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Abstract

Proteins interactions mediate all biological systems in a cell; understanding their interac-

tions means understanding the processes responsible for human life. Their structure can

be obtained experimentally, but such processes frequently fail at determining structures

of protein complexes. To address the issue, computational methods have been developed

that attempt to predict the structure of a protein complex, using information of its con-

stituents. These methods, known as docking, generate thousands of possible poses for

each complex, and require effective and reliable ways to quickly discriminate the correct

pose among the set of incorrect ones. In this thesis, a new scoring function was developed

that uses machine learning techniques and features extracted from the structure of the

interacting proteins, to correctly classify and rank the putative poses. The developed

function has shown to be competitive with current state-of-the-art solutions.
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Resumo

Interações de proteínas regulam todos os processos biológicos de uma célula; compre-

ender estas interações implica compreender os processos responsáveis pela vida humana.

A estrutura de uma proteína pode ser obtida experimentalmente, mas estes processos são

muitas vezes incapazes de obter a estrutura de complexos proteicos. Tentativas de resol-

ver o problema passam pelo desenvolvimento de métodos computacionais que tentam

prever a estrutura de um complexo proteico, usando informação dos seus constituintes.

Estes metódos, conhecidos como docking, geram milhares de poses possíveis para cada

complexo dos quais a maioria é incorrecta, e necessitam de métodos fiáveis e eficazes

de distinguir a pose correcta entre o conjunto de poses incorrectas. Nesta dissertação,

um método foi desenvolvido usando técnicas de aprendizagem automática e atributos

extraídos das estruturas das proteínas em interacção, de modo a classificar e ordenar as

possíveis poses. O método desenvolvido revelou-se competitivo com soluções existentes.

Palavras-chave: Aprendizagem Automática, Bioinformática, Interacções the Proteínas,

Docking
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1
Introduction

Proteins and their interactions with other molecules form the basis for all life. Virtually

every biological process within cells is carried out by proteins or complexes of proteins.

New protein-protein interactions, integral to all aspects of life on Earth are steadily being

found, and knowledge regarding their structure is of extreme value for the understanding

of their function. However, current methods of experimental protein structure determi-

nation have been unable to keep up.

X-Ray crystallography, the method by which most protein structures have been de-

termined thus far (accounts for ∼89% structures in the Protein Data Bank) requires the

formation of high quality crystals, a notably difficult and lengthy process, further exacer-

bated by incredible size and complexity of proteins, and the transient interaction profile

many of them display.

This higher difficulty of determining structural information of protein assemblies,

or complexes, lead to a knowledge gap between structures of individual proteins and

of structures of protein complexes. Efforts to close this gap lead researchers to turn to

computational methods that could overcome the limitations of experimental processes

and make use of the already known information pertaining to protein structure.

Computational methods that attempt to predict structures of protein complexes using

knowledge of their constituents are known as protein docking.

Docking processes typically simulate contact of the two interacting proteins and gen-

erate thousands of putative poses, of which only a select few correspond to poses close

to the real complexes’ native state. There is a pressing need to then filter out these false

positives and rank poses in such a way that poses closer to the real complex are ranked

higher than the others. These mechanisms are known as scoring functions, and they

present the main issue tackled in this thesis.

Solving the problem of complexes’ structure determination can be immense for the

1



CHAPTER 1. INTRODUCTION

development of new treatments for life threatening conditions such as cancer[60, 77] and

Alzheimer’s disease[59].

1.1 Proposed Solution

The main contribution described in this thesis, is a protein-protein docking scoring func-

tion, capable of competing with other state-of-the-art methods, that makes use of machine

learning techniques and features extracted from the three dimentional structures of pro-

teins to discriminate the native orientation of a protein complex, amidst a multitude of

incorrect ones.

1.2 Document Structure

In order to familiarize the reader with the general outline of the document, this section

aims to provide some basic knowledge of the organization of each chapter: chapter 2

summarily introduces relevant biological concepts important for the understanding of

the work, namely amino acids, protein structure, homology and protein-protein interac-

tions (PPI); Chapter 3 presents the ideas behind protein docking and scoring, as well as a

representative overview of various state of the art algorithms in these fields; In chapter 4

a select number of machine learning algorithms used throughout the work are described,

together with their principal advantages and disadvantages; The process of data acqui-

sition, the Protein Data Bank and the main file format used throughout the work will

be detailed in chapter 5; Chapter 6 describes the process of development of the scoring

solution, which comprises the practical component of the work presented; In chapter 7 a

comparative study between the the developed scoring function and other state of the art

scoring functions; Finally, chapter 8 concludes the document providing an overview of

the work achieved, as well as possible directions for future improvements.

2
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2
Protein Structure

Proteins are a fundamental component of all living things. Every single cell in our body

makes use of proteins, in one way or another, to exert some biological function. These

incredible molecular devices are responsible for a plethora of critical roles in all of life’s

processes, for example: they provide structural support, allowing cells to maintain their

shape; act as catalysts, facilitating biochemical reactions; assist in the formation of new

molecules; are an active part of immune system; help regulating hormones and protein

transcription; serve as biological reserves of metal ions and amino acids; and can transport

ions and other molecules within an organism[7, 12, 54].

Their structure is intrinsically tied to their activity and is as diverse as the functions

they provide. Thus, the study of their structure is paramount if we are to understand

how proteins are formed, how they interact and, ultimately, how they function. Insight

obtained from protein structure could be precious in understanding and preventing

diseases, or developing new and improved treatments, drugs and other products that can

be put to use for the betterment of countless aspects of human life.

Proteins’ sizes can vary wildly, from simple ones containing only a few dozen atoms to

gigantic chains of several thousands. For example, Titin, the protein responsible for the

passive elasticity of muscles can reach upwards of 33 000 residues, and 244 domains[51].

Describing such structures atom by atom would easily become intractable. This difficulty

in describing protein structures lead to the formulation of several layers of complexity

on which to analyze it. In the following sections, the four levels of protein structure

will be briefly explained, together with a few other important concepts to keep in mind

throughout the work. This description will aim to provide only the basic background for

the understanding of the work, for a more exhaustive detailing the author would refer to

other books such as Introduction to Protein Structure[7].

3



CHAPTER 2. PROTEIN STRUCTURE

2.1 Amino Acids and Primary Structure

Amino acids are simple organic compounds. There are twenty canonical amino acids

specified by the genetic code, each sharing a common core structure of a central carbon

Cα bonded with an amino group (NH2), a carboxyl group (COOH) and a so called side-

chain, or R group, which differs for every amino acid.

Figure 2.1: Illustration of the atomic composition of an amino acid (Left). The simplest
amino acid, Glycine (Right).

These side-chains make the distinction of amino-acids between each other, giving

them unique chemical and sterical characteristics. These properties impact and ulti-

mately define the structure, the function and the interactions of proteins.

As a means to simplify description of these properties, amino acids are often grouped

into categories. One of the most simple and common classifications puts amino acids into

one of the following: hydrophobic, polar-uncharged, polar charged negatively and polar

charged positively[7, 12]. A table with the residues’ common classification can be seen in

table 2.1.

Name 3-Letter Residue Type Name 3-Letter Residue Type

Alanine ALA Hydrophobic Leucine LEU Hydrophobic
Arginine ARG Positive Lysine LYS Positive

Asparagine ASN Polar Methionine MET Hydrophobic
Aspartic Acid ASP Negative Phenylalanine PHE Hydrophobic

Cysteine CYS Polar Proline PRO Hydrophobic
Glutamic GLU Negative Serine SER Polar

Glutamine GLN Polar Threonine THR Polar
Glycine GLY Hydrophobic Tryptophan TRP Hydrophobic

Histidine HIS Positive Tyrosine TYR Polar
Isoleucine ILE Hydrophobic Valine VAL Hydrophobic

Table 2.1: Table of residue types as classified by Structural bioinformatics: an algorithmic
approach[12], this residue grouping is used later for feature extraction.

During protein synthesis the amino acids are joined together by a condensation pro-

cess in which the amino group of one amino acid forms a peptide bond with the carboxyl

4



2.2. SECONDARY STRUCTURE

of another. This process happens multiple times resulting in a chain of these amino acids

(now also known as residues), to which we call polypeptide chains. These chains display

a repeating sequence of Nitrogen-Carbon-Carbon atoms, known as the backbone.

Some amino acids possess other special properties, for example: Proline forms cycles

back to the polypeptide chains, which imposes limitations on the flexibility of the back-

bone; Glycine on the other side of the spectrum, due to its size (side-chain is a single

hydrogen atom, see fig 2.1) allows more flexibility than any other amino acid[12].

The description of the linear sequence of these amino acids by order of appearance

on a protein’s backbone chain (ordered from amino group to carboxyl group) is known

as a protein’s primary structure.

2.2 Secondary Structure

Amino acids from a polypeptide chain fold upon themselves, forming fairly regular and

energetically favourable structure configurations. These structures occur and are held

together by hydrogen bonding between atoms in the backbone chain.

A common classification for these structures puts them into one of three categories:

α-helices, β-sheets and loops. An example of a protein with all three can be seen in figure

2.2.

Figure 2.2: Complex of PDB code
1AY7 colored by secondary struc-
ture. α-helices can be seen in purple,
β-sheets in cyan, and loops in white.

Given the interaction being almost entirely independent from specific amino acid

residues of the chain, these structures are present in a vast majority of proteins. In most,

β-sheets and α-helices will form an hydrophobic core, connected by loops[12].

The characterization of these regular structures is known as a protein’s secondary

structure.

2.3 Tertiary Structure

Soon after proteins are formed, they undergo a folding process in which all the different

residues interact between themselves and the solvent according to their chemical and ster-

ical preferences. These interactions result in innumerous temporary spatial arrangements

of atoms. Eventually however, one particular folding pattern will be more energetically

favourable than all the others, leading to the formation of a semi-stable three dimensional

5



CHAPTER 2. PROTEIN STRUCTURE

conformation capable of performing some biological function; the native state. The full

description of the arrangement of all the atoms and their positions is known as tertiary

structure.

Figure 2.3: Example of two domains, in orange and green, from Pectate Lyase (PDB code
4U4B)

Often, proteins form separate cores of residues known as domains. A formal defi-

nition of a domain is not exactly agreed upon, but one good definition can be found in

Burkowski’s book, in which a domain is described as: "[...] a region of a protein that has

more interactions within itself than with the rest of the chain". Typically, these regions ex-

hibit a globular, compact core of hydrophobic residues organized in αhelices and β-strands
linked by loops around the surface[7]. Domains are capable of evolving and interacting

independently, and the same domain structures may appear in different proteins, making

them the basic unit of function and structure of proteins[12].

2.4 Quaternary Structure

Quaternary structure is the only non compulsory level of structure. A protein possesses

quaternary structure when it is an assembly of multiple polypeptide chains. Such struc-

tures are known as complexes.

A vast majority of proteins belong to this category, as they incur in interactions with

other proteins in order to perform their function.

These interactions occur at patches of the protein’s surface known as interfaces. Inter-

actions between proteins can broadly be classified into two types: obligatory (permanent)

or transient. Obligatory contacts mean the proteins are required to be in a complexed

state in order to maintain their structure and function, that is to say, they cannot be found

in vivo uncomplexed. Transient contacts on the other hand can interact with several dif-

ferent molecules throughout their life, thus existing in both complexed and uncomplexed

states[2, 24].

The distinction of the two types of contacts is relevant, as interfaces of both types

display several differences such as area, structure and residue composition. Obligatory

6



2.5. PROTEIN HOMOLOGY

interfaces for example, have typically been characterized as being larger and more hy-

drophobic than transient ones[24], which seem to possess higher distribution of charged

and polar residues[2]. Hydrophobicity is the main factor in the stability of protein struc-

ture[20], this can help explain these differences in residue composition, as transient

interfaces need to associate and dissociate quickly[2].

Figure 2.4: Structure of
4NIF heteromonomer, each
monomer is shown in different
colors.

Residues at interfacial patches have specific pairing preferences. Hydrophobic residues

tend to pair with other hydrophobic residues, while charged residues prefer residues with

complementary charge[2, 30, 58].

Knowledge of protein interfaces and composition can impact both stages of molecular

docking. Docking algorithms can use this knowledge to limit the number of conforma-

tions sampled thus making the search process faster[5, 32]. Furthermore, interfacial

information such as residue composition and pairing preferences or statistics can also be

helpful in order to identify non-native solutions[2, 30].

2.5 Protein Homology

Proteins, much like every living thing, are subjected to selective pressure to evolve in an

advantageous manner. For proteins specifically, this means that throughout evolution,

mutations should minimally disrupt their ability to interact with a partner molecule[58].

Homologous proteins descend from a common ancestor by divergent evolution and

they are usually identified by sequence similarity[7]. The interest in homology derives

from the observation that homologous proteins exhibit similar backbone structure, even

in proteins with sequence similarity as low as 30%[12, 58].

This property has been used to enhance prediction of protein structure based on

knowledge of the structure of the protein’s homologues (homology modeling). Every-

day, new structural data becomes available, making homology an even more appealing

prediction method.

Besides structure prediction, analysis of residue conservation in homologous proteins

can also aid in identifying protein interfaces[5].
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3
Protein Docking and Scoring

Protein interactions are the basis for nearly every cellular process. The vast majority of

proteins form assemblies of proteins named complexes, with specific three dimensional

structure that allow the complex the execution of some biological function.

Determination of the structure of such complexes is exceptionally difficult to perform

experimentally. They can reach incredible sizes, and many posses a rapid rate of associ-

ation and dissociation that make assembly of high quality crystals necessary for X-Ray

Crystallography nearly impossible. On the other hand, determination of structures of

individual proteins is comparatively simpler; this lead to a gap between the number of

known structures of individual proteins and that of protein complexes.

In order to bridge this gap and harness the power of existing structural knowledge,

other methods of studying and determining structures of complexes have been explored,

more relevant of which, computational methods.

These methods, in which the structure of the complexes’ constituents is used to pre-

dict the structure of the complex itself, is called protein docking. Interest in the field of

protein docking has been around since the early 80’s; however, technical and computa-

tional constraints put a limit to what was achievable at the time. Since then, a tremen-

dous increase in computational power, data quality and availability, together with better

knowledge of protein interactions, made the approach more feasible and widespread[7,

8]. Despite the progress, docking remains an unsolved and challenging problem.

Current docking procedures can be conceptually split into two sequential stages: an

initial stage in which thousands of possible poses for a given protein complex are gener-

ated; and a second stage, known as refinement or scoring stage, in which algorithms try

to effectively discriminate and rank which of the generated putative poses correspond to

near-native structures, and which do not[32, 36].

In the following sections, a general overview of both initial stage docking and scoring
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stages will be provided together with some concrete examples of frameworks for both.

Given the focus of this thesis being scoring, the docking section is presented mainly for

context, although they can influence some viable scoring approaches.

3.1 Search Stage

The search stage, also known as initial stage docking, is the first step in computational

docking frameworks. The goal at this stage is to iterate through possible arrangements

of the two molecules and generate a subset of those that might correspond to native

conformations. Efficiency and speed are the focus of this stage, as well as attempting

to reduce the number of different poses in the generated set without discarding those

approaching the correct structure.

Figure 3.1: Example of several different conformations generated by GRAMM-X for com-
plex with PDB code 1ofu. Receptor is shown in red and putative poses for the ligand in
green.

To this end, algorithms make use of simplified scoring functions, typically involving

some measurement of shape complementarity and/or handling proteins as rigid bod-

ies. This requires workarounds to handle molecular flexibility, usually by allowing a

soft margin of penetration between the interacting proteins[43] or by using geometric

descriptions of lower resolution[88] to implicitly handle side-chain flexibility.

Searching algorithms on this stage can be broadly classified into either global or lo-

cal search algorithms. Global search procedures such as Fast Fourier Transform (FFT)

correlation method[43] exhaustively search all the possible arrangements of the proteins,

which includes many incorrect configurations. Despite this, it remains a popular search-

ing algorithm with PIPER[47], DOT[61] and ZDOCK[18] being some examples of FFT

based docking frameworks. Often, one of the interacting molecules (typically the recep-

tor) is held in place for simplification, with all poses being different three dimensional

arrangements of the other.

By contrast, local based searches typically sample the search space, either randomly

or by being provided a starting conformation, together with an optimization algorithm

to gradually improve the quality of the conformation. Given the reduced search space,
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these methods are more easily capable of incorporating the means to deal with molecular

flexibility. Examples include RosettaDock[57] and HADDOCK[25].

Additional information such as knowledge of interfacial residues or homologous pro-

teins can be used to further restrict the search space, which can significantly improve

docking performance[25, 27, 78].

3.2 Scoring/Refinement Stage

The refinement stage, also known simply as scoring, takes the generated set output from

the previous stage and applies any number of methods and transformations with the

end goal of discriminating and ranking conformations that correspond to near-natives

and those that do not. Ideally, a scoring function would rank the best putative pose the

highest, with successively worse poses being ranked accordingly.

Figure 3.2: Illustration of the usual two stage docking approach, displaying where the
scoring stage fits in a typical docking pipeline.

Given the often large number of generated poses and the high complexity and com-

putational cost, scoring is often preceded by some technique to reduce the number of

putative poses, typically by using simplified scoring functions as a filter, clustering, or a

combination of both. Clustering can be of particular interest as it may be a good indicator

of so called energy-basins, which often correspond to near-native arrangements[68].

Side-chain searches can also be performed at this stage, usually with the aid of rotamer

libraries, which help save time and resources by providing pre-determined side-chain

conformations of low energy.

Molecular force fields such as Assisted Model Building with Energy Refinement (AM-

BER)[71] and Chemistry at HARvard Molecular Mechanics (CHARMM)[10] are common

tools of molecular dynamics simulations used in energy minimization steps. Energy

minimization being procedures in which a given structure is "relaxed" into a more ener-

getically favored state by, for example, altering bond-lengths, angles, etc.

Present in almost all scoring functions are values for several energetic terms, mod-

eling properties such as shape complementarity, hydrophobicity, solvation and electro-

statics[15, 73]. Statistical and Knowledge based terms derived from residue contacts on

databases of determined protein structures have also been known to perform well in

discriminating near-native conformations[31, 65].
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It is precisely at this stage that this work takes place, applying machine learning

techniques to develop an effective scoring solution capable of competing with state of the

art solutions.

3.3 Docking Frameworks

In the following subsections, some of the most popular and influential full docking frame-

works will be briefly described. The selection of the algorithms to present here was made

so as to provide a representative set. All the presented frameworks were tested and

validated in Critical Assessment of PRediction of Interactions (CAPRI)[41], a commu-

nitywide experiment to assess the ability of protein docking procedures in predicting

protein-protein interactions.

3.3.1 RosettaDock

RosettaDock[57] is a Monte Carlo (MC) based docking framework that approximates

the theoretical behavior of a protein encounter and subsequent binding with another

protein[13]. The algorithm starts by obtaining a good random starting orientation for

both proteins by means of score filtering and clustering. Alternatively, a starting position

may be provided based off available information of the complex.

A low-resolution representation of this starting structure, in which each side-chain is

replaced by a representative fake atom is then used for a 500-step rigid body MC search.

Each step adjusts the translation and rotation of one molecule with step size being fine

tuned to maintain a 50% acceptance rate. For this stage a simplified scoring function

is used that includes contact and bump scores as well as environment and residue pair

potentials.

The structure with the lowest energy is then passed onto a refinement stage in which

the full description of the side-chain is added back to backbone of the proteins, replacing

the fake atom representation.

A 50-step MC search then ensues where each step randomly perturbs the position of

the structure followed by a side-chain packing using a rotamer library[82] and energy

minimization. After each MC move, a score is calculated that includes terms such as

van der Waals (vdW) attractive and repulsive energies, residue-residue pair interactions,

electrostatics, hydrogen bonding energies, solvation and a side-chain probability term.

The Metropolis acceptance criterion is then employed to decide if the position should

be updated. The entire search procedure is repeated a finite number of times(typically

105) and the 200 best scoring structures are clustered by RMSD(2.5Å) with the lowest

scoring pose of each cluster being its representative. The final predictions are the cluster

representatives ranked in descending order of cluster size.
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3.3.2 ClusPro

ClusPro[21, 46, 48] was the first fully automated computational docking framework

as well as one of the most successful. It takes the output poses of either ZDOCK[18],

DOT[61] or PIPER (only in version 2.0)[47] and keeps the best n poses (1000∼2000) for

further processing. Considering interfacial residues to be those from the ligand within

10Å of any residue of the receptor, the interfacial Root Mean Square Deviation (RMSD)

of the Cα of each pose is calculated with respect to every other model and stored in a N
x N matrix. An iterative clustering stage immediately follows where the ligand with the

highest number of neighbors withing a certain threshold (9Å by default) is considered

the cluster’s representative, and all elements from that cluster are removed from the

matrix. This process is repeated until at least 30 clusters are formed. Finally, the cluster’s

representatives are subjected to vdW energy minimization using CHARMM potential

and the algorithm outputs the cluster representatives in descending order of cluster size.

3.3.3 HADDOCK

High Ambiguity Driven protein-protein DOCKing (HADDOCK)[25] is a docking frame-

work that prides itself on being data-driven. It takes a list of active (known to interact)

and passive (might interact) residues from each protein, derived from information ob-

tained from mutagenesis, mass spectrometry and/or NMR, to create distance restrictions

between any residue of the active list of the ligand and atoms of both active and passive

lists of the receptor. If no experimental data is available, interface prediction algorithms

can be used instead.

These constraints are then incorporated into a scoring function, that includes ener-

getic terms such as vdW, electrostatic and desolvation, in order to bias the search toward

conformations that satisfy them.

HADDOCK then undergoes a rigid body energy minimization after which top 1000

structures are retained for further processing. These structures are then refined with a

simulated annealing algorithm in which limited side-chain and backbone flexibility is

introduced to segments of the protein that encompass the active and passive residues.

These segments are calculated automatically, but they can also be specified manually.

Lastly, the leftover structures are once more subjected to energy minimization and

molecular dynamics simulations in explicit solvent, with the results being clustered and

ranked according to the average energy of the best four conformations in each cluster.

3.4 Scoring Functions

Several representative scoring functions will be detailed in the next subsections. Once

again, the choice of function was biased towards popular functions with distinct ap-

proaches, and the descriptions will be brief, focusing mostly on the intuition behind the
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algorithms. FastContact[14], dDFIRE[85] and SPIDER[44] are of particular interest, as

they were used in the work for comparative performance assessment (chapter 7).

3.4.1 ZRANK

ZRank[73] is a scoring framework that takes putative poses from ZDOCK[18] and uses a

linear weighted sum function with seven energetic terms to rank them:

score =
∑
x

w(x) ×E(x) ,

x = {vdWa, vdWr , elec_sra, elec_lra, elec_srr , elec_lrr , solv}
(3.1)

With E being a feature vector whose terms are van der Waals, electrostatic and solvation

energies, with both van der Waals and electrostatics being segmented into attractive

and repulsive components, and the latter further segmented into short range and long

range (criteria for separation was 5Å). W being the corresponding weight vector for each

feature. In order to obtain their weights for each term of the function a 7D downhill

simplex minimization algorithm was used on a subset of the DBMK 1.0[17]. The scoring

function was then tested on DBMK 2.0[63] in which it was shown to improve the results

of ZDOCK.

3.4.2 PioDock

PioDock[27] is a scoring framework that makes use of homology information and inter-

faces to score the structure of a protein complex. It follows a streamlined process that

starts by classifying the query proteins (QP), that is to say, proteins that form the complex,

into three classes: trivial, homologous and unknown.

If the proteins have interacting homologues present in the PDB, the query proteins

are superimposed on that complex, consequently obtaining a prediction for the interface.

If the proteins have homologues, but none of them interact, an interface is predicted

using WePIP[26], which uses the best 30 homologues of each protein to predict its inter-

face. Lastly, PredUs[87] is used to predict the interface of any proteins with no known

homologues.

Finally, once the set of potential solutions obtained from some docking algorithm and

the predicted interfaces are known, a similarity score is calculated by averaging the the

overlaps of both query proteins:

complexOverlapA−B =
overlapA − overlapB

2
(3.2)

In which A and B represent the overlapping score value of each query protein obtained

from:

overlap =
|interf acedocking ∩ interf acepredicted |√
|interf acedocking | × |interf acepredicted |

(3.3)
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The final prediction is then obtained by sorting the potential solutions according to

this score.

3.4.3 FastContact

FastContact[14] is a scoring function, also available online as a server, that estimates

the direct electrostatic and desolvation interaction free energies between two proteins.

The choices of using only these two comes from the observation that they are the main

contributors to the stability of protein complexes[11].

The electrostatic component is calculated using Coulomb electrostatics with a distance-

dependent dielectric constant. A minimum threshold between the atom-pairs was en-

forced to avoid overlaps. The desolvation contribution is calculated by means of an

empirical contact potential calculated using a database of crystal monomers (single chain

proteins) from the PDB. The maximum number of residues accepted by the function is

1500.

By splitting the energetic terms, FastContact also allows understanding of some prop-

erties regarding the scored complexes, for example, a negative desolvation energy indi-

cates an hydrophobic pocket at the interface, with a positive desolvation energy suggest-

ing a mainly polar interface. FastContact is also one of the few freely available scoring

functions validated at CAPRI.

3.4.4 dDFIRE

Dipole Distance-scaled, Finite Ideal gas REference (dDFIRE), is an all atom knowledge

based scoring function that extends DFIRE[86] by introducing orientation dependence of

polar atom interactions. In this scoring function, each polar atom (Nitrogen, Oxygen and

Sulfur) is treated as a dipole with a direction, with dipoles essentially being regions of

molecules with separated partial charges, positive and negative. The orientation of these

dipoles are defined by the connected bonds each polar atom has with other heavy atoms.

The derivation of the equations and methods of their obtention are beyond the scope

of this description. Nevertheless, the formula for obtaining the atom-atom potential

between atom types i and j separated by distance r for the original DFIRE is calculated

as follows:

ū(i, j, r) =


−ηRT ln

(
Nobs(i,j,r)(

r
rcut

)α( 4r
4rcut

)
Nobs(i,j,rcut)

)
, r < rcut

0 , r ≥ rcut
(3.4)

Where η = 0.0157, R is the gas constant, T = 300K , α = 1.61, rcut = 14.5Å , Nobs(i, j, r)

the number of (i, j) pairs within the distance shell r observed in a given structure database

and 4r the bin width for a particular r.

dDFIRE extends on this function by incorporating three additional variables (Θi ,Θj ,Θij)

defining the orientation angles of the polar atoms’ dipole moments, replacing in the above
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equation Nobs(i, j, r) for Nobs(i, j,Θi ,Θj ,Θij , r). dDFIRE was the best performer of the ex-

ternal scoring functions used to validate the final solution in chapter 7.

3.4.5 SPIDER

Scoring Protein Interaction Decoys using Exposed Residues, or SPIDER[44] for short, is a

protein scoring function that makes use a coarse-gained representation (with side-chains

being represented by centroids) and a geometry based approach to transform the three

dimensional coordinates of a complex into a residue contact network.

The first step in this scoring function is to obtain all the interfacial residues. As cus-

tomary, interfacial residues are those with at least one residue from the opposite protein

within 10Å threshold distance. Next, a modified version of Delaunay-Tesselation[3] is

used to analyze the geometry of the points, and convert these interfaces into a labeled

graph, in which nodes are residue side-chain centroids and edges connecting them a

contact, thus forming an interaction residue network.

Figure 3.3: Examples of extracted subgraphs derived from the mining process. The
same pattern may appear in several different geometries and different complexes. Image
extracted from the original paper[44].

The Fast Frequent Subgraph Mining (FFSM)[37] technique then follows, which finds

frequent subgraphs occuring in at least a certain fraction(5%) of the interfaces of a subset

of 241 native complexes obtained from Dockground (training set). Subgraphs that belong

to a larger subgraph are eliminated thus avoiding overlapping subgraphs and prevent-

ing undue influences these overlaps might have caused. These "native" subgraphs (or

patterns), were then stored and are used for calculating new protein’s scores.

From here, the process of converting these subgraphs and subgraph frequencies into

a scoring function assumes the following: higher subgraph frequencies should equate

to higher scores; and bigger patterns are more valuable than smaller ones. With these

assumptions in mind, the final score is calculated using the following formula:

score = ||
N∑
i

M∑
j

|Pi |
RMSDP atternij

||+ ||X1||+ ||X2||+ ||X3||+ ||X4|| (3.5)

Where N is the total number of frequent patterns found at the interface, M is the

frequency of pattern i in the training set, |Pi | is the size of the pattern Pi and RMSDP atternij

is the RMSD calculated between pattern i and the best matching pattern from the training

set. ||X1||, ||X2||, ||X3|| and ||X4|| are the number of interfacial residues that match the
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patterns, the fration of interfacial residues that match the patterns, the number of patterns

at the interface and the average number of patterns matched per one interfacial residue

respectively.
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4
Machine Learning

Machine Learning (ML) is the name given to the subfield of Artificial Intelligence dedi-

cated to the engineering of systems capable of learning from and improving with data.

Alternatively, Tom Mitchell famously defines machine learning as: "A computer program

is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T, as measured by P, improves with experience

E"[64].

Immediately, this definition highlights the central points of any machine learning

problem. These systems take data and use it to approximate a function that turns these

data inputs into knowledge. This ability of turning experience into knowledge is exactly

the reason behind the advent of machine learning. Everyday, from social media to the

Large Hadron Collider, incredible quantities of data are generated[69, 80]; data that

would be virtually useless without the help of computers and algorithms to digest it.

Machine learning fits today’s data-centric society like a glove.

Furthermore, machine learning is a tried and tested field, having been applied to a

vast array of different fields with great success, some of which include retail, finance,

healthcare, transportation, education and sports, and, more in line with this thesis, bioin-

formatics and computational biology.

The benefits of machine learning do not end here either. These algorithms also pos-

sesses the extremely advantageous ability to adapt to changing conditions automatically,

as data inputs themselves change and, perhaps even better than that, allows development

of solutions for problems which would be impractical or even impossible to formally

define. A notorious exemple is the problem of digital handwriting recognition, which

is especially difficult to define, but for which machine learning has been successfully

applied, achieving an astoundishing error rate of only 0.21% on the well known MNIST

dataset[53, 75].
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Machine learning is a vast field, capable of tackling innumerous problems, often re-

quiring a multitude of distinct approaches. The problem might require a descriptive ap-

proach, providing deeper understanding of intrinsic properties of the data (unsupervised

learning) or a predictive approach, used to estimate some labels or values of previously

unseen data (supervised learning). Other approaches such as reinforcement learning and

semi-supervised learning also exist, but will not be covered as they have no bearing for the

understanding of this thesis. Unsupervised learning, while often used in docking frame-

works, also took a backseat in this work, given the choice of dataset used; nevertheless,

the intuition behind unsupervised learning and some use cases will still be provided.

This leaves out supervised learning, which is the most commonly used branch of

ML in practice, and also the most relevant approach for this work. Supervised learning,

along with some of the most iconic and performant algorithms will be detailed in the

next sections. Once again, these sections aim to provide only a basic understanding,

and do not serve as a replacement for a more thorough book such as Machine learning: a
probabilistic perspective[66].

4.1 Unsupervised Learning

Unsupervised learning is a type of machine learning in which the input data is a collection

of unlabeled examples. Intuitively, this absense of a ground truth means unsupervised

methods do not possess a reliable reference point by which to evaluate a model. The

goal of these methods is often to simply transform the set of input data, into a new,

different representation that can be used for some other practical application, commonly

supervised learning. This ability of uncovering underlying structure between data is

particularly valuable when taking into account how a vast majority of existing data is

unlabeled, and how costly it often is to label it.

The three main use cases of unsupervised learning are dimentionality reduction, out-

lier detection and clustering. In dimensionality reduction, methods such as Principal

Component Analysis(PCA) or Autoencoders are used to reduce the total number of in-

put features into a smaller, representative set, which may provide many benefits such

as increasing speed of a supervised model, or simply enabling visual representation for

human interpretability.

Outlier detection, as the name implies, aims to detect examples in the dataset that are

significantly atypical from the other instances, a common application being credit card

fraud detection for example.

Clustering is perhaps the most popular use case of unsupervised learning. In cluster-

ing, the goal shifts to attempting to find natural groups of data (clusters) that share high

similarity between instances of the same group and high dissimilarity between instances

of other groups. Clustering is often called unsupervised classification and can be used,

for example, to discover partitions of customers for use in targeted publicity or product

20



4.2. SUPERVISED LEARNING

placement, to recommend media or products of any kind to a user based on the user’s

preferences, to organize proteins into families of common ancestry, etc[66, 89].

4.2 Supervised Learning

Contrasting to unsupervised learning, supervised approaches are called so because they

deal with collections of labeled data. The existence of these labels allow the use of metrics

based on ground truth, so evaluation of quality of a supervised model is often a lot more

straightforward than in unsupervised approaches. Intuitively, these algorithms are also

applied to significantly different problems. These advantages come at the higher difficulty

of obtaining data, as the labeling process usually requires manual labor from domain

experts.

The main goal of supervised algorithms is to use a set of labeled data as input and

attempt to approximate a function that best internalizes an assumed relationship between

the inputs and the labels (outputs). As an example, linear models use a simple linear

combination of weighted input features:

y = θ0 +
∑
i=1

θixi (4.1)

With xi being the ith feature, θ0 being the bias unit and θi being the weights associated

to each feature. The weights in this scenario are the parameters we need to determine,

and the process by which we determine these parameters is known as training. However,

in order to be able to use data to obtain an optimal set of parameters, we first have to

define the concept of optimality, usually by means of an optimization function together

with a regularization term. This regularization term allows control of the complexity

of the model in order to avoid overfitting, that is to say, memorizing the training data

instead of learning from it.

Ideally, if the data is good and the model appropriate, the learned function should be

able to generalize and correctly predict labels for previously unseen data inputs.

When the predicted outputs are among a set of discrete values, this task is known

as classification. If the outputs are instead a continuous value, the task is known as

regression. An alternative interpretation of such values can also allow for ranking, using

the regression value or, for classification, the probabilities of a given instance belonging

to a class.

There are a multitude of models and derivations thereof that can be applied to a super-

vised learning problem. They usually differ in their complexity, train time, adaptability,

interpretability, etc. The choice of which model better suits a particular problem is non-

trivial (No Free Lunch[84]) and the best approach is often to sample the most common

methods and try to assess which ones warrant further examination.

The next subsections will highlight the most important aspects of the most relevant

supervised learning algorithms
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4.2.1 Logistic Regression

Logistic regression is, despite its name, a classification algorithm. It is named after the

core function behind it, the logistic function (also known as sigmoid). This function is

an S shaped curve with the ability to map any real value into a value within 0 and 1 (not

including both). Given its linear nature, the outputs are simply the result of a linear

weighted combination of the input features.

y =
1

1 + e−θ0+
∑
i=1θi×xi

(4.2)

The outputs of a logistic regression classifier are thus interpreted as the probability

that a given instance belongs to a certain class.

It is a simple, well understood algorithm that despite it’s simplicity, has been shown

to perform well for several practical applications. Its main advantages lay precisely on its

simplicity, as it requires little parameterization and given its linear nature is less likely

to overfit.

Despite its simplicity, it was among the best performing algorithms, managing to

outperform several more complex algorithms such as SVMs and Random Forests.

4.2.2 Decision Trees

Decision trees are machine learning algorithms that recursively split the feature space

according to a conditional statement so that homogeneity is maximized within those new

regions. As one may expect, a complete decision tree will exhibit a binary tree shape,

with each node being a decision node, and each leaf the predicted value.

An important aspect in building a decision tree is thus to find the best feature-value

pair by which to split the data. This is done by means of so-called impurity measures,

which assess how pure a split is, by how much class uniformity is present in each outgo-

ing branch of the decision node. A pure split of a binary classification problem would

generate two nodes in which each node would only have instances of one of the classes.

While many metrics exist, Gini-index(4.3) is the most commonly used impurity measure,

and studies have shown there is little reason to use alternatives[74].

GiniIndex = 1−
C∑
i=1

(pi)
2 (4.3)

With C being the total amount of classes and pi the probability of each class in a given

branch. Learning an optimal decision tree is known to be a NP-Complete problem[52],

so in practice, these algorithms are based on greedy heuristics that make locally optimal

decisions.

Once a decision tree is learnt, new data simply transverses the tree according to the

decision nodes until the leaf with the prediction is reached.
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Decision trees have a multitude of valuable properties: they are very easy to interpret,

take feature interactions into account, are fast to train, require little to no data preprocess-

ing and can handle both classification and regression problems. Their most significant

downsides are their instability, meaning they are highly sensitive to changes in input data,

and their tendency to easily overfit, that it to say, generalizing poorly to new, unobserved

data. Decision trees are rarely used by themselves, but instead are core components of

more advanced machine learning mechanisms like RandomForests (4.2.5.1) and Boosted

Trees(4.2.5.2).

4.2.3 Support Vector Machines

Support Vector Machine (SVM)[6] are a popular machine learning algorithm that rose

in popularity given its impressive classification performance on small to medium-sized

datasets. SVM are maximum margin classifiers, this means SVMs explicitly try to find

the decision boundary (separating hyperplane) that best separates two classes, with best

being defined as the one that maximizes the distance between the hyperplane and the

closest points on either side of the plane (support vectors).

Intuitively, data points that comprise the support vectors are the points more likely

to be misclassified.

SVMs are also capable of handling non-linearly separable data by using the so called

kernel trick to expand the feature set into higher dimensions so that the classes can be

separated linearly. Since SVMs only require information regarding the support vectors,

they are fairly memory efficient. Furthermore, they maintain effectiveness even in high

dimentional spaces, are resistant to outliers and make fast predictions once trained. How-

ever, SVMs require a good selection of kernel functions and precise tuning of parameters

and do not scale very well for large datasets.

Support Vector Machines were used in the work initially, but soon became apparent

that their hefty limitations when dealing with large datasets, coupled with their already

large training time and the fact they require additional computations if one wants to

extract probabilities, made SVMs more cumbersome than the alternatives thus were

dropped during the development process.

4.2.4 Neural Networks

An Artificial Neural Network (ANN) is a computational approach to learning roughly

inspired by the workings of our own brain. Essentially, ANN try to simulate the behavior

of a neuron using a set of weighted inputs together with an activation function. These

weighted inputs are multiplied and added together, and if their sum is higher than a

certain threshold then the neuron will "fire". Subsequently data can be used to train the

neuron, that is to say, update the weights in such a way as to only fire when that is the

correct answer (using an error function).
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A single neuron has very limited predictive power, only being able to correctly classify

linearly separable classes, that is to say, classes that can be separated by a single hyper-

plane. However, incorporating multiple neurons into a layered network structure allows

the approximation of any continuous function and to any desired precision, as stated by

the Universal approximation theorem[22].

A neural network will have an input layer (which takes the features of our data), an

output layer(the predicted label/value) and layers in the middle, called the hidden layers.

Neurons from a layer typically fully connect to neurons in the next layer.

Neural networks learn in a similar fashion to that of a single neuron. A data point

is passed as input, and each neuron will fire or not according to the input and its set of

weights. Once the output layer is reached, the weights of each individual neuron will be

updated by means of the backpropagation algorithm.

Typically, neural networks require many iterations of the same data to learn. With

stoppage criterion examples including the number of iterations or when the training error

reaches a certain lower bound.

Neural networks have grown immensely popular in the last few decades, owing to the

great variety of problems they can be applied to, their ability to be updated in real time

and the low memory requirements once fully trained. Despite the advantages, training

a neural network can be immensely time consuming and often requires large datasets.

Furthermore, choosing the right network structure can be difficult. During the work,

sklearn’s Multi Layer Perceptron was the only neural network algorithm attempted, but

its performance was not satisfactory enough and ended up not being used in the final

solution.

4.2.5 Ensemble Methods

Ensemble methods are learning algorithms that, instead of focusing on a single very ac-

curate model, train several, low-accuracy models and aggregate their predictions hoping

to obtain an accurate meta-model.

The two most common approaches to ensemble methods are bootstrap aggregation

(bagging) and boosting. In bagging, a learning algorithm is run several times using

different, randomly sampled (with repetition) subsets of the data. The other approach,

boosting, instead of training several models independently, instead trains each model

sequentially with new models being trained with additional emphasis on correctly pre-

dicting the instances the previous model predicted wrong. They also vary in the way they

make their final predictions, with bagging algorithms usually predicting the final esti-

mation by majority voting, while boosting algorithms perform similarly, using weighted

voting instead.

While any machine learning algorithm can be used for ensembles, decision trees are

particularly well suited for the task, as their high variance all but assures each individual

model will make different predictions, which is one of the most important properties
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for ensemble methods to perform well. The most popular methods of both approaches,

Random Forests and Boosted Trees are described further in the following subsections.

4.2.5.1 Random Forests

Random forests[9] are a decision tree based learning algorithm that builds upon the con-

cepts of bagging by adding yet another layer of randomness. Besides subsampling the

input data, random forests also subsample the features themselves (known as random

subspace). This extension stems from the fact that if all the predictive power is concen-

trated on only a few subset of the features, a great many individual trees may select these

same features for splitting, making each model highly correlated.

Random forests address many of the issues around decision trees. The application of

both baggging and random subspace methods make the algorithm robust to overfitting,

and even turns the otherwise harmful variance traditional to decision trees into a boon,

since instability is a pre-requisite for effective bagging[9].

Unfortunately, these improvements come at the expense of interpretability, as the

number of decision trees increases, it becomes very difficult to understand the decision

making behind the predictions. This issue has been somewhat addressed by random

forests’ ability to estimate feature importance by averaging the inpurity reductions of

each feature over all the nodes in which a feature appears.

Overall random forests are incredibly potent machine learning models, capable of

handling seamlessly both categorical and continuous data, estimate feature importances,

handle non-linear relationships, are robust to overfitting, and all of this with very little

parameterization, which makes it hard to make a bad random forest classifier/regressor.

Random forests, while not being the fastest algorithm to train and make predictions,

are also efficient enough for a vast majority of applications, as long as the number of

estimators is kept to a reasonable amount.

The algorithm was tested initially, but the superior performance of the boosted ap-

proach meant it was left out in the end.

4.2.5.2 Stochastic Gradient Boosting

Stochastic Gradient Boosting is a particular instance of the boosting approach. Tradi-

tional boosting algorithms can be interpreted as being an attempt to improve bagging

algorithms and they share many similarities. In boosting, the system starts, like bagging,

by collecting a random subsample with repetition from the training set. To each data

instance, a weight is given, initially equal for all instances and adding up to one. A model

is then trained on the selected data subset, and the training set is used to test the model.

Depending on the model’s performance, the tree will have associated a certain amount

weight:

T reeWeight =
1
2
log(

1− error
error

) (4.4)
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If the tree performs accurately, its weight will be very high, and the opposite if such

is not the case. Also adjusted are the weights of all the data instances, with more weight

being given to the instances the current model failed to predict, and less to the ones pre-

dicted correctly. Afterwards, a new random subset is obtained, this time, the distribution

of the subset will be biased according to the weight of the instances, so wrong instances

will be more likely to be sampled, essentially training the new model with higher empha-

sis on the data instances the previous got wrong. The process will continue iterating a

defined number of times, and the final prediction is made according to each tree weight.

Gradient boosting performs similarly, but deviates slightly from traditional boosting

by, instead of assigning estimators different weights at every iteration, it trains the new

models to the residuals of the previous model. XGBoost[19], the implementation used in

the work, additionally extends this by incorporating a regularization term. XGBoost was

one of the better performers, only competing with logistic regression.

4.3 BorutaPy

Boruta[50] is a feature selection algorithm developed with the express intent of find-

ing the subset of all-relevant features from a dataset, contrasting with wrapper methods’

problem of obtaining the minimum-optimal subset. Boruta is centered around calculating

feature importances using randomized forests (boosted trees are also compatible) (see

4.2.5.1), which allow handling of feature correlation and non-linearity. The feature se-

lection method starts by expanding the original set of features with so called "shadow"

features, which are essentially copies of the real attributes shuffled within each column

so as to eliminate correlation with the target variable (fig. 4.1).

These shadow features can be considered noise, and their calculated feature impor-

tance, an attempt at approximating the importance of a completely irrelevant feature.

At each iteration the shadow features are reshuffled and the feature importance of the

real feature is compared with the feature importance of the best scoring shadow feature.

Those that consistently perform worse than the best shadow feature across multiple

iterations are deemed irrelevant and removed from the dataset. Conversely, a feature that

consistently performs above the best scoring shadow feature is marked as relevant. The

algorithm stops when all the remaining features have been marked as relevant or after a

user defined number of iterations.

BorutaPy is a python open-source implementation of the boruta algorithm[23], that

is several orders of magnitude more efficient than its original R counterpart. This per-

formance disparity is owed to the powerful implementation of random forest algorithms

available in python, as well as some adjustments made to this version, such as the ability

to automatically adjust the number of estimators from the random forest according to

the number of active features. Moreover, it provides a finer control in deciding which

features are accepted or rejected by defining a percentile threshold to use instead of the

shadow feature’s maximum.
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Figure 4.1: Diagram displaying boruta’s feature selection procedure.

Since BorutaPy’s implementation does not expose some intermediary results (namely

the feature importances at each iteration), and the code is open source, a local modified

version of this package was used throughout the work, that allows inspection of these

values.
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5
Data Collection

Availability of high quality data is, arguably, the most important prerequisite for the

development of any machine learning solution. More often than not, a sub-par algorithm

with good data will yield better results than the best conceivable model with low quality,

insufficient or corrupted data.

Unfortunately, there are often many setbacks in data acquisition, doubly so in fields

such as molecular biology in which the means of collecting data are limited by avail-

able technology and domain knowledge, coupled with expensive and time consuming

processes (ex: X-Ray Crystallography, NMR).

Development of a good scoring function requires access to datasets of several putative

poses (known as decoys) where near-natives are paired with incorrect predictions, which,

in turn, need to be generated by some docking framework using structural information

of two interacting proteins in their unbound state and of the complex they form.

Conveniently, several datasets have been created for the specific purpose of creating

and benchmarking protein-proteins scoring functions. Two of these will be described in

more detail in section 5.3.

Exploration of possible data sources and benchmarks pertaining to protein interac-

tions was thus a critical step for the development of a good solution. In the remainder of

the chapter an introduction to the Protein Data Bank (PDB), followed by a description

of the file format detailing molecular structure used throughout the project and ending

with the choice and reasoning behind the dataset selected.

5.1 Protein Data Bank

In 1971, in efforts to facilitate the research of molecular biology, a worldwide repository

of biological structures was established, the Protein Data Bank (PDB)[29]. It is a large
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and public domain repository managed by the Research Collaboratory for Structural

Bioinformatics (RCSB)[45].

At the time of its inception, only a few structures were available. However, the PDB

currently houses ∼149 424 (as of February 2019) biological structures, of which approx-

imately 92% belong to proteins. The vast majority of these structures were determined

by X-ray crystallography (89%) with NMR and Electron Microscopy being responsible for

∼8% and ∼2% respectively.

Figure 5.1: Total amount of protein structures deposited in PDB annually (in blue) and
new protein structure per year (in orange)[70].

Each protein available in this database is given a unique 4-letter code, the PDB ID,

which uniquely identifies a protein complex. Despite the seemingly large amounts of

structural data available, it is important to note that it is but a fraction, and a small one

at that, of all the proteins of known sequence. Furthermore, despite considerable effort to

maintain a high quality standard, some of the structures available at PDB contain incon-

sistent, informal or erroneous data, with missing atoms or different levels of resolution.

When building a dataset for scoring, one must also account for the substantial amount of

redundancy present in the PDB.

Lastly, while the PDB provides structures of the unbound proteins and the complexes

they form, they do not provide a decoy dataset, so one would have to be generated using

some docking framework.

5.2 PDB Format

The vast majority of information regarding protein structure, including the one provided

in the PDB is stored in pdb files. Pdb files are essentially essentially a text file containing

multiple lines (records) containing some standardized keyword specifying what kind of

information is provided at each row, coupled with the actual contents of said row.
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Figure 5.2: Excerpt of a PDB file from the receptor molecule of 1ay7 complex.

Protein structures are often reported in publications, and for these, their respective

pdb files detail the author’s names, date and method of discovery, literature references,

biological source, etc. More importantly for this project, the files also contain a listing of

every known atom of the molecule together with the following information: the sequen-

tial number of the atom in the protein; the chemical element; the residue it is part of; the

chain it belongs to; the residue number; the 3D coordinates, in Angstroms (Å); and the

occupancy and temperature factors.

For a more thorough detailing of the pdb file format and all the types of records it

provides, the full description can be found at http://www.wwpdb.org/documentation/

file-format.

5.3 Dockground Dataset

The Dockground[49, 56] resource is a collection of five integrated datasets created to

provide all necessary information for all types of molecular structure research. For the

purposes of this work however, only the decoys dataset is relevant (version 2.0)[49].

This decoy dataset was curated specifically to create and benchmark protein-protein

scoring functions. The data was generated using GRAMM-X[79] docking framework

using 396 different unbound-unbound complexes. For each of these complexes, 300 000

low resolution putative poses were generated, without ranking or scoring outside of shape

complementarity. For 43 of these complexes, no near-natives were found, so they were

excluded from the dataset.

A single near-native structure was chosen, with 99 accompanying incorrect matches

selected in such a way as to maximally spread spatial distribution (see 5.3). The choice

of using a near-native as opposed to the real known native pose is due to the fact that

finding this position would set unrealistic expectations for scoring functions.
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Figure 5.3: Example decoys from
1f93 complex generated by Dock-
ground. False positives are shown
by ligand center of mass (red) with
the true positive identifyed by the
arrow. Image taken from original
paper[49].

All this information is packed into two pdb files per complex: xxxx_u1.pdb and

xxxx_u2_decoys.pdb, with xxxx replaced by the pdb code. Each file contains the full

atomic description of the unbound molecules, with the first file pertaining to the recep-

tor, and the second one detailing the same information for the selected 100 poses, in

which the first is the near-native.

Other possible datasets, such as the ZDOCK’s dataset (available at: https://zlab.

umassmed.edu/zdock/decoys.shtml) were explored, however, the dataset contains less

protein diversity, 174 complexes from DBMK 4.0[40] as opposed to the 351 from Dock-

ground, and no care is taken regarding redundancy (54 000 putative poses per complex),

which, given time constraints and the available computational resources made Dock-

ground a more attractive choice. The largest advantage to using the ZDOCK’s dataset is

that it comes bundled with the scores of the ZRANK (or IRAD) scoring functions, which

would be beneficial for performance comparisons. Despite opting for the Dockground

dataset, scripts to generate and compute scores for the ZDOCK dataset were created, but

ultimately not used.
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6
Prototype Development

As displayed in chapter 3, there are several viable approaches to protein-protein scor-

ing. From a machine learning perspective alone, this problem could be interpreted as

classification, regression, clustering, ranking, or a combination of these.

However, the choice of dataset (see chapter 5) turns some of these approaches, namely

clustering, less viable. This results from the reduced number of putative poses per com-

plex, which were selected in a manner similar to clustering already. Given the data and

the goal of the thesis, the problem was tackled as a classification problem, with estimated

probabilities later used for the purposes of ranking the possible poses.

In the next section, a catalogue of the most important tools used during development

is provided. The process of convertion of the input pdb files into meaningful features then

follows, with analysis of the properties of each feature being detailed straight after. The

reason and means of feature selection is given in section 6.3. Section 6.4 describes the eval-

uation metrics, as well as why these metrics are effective ways of assessing performance

of the scoring function. The process of model building, experiences and hyperparameter

tuning is explained in section 6.5 ending with definition of the final model.

6.1 Tools

Python is a general purpose programming language that has grown in popularity in the

scientific, machine learning and data science community. It provides an extensive col-

lection of powerful libraries with state-of-the-art performance allied with an easy to use

syntax and interactive developing environment. For these reasons as well as familiarity

with the language, Python was the chosen programming language for the development

of this work. Other important tools used throughout the work were:
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SciPy/Numpy[42, 81]: powerful library that adds multi-dimensional arrays and ma-

trices along with many useful linear algebra and other high level mathematical

functions;

Pandas[62]: useful library to manage and pre-process data, with tools to read and filter

data, handle missing values and more;

Nglview/JMol[35, 67]: software to create interactive visualizations of protein structures;

PyRosetta[16]: A python based interface for the Rosetta molecular modeling suite. In-

cludes functions to allow the extraction of some energetic features, as well as im-

plementations of local search algorithms. Requires a license, free for academic or

non-commercial software. Pyrosetta was the primary means of feature extraction

used to convert the pdb structures into meaningful data suited for machine learning

models;

Matplotlib/Seaborn[38, 83]: plotting libraries that allow the creation and visualization

of several plots such as histograms, bar charts, scatterplots, etc;

SciKit-Learn[72]: a library that provides state-of-the-art implementations of several

machine learning algorithms encompassing classification, regression, clustering,

dimensionality reduction, validation, model selection, feature extraction, etc. All

the models developed with the exception of the implementation of boosted trees

had their basis on this library;

XGBoost[19]: optimized gradient boosting library. Provides parallel tree boosting and

has been recently gaining traction and popularity given its performance at solving

several machine learning problems.

BorutaPy[50]: Feature selection tool used in the work, section 4.3 provides a description

of the process.

Scikit-Optimize[34]: Library that provides several optimization algorithms, used in the

work for hyperparameter tuning using Bayesian search.

6.2 Feature Extraction

The chosen dataset provides the protein structures in two pdb files; one containing the

tertiary structure of the receptor, and another containing the structure of one hundred

decoys, of which one (the first) is a near-native. However, before applying any machine

learning algorithm, it is necessary to first convert this information into an useful and

labeled feature vector.

The feature extraction pipeline starts by using pyrosetta’s parser to load the data into a

suitable format for manipulation. Afterwards, the receptor and a random ligand are fed to
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Pyrosetta Features Description

fa_atr Lennard-Jones attractive energy between atoms on different residues
fa_rep Lennard-Jones repulsive energy between atoms on different residues
fa_dun Internal energy of side-chain rotamers derived from Dunbrack’s statistics
fa_elec Coulombic electrostatic energy of interaction between non-bonded charged atoms
fa_pair
fa_sol Gaussian exclusion implicit solvation energy between atoms on different residues

p_aa_pp Probability of amino acid identity given backbone angles
fa_sasa Solvent accessible surface area

interface_dd_pair
pack_stat Score of how well a complex is packed

hbond_bb_sc Energy of backbone-sidechain hydrogen bonds
hbond_lr_bb Energy of long-range backbone-backbone hydrogen bonds
hbond_sr_bb Energy of short-range backbone-backbone hydrogen bonds

hbond_sc Energy of sidechain-sidechain hydrogen bonds

Other Features Description

inter_size Total number of residues considered part of the interface (10Å)
interface_ratio Ratio of the total number of residues of the complex that comprises the interface

inter_hydro_ratio Ratio of the hydrophobic residues of the interface

{atr, dun, elec, rep, sasa, pair, sol}
fa_{atr, dun, elec, rep, sasa, pair, sol} divided by the total number of residues
in the complex

dd_pair interface_dd_pair divided by the interface size
{hyd-hyd, neg-pos, ... , hyd-pos} Counts for each residue-residue type contacts between the receptor and the ligand

n_contacts Total number of contacts using 6Åcutoff
{elec/sol/sasa}_dif Energy difference between the sum of fa_{elec/sol/sasa} energies of the molecules

Table 6.1: Features extracted for the project. Pyrosetta was used directly to calculate some
of the features (top half) with the remaining ones (bottom half) having been posteriorly
calculated using combinations of the other features, or obtained with custom scripts.

a simplified function that makes use of pyrosetta’s exposed methods to extract solvation,

Solvent Accessible Surface Area (SASA) and electrostatic energies for each molecule in

isolation. These energies are then summed and stored for later use.

The procedure continues by iterating over every decoy, and generating a complex by

merging each decoy with a copy of the receptor. The generated complex is then given

to a second, more detailed function, and several physico-chemical features are extracted

(table 6.1).

Immediately after, the interface of each complex is calculated, with a molecule’s

residue being considered part of the interface if its Cα is within 10Å of a residue on the

other molecule. Knowledge of these residues is then used to calculate several interfacial

statistics, namely: total interface size, interface ratio and ratio of hydrophobic residues. A

more stringent criterion of 6Å is then applied, and any residue of a molecule within that

threshold of a residue of the other is considered a contact. Contacts are then classified

according to their residue-pair types2.1 (hydrophobic-hydrophobic, negative-positive,

etc). The choice of thresholds was done with basis on molecular biology literature[1, 55].

Lastly, the difference between the energies of the isolated molecules and of each com-

plex is calculated, ending the feature extraction process. A diagram illustrating the entire

extraction process is shown in 6.1.

Of the 351 different protein complexes available on the Dockground dataset, features

were extracted for 325 of them, with the remaining having had errors during calculation
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Figure 6.1: Diagram highlighting the principal components of the feature extraction
pipeline.

with pyrosetta’s methods.

6.3 Data Preparation and Feature Selection

There are many considerations one should address when developing a machine learning

model. Several features were obtained from the intial pdb files, however, there is no

guarantee that all of them will be useful for the developed models. This process of

determining which features represent important aspects for the algorithms is known as

feature selection. Feature selection is often an important step in developing a good model,

reasons being that for some models, providing undescriptive features may actively harm

performance; furthermore, by removing unecessary variables, one makes training easier

and less likely to overfit. Features in the dataset also have different measurement scales,

from residue counts to ratios to continuous values of arbitrary size. Making these features

conmesurate is a critical step in guaranteeing that the higher order features do not have

undue influence in the models. Finally, one must consider which metrics will be used to

assess the performance of the models.

Before starting on attending to any of these issues, several additional features were

calculated and combined to generate a new expanded feature set. The new calculated

features were created by exploring expected relationships between the variables, for ex-

ample calculating the total number of contacts, the total number of residues and the

interface ratio ( interf acenrestotalnres
). For the full-atom features, a new set was calculated by divid-

ing these values by the total number of residues. A similar procedure was applied to the

interface_dd_pair feature by dividing it by the total number of interfacial residues. This

resulted in an expanded set of 32 features.

Having finalized the feature set, the data was split the into two distinct subsets: a

training set and a test set. This split was done by randomly sampling 20% of the data

into the test set (6 500 instances), with the remaining belonging to the training set (260

000), with care being taken so all complexes from a certain pdb code belong to the same

split. For all the subsequent methods, only the training data was accounted.

With the data now prepared, feature selection was the first issue to be addressed;

there are many methodologies for tackling this problem, usually segmented into three
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distinct groups:

Filter methods typically encompass performing statistical tests and removing fea-

tures above or below certain pseudo-arbitrary thresholds. Common examples include

comparing feature correlation, either amongst features themselves (and removing those

with extremely high correlation), or with the target variable (and removing those with

very little). These methods, while often exceedingly fast and easy to apply to just about

any dataset, fail to accurately determine a feature’s true worth, and are unable to ascertain

non-linear contributions.

Wrapper methods on the other hand, attempt to capture a feature’s true importance

by training several subsets of features on a given ML model, and compare its performance

according to some metric. This method allows capturing more subtly relevant features

and is tailor-suited to a particular model, but this comes at the expense of a much larger

computational cost as well as dependency on that particular model.

Embedded method are conceptually similar to wrapper methods, but the feature

importances are estimated during model building, without requiring additional external

metrics. Common models capable of performing this type of feature selection are decision

tree ensembles and logistic regression with L1-regularization.

Several of these approaches were tried, starting by plotting and inspecting histograms

and boxplots for all variables, grouped by their labels (near-native or not). Immediately,

several features stood out as features of interest, on account of their non-overlapping

distributions against the target variable (fig.6.3).

Figure 6.2: Examples of histograms(left) and boxplots(right) for features inter-
face_dd_pair and dun. The top image shows a distinct difference in distributions when
grouped by label, as opposed to the bottom one.

Unsurprisingly, most contact attributes, as well as the features calculated from the

difference between the sum of the isolated molecules and the complex itself, displayed

these distribution inequalities. Another notable fact is the presence of several outliers

(shown as diamond symbols in the boxplots) in a majority of the features, and the skewed

nature of many of their distributions.

The next step was to investigate correlations between the features, both between each
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other and between the target variable. The heatmap can be seen in figure 6.3.

There are several reasonably high correlated features, most of which can easily be

explained. For example, inter_size being highly correlated to sasa_dif and ncontacts

makes sense, considering a higher number of residues at the interface, blocks those

residues from being accessible to the solvent. Somewhat surprisingly, is the apparent

independence of the interface ratio and interface size, which indicate that the percentage

of residues at the interface seems unafected by the total size of the complex.

Figure 6.3: Bottom image displays the correlation heatmap between the features.

The correlation between the variables and the target variable are, expectedly so, small,

with elec_dif, sasa_dif, dd_pair, interface_dd_pair and hydrophobic contacts display-

ing the highest absolute values between 0.06 and 0.09.

Nevertheless, correlation alone is not conclusive enough (unless the values are ex-

treme) to deem a variable useless. A more definitive method should be employed. As

such, a local version of the BorutaPy package was edited and used to obtain all the rele-

vant features for the prediction. A description of boruta was provided in 4.3.

This procedure takes a decision tree ensemble estimator to obtain feature importances.

The random forest classifier from sklearn was used for this, with class weights adjusted

according to the ratio of instances of the positive class and of the negative class. Max tree

depth was set to 3, as per recommended by the authors of the software and a percentile of

95 was used instead of the vanilla 100. Number of estimators is defined by boruta itself,

so adjustment of that parameter was not required. The results can be seen in figure 6.4.

Of the original 32 features, only 16 were kept by this procedure.
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Figure 6.4: Boruta result plot. The blue (rightmost) boxplot corresponds to the best scor-
ing shadow attribute. Green and red boxplots represent scores of accepted and rejected
attributes.

For most machine learning algorithms, it is important to constrain the relative scaling

of any particular feature to a comparable range. The two most common methods of doing

so are range normalization and standardization or z-score normalization.

range(xif ) =
xif −min(f )

max(f )−min(f )
(6.1) z − score(xif ) =

xif − x̄f
std(f )

(6.2)

With xif being the value for the ith instance and f th feature and min(f ), max(f ), x̄f
and std(f ) being the minimum, maximum, mean and standard-deviation for feature f .

Given the presence of several outliers, another useful form of normalization was

tested, Interquantile range scaler(IQR):

IQRscale =
xif − x̃f
Q3−Q1

(6.3)

With xif retaining the previous meaning, x̃f being the median and Q3 and Q1 being

the third and first quartile respectively. However, the data was not scaled immediately,

instead being applied during model building, due to the usage of cross validation.

6.4 Performance Metrics

Development of good machine learning solutions can only be done effectively if the per-

formance metrics used to evaluate them is adequate. The method and metrics for cal-

culations is particularly important to get right when handling data with extreme class
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imbalances, which is the case in this work. Class imbalance is, as the name implies, when

a given dataset has a large skew in the distributions of a class. This skewness can gener-

ally cause algorithms to perform inadequately on the minority class, which is often the

class of actual interest.

There are many possible ways to tackle the issue of class imbalance, the two most

common being sampling methods, either oversampling the minority class or undersam-

pling the majority class, or to adjust the weights the algorithms give to the minority class

to balance the discrepancy. Given the expected class distributions are, in fact, skewed,

the latter approach was taken throughtout the project.

Unfortunately, the problems in dealing with imbalanced sets do not end there. Ap-

propriate metrics to evaluate the algorithms should also be carefully picked, as several of

the most popular means of assessing an algorithm’s performance do not handle this issue

well, and can provide misleading results. The most striking example is that of accuracy

which can obtain obtain high values simply by predicting the majority class for every

data instance.

Given the classification approach to the problem, the metrics discussed will be con-

strained to those used in this approach. Particularly, the problem will be framed as a

binary classification. In binary classification, labels are usually considered positive or

negative, with positive in this case being a native decoy pose and false one that is not. All

possible classification scenarios can then be represented as a matrix like so:

Figure 6.5: Example of a confusion matrix.

These measures make the essential components of a vast array of performance metrics.

Given that some, as stated before, do not handle data imbalance adequately, these will be

ommited. Instead, some useful metrics for this problem are:

precision =
#true positives

#true positives+ #f alse positives
(6.4)

recall =
#true positives

#true positives+ #f alse negatives
(6.5)

Fβ = (1 + β2)×
precision× recall

β2 × precision+ recall
(6.6)
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average precision =
∑
n

(recalln − recalln−1)× precisionn (6.7)

With β being a value between 0 and infinity, that essentially controls how much

importance one should give to either precision or recall. Typical values for β are 0.5 and

2. However, while these metrics may work in a classification approach, they fail make to

make the distinction in regards to the position (per pdb complex) in which a particular

decoy pose is ranked. As such, a different metric was used to ensure the quality of the top

ranked poses, the Normalized Discounted Cummulative Gain, or nDCG. The formulas

used to calculate the normalized DCG are:

DCGp =
p∑
i=1

2reli − 1
log2(i + 1)

(6.8)

nDCGp =
DCGp
IDCGp

, (6.9)

where p is the rank position, reli the graded relevance of the result at position i (for

this case simply 1 for native and 0 for non-native), and IDCGp the ideal discounted

cummulative gain.

Of course, one is not restricted exclusively to numerical metrics, with some common

visual inspections being precision-recall curves and Receiver Operating Characteristic

(ROC). Precision-recall curves in particular, are well suited to deal with the issues inher-

ent to imbalanced datasets[28, 76].

Evaluating the ranking abilities of the algorithms are also expected, first so one can

compare with external scoring functions, and also because ranking a native position first

is more important than ranking it tenth and so on. The following additional metrics were

established to assess and compare performance at the ranking task:

• The mean, median and standard deviation of the rank of near-native hits;

• The percentage of hits in the first 1, 10 and 50 putative poses;

These metrics should provide sufficient evidence of the performance of a scoring

function for the Dockground dataset. Both the choice of best model and the comparative

study of chapter 7 make use of these metrics for validation. Similar metrics were used in

the papers of ZRANK and SPIDER[44, 73].

6.5 Model Building & Hyperparameter Tuning

It is difficult to know, a priori, exactly which ML method will perform better for a given

dataset[84]. Machine learning algorithms can vary wildly in the decision boundaries

41



CHAPTER 6. PROTOTYPE DEVELOPMENT

they can learn, in how they handle missing data or types of features, parameterization

required, etc.

As such, one of the first steps attempted was to simply try out several machine learning

algorithms, using only basic, intuitive parameterization. This established a baseline for

comparing the performance after optimization as well as a good intuition of which models

to pursue further. For these models alone, the features were standardized before running

them, as not doing so would lead to complications in using the support vector classifier.

Figure 6.6: Success rate of the models at identifying near-natives among the false positives,
with default parameterization.

Name Train Time (s) Prediction Time (s)

Support Vector Classifier 70.260455 1.623152
Random Forest 4.407558 0.309603

XGBoost Classifier 8.057078 0.051299
Logistic Regression 0.219064 0.003400

MLPerceptron Classifier 58.965497 0.013142

Table 6.2: Training and prediction times for the models used.

These results allowed for some overview of the expected performance of several mod-

els. Given the observed performance and the train an test times, only the Logistic Regres-

sion classifier and the XGBoost Classifier were retained for optimization. Optimization

of the SVC would be very computationally expensive, given the amount of parameters to

adjust.

Hyperparameter optimization is the name given to the process of choosing a set of

optimal hyperparameters for a given machine learning algorithm. The parameters essen-

tially control how a certain algorithm will learn the data.

Running models with arbitrarly chosen parameters is very rarely appropriate, so

finding the optimal set of hyperparameters usually involves some searching procedure

over possible arrangements of values to find the parameters that produce the best model,

according to some evaluation criteria.

The three most common search procedures to finding the best set of hyperparameters

are Grid search, Random search and Bayesian search. GridSearch is, apart from arbitrarily
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defined parameters, the most basic method of hyperparameter tuning. When given a grid

of manually defined parameters, this algorithm exhaustively searches over all possible

combinations of parameters, and trains a model using each combination to assess each

combination’s performance. Naturally, when training models with a vast number of

hyperparameters to adjust, the complexity increases exponentially, making it ill suited

for such algorithms. Despite these flaws, it remains a popular method of performing

optimization for simple models.

Similarly simple, but with a much higher potential[4], is the widely used random

search. As the name indicates, in random search, the parameter grid is defined as a set

of distributions from which to sample instead of exhaustively defining each value. At

each iteration, the algorithm randomly samples a combination of possible parameters

and trains the model. Despite the stochastic nature of this approach, the fact that the

choice of parameters is not dependent on any previous iteration makes this method triv-

ially parallelized, as well as providing a finer granularity of optimization for numerical

hyperparameters.

More recently, particularly for the optimization of neural networks, a new approach

has been considered, Bayesian search. Studies have shown that Bayesian optimization of-

ten achieves better results in fewer iterations, when compared to Grid search or Random

search[39]. Yet again, the name gives away the intuition behind the algorithm. Much like

random search, a set or distribution for each hyperparameter is provided, and sampled

a defined number of times in such a way as to cover as much of the parameter field as

possible. From there, bayesian probabilities are calculated, and the algorithm starts to

give preferencial treatment to vectors of hyperparameters around the values that previ-

ously resulted in better models. Nevertheless, the algorithm still seeks to explore other

combinations of parameters, expected to be near to the optimum. This dependency on

previous iterations however, makes this approach much harder if at all possible to par-

alellize, so despite it’s better performance when compared to random search, the lack of

paralellization makes it so there is a valid argument for the usage of random searches

instead.

Given hardware limitations and the expected better performance for low-end CPUs,

Bayesian search was the chosen procedure during the model development, with the im-

plementation provided in the scikit-optimize model.

Hyperparameter optimization is almost always used in tandem with a procedure

known as cross validation. Cross-validation is a method which attempts to make the

most out of available data, by splitting the training dataset into n different partitions

known as folds in which one of them becomes a validation set, i.e., a pretend test set.

The remaining folds are fed to a model, that can then assess its performance on the

validation fold. The process is repeated n times until all the different folds have been

used once as the validation set. By averaging out the error or performance metrics over

these folds, once can obtain a better estimate of the true error. A diagram depicting the

cross-validation procedure can be found in 6.7
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Figure 6.7: Illustration of the cross-validation method (4-Fold in this diagram).

For the two chosen machine learning models, meaning logistic regression and boosted

trees, the pipeline of attempting to improve the model by tuning their hyperparameters

went as such: 5-folds were extracted from the training data, guaranteeing that each fold

contains the entirety of some randomly chosen putative poses from a single pdb file.

Then, adequate hyperparameter grids were carefully selected for each model, and given

to the sklearn optimizer.

More specifically, Logistic regression takes two important parameters, the regular-

ization strength (C) and the regularization type (L1 or L2). The C parameter essentially

controls the complexity of a given model, with small values of C increasing the regular-

ization strength, thus forcing the model to be simpler; and large values decreasing it, thus

leading to a more complex model.

XGBoost
Parameters

Max Depth (3,12)
Gamma (1−4,14)

Reg Alpha (1−4,14)
Reg Lambda (1−4,14)
Subsample (0.5,1)

Column Sample (0.3,1)
Learning Rate (0.0,1.0)

Number Estimators [100,500,1000]

Table 6.3: Gradient boosted tested parameterization, parenthesis mean a uniform sam-
pling between the two values, brackets indicate discrete options.

XGBoost however, provides many possible parameters to optimize, despite usually

providing good performance out of the box. The most important to keep in mind being:

the max depth of a tree, with higher numbers leading to more complex models and

thus more likely to overfit; subsample ratio, which as the name indicates is the ratio

of training instances to subsample from the training data; colsample_by_tree, which is

similar to the subsample ratio, but for features instead; the learning rate, which controls

how much we adjust the weights with respect to the gradient; the gamma, reg_alpha(L1)

and reg_lambda(L2) which all act regularization parameter; and the number of estimators.

Both for XGDBoost and for the logistic regression, class weights were adjusted so as to

be balanced; meaning that for this dataset, each positive instance is weighted 99 times as

much as a negative one (the ratio of negatives to positives in this dataset). Without this
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adjustment, the algorithms could resort simply to vote for the majority class and trivially

minimizing error. The parameter grid for XGBoost can be seen in table 6.3.

As the number of hyperparameters and their options increases, so should the number

of iterations in the bayesian search, as such, for logistic regression, a smaller number of

50 was chosen, with boosted trees being set for 150 iterations. At every iteration, in a

sample parameter vector is extracted, and five models are trained according to the IQR

normalized cross-validation splits. As previously discussed(see 6.3), IQR is the range

comprising the middle 50% of the data, and this normalization is important so as to

convert the features into a similar range while remaining unaffected by outliers. The met-

ric selected for evaluating which iteration provided the best results was the normalized

Discounted Cummulative Gain (nDCG). This presented an issue as sklearn is not well

prepared to handle ranking methodologies. As such, a customized scoring function was

created, that would group the ranking predictions per pdb complex, calculate the nDCG

for each complex set, then average out the results and return the value as the metric to

optimize. The choice of rank threshold for the nDCG was chosen to be 10, as it seemed a

reasonable compromise given the goal and the number of putative decoys per group.

Figure 6.8: Illustration of the entire model-building pipeline. The parameter grid con-
tains possible parameters for a given model. A combination of these parameters is se-
lected by Bayesian optimization algorithm, which then feeds them to a model that is
trained five times with the same parameters on different cross-validation splits that were
IQR scaled using RobustScaler. This occurs for n iterations, after which the best model’s
parameters according to the specified criterion obtained by testing the trained model on
the validation splits is fed to another model that is trained on the full training set. This
generated the finalized model, which is then used on the test set to assess an estimate of
the true error.

Once the best set of parameters is found, the whole training set is used to train a

finalized model on those parameters. These models were then compared, with the final

results being, in somewhat surprising fashion, better for the logistic regression model

(see fig.6.9 and table 6.4). Of particular note is the fact that for neither of them the

optimization process generated models amazingly better than the vanilla ones. While
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Logistic Regression XGBoost Classifier

Mean 10.40 13.74

Median 3.00 5.00

Std. Deviation 15.13 19.63

Table 6.4: Mean, Median and Standard Deviation of the near-native hit ranks for both
Logistic Regression and XGBoosted trees finalized model.

this does not seem particularly surprising, as the nature of the problem is difficult, it may

also indicate that the features themselves might be bottlenecking the scoring.

Figure 6.9: Comparative performance of the finalized models after being trained on the
whole train dataset with the optimal set of parameters.
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7
Comparative Study

In this chapter, a performance assessment study is described. Three different state of the

art scoring functions were used for validation, namely SPIDER, FastContact and dDFIRE.

The choice of these scoring functions is tied to the diversity in approach they display,

with FastContact being a force-field based scoring function, SPIDER being geometry and

statistics based and dDFIRE being a statistical potential. Moreover, dDFIRE uses a full

atom description, much like the scoring solution developed, while FastContact uses a

simplified, coarse atom representation.

The pool of potential choices were however, fairly limited as several other scoring

functions were not available for local use, or could not be found decoupled from their

docking procedure, or required special dependencies of format files making their usage

difficult. Nevertheless, additional work went into attempting to find and use additional

functions.

For all the tested functions, the files were prepared as specified in the provided doc-

umentation, and the default parameterization was used. Given the format of the dock-

ground dataset, and the different means of output of each scoring function, scripts were

created to handle all the file manipulation necessary to run each function, and then to

parse the output files into appropriate python data structures for manipulation.

For dDFIRE, this meant merging the dockground decoys with copies of the receptor

and saving the generated structures as pdb files. The software is then run on these files

and the generated output file parsed with regex and converted into a pandas dataframe,

saving only the final score.

FastContact requires similar file manipulation, but this time with the receptor and

putative decoys split instead. As such, the dockground files are read and the ligands split

across several files. A txt file containing the location for all of them is then generated,

as required for FastContact. The output file is once again parsed into a dataframe, but
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as FastContact does not provide a single score at the end, but instead the two terms,

electrostatics and desolvation, both were saved. Given that, the sum of these values and

the values in isolation were used to assess the scoring performance, the best performer in

regards to ranking was the desolvation term alone, so the results provided for FastContact

refer to that.

Lastly, SPIDER also requires the decoy files split, so code got reused to do exactly

that. SPIDER output file would not contain scores for certain poses with the default

parameterization, so a threshold cutoff was relaxed so every pose had a score. Unlike the

previous two, SPIDER output file already provided the ranks themselves, so these were

used for evalutation.

The test set used for evaluating the scoring functions contained 65 complexes (100

putative poses each, for a total of 6500 instances) from the Dockground dataset, that were

not used in training. It is also relevant to state that not all these functions successfully

scored all the instances of the test dataset. FastContact failed to calculate for the ’1is7’
complex, and SPIDER failed for pdbs ’2a1t’, ’1is7’, ’4fqr’, ’4gxu’, ’1w1i’, ’3l5n’.

All of the provided scoring functions have been validated in CAPRI, and several

assessment studies have already made regarding these scoring functions[33], highlighting

their relevancy.

In the next sections the models developed throughout the thesis will be compared,

first according to their ranking ability, and then in their temporal component.

7.1 Ranking Performance

The goal of any protein-protein scoring function is to identify the near-native poses

amongst the set of all computationally generated ones for each pdb complex. Further-

more, an ideal scoring function would rank poses according to their structural similarity

with the native complex. Assessing the performance of the scoring function required

comparing how well it performed, when put up against other state-of-the-art scoring

functions using the same input data.

For comparing these external functions, the following criteria were used: the cumu-

lative percentage of a scoring function ability at successfully identifying the near-native

within the first 1, 10 and 50 ranks; the metrics pertaining to the predicted near-native

ranks of the scoring functions, namely the mean, median and standard-deviation;
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Figure 7.1: Success rate of the several scoring approaches at identifying the near native
in the Top 1, 10 and 50 positions for the 65 dockground complexes.

The results show that SPIDER seems to perform the worst out of the evaluated scoring

functions by a fair margin, finding the near-native in the first 50 poses in 62.7% of the

cases. FastContact and dDFIRE perform similarly, with slight advantage to dDFIRE. The

developed solution seems to perform the best out of the tested scoring functions for this

dataset.

Figure 7.2: Boxplot of the hit stats of every tested scoring function.

With the exception of a few outliers, in the worst scenario the developed function still

ranks the near-native in the top 30, with most being near the top 15.

7.2 Temporal Performance

Despite not being the most important factor, nor the end goal of the project, it still remains

relevant to assess the temporal performance of the developed scoring model. Figure 7.3

details the running times of all the tested scoring functions.

Immediately, it is noticeable that the higher predictive power of the developed func-

tion came at the cost of temporal complexity. FastContact lives up to its name, displaying

incredible times per complex; this makes sense given that FastContact is comprised of

only two terms. Expectedly, the size of the protein complexes has an incredible negative
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Figure 7.3: Scoring times, in seconds, per set of one hundred complexes from Dockground.
Left image displays how time changes with the number of residues of the complex. Right
image shows the boxplot of times per scoring function.

effect on the calculation times, increasing it by orders of magnitude. Notably, SPIDER

seems to increase at a lower rate than all the other functions with total number of residues.

Nevertheless, despite the higher time complexity displayed for the developed func-

tion, one should bear in mind that the feature extraction process takes up most of this

computational time; and that this process can easily be parallelized, which should boost

the time considerably. Finally, even assuming these values were final and unimproveable,

the better results are easily worth the exchange given the context of protein-protein scor-

ing. It is far more important to reliabilty obtain the correct models than it is to do so very

fast.

50



C
h
a
p
t
e
r

8
Conclusion and Future Work

Throughout the work, several conclusions and insights were reached regarding the prob-

lem of protein docking.

The first is that it is clearly a very difficult problem, despite continuous effort of many

researchers, a solution for this problem is still illusive. Nevertheless, the sheer amount

of distinct possible ways to tackle the issue, from classification, ranking, clustering, etc.

also means there may be hope of combining the best of these approaches or discovering

new ones that may help in discovering new and improved solutions.

Machine learning has been growing in popularity and been applied to a plethora of

different fields, and in this work was once again shown that machine learning approaches

can compete with current state-of-the-art solutions, regardless of the field.

Many difficulties and setbacks were met throughout the development process, often

due to my lack of knowledge, but I can say with certainty to have a newfound admiration

for biology and the intricate ways in which life transpires.

There are several possible improvements to be made as future work. The developed

solution, while competitive, can be improved on its efficiency by parallelizing the feature

extraction pipeline. Moreover, future research should likely focus on the development

of better, more meaningful features, as they seem to be a clear bottleneck in current

methodologies, homology or secondary structure information for example, might help

boosting performance. Most certainly this process will be arduous, not only due to the

inherent difficulty of the task itself, but also because it will likely require collaboration

and expertise in both biology and computation.

Integration of the scoring function in an actual docking framework might also prove

beneficial, as one can likely find opportunities to improve the scoring function with a

more unified approach that complements the strengths and weaknesses of the docking

process.
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With the description of the work, I believe the main objectives of this thesis were

acomplished. From start to finish, a protein scoring function was developed, that was

shown to perform competitively with other state-of-the-art scoring functions. Its cre-

ation involved solving many issues along the way: understanding the biological concepts

fundamental to the understanding of the work; sampling the field of protein docking

and scoring algorithms, and the plethora of different viable approaches to do so; looking

for and obtaining good quality data for developing the function; learning about which

potential features could be useful; finding the tools and creating the scripts and pipelines

to extract said features; learning how to create descriptive visualizations of both graphs

and protein structures; learning of all the possible machine learning algorithms used in

the field, and the many metrics one can use; learning how to manipulate the data and op-

timize a given learning algorithm to generate a solution for the task; and finally, learning

how to write a thesis.

52



Bibliography

[1] B. Adhikari and J. Cheng. “Protein residue contacts and prediction methods.” In:

Data Mining Techniques for the Life Sciences. Springer, 2016, pp. 463–476.

[2] S. Ansari and V. Helms. “Statistical analysis of predominantly transient protein–

protein interfaces.” In: Proteins: Structure, Function, and Bioinformatics 61.2 (2005),

pp. 344–355.

[3] D. Bandyopadhyay and J. Snoeyink. “Almost-Delaunay simplices: Robust neighbor

relations for imprecise 3D points using CGAL.” In: Computational Geometry 38.1-2

(2007), pp. 4–15.

[4] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization.” In:

Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

[5] A. J. Bordner and R. Abagyan. “Statistical analysis and prediction of protein–

protein interfaces.” In: Proteins: Structure, Function, and Bioinformatics 60.3 (2005),

pp. 353–366.

[6] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal

margin classifiers.” In: Proceedings of the fifth annual workshop on Computational
learning theory. ACM. 1992, pp. 144–152.

[7] C.-I. Brändén and J. Tooze. Introduction to protein structure. Taylor & Francis, 1999.

[8] A. Breda, N. F. Valadares, O. N. de Souza, and R. C. Garratt. “Protein structure,

modelling and applications.” In: Bioinformatics in Tropical Disease Research: A Prac-
tical and Case-Study Approach [Internet]. National Center for Biotechnology Infor-

mation (US), 2007.

[9] L. Breiman. “Random forests.” In: Machine learning 45.1 (2001), pp. 5–32.

[10] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. a. Swaminathan, and

M. Karplus. “CHARMM: a program for macromolecular energy, minimization, and

dynamics calculations.” In: Journal of computational chemistry 4.2 (1983), pp. 187–

217.

[11] M. Bueno, C. J. Camacho, and J. Sancho. “SIMPLE estimate of the free energy

change due to aliphatic mutations: superior predictions based on first principles.”

In: Proteins: Structure, Function, and Bioinformatics 68.4 (2007), pp. 850–862.

53



BIBLIOGRAPHY

[12] F. J. Burkowski. Structural bioinformatics: an algorithmic approach. Chapman and

Hall/CRC, 2008.

[13] C. J. Camacho and S. Vajda. “Protein–protein association kinetics and protein

docking.” In: Current opinion in structural biology 12.1 (2002), pp. 36–40.

[14] C. J. Camacho and C. Zhang. “FastContact: rapid estimate of contact and binding

free energies.” In: Bioinformatics 21.10 (2005), pp. 2534–2536.

[15] C. J. Camacho, D. W. Gatchell, S. R. Kimura, and S. Vajda. “Scoring docked confor-

mations generated by rigid-body protein-protein docking.” In: Proteins: Structure,
Function, and Bioinformatics 40.3 (2000), pp. 525–537.

[16] S. Chaudhury, S. Lyskov, and J. J. Gray. “PyRosetta: a script-based interface for

implementing molecular modeling algorithms using Rosetta.” In: Bioinformatics
26.5 (2010), pp. 689–691.

[17] R. Chen, J. Mintseris, J. Janin, and Z. Weng. “A protein–protein docking bench-

mark.” In: Proteins: Structure, Function, and Bioinformatics 52.1 (2003), pp. 88–

91.

[18] R. Chen, L. Li, and Z. Weng. “ZDOCK: an initial-stage protein-docking algorithm.”

In: Proteins: Structure, Function, and Bioinformatics 52.1 (2003), pp. 80–87.

[19] T. Chen and C. Guestrin. “XGBoost: A Scalable Tree Boosting System.” In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 785–

794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785. url: http:

//doi.acm.org/10.1145/2939672.2939785.

[20] C. Chothia and J. Janin. “Principles of protein–protein recognition.” In: Nature
256.5520 (1975), p. 705.

[21] S. R. Comeau, D. W. Gatchell, S. Vajda, and C. J. Camacho. “ClusPro: an automated

docking and discrimination method for the prediction of protein complexes.” In:

Bioinformatics 20.1 (2004), pp. 45–50.

[22] G. Cybenko. “Approximation by superpositions of a sigmoidal function.” In: Math-
ematics of control, signals and systems 2.4 (1989), pp. 303–314.

[23] H. Daniel. Python implementation of the Boruta all-relevant feature selection method.
2015. url: https://github.com/scikit-learn-contrib/boruta_py (visited on

12/2018).

[24] S. De, O Krishnadev, N Srinivasan, and N Rekha. “Interaction preferences across

protein-protein interfaces of obligatory and non-obligatory components are differ-

ent.” In: BMC Structural Biology 5.1 (2005), p. 15.

[25] C. Dominguez, R. Boelens, and A. M. Bonvin. “HADDOCK: a protein- protein

docking approach based on biochemical or biophysical information.” In: Journal of
the American Chemical Society 125.7 (2003), pp. 1731–1737.

54

https://doi.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://github.com/scikit-learn-contrib/boruta_py


BIBLIOGRAPHY

[26] R. Esmaielbeiki and J.-C. Nebel. “Unbiased protein interface prediction based on

ligand diversity quantification.” In: (2012).

[27] R. Esmaielbeiki and J.-C. Nebel. “Scoring docking conformations using predicted

protein interfaces.” In: BMC bioinformatics 15.1 (2014), p. 171.

[28] P. Flach and M. Kull. “Precision-recall-gain curves: PR analysis done right.” In:

Advances in Neural Information Processing Systems. 2015, pp. 838–846.

[29] G. Gilliland, H. M. Berman, H. Weissig, I. N. Shindyalov, J. Westbrook, P. E. Bourne,

T. N. Bhat, and Z. Feng. “The Protein Data Bank.” In: Nucleic Acids Research 28.1

(Jan. 2000), pp. 235–242. issn: 0305-1048. doi: 10.1093/nar/28.1.235. eprint:

http://oup.prod.sis.lan/nar/article-pdf/28/1/235/9895144/280235.pdf.

url: https://dx.doi.org/10.1093/nar/28.1.235.

[30] F. Glaser, D. M. Steinberg, I. A. Vakser, and N. Ben-Tal. “Residue frequencies and

pairing preferences at protein–protein interfaces.” In: Proteins: Structure, Function,
and Bioinformatics 43.2 (2001), pp. 89–102.

[31] M. M. Gromiha, K Yugandhar, and S. Jemimah. “Protein–protein interactions:

scoring schemes and binding affinity.” In: Current opinion in structural biology 44

(2017), pp. 31–38.

[32] I. Halperin, B. Ma, H. Wolfson, and R. Nussinov. “Principles of docking: An

overview of search algorithms and a guide to scoring functions.” In: Proteins: Struc-
ture, Function, and Bioinformatics 47.4 (2002), pp. 409–443.

[33] L. Han, Q. Yang, Z. Liu, Y. Li, and R. Wang. “Development of a new benchmark

for assessing the scoring functions applicable to protein–protein interactions.” In:

Future medicinal chemistry 10.13 (2018), pp. 1555–1574.

[34] T. Head, MechCoder, G. Louppe, I. Shcherbatyi, fcharras, Z. Vinícius, cmmalone,

C. Schröder, nel215, N. Campos, T. Young, S. Cereda, T. Fan, rene rex, K. K. Shi,

J. Schwabedal, carlosdanielcsantos, Hvass-Labs, M. Pak, SoManyUsernamesTaken,

F. Callaway, L. Estève, L. Besson, M. Cherti, K. Pfannschmidt, F. Linzberger, C.

Cauet, A. Gut, A. Mueller, and A. Fabisch. scikit-optimize/scikit-optimize: v0.5.2.

Mar. 2018. doi: 10.5281/zenodo.1207017. url: https://doi.org/10.5281/

zenodo.1207017.

[35] A. Herraez. “Biomolecules in the computer: Jmol to the rescue.” In: Biochemistry
and Molecular Biology Education 34.4 (2006), pp. 255–261.

[36] D. Hoffmann, B. Kramer, T. Washio, T. Steinmetzer, M. Rarey, and T. Lengauer.

“Two-stage method for protein- ligand docking.” In: Journal of medicinal chemistry
42.21 (1999), pp. 4422–4433.

[37] J. Huan, W. Wang, and J. Prins. “Efficient mining of frequent subgraphs in the

presence of isomorphism.” In: Third IEEE International Conference on Data Mining.

IEEE. 2003, pp. 549–552.

55

https://doi.org/10.1093/nar/28.1.235
http://oup.prod.sis.lan/nar/article-pdf/28/1/235/9895144/280235.pdf
https://dx.doi.org/10.1093/nar/28.1.235
https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017
https://doi.org/10.5281/zenodo.1207017


BIBLIOGRAPHY

[38] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing in science &
engineering 9.3 (2007), p. 90.

[39] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential model-based optimization

for general algorithm configuration.” In: International Conference on Learning and
Intelligent Optimization. Springer. 2011, pp. 507–523.

[40] H. Hwang, T. Vreven, J. Janin, and Z. Weng. “Protein–protein docking bench-

mark version 4.0.” In: Proteins: Structure, Function, and Bioinformatics 78.15 (2010),

pp. 3111–3114.

[41] J. Janin, K. Henrick, J. Moult, L. Ten Eyck, M. J. Sternberg, S. Vajda, I. Vakser, and

S. J. Wodak. “CAPRI: a critical assessment of predicted interactions.” In: Proteins:
Structure, Function, and Bioinformatics 52.1 (2003), pp. 2–9.

[42] E. Jones, T. Oliphant, and P. Peterson. “{SciPy}: Open source scientific tools for

{Python}.” In: (2014).

[43] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo, and I. A.

Vakser. “Molecular surface recognition: determination of geometric fit between

proteins and their ligands by correlation techniques.” In: Proceedings of the National
Academy of Sciences 89.6 (1992), pp. 2195–2199.

[44] R. Khashan, W. Zheng, and A. Tropsha. “Scoring protein interaction decoys using

exposed residues (SPIDER): a novel multibody interaction scoring function based

on frequent geometric patterns of interfacial residues.” In: Proteins: Structure, Func-
tion, and Bioinformatics 80.9 (2012), pp. 2207–2217.

[45] A. Kouranov, L. Xie, J. de la Cruz, L. Chen, J. Westbrook, P. E. Bourne, and H. M.

Berman. “The RCSB PDB information portal for structural genomics.” In: Nucleic
acids research 34.suppl_1 (2006), pp. D302–D305.

[46] D. Kozakov, K. H. Clodfelter, S. Vajda, and C. J. Camacho. “Optimal clustering

for detecting near-native conformations in protein docking.” In: Biophysical journal
89.2 (2005), pp. 867–875.

[47] D. Kozakov, R. Brenke, S. R. Comeau, and S. Vajda. “PIPER: an FFT-based protein

docking program with pairwise potentials.” In: Proteins: Structure, Function, and
Bioinformatics 65.2 (2006), pp. 392–406.

[48] D. Kozakov, D. Beglov, T. Bohnuud, S. E. Mottarella, B. Xia, D. R. Hall, and S. Vajda.

“How good is automated protein docking?” In: Proteins: Structure, Function, and
Bioinformatics 81.12 (2013), pp. 2159–2166.

[49] P. J. Kundrotas, I. Anishchenko, T. Dauzhenka, I. Kotthoff, D. Mnevets, M. M.

Copeland, and I. A. Vakser. “Dockground: A comprehensive data resource for

modeling of protein complexes.” In: Protein Science 27.1 (2018), pp. 172–181.

[50] M. B. Kursa, W. R. Rudnicki, et al. “Feature selection with the Boruta package.” In:

J Stat Softw 36.11 (2010), pp. 1–13.

56



BIBLIOGRAPHY

[51] S. Labeit and B. Kolmerer. “Titins: giant proteins in charge of muscle ultrastructure

and elasticity.” In: Science 270.5234 (1995), pp. 293–296.

[52] H. Laurent and R. L. Rivest. “Constructing optimal binary decision trees is NP-

complete.” In: Information processing letters 5.1 (1976), pp. 15–17.

[53] Y. LeCun and C. Cortes. “MNIST handwritten digit database.” In: (2010). url:

http://yann.lecun.com/exdb/mnist/.

[54] A. M. Lesk. Introduction to protein architecture: the structural biology of proteins.
Oxford University Press Oxford, 2001.

[55] C. Levinthal, S. J. Wodak, P. Kahn, and A. K. Dadivanian. “Hemoglobin interac-

tion in sickle cell fibers. I: Theoretical approaches to the molecular contacts.” In:

Proceedings of the National Academy of Sciences 72.4 (1975), pp. 1330–1334.

[56] S. Liu, Y. Gao, and I. A. Vakser. “Dockground protein–protein docking decoy set.”

In: Bioinformatics 24.22 (2008), pp. 2634–2635.

[57] S. Lyskov and J. J. Gray. “The RosettaDock server for local protein–protein dock-

ing.” In: Nucleic acids research 36.suppl_2 (2008), W233–W238.

[58] H. Madaoui and R. Guerois. “Coevolution at protein complex interfaces can be

detected by the complementarity trace with important impact for predictive dock-

ing.” In: Proceedings of the National Academy of Sciences 105.22 (2008), pp. 7708–

7713.

[59] A. Malhotra, E. Younesi, S. Sahadevan, J. Zimmermann, and M. Hofmann-Apitius.

“Exploring novel mechanistic insights in Alzheimer’s disease by assessing reliability

of protein interactions.” In: Scientific reports 5 (2015), p. 13634.

[60] D. Malkin, F. P. Li, L. C. Strong, J. F. Fraumeni, C. E. Nelson, D. H. Kim, J. Kassel,

M. A. Gryka, F. Z. Bischoff, M. A. Tainsky, et al. “Germ line p53 mutations in a

familial syndrome of breast cancer, sarcomas, and other neoplasms.” In: Science
250.4985 (1990), pp. 1233–1238.

[61] J. G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I.

Tsigelny, and L. F. Ten Eyck. “Protein docking using continuum electrostatics and

geometric fit.” In: Protein engineering 14.2 (2001), pp. 105–113.

[62] W. McKinney et al. “Data structures for statistical computing in python.” In: Pro-
ceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010, pp. 51–

56.

[63] J. Mintseris, K. Wiehe, B. Pierce, R. Anderson, R. Chen, J. Janin, and Z. Weng.

“Protein–protein docking benchmark 2.0: an update.” In: Proteins: Structure, Func-
tion, and Bioinformatics 60.2 (2005), pp. 214–216.

[64] T. M. Mitchell and M. Learning. “Mcgraw-hill science.” In: Engineering/Math 1

(1997), p. 27.

57

http://yann.lecun.com/exdb/mnist/


BIBLIOGRAPHY

[65] I. H. Moal, M. Torchala, P. A. Bates, and J. Fernández-Recio. “The scoring of poses

in protein-protein docking: current capabilities and future directions.” In: BMC
bioinformatics 14.1 (2013), p. 286.

[66] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[67] H. Nguyen, D. A. Case, and A. S. Rose. “NGLview–interactive molecular graphics

for Jupyter notebooks.” In: Bioinformatics 34.7 (2017), pp. 1241–1242.

[68] N. O’Toole and I. A. Vakser. “Large-scale characteristics of the energy landscape in

protein–protein interactions.” In: Proteins: Structure, Function, and Bioinformatics
71.1 (2008), pp. 144–152.

[69] E. Ozcesmeci. LHC: pushing computing to the limits. 2019. url: https://home.

cern / news / news / computing / lhc - pushing - computing - limits (visited on

03/14/2019).

[70] PDB Statistics: Protein-only Structures Released Per Year. 2019. url: https://www.

rcsb.org/stats/growth/protein (visited on 02/2019).

[71] D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, S. DeBolt,

D. Ferguson, G. Seibel, and P. Kollman. “AMBER, a package of computer programs

for applying molecular mechanics, normal mode analysis, molecular dynamics

and free energy calculations to simulate the structural and energetic properties of

molecules.” In: Computer Physics Communications 91.1-3 (1995), pp. 1–41.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al. “Scikit-learn: Machine learning in

Python.” In: Journal of machine learning research 12.Oct (2011), pp. 2825–2830.

[73] B. Pierce and Z. Weng. “ZRANK: reranking protein docking predictions with an

optimized energy function.” In: Proteins: Structure, Function, and Bioinformatics
67.4 (2007), pp. 1078–1086.

[74] L. E. Raileanu and K. Stoffel. “Theoretical comparison between the gini index and

information gain criteria.” In: Annals of Mathematics and Artificial Intelligence 41.1

(2004), pp. 77–93.

[75] V. Romanuke. Parallel Computing Center (Khmelnitskiy, Ukraine) represents an en-
semble of 5 convolutional neural networks which performs on MNIST at 0.21 percent
error rate. 2016.

[76] T. Saito and M. Rehmsmeier. “The precision-recall plot is more informative than

the ROC plot when evaluating binary classifiers on imbalanced datasets.” In: PloS
one 10.3 (2015), e0118432.

[77] S. Srivastava, Z. Zou, K. Pirollo, W. Blattner, and E. H. Chang. “Germ-line transmis-

sion of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome.”

In: Nature 348.6303 (1990), p. 747.

58

https://home.cern/news/news/computing/lhc-pushing-computing-limits
https://home.cern/news/news/computing/lhc-pushing-computing-limits
https://www.rcsb.org/stats/growth/protein
https://www.rcsb.org/stats/growth/protein


BIBLIOGRAPHY

[78] M. J. Sternberg, H. A. Gabb, and R. M. Jackson. “Predictive docking of protein—

protein and protein—DNA complexes.” In: Current Opinion in Structural Biology
8.2 (1998), pp. 250–256.

[79] A. Tovchigrechko and I. A. Vakser. “GRAMM-X public web server for protein–

protein docking.” In: Nucleic acids research 34.suppl_2 (2006), W310–W314.

[80] P. Vagata and K. Wilfong. Scaling the Facebook data warehouse to 300 PB. 2014. url:

https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-

to-300-pb/ (visited on 03/14/2019).

[81] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. “The NumPy array: a structure

for efficient numerical computation.” In: Computing in Science & Engineering 13.2

(2011), p. 22.

[82] C. Wang, O. Schueler-Furman, and D. Baker. “Improved side-chain modeling for

protein–protein docking.” In: Protein Science 14.5 (2005), pp. 1328–1339.

[83] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, J. Ostblom, S. Lukauskas, D. C.

Gemperline, T. Augspurger, Y. Halchenko, J. B. Cole, J. Warmenhoven, J. de Ruiter,

C. Pye, S. Hoyer, J. Vanderplas, S. Villalba, G. Kunter, E. Quintero, P. Bachant,

M. Martin, K. Meyer, A. Miles, Y. Ram, T. Brunner, T. Yarkoni, M. L. Williams, C.

Evans, C. Fitzgerald, Brian, and A. Qalieh. mwaskom/seaborn: v0.9.0 (July 2018).
July 2018. doi: 10.5281/zenodo.1313201. url: https://doi.org/10.5281/

zenodo.1313201.

[84] D. H. Wolpert, W. G. Macready, et al. “No free lunch theorems for optimization.”

In: IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–82.

[85] Y. Yang and Y. Zhou. “Specific interactions for ab initio folding of protein terminal

regions with secondary structures.” In: Proteins: Structure, Function, and Bioinfor-
matics 72.2 (2008), pp. 793–803.

[86] C. Zhang, S. Liu, and Y. Zhou. “Accurate and efficient loop selections by the DFIRE-

based all-atom statistical potential.” In: Protein science 13.2 (2004), pp. 391–399.

[87] Q. C. Zhang, L. Deng, M. Fisher, J. Guan, B. Honig, and D. Petrey. “PredUs: a

web server for predicting protein interfaces using structural neighbors.” In: Nucleic
acids research 39.suppl_2 (2011), W283–W287.

[88] Q. Zhang, M. Sanner, and A. J. Olson. “Shape complementarity of protein–protein

complexes at multiple resolutions.” In: Proteins: Structure, Function, and Bioinfor-
matics 75.2 (2009), pp. 453–467.

[89] Y. Zhao and G. Karypis. “Data clustering in life sciences.” In: Molecular biotechnol-
ogy 31.1 (2005), pp. 55–80.

59

https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://code.fb.com/core-data/scaling-the-facebook-data-warehouse-to-300-pb/
https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1313201
https://doi.org/10.5281/zenodo.1313201



	List of Figures
	List of Tables
	Glossary
	Acronyms
	Introduction
	Proposed Solution
	Document Structure

	Protein Structure
	Amino Acids and Primary Structure
	Secondary Structure
	Tertiary Structure
	Quaternary Structure
	Protein Homology

	Protein Docking and Scoring
	Search Stage
	Scoring/Refinement Stage
	Docking Frameworks
	RosettaDock
	ClusPro
	HADDOCK

	Scoring Functions
	ZRANK
	PioDock
	FastContact
	dDFIRE
	SPIDER


	Machine Learning
	Unsupervised Learning
	Supervised Learning
	Logistic Regression
	Decision Trees
	Support Vector Machines
	Neural Networks
	Ensemble Methods

	BorutaPy

	Data Collection
	Protein Data Bank
	PDB Format
	Dockground Dataset

	Prototype Development
	Tools
	Feature Extraction
	Data Preparation and Feature Selection
	Performance Metrics
	Model Building & Hyperparameter Tuning

	Comparative Study
	Ranking Performance
	Temporal Performance

	Conclusion and Future Work
	Bibliography

