium chloride (NaCl), hydrochloric acid (HCl) and 4-methyl-2-pentanol were supplied by 

Panreac (Barcelona, Spain) and Sigma Aldrich (St. Louis, MO, USA), respectively. Phosphate buffer 

saline (PBS) was also purchased from Sigma-Aldrich (St. Louis, MO, USA). The C8-C20 alkanes 

solution (concentration of 40 mg/L in n-hexane) was purchased from Fluka (Buchs, Switzerland). 

The digital stirring plate (Cimarec™) was supplied by Thermo Scientific (Waltham, MA, USA) while 

SPME holder for manual sampling and 75 µm carboxen/polydimethylsiloxane fiber (CAR/PDMS) 

were purchased from Supelco (Bellefonte, PA, USA). 

 

Subjects and tissue collection 

To investigate the BC tissue metabolomic profile, 30 samples from patients with breast cancer 

(BC, n=30, age range 44-85, average 67), and 30 samples from cancer-free tissue (CF, n=30, age 

range 44-85, average 67) without malignant infiltration were resected from each patient. The resected 

samples were divided into the active carcinoma and cancer-free tissue outside the tumor margin and 

were immediately frozen in liquid nitrogen, in a total set of 60 samples. The tissues were stored at -
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80°C until extraction. These samples were obtained at the Pathologic Anatomy Unit of Hospital Dr. 

Nélio Mendonça (Funchal, Portugal) according to Table 3.4.1. 

 

Table 3. 4. 1 - List of collected tissue samples from breast cancer patients and CF individuals. 

Samples BC tissue Cancer-free 

Number 30 30 

Age (range, median) (44-85, 65) (44-85, 65) 

Histological grade (number 

of samples) 

IA (5) 

Not applicable 

IIA (10) 

IIIA (1) 

IIB (7) 

IIIB (5) 

IIIC (2) 

 

All experiments were performed in accordance with the standard Guidelines from Declaration of 

Helsinki and approved by the institutional ethics committee of Hospital Dr Nélio Mendonça and 

University of Madeira. All the participants of this study were informed about the investigation and a 

signed informed consent was obtained from all human participants prior to sample collection. Using 

the TNM (tumor, node, and metastasis) staging approach, the examined BC cases included five of 

stage IA, ten of stage IIA, one of stage IIIA B, seven of stage IIB, five of stage IIIB and two of stage 

IIIC. 

 

Extraction of metabolites from breast tissues 

The HS-SPME extraction conditions were based on a developed method previously established in 

our laboratory [127,128]. Briefly, tissue samples were thawed and then portions of 100 mg were 

weighted into 20 mL vials together with 17 % NaCl (w/v), 1000 µL of ultrapure water and 100 µL of 

the internal standard (IS, 4-methyl-2-pentanol, 1.6 mg/L). The pH was adjusted to 2 with small 

amounts of HCl 5M. Then, the vial was capped with a Teflon (PTFE) septum using a screw cap and 

the SPME fiber was introduced and exposed into the headspace during 75 min at 50 °C at 800 rpm 

(0.5 mm × 0.1 mm bar). After this period, the fiber was removed from the vial and inserted into the 

GC injection port and VOMs extracted were desorbed for 10 min at 250 °C. Each sample was 

analyzed in duplicate and blanks were performed before each analysis. 
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Gas chromatography quadrupole mass-spectrometry (GC-qMS) conditions 

After the extraction procedure, the SPME fiber with the analytes was inserted into the injection 

port of an Agilent Technologies 6890N Network gas chromatograph system (Palo Alto, CA, USA) 

where the VOMs were desorbed at 250 °C for 10 min. The gas chromatograph was equipped with a 

60 m × 0.25 mm I.D.× 0.25 µm film thickness, BP-20 (SGE, Dortmund, Germany) fused silica 

capillary column and interfaced with an Agilent 5975 quadrupole inert mass selective detector. The 

following oven temperature profile was set: (a) 5 min at 45 °C; (b) increase temperature until 150 °C, 

at a rate of 2 °C min−1 (hold for 10 min); (c) 150 °C for 10 min; (d) increase temperature until 220 

°C, at a rate of 7 °C min−1; and (e) 220 °C for 10 min for a total GC run time of 87.5 min. The column 

flow was constant at 1.3 mL min−1 using Helium (He, N60, Air Liquide, Portugal) as carrier gas. The 

injection port was operated in the splitless mode and held at 250 °C. For the 5975 MS system, the 

operating temperatures of the transfer line, quadrupole and ionization source were 270, 150 and 230 

°C, respectively, while electron impact mass spectra were recorded at 70 eV ionization voltage and 

the ionization current was 10 µA. Data acquisition was performed in the scan mode (30–200 m/z). 

The electron multiplier was set to the auto tune procedure. Metabolites identification was 

accomplished by manual interpretation through single ion monitorization (SIM) of spectra and 

matching against the Agilent MS ChemStation Software, equipped with a NIST05 mass spectral 

library with a similarity threshold higher than 80% and comparison with commercially available 

standard samples when available. A series of C8–C20 n-alkanes were analyzed using the same 

extraction procedure to establish the kovat indices (KI), and to confirm the identity of the VOMs by 

comparison with the literature. The analyzes were performed in triplicate and the results expressed 

by mean ± standard deviation.  

 

Statistical Analysis 

Statistical analysis was performed using the web server Metaboanalyst 4.0 [134]. The multivariate 

statistical analysis, namely the principal component analysis (PCA), the partial least squares-

discriminant analysis (PLS-DA) and the orthogonal projections to latent structures discriminant 

analysis (OPLS-DA) were applied on tissue metabolomic profile dataset to provide insights into the 

groups under study. The metabolites with VIP scores higher than 1.0 were selected by the PLS-DA 

analysis as well as for the pathway analysis. Furthermore, hierarchical cluster analysis by K-means 

of the two groups in study was carried out and Pearson´s correlation was used to build the heat map 

with the aim of identifying BC clustering patterns. Moreover, Random forest (RF) classification was 

carried out to determine the ability of VOMs to accurately classify the study subjects into their 

corresponding groups. The receiver operating characteristic curves (ROC) were attained to verify 
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which metabolites had the highest sensitivity/specificity for a potential BC diagnosis. Finally, the 

selected metabolites were used for the metabolic pathway analysis to identify the most relevant 

metabolic pathways involved in BC. 

 

Results and Discussion 

Tissue metabolomic pattern based on GC-qMS 

A total of twenty-nine VOMs were identified in BC tissue and CF tissue samples which were 

classified in several chemical families, namely phenols, benzene derivates, carbonyl compounds, 

acids, alcohols and furanic compounds as presented in Figure 3.4.1. 

 

Figure 3. 4. 1 - Major chemical families identified in BC and CF tissue samples. Legend: BD-benzene 

derivates; CC-carbonyl compounds; Alc-alcohols; FC-furanic compounds. 

Data was processed using software (NIST, 2005; Mass Spectral Search Program V.2.0d) which 

provides quality matching using advanced spectral matching algorithms background subtraction and 

KI comparison. The KI were determined through the injection of a C8-C20 alkane solution in order to 

confirm the identity of the VOMs by comparison with the literature (e.g., pherobase). It can be 

observed in Table 3.4.2 that the KI of the identified VOMs, when compared to the ones found in 

literature for a similar column (BP-20), are closer to one another, ensuring that a good identification 

was achieved. The highest contribution for the volatile profile was from phenols in the BC group, 

whereas for the CF group was from benzene derivates and acids. The main VOMs identified for these 
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families were phenol, toluene and acetic acid, respectively. These metabolites were already identified 

in several reports in literature in biological matrices such as urine [127,128], cancer cell lines 

[44,135], saliva [51], and exhaled breath [135,136]. In Table 3.4.2 is represented the identification of 

VOMs, as well as the minimum and maximum relative GC peak areas for each metabolite and group. 

It can be observed that most metabolites were identified in all samples with a frequency of 

occurrence (FO) higher than 90 %, where the maximum relative area was obtained for p-tert-butyl-

phenol in the CF group and phenol for the BC group. For the CF group, the major VOMs identified 

include acetic acid, phenol and p-tert-butyl-phenol. 

Some of these have been already reported in literature, namely acetic acid was found as 

discriminant when associated with CTL in a study conducted by Ahmed et al. [137] that investigated 

the possibility of faecal VOMs as potential diagnostic biomarkers for inflammatory bowel disease. 

Mochalski et al. [206] investigated the emission of volatile compounds from gastric cancer tissues 

and non-cancerous tissues with the aim of identifying characteristic chemical patterns associated with 

gastric cancer. 

Furthermore, Silva et al. [127,128] also reported phenols as the major chemical family identified 

in urine from the oncologic group. Furthermore, Raman et al. [138] studied faecal VOMs in obese 

humans and identified also acetic acid and phenol as major metabolites. On the other hand, Priscilla 

et al. [59] also identified p-xylene, o-xylene, acetic acid, phenol and p-tert-butyl-phenol in urine from 

cancer patients, with some of them presenting higher values in cancer patients. Regarding the relative 

area values obtained for the BC group, most VOMs were down-regulated with exception of acetic 

acid, toluene, octanal and nonanal.  
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Table 3. 4. 2 - Identified metabolites in tissue samples from BC patients and cancer-free (CF) through GC-qMS, minimum (Min) and maximum (Max), 

variation of relative peak areas (relative to internal standard, RSD<10%)regarding to BC group and their frequency of occurrence FO (in %). 

Identification mode and the Kóvats index for each identified VOM and the literature values for a similar GC column. 

Peak n. IECa 
RT 

(min)b 
IDc KIcal

d KIlit
e VOMf 

Relative GC Peak Areas 

Variation FO (%) CF BC 

Min Max Min Max 

A1 41, 69 9.77 MS 990 983 methyl isobutyrate 0.03 1.81 0.02 1.66 ↓ 71 

A2 91 11.24 Std, MS 1029 1042 toluene 0.03 7.62 0.01 17.17 ↑ 100 

A3 44, 56 13.12 Std, MS 1073 1075 hexanal 0.03 6.82 0.04 2.09 ↓ 99 

A7 41, 70 18.48 Std, MS 1172 1168 heptanal 0.04 0.17 0.05 0.19 ↑ 13 

A8 68, 93 18.73 Std, MS 1176 1198 limonene 0.01 4.46 0.01 1.03 ↓ 92 

A10 43, 33 19.84 Std, MS 1187 - 2-methyl-1-propanol 0.01 1.44 0.01 0.51 ↓ 79 

A11 81 20.69 MS 1197 1229 2-pentyl-furan 0.01 0.07 0.01 0.13 ↑ 77 

A12 105, 120 21.39 MS 1209 - trimethylbenzene 0.01 5.41 0.01 1.70 ↓ 64 

A13 119, 134 23.18 Std, MS 1237 1234 o-cymene 0.01 0.84 0.01 0.33 ↓ 24 

A14 42, 55 24.36 MS 1254 1255 1-pentanol 0.01 0.03 0.01 0.23 ↑ 50 

A15 43, 56 24.90 Std, MS 1262 1280 octanal 0.01 0.24 0.01 9.19 ↑ 34 

A16 56 30.20 Std, MS 1338 1360 1-hexanol 0.01 0.05 0.01 1.17 ↑ 27 

A17 41, 57 31.89 Std, MS 1362 1385 nonanal 0.02 0.48 0.17 2.36 ↑ 52 

A18 117, 132 34.45 MS 1396 - p-cymenene 0.01 0.76 0.01 0.15 ↓ 100 

A19 43, 60 36.42 Std, MS 1428 1450 acetic acid 0.62 42.75 0.10 12.28 ↓ 100 

A20 96 36.61 Std, MS 1431 1455 furfural 0.01 5.87 0.04 18.03 ↑ 100 

A21 57 38.53 Std, MS 1461 1487 2-ethyl-1-hexanol 0.01 0.50 0.01 3.20 ↑ 2 

A22 43, 57 38.77 Std, MS 1465 1484 decanal n.d.g n.d. 0.14 0.15 - 72 

A23 77, 106 39.81 Std, MS 1480 1495 benzaldehyde 0.01 0.36 0.01 0.33 ↓ 54 

A24 41, 56 42.63 MS 1525 1553 1-octanol 0.01 0.17 0.01 1.57 ↑ 74 

A25 77, 105 47.36 MS 1602 1607 acetophenone 0.01 0.19 0.01 0.42 ↑ 79 

A26 60, 73 58.70 Std, MS 1802 1829 hexanoic acid 0.01 1.25 0.02 5.77 ↑ 100 

A27 94 69.54 Std, MS 1968 1965 phenol 0.51 23.32 0.45 44.08 ↑ 39 

A28 60, 73 72.22 Std, MS 2004 2013 octanoic acid 0.01 0.25 0.01 6.51 ↑ 76 
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Peak n. IECa 
RT 

(min)b 
IDc KIcal

d KIlit
e VOMf 

Relative GC Peak Areas 

Variation FO (%) CF BC 

Min Max Min Max 

A29 107 73.00 MS 2009 2017 4-methyl-phenol 0.01 1.08 0.01 3.72 ↑ 45 

A30 60, 73 75.65 Std, MS 2027 - nonanoic acid 0.01 0.18 0.01 0.64 ↑ 29 

A31 155, 170 75.71 MS 2027 - 1,6,7-trimethyl-naphthalene 0.02 0.41 0.01 0.37 ↓ 39 

A32 60, 73 78.15 Std, MS 2043 - decanoic acid 0.01 0.11 0.02 0.52 ↑ 100 

A33 135, 150 78.49 Std, MS 2045 - p-tert-butyl-phenol 0.02 53.76 0.03 20.71 ↓ 100 

a IEC - ion extraction chromatogram; b Retention time (min); c metabolite identification using a standard compound (St) or mass spectra of the NIST library search (MS); d Kovat index relative n-

alkanes (C8–C20) on a BP-20 capillary column; e Kovat index relative reported in literature for equivalent capillary column; g n.d.- not detected 
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Multivariate statistical analysis of tissue metabolomic profile 

The statistical analysis was performed using the Metaboanalyst 4.0 [134] web server as described 

in the experimental section. Only the VOMs with FO higher than 90 % were considered for the 

statistical analysis, in a total of 8 VOMs (toluene, hexanal, limonene, p-cymenene, acetic acid, 

furfural, hexanoic acid and decanoic acid). Initially, data were transformed by log transformation and 

mean centering approaches, before being subjected to multivariate statistical analysis. Partial least 

square-discriminant analysis (PLS-DA) was used as a supervised clustering method to verify the 

existence of an altered metabolite pattern. Additionally, this type of statistical analysis takes into 

account the variance/covariance between samples of groups where the samples are classified into 

different groups. Regarding the results obtained, a good discrimination was achieved (80.5 %, total 

variance) between BC and CF tissue samples suggesting the occurrence of characteristic metabolic 

alterations in the groups under study (Figure 3.4.2 A). Then, the top four metabolites (limonene, 

decanoic acid, acetic acid and furfural) with the highest contribution for group discrimination were 

selected with variable importance in projection (VIP > 1) (Figure 3.4.2 B). 

 
Figure 3. 4. 2 - (A) Loading score plots of PLS-DA and (B) VIP scores of tissue samples from BC and 

CF subjects. For identification please see Table 3.4.2. 

Moreover, orthogonal partial least squares-discriminant (OPLS-DA) analysis was applied on 

tissue metabolomic profile dataset to maximize the separation of BC and CF groups. Significant group 

separation was observed in OPLS-DA score plot between BC patients and CF group indicating 

intrinsic metabolic alterations in each group (Figure 3.4.3 A). To attest the robustness of the model, 

a random permutation test with 1000 permutations was performed with OPLS-DA (Figure 3.4.3 B). 

The permutation test yielded R2 (represents goodness of fit) as 0.717 and Q2 (represents predictive 

(A) (B)
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ability) as 0.691 indicating that the model is not over fitted and have a relative good predictive ability 

to distinguish between study groups.  

Although in literature there are no reports regarding the volatile profile of human tissues, many of 

these metabolites were already identified in previous reports, namely in lung [150,186], breast, 

ovarian [123,144], bladder [187], and gastric cancers [188]. The OPLS-DA uses class information 

allowing to show which variables are responsible for class discrimination using the predictive 

information of the first component. The main advantage of OPLS-DA when compared to PLS-DA is 

that a single component is used as a predictor for the class, while the other components describe the 

variation orthogonal to the first predictive component [139]. 

 

 

Figure 3. 4. 3 - (A) Loading score plots of OPLS-DA and (B) model validation by permutation test 

based on 1000 permutations of VOMs obtained by GC-qMS of tissue samples from the 2 groups under 

study. 

To further evaluate the predictive value of the metabolites to discriminate between BC patients 

and CF, a receiver operating characteristic curve (ROC) analysis was generated using the top four 

metabolites identified by VIP values (Figure 3.4.4 A and B). This type of analysis is used for the 

classification of true positives and false positives and the predictive ability is measured using the area 

under the curve (AUC) [140,141]. According to Xia et al. [108], an AUC between 0.9 - 1.0 is excellent 

and between 0.8 – 0.9 is good. Based on this classification, the results obtained were, thus, very good 

(AUC = 0.966). 

ROC curves were generated by Monte-Carlo cross validation (MCCV) using balanced sub-

sampling. In each MCCV, twothirds (2/3) of the samples were used to evaluate the feature 

(A) (B)(b)
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importance. The top 3 important features were then used to build classification models which were 

then validated on 1/3 of the samples that were left out. This procedure was repeated multiple times to 

calculate the performance and confidence interval of each model. The AUC can be interpreted as the 

probability that a randomly selected diseased subject is ranked as more probable to be diseased than 

a randomly selected healthy subject [108]. A greater AUC value indicates the effectiveness to separate 

the CF group from the cancer group (BC). 

 

Figure 3. 4. 4 - ROC curves for the predictive model. (A) A combination metabolites model calculated 

from the logistic regression analysis using the 4 metabolites selected by the VIP (> 1.0) values, (B) 

ROC curve for the top 4 metabolites (limonene, decanoic acid, acetic acid and furfural) with highest 

ability to discriminate BC patients against the CF. 

Additionally, a 10-fold cross validation was used to generate a logistic regression model and the 

performance was calculated according to the equation: 

 

log it (P) = log (P/(1 – P)) = – 0.077 + 0.966 limonene – 0.752 acetic acid – 0.076 furfural – 

decanoic acid 

 

where P is Pr(y = 1|x). The threshold (or cut-off) for the predicted P was 0.61. Figure 3.4.5 A and 

B show the results obtained for the predicted probabilities using the OPLS-DA model and the average 

of the predictive accuracy for the same model, where it can be observed that the model allowed a 

good classification of samples (>90%). 

 

 

(A) (B)
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Figure 3. 4. 5 - (A) Plot of the predicted class probabilities for all samples using the OPLS-DA 

biomarker model based on AUC and (B) box plot of the predictive accuracy (with an average of 

0.908) of the biomarker model based on 100 cross validations. 

Moreover, 20 samples without known labels were processed together with the ones with known 

labels in order to obtain the probability of class labels. Most of the cases were classified in their 

respective groups with the exception of O10, O5 and O18 with a probability score ranging from 0.982 

to 0.595. 

Also, the heat map was constructed with selected VOMs by VIP > 1, using Pearson’s correlation, 

providing intuitive visualization of the data set and the correlations between samples and VOMs 

(Figure 3.4.6). 

 

 

Figure 3. 4. 6 - Heat map visualization and hierarchical clustering analysis using the four metabolites 

with significance (p < 0.05) by Pearson’s distance analysis (A8 – limonene; A19 – acetic acid; A32 

– decanoic acid: A20 – furfural). 

 

(B)(A)
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Finally, the metabolic pathway analysis (Figure 3.4.7 A) was performed in order to explore which 

pathways changed in BC. In Figure 3.4.7 B, we can observe the utmost important metabolomics 

routes producing the most significant volatile metabolites in BC (indicated by KEGG accession 

number). It can be observed that the pathway with highest impact was the pyruvate and sulfur 

metabolism due to acetic acid. This metabolite according to human metabolome database is normally 

found in most tissues (liver, kidney, among others) and in several biofluids, namely saliva [51] and 

urine [127]. Moreover, limonene was also included as a significant metabolite belonging to the class 

of monoterpenoids involved in monooxygenase activity through cytochrome P450 and the 

mevalonate pathway [215,216].  

 

Figure 3. 4. 7 - (A) The metabolome view map of significant altered metabolic pathways observed in 

tissue samples from BC and CF groups and (B) the pyruvate metabolism. The map was generated 

using reference map by KEGG; C00033 represent acetic acid. 

Based on the results obtained, a successful discrimination of tissue samples was achieved, 

according to the group showing that the volatomic tissue profile can be a useful approach to identify 

potential BC biomarkers. 

 

Conclusions 

This study has enabled the untargeted assessment of the metabolomic tissue profile from BC 

patients when compared with CF tissues using GC-qMS combined with multivariate statistical tools 

(PLS-DA and OPLS-DA). Twenty-nine metabolites were identified and multivariate statistical 

Limonene and pinene degradation

Sulfur metabolism

(A) (B)

Pyruvate metabolism
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analysis revealed some metabolites significantly altered in BC patients. Of the metabolites identified, 

limonene, decanoic acid, acetic acid and furfural showed the highest sensitivity and specificity to 

discriminate BC patients. Also, the analysis of the plots leads to a metabolomic pattern comprising 

an array of some biochemical pathways altered in BC patients. The metabolic pathway analysis 

indicated that the discriminatory metabolites could originate from several dysregulated pathways in 

BC such as those involved in pyruvate and sulphur metabolism, and limonene degradation. 

In addition, the analysis of cancer and non-cancer tissue from the same subject can also aid to 

balance the effect of external interferents, such as diet or environmental exposure and help to identify 

potential biomarkers. These results suggest a possibility of identifying endogenous metabolites as a 

platform to discover potential BC biomarkers and paves a way to investigate the related metabolomic 

pathways to improve the diagnostic tools of BC. 
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3.5| Integrated metabolomics based on GC-MS and NMR 

data as powerful strategy to search potential breast cancer 

biomarkers 
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Abstract 

BC is leading at the top of women´s diseases, and as a multifactorial disease, there is the need for 

the development of new approaches to aid clinicians on monitoring BC treatments. In this sense, 

metabolomic studies have become an essential tool allowing the establishment of interdependency 

among metabolites in biological samples. The goal is to capture the main changes and the overall 

physiological status in biochemical pathways to enlighten sites of perturbations in diseases, such as 

cancer. In this study, we used the combination of NMR and GC-qMS based metabolomic analyzes of 

urine and breast tissue samples from BC patients and cancer-free individuals. The data was processed 

using multivariate statistical tools to obtain a panel of metabolites (and their metabolic profiles) that 

can discriminate malignant from healthy status assisting in the diagnostic field. 

Tissue and urine samples were collected from BC patients (urine: n=31; tissue n=30) and cancer-

free (CF) subjects (urine n=40 tissue n=30) and analyzed by NMR and GC-qMS methodologies. The 

OPLS-DA model showed a clear separation between BC patients and controls for both class of 

samples. Namely, for urine samples, the goodness of fit was R2Y = 0.946 and predictive ability was 

Q2 = 0.910 while for tissue the R2Y = 0.888; Q2 = 0.813 had a good predictable accuracy. The 

discrimination efficiency and accuracy of BC tissue and urine metabolites was ascertained by ROC 

curve analysis that allowed the identification of some metabolites with high sensitivity and 

specificity. The metabolomic pathway analysis identified several dysregulated pathways in BC 

patients, including those related with pyruvate and glutamine metabolism. Moreover, possible 

correlations between urine and tissue metabolites were investigated and five metabolites were found 

significant using a dual platform approach. Overall, this study suggests that an improved metabolic 

profile combining NMR and GC-qMS may be useful to achieve more insights regarding the 

mechanisms underlying cancer. 

 

Keywords: Breast cancer; Tissue; Urine; NMR; GC-qMS; Metabolomics; Chemometric tools. 
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Introduction 

Up to date, BC is leading at the top of women´s diseases, accounting with around 2.1 million cases 

diagnosed in 2018 and expected to increase 1.1 million by 2040, according to IARC [3]. Being a 

multifactorial disease, with highly variable clinical behavior and response to therapy, it can be curable 

when detected in early stages. Although the extensive investigation on new therapy targets and 

diagnosis, there is the need for the development of new approaches to aid clinicians to monitor BC 

treatments and follow-up together with the current diagnostic tools, namely mammography, 

ultrasound or tumor markers [124]. Nowadays, the available diagnostic tools have supported in BC 

early detection leading to the improved of survival rates. In this regard, metabolomics (metabolomic 

profiling) studies along with the related area of metabonomics emerged as powerful approaches to 

study the metabolic changes in several diseases including cancer [67,217] involving a comprehensive 

analysis of all metabolites present in biological systems (metabolome) [107,218,219]. Indeed, 

metabonomics refers to the “quantitative measurement of the multiparametric metabolic responses of 

living systems to patho-physiological stimuli or genetic modifications” [220] and represents a subset 

of metabolomics. So, whereas metabolomics is the analysis of the biochemical profile of an organism 

under normal conditions, metabonomics is focused on the analysis of the changes in that biochemical 

profile under diseased conditions or genetic modifications. Moreover, metabolomics plays an 

important role in disease profiling being a promising approach for the pursuit of new biomarkers in 

biological matrices, such as cell extracts, tissues or biological fluids. As a fast growing field that focus 

on the investigation of metabolites present in biological systems, it reflects the altered metabolism 

and the physiological status [125]. Normally these studies are combined with analytical techniques 

being the most popular NMR spectroscopy and MS that have gained attention in this field as strong 

tools for the identification of potential biomarkers in a variety of clinical fields [161,217]. Usually, 

MS includes a separation stage LC or GC and can discriminate between compounds based on mass-

to-charge (m/z) ratio in charged particles. Regarding NMR, it is an appealing technique that allows 

the investigation of metabolism due to its advantages as non-destructive, non-invasive, highly 

reproducible, giving information about biological samples environment offering both qualitative and 

quantitative measure. When compared with NMR, MS exhibits a greater sensitivity, although sample 

preparation is laborious and dependent on metabolite chemical properties [155]. On the other hand, 

MS lacks accuracy and precision producing an enhanced resolution profile with several peaks. In 

addition, these platforms can be used together, often applied to complex samples and coupled with 

advanced chemometric tools integrating the datasets obtained by the analytical techniques. If used in 

combination, these techniques enable the identification of a more comprehensive panel of metabolites 

involved in metabolic alterations and help unraveling the possible correlations and the underlying 
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mechanisms induced by a disease [217,221,222]. A variety of studies have been conducted by NMR 

and DART-MS using this approach to find serum biomarkers for BC [67]. Another study was 

developed by Chen et al. [217] that used the dual platform of NMR and MS methods to establish the 

urinary metabolomic profile of bipolar disorder (BD) subjects with a diagnosis purpose. Marshall et 

al. [223] combined direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) and NMR 

to analyze the impact of neurotoxins involvement in dopaminergic cell death which is relevant to 

Parkinson´s disease. Wei et al. [71] used NMR, LC–MS and statistical analysis to predict the response 

to chemotherapy in the neoadjuvant setting using serum samples from 28 patients with breast cancer. 

In turn, Falegan et al. [224] used urine and serum samples from renal cell carcinoma (RCC) patients 

with the aim of distinguishing between stages of the disease and also to make a distinction between 

benign renal tumors and RCC. In summary, multiplatform approaches are useful tools to achieve a 

comprehensive analysis of the broad variety of metabolic alterations in cancer progression and 

development. 

The current work describes the combination of NMR and GC-qMS based metabolomic analyzes 

of urine and breast tissue samples from BC patients and cancer-free individuals combined with 

multivariate statistical tools in order to obtain a panel of metabolites (and their metabolic profiles) 

that can discriminate malignant from healthy status, thus assisting in the diagnostic field.  

 

Materials and Methods 

Reagents and materials 

All solvents and chemicals used in the experimental work were analytical grade. 

For the NMR analysis, 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt (TSP) and deuterium 

oxide (D2O) were supplied by Acros Organics (Geel, Belgium) while potassium dihydrogen 

phosphate (KH2PO4), sodium azide (NaN3), phosphate buffer solution (PBS), potassium deuteroxide 

solution (KOD) were purchased from Panreac (Barcelona, Spain) and Sigma Aldrich (St. Louis, MO, 

USA), respectively. Methanol (MeOH) and chloroform (CHCl3) were purchased from Thermo Fisher 

Scientific (Waltham, Massachusetts, USA). 

For the GC-qMS analysis, sodium chloride (NaCl), hydrochloric acid (HCl) and 4-methyl-2-

pentanol (internal standard, IS) were supplied by Panreac (Barcelona, Spain) and Sigma Aldrich (St. 

Louis, MO, USA), respectively. The SPME holder for manual sampling together with 75 µm 

carboxen/polydimethylsiloxane (CAR/PDMS) fiber was purchased from Supelco (Bellefonte, PA, 

USA). 
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Subjects and sample collection 

Urine samples 

Urine samples (first urine morning) from BC patients (n=30) were collected at the Haemato-

Oncology Unit from Dr. Nélio Mendonça Hospital, while the urine collection from CTLs (n=40) 

(Table 3.5.1) was carried out in Blood Transfusion Medicine Service in the same Hospital. 

 

Table 3. 5. 1 - List of collected urine samples from breast cancer BC patients and CTLs. 

Sample group N. subjects Age range/years  Mean Age  

Breast Cancer (BC) n = 30 44-85 67 

Control (CTL) n = 40 43-80 64 

 

Participants were instructed to collect the first urine morning (after the rejection of the first urine 

stream) into a sterile cup. The collected urine from either patients or healthy volunteer were aliquoted 

into 4 mL glass vials and stored at -80 °C for further analysis by GC-MS and NMR. Prior to analysis, 

all urine samples were centrifuged at 4000 rpm for 20 min at 4 °C, and the supernatant used for the 

analysis. All the analyzes were performed in triplicate. The research was approved by the Ethics 

Committee of Funchal Central Hospital Dr. Nélio Mendonça (Approval no. S.1708625/2017), and 

have been performed in accordance with the ethical standards as laid down in the 1964 Declaration 

of Helsinki and its later amendments or comparable ethical standards. All the participants were fully 

informed of the objectives of the study and signed the informed consent. 

 

Tissue samples 

Regarding the tissue samples, 30 samples from patients with breast cancer (BC, n=30, age range 

44-85, average 67), and 30 samples from cancer-free tissue (CF, n=30, age range 44-85, average 67) 

without malignant infiltration were resected from each patient. The resected samples were divided 

into the active carcinoma and cancer-free tissue outside the tumor margin and were immediately 

frozen in liquid nitrogen, in a total set of 60 samples. The tissues were stored at -80 °C until extraction. 

With regard to tissue, the analysis of cancer and non-cancer tissue from the same subject can also aid 

to balance the effect of external interferents, such as diet or environmental exposure. These samples 

were obtained at the Pathologic Anatomy Unit of Hospital Dr. Nélio Mendonça (Funchal, Portugal) 

according to Table 3.5.2. 
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Table 3. 5. 2 - List of collected tissue samples from BC patients and CF individuals. 

Samples  BC tissue Cancer-free 

Number 30 30 

Age (range, median) (44-85, 65) (44-85, 65) 

Histological grade 

(number of samples) 

IA (5)  

IIA (10)  

IIIA (1)  

IIB (7) Not applicable 

IIIB (5)  

IIIC (2)  

 

The resected BC tissues were classified using the TNM (tumor, node, and metastasis) staging 

approach which included five cases of stage IA, ten cases of stage IIA, one case of stage IIIA B, seven 

cases of stage IIB, five cases of stage IIIB and two of stage IIIC. The research was approved by the 

Ethics Committee of Funchal Central Hospital Dr. Nélio Mendonça (Approval no. S.1708625/2017), 

and have been performed in accordance with the ethical standards as laid down in the 1964 

Declaration of Helsinki and its later amendments or comparable ethical standards. All the participants 

were fully informed of the objectives of the study and signed the informed consent.  

 

Sample preparation 

Urine samples by HS-SPME/GC-qMS 

Prior to HS-SPME, urine samples were thawed and then 4 mL of urine was placed into 8 mL vials 

together with 17 % NaCl (w/v) and 100 µL of the, 4-methyl-2-pentanol (IS = 1.6 mg/L). The pH was 

adjusted to 2 with small amounts of HCl 5M. Then, the vial was capped with a Teflon (PTFE) septum 

using a screw cap and the CAR/PDMS fiber was introduced and exposed into the headspace during 

75 min at 50 °C at 800 rpm (0.5 mm × 0.1 mm bar). After this period, the fiber was removed from 

the vial and inserted into the GC injection port and the extracted VOMs were desorbed for 10 min at 

250 °C. Each sample was analyzed in triplicate and blanks were performed before each analysis. 

 

Urine samples by NMR 

Before NMR analysis, urine samples were thawed and centrifuged (8000 rpm for 5 min) to remove 

any suspended cells and other precipitated material. Then, 540 µL of urine was mixed with 60 µL of 
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a buffer solution (KH2PO4, 1.5 M in D2O) containing 0.1 % of TSP-d4 (used as chemical shift 

reference) and 2 mM NaN3. The pH was adjusted to 7.00 ± 0.02 by adding small amounts of KOD. 

 

Tissue samples by HS-SPME/GC-qMS 

Tissue samples were thawed and then portions of 100 mg were weighted into 20 mL vials together 

with 17 % NaCl (w/v), 1000 µL of ultrapure water and 100 µL of the 4-methyl-2-pentanol (IS = 1.6 

mg/L). The pH was adjusted to 2 with small amounts of HCl 5M. Then, the vial was capped with a 

Teflon (PTFE) septum using a screw cap and the SPME fiber was introduced and exposed into the 

headspace during 75 min at 50 °C at 800 rpm (0.5 mm × 0.1 mm bar). After this period, the fiber was 

removed from the vial and inserted into the GC injection port and VOMs extracted were desorbed for 

10 min at 250 °C. Each sample was analyzed in duplicate and blanks were performed before each 

analysis. 

 

Tissue samples by NMR 

The intact frozen tissues were weighed and portions of 100 mg were transferred into a glass vial. 

Then, 5 mL of a PBS was added to remove any blood residues from the samples. After this, 5 mL of 

cooled MeOH and CHCl3 were added prior to homogenization and vortex. The vials were placed at -

20 °C and the vials were vortexed three times every 10 min. After this procedure, the vials were 

centrifuged at 4000g for 15 min at 4 °C. The upper phase (methanol) containing the polar metabolites 

was placed into another vial and the MeOH was removed under a nitrogen stream before 

lyophilisation. At the time of the NMR analysis, 540 µL of D2O was added to the obtained extract 

and mixed with 60 µL of a buffer solution (KH2PO4, 1.5 M in D2O) containing 0.1 % of TSP-d4 (used 

as chemical shift reference) and 2mM NaN3. The pH was adjusted to 7.00 ± 0.02 by adding small 

amounts of KOD. 

 

GC-qMS conditions 

After the extraction procedure, the SPME fiber with the analytes was inserted into the injection 

port of an Agilent Technologies 6890N Network gas chromatograph system (Palo Alto, CA, USA) 

where the VOMs were desorbed at 250 °C for 10 min. The gas chromatograph was equipped with a 

60 m × 0.25 mm I.D.× 0.25 µm film thickness, BP-20 (SGE, Dortmund, Germany) fused silica 

capillary column and interfaced with an Agilent 5975 quadrupole inert mass selective detector. The 

following oven temperature profile was set: (a) 5 min at 45 °C; (b) increase temperature until 150 °C, 

at a rate of 2 °C min−1 (hold for 10 min); (c) 150 °C for 10 min; (d) increase temperature until 220 

°C, at a rate of 7 °C min−1; and (e) 220 °C for 10 min for a total GC run time of 87.5 min. The column 
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flow was constant at 1.3 mL min−1 using Helium (He, N60, Air Liquide, Portugal) as carrier gas. The 

injection port was operated in the splitless mode and held at 250 °C. For the 5975 MS system, the 

operating temperatures of the transfer line, quadrupole and ionization source were 270, 150 and 230 

°C, respectively, while electron impact mass spectra were recorded at 70 eV ionization voltage and 

the ionization current was 10 µA. Data acquisition was performed in the scan mode (30–200 m/z). 

The electron multiplier was set to the auto tune procedure. Metabolites identification was 

accomplished by manual interpretation through single ion monitorization (SIM) of spectra and 

matching against the Agilent MS ChemStation Software, equipped with a NIST05 mass spectral 

library with a similarity threshold higher than 80% and comparison with commercially available 

standard samples when available. A series of C8–C20 n-alkanes were analyzed using the same 

extraction procedure to establish the kovat indices (KI), and to confirm the identity of the VOMs by 

comparison with the literature. The analyzes were performed in triplicate and the results expressed 

by mean ± standard deviation. 

 

NMR measurements 

NMR spectral acquisition was performed using a Bruker Advance II Plus NMR spectrometer 

equipped with a 400 MHz magnet UltraShield™ 400 Plus at 300K. All NMR spectra acquisition and 

pre-processing were performed under the control of a workstation with TopSpin 3.5pl7 (Bruker 

BioSpin). For each sample, a standard 1D 1H NMR spectrum was acquired using a “noesypr1d” 

(Bruker library) water suppression pulse sequence with water irradiation during relaxation delay and 

mixing time (SW 4807.692 Hz, TD 64 K data points, relaxation delay 5 s, 128 scans). The shimming 

was calibrated automatically. Also, all spectra were processed using a line broadening (1.0 Hz) and 

baseline automatically corrected. The NMR spectrum of each sample was aligned with reference to 

the TSP signal at δ 0.00 ppm. Spectral regions within the range of 0.94 to 10 ppm were analyzed after 

excluding the sub-region δ 4.55-6.05 to remove variability arising from water suppression and 

possible cross-relaxation effect on the urea signal via solvent exchanging protons. Each sample 

analysis was performed in triplicate and the relative standard deviation (RSD) was lower than 2%. 

The analysis of NMR spectral data was performed using the Chenomx NMR Suite 8.2 (Chenomx 

Inc., Alberta, Canada) and relative concentrations were determined using the 400MHz library from 

Chenomx NMR Suite 8.2, which compares the integral of a known reference signal (TSP) with signals 

derived from a library of compounds containing chemical shifts and peak multiplicities. Regarding 

the metabolites that were not available in the library, identification was accomplished by running a 

standard solution and the relative concentration was calculated manually. This software not only 
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allows the identification of compounds but also access their quantification based on advanced 

algorithms turning into a very straightforward tool to analyze NMR spectra. 

 

Statistical Analysis 

Statistical analysis was performed using the web server Metaboanalyst 4.0 [134]. The multivariate 

statistical analysis, namely the orthogonal projections to latent structures discriminant analysis 

(OPLS-DA) were applied on tissue and urine metabolomic dataset to provide insights into the groups 

under study for each analytical platform. The metabolites with VIP scores higher than 1.0 were 

considered significant and used for further analysis. The receiver operating characteristic curves 

(ROC) were also attained to verify which metabolites had the highest sensitivity/specificity for a 

potential BC diagnosis. The selected metabolites were used for the metabolite set enrichment analysis 

(MSEA) to identify significant patterns of metabolite concentration changes. MSEA uses a collection 

of predefined metabolite pathways and disease states obtained from the HMDB. 

Furthermore, to inspect the correlations between urine and tissue metabolites, samples from the 

same individuals were matched and the correlation matrices obtained for the results for each 

analytical platform (GC-qMS and NMR) separately. The matrices were generated by calculating the 

Pearson´s correlation coefficient between each pair of variables from either NMR or GC-MS. The 

results were generated and plotted using MATLAB R2018b Academic version (MathWorks, Natick, 

MA, US). 

 

Results and Discussion 

Tissue and urine metabolomic pattern based on GC-qMS and 1H NMR spectroscopy 

The combined datasets of tissue and urine samples composed of 32 metabolites (GC-qMS) towards 

24 metabolites (NMR) in tissue samples and 52 metabolites (GC-qMS) towards 33 metabolites 

(NMR) in urine samples, were subjected to statistical analysis using the Metaboanalyst 4.0 [134] 

server in order to obtain a preliminary information about data projection. Prior to multivariate 

analysis, all datasets were scaled to unit variance to select which metabolites were used for further 

analysis (t-test, p < 0.05) and then the selected metabolites were autoscaled so that each variable had 

the same weight. OPLS-DA statistical analysis was generated to compare the metabolic profiles 

between BC patients and controls, maximizing the class discrimination. The quality of the model was 

evaluated by R2Y and Q2 values, which gave the variance explained and predicted for the model, 

respectively, thus confirming that the model was effective with a good predictable accuracy. 
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Figure 3. 5. 1 - Loading score plots of orthogonal projection to OPLS-DA analysis of tissue (A) and 

urine samples (B) model validation by permutation test based on 1000 permutations from the 2 groups 

under study. 

Figure 3.5.1 (A) and (B) show the results obtained for the multivariate analysis. (OPLS-DA) for 

tissue (R2Y = 0.888; Q2 = 0.813) and urine (R2Y = 0.946 and Q2 = 0.910) samples, respectively. As 

observed, the obtained OPLS-DA score plot showed a clear separation between BC patients and 

controls for both sort of samples. Additionally, the metabolites from each biological matrix with VIP 

values higher than 1.0 were used for the pathway analysis to verify which pathways were the relevant 

involved in BC. 

(A) (B)
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Figure 3. 5. 2 - Top ten significant features from tissue (A) and urine (B) samples based on VIP value 

and ROC curves for tissue (C) and urine (D) samples using the selected metabolites by VIP values. 

Figure 3.5.2 A-B includes the top ten metabolites with the highest importance in the projection 

which comprised the majority of metabolites arising from the tissue analysis by NMR when compared 

with the VIP values from urine analysis that derived from the GC-qMS technique. Moreover, the 

ROC (Figure 3.5.2 C-D) curves for each type of biological sample (urine and tissue) were constructed 

using the metabolites with higher VIP values as described previously. Regarding the results obtained, 

we can observe that in the case of tissue with five metabolites, namely lactate, glutamate, taurine, o-

phosphocholine, valine. 

  

(A) (B)

(C) (D)
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Figure 3. 5. 3 - Summary plots for MESA analysis overview of tissue (A) and urine (B) samples and respective pathways associated. 

(A) (B)



 

 

Catarina Silva (2019) 145 

The values obtained for the AUC, namely 0.894 for tissue versus 0.902 for urine, were enough to 

provide a good sensitivity and specificity whereas for urine only three metabolites, namely glutamine, 

α-hydroxyisobutyrate and α-hydoxybutyrate were necessary (Figure 3.5.2 C-D). 

 

Figure 3. 5. 4 - The metabolome view map of significant altered metabolic pathways observed in 

tissue (A) and urine (B) samples from BC and CTL groups resulted from MESA. 

To go further, the metabolic pathway analysis using Metabolite Set Enrichment Analysis (MESA) 

was performed in order to identify which pathways were affected in both cases. This type of analysis 

is used as a mean to recognize biologically meaningful patterns that are enriched in metabolomic 

data. For the tissue analysis, the metabolic pathways mainly affected included those of pyruvate, 

alanine and glutamine whereas, for urine, only glutamine and alanine metabolisms had changes 

(Figure 3.5.3 A-B). The metabolites responsible for each pathway were lactate in the case of tissue 

samples and glutamine and glutamate for urine samples (Figure 3.5.4 A-B). In order to check the 

possible correlations between urine and tissue metabolites, samples from the same individuals were 

(A)

(B)
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matched and the correlation matrices obtained for the results for each analytical platform (GC-qMS 

and NMR) are presented in Figure 3.5.5. 

For this test, only the metabolites with correlation coefficient higher than 0.6 and p < 0.05 were 

used. Using this criterion, for example, there are no correlations for tissue vs urine in NMR or tissue 

NMR vs urine GC-qMS. By the Figure, we can observe that five metabolites were found significant 

as indicated in Table 3.5.3, being that the correlation level increases with the intensity of colour. 

 

Table 3. 5. 3 - Correlations obtained from tissue and urine samples by dual analytical platforms. 

Metabolite Sample Platform Metabolite Sample Platform 
Correlation 

Coefficient 
p-value 

acetone urine GC-MS 1-pentanol tissue GC-MS 0.858 3.37E-27 

3-hexanone urine GC-MS 1-pentanol tissue GC-MS 0.621 6.09E-11 

4-heptanone urine GC-MS 1-pentanol tissue GC-MS 0.645 6.85E-12 

2-methyl-5-(methylthio)-furan urine GC-MS decanal tissue GC-MS 0.906 1.32E-34 

acetate urine NMR 1,6,7-trimethyl-naphthalene tissue GC-MS 0.656 2.19E-12 

 

Regarding the possible origin of these metabolites, 4-heptanone was already identified in urine 

samples from cancer patients and healthy controls being hypothesized that it arises from in vivo β-

oxidation of 2-ethylhexanoic acid (EHA) from plasticizers, similar to formation of 3-heptanone from 

valproic acid [127,225]. Acetate is a common metabolite found in most tissues and was also identified 

in biological specimens such as urine, saliva or faeces. The main pathways where acetate is involved 

includes pyruvate, aminoacid and aspartate metabolisms [226]. Also, 2-methyl-5-(methylthio)-furan 

was identified in urine samples from cancer patients [127]. However, to the best of our knowledge 

the possible origin of this metabolite is not yet reported in literature. Regarding acetone, it was also 

identified in urine and tissue samples and the main pathways associated with it are the synthesis and 

degradation of ketone bodies and propanoate metabolism through acetyl-CoA in the liver [227]. The 

results obtained with this preliminary research suggest the possibility to identify endogenous 

metabolites using a dual platform to discover potential BC biomarkers and paves a way to investigate 

the related metabolic pathways to improve the diagnostic tools in BC. 
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Figure 3. 5. 5 - Correlation analysis of metabolites between tissue and urine samples. The matrices were generated by calculating the Pearson correlation 

coefficient between each pair of variables from either NMR or GC-qMS. 
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Conclusions 

This research allowed the combination of NMR and GC-MS based metabolomic analyzes of urine 

and breast tissue samples from BC patients and cancer-free individuals tandem with multivariate 

statistical tools in order to obtain a panel of metabolites (and their metabolic profiles) that can 

discriminate malignant from healthy status thus assisting in the diagnostic field. Additionally, using 

a dual platform approach (NMR and GC-qMS), we could enlarge the panel of identified metabolites 

showing a promising diagnostic tool for a BC diagnosis. Overall, this study suggests that an improved 

metabolic profile combining NMR and GC-qMS may be useful to achieve more insights regarding 

cancer mechanisms. Nevertheless, due to the challenge of identifying metabolites linked to BC, 

further studies are needed for an ampler understanding of the mechanisms underlying BC. 
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SECTION 4| Integrated Discussion 
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The improvement of diagnostic/screening methods are important achievements in cancer research 

besides the intensive investigation undertaken on the discovery of new biomarkers. With the 

emergence of metabolomic studies in the last decade that successfully overcomed the knowlegde 

about pathological processes such as cancer, there is the hypothesis that metabolic alterations result 

in qualitative and quantitative alterations on metabolites. 

Although the sample size in a exploratory research is usually small, it is essential to analyze a 

larger number of sampels in order to verify and validate the results and to increase the statistical 

ability of the results. Moreover, the alterations on metabolites levels will be reflected in both genetic 

and environmental factors, leading to the increase of the susceptibility to cancer [217]. In the case of 

BC, numerous metabolomic studies have be conducted using biological samples, such as urine 

[63,189], serum [71,189] or tissues [228] by many analytical approaches, being the most commom 

the NMR and MS in single or in dual application [144]. 

Thus, the work described through this thesis represents a contribution on the study of BC 

metabolome, by analyzing urine, cell lines and breast tissue in order to gain a deeper understanding 

about the metabolic alterations occuring in BC and eventually find potential metabolites for BC 

diagnosis. The studies in this thesis were carried out using GC-qMS and NMR spectroscopy and their 

results are presented in Chapters 3.1 to 3.5. In general, the achieved results confirm that urine might 

be a source of valuable information for the search of BC biomarkers. 

In the first study, described in Sub-section 3.1, the main goal was the development of a statistical 

design (CCD) and the optimization of significant variables of SPME procedure for the isolation of 

VOMs from urine of BC patients (n=30) and CTL (n=40). This type of optimization takes into account 

the possible interations between the variables. The establishment of the urinary volatomic 

composition, through GC-qMS analysis, improved the identification of VOMs potential BC 

biomarkers useful to be used together or to complement the current BC diagnostics tools. For that 

purpose, several extraction influencing parameters (e.g., SPME coating, NaCl amount, extraction 

time and temperature) were tested. The developed HS-SPME method was applied to urine samples 

to discriminate between BC and CTL groups, showing promising results that are essential to be 

explored. Additionaly, from the GC-qMS analysis, 116 VOMs were identified and multivariate 

statistical analysis revealed some metabolites significantly altered in BC patients. Of the metabolites 

identified, 3-methyl-thiophene, 4-heptanone, α-terpinene, 2-pentylfuran, p-cymene, trimethyl 

trisulfide, 1-methyl-4-(1-methylethenyl)-benzene, acetic acid, 2-methyl-3-phenyl-2-propenal and 

1,2-dihydro-1,1,6-trimethylnaphthalene showed the utmost sensitivity and specificity to discriminate 

BC patients from CTL. Some of these metabolites have been already identified in urine from renal 

cell carcinoma (RCC) patients as being increased in RCC patients [229]. The metabolic pathway 
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analysis indicated that the discriminatory metabolites could be originated from several dysregulated 

pathways in BC such as pyruvate and sulfur metabolisms. These results suggested the possibility to 

identify endogenous metabolites as a platform to discovery potential BC biomarkers and paves a way 

to investigate the related metabolomic pathways to improve the diagnostic tools of BC. 

The second study (Sub-section 3.2) consisted of an extension of the abilities of urine on the field 

of BC biomarker discovery. For that purpose, the urinary metabolomic pattern was obtained from BC 

patients and CTL using 1H NMR spectroscopy, as a powerful approach to identify a set of BC-specific 

metabolites which might be employed in the BC diagnostic. OPLS-DA was applied to 1H-NMR 

processed data matrix. Metabolomic patterns distinguished BC from CTL urine samples suggesting 

unique metabolite profiles for each investigated group. The discrimination efficiency and accuracy 

of the urinary metabolites were ascertained by ROC curve analysis that allowed the identification of 

some metabolites with the highest sensitivity and specificity to discriminate BC patients from CTL. 

The metabolomic pathway analysis indicated several metabolism pathways disruptions including 

aminoacids and carbohydrates metabolism, in BC patients. The obtained results support the high 

throughput potential of NMR-based urinary metabolomics patterns in the discrimination BC patients 

from CTL. 

Moreover, the third study described in Sub-section 3.3 demonstrated that HS-SPME/GC-MS can 

be used to establish the in vitro volatile metabolomic patterns of normal and cancer breast cells. In 

addition, this study showed the potential of screening the in vitro VOMs associated with BC to 

identify potential volatile metabolites to be used in early diagnosis. VOMs from the headspace of 

cultured BC cells and normal human mammary epithelial cells, were collected by HS-SPME and 

analyzed by GC–qMS, thus defining the volatile metabolomic signature. Also, the headspace of 

cultured media of normal and cancer cell lines, containing the exometabolome with extracelular 

metabolites, was analyzed at different pH conditions. Most of the identified VOMs were common to 

all BC cell lines and normal human mammary epithelial cells, but 2-pentanone, 2-heptanone, 3-

methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate, and 2-methyl butanoate, were detected only in 

the headspace of cancer cell lines. Multivariate statistical data obtained in this study revealed that 

combining in vitro assays with HS-SPME/GC-qMS is a promising strategy to discriminate the volatile 

metabolomic signature of normal cells and BC cell lines according to molecular type. 

The fourth study (Sub-section 3.4) consisted of the untargeted assessment of metabolomic tissue 

profile from BC patients when compared with CF tissues using GC-qMS tandem with multivariate 

statistical tools (PLS-DA and OPLS-DA). Twenty-nine metabolites were identified, and multivariate 

statistical analysis revealed some metabolites significantly altered in BC patients. Of the metabolites 

identified, limonene, decanoic acid, acetic acid and furfural showed the highest sensitivity and 



 

 

Catarina Silva (2019) 153 

specificity to discriminate BC patients. Also, the analysis of the plots leads to a metabolomic pattern 

comprising an array of some biochemical pathways altered in BC patients. The metabolic pathway 

analysis indicated that the discriminatory metabolites could be originated from several dysregulated 

pathways in BC such as those involved in pyruvate and sulphur metabolisms. 

In the last study (Sub-section 3.5) the combination of NMR and GC-qMS based metabolomic 

approach was applied using urine and breast tissue samples from BC patients and cancer-free 

individuals. The data obtained was processed using multivariate statistical tools in order to obtain a 

panel of metabolites (and their metabolic profiles) that could discriminate malignant from healthy 

status. Tissue and urine samples were collected from BC patients (urine: n=30; tissue n=30) and CF 

subjects (urine n=40; tissue n=30) and analyzed. The OPLS-DA model showed a clear separation 

between BC patients and controls for both classes of samples. The discrimination efficiency and 

accuracy of BC tissue and urine metabolites was ascertained by ROC curve. Regarding the 

metabolomic pathway analysis several dysregulated pathways including pyruvate and glutamine 

metabolisms, in BC patients were identified. Moreover, the correlations between urine and tissue 

metabolites were investigated being that five metabolites were found significant using a dual platform 

approach. Overall, this study suggests that an improved metabolic profile combining NMR and GC-

qMS may be useful to achieve more insights regarding cancer mechanisms. 

In summary, cancer is a complex disease where many metabolic pathways are dysregulated 

regardless on cancer type. This might be the major handicap of metabolomics studies when searching 

for specific biomarkers, since the results obtained can be the reflection of the commom carcinogenic 

processes and not from the type of cancer of interest. One of the important steps is the validation of 

the potential biomarkers, the requirement of a larger cohort and also the undertake of an external 

validation [77,230].  
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SECTION 5| Conclusions and Future 

Perspectives 
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The work described in this thesis emphasizes the potential of urine for the pursue of BC biomarkers 

for a non-invasive diagnosis, since it is the final step of metabolic pathways. Among the biofluids 

used in metabolomic studies, urine has been shown to contain a wealth of metabolic information that 

is believed to be changed in disease conditions, including cancer. Moreover, it is abundant, easily 

collected, stored and given its complexity, is particularly rich in potential disease biomarkers. This 

makes it an ideal biofluid for the detection or monitoring of disease evolution. However, to 

complement the data obtained from urine and to enhance a comphreensive analysis of BC 

metabolome, it is essential to use other biological samples, such as as tissue or cell lines once they 

can provide additional information regarding urine. 

 

The main conclusions of this thesis: 

 

✓ A CCD model was optimized and applied to urine samples from BC and CTL groups, using 

HS-SPME/GC-qMS in order to obtain the optimal extraction conditions for the VOMs 

extraction from the target samples. In this context, a CAR/PDMS fiber coating at 50 °C during 

75 min with the addition of 15 % NaCl were selected. All the assays to establish the volatomic 

composition of urine and BC tissue were carried out using the optimized conditions obtained 

by the CCD model; 

 

✓ The establisment of the metabolomic profile from urine samples based on volatile (GC-qMS) 

and non-volatile (1H NMR) fractions was performed and unveiled the ability to discriminate 

BC from CTL groups. The metabolites creatine, glycine, serine, dimethylamine, 

trimethylamine-N-oxide, α-hydroxyisobutyrate, manitol, glutamine, cis-aconitate and 

trigonelline exhibited the highest sensivitity in the discrimination of both groups by NMR 

studies, whereas 3-methyl-thiophene, 4-heptanone, α-terpinene, 2-pentylfuran, p-cymene, 

trimethyl trisulfide, 1-methyl-4-(1-methylethenyl)-benzene, acetic acid, 2-methyl-3-phenyl-

2-propenal and 1,2-dihydro-1,1,6-trimethylnaphthalene showed the utmost sensitivity and 

specificity to discriminate BC from CTLs using GC-qMS technique; 

 

✓ The establishment of the volatile metabolomic pattern by HS-SPME/GC-qMS of normal and 

cancer breast cells was obtained. The headspace of culture media of normal and cancer cell 

lines was analyzed at different pH conditions. Most of the identified VOMs were common to 

all BC cell lines and HMEC cells, with exception of 2-pentanone, 2-heptanone, 3-methyl-3-
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buten-1-ol, ethyl acetate, ethyl propanoate, and 2-methyl butanoate that were detected only in 

the headspace of cancer cell lines. Multivariate statistical analysis revealed that it was possible 

to differentiate the volatile metabolomic signature of normal cells and BC cell lines according 

to molecular type, thus contributing to the discovery of novel biomarkers and the related 

metabolomic pathways thus improving the diagnostic tools for BC; 

 

✓ The untargeted assessment of the metabolomic tissue profile from BC patients and compared 

with cancer-free (CF) tissues using GC-qMS tandem with multivariate statistical tools (PLS-

DA and OPLS-DA). From the identified metabolites, limonene, decanoic acid, acetic acid and 

furfural showed the highest sensitivity and specificity to discriminate BC patients from CTLs. 

The discriminatory metabolites could be originated from several dysregulated pathways in 

BC such as, those involved in pyruvate and sulphur metabolisms. Furthermore, the analysis 

of cancer and non-cancer tissue from the same subject can also aid to balance the effect of 

external interferents, such as diet or environmental exposure and help to identify potential 

biomarkers; 

 

✓ Urine and tissue samples from BC and CF subjects were analyzed by different analytical 

platforms (GC-qMS and NMR) in order to evaluate the correlations between urinary and 

tissue metabolites, where samples from the same individuals were matched through the 

integration of data, being that five metabolites (e.g., acetone, 3-hexanone, 4-heptanone, 2-

methyl-5-(methylthio)-furan and acetate) were found significant using a dual approach. 

Moreover, the integration of high-resolution analytical frameworks, namely MS and NMR, 

appeared as an outcome on metabolomics studies, providing a sensitive, reliable detection and 

the quantification of metabolites in biological samples and their related metabolic pathways; 

 

✓ Furthermore, the metabolic networks obtained by the correlation analysis will be also an 

attempt to analyze the complex interactions between metabolites as a complementary tool to 

statistical univariate and multivariate data analysis methods in order to reveal conections 

between pathways, identifying metabolite differences in physiological state. 

 

The future work challanges encompass: 

 

✓  To investigate the metabolic profile of cultured cells from breast tissue and urine samples 

from the same donor, in order to have a deeper insight into metabolism imbalance; 
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✓ To gain a better understanding of the causes of the dysregulation that occur in BC, by taking 

into account an external validation with larger cohorts of samples and using statistical tools 

allowing the selection of significant variables reducing the impact of the less meaningful ones. 
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